The present invention relates to a method for identifying a biomarker or disease-related gene from separated/purified extracellular vesicles, and a test method. Besides, the present invention relates to a renal cancer marker obtained by using the search method.
A biomarker refers to an in vivo substance or image data correlating with a normal process or pathological process of a body, or a pharmacological reaction against treatment, and is used as an objective index of a body condition. Biomarkers include various information such as so-called clinical laboratory values of a biochemical test, a blood test and tumor markers, and diagnostic imaging data of CT and MRI. In particular, a biomarker indicating the presence or the progression of a disease as an index of the disease is indispensable for the present medical care for finding, diagnosing and making prognostic prediction of the disease. Besides, a biomarker is used in development of a new drug for selection and evaluation of a compound to be developed.
In recent years, a large number of biomarkers have been discovered as a result of development of techniques for enabling detection of a tiny amount of protein or nucleic acid and development of genome analysis and proteome analysis. Among these, however, a very small number of markers are actually used in clinical practice. Particularly for diseases such as cancers and neurodegenerative diseases exhibiting little subjective symptoms at an early stage of the diseases, a biomarker useful as a tool for diagnosis or drug discovery is desired. Few biomarkers are, however, currently practically used.
For example, renal cell carcinoma causes few symptoms in many cases, and is found after considerable progression in most cases. Although renal cell carcinoma is recently accidentally found in more cases through ultrasonic echography or CT scan carried out for medical examination or another disease, it is still regarded as cancer difficult to find at an early stage. Patent Literatures 1 to 3 report biomarkers for renal cell carcinoma, but these biomarkers have not been put to practical use yet.
In recent years, liquid biopsy (diagnosis using a body fluid) is attracting attention in the field of clinical diagnosis using a biomarker. In the field of cancer diagnosis employing the liquid biopsy, a body liquid is used as a specimen, without collecting tumor tissue as in the conventional biopsy, for detecting a cancer cell or non-invasively or minimally invasively detecting a disease by measuring a biomarker.
As an analysis object of the liquid biopsy, a circulating tumor cell (CTC) and a DNA derived from a cancer cell (circulating tumor DNA; ctDNA) are well known. A CTC or ctDNA is, however, presumed to be detected in metastasis of a cancer cell, and hence is regarded to be suitable for prognostic prediction of cancer but unusable for early diagnosis. Therefore, as an analysis object to be used for the early diagnosis of cancers and other diseases, extracellular vesicles (hereinafter sometimes referred to as EVs) have started to attract attention.
The extracellular vesicles are vesicles released from almost all cells, and are roughly divided, depending on the size and marker molecule to be presented, into exosomes, microvesicles and apoptotic bodies. In recent years, it has been clarified that the extracellular vesicles play various roles. In particular, it has been clarified that the exosomes and the microvesicles contain nucleic acids such as mRNA and microRNA and proteins, and are involved in communication not only between close cells but also between organs (Non Patent Literatures 1 to 4).
It has been reported that the extracellular vesicles are involved, regarding cancer, in development of the cancer including angiogenesis, immunosuppression and metastasis. Besides, based on the composition of a special integrin contained in the extracellular vesicles, it has been suggested that there is a possibility of the extracellular vesicles preparing for metastasis of cancer cells (Non Patent Literature 5). In this manner, the extracellular vesicles are involved also in the development of a disease, and proteins and nucleic acids contained in the extracellular vesicles are changed depending on the state of a living body. Accordingly, a protein or a nucleic acid to be detected using the extracellular vesicles varies depending on the type or state of the disease, and the extracellular vesicles are known to work as biomarkers.
Results of studies conventionally reported are, however, based on mainly cultured cells, and there is no data of comparison of microvesicles obtained from a disease site and a normal site having the same histological background. Therefore, it has been doubted whether or not they function as a biomarker effective for disease diagnosis or new drug development.
An object of the present invention is to provide a method for searching a novel biomarker from biological components contained in extracellular vesicles usable in liquid biopsy. Another object is to provide a novel search method for disease-related gene. Besides, a novel biomarker for renal cell carcinoma, for which an effective biomarker has not been found, and a test method are provided.
The present invention relates to a method for searching a biomarker or disease-related gene derived from diseased tissue, a test method for renal cell carcinoma, a biomarker for renal cell carcinoma, and a method for screening a therapeutic agent for renal cell carcinoma.
(1) A search method, comprising: immersing resected diseased tissue in an immersion liquid; analyzing an exuded component derived from the diseased tissue exuded from the diseased tissue in the immersion liquid; and identifying a biomarker and/or disease-related gene derived from the diseased tissue.
(2) The search method according to (1), comprising: immersing normal tissue obtained from around the resected diseased tissue in an immersion liquid; analyzing an exuded component derived from the normal tissue exuded from the normal tissue in the immersion liquid; identifying a biomarker and/or disease-related gene derived from the normal tissue; and selecting a disease-specific biomarker and/or disease-related gene by comparatively examining the biomarker and/or disease-related gene derived from the diseased tissue and the biomarker and/or disease-related gene derived from the normal tissue.
(3) The search method according to (1) or (2), wherein the exuded component is an extracellular vesicle, a protein, a nucleic acid or a lipid.
(4) The search method according to any one of (1) to (3), wherein the exuded component is an extracellular vesicle, and the biomarker and/or disease-related gene contained in the extracellular vesicle is a protein, a nucleic acid or a lipid.
(5) The search method according to any one of (1) to (4), wherein the disease is cancer, neurodegenerative disease, multiple sclerosis, diabetes, liver disease, autism or cerebral infarction.
(6) A test method for renal cell carcinoma, comprising: separating an extracellular vesicle contained in a body fluid; detecting at least one biomarker out of biomarkers listed in Tables 1, 2 and 4 contained in the extracellular vesicle; and comparing with a prescribed value.
(7) The test method for renal cell carcinoma according to (6), wherein the biomarker is AZU1, CA9, STBD1, COMT or GYG1.
(8) The test method for renal cell carcinoma according to (6) or (7), wherein the body fluid is blood or urine.
(9) Biomarkers for renal cell carcinoma, listed in Tables 1, 2 and 4.
(10) A method for screening a therapeutic agent for renal cell carcinoma using AZU1, CA9, STBD1, COMT or GYG1 as a target, comprising: selecting a candidate compound by using AZU1, CA9, STBD1, COMT or GYG1 as an index.
Now, a method for isolating extracellular vesicles from tissue and for analyzing a biomarker, and a method for searching disease-related gene will be described in detail by exemplarily describing search for a renal cell carcinoma marker, but it is noted that a search method for a biomarker and disease-related gene of the present invention is applicable to not only renal cell carcinoma but also any disease. In particular, for cancer to be treated by surgical resection of diseased tissue, a useful biomarker and disease-related gene can be searched by the method of the present invention. Besides, as the diseased tissue, not only tissue surgically obtained but also tissue obtained by autopsy can be used, and the present invention is also applicable to various diseases for which effective biomarkers have not been found yet, such as neurodegenerative diseases including amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease, multiple sclerosis, prostate cancer, pancreatic cancer, diabetes, liver disease, developmental disorder such as autism, and cerebral infarction.
In the case of, for example, cancer to be treated by surgical resection, a so-called non-cancerous part (normal tissue) around a cancerous part is also resected. Therefore, tissues of both a disease site and a normal site can be obtained from the same patient, and thus, samples having the same genetic background can be obtained. Accordingly, when extracellular vesicles obtained from these samples are analyzed, proteins and nucleic acids expressed irrespectively of the disease of interest in the individual can be excluded. As a result, a biomarker specific to the disease can be searched for. Besides, in the case where completely normal tissue is unavailable as in neurodegenerative disease, tissues can be obtained from a group of patients different in severity and the degree of progression to be subjected to comparative quantitative analysis, and thus, disease-related gene and a biomarker can be specified. Furthermore, a biomarker exuded from tissue and information of the biomarker obtained from a body fluid such as a serum can be used in combination.
Alternatively, in addition to the tissue obtained from a patient, tissue can be obtained from a model animal for searching a biomarker. Also for a disease such as neurodegenerative disease and diabetes for which no tissue is resected from a patient for treatment, a biomarker can be searched by using a model animal.
Besides, disease-specific biomarkers thus searched are exuded from diseased tissue, and those contained in extracellular vesicles secreted into a body fluid such as urine or blood can be selected among these to be used as a disease marker for use in liquid biopsy.
Furthermore, since a large number of biological components such as proteins are contained in extracellular vesicles, a large number of disease-specific biomarkers can be found. Among the thus obtained biomarkers, a plurality of biomarkers are selected to be measured in combination, and thus, not only diagnostic sensitivity but also specificity can be increased. When a plurality of markers are used, a disease that could not be found at an early stage can be detected.
Besides, through analysis of proteins and nucleic acids expressed specifically to a disease, a biological component that relates to the disease and can be a target of a therapeutic agent for the disease can be found. For example, when the function of a protein highly expressed in a diseased tissue is analyzed, and if it has a function essential for the onset or development of the disease, a pharmaceutical can be developed by using it as a target of a therapeutic agent.
In addition, when tissue derived from a patient who has become resistant to a molecular target drug is used, extracellular vesicles released from molecular target drug-resistant cells can be captured. A way for braking the resistance can be thus found based on an extracellular vesicle regarded as a replica of a cell.
Besides, a biomarker thus searched can be used in screening of candidate compounds in studies for developing new drugs. In high throughput screening, the screening is often carried out using a cell line. As a cell line to be used for the screening, cell lines having expression tendency similar to that of a plurality disease markers having been searched by the method of the present invention are selected in advance, and thus, candidate compounds can be accurately narrowed down. Furthermore, the obtained biomarker can be used, in addition to the cell line, for examining an effect of a candidate compound in an animal model or at a stage of clinical trial.
Now, renal cell carcinoma will be exemplarily described for describing a method for searching a novel biomarker and a test method using the same in detail. It is noted that analysis using human tissue is approved by the ethics committee of each research institution before the analysis. Besides, renal cell carcinoma tissue and normal tissue around the tumor tissue are used for the analysis after informed consent is obtained from a patient.
A piece of tissue collected from a disease site or a normal site is allowed to stand still in the immersion liquid at 4° C. for about 1 hour to cause extracellular vesicles to be secreted. The time for the standing in the immersion liquid can be adjusted in accordance with the amount of the obtained piece of tissue. When the piece of tissue is allowed to stand still in the immersion liquid for a long period of time, a larger number of extracellular vesicles can be obtained. Besides, a temperature condition for immersing the tissue can be any temperature within a range from 0° C. to 37° C. Since a higher temperature increases a secretion rate and increases the amount of extracellular vesicles and the like to be obtained, the time and the temperature for the immersion may be appropriately determined. Alternatively, the immersion can be performed by, instead of still standing, gently stirring the immersion liquid by shaking, inverting or rotating. After causing extracellular vesicles to be sufficiently secreted, the resultant is centrifuged at 2,000 g for 30 minutes to remove the piece of tissue and cells through precipitation. Next, the resultant is centrifuged at 16,000 g for 30 minutes to remove cell debris through precipitation. Furthermore, a resultant supernatant is centrifuged at 100,000 g for 90 minutes to collect the Te-EVs secreted from the diseased tissue or the normal tissue through precipitation. The thus obtained Te-EVs are suspended in PBS, and washed by centrifugation at 100,000 g for 90 minutes. The thus isolated Te-EVs are extracellular vesicles derived from the diseased tissue and the normal tissue obtained from the same patient, and hence have the same genetic background, and therefore, when these are comparatively analyzed, a disease-specific biomarker can be selected.
The isolated Te-EVs are decomposed, by trypsin digestion, into peptides analyzable by mass spectrometry. The resultant peptides are identified and quantitatively determined by LC/MS (liquid chromatography/mass spectrometry) analysis. Besides, a protein specific to each of the Te-EVs is analyzed by statistical analysis.
Te-EVs were collected to be analyzed for renal cell carcinoma patient from whom both tumor tissue and normal tissue (non-cancerous part) were obtained among 20 renal cell carcinoma patients. Histological diagnosis of renal cell carcinoma was carried out by hematoxylin-eosin staining. The disease stages of the patients classified based on AJCC TNM 6th edition were stages T1a to T3c.
The degree of purification of the thus obtained extracellular vesicles was analyzed by the Western blotting method, the immunoelectron microscopy, nanoparticle tracking analysis (
An upper panel of
The immunoelectron microscopy was performed basically in accordance with a method of Lasser et al., (Non Patent Literature 6) by using the anti-CD9 monoclonal antibody (12A12) and a 20 nm gold colloid-labeled anti-mouse antibody (manufactured by Abcam Plc.), respectively, as a primary antibody and a secondary antibody. Specifically, 1 μg of a Te-EVs sample was allowed to stand still for 1 hour on a formvar support film having carbon deposited thereon, and then was fixed with 2% paraformaldehyde to be reacted with the primary antibody. Thereafter, the resultant was reacted with the secondary antibody, and was observed with an electron microscope H-7650 (manufactured by Hitachi High-Technologies Corporation). A gold colloid bonded to the CD9 was observed as illustrated with an arrow on the Te-EVs derived from either of the normal tissue and the tumor tissue (middle panel of
It was found through the observation under an electron microscope that particle sizes of the Te-EVs derived from the tumor tissue largely varied. Therefore, the particle sizes of the Te-EVs derived from each tissue were measured by the nanoparticle tracking analysis. It is known that renal cell carcinoma tissue contains not only cancer cells but also non-cancerous cells (immune cells, endothelial cells and mast cells) (Non Patent Literatures 7 to 10). Therefore, it is presumed that EVs derived from normal cells are also secreted in addition to the EVs derived from cancer cells. Accordingly, in addition to the Te-EVs, extracellular vesicles secreted from cell lines established from renal cell carcinoma, that is, 786-O, ACHN and Caki-1 cell lines, were similarly isolated, purified and analyzed for a size distribution.
The 786-O, ACHN and Caki-1 cell lines were all obtained from American Type Culture Collection (ATCC), and cultured in an RPMI medium (manufactured by Wako Pure Chemical Industries Ltd.) supplemented with 10% fetal bovine serum, 100 U/mL penicillin G and 0.1 μg/mL streptomycin. For isolating EVs from the cell line, 5.0×105 cells were seeded in a 10 cm culture dish and cultured for 48 hours, and EVs secreted into the culture fluid were collected, by the centrifugation similarly to the Te-EVs, to be used for the analysis.
Te-EVs obtained from 21 normal tissues, Te-EVs obtained from 28 tumor tissues and EVs isolated from the above-described three renal cell carcinoma cell lines were used for analyzing the particle sizes. The nanoparticle tracking analysis was performed under the same conditions by using NanoSight LM10 (manufactured by Malvern Panalytical Ltd.) in which NTA 2.0 analysis software was installed (lower panel in
Next, Te-EVs derived from tumor tissues obtained from 20 patients and Te-EVs to be paired derived from normal tissues were used for identifying a tetraspanin molecule, which is known as an exosome marker, by the mass spectrometry, and its expression level was analyzed by the LC/MS (
The isolated Te-EVs were reduced with 20 mM dithiothreitol at 100° C. for 10 minutes, followed by alkylation with 50 mM iodoacetamide at an ambient temperature for 45 minutes. Thereafter, the resultant was digested with 5 μl immobilized trypsin (manufactured by Thermo Fisher Scientific K.K.) by rotating/swinging at 1000 rpm at 37° C. for 6 hours. The thus obtained peptide was extracted with ethyl acetate, then desalted using Oasis HLB μ-elution plate (manufactured by Waters Corporation), and subjected to the mass spectrometry. In the mass spectrometry, an LTQ-Orbitrap-Velos mass spectrometer directly connected to UltriMate 3000 RSLC nano-flow HPLC system (both manufactured by Thermo Fisher Scientific K.K.) was used. Protein was identified and quantitatively determined through analysis using MaxQuant software.
In order to examine properties of the obtained Te-EVs, the expression level of the tetraspanin molecule was compared. Fifteen tetraspanin molecules were detected, and it was revealed that the Te-EVs derived from either tissue had a high degree of purification. Besides, it was clarified that the expression of most molecules of the tetraspanin family was reduced in the Te-EVs derived from the tumor tissue as compared with the Te-EVs derived from the normal tissue.
Te-EVs derived from tumor tissue obtained from 20 patients and Te-EVs to be paired derived from normal tissue around a cancerous region were used for performing the LC/MS analysis in the same manner as described above (
These genes were classified, in accordance with the DAVID gene ontology analysis, into categories of cellular components (CC;
According to the gene ontology enrichment analysis, in the Te-EVs derived from the tumor tissue, membrane protein was characteristically present in the proteins classified as the cellular components (
Among the 3871 proteins thus identified, proteins specifically expressed in the Te-EVs derived from the renal cell carcinoma tissue were analyzed. The Te-EVs derived from the tumor tissue and the normal tissue obtained from the renal tissue of the same patient were analyzed as a pair by a paired t-test.
In the Te-EVs derived from the renal cell carcinoma tissue, as compared with the proteins contained in the Te-EVs derived from the normal tissue, the expression of 106 proteins shown in Table 1 (Tables 1-1 and 1-2) or 291 proteins shown in Table 2 (Tables 2-1 to 2-5) was found to be significantly larger or smaller.
Among the 106 proteins found to be increased in the expression, the proteins shown in Table 3 including azurocidin (hereinafter referred to as AZUL) are characteristic with a large difference in the expression level from the proteins contained in the Te-EVs derived from the normal tissue, and hence can be more preferably used as the markers for renal cell carcinoma.
In particular, carbonic anhydrase 9, catechol O-methyltransferase, phosphoprotein associated with glycosphingolipid-enriched microdomains 1, leukocyte-associated immunoglobulin-like receptor 1, transmembrane glycoprotein NMB, high affinity immunoglobulin epsilon receptor subunit gamma, solute carrier family 2, facilitated glucose transporter member 3, tyrosine-protein phosphatase non-receptor type substrate 1, receptor-type tyrosine-protein phosphatase C, vimentin and carbonic anhydrase 3 are regarded as particularly useful markers because these have been reported to be highly expressed in renal cancer. Besides, phosphoprotein associated with glycosphingolipid-enriched microdomains 1 and tyrosine-protein phosphatase non-receptor type substrate 1 are regarded as promising candidates for a target for drug discovery because these make contribution to inhibition of T cell activity and immune evasion by cancer cells when highly expressed. One of these markers may be singly used, or when a plurality of markers are used in combination, the specificity and the sensitivity can be increased. Further, an existing biomarker may be used in combination for diagnosis.
Although the analysis results of the proteins contained in the Te-EVs are herein described, any biological component contained in the Te-EVs may be analyzed to be used as a biomarker. Examples of such a biological component include a nucleic acid and a lipid.
The results of detailed analysis of AZU1 farthest from the origin of the volcano plot (p=2.85×10−3, fold-change: 31.59, shown with an arrow AZU1 in
Besides, the increase of the expression of AZU1 in accordance with the progression of cancer was checked by the Western blotting (
It has been reported that extracellular vesicles derived from cancer are detected also in a serum (Non Patent Literatures 3 to 5 and 11 to 13). Therefore, the amount of AZU1 in EVs contained in a serum sample was measured by quantitative mass spectrometry (
The EVs contained in the serum sample was purified by using an EVSecond column (manufactured by GL Sciences Inc.). AZU1 was not at all detected in EVs contained in serums of 10 cases of healthy persons, but AZU1 was detected in 10 cases out of 19 cases of renal cell carcinoma patients. Although the AZU1 content did not increase in accordance with the progression of cancer as in the Te-EVs derived from the renal cell carcinoma tissue, it was detected at a high ratio in EVs contained in serums of cancer patients at early stages of T1a to T2b. This result reveals that a renal cell carcinoma test for detecting AZU1 using a serum is effective.
That AZU1 was detected in the extracellular vesicles present in the serum of a renal cell carcinoma patient indicates that a protein different in the content in Te-EVs can be detected in the serum. Accordingly, it indicates that a biomarker found by this method can function as a disease marker with which a test can be performed by using a serum.
Since the expression of AZU1 was detected specifically to the renal cell carcinoma tissue, the biological effect of AZU1 was examined. It is known that angiogenesis is generated largely to construct microenvironment of tumor tissue in renal cell carcinoma (Non Patent Literatures 14 to 17). Therefore, the effect of AZU1 on the form of vascular endothelial cells was examined.
First, localization of intrinsic AZU1 was examined under an immunoelectron microscope. The localization of AZU1 was examined in Te-EVs obtained from normal tissue and tumor tissue of the same patient by using an anti-AZU1 antibody obtained by immunizing a rabbit (manufactured by Abcam Plc.) and an anti-CD9 monoclonal antibody as primary antibodies, and secondary antibodies labeled with colloidal gold particles having different sizes (
An antibody labeled with 40 nm colloidal gold particles was used as an anti-rabbit antibody, and an antibody labelled with 20 nm colloidal gold particles was used as an anti-mouse antibody. Accordingly, a large particle corresponds to the expression of AZU1 and a small particle corresponds to the expression of CD9 in
The AZU1 expression in a renal cell carcinoma cell line was checked by the Western blotting (
Next, the permeability of the vascular endothelial cells of the CM-EVs obtained from these cell lines was analyzed based on transendothelial electrical resistance (TEER) (
(Electric resistance (Ω) of sample well−Electric resistance (Ω) of empty well)×culture area (cm2)=TEER (Ωcm2) [Expression 1]
The results are illustrated in
Since it was presumed that the EVs having a larger amount of AZU1 presented thereon had an effect of increasing permeability, detailed analysis was performed by using a system in which AZU1 was forcedly expressed. AZU1-FLAG (manufactured by Addgene) was introduced into and forcedly expressed in ACHN cells in which AZU1 was minimally detected in CM-EVs. As illustrated in
Besides, it was confirmed under an immunoelectron microscope that the AZU1-FLAG was presented also on the EVs. The detection of the FLAG was performed by using an anti-FLAG monoclonal antibody (manufactured by Sigma-Aldrich) as a primary antibody and using a colloidal gold labeled anti-mouse antibody (
The thus obtained expression system was used to examine the permeability by using HUVEC (
Next, examination was made to check whether or not a similar effect can be exhibited by Te-EVs obtained from renal cell carcinoma patients. The permeability of cells was measured by using Te-EVs derived from normal tissue and tumor tissue obtained from six patients at various stages.
Examinations were made to check whether or not the difference in the effect on the TEER of the Te-EVs derived from the normal tissue and the tumor tissue was caused by incorporation into cells of the Te-EVs derived from these tissues. The Te-EVs derived from the normal tissue and the tumor tissue were respectively labeled with PKH-67 and PKH-26 (manufactured by Sigma Aldrich) and then mixed, the resultant mixture was added to a culture fluid of HUVEC cells, and the resultant was observed under a microscope 12 hours later.
In blood of a patient, Te-EVs derived from tumor tissue and normal tissue are circulating in a mixed state. It was examined whether or not the reduction of the TEER was induced in such a mixed state.
Based on the above-described results, it is presumed that AZU1 is a disease-related gene closely involved in the onset and development of renal cell carcinoma. Accordingly, a therapeutic agent can be created by using AZU1 as a target. In this manner, when the function of a biological component such as a protein or a nucleic acid expressed specifically to a disease is analyzed, a target of a novel therapeutic agent can be found.
If a protein characteristic to a renal cell carcinoma patient can be detected with EVs contained in a serum, it can be used as a useful marker for early detection of renal cell carcinoma. Therefore, proteins different between a renal cell carcinoma patient and a healthy person were searched for in EVs contained in a serum. Table 4 shows proteins that can be detected in EVs contained in a serum of a renal cell carcinoma patient but cannot be detected in those of a healthy person, excluding those detected as a result of the Te-EVs analysis shown in Tables 1 and 2.
These proteins are characteristic to a renal cell carcinoma patient, but are not detected in all renal cell carcinoma patients. When a plurality of these markers are combined, however, a renal cell carcinoma patient can be detected at an early stage by using a blood sample. In addition to findings obtained from Te-EVs of renal cell carcinoma patients, these proteins specifically detected in the serums of the renal cell carcinoma patients are usable as novel markers for renal cell carcinoma, for which an effective biomarker has not been found.
According to a search method for a biomarker of the present invention, a tissue-specific disease marker contained in extracellular vesicles can be obtained. Since extracellular vesicles are secreted into a body fluid, they are very useful as non-invasive or minimally invasive disease markers. When this method is employed, a biomarker can be obtained for a disease for which an effective biomarker has not been found.
Besides, a renal cell carcinoma marker described herein can be used, in a renal cell carcinoma detecting test, as a novel marker for renal cell carcinoma for which there has been no effective biomarker. Furthermore, since AZU1 has an effect of disintegrating the form of vascular endothelial cells, it is suggested to be significant for metastasis of cancer cells. Therefore, a molecular target drug using AZU1 as a target is expected to have an anticancer metastasis effect.
Number | Date | Country | Kind |
---|---|---|---|
2016-211239 | Oct 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/038812 | 10/26/2017 | WO | 00 |