Biomarker pairs for predicting preterm birth

Information

  • Patent Grant
  • 11987846
  • Patent Number
    11,987,846
  • Date Filed
    Monday, March 1, 2021
    3 years ago
  • Date Issued
    Tuesday, May 21, 2024
    13 days ago
Abstract
The disclosure provides a pair of isolated biomarkers selected from the group consisting of IBP4/SHBG, IBP4/PSG3, IBP4/LYAM1, IBP4/IGF2, CLUS/IBP3, CLUS/IGF2, CLUS/LYAM1, INHBC/PSG3, INHBC/IGF2, PSG2/LYAM1, PSG2/IGF2, PSG2/LYAM1, PEDF/PSG3, PEDF/SHBG, PEDF/LYAM1, CD14/LYAM1, and APOC3/LYAM1, wherein the pair of biomarkers exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls. Also provided is a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for at least one pair of biomarkers selected from the group consisting of IBP4/SHBG, IBP4/PSG3, IBP4/LYAM1, IBP4/IGF2, CLUS/IBP3, CLUS/IGF2, CLUS/LYAM1, INHBC/PSG3, INHBC/IGF2, PSG2/LYAM1, PSG2/IGF2, PSG2/LYAM1, PEDF/PSG3, PEDF/SHBG, PEDF/LYAM1, CD14/LYAM1, and APOC3/LYAM1 to determine the probability for preterm birth in the pregnant female.
Description

This application incorporates by reference a Sequence Listing submitted as an ASCII text file entitled 13271-056-999_SL.TXT created on Feb. 22, 2021, and having a size of 44,495 bytes.


The invention relates generally to the field of precision medicine and, more specifically to compositions and methods for determining the probability for preterm birth in a pregnant female.


BACKGROUND

According to the World Health Organization, an estimated 15 million babies are born preterm (before 37 completed weeks of gestation) every year. In almost all countries with reliable data, preterm birth rates are increasing. See, World Health Organization; March of Dimes; The Partnership for Maternal, Newborn & Child Health; Save the Children, Born too soon: the global action report on preterm birth, ISBN 9789241503433(2012). An estimated 1 million babies die annually from preterm birth complications. Globally, preterm birth is the leading cause of newborn deaths (babies in the first four weeks of life) and the second leading cause of death after pneumonia in children under five years. Many survivors face a lifetime of disability, including learning disabilities and visual and hearing problems.


Across 184 countries with reliable data, the rate of preterm birth ranges from 5% to 18% of babies born. Blencowe et al., “National, regional and worldwide estimates of preterm birth.” The Lancet, 9; 379(9832):2162-72 (2012). While over 60% of preterm births occur in Africa and south Asia, preterm birth is nevertheless a global problem. Countries with the highest numbers include Brazil, India, Nigeria and the United States of America. Of the 11 countries with preterm birth rates over 15%, all but two are in sub-Saharan Africa. In the poorest countries, on average, 12% of babies are born too soon compared with 9% in higher-income countries. Within countries, poorer families are at higher risk. More than three-quarters of premature babies can be saved with feasible, cost-effective care, for example, antenatal steroid injections given to pregnant women at risk of preterm labor to strengthen the babies' lungs.


Infants born preterm are at greater risk than infants born at term for mortality and a variety of health and developmental problems. Complications include acute respiratory, gastrointestinal, immunologic, central nervous system, hearing, and vision problems, as well as longer-term motor, cognitive, visual, hearing, behavioral, social-emotional, health, and growth problems. The birth of a preterm infant can also bring considerable emotional and economic costs to families and have implications for public-sector services, such as health insurance, educational, and other social support systems. The greatest risk of mortality and morbidity is for those infants born at the earliest gestational ages. However, those infants born nearer to term represent the greatest number of infants born preterm and also experience more complications than infants born at term.


To prevent preterm birth in women who are less than 24 weeks pregnant with an ultrasound showing cervical opening, a surgical procedure known as cervical cerclage can be employed in which the cervix is stitched closed with strong sutures. For women less than 34 weeks pregnant and in active preterm labor, hospitalization may be necessary as well as the administration of medications to temporarily halt preterm labor and/or promote the fetal lung development. If a pregnant women is determined to be at risk for preterm birth, health care providers can implement various clinical strategies that may include preventive medications, for example, 17-α hydroxyprogesterone caproate (Makena) injections and/or vaginal progesterone gel, cervical pessaries, restrictions on sexual activity and/or other physical activities, and alterations of treatments for chronic conditions, such as diabetes and high blood pressure, that increase the risk of preterm labor.


There is a great need to identify and provide women at risk for preterm birth with proper antenatal care. Women identified as high-risk can be scheduled for more intensive antenatal surveillance and prophylactic interventions. Current strategies for risk assessment are based on the obstetric and medical history and clinical examination, but these strategies are only able to identify a small percentage of women who are at risk for preterm delivery. Prior history of spontaneous PTB (sPTB) is currently the single strongest predictor of subsequent PTB. After one prior sPTB the probability of a second PTB is 30-50%. Other maternal risk factors include: black race, low maternal body-mass index, and short cervical length. Amniotic fluid, cervicovaginal fluid, and serum biomarker studies to predict sPTB suggest that multiple molecular pathways are aberrant in women who ultimately deliver preterm. Reliable early identification of risk for preterm birth would enable planning appropriate monitoring and clinical management to prevent preterm delivery. Such monitoring and management might include: more frequent prenatal care visits, serial cervical length measurements, enhanced education regarding signs and symptoms of early preterm labor, lifestyle interventions for modifiable risk behaviors such as smoking cessation, cervical pessaries and progesterone treatment. Finally, reliable antenatal identification of risk for preterm birth also is crucial to cost-effective allocation of monitoring resources.


Despite intense research to identify at-risk women, PTB prediction algorithms based solely on clinical and demographic factors or using measured serum or vaginal biomarkers have not resulted in clinically useful tests. More accurate methods to identify women at risk during their first pregnancy and sufficiently early in gestation are needed to allow for clinical intervention. The present invention addresses this need by providing compositions and methods for determining whether a pregnant woman is at risk for preterm birth. Related advantages are provided as well.


SUMMARY

The present invention provides compositions and methods for predicting the probability of preterm birth in a pregnant female.


The invention provides isolated biomarkers selected from the group set forth in Table 26. The biomarkers of the invention can predict risk for pre-term birth in a pregnant female. In some embodiments, the isolated biomarkers are selected from the group consisting of IBP4, SHBG, PSG3, LYAM1, IGF2, CLUS, IBP3, INHBC, PSG2, PEDF, CD14, and APOC3.


The invention provides surrogate peptides of the isolated biomarkers selected from the group set forth in Table 26. In some embodiments, the surrogate peptides of the isolated biomarkers are selected from the group of surrogate peptides set forth in Table 26. The biomarkers of the invention and their surrogate peptides can be used in methods to predict risk for pre-term birth in a pregnant female. In some embodiments, the surrogate peptides correspond to isolated biomarkers selected from the group consisting of IBP4, SHBG, PSG3, LYAM1, IGF2, CLUS, IBP3, INHBC, PSG2, PEDF, CD14, and APOC3.


The invention provides stable isotope labeled standard peptides (SIS peptides) corresponding to the surrogate peptides selected from the group set forth in Table 26. The biomarkers of the invention, their surrogate peptides and the SIS peptides can be used in methods to predict risk for pre-term birth in a pregnant female. In some embodiments, the SIS peptides correspond to surrogate peptides of the isolated biomarkers selected from the group consisting of IBP4, SHBG, PSG3, LYAM1, IGF2, CLUS, IBP3, INHBC, PSG2, PEDF, CD14, and APOC3.


The invention provides a pair of isolated biomarkers selected from the group consisting of the isolated biomarkers listed in Table 26, wherein the pair of biomarkers exhibits a change in ratio value between pregnant females at risk for pre-term birth and term controls.


The invention provides a pair of isolated biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS, wherein the pair of biomarkers exhibits a change in ratio value between pregnant females at risk for pre-term birth and term controls.


The invention provides a pair of isolated biomarkers selected from the group consisting of IBP4/SHBG, IBP4/PSG3, IBP4/LYAM1, IBP4/IGF2, CLUS/IBP3, CLUS/IGF2, CLUS/LYAM1, INHBC/PSG3, INHBC/IGF2, PSG2/LYAM1, PSG2/IGF2, PSG2/LYAM1, PEDF/PSG3, PEDF/SHBG, PEDF/LYAM1, CD14/LYAM1, and APOC3/LYAM1, wherein the pair of biomarkers exhibits a change in ratio value between pregnant females at risk for pre-term birth and term controls.


In one embodiment, the invention provides a pair of isolated biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS, wherein the pair of biomarkers exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls.


In one embodiment, the invention provides a pair of isolated biomarkers selected from the group consisting of IBP4/SHBG, IBP4/PSG3, IBP4/LYAM1, IBP4/IGF2, CLUS/IBP3, CLUS/IGF2, CLUS/LYAM1, INHBC/PSG3, INHBC/IGF2, PSG2/LYAM1, PSG2/IGF2, PSG2/LYAM1, PEDF/PSG3, PEDF/SHBG, PEDF/LYAM1, CD14/LYAM1, and APOC3/LYAM1, wherein the pair of biomarkers exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls.


In one embodiment, the invention provides a composition comprising a pair of surrogate peptides corresponding to a pair of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS, wherein the pair of biomarkers exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls. In one embodiment, the composition comprises stable isotope labeled standard peptides (SIS peptides) for each of the surrogate peptides.


In one embodiment, the invention provides a composition comprising a pair of surrogate peptides corresponding to a pair of biomarkers selected from the group consisting of IBP4/SHBG, IBP4/PSG3, IBP4/LYAM1, IBP4/IGF2, CLUS/IBP3, CLUS/IGF2, CLUS/LYAM1, INHBC/PSG3, INHBC/IGF2, PSG2/LYAM1, PSG2/IGF2, PSG2/LYAM1, PEDF/PSG3, PEDF/SHBG, PEDF/LYAM1, CD14/LYAM1, and APOC3/LYAM1, wherein the pair of biomarkers exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls. In one embodiment, the composition comprises stable isotope labeled standard peptides (SIS peptides) for each of the surrogate peptides.


In a particular embodiment, the invention provides a pair of isolated biomarkers IBP4/SHBG, wherein the pair of biomarkers exhibits a change in reversal value between pregnant females at risk for pre-term birth compared to term controls. In a further embodiment, the invention provides a pair of isolated biomarkers IBP4/SHBG, wherein the pair of biomarkers exhibits a higher ratio in pregnant females at risk for pre-term birth compared to term controls.


In one embodiment, the invention provides a composition comprising a pair of surrogate peptides corresponding to a pair of biomarkers IBP4/SHBG, wherein the pair of biomarkers exhibits a higher ratio in pregnant females at risk for pre-term birth compared to term controls. In one embodiment, the composition comprises stable isotope labeled standard peptides (SIS peptides) for each of the surrogate peptides.


In a further embodiment, the invention provides a panel of at least two pairs of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS, wherein each of the pairs exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls. In one embodiment, the panel comprises stable isotope labeled standard peptides (SIS peptides) for surrogate peptides derived from each of said biomarkers.


In a further embodiment, the invention provides a panel of at least two pairs of biomarkers selected from the group consisting of IBP4/SHBG, IBP4/PSG3, IBP4/LYAM1, IBP4/IGF2, CLUS/IBP3, CLUS/IGF2, CLUS/LYAM1, INHBC/PSG3, INHBC/IGF2, PSG2/LYAM1, PSG2/IGF2, PSG2/LYAM1, PEDF/PSG3, PEDF/SHBG, PEDF/LYAM1, CD14/LYAM1, and APOC3/LYAM1, wherein each of the pairs exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls. In one embodiment, the panel comprises stable isotope labeled standard peptides (SIS peptides) for surrogate peptides derived from each of said biomarkers.


In an additional embodiment, the invention provides a panel of at least two pairs of surrogate peptides, each pair of the of surrogate peptides corresponding to a pair of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS, wherein each of the pairs exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls. In one embodiment, the panel comprises stable isotope labeled standard peptides (SIS peptides) for each of the surrogate peptides.


In an additional embodiment, the invention provides a panel of at least two pairs of surrogate peptides, each pair of the of surrogate peptides corresponding to a pair of biomarkers selected from the group consisting of IBP4/SHBG, IBP4/PSG3, IBP4/LYAM1, IBP4/IGF2, CLUS/IBP3, CLUS/IGF2, CLUS/LYAM1, INHBC/PSG3, INHBC/IGF2, PSG2/LYAM1, PSG2/IGF2, PSG2/LYAM1, PEDF/PSG3, PEDF/SHBG, PEDF/LYAM1, CD14/LYAM1, and APOC3/LYAM1, wherein each of the pairs exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls. In one embodiment, the panel comprises stable isotope labeled standard peptides (SIS peptides) for each of the surrogate peptides.


In a further embodiment, the invention provides a panel of at least two pairs of surrogate peptides, each pair of the of surrogate peptides corresponding to a pair of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS, wherein at least one of the pairs exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls. In one embodiment, the composition comprises stable isotope labeled standard peptides (SIS peptides) for each of the surrogate peptides.


In a further embodiment, the invention provides a panel of at least two pairs of surrogate peptides, each pair of the of surrogate peptides corresponding to a pair of biomarkers selected from the group consisting of IBP4/SHBG, IBP4/PSG3, IBP4/LYAM1, IBP4/IGF2, CLUS/IBP3, CLUS/IGF2, CLUS/LYAM1, INHBC/PSG3, INHBC/IGF2, PSG2/LYAM1, PSG2/IGF2, PSG2/LYAM1, PEDF/PSG3, PEDF/SHBG, PEDF/LYAM1, CD14/LYAM1, and APOC3/LYAM1, wherein at least one of the pairs exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls. In one embodiment, the composition comprises stable isotope labeled standard peptides (SIS peptides) for each of the surrogate peptides.


In an additional embodiment, the invention provides a panel of at least two pairs of surrogate peptides, each pair of the of surrogate peptides corresponding to a pair of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS, wherein a calculated score, derived from the panel of at least two pairs of biomarkers exhibits a change in value between pregnant females and term controls. In one embodiment, the composition comprises stable isotope labeled standard peptides (SIS peptides) for each of the surrogate peptides.


In an additional embodiment, the invention provides a panel of at least two pairs of surrogate peptides, each pair of the of surrogate peptides corresponding to a pair of biomarkers selected from the group consisting of IBP4/SHBG, IBP4/PSG3, IBP4/LYAM1, IBP4/IGF2, CLUS/IBP3, CLUS/IGF2, CLUS/LYAM1, INHBC/PSG3, INHBC/IGF2, PSG2/LYAM1, PSG2/IGF2, PSG2/LYAM1, PEDF/PSG3, PEDF/SHBG, PEDF/LYAM1, CD14/LYAM1, and APOC3/LYAM1, wherein a calculated score, derived from the panel of at least two pairs of biomarkers exhibits a change in value between pregnant females and term controls. In one embodiment, the composition comprises stable isotope labeled standard peptides (SIS peptides) for each of the surrogate peptides.


In one embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a ratio for at least one pair of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS to determine the probability for preterm birth in the pregnant female. In some embodiments, the pregnant female has a body mass index (BMI) of greater than 22 and less or equal to 37 kg/m2.


In one embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a ratio for at least one pair of biomarkers selected from the group consisting of IBP4/SHBG, IBP4/PSG3, IBP4/LYAM1, IBP4/IGF2, CLUS/IBP3, CLUS/IGF2, CLUS/LYAM1, INHBC/PSG3, INHBC/IGF2, PSG2/LYAM1, PSG2/IGF2, PSG2/LYAM1, PEDF/PSG3, PEDF/SHBG, PEDF/LYAM1, CD14/LYAM1, and APOC3/LYAM1 to determine the probability for preterm birth in the pregnant female. In some embodiments, the pregnant female has a body mass index (BMI) of greater than 22 and less or equal to 37 kg/m2. In some embodiments, the method comprises an initial step of obtaining a biological sample. In some embodiments, the method comprises detecting, measuring or quantifying an SIS surrogate peptide of each of the biomarkers.


In some embodiments, determining the probability for preterm birth in a pregnant female encompasses an initial step that includes formation of a probability/risk index by measuring the ratio of isolated biomarkers selected from the group in a cohort of preterm pregnancies and term pregnancies with known gestational age at birth. In further embodiments, the preterm risk index is formed by measuring the ratio of IBP4/SHBG in a cohort of preterm and term pregnancies where the gestational age at birth is recorded. In some embodiments, determining the probability for preterm birth in a pregnant female comprises measuring the ratio of IBP4/SHBG and comparing the value to the index to derive the preterm risk using the same isolation and measurement technologies to derive IBP4/SHBG as in the index group.


In one embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for at least one pair of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS to determine the probability for preterm birth in the pregnant female. In some embodiments, the pregnant female has a body mass index (BMI) of greater than 22 and less or equal to 37 kg/m2. In some embodiments, the method comprises an initial step of obtaining a biological sample. In some embodiments, the method comprises detecting, measuring or quantifying an SIS surrogate peptide of each of the biomarkers.


In one embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for at least one pair of biomarkers selected from the group consisting of IBP4/SHBG, IBP4/PSG3, IBP4/LYAM1, IBP4/IGF2, CLUS/IBP3, CLUS/IGF2, CLUS/LYAM1, INHBC/PSG3, INHBC/IGF2, PSG2/LYAM1, PSG2/IGF2, PSG2/LYAM1, PEDF/PSG3, PEDF/SHBG, PEDF/LYAM1, CD14/LYAM1, and APOC3/LYAM1 to determine the probability for preterm birth in the pregnant female. In some embodiments, the pregnant female has a body mass index (BMI) of greater than 22 and less or equal to 37 kg/m2. In some embodiments, the method comprises an initial step of obtaining a biological sample. In some embodiments, the method comprises detecting, measuring or quantifying an SIS surrogate peptide of each of the biomarkers.


In another embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a change in reversal value for a panel of at least two pairs of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS to determine the probability for preterm birth in the pregnant female. In another embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a change in reversal value for a panel of at least two pairs of biomarkers selected from the group consisting of IBP4/SHBG, IBP4/PSG3, IBP4/LYAM1, IBP4/IGF2, CLUS/IBP3, CLUS/IGF2, CLUS/LYAM1, INHBC/PSG3, INHBC/IGF2, PSG2/LYAM1, PSG2/IGF2, PSG2/LYAM1, PEDF/PSG3, PEDF/SHBG, PEDF/LYAM1, CD14/LYAM1, and APOC3/LYAM1 to determine the probability for preterm birth in the pregnant female. In some embodiments, the reversal value reveals the existence of a change in the relative intensities of the individual biomarkers between the pregnant female and a term control and indicates the probability for preterm birth in the pregnant female. In additional embodiments, the measuring step comprises measuring surrogate peptides of the biomarkers in the biological sample obtained from the pregnant female. In some embodiments, the pregnant female has a body mass index (BMI) of greater than 22 and less or equal to 37 kg/m2. In some embodiments, the method comprises an initial step of obtaining a biological sample. In some embodiments, the method comprises detecting, measuring or quantifying an SIS surrogate peptide of each of the biomarkers.


In one embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for a pair of biomarkers consisting of IBP4 and SHBG to determine the probability for preterm birth in the pregnant female. In some embodiments, the pregnant female has a body mass index (BMI) of greater than 22 and less or equal to 37 kg/m2. In some embodiments, the method comprises an initial step of obtaining a biological sample. In some embodiments, the method comprises detecting, measuring or quantifying an SIS surrogate peptide of each of the biomarkers.


In one embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for a pair of biomarkers consisting of a ratio of IBP4 over SHBG (IBP4/SHBG) to determine the probability for preterm birth in the pregnant female, wherein a higher ratio in pregnant female compared to term controls indicates an increased risk for pre-term birth. In further embodiments, the pregnant female has a body mass index (BMI) of greater than 22 and less or equal to 37 kg/m2. In some embodiments, the method comprises an initial step of obtaining a biological sample. In some embodiments, the method comprises detecting, measuring or quantifying an SIS surrogate peptide of each of the biomarkers.


In one embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for a pair of biomarkers IBP4 and SHBG to determine the probability for preterm birth in the pregnant female. In some embodiments, the pregnant female has a body mass index (BMI) of greater than 22 and less or equal to 37 kg/m2. In some embodiments, the method comprises an initial step of obtaining a biological sample. In some embodiments, the method comprises detecting, measuring or quantifying an SIS surrogate peptide of each of the biomarkers.


The invention also provides a method of detecting a pair of isolated biomarkers selected from the group consisting of IBP4/SHBG, IBP4/PSG3, IBP4/LYAM1, IBP4/IGF2, CLUS/IBP3, CLUS/IGF2, CLUS/LYAM1, INHBC/PSG3, INHBC/IGF2, PSG2/LYAM1, PSG2/IGF2, PSG2/LYAM1, PEDF/PSG3, PEDF/SHBG, PEDF/LYAM1, CD14/LYAM1, and APOC3/LYAM1 in a pregnant female, said method comprising the steps of a. obtaining a biological sample from the pregnant female; b. detecting whether the pair of isolated biomarkers is present in the biological sample by contacting the biological sample with a first capture agent that specifically binds a first member of said pair and a second capture agent that specifically binds a second member of said pair; and detecting binding between the first biomarker of said pair and the first capture agent and between the second member of said pair and the second capture agent.


In one embodiment the invention provides a method of detecting IBP4 and SHBG in a pregnant female, said method comprising the steps of a. obtaining a biological sample from the pregnant female; b. detecting whether IBP4 and SHBG are present in the biological sample by contacting the biological sample with a capture agent that specifically binds IBP4 and a capture agent that specifically binds SHBG; and c. detecting binding between IBP4 and the capture agent and between SHBG and the capture agent. In one embodiment, the method comprises measuring a reversal value for the pair of biomarkers. In a further embodiment, the existence of a change in reversal value between the pregnant female and a term control indicates the probability for preterm birth in the pregnant female. In one embodiment, the sample is obtained between 19 and 21 weeks of gestational age. In a further embodiment, the capture agent is selected from the group consisting of and antibody, antibody fragment, nucleic acid-based protein binding reagent, small molecule or variant thereof. In an additional embodiment, the method is performed by an assay selected from the group consisting of enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (MA).


The invention also provides a method of detecting a pair of isolated biomarkers selected from the group consisting of IBP4/SHBG, IBP4/PSG3, IBP4/LYAM1, IBP4/IGF2, CLUS/IBP3, CLUS/IGF2, CLUS/LYAM1, INHBC/PSG3, INHBC/IGF2, PSG2/LYAM1, PSG2/IGF2, PSG2/LYAM1, PEDF/PSG3, PEDF/SHBG, PEDF/LYAM1, CD14/LYAM1, and APOC3/LYAM1 in a pregnant female, said method comprising the steps of a. obtaining a biological sample from the pregnant female; and b. detecting whether the pair of isolated biomarkers is present in the biological sample comprising subjecting the sample to a proteomics work-flow comprised of mass spectrometry quantification.


In one embodiment the invention provides a method of detecting IBP4 and SHBG in a pregnant female, said method comprising the steps of a. obtaining a biological sample from the pregnant female; and b. detecting whether the pair of isolated biomarkers is present in the biological sample comprising subjecting the sample to a proteomics work-flow comprised of mass spectrometry quantification.


In some embodiments, the reversal value reveals the existence of a change in the relative intensities of the individual biomarkers between the pregnant female and a term control and indicates the probability for preterm birth in the pregnant female. In additional embodiments, the measuring step comprises measuring surrogate peptides of the biomarkers in the biological sample obtained from the pregnant female. In one embodiment a preterm risk index is formed by measuring the ratio of IBP4/SHBG in a cohort of preterm and term pregnancies where the gestational age at birth is recorded. Then, in clinical practice the measured ratio of IBP4/SHBG in an individual pregnancy is compared in the index to derive the preterm risk using the same isolation and measurement technologies to derive IBP4/SHBG as in the index group.


Other features and advantages of the invention will be apparent from the detailed description, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIG. 1. Blood draw windows. Individual reversal performance is shown across blood draw windows. Reversals shown: IBP4/SHBG; VTNC/VTDB; IBP4/SHBG; VTNC/SHBG; IBP4/SHBG; CATD/SHBG; PSG2/ITIH4; CHL1/ITIH4; PSG2/C1QB; PSG2/FBLN3; HEMO/IBP6; HEMO/PTGDS.



FIG. 2. Discovery case, verification case and validation case for GABD.



FIGS. 3A-3C. Protein expression during pregnancy. Various proteins can be analyzed based on known protein behavior and knowing proteins/pathways that are not affected by preterm birth. FIGS. 3A-3C show expression of pregnancy-related proteins during gestation. These proteins and their networks are unaffected by preterm pathology in the gestational age shown.



FIG. 4. Protein expression during pregnancy. FIG. 4 shows an enlarged version of the graph shown in FIG. 3 relating to placenta-specific growth hormone.



FIGS. 5A-5B. Protein pathology during pregnancy. Insulin-like growth factor binding protein 4 (IBP4) was over-expressed by at least 10% in blood draw window 19-21 weeks. Sex hormone binding globulin (SHBG) was under-expressed by at least 10% in blood draw window 19-21 weeks.



FIG. 6. Verification selection criteria. FIG. 6 describes criteria for performing a clinically and analytically robust preterm test of high performance.



FIG. 7. Monte Carlo Cross Validation (MCVV). MCCV is a conservative method that estimates how well a classifier will perform on an independent set of samples drawn from the same population (e.g. PAPR).



FIG. 8. Analysis of [IBP4]/[SHBG CHL1 CLUS]. CHL1 and CLUS increased performance by 0.03 relative to IBP4/SHBG only.



FIG. 9. Power and sample size analysis. Power and sample size analysis predicts the likelihood that a study is powered sufficiently to reject the null hypothesis (AUC=0.5) at thresholds of sample number and performance estimates.



FIG. 10. Pregnancy clock and time to birth. Multiple analytes that increase in pregnancy but are not different in PTB cases and controls can be used to date pregnancy biochemically. Biochemical dating could be useful for confirmation of dating by date of last menstrual period or ultrasound dating, or prior to subsequent determinations of sPTB risk, TTB or GAB prediction.



FIG. 11. Classifier development. FIG. 11 shows criteria for developing classifiers.



FIG. 12. Pathway coverage in discovery assay. FIG. 12 shows the distribution of proteins by pathway.



FIG. 13. PCA of discovery data detects changes across the blood draw windows and therefore indicates that the highly multiplexed assay is sensitive to gestational age.



FIG. 14. Hierarchical clustering of proteins measured in discovery samples.



FIG. 15. Placenta specific protein branch within larger cluster. The right panel lists a module of genes that is expressed during pregnancy identified by Thompson and the left panel demonstrates that the discovery serum-proteomics assay reproduces the correlated expression of this module. (Thompson et al., Genome Res. 12(10):1517-1522 (2002).



FIG. 16. Dysregulated proteins PreTRM™ samples.



FIG. 17. Highlighted Sex hormone binding globulin (SHGB) biology. SHBG is expressed in placental cells (right). SHBG may be responsible for controlling the levels of free testosterone and estrogen levels in the placental fetal compartment (left).



FIG. 18. Interactions of IBP4, IGF2, PAPP-A and PRG2. IBP4 is a negative regulator of IGF2. IBP4 is freed from IGF2 by PAPPA mediated proteolysis. Low levels of PAPPA have been implicated in IUGR and PE. Elevated levels of IBP4 are indicative of suppressed activity of IGF2. PTB cases have suppressed levels of PAPPA, PRG2 and elevated levels of IBP4.



FIG. 19. Insulin-like growth factor binding protein 4 (IBP4). IBP4 is up-regulated in PTB cases. IGF2 stimulates proliferation, differentiation and invasion of EVT in early pregnancy. IGF activity is essential for normal placentation and fetal growth. IBP4 mediates autocrine and paracrine control of IGF2 activity at the maternal-fetal interface. Activity of IGF2 expressed by cytotrophoblasts is balanced by IBP produced by decidual cells. Elevated IBP4 and reduced IGF2 in 1st trimester correlated with placental dysfunction (e.g. IUGR/SGA).



FIGS. 20A-20C. MS vs ELISA correlation for IBP4, SHBG and CHL1. Mass spectrometry and ELISA are in good agreement for key analytes. Agreement in two orthogonal platforms asserts analyte measurement reliability.



FIG. 21. PTB classification by IBP4/SHBG in discovery samples from 19-21 weeks GABD. Discovery samples for weeks 19-21 of gestation were divided by high and low BMI. IBP4/SHBG reversal values are higher in the high BMI category due to lower SHBG values. Separation of cases and controls is greater at lower BMI.



FIG. 22. Suppressed SHBG levels in PTB cases at low BMI. Linear fits of SHBG serum levels in PAPR subjects across GABD. SHBG levels are suppressed by high BMI. SHBG levels increase across gestation. PTB cases at low BMI have reduced SHBG levels that increase across gestation at an accelerated rate. Figure discloses SEQ ID NO:18.



FIG. 23 summarizes the distribution of study subjects in PAPR.



FIG. 24 shows the ROC curve and corresponding AUC value using the IBP4/SHBG predictor to classify the BMI stratified validation sample set.



FIG. 25 shows prevalence adjusted positive predictive value (PPV), a measure of clinical risk, as a function of predictor score. The calculated association of predictor score and PPV, allows the determination of probability of sPTB risk for any unknown subject. Top (purple) line underneath risk curve graph corresponds to GAB<35 0/7 weeks; second line (red) from top corresponds to GAB between 35 0/7 and 37 0/7/weeks; third line (green) from corresponds to GAB between 37 0/7 and 39 0/7/weeks; fourth line (blue) from top corresponds to GAB 39 0/7 weeks≤GAB.



FIG. 26 displays rate of births for the high and low risk groups as events in a Kaplan Meier analysis. High and low risk was defined as above or below a relative risk of 2× the average population risk of sPTB (=14.6%) from data in FIG. 25.



FIG. 27 shows an ROC curve corresponding to the predictor performance using a combination of subjects from the blinded verification and validation analyses within the optimal BMI and GA interval. The ROC curve for the combined sample corresponds to an AUROC of 0.72 (p=0.013)



FIG. 28 shows 44 proteins were either up- or down-regulated in overlapping 3-week GA intervals and passed analytic filters.



FIG. 29 shows the top performing reversal overall, IBP4/SHBG, had an AUROC=0.74 in the interval from 19 0/7 through 21 6/7.



FIG. 30 shows the mean AUROC of 0.76 obtained from 2,000 bootstrap iterations. The blinded IBP4/SHBG AUROC performance on verification samples was 0.77 and 0.79 for all subjects and BMI stratified subjects, respectively, in good agreement with performance obtained in discovery. Following blinded verification, discovery and verification samples were combined for the bootstrap performance determination.



FIGS. 31A-31B show sPTB Case vs Control Separation Derived by MS vs ELISA Score Values



FIGS. 32A-32B show Immunoassay versus MS ROC Analyses without BMI restriction.



FIGS. 33A-33B show Immunoassay versus MS ROC Analyses for BMI higher than 22 and less or equal to 37.



FIGS. 34A-34B show the correlation between MS and ELISA derived IBP4/SHBG score values within GABD 133-146, for BMI stratified subjects (left panel) and all subjects (right panel).



FIGS. 35A-35B show ELISA and MS Separation of Controls and Cases (BMI stratified)



FIGS. 36A-36B show Elisa and MS Separation of Controls and Cases (All BMI)



FIG. 37 shows comparison of SHBG measurements by Abbott Architect CMIA, semi-automated immunoassay instruments and Sera Prognostics' proteomic analysis method involving immuno-depletion of samples, enzymatic digestion and analysis on an Agilent 6490 Mass Spectrometer.



FIG. 38 shows comparison of SHBG measurements by Roche cobas e602 analyzer, semi-automated immunoassay instruments and Sera Prognostics' proteomic analysis method involving immuno-depletion of samples, enzymatic digestion and analysis on an Agilent 6490 Mass Spectrometer.



FIG. 39 shows comparison of SHBG measurements by Abbott Architect CMIA and Roche cobas e602 analyzer, both semi-automated immunoassay instruments.



FIG. 40 shows the domain and structural characteristics of the longest isoform of the IBP4 protein (Uniprot: P22692). The IBP4 QCHPALDGQR (aa, 214-223) peptide (SEQ ID NO: 2) is located within the Thyroglobulin type 1 domain. IBP4 has a single N-linked glycosylation site at residue 125.



FIG. 41 highlights the position of the QCHPALDGQR peptide (SEQ ID NO: 2) in the two IBP4 isoforms (SEQ ID NOS 158 and 159, respectively, in order of appearance).



FIG. 42 shows the domain and structural characteristics of the longest isoform of the SHBG protein (Uniprot: P04278). The SHBG IALGGLLFPASNLR (aa, 170-183) peptide (SEQ ID NO: 18) is located in the first Lamin G-like domain. SHBG has three glycosylation sites; two N-linked sites at residue 380 and 396; one O-linked site at residue 36.



FIG. 43 highlights the position of the IALGGLLFPASNLR peptide (SEQ ID NO: 18) in exon 4 within the seven isoforms of SHBG (SEQ ID NOS 160, 160, 160, 160, 160, 160, and 161, respectively, in order of appearance).



FIG. 44 shows the average response ratio for IBP4 levels separately for sPTB cases and term controls across gestational age at blood draw (GABD). Cross sectional discovery data was analyzed by smoothing using a sliding 10 day window. Case versus control signal corresponds to an approximate maximal 10% difference.



FIG. 45 shows the average response ratio for SHBG levels separately for sPTB cases and term controls across gestational age at blood draw (GABD). Cross sectional discovery data was analyzed by smoothing using a sliding 10 day window. Case versus control signal corresponds to an approximate maximal 10% difference.



FIG. 46 shows the IBP4/SHBG predictor score separately for sPTB cases and term controls across gestational age at blood draw (GABD). Cross sectional discovery data was analyzed by smoothing using a sliding 10 day window. The maximal difference between the two curves corresponds to approximately a 20% difference, compared with the approximate 10% difference in signal for the individual analytes (FIGS. 45 and 46). These data demonstrate the amplification of diagnostic signal obtained by employing the IBP4/SHBG reversal strategy.



FIGS. 47A-47B show the amplification of diagnostic signal as a result of the formation of many different reversals. To investigate whether formation of reversals in general amplifies diagnostic signal we examined the diagnostic performance of reversals formed by many different proteins by ROC analysis. Shown in the top panel (FIG. 47A) is the range of AUC values (sPTB case vs term control) using datasets from samples collected between 19/0 weeks and 21/6 weeks gestation. The adjacent box plots show the range in ROC performance for the individual up-regulated and down-regulated proteins used to form the associated reversals. Similarly, the lower panel (FIG. 47B) shows the p-values derived from a Wilcoxon test (sPTB case vs. term controls) for reversals are more significant than those for the corresponding individual proteins.



FIG. 48 shows the analytical coefficient of variation (CV) for the measure of individual IBP4 and SHBG response ratios and for the calculated corresponding reversal score. Pooled control serum samples from pregnant donors (pHGS) free of biological variability, were analyzed in multiple batches and across several days. Reversal variability is less than the variability associated with the individual proteins. These data indicate that formation of the reversal controls for analytical variability that occurs during the laboratory processing of samples. Analytical variability is not a biological phenomenon.



FIG. 49 shows the analytical CVs for many reversals and their individual up- and down-regulated proteins. To investigate whether formation of reversals in general amplifies diagnostic signal we examined ROC performance (AUC) of high performing reversals (AUC>0.6) formed by the ratio of many proteins. Shown in the top panel is the range of AUC values (sPTB case vs term control) using datasets from samples collected between 19/0 weeks and 21/6 weeks gestation. The adjacent box plots show the range in ROC performance for the individual up-regulated and down-regulated proteins used to form the associated reversals. Similarly, p values derived from a Wilcoxon test (sPTB case vs. term controls) for reversals are more significant than those for the corresponding individual proteins.



FIG. 50 shows PreTRM™ score comparison for subjects annotated as medically indicated for preeclampsia versus other indications.



FIG. 51 shows a table of metrics of IBP4/SHBG predictor performance in the validation sample set (BMI>22<=37). Using different boundaries to define cases (below the cut-off) from controls (above the cut-off) the predictor sensitivity, specificity, area under the ROC curve (AUC) and odds ratio were determined.



FIG. 52 shows a reversal intensity heatmap with diabetes annotation. The red arrows show diabetes cases. The samples are listed on the bottom with PTB cases on the right and term births on the left side of the screen. The diabetes patients are clustered on the right, showing that it is possible to build a diagnostic test from the biomarkers to predict gestational diabetes.



FIG. 53 shows hierarchical clustering of analyte response ratios.



FIGS. 54A-54D show differentially expressed proteins that function in extracellular matrix interactions.



FIGS. 55A-55D show kinetic plots of differentially expressed proteins with functions in the IGF-2 pathway that show maximum separation at 18 weeks.



FIG. 56A shows a schematic of interactions between IGF-2, IBP4, PAPP1 and PRG2 proteins affecting bioavailability of these proteins in sPTB; FIG. 56B shows a schematic of intracellular signals preferentially activated by insulin binding to the IR-B and by insulin and IGFs binding to either IR-A or IGF1R.



FIGS. 57A-57C show kinetic plots of differentially expressed proteins with functions in metabolic hormone balance.



FIGS. 58A-58F show kinetic plots of differentially expressed proteins with functions in angiogenesis.



FIGS. 59A-59D show kinetic plots of differentially expressed proteins with functions in innate immunity.



FIGS. 60A-60D show kinetic plots of differentially expressed proteins with functions in coagulation.



FIGS. 61A-61D show kinetic plots of differentially expressed serum/secreted proteins.



FIGS. 62A-62D show kinetic plots of differentially expressed PSGs/IBPs.



FIGS. 63A-63D show kinetic plots of differentially expressed ECM/cell surface proteins.



FIGS. 64A-64D show kinetic plots of differentially expressed complement/acute phase proteins-1.



FIGS. 65A-65D show kinetic plots of differentially expressed shows kinetic plots of differentially expressed complement/acute phase proteins-2.



FIGS. 66A-66D show kinetic plots of differentially expressed complement/acute phase proteins-3.



FIGS. 67A-67E show kinetic plots of differentially expressed complement/acute phase proteins-4.



FIGS. 68A-68I show kinetic plots for analytes specified in FIGS. 68A through 68I with data from gestational age at blood draw (GABD) of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:162, 163, 164, 165, 34, 166, 167, 151, and 152, respectively, in order of appearance.



FIGS. 69A-69I show kinetic plots for analytes specified in FIGS. 69A through 69I with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:168, 169, 37, 38, 40, 170, 42, 171 and 172, respectively, in order of appearance.



FIGS. 70A-70I show kinetic plots for analytes specified in FIGS. 70A through 70I with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:173, 47, 174, 175, 48, 50, 51, 52 and 54, respectively, in order of appearance.



FIGS. 71A-71I show kinetic plots for analytes specified in FIGS. 71A through 71I with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:55, 176, 177, 178, 179, 56, 57, 58 and 180, respectively, in order of appearance.



FIGS. 72A-72I show kinetic plots for analytes specified in FIGS. 72A through 72I with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:67, 68, 181, 70, 71, 72, 74, 76 and 182, respectively, in order of appearance.



FIGS. 73A-73I show kinetic plots for analytes specified in FIGS. 73A through 73I with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:183, 78, 79, 184, 80, 81, 185, 83 and 186, respectively, in order of appearance.



FIGS. 74A-74I show kinetic plots for analytes specified in FIGS. 74A through 74I with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:187, 188, 84, 189, 190, 86, 87, 191 and 192, respectively, in order of appearance.



FIGS. 75A-75I show kinetic plots for analytes specified in FIGS. 75A through 75I with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:88, 89, 193, 194, 195, 196, 197, 198 and 199, respectively, in order of appearance.



FIGS. 76A-76I shows kinetic plots for analytes specified in FIGS. 76A through 76I with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:200, 92, 93, 201, 202, 203, 95, 204 and 97, respectively, in order of appearance.



FIGS. 77A-77I show kinetic plots for analytes specified in FIGS. 77A through 77I with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:98, 99, 100, 1, 2, 101, 102, 205 and 206, respectively, in order of appearance.



FIGS. 78A-78I shows kinetic plots for analytes specified in FIGS. 78A through 78I with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:103, 107, 207, 208, 111, 209, 112, 113 and 210, respectively, in order of appearance.



FIGS. 79A-79I show kinetic plots for analytes specified in FIGS. 79A through 79I with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:116, 117, 118, 119, 211, 212, 120, 213 and 121, respectively, in order of appearance.



FIGS. 80A-80I show kinetic plots for analytes specified in FIGS. 80A through 80I with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:153, 122, 124, 125, 214, 126, 215, 216 and 128, respectively, in order of appearance.



FIGS. 81A-81I show kinetic plots for analytes specified in FIGS. 81A through 81I with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:129, 131, 132, 133, 134, 217, 154, 218 and 136, respectively, in order of appearance.



FIGS. 82A-82I show kinetic plots for analytes specified in FIGS. 82A through 82I with data from 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:219, 137, 220, 221, 222, 223, 18, 138 and 139, respectively, in order of appearance.



FIGS. 83A-83I show kinetic plots for analytes specified in FIGS. 83A through 83I with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:224, 140, 141, 142, 225, 143, 226, 227 and 228, respectively, in order of appearance.



FIGS. 84A-84I show kinetic plots for analytes specified in FIGS. 84A through 84I with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:229, 230, 231, 232, 233, 234, 235, 156 and 155, respectively, in order of appearance.



FIGS. 85A-85G shows kinetic plots for peptide transitions specified in FIGS. 85A through 85G with data from GABD of 17 weeks 0 days, through 28 weeks, 6 days. Figures disclose SEQ ID NOS:147, 149, 150, 236, 237, 238 and 239, respectively, in order of appearance.



FIGS. 86A-86I show kinetic plots for peptide transitions specified in FIGS. 86A through 86I using gestational age at birth cutoff of <37 0/7 versus >=37 0/7 weeks. Figures disclose SEQ ID NOS:37, 38, 40, 42, 47, 48, 50, 51 and 52, respectively, in order of appearance.



FIGS. 87A-87I show kinetic plots for peptide transitions specified in FIGS. 87A through 87I using gestational age at birth cutoff of <37 0/7 versus >=37 0/7 weeks. Figures disclose SEQ ID NOS:54, 55, 56, 57, 58, 59, 60, 61 and 62, respectively, in order of appearance.



FIGS. 88A-88I show kinetic plots for peptide transitions specified in FIGS. 88A through 88I using gestational age at birth cutoff of <37 0/7 versus >=37 0/7 weeks. Figures disclose SEQ ID NOS:64, 66, 67, 68, 70, 71, 72, 74 and 76, respectively, in order of appearance.



FIGS. 89A-89I show kinetic plots for peptide transitions specified in FIGS. 89A through 89I using gestational age at birth cutoff of <37 0/7 versus >=37 0/7 weeks. Figures disclose SEQ ID NOS:78, 79, 80, 81, 82, 83, 84, 86 and 87, respectively, in order of appearance.



FIGS. 90A-90I show kinetic plots for peptide transitions specified in FIGS. 90A through 90I using gestational age at birth cutoff of <37 0/7 versus >=37 0/7 weeks. Figures disclose SEQ ID NOS:88, 89, 92, 93, 95, 97, 98, 99 and 100, respectively, in order of appearance.



FIGS. 91A-91I show kinetic plots for peptide transitions specified in FIGS. 91A through 91I using gestational age at birth cutoff of <37 0/7 versus >=37 0/7 weeks. Figures disclose SEQ ID NOS:2, 101, 102, 103, 107, 111, 112, 113 and 114, respectively, in order of appearance.



FIGS. 92A-92I show kinetic plots for peptide transitions specified in FIGS. 92A through 92I using gestational age at birth cutoff of <37 0/7 versus >=37 0/7 weeks. Figures disclose SEQ ID NOS:116, 117, 118, 119, 120, 121, 122, 124 and 125, respectively, in order of appearance.



FIGS. 93A-93I show kinetic plots for peptide transitions specified in FIGS. 93A through 93I using gestational age at birth cutoff of <37 0/7 versus >=37 0/7 weeks. Figures disclose SEQ ID NOS:126, 128, 129, 131, 132, 133, 134, 135 and 136, respectively, in order of appearance.



FIGS. 94A-94I show kinetic plots for peptide transitions specified in FIGS. 94A through 94I using gestational age at birth cutoff of <37 0/7 versus >=37 0/7 weeks. Figures disclose SEQ ID NOS:137, 18, 138, 139, 140, 141, 142, 143 and 144, respectively, in order of appearance.



FIGS. 95A-95C show kinetic plots for peptide transitions specified in FIGS. 95A through 95C using gestational age at birth cutoff of <37 0/7 versus >=37 0/7 weeks. Figures disclose SEQ ID NOS:147, 149 and 150, respectively, in order of appearance.



FIGS. 96A-96I show kinetic plots for peptide transitions specified in FIGS. 96A through 96I using gestational age at birth cutoff of <35 0/7 vs >=35 0/7 weeks. Figures disclose SEQ ID NOS:37, 38, 40, 42, 47, 48, 50, 51 and 52, respectively, in order of appearance.



FIGS. 97A-97I show kinetic plots for peptide transitions specified in FIGS. 97A through 97I using gestational age at birth cutoff of <35 0/7 vs >=35 0/7 weeks. Figures disclose SEQ ID NOS:54, 55, 56, 57, 58, 59, 60, 61 and 62, respectively, in order of appearance.



FIGS. 98A-98I show kinetic plots for peptide transitions specified in FIGS. 98A through 98I using gestational age at birth cutoff of <35 0/7 vs >=35 0/7 weeks. Figures disclose SEQ ID NOS:64, 66, 67, 68, 70, 71, 72, 74 and 76, respectively, in order of appearance.



FIGS. 99A-99I show kinetic plots for peptide transitions specified in FIGS. 99A through 99I using gestational age at birth cutoff of <35 0/7 vs >=35 0/7 weeks. Figures disclose SEQ ID NOS:78, 79, 80, 81, 82, 83, 84, 86 and 87, respectively, in order of appearance.



FIGS. 100A-100I show kinetic plots for peptide transitions specified in FIGS. 100A through 100I using gestational age at birth cutoff of <35 0/7 vs >=35 0/7 weeks. Figures disclose SEQ ID NOS:88, 89, 92, 93, 95, 97, 98, 99 and 100, respectively, in order of appearance.



FIGS. 101A-101I show kinetic plots for peptide transitions specified in FIGS. 101A through 101I using gestational age at birth cutoff of <35 0/7 vs >=35 0/7 weeks. Figures disclose SEQ ID NOS:2, 101, 102, 103, 107, 111, 112, 113 and 114, respectively, in order of appearance.



FIGS. 102A-102I show kinetic plots for peptide transitions specified in FIGS. 102A through 102I using gestational age at birth cutoff of <35 0/7 vs >=35 0/7 weeks. Figures disclose SEQ ID NOS:116, 117, 118, 119, 120, 121, 122, 124 and 125, respectively, in order of appearance.



FIGS. 103A-103I show kinetic plots for peptide transitions specified in FIGS. 103A through 103I using gestational age at birth cutoff of <35 0/7 vs >=35 0/7 weeks. Figures disclose SEQ ID NOS:126, 128, 129, 131, 132, 133, 134, 135 and 136, respectively, in order of appearance.



FIGS. 104A-104I show kinetic plots for peptide transitions specified in FIGS. 104A through 104I using gestational age at birth cutoff of <35 0/7 vs >=35 0/7 weeks. Figures disclose SEQ ID NOS:137, 18, 138, 139, 140, 141, 142, 143 and 144, respectively, in order of appearance.



FIGS. 105A-105C show kinetic plots for peptide transitions specified in FIGS. 105A through 105C using gestational age at birth cutoff of <35 0/7 vs >=35 0/7 weeks. Figures disclose SEQ ID NOS:147, 149 and 150, respectively, in order of appearance.



FIGS. 106A-106C show IBP4 and SHBG levels and IBP4/SHBG reversal values in sPTB cases and controls separately.



FIGS. 107A-107D show the correlation of MSD results with commercial ELISA kits and MS-MRM.



FIGS. 108A-108B provide box plots showing examples of reversals with good performance in weeks 19-20 in preterm labor in the absence of PPROM (PTL). Figures disclose SEQ ID NOS:2, 134, 2 and 103, respectively, in order of appearance.



FIGS. 109A-109D provide box plots showing examples of reversals with good performance in weeks 19-20 in preterm premature rupture of membranes (PPROM). Figures disclose SEQ ID NOS:2, 120, 47, 120, 107, 18, 124 and 142, respectively, in order of appearance.



FIG. 110 is a risk curve showing relationships between the Predictor Score (ln IBP4/SHBG) and the prevalence adjusted relative risk of sPTB (Positive Predictive Value), using a cut-off of <37 0/7 weeks vs >=37 0/7 weeks gestation. Top (purple) line underneath risk curve graph corresponds to sPTB (GAB<35 weeks); second line (red) from top corresponds to sPTB (35≤GAB<37 weeks); third line (green) from corresponds to TERM (37≤GAB<39 weeks); fourth line (blue) from top corresponds to TERM (39 weeks≤GAB).



FIG. 111 is a risk curve showing relationships between the Predictor Score (ln IBP4/SHBG) and the prevalence adjusted relative risk of sPTB (Positive Predictive Value), using a cut-off of <35 0/7 weeks vs >=35 0/7 weeks gestation. Top (purple) line underneath risk curve graph corresponds to sPTB (GAB<35 weeks); second line (red) from top corresponds to sPTB (35≤GAB<37 weeks); third line (green) from corresponds to TERM (37≤GAB<39 weeks); fourth line (blue) from top corresponds to TERM (39 weeks≤GAB).





DETAILED DESCRIPTION

The present disclosure is based, generally, on the discovery that certain proteins and peptides in biological samples obtained from a pregnant female are differentially expressed in pregnant females that have an increased risk of preterm birth relative to controls. The present disclosure is further specifically based, in part, on the unexpected discovery that reversal values of pairs of biomarkers disclosed herein can be utilized in methods of determining the probability for preterm birth in a pregnant female with high sensitivity and specificity. The proteins and peptides disclosed herein as components of ratios and/or reversal pairs serve as biomarkers for classifying test samples, predicting probability of preterm birth, predicting probability of term birth, predicting gestational age at birth (GAB), predicting time to birth (TTB) and/or monitoring of progress of preventative therapy in a pregnant female at risk for PTB, either individually, in ratios, reversal pairs or in panels of biomarkers/reversal pairs. A reversal value is the ratio of the relative peak area of an up regulated biomarker over the relative peak area of a down regulated biomarker and serves to both normalize variability and amplify diagnostic signal. The invention lies, in part, in the selection of particular biomarkers that, when paired together, can predict the probability of pre-term birth based on reversal values. Accordingly, it is human ingenuity in selecting the specific biomarkers that are informative upon being paired in novel reversals that underlies the present invention.


The term “reversal value” refers to the ratio of the relative peak area of an up regulated analyte over the relative peak area of a down regulated analyte and serves to both normalize variability and amplify diagnostic signal. Out of all the possible reversals within a narrow window, a subset can selected based on individual univariate performance. As disclosed herein, the ratio of the relative peak area of an up regulated biomarker over the relative peak area of a down regulated biomarker, referred herein as a reversal value, can be used to identify robust and accurate classifiers and predict probability of preterm birth, predicting probability of term birth, predicting gestational age at birth (GAB), predicting time to birth and/or monitoring of progress of preventative therapy in a pregnant female. The present invention is thus based, in part, on the identification of biomarker pairs where the relative expression of a biomarker pair is reversed that exhibit a change in reversal value between PTB and non-PTB. Use of a ratio of biomarkers in the methods disclosed herein corrects for variability that is the result of human manipulation after the removal of the biological sample from the pregnant female. Such variability can be introduced, for example, during sample collection, processing, depletion, digestion or any other step of the methods used to measure the biomarkers present in a sample and is independent of how the biomarkers behave in nature. Accordingly, the invention generally encompasses the use of a reversal pair in a method of diagnosis or prognosis to reduce variability and/or amplify, normalize or clarify diagnostic signal.


While the term reversal value refers to the ratio of the relative peak area of an up regulated analyte over the relative peak area of a down regulated analyte and serves to both normalize variability and amplify diagnostic signal, it is also contemplated that a pair of biomarkers of the invention could be measured by any other means, for example, by substraction, addition or multiplication of relative peak areas. The methods disclosed herein encompass the measurement of biomarker pairs by such other means.


This method is advantageous because it provides the simplest possible classifier that is independent of data normalization, helps to avoid overfitting, and results in a very simple experimental test that is easy to implement in the clinic. The use of marker pairs based on changes in reversal values that are independent of data normalization enabled the development of the clinically relevant biomarkers disclosed herein. Because quantification of any single protein is subject to uncertainties caused by measurement variability, normal fluctuations, and individual related variation in baseline expression, identification of pairs of markers that may be under coordinated, systematic regulation enables robust methods for individualized diagnosis and prognosis.


The disclosure provides biomarker reversal pairs and associated panels of reversal pairs, methods and kits for determining the probability for preterm birth in a pregnant female. One major advantage of the present disclosure is that risk of developing preterm birth can be assessed early during pregnancy so that appropriate monitoring and clinical management to prevent preterm delivery can be initiated in a timely fashion. The present invention is of particular benefit to females lacking any risk factors for preterm birth and who would not otherwise be identified and treated.


By way of example, the present disclosure includes methods for generating a result useful in determining probability for preterm birth in a pregnant female by obtaining a dataset associated with a sample, where the dataset at least includes quantitative data about the relative expression of biomarker pairs that have been identified as exhibiting changes in reversal value predictive of preterm birth, and inputting the dataset into an analytic process that uses the dataset to generate a result useful in determining probability for preterm birth in a pregnant female. As described further below, quantitative data can include amino acids, peptides, polypeptides, proteins, nucleotides, nucleic acids, nucleosides, sugars, fatty acids, steroids, metabolites, carbohydrates, lipids, hormones, antibodies, regions of interest that serve as surrogates for biological macromolecules and combinations thereof.


In addition to the specific biomarkers identified in this disclosure, for example, by accession number in a public database, sequence, or reference, the invention also contemplates use of biomarker variants that are at least 90% or at least 95% or at least 97% identical to the exemplified sequences and that are now known or later discovered and that have utility for the methods of the invention. These variants may represent polymorphisms, splice variants, mutations, and the like. In this regard, the instant specification discloses multiple art-known proteins in the context of the invention and provides exemplary accession numbers associated with one or more public databases as well as exemplary references to published journal articles relating to these art-known proteins. However, those skilled in the art appreciate that additional accession numbers and journal articles can easily be identified that can provide additional characteristics of the disclosed biomarkers and that the exemplified references are in no way limiting with regard to the disclosed biomarkers. As described herein, various techniques and reagents find use in the methods of the present invention. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. In a particular embodiment, the biological sample is serum. As described herein, biomarkers can be detected through a variety of assays and techniques known in the art. As further described herein, such assays include, without limitation, mass spectrometry (MS)-based assays, antibody-based assays as well as assays that combine aspects of the two.


Protein biomarkers that are components of reversal pairs described herein include, for example, Insulin-Like Growth Factor Binding Protein 4 (IBP4), Sex Hormone Binding Globulin (SHBG), Vitronectin (VTNC), Group-Specific Component (Vitamin D Binding Protein) (VTDB), cathepsin D (lysosomal aspartyl protease) (CATD), pregnancy specific beta-1-glycoprotein 2 (PSG2), Inter-Alpha-Trypsin Inhibitor Heavy Chain Family, Member 4 (ITIH4), cell adhesion molecule L1-like (CHL1), Complement Component 1, Q Subcomponent, B Chain (C1QB), Fibulin 3 (FBLN3), Hemopexin (HEMO or HPX), Insulin-Like Growth Factor Binding Protein 6 (IBP6), prostaglandin D2 synthase 21 kDa (PTGDS)


In some embodiments, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for at least one pair of biomarkers selected from the group comprising those pairs listed in any of the accompanying figures and tables, including FIG. 1.


In some embodiments, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for at least one pair of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, HPX/PTGDS to determine the probability for preterm birth in said pregnant female.


The invention provides isolated biomarkers selected from the group set forth in Table 26. The biomarkers of the invention can predict risk for pre-term birth in a pregnant female. In some embodiments, the isolated biomarkers are selected from the group consisting of IBP4, SHBG, VTNC, VTDB, CATD, PSG2, ITIH4, CHL1, C1QB, FBLN3, HPX, and PTGDS. In some embodiments, the isolated biomarkers are selected from the group consisting of IBP4, SHBG, PSG3, LYAM1, IGF2, CLUS, IBP3, INHBC, PSG2, PEDF, CD14, and APOC3.


The invention provides surrogate peptides of the isolated biomarkers selected from the group set forth in Table 26. In some embodiments, the surrogate peptides of the isolated biomarkers are selected from the group of surrogate peptides set forth in Table 26. The biomarkers of the invention and their surrogate peptides can be used in methods to predict risk for pre-term birth in a pregnant female. In some embodiments, the surrogate peptides correspond to isolated biomarkers selected from the group consisting of IBP4, SHBG, VTNC, VTDB, CATD, PSG2, ITIH4, CHL1, C1QB, FBLN3, HPX, and PTGDS. In some embodiments, the surrogate peptides correspond to isolated biomarkers selected from the group consisting of IBP4, SHBG, PSG3, LYAM1, IGF2, CLUS, IBP3, INHBC, PSG2, PEDF, CD14, and APOC3.


The invention provides stable isotope labeled standard peptides (SIS peptides) corresponding to the surrogate peptides selected from the group set forth in Table 26. The biomarkers of the invention, their surrogate peptides and the SIS peptides can be used in methods to predict risk for pre-term birth in a pregnant female. In some embodiments, the SIS peptides correspond to surrogate peptides of the isolated biomarkers selected from the group consisting of IBP4, SHBG, VTNC, VTDB, CATD, PSG2, ITIH4, CHL1, C1QB, FBLN3, HPX, and PTGDS. In some embodiments, the SIS peptides correspond to surrogate peptides of the isolated biomarkers selected from the group consisting of IBP4, SHBG, PSG3, LYAM1, IGF2, CLUS, IBP3, INHBC, PSG2, PEDF, CD14, and APOC3.


In some embodiments, the invention provides a pair of isolated biomarkers IBP4/SHBG, wherein the pair of biomarkers exhibits a change in reversal value between pregnant females at risk for pre-term birth compared to term controls. In a further embodiment, the invention provides a pair of isolated biomarkers IBP4/SHBG, wherein the pair of biomarkers exhibits a higher ratio in pregnant females at risk for pre-term birth compared to term controls.


In some embodiments, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for at least one pair of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, and CATD/SHBG to determine the probability for preterm birth in said pregnant female. In additional embodiments the sample is obtained between 19 and 21 weeks of GABD. In further embodiments the sample is obtained between 19 and 22 weeks of GABD.


In some embodiments, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for IBP4/SHBG to determine the probability for preterm birth in said pregnant female. In additional embodiments the sample is obtained between 19 and 21 weeks of GABD. In further embodiments the sample is obtained between 19 and 22 weeks of GABD.


In some embodiments, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for at least one pair of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, HPX/PTGDS to determine the probability for preterm birth in said pregnant female, wherein the existence of a change in reversal value between the pregnant female and a term control determines the probability for preterm birth in the pregnant female. In additional embodiments the sample is obtained between 19 and 21 weeks of GABD. In further embodiments the sample is obtained between 19 and 22 weeks of GABD.


Included within the embodiments of the invention, are iterative methods of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for at least one pair of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, HPX/PTGDS and any other pair of biomarkers selected from the proteins described and/or exemplified herein to determine the probability for preterm birth in said pregnant female, wherein the existence of a change in reversal value between the pregnant female and a term control determines the probability for preterm birth in the pregnant female. Iterative performance of the methods described herein includes subsequent measurements obtained from a single sample as well as obtaining subsequent samples for measurement. For example, if it is determined that the probability for preterm birth in a pregnant female, which can be expressed as a risk score, is above a specified value, the method can be repeated using a distinct reversal pair from the same sample or the same or a distinct reversal pair from a subsequent sample to further stratify the risk for sPTB.


In addition to the specific biomarkers, the disclosure further includes biomarker variants that are about 90%, about 95%, or about 97% identical to the exemplified sequences. Variants, as used herein, include polymorphisms, splice variants, mutations, and the like. Although described with reference to protein biomarkers, changes in reversal value can be identified in protein or gene expression levels for pairs of biomarkers.


Additional markers can be selected from one or more risk indicia, including but not limited to, maternal characteristics, medical history, past pregnancy history, and obstetrical history. Such additional markers can include, for example, previous low birth weight or preterm delivery, multiple 2nd trimester spontaneous abortions, prior first trimester induced abortion, familial and intergenerational factors, history of infertility, nulliparity, placental abnormalities, cervical and uterine anomalies, short cervical length measurements, gestational bleeding, intrauterine growth restriction, in utero diethylstilbestrol exposure, multiple gestations, infant sex, short stature, low prepregnancy weight, low or high body mass index, diabetes, hypertension, urogenital infections (i.e. urinary tract infection), asthma, anxiety and depression, asthma, hypertension, hypothyroidism. Demographic risk indicia for preterm birth can include, for example, maternal age, race/ethnicity, single marital status, low socioeconomic status, maternal age, employment-related physical activity, occupational exposures and environment exposures and stress. Further risk indicia can include, inadequate prenatal care, cigarette smoking, use of marijuana and other illicit drugs, cocaine use, alcohol consumption, caffeine intake, maternal weight gain, dietary intake, sexual activity during late pregnancy and leisure-time physical activities. (Preterm Birth: Causes, Consequences, and Prevention, Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy Outcomes; Behrman R E, Butler A S, editors. Washington (DC): National Academies Press (US); 2007). Additional risk indicia useful for as markers can be identified using learning algorithms known in the art, such as linear discriminant analysis, support vector machine classification, recursive feature elimination, prediction analysis of microarray, logistic regression, CART, FlexTree, LART, random forest, MART, and/or survival analysis regression, which are known to those of skill in the art and are further described herein.


It must be noted that, as used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “a biomarker” includes a mixture of two or more biomarkers, and the like.


The term “about,” particularly in reference to a given quantity, is meant to encompass deviations of plus or minus five percent.


As used in this application, including the appended claims, the singular forms “a,” “an,” and “the” include plural references, unless the content clearly dictates otherwise, and are used interchangeably with “at least one” and “one or more.”


As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “contains,” “containing,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, product-by-process, or composition of matter that comprises, includes, or contains an element or list of elements does not include only those elements but can include other elements not expressly listed or inherent to such process, method, product-by-process, or composition of matter.


As used herein, the term “panel” refers to a composition, such as an array or a collection, comprising one or more biomarkers. The term can also refer to a profile or index of expression patterns of one or more biomarkers described herein. The number of biomarkers useful for a biomarker panel is based on the sensitivity and specificity value for the particular combination of biomarker values.


As used herein, and unless otherwise specified, the terms “isolated” and “purified” generally describes a composition of matter that has been removed from its native environment (e.g., the natural environment if it is naturally occurring), and thus is altered by the hand of man from its natural state so as to possess markedly different characteristics with regard to at least one of structure, function and properties. An isolated protein or nucleic acid is distinct from the way it exists in nature and includes synthetic peptides and proteins.


The term “biomarker” refers to a biological molecule, or a fragment of a biological molecule, the change and/or the detection of which can be correlated with a particular physical condition or state. The terms “marker” and “biomarker” are used interchangeably throughout the disclosure. For example, the biomarkers of the present invention are correlated with an increased likelihood of preterm birth. Such biomarkers include any suitable analyte, but are not limited to, biological molecules comprising nucleotides, nucleic acids, nucleosides, amino acids, sugars, fatty acids, steroids, metabolites, peptides, polypeptides, proteins, carbohydrates, lipids, hormones, antibodies, regions of interest that serve as surrogates for biological macromolecules and combinations thereof (e.g., glycoproteins, ribonucleoproteins, lipoproteins). The term also encompasses portions or fragments of a biological molecule, for example, peptide fragment of a protein or polypeptide that comprises at least 5 consecutive amino acid residues, at least 6 consecutive amino acid residues, at least 7 consecutive amino acid residues, at least 8 consecutive amino acid residues, at least 9 consecutive amino acid residues, at least 10 consecutive amino acid residues, at least 11 consecutive amino acid residues, at least 12 consecutive amino acid residues, at least 13 consecutive amino acid residues, at least 14 consecutive amino acid residues, at least 15 consecutive amino acid residues, at least 5 consecutive amino acid residues, at least 16 consecutive amino acid residues, at least 17 consecutive amino acid residues, at least 18 consecutive amino acid residues, at least 19 consecutive amino acid residues, at least 20 consecutive amino acid residues, at least 21 consecutive amino acid residues, at least 22 consecutive amino acid residues, at least 23 consecutive amino acid residues, at least 24 consecutive amino acid residues, at least 25 consecutive amino acid residues, or more consecutive amino acid residues.


As used herein, the term “surrogate peptide” refers to a peptide that is selected to serve as a surrogate for quantification of a biomarker of interest in an MRM assay configuration. Quantification of surrogate peptides is best achieved using stable isotope labeled standard surrogate peptides (“SIS surrogate peptides” or “SIS peptides”) in conjunction with the MRM detection technique. A surrogate peptide can be synthetic. An SIS surrogate peptide can be synthesized with heavy labeled for example, with an Arginine or Lysine, or any other amino acid at the C-terminus of the peptide to serve as an internal standard in the MRM assay. An SIS surrogate peptide is not a naturally occurring peptide and has markedly different structure and properties compared to its naturally occurring counterpart.


In some embodiments, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a ratio for at least one pair of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, HPX/PTGDS to determine the probability for preterm birth in said pregnant female, wherein the existence of a change in the ratio between the pregnant female and a term control determines the probability for preterm birth in the pregnant female. In some embodiments, the ratio may include an up-regulated protein in the numerator, a down-regulated protein in the denominator or both. For example, as exemplified herein, IBP4/SHBG is a ratio of an up-regulated protein in the numerator and a down-regulated protein in the denominator, which is defined herein as a “reversal”. In the instances where the ratio includes an up-regulated protein in the numerator, or a down-regulated protein in the denominator, the un-regulated protein would serve to normalize (e.g. decrease pre-analytical or analytical variability). In the particular case of a ratio that is a “reversal” both amplification and normalization are possible. It is understood, that the methods of the invention are not limited to the subset of reversals, but also encompass ratios of biomarkers.


As used herein, the term “reversal” refers to the ratio of the measured value of an upregulated analyte over that of a down-regulated analyte. In some embodiments, the analyte value is itself a ratio of the peak area of the endogenous analyte over that of the peak area of the corresponding stable isotopic standard analyte, referred to herein as: response ratio or relative ratio.


As used herein, the term “reversal pair” refers to biomarkers in pairs that exhibit a change in value between the classes being compared. The detection of reversals in protein concentrations or gene expression levels eliminates the need for data normalization or the establishment of population-wide thresholds. In some embodiments, the reversal pair is a pair of isolated biomarkers IBP4/SHBG, wherein the reversal pair exhibits a change in reversal value between pregnant females at risk for pre-term birth compared to term controls. In a further embodiment, the reversal pair IBP4/SHBG exhibits a higher ratio in pregnant females at risk for pre-term birth compared to term controls. Encompassed within the definition of any reversal pair is the corresponding reversal pair wherein individual biomarkers are switched between the numerator and denominator. One skilled in the art will appreciate that such a corresponding reversal pair is equally informative with regard to its predictive power.


The term “reversal value” refers to the ratio of the relative peak area of an up regulated analyte over the relative peak area of a down regulated analyte and serves to both normalize variability and amplify diagnostic signal. Out of all the possible reversals within a narrow window, a subset can selected based on individual univariate performance. As disclosed herein, the ratio of the relative peak area of an up regulated biomarker over the relative peak area of a down regulated biomarker, referred herein as a reversal value, can be used to identify robust and accurate classifiers and predict probability of preterm birth, predicting probability of term birth, predicting gestational age at birth (GAB), predicting time to birth and/or monitoring of progress of preventative therapy in a pregnant female.


This reversal method is advantageous because it provides the simplest possible classifier that is independent of data normalization, helps to avoid overfitting, and results in a very simple experimental test that is easy to implement in the clinic. The use of biomarker pairs based on reversals that are independent of data normalization as described herein has tremendous power as a method for the identification of clinically relevant PTB biomarkers. Because quantification of any single protein is subject to uncertainties caused by measurement variability, normal fluctuations, and individual related variation in baseline expression, identification of pairs of markers that can be under coordinated, systematic regulation should prove to be more robust for individualized diagnosis and prognosis.


The invention provides a composition comprising a pair of isolated biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS, wherein the pair of biomarkers exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls. In one embodiment, the compositions comprises stable isotope labeled standard peptides (SIS peptides) for surrogate peptides derived from each of said biomarkers.


In particular embodiments, the invention provides a pair of isolated biomarkers consisting of IBP4 and SHBG, wherein the pair exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls.


IBP4 is a member of a family of insulin-like growth factor binding proteins (IBP) that negatively regulate the insulin-like growth factors IGF1 and IGF2. (Forbes et al. Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. Am J Physiol, Cell Physiol. 2008; 294(6):C1313-22). IBP4 is expressed by syncytiotrophoblasts (Crosley et al., IGFBP-4 and -5 are expressed in first-trimester villi and differentially regulate the migration of HTR-8/SVneo cells. Reprod Biol Endocrinol. 2014; 12(1):123) and is the dominant IBP expressed by extravillous trophoblasts (Qiu et al. Significance of IGFBP-4 in the development of fetal growth restriction. J Clin Endocrinol Metab. 2012; 97(8):E1429-39). Compared to term pregnancies, maternal IBP4 levels in early pregnancy are higher in pregnancies complicated by fetal growth restriction and preeclampsia. (Qiu et al., supra, 2012)


SHBG regulates the availability of biologically active unbound steroid hormones. Hammond G L. Diverse roles for sex hormone-binding globulin in reproduction. Biol Reprod. 2011; 85(3):431-41. Plasma SHBG levels increase 5-10 fold during pregnancy (Anderson D C. Sex-hormone-binding globulin. Clin Endocrinol (Oxf). 1974; 3(1):69-96) and evidence exists for extra-hepatic expression, including placental trophoblastic cells. (Larrea et al. Evidence that human placenta is a site of sex hormone-binding globulin gene expression. J Steroid Biochem Mol Biol. 1993; 46(4):497-505) Physiologically, SHBG levels negatively correlate with triglycerides, insulin levels and BMI. (Simó et al. Novel insights in SHBG regulation and clinical implications. Trends Endocrinol Metab. 2015; 26(7):376-83) BMI's effect on SHBG levels may explain, in part, the improved predictive performance with BMI stratification.


Intra-amniotic infection and inflammation have been associated with PTB, as has increased levels of proinflammatory cytokines including TNF-α and IL1-β (Mendelson C R. Minireview: fetal-maternal hormonal signaling in pregnancy and labor. Mol Endocrinol. 2009; 23(7):947-54; Gomez-Lopez et al. Immune cells in term and preterm labor. Cell Mol Immunol. 2014; 11(6):571-81). SHBG transcription in liver is suppressed by IL1-β and NF-kB mediated TNF-α signaling (Simó et al. Novel insights in SHBG regulation and clinical implications. Trends Endocrinol Metab. 2015; 26(7):376-83), a pathway implicated in initiation of normal and abnormal labor (Lindstrom T M, Bennett P R. The role of nuclear factor kappa B in human labour. Reproduction. 2005; 130(5):569-81). Lower levels of SHBG in women destined for sPTB may be a result of infection and/or inflammation. Hence, SHBG may be critical for control of androgen and estrogen action in the placental-fetal unit in response to upstream inflammatory signals.


In one embodiment, the invention provides a composition comprising a pair of surrogate peptides corresponding to a pair of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS, wherein the pair of biomarkers exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls.


In a further embodiment, the invention provides a panel of at least two pairs of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS, wherein each of the pairs exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls.


In an additional embodiment, the invention provides a panel of at least two pairs of surrogate peptides, each pair of the of surrogate peptides corresponding to a pair of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS, wherein each of the pairs exhibits a change in reversal value between pregnant females at risk for pre-term birth and term controls.


In one embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for at least one pair of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS to determine the probability for preterm birth in the pregnant female.


In another embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a change in reversal value for a panel of at least two pairs of biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS to determine the probability for preterm birth in the pregnant female. In some embodiments, the reversal value reveals the existence of a change in reversal value between the pregnant female and a term control and indicates the probability for preterm birth in the pregnant female. In some embodiments, the measuring step comprises measuring surrogate peptides of the biomarkers in the biological sample obtained from the pregnant female.


In one embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for at least one pair of biomarkers selected from the group consisting of the biomarkers listed in any of Tables 1 through 77 and FIGS. 1 through 111 in a pregnant female to determine the probability for preterm birth in the pregnant female.


In an additional embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for at least one pair of biomarkers selected from the group consisting of the biomarker pairs specified in Tables 27 through 59, 61 through 72, 76 and 77 in a pregnant female to determine the probability for preterm birth in the pregnant female.


In an further embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a reversal value for at least one pair of biomarkers selected from the group consisting of the biomarkers listed in Table 26 in a pregnant female to determine the probability for preterm birth in the pregnant female.


In another embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a change in reversal value for a panel of at least two pairs of biomarkers selected from the group consisting of the biomarker pairs specified in any of Tables 1 through 77 and FIGS. 1 through 111 in a pregnant female to determine the probability for preterm birth in the pregnant female. In some embodiments, the reversal value reveals the existence of a change in reversal value between the pregnant female and a term control and indicates the probability for preterm birth in the pregnant female. In some embodiments, the measuring step comprises measuring surrogate peptides of the biomarkers in the biological sample obtained from the pregnant female.


In another embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a change in reversal value for a panel of at least two pairs of biomarkers selected from the group consisting of the biomarker pairs specified in Tables 27 through 59, 61 through 72, 76 and 77 in a pregnant female to determine the probability for preterm birth in the pregnant female. In some embodiments, the reversal value reveals the existence of a change in reversal value between the pregnant female and a term control and indicates the probability for preterm birth in the pregnant female. In some embodiments, the measuring step comprises measuring surrogate peptides of the biomarkers in the biological sample obtained from the pregnant female.


In another embodiment, the invention provides a method of determining probability for preterm birth in a pregnant female, the method comprising measuring in a biological sample obtained from the pregnant female a change in reversal value for a panel of at least two pairs of biomarkers selected from the group consisting of the biomarkers specified in Table 26 in a pregnant female to determine the probability for preterm birth in the pregnant female. In some embodiments, the reversal value reveals the existence of a change in reversal value between the pregnant female and a term control and indicates the probability for preterm birth in the pregnant female. In some embodiments, the measuring step comprises measuring surrogate peptides of the biomarkers in the biological sample obtained from the pregnant female.


For methods directed to predicating time to birth, it is understood that “birth” means birth following spontaneous onset of labor, with or without rupture of membranes.


Although described and exemplified with reference to methods of determining probability for preterm birth in a pregnant female, the present disclosure is similarly applicable to methods of predicting gestational age at birth (GAB), methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of predicating time to birth (TTB) in a pregnant female. It will be apparent to one skilled in the art that each of the aforementioned methods has specific and substantial utilities and benefits with regard maternal-fetal health considerations.


Furthermore, although described and exemplified with reference to methods of determining probability for preterm birth in a pregnant female, the present disclosure is similarly applicable to methods of predicting an abnormal glucola test, gestational diabetes, hypertension, preeclampsia, intrauterine growth restriction, stillbirth, fetal growth restriction, HELLP syndrome, oligohyramnios, chorioamnionitis, chorioamnionitis, placental previa, placental acreta, abruption, abruptio placenta, placental hemorrhage, preterm premature rupture of membranes, preterm labor, unfavorable cervix, postterm pregnancy, cholelithiasis, uterine over distention, stress. As described in more detail below, the classifier described herein is sensitive to a component of medically indicated PTB based on conditions such as, for example, preeclampsia or gestational diabetes.


In some embodiments, the present disclosure provides biomarkers, biomarker pairs and/or reversals, exemplified here by using ITIH4/CSH, that are strong predictors of time to birth (TTB) (FIG. 10). TTB is defined as the difference between the GABD and the gestational age at birth (GAB). This discovery enables prediction, either individually or in mathematical combination of such analytes of TTB or GAB. Analytes that lack a case versus control difference, but demonstrate changes in analyte intensity across pregnancy, are useful in a pregnancy clock according to the methods of the invention. Calibration of multiple analytes that may not be diagnostic of preterm birth of other disorders, could be used to date pregnancy. Such a pregnancy clock is of value to confirm dating by another measure (e.g. date of last menstrual period and/or ultrasound dating), or useful alone to subsequently and more accurately predict sPTB, GAB or TTB, for example. These analytes, also referred to herein as “clock proteins”, can be used to date a pregnancy in the absence of or in conjunction with other dating methods. Table 60 provides a list of clock proteins useful in a pregnancy clock of the invention to predict TTB and GAB.


In additional embodiments, the methods of determining probability for preterm birth in a pregnant female further encompass detecting a measurable feature for one or more risk indicia associated with preterm birth. In additional embodiments the risk indicia are selected form the group consisting of previous low birth weight or preterm delivery, multiple 2nd trimester spontaneous abortions, prior first trimester induced abortion, familial and intergenerational factors, history of infertility, nulliparity, gravidity, primigravida, multigravida, placental abnormalities, cervical and uterine anomalies, gestational bleeding, intrauterine growth restriction, in utero diethylstilbestrol exposure, multiple gestations, infant sex, short stature, low prepregnancy weight, low or high body mass index, diabetes, hypertension, and urogenital infections.


A “measurable feature” is any property, characteristic or aspect that can be determined and correlated with the probability for preterm birth in a subject. The term further encompasses any property, characteristic or aspect that can be determined and correlated in connection with a prediction of GAB, a prediction of term birth, or a prediction of time to birth in a pregnant female. For a biomarker, such a measurable feature can include, for example, the presence, absence, or concentration of the biomarker, or a fragment thereof, in the biological sample, an altered structure, such as, for example, the presence or amount of a post-translational modification, such as oxidation at one or more positions on the amino acid sequence of the biomarker or, for example, the presence of an altered conformation in comparison to the conformation of the biomarker in term control subjects, and/or the presence, amount, or altered structure of the biomarker as a part of a profile of more than one biomarker.


In addition to biomarkers, measurable features can further include risk indicia including, for example, maternal characteristics, age, race, ethnicity, medical history, past pregnancy history, obstetrical history. For a risk indicium, a measurable feature can include, for example, previous low birth weight or preterm delivery, multiple 2nd trimester spontaneous abortions, prior first trimester induced abortion, familial and intergenerational factors, history of infertility, nulliparity, placental abnormalities, cervical and uterine anomalies, short cervical length measurements, gestational bleeding, intrauterine growth restriction, in utero diethylstilbestrol exposure, multiple gestations, infant sex, short stature, low prepregnancy weight/low body mass index, diabetes, hypertension, urogenital infections, hypothyroidism, asthma, low educational attainment, cigarette smoking, drug use and alcohol consumption.


In some embodiments, the methods of the invention comprise calculation of body mass index (BMI).


In some embodiments, the disclosed methods for determining the probability of preterm birth encompass detecting and/or quantifying one or more biomarkers using mass spectrometry, a capture agent or a combination thereof.


In additional embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass an initial step of providing a biological sample from the pregnant female.


In some embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass communicating the probability to a health care provider. The disclosed of predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of predicating time to birth in a pregnant female similarly encompass communicating the probability to a health care provider. As stated above, although described and exemplified with reference to determining probability for preterm birth in a pregnant female, all embodiments described throughout this disclosure are similarly applicable to the methods of predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of predicating time to birth in a pregnant female. Specifically, the biomarkers and panels recited throughout this application with express reference to methods for preterm birth can also be used in methods for predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of predicating time to birth in a pregnant female. It will be apparent to one skilled in the art that each of the aforementioned methods has specific and substantial utilities and benefits with regard maternal-fetal health considerations.


In additional embodiments, the communication informs a subsequent treatment decision for the pregnant female. In some embodiments, the method of determining probability for preterm birth in a pregnant female encompasses the additional feature of expressing the probability as a risk score.


In the methods disclosed herein, determining the probability for preterm birth in a pregnant female encompasses an initial step that includes formation of a probability/risk index by measuring the ratio of isolated biomarkers selected from the group in a cohort of preterm pregnancies and term pregnancies with known gestational age at birth. For an individual pregnancy, determining the probability of for preterm birth in a pregnant female encompasses measuring the ratio of the isolated biomarker using the same measurement method as used in the initial step of creating the probability/risk index, and comparing the measured ratio to the risk index to derive the personalized risk for the individual pregnancy. In one embodiment, a preterm risk index is formed by measuring the ratio of IBP4/SHBG in a cohort of preterm and term pregnancies where the gestational age at birth is recorded. Then, in clinical practice the measured ratio of IBP4/SHBG in an individual pregnancy is compared in the index to derive the preterm risk using the same isolation and measurement technologies to derive IBP4/SHBG as in the index group.


As used herein, the term “risk score” refers to a score that can be assigned based on comparing the amount of one or more biomarkers or reversal values in a biological sample obtained from a pregnant female to a standard or reference score that represents an average amount of the one or more biomarkers calculated from biological samples obtained from a random pool of pregnant females. In some embodiments, the risk score is expressed as the log of the reversal value, i.e. the ratio of the relative intensities of the individual biomarkers. One skilled in the art will appreciate that a risk score can be expressed based on a various data transformations as well as being expressed as the ratio itself. Furthermore, with particular regard to reversal pairs, one skilled in the art will appreciate the any ratio is equally informative if the biomarkers in the numerator and denominator are switched or that related data transformations (e.g. subtraction) are applied. Because the level of a biomarker may not be static throughout pregnancy, a standard or reference score has to have been obtained for the gestational time point that corresponds to that of the pregnant female at the time the sample was taken. The standard or reference score can be predetermined and built into a predictor model such that the comparison is indirect rather than actually performed every time the probability is determined for a subject. A risk score can be a standard (e.g., a number) or a threshold (e.g., a line on a graph). The value of the risk score correlates to the deviation, upwards or downwards, from the average amount of the one or more biomarkers calculated from biological samples obtained from a random pool of pregnant females. In certain embodiments, if a risk score is greater than a standard or reference risk score, the pregnant female can have an increased likelihood of preterm birth. In some embodiments, the magnitude of a pregnant female's risk score, or the amount by which it exceeds a reference risk score, can be indicative of or correlated to that pregnant female's level of risk.


As exemplified herein, the PreTRM™ Classifier is defined as the natural log of the SIS normalized intensities of the IBP4 peptide transition (QCHPALDGQR_394.5_475.2 (SEQ ID NO: 2)) and the SHBG peptide transition (IALGGLLFPASNLR_481.3_657.4 (SEQ ID NO: 18)). Score=ln(P1n/P2n), where P1n and P2n denote the SIS normalized peak area values for the IBP4 and SHBG transitions, respectively. SIS normalization is defined as the relative ratio of the endogenous peak area divided by the corresponding SIS peak area: e.g. P1n=P1e/P1SIS, where P1e=the peak area for the IBP4 endogenous transition and P1SIS=the peak area for IBP4 SIS transition. From the identified association between the distribution of PreTRM™ scores and the corresponding prevalence adjusted positive predictive value a probability of sPTB can be assigned to an unknown subject based on the determination of their score”. This relationship or association is shown in FIG. 25, and connects a laboratory measurement with a clinical prediction.


While the PreTRM™ Classifier is defined as the natural log of the SIS normalized intensities of the IBP4 peptide transition (QCHPALDGQR_394.5_475.2 (SEQ ID NO: 2)) and the SHBG peptide transition (IALGGLLFPASNLR_481.3_657.4 (SEQ ID NO: 18)), the invention also comprises classifiers that include multiple reversals. Improved performance can be achieved by constructing predictors formed from more than one reversal. In additional embodiments, the invention methods therefore comprise multiple reversals that have a strong predictive performance for example, for separate GABD windows, preterm premature rupture of membranes (PPROM) versus preterm labor in the absence of PPROM (PTL), fetal gender, primigravida versus multigravida. This embodiment is exemplified in Example 10, and Table 61, for either reversals that produced strong predictive performance either early (e.g. weeks 17-19) or later (e.g. weeks 19-21) in the gestational age range. As exemplified, performance of predictors formed from combinations (SumLog) of multiple reversals were evaluated for the entire blood draw range and a predictor score was derived from summing the Log values of the individual reversal (SumLog). One skilled in the art can select other models (e.g. logistic regression) to construct a predictor formed from more than one reversal.


The methods of the invention further include classifiers that contain an indicator variable that selects one or a subset of reversals based on known clinical factors, for example, blood draw period, fetal gender, gravidity as well as any other knowable patient features and/or risk factors described throughout this application. This embodiment is exemplified in Example 10, Tables 61 through 64, which exemplify reversal performance (weeks 17-21) independently for two different phenotypes of sPTB, PPROM and PTL. This embodiment is similarly exemplified in Example 10, Tables 76 and 77 and FIGS. 108 and 109, which exemplify reversal performance (weeks 19-21) independently for two different phenotypes of sPTB, preterm premature rupture of membranes (PPROM) and preterm labor in the absence of PPROM (PTL). The methods of the invention thus include selection of reversals to build independent predictors of PPROM and PTL, or to maximize performance overall with the combination of more than one reversal in a single predictor as described above. This embodiment is further exemplified in Example 10, Tables 65-68, which exemplify reversal performance (weeks 17-21) independently for two different types of sPTB, primigravida and multigravida. This embodiment is further exemplified in Example 10, Tables 69-72 and FIG. 106, which exemplify reversal performance (weeks 17-21) independently for two different types of sPTB based on fetal gender. While exemplified with regard to PPROM and PTL, gravidity and fetal gender, the methods of the invention include classifiers that contain an indicator variable that selects one or a subset of reversals based on GABD or any known clinical factors/risk factors described herein or otherwise known to those of skill in the art. As an alternative to having a classifier that includes an indicator variable, the invention further provides separate classifiers that are tailored to subsets of pregnant women based on GABD or any known clinical factors/risk factors described herein or otherwise known to those of skill in the art. For example, this embodiment encompasses separate classifiers for consecutive and/or overlapping time windows for GABD that are based on the best performing reversals for each time window.


As exemplified herein, the predictive performance of the claimed methods can be improved with a BMI stratification of greater than 22 and equal or less than 37 kg/m2. Accordingly, in some embodiments, the methods of the invention can be practiced with samples obtained from pregnant females with a specified BMI. Briefly, BMI is an individual's weight in kilograms divided by the square of height in meters. BMI does not measure body fat directly, but research has shown that BMI is correlated with more direct measures of body fat obtained from skinfold thickness measurements, bioelectrical impedance, densitometry (underwater weighing), dual energy x-ray absorptiometry (DXA) and other methods. Furthermore, BMI appears to be as strongly correlated with various metabolic and disease outcome as are these more direct measures of body fatness. Generally, an individual with a BMI below 18.5 is considered underweight, an individual with a BMI of equal or greater than 18.5 to 24.9 normal weight, while an individual with a BMI of equal or greater than 25.0 to 29.9 is considered overweight and an individual with a BMI of equal or greater than 30.0 is considered obese. In some embodiments, the predictive performance of the claimed methods can be improved with a BMI stratification of equal or greater than 18, equal or greater than 19, equal or greater than 20, equal or greater than 21, equal or greater than 22, equal or greater than 23, equal or greater than 24, equal or greater than 25, equal or greater than 26, equal or greater than 27, equal or greater than 28, equal or greater than 29 or equal or greater than 30. In other embodiments, the predictive performance of the claimed methods can be improved with a BMI stratification of equal or less than 18, equal or less than 19, equal or less than 20, equal or less than 21, equal or less than 22, equal or less than 23, equal or less than 24, equal or less than 25, equal or less than 26, equal or less than 27, equal or less than 28, equal or less than 29 or equal or less than 30.


In the context of the present invention, the term “biological sample,” encompasses any sample that is taken from pregnant female and contains one or more of the biomarkers disclosed herein. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. In a particular embodiment, the biological sample is serum. As will be appreciated by those skilled in the art, a biological sample can include any fraction or component of blood, without limitation, T cells, monocytes, neutrophils, erythrocytes, platelets and microvesicles such as exosomes and exosome-like vesicles. In a particular embodiment, the biological sample is serum.


As used herein, the term “preterm birth” refers to delivery or birth at a gestational age less than 37 completed weeks. Other commonly used subcategories of preterm birth have been established and delineate moderately preterm (birth at 33 to 36 weeks of gestation), very preterm (birth at <33 weeks of gestation), and extremely preterm (birth at ≤28 weeks of gestation). With regard to the methods disclosed herein, those skilled in the art understand that the cut-offs that delineate preterm birth and term birth as well as the cut-offs that delineate subcategories of preterm birth can be adjusted in practicing the methods disclosed herein, for example, to maximize a particular health benefit. In various embodiments of the invention, cut-off that delineate preterm birth include, for example, birth at ≤37 weeks of gestation, ≤36 weeks of gestation, ≤35 weeks of gestation, ≤34 weeks of gestation, ≤33 weeks of gestation, ≤32 weeks of gestation, ≤30 weeks of gestation, ≤29 weeks of gestation, ≤28 weeks of gestation, ≤27 weeks of gestation, ≤26 weeks of gestation, ≤25 weeks of gestation, ≤24 weeks of gestation, ≤23 weeks of gestation or ≤22 weeks of gestation. In some embodiments, the cut-off delineating preterm birth is ≤35 weeks of gestation. It is further understood that such adjustments are well within the skill set of individuals considered skilled in the art and encompassed within the scope of the inventions disclosed herein. Gestational age is a proxy for the extent of fetal development and the fetus's readiness for birth. Gestational age has typically been defined as the length of time from the date of the last normal menses to the date of birth. However, obstetric measures and ultrasound estimates also can aid in estimating gestational age. Preterm births have generally been classified into two separate subgroups. One, spontaneous preterm births are those occurring subsequent to spontaneous onset of preterm labor or preterm premature rupture of membranes regardless of subsequent labor augmentation or cesarean delivery. Two, medically indicated preterm births are those occurring following induction or cesarean section for one or more conditions that the woman's caregiver determines to threaten the health or life of the mother and/or fetus. In some embodiments, the methods disclosed herein are directed to determining the probability for spontaneous preterm birth or medically indicated preterm birth. In some embodiments, the methods disclosed herein are directed to determining the probability for spontaneous preterm birth. In additional embodiments, the methods disclosed herein are directed to medically indicated preterm birth. In additional embodiments, the methods disclosed herein are directed to predicting gestational age at birth.


As used herein, the term “estimated gestational age” or “estimated GA” refers to the GA determined based on the date of the last normal menses and additional obstetric measures, ultrasound estimates or other clinical parameters including, without limitation, those described in the preceding paragraph. In contrast the term “predicted gestational age at birth” or “predicted GAB” refers to the GAB determined based on the methods of the invention as disclosed herein. As used herein, “term birth” refers to birth at a gestational age equal or more than 37 completed weeks.


In some embodiments, the pregnant female is between 17 and 28 weeks of gestation at the time the biological sample is collected, also referred to as GABD (Gestational Age at Blood Draw). In other embodiments, the pregnant female is between 16 and 29 weeks, between 17 and 28 weeks, between 18 and 27 weeks, between 19 and 26 weeks, between 20 and 25 weeks, between 21 and 24 weeks, or between 22 and 23 weeks of gestation at the time the biological sample is collected. In further embodiments, the pregnant female is between about 17 and 22 weeks, between about 16 and 22 weeks between about 22 and 25 weeks, between about 13 and 25 weeks, between about 26 and 28, or between about 26 and 29 weeks of gestation at the time the biological sample is collected. Accordingly, the gestational age of a pregnant female at the time the biological sample is collected can be 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 weeks. In particular embodiments, the biological sample is collected between 19 and 21 weeks of gestational age. In particular embodiments, the biological sample is collected between 19 and 22 weeks of gestational age. In particular embodiments, the biological sample is collected between 19 and 21 weeks of gestational age. In particular embodiments, the biological sample is collected between 19 and 22 weeks of gestational age. In particular embodiments, the biological sample is collected at 18 weeks of gestational age. In further embodiments, the highest performing reversals for consecutive or overlapping time windows can be combined in a single classifier to predict the probability of sPTB over a wider window of gestational age at blood draw.


The term “amount” or “level” as used herein refers to a quantity of a biomarker that is detectable or measurable in a biological sample and/or control. The quantity of a biomarker can be, for example, a quantity of polypeptide, the quantity of nucleic acid, or the quantity of a fragment or surrogate. The term can alternatively include combinations thereof. The term “amount” or “level” of a biomarker is a measurable feature of that biomarker.


The invention also provides a method of detecting a pair of isolated biomarkers selected from the group consisting of the biomarker pairs specified in any of Tables 1 through 77 and FIGS. 1 through 111 in a pregnant female, said method comprising the steps of a. obtaining a biological sample from the pregnant female; b. detecting whether the pair of isolated biomarkers is present in the biological sample by contacting the biological sample with a first capture agent that specifically binds a first member of said pair and a second capture agent that specifically binds a second member of said pair; and detecting binding between the first biomarker of said pair and the first capture agent and between the second member of said pair and the second capture agent.


The invention also provides a method of detecting a pair of isolated biomarkers selected from the group consisting of the biomarker pairs specified in Tables 27 through 59, 61 through 72, 76 and 77 in a pregnant female, said method comprising the steps of a. obtaining a biological sample from the pregnant female; b. detecting whether the pair of isolated biomarkers is present in the biological sample by contacting the biological sample with a first capture agent that specifically binds a first member of said pair and a second capture agent that specifically binds a second member of said pair; and detecting binding between the first biomarker of said pair and the first capture agent and between the second member of said pair and the second capture agent.


The invention also provides a method of detecting a pair of isolated biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS in a pregnant female, said method comprising the steps of a. obtaining a biological sample from the pregnant female; b. detecting whether the pair of isolated biomarkers is present in the biological sample by contacting the biological sample with a first capture agent that specifically binds a first member of said pair and a second capture agent that specifically binds a second member of said pair; and detecting binding between the first biomarker of said pair and the first capture agent and between the second member of said pair and the second capture agent. In one embodiment the invention provides a method of detecting IBP4 and SHBG in a pregnant female, said method comprising the steps of a. obtaining a biological sample from the pregnant female; b. detecting whether IBP4 and SHBG are present in the biological sample by contacting the biological sample with a capture agent that specifically binds IBP4 and a capture agent that specifically binds SHBG; and c. detecting binding between IBP4 and the capture agent and between SHBG and the capture agent. In one embodiment, the method comprises measuring a reversal value for the pair of biomarkers. In a further embodiment, the existence of a change in reversal value between the pregnant female and a term control indicates the probability for preterm birth in the pregnant female. In one embodiment, the sample is obtained between 19 and 21 weeks of gestational age. In a further embodiment, the capture agent is selected from the group consisting of and antibody, antibody fragment, nucleic acid-based protein binding reagent, small molecule or variant thereof. In an additional embodiment, the method is performed by an assay selected from the group consisting of enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (MA).


The invention also provides a method of detecting a pair of isolated biomarkers selected from the group consisting of IBP4/SHBG, VTNC/VTDB, VTNC/SHBG, CATD/SHBG, PSG2/ITIH4, CHL1/ITIH4, PSG2/C1QB, PSG2/FBLN3, HPX/IBP4, and HPX/PTGDS in a pregnant female, said method comprising the steps of a. obtaining a biological sample from the pregnant female; and b. detecting whether the pair of isolated biomarkers is present in the biological sample comprising subjecting the sample to a proteomics work-flow comprised of mass spectrometry quantification.


In one embodiment the invention provides a method of detecting IBP4 and SHBG in a pregnant female, said method comprising the steps of a. obtaining a biological sample from the pregnant female; and b. detecting whether the pair of isolated biomarkers is present in the biological sample comprising subjecting the sample to a proteomics work-flow comprised of mass spectrometry quantification.


A “proteomics work-flow” generally encompasses one or more of the following steps: Serum samples are thawed and depleted of the 14 highest abundance proteins by immune-affinity chromatography. Depleted serum is digested with a protease, for example, trypsin, to yield peptides. The digest is subsequently fortified with a mixture of SIS peptides and then desalted and subjected to LC-MS/MS with a triple quadrapole instrument operated in MRM mode. Response ratios are formed from the area ratios of endogenous peptide peaks and the corresponding SIS peptide counterpart peaks. Those skilled in the art appreciate that other types of MS such as, for example, MALDI-TOF, or ESI-TOF, can be used in the methods of the invention. In addition, one skilled in the art can modify a proteomics work-flow, for example, by selecting particular reagents (such as proteases) or omitting or changing the order of certain steps, for example, it may not be necessary to immunodeplete, the SIS peptide could be added earlier or later and stable isotope labeled proteins could be used as standards instead of peptides.


Any existing, available or conventional separation, detection and quantification methods can be used herein to measure the presence or absence (e.g., readout being present vs. absent; or detectable amount vs. undetectable amount) and/or quantity (e.g., readout being an absolute or relative quantity, such as, for example, absolute or relative concentration) of biomarkers, peptides, polypeptides, proteins and/or fragments thereof and optionally of the one or more other biomarkers or fragments thereof in samples. In some embodiments, detection and/or quantification of one or more biomarkers comprises an assay that utilizes a capture agent. In further embodiments, the capture agent is an antibody, antibody fragment, nucleic acid-based protein binding reagent, small molecule or variant thereof. In additional embodiments, the assay is an enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (MA). In some embodiments, detection and/or quantification of one or more biomarkers further comprises mass spectrometry (MS). In yet further embodiments, the mass spectrometry is co-immunoprecitipation-mass spectrometry (co-IP MS), where coimmunoprecipitation, a technique suitable for the isolation of whole protein complexes is followed by mass spectrometric analysis.


As used herein, the term “mass spectrometer” refers to a device able to volatilize/ionize analytes to form gas-phase ions and determine their absolute or relative molecular masses. Suitable methods of volatilization/ionization are matrix-assisted laser desorption ionization (MALDI), electrospray, laser/light, thermal, electrical, atomized/sprayed and the like, or combinations thereof. Suitable forms of mass spectrometry include, but are not limited to, ion trap instruments, quadrupole instruments, electrostatic and magnetic sector instruments, time of flight instruments, time of flight tandem mass spectrometer (TOF MS/MS), Fourier-transform mass spectrometers, Orbitraps and hybrid instruments composed of various combinations of these types of mass analyzers. These instruments can, in turn, be interfaced with a variety of other instruments that fractionate the samples (for example, liquid chromatography or solid-phase adsorption techniques based on chemical, or biological properties) and that ionize the samples for introduction into the mass spectrometer, including matrix-assisted laser desorption (MALDI), electrospray, or nanospray ionization (ESI) or combinations thereof.


Generally, any mass spectrometric (MS) technique that can provide precise information on the mass of peptides, and preferably also on fragmentation and/or (partial) amino acid sequence of selected peptides (e.g., in tandem mass spectrometry, MS/MS; or in post source decay, TOF MS), can be used in the methods disclosed herein. Suitable peptide MS and MS/MS techniques and systems are well-known per se (see, e.g., Methods in Molecular Biology, vol. 146: “Mass Spectrometry of Proteins and Peptides”, by Chapman, ed., Humana Press 2000; Biemann 1990. Methods Enzymol 193: 455-79; or Methods in Enzymology, vol. 402: “Biological Mass Spectrometry”, by Burlingame, ed., Academic Press 2005) and can be used in practicing the methods disclosed herein. Accordingly, in some embodiments, the disclosed methods comprise performing quantitative MS to measure one or more biomarkers. Such quantitative methods can be performed in an automated (Villanueva, et al., Nature Protocols (2006) 1(2):880-891) or semi-automated format. In particular embodiments, MS can be operably linked to a liquid chromatography device (LC-MS/MS or LC-MS) or gas chromatography device (GC-MS or GC-MS/MS). Other methods useful in this context include isotope-coded affinity tag (ICAT), tandem mass tags (TMT), or stable isotope labeling by amino acids in cell culture (SILAC), followed by chromatography and MS/MS.


As used herein, the terms “multiple reaction monitoring (MRM)” or “selected reaction monitoring (SRM)” refer to an MS-based quantification method that is particularly useful for quantifying analytes that are in low abundance. In an SRM experiment, a predefined precursor ion and one or more of its fragments are selected by the two mass filters of a triple quadrupole instrument and monitored over time for precise quantification. Multiple SRM precursor and fragment ion pairs can be measured within the same experiment on the chromatographic time scale by rapidly toggling between the different precursor/fragment pairs to perform an MRM experiment. A series of transitions (precursor/fragment ion pairs) in combination with the retention time of the targeted analyte (e.g., peptide or small molecule such as chemical entity, steroid, hormone) can constitute a definitive assay. A large number of analytes can be quantified during a single LC-MS experiment. The term “scheduled,” or “dynamic” in reference to MRM or SRM, refers to a variation of the assay wherein the transitions for a particular analyte are only acquired in a time window around the expected retention time, significantly increasing the number of analytes that can be detected and quantified in a single LC-MS experiment and contributing to the selectivity of the test, as retention time is a property dependent on the physical nature of the analyte. A single analyte can also be monitored with more than one transition. Finally, included in the assay can be standards that correspond to the analytes of interest (e.g., same amino acid sequence), but differ by the inclusion of stable isotopes. Stable isotopic standards (SIS) can be incorporated into the assay at precise levels and used to quantify the corresponding unknown analyte. An additional level of specificity is contributed by the co-elution of the unknown analyte and its corresponding SIS and properties of their transitions (e.g., the similarity in the ratio of the level of two transitions of the unknown and the ratio of the two transitions of its corresponding SIS).


Mass spectrometry assays, instruments and systems suitable for biomarker peptide analysis can include, without limitation, matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) MS; MALDI-TOF post-source-decay (PSD); MALDI-TOF/TOF; surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF) MS; electrospray ionization mass spectrometry (ESI-MS); ESI-MS/MS; ESI-MS/(MS)n (n is an integer greater than zero); ESI 3D or linear (2D) ion trap MS; ESI triple quadrupole MS; ESI quadrupole orthogonal TOF (Q-TOF); ESI Fourier transform MS systems; desorption/ionization on silicon (DIOS); secondary ion mass spectrometry (SIMS); atmospheric pressure chemical ionization mass spectrometry (APCI-MS); APCI-MS/MS; APCI-(MS)n; ion mobility spectrometry (IMS); inductively coupled plasma mass spectrometry (ICP-MS) atmospheric pressure photoionization mass spectrometry (APPI-MS); APPI-MS/MS; and APPI-(MS)n. Peptide ion fragmentation in tandem MS (MS/MS) arrangements can be achieved using manners established in the art, such as, e.g., collision induced dissociation (CID). As described herein, detection and quantification of biomarkers by mass spectrometry can involve multiple reaction monitoring (MRM), such as described among others by Kuhn et al. Proteomics 4: 1175-86 (2004). Scheduled multiple-reaction-monitoring (Scheduled MRM) mode acquisition during LC-MS/MS analysis enhances the sensitivity and accuracy of peptide quantitation. Anderson and Hunter, Molecular and Cellular Proteomics 5(4):573 (2006). As described herein, mass spectrometry-based assays can be advantageously combined with upstream peptide or protein separation or fractionation methods, such as for example with the chromatographic and other methods described herein below. As further described herein, shotgun quantitative proteomics can be combined with SRM/MRM-based assays for high-throughput identification and verification of prognostic biomarkers of preterm birth.


A person skilled in the art will appreciate that a number of methods can be used to determine the amount of a biomarker, including mass spectrometry approaches, such as MS/MS, LC-MS/MS, multiple reaction monitoring (MRM) or SRM and product-ion monitoring (PIM) and also including antibody based methods such as immunoassays such as Western blots, enzyme-linked immunosorbant assay (ELISA), immunoprecipitation, immunohistochemistry, immunofluorescence, radioimmunoassay, dot blotting, and FACS. Accordingly, in some embodiments, determining the level of the at least one biomarker comprises using an immunoassay and/or mass spectrometric methods. In additional embodiments, the mass spectrometric methods are selected from MS, MS/MS, LC-MS/MS, SRM, PIM, and other such methods that are known in the art. In other embodiments, LC-MS/MS further comprises 1D LC-MS/MS, 2D LC-MS/MS or 3D LC-MS/MS. Immunoassay techniques and protocols are generally known to those skilled in the art (Price and Newman, Principles and Practice of Immunoassay, 2nd Edition, Grove's Dictionaries, 1997; and Gosling, Immunoassays: A Practical Approach, Oxford University Press, 2000.) A variety of immunoassay techniques, including competitive and non-competitive immunoassays, can be used (Self et al., Curr. Opin. Biotechnol., 7:60-65 (1996).


In further embodiments, the immunoassay is selected from Western blot, ELISA, immunoprecipitation, immunohistochemistry, immunofluorescence, radioimmunoassay (MA), dot blotting, and FACS. In certain embodiments, the immunoassay is an ELISA. In yet a further embodiment, the ELISA is direct ELISA (enzyme-linked immunosorbent assay), indirect ELISA, sandwich ELISA, competitive ELISA, multiplex ELISA, ELISPOT technologies, and other similar techniques known in the art. Principles of these immunoassay methods are known in the art, for example John R. Crowther, The ELISA Guidebook, 1st ed., Humana Press 2000, ISBN 0896037282. Typically ELISAs are performed with antibodies but they can be performed with any capture agents that bind specifically to one or more biomarkers of the invention and that can be detected. Multiplex ELISA allows simultaneous detection of two or more analytes within a single compartment (e.g., microplate well) usually at a plurality of array addresses (Nielsen and Geierstanger 2004. J Immunol Methods 290: 107-20 (2004) and Ling et al. 2007. Expert Rev Mol Diagn 7: 87-98 (2007)).


In some embodiments, Radioimmunoassay (RIA) can be used to detect one or more biomarkers in the methods of the invention. RIA is a competition-based assay that is well known in the art and involves mixing known quantities of radioactively-labelled (e.g., 125I or 131I-labelled) target analyte with antibody specific for the analyte, then adding non-labeled analyte from a sample and measuring the amount of labeled analyte that is displaced (see, e.g., An Introduction to Radioimmunoassay and Related Techniques, by Chard T, ed., Elsevier Science 1995, ISBN 0444821198 for guidance).


A detectable label can be used in the assays described herein for direct or indirect detection of the biomarkers in the methods of the invention. A wide variety of detectable labels can be used, with the choice of label depending on the sensitivity required, ease of conjugation with the antibody, stability requirements, and available instrumentation and disposal provisions. Those skilled in the art are familiar with selection of a suitable detectable label based on the assay detection of the biomarkers in the methods of the invention. Suitable detectable labels include, but are not limited to, fluorescent dyes (e.g., fluorescein, fluorescein isothiocyanate (FITC), Oregon Green™, rhodamine, Texas red, tetrarhodimine isothiocynate (TRITC), Cy3, Cy5, etc.), fluorescent markers (e.g., green fluorescent protein (GFP), phycoerythrin, etc.), enzymes (e.g., luciferase, horseradish peroxidase, alkaline phosphatase, etc.), nanoparticles, biotin, digoxigenin, metals, and the like.


For mass-spectrometry based analysis, differential tagging with isotopic reagents, e.g., isotope-coded affinity tags (ICAT) or the more recent variation that uses isobaric tagging reagents, iTRAQ (Applied Biosystems, Foster City, Calif.), or tandem mass tags, TMT, (Thermo Scientific, Rockford, IL), followed by multidimensional liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis can provide a further methodology in practicing the methods of the invention.


A chemiluminescence assay using a chemiluminescent antibody can be used for sensitive, non-radioactive detection of protein levels. An antibody labeled with fluorochrome also can be suitable. Examples of fluorochromes include, without limitation, DAPI, fluorescein, Hoechst 33258, R-phycocyanin, B-phycoerythrin, R-phycoerythrin, rhodamine, Texas red, and lissamine. Indirect labels include various enzymes well known in the art, such as horseradish peroxidase (HRP), alkaline phosphatase (AP), beta-galactosidase, urease, and the like. Detection systems using suitable substrates for horseradish-peroxidase, alkaline phosphatase, and beta-galactosidase are well known in the art.


A signal from the direct or indirect label can be analyzed, for example, using a spectrophotometer to detect color from a chromogenic substrate; a radiation counter to detect radiation such as a gamma counter for detection of 125I; or a fluorometer to detect fluorescence in the presence of light of a certain wavelength. For detection of enzyme-linked antibodies, a quantitative analysis can be made using a spectrophotometer such as an EMAX Microplate Reader (Molecular Devices; Menlo Park, Calif.) in accordance with the manufacturer's instructions. If desired, assays used to practice the invention can be automated or performed robotically, and the signal from multiple samples can be detected simultaneously.


In some embodiments, the methods described herein encompass quantification of the biomarkers using mass spectrometry (MS). In further embodiments, the mass spectrometry can be liquid chromatography-mass spectrometry (LC-MS), multiple reaction monitoring (MRM) or selected reaction monitoring (SRM). In additional embodiments, the MRM or SRM can further encompass scheduled MRM or scheduled SRM.


As described above, chromatography can also be used in practicing the methods of the invention. Chromatography encompasses methods for separating chemical substances and generally involves a process in which a mixture of analytes is carried by a moving stream of liquid or gas (“mobile phase”) and separated into components as a result of differential distribution of the analytes as they flow around or over a stationary liquid or solid phase (“stationary phase”), between the mobile phase and said stationary phase. The stationary phase can be usually a finely divided solid, a sheet of filter material, or a thin film of a liquid on the surface of a solid, or the like. Chromatography is well understood by those skilled in the art as a technique applicable for the separation of chemical compounds of biological origin, such as, e.g., amino acids, proteins, fragments of proteins or peptides, etc.


Chromatography can be columnar (i.e., wherein the stationary phase is deposited or packed in a column), preferably liquid chromatography, and yet more preferably high-performance liquid chromatography (HPLC), or ultra high performance/pressure liquid chromatography (UHPLC). Particulars of chromatography are well known in the art (Bidlingmeyer, Practical HPLC Methodology and Applications, John Wiley & Sons Inc., 1993). Exemplary types of chromatography include, without limitation, high-performance liquid chromatography (HPLC), UHPLC, normal phase HPLC (NP-HPLC), reversed phase HPLC (RP-HPLC), ion exchange chromatography (IEC), such as cation or anion exchange chromatography, hydrophilic interaction chromatography (HILIC), hydrophobic interaction chromatography (HIC), size exclusion chromatography (SEC) including gel filtration chromatography or gel permeation chromatography, chromatofocusing, affinity chromatography such as immuno-affinity, immobilized metal affinity chromatography, and the like. Chromatography, including single-, two- or more-dimensional chromatography, can be used as a peptide fractionation method in conjunction with a further peptide analysis method, such as for example, with a downstream mass spectrometry analysis as described elsewhere in this specification.


Further peptide or polypeptide separation, identification or quantification methods can be used, optionally in conjunction with any of the above described analysis methods, for measuring biomarkers in the present disclosure. Such methods include, without limitation, chemical extraction partitioning, isoelectric focusing (IEF) including capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITP), capillary electrochromatography (CEC), and the like, one-dimensional polyacrylamide gel electrophoresis (PAGE), two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), capillary gel electrophoresis (CGE), capillary zone electrophoresis (CZE), micellar electrokinetic chromatography (MEKC), free flow electrophoresis (FFE), etc.


In the context of the invention, the term “capture agent” refers to a compound that can specifically bind to a target, in particular a biomarker. The term includes antibodies, antibody fragments, nucleic acid-based protein binding reagents (e.g. aptamers, Slow Off-rate Modified Aptamers (SOMAmer™)), protein-capture agents, natural ligands (i.e. a hormone for its receptor or vice versa), small molecules or variants thereof.


Capture agents can be configured to specifically bind to a target, in particular a biomarker. Capture agents can include but are not limited to organic molecules, such as polypeptides, polynucleotides and other non polymeric molecules that are identifiable to a skilled person. In the embodiments disclosed herein, capture agents include any agent that can be used to detect, purify, isolate, or enrich a target, in particular a biomarker. Any art-known affinity capture technologies can be used to selectively isolate and enrich/concentrate biomarkers that are components of complex mixtures of biological media for use in the disclosed methods.


Antibody capture agents that specifically bind to a biomarker can be prepared using any suitable methods known in the art. See, e.g., Coligan, Current Protocols in Immunology (1991); Harlow & Lane, Antibodies: A Laboratory Manual (1988); Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986). Antibody capture agents can be any immunoglobulin or derivative thereof, whether natural or wholly or partially synthetically produced. All derivatives thereof which maintain specific binding ability are also included in the term. Antibody capture agents have a binding domain that is homologous or largely homologous to an immunoglobulin binding domain and can be derived from natural sources, or partly or wholly synthetically produced. Antibody capture agents can be monoclonal or polyclonal antibodies. In some embodiments, an antibody is a single chain antibody. Those of ordinary skill in the art will appreciate that antibodies can be provided in any of a variety of forms including, for example, humanized, partially humanized, chimeric, chimeric humanized, etc. Antibody capture agents can be antibody fragments including, but not limited to, Fab, Fab′, F(ab′)2, scFv, Fv, dsFv diabody, and Fd fragments. An antibody capture agent can be produced by any means. For example, an antibody capture agent can be enzymatically or chemically produced by fragmentation of an intact antibody and/or it can be recombinantly produced from a gene encoding the partial antibody sequence. An antibody capture agent can comprise a single chain antibody fragment. Alternatively or additionally, antibody capture agent can comprise multiple chains which are linked together, for example, by disulfide linkages; and, any functional fragments obtained from such molecules, wherein such fragments retain specific-binding properties of the parent antibody molecule. Because of their smaller size as functional components of the whole molecule, antibody fragments can offer advantages over intact antibodies for use in certain immunochemical techniques and experimental applications.


Suitable capture agents useful for practicing the invention also include aptamers. Aptamers are oligonucleotide sequences that can bind to their targets specifically via unique three dimensional (3-D) structures. An aptamer can include any suitable number of nucleotides and different aptamers can have either the same or different numbers of nucleotides. Aptamers can be DNA or RNA or chemically modified nucleic acids and can be single stranded, double stranded, or contain double stranded regions, and can include higher ordered structures. An aptamer can also be a photoaptamer, where a photoreactive or chemically reactive functional group is included in the aptamer to allow it to be covalently linked to its corresponding target. Use of an aptamer capture agent can include the use of two or more aptamers that specifically bind the same biomarker. An aptamer can include a tag. An aptamer can be identified using any known method, including the SELEX (systematic evolution of ligands by exponential enrichment), process. Once identified, an aptamer can be prepared or synthesized in accordance with any known method, including chemical synthetic methods and enzymatic synthetic methods and used in a variety of applications for biomarker detection. Liu et al., Curr Med Chem. 18(27):4117-25 (2011). Capture agents useful in practicing the methods of the invention also include SOMAmers (Slow Off-Rate Modified Aptamers) known in the art to have improved off-rate characteristics. Brody et al., J Mol Biol. 422(5):595-606 (2012). SOMAmers can be generated using any known method, including the SELEX method.


It is understood by those skilled in the art that biomarkers can be modified prior to analysis to improve their resolution or to determine their identity. For example, the biomarkers can be subject to proteolytic digestion before analysis. Any protease can be used. Proteases, such as trypsin, that are likely to cleave the biomarkers into a discrete number of fragments are particularly useful. The fragments that result from digestion function as a fingerprint for the biomarkers, thereby enabling their detection indirectly. This is particularly useful where there are biomarkers with similar molecular masses that might be confused for the biomarker in question. Also, proteolytic fragmentation is useful for high molecular weight biomarkers because smaller biomarkers are more easily resolved by mass spectrometry. In another example, biomarkers can be modified to improve detection resolution. For instance, neuraminidase can be used to remove terminal sialic acid residues from glycoproteins to improve binding to an anionic adsorbent and to improve detection resolution. In another example, the biomarkers can be modified by the attachment of a tag of particular molecular weight that specifically binds to molecular biomarkers, further distinguishing them. Optionally, after detecting such modified biomarkers, the identity of the biomarkers can be further determined by matching the physical and chemical characteristics of the modified biomarkers in a protein database (e.g., SwissProt).


It is further appreciated in the art that biomarkers in a sample can be captured on a substrate for detection. Traditional substrates include antibody-coated 96-well plates or nitrocellulose membranes that are subsequently probed for the presence of the proteins. Alternatively, protein-binding molecules attached to microspheres, microparticles, microbeads, beads, or other particles can be used for capture and detection of biomarkers. The protein-binding molecules can be antibodies, peptides, peptoids, aptamers, small molecule ligands or other protein-binding capture agents attached to the surface of particles. Each protein-binding molecule can include unique detectable label that is coded such that it can be distinguished from other detectable labels attached to other protein-binding molecules to allow detection of biomarkers in multiplex assays. Examples include, but are not limited to, color-coded microspheres with known fluorescent light intensities (see e.g., microspheres with xMAP technology produced by Luminex (Austin, Tex.); microspheres containing quantum dot nanocrystals, for example, having different ratios and combinations of quantum dot colors (e.g., Qdot nanocrystals produced by Life Technologies (Carlsbad, Calif.); glass coated metal nanoparticles (see e.g., SERS nanotags produced by Nanoplex Technologies, Inc. (Mountain View, Calif.); barcode materials (see e.g., sub-micron sized striped metallic rods such as Nanobarcodes produced by Nanoplex Technologies, Inc.), encoded microparticles with colored bar codes (see e.g., CellCard produced by Vitra Bioscience, vitrabio.com), glass microparticles with digital holographic code images (see e.g., CyVera microbeads produced by Illumina (San Diego, Calif.); chemiluminescent dyes, combinations of dye compounds; and beads of detectably different sizes.


In another aspect, biochips can be used for capture and detection of the biomarkers of the invention. Many protein biochips are known in the art. These include, for example, protein biochips produced by Packard BioScience Company (Meriden Conn.), Zyomyx (Hayward, Calif.) and Phylos (Lexington, Mass.). In general, protein biochips comprise a substrate having a surface. A capture reagent or adsorbent is attached to the surface of the substrate. Frequently, the surface comprises a plurality of addressable locations, each of which location has the capture agent bound there. The capture agent can be a biological molecule, such as a polypeptide or a nucleic acid, which captures other biomarkers in a specific manner. Alternatively, the capture agent can be a chromatographic material, such as an anion exchange material or a hydrophilic material. Examples of protein biochips are well known in the art.


The present disclosure also provides methods for predicting the probability of pre-term birth comprising measuring a change in reversal value of a biomarker pair. For example, a biological sample can be contacted with a panel comprising one or more polynucleotide binding agents. The expression of one or more of the biomarkers detected can then be evaluated according to the methods disclosed below, e.g., with or without the use of nucleic acid amplification methods. Skilled practitioners appreciate that in the methods described herein, a measurement of gene expression can be automated. For example, a system that can carry out multiplexed measurement of gene expression can be used, e.g., providing digital readouts of the relative abundance of hundreds of mRNA species simultaneously.


In some embodiments, nucleic acid amplification methods can be used to detect a polynucleotide biomarker. For example, the oligonucleotide primers and probes of the present invention can be used in amplification and detection methods that use nucleic acid substrates isolated by any of a variety of well-known and established methodologies (e.g., Sambrook et al., Molecular Cloning, A laboratory Manual, pp. 7.37-7.57 (2nd ed., 1989); Lin et al., in Diagnostic Molecular Microbiology, Principles and Applications, pp. 605-16 (Persing et al., eds. (1993); Ausubel et al., Current Protocols in Molecular Biology (2001 and subsequent updates)). Methods for amplifying nucleic acids include, but are not limited to, for example the polymerase chain reaction (PCR) and reverse transcription PCR (RT-PCR) (see e.g., U.S. Pat. Nos. 4,683,195; 4,683,202; 4,800,159; 4,965,188), ligase chain reaction (LCR) (see, e.g., Weiss, Science 254:1292-93 (1991)), strand displacement amplification (SDA) (see e.g., Walker et al., Proc. Natl. Acad. Sci. USA 89:392-396 (1992); U.S. Pat. Nos. 5,270,184 and 5,455,166), Thermophilic SDA (tSDA) (see e.g., European Pat. No. 0 684 315) and methods described in U.S. Pat. No. 5,130,238; Lizardi et al., BioTechnol. 6:1197-1202 (1988); Kwoh et al., Proc. Natl. Acad. Sci. USA 86:1173-77 (1989); Guatelli et al., Proc. Natl. Acad. Sci. USA 87:1874-78 (1990); U.S. Pat. Nos. 5,480,784; 5,399,491; US Publication No. 2006/46265.


In some embodiments, measuring mRNA in a biological sample can be used as a surrogate for detection of the level of the corresponding protein biomarker in a biological sample. Thus, any of the biomarkers, biomarker pairs or biomarker reversal panels described herein can also be detected by detecting the appropriate RNA. Levels of mRNA can measured by reverse transcription quantitative polymerase chain reaction (RT-PCR followed with qPCR). RT-PCR is used to create a cDNA from the mRNA. The cDNA can be used in a qPCR assay to produce fluorescence as the DNA amplification process progresses. By comparison to a standard curve, qPCR can produce an absolute measurement such as number of copies of mRNA per cell. Northern blots, microarrays, Invader assays, and RT-PCR combined with capillary electrophoresis have all been used to measure expression levels of mRNA in a sample. See Gene Expression Profiling: Methods and Protocols, Richard A. Shimkets, editor, Humana Press, 2004.


Some embodiments disclosed herein relate to diagnostic and prognostic methods of determining the probability for preterm birth in a pregnant female. The detection of the level of expression of one or more biomarkers and/or the determination of a ratio of biomarkers can be used to determine the probability for preterm birth in a pregnant female. Such detection methods can be used, for example, for early diagnosis of the condition, to determine whether a subject is predisposed to preterm birth, to monitor the progress of preterm birth or the progress of treatment protocols, to assess the severity of preterm birth, to forecast the outcome of preterm birth and/or prospects of recovery or birth at full term, or to aid in the determination of a suitable treatment for preterm birth.


The quantitation of biomarkers in a biological sample can be determined, without limitation, by the methods described above as well as any other method known in the art. The quantitative data thus obtained is then subjected to an analytic classification process. In such a process, the raw data is manipulated according to an algorithm, where the algorithm has been pre-defined by a training set of data, for example as described in the examples provided herein. An algorithm can utilize the training set of data provided herein, or can utilize the guidelines provided herein to generate an algorithm with a different set of data.


In some embodiments, analyzing a measurable feature to determine the probability for preterm birth in a pregnant female encompasses the use of a predictive model. In further embodiments, analyzing a measurable feature to determine the probability for preterm birth in a pregnant female encompasses comparing said measurable feature with a reference feature. As those skilled in the art can appreciate, such comparison can be a direct comparison to the reference feature or an indirect comparison where the reference feature has been incorporated into the predictive model. In further embodiments, analyzing a measurable feature to determine the probability for preterm birth in a pregnant female encompasses one or more of a linear discriminant analysis model, a support vector machine classification algorithm, a recursive feature elimination model, a prediction analysis of microarray model, a logistic regression model, a CART algorithm, a flex tree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, a machine learning algorithm, a penalized regression method, or a combination thereof. In particular embodiments, the analysis comprises logistic regression.


An analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, machine learning algorithms; etc.


For creation of a random forest for prediction of GAB one skilled in the art can consider a set of k subjects (pregnant women) for whom the gestational age at birth (GAB) is known, and for whom N analytes (transitions) have been measured in a blood specimen taken several weeks prior to birth. A regression tree begins with a root node that contains all the subjects. The average GAB for all subjects can be calculated in the root node. The variance of the GAB within the root node will be high, because there is a mixture of women with different GAB's. The root node is then divided (partitioned) into two branches, so that each branch contains women with a similar GAB. The average GAB for subjects in each branch is again calculated. The variance of the GAB within each branch will be lower than in the root node, because the subset of women within each branch has relatively more similar GAB's than those in the root node. The two branches are created by selecting an analyte and a threshold value for the analyte that creates branches with similar GAB. The analyte and threshold value are chosen from among the set of all analytes and threshold values, usually with a random subset of the analytes at each node. The procedure continues recursively producing branches to create leaves (terminal nodes) in which the subjects have very similar GAB's. The predicted GAB in each terminal node is the average GAB for subjects in that terminal node. This procedure creates a single regression tree. A random forest can consist of several hundred or several thousand such trees.


Classification can be made according to predictive modeling methods that set a threshold for determining the probability that a sample belongs to a given class. The probability preferably is at least 50%, or at least 60%, or at least 70%, or at least 80% or higher. Classifications also can be made by determining whether a comparison between an obtained dataset and a reference dataset yields a statistically significant difference. If so, then the sample from which the dataset was obtained is classified as not belonging to the reference dataset class. Conversely, if such a comparison is not statistically significantly different from the reference dataset, then the sample from which the dataset was obtained is classified as belonging to the reference dataset class.


The predictive ability of a model can be evaluated according to its ability to provide a quality metric, e.g. AUROC (area under the ROC curve) or accuracy, of a particular value, or range of values. Area under the curve measures are useful for comparing the accuracy of a classifier across the complete data range. Classifiers with a greater AUC have a greater capacity to classify unknowns correctly between two groups of interest. In some embodiments, a desired quality threshold is a predictive model that will classify a sample with an accuracy of at least about 0.5, at least about 0.55, at least about 0.6, at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, at least about 0.95, or higher. As an alternative measure, a desired quality threshold can refer to a predictive model that will classify a sample with an AUC of at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.


As is known in the art, the relative sensitivity and specificity of a predictive model can be adjusted to favor either the selectivity metric or the sensitivity metric, where the two metrics have an inverse relationship. The limits in a model as described above can be adjusted to provide a selected sensitivity or specificity level, depending on the particular requirements of the test being performed. One or both of sensitivity and specificity can be at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.


The raw data can be initially analyzed by measuring the values for each biomarker, usually in triplicate or in multiple triplicates. The data can be manipulated, for example, raw data can be transformed using standard curves, and the average of triplicate measurements used to calculate the average and standard deviation for each patient. These values can be transformed before being used in the models, e.g. log-transformed, Box-Cox transformed (Box and Cox, Royal Stat. Soc., Series B, 26:211-246(1964). The data are then input into a predictive model, which will classify the sample according to the state. The resulting information can be communicated to a patient or health care provider.


To generate a predictive model for preterm birth, a robust data set, comprising known control samples and samples corresponding to the preterm birth classification of interest is used in a training set. A sample size can be selected using generally accepted criteria. As discussed above, different statistical methods can be used to obtain a highly accurate predictive model. Examples of such analysis are provided in Example 2.


In one embodiment, hierarchical clustering is performed in the derivation of a predictive model, where the Pearson correlation is employed as the clustering metric. One approach is to consider a preterm birth dataset as a “learning sample” in a problem of “supervised learning.” CART is a standard in applications to medicine (Singer, Recursive Partitioning in the Health Sciences, Springer (1999)) and can be modified by transforming any qualitative features to quantitative features; sorting them by attained significance levels, evaluated by sample reuse methods for Hotelling's T2 statistic; and suitable application of the lasso method. Problems in prediction are turned into problems in regression without losing sight of prediction, indeed by making suitable use of the Gini criterion for classification in evaluating the quality of regressions.


This approach led to what is termed FlexTree (Huang, Proc. Nat. Acad. Sci. U.S.A 101:10529-10534(2004)). FlexTree performs very well in simulations and when applied to multiple forms of data and is useful for practicing the claimed methods. Software automating FlexTree has been developed. Alternatively, LARTree or LART can be used (Turnbull (2005) Classification Trees with Subset Analysis Selection by the Lasso, Stanford University). The name reflects binary trees, as in CART and FlexTree; the lasso, as has been noted; and the implementation of the lasso through what is termed LARS by Efron et al. (2004) Annals of Statistics 32:407-451 (2004). See, also, Huang et al., Proc. Natl. Acad. Sci. USA. 101(29):10529-34 (2004). Other methods of analysis that can be used include logic regression. One method of logic regression Ruczinski, Journal of Computational and Graphical Statistics 12:475-512 (2003). Logic regression resembles CART in that its classifier can be displayed as a binary tree. It is different in that each node has Boolean statements about features that are more general than the simple “and” statements produced by CART.


Another approach is that of nearest shrunken centroids (Tibshirani, Proc. Natl. Acad. Sci. U.S.A 99:6567-72(2002)). The technology is k-means-like, but has the advantage that by shrinking cluster centers, one automatically selects features, as is the case in the lasso, to focus attention on small numbers of those that are informative. The approach is available as PAM software and is widely used. Two further sets of algorithms that can be used are random forests (Breiman, Machine Learning 45:5-32 (2001)) and MART (Hastie, The Elements of Statistical Learning, Springer (2001)). These two methods are known in the art as “committee methods,” that involve predictors that “vote” on outcome.


To provide significance ordering, the false discovery rate (FDR) can be determined. First, a set of null distributions of dissimilarity values is generated. In one embodiment, the values of observed profiles are permuted to create a sequence of distributions of correlation coefficients obtained out of chance, thereby creating an appropriate set of null distributions of correlation coefficients (Tusher et al., Proc. Natl. Acad. Sci. U.S.A 98, 5116-21 (2001)). The set of null distribution is obtained by: permuting the values of each profile for all available profiles; calculating the pair-wise correlation coefficients for all profile; calculating the probability density function of the correlation coefficients for this permutation; and repeating the procedure for N times, where N is a large number, usually 300. Using the N distributions, one calculates an appropriate measure (mean, median, etc.) of the count of correlation coefficient values that their values exceed the value (of similarity) that is obtained from the distribution of experimentally observed similarity values at given significance level.


The FDR is the ratio of the number of the expected falsely significant correlations (estimated from the correlations greater than this selected Pearson correlation in the set of randomized data) to the number of correlations greater than this selected Pearson correlation in the empirical data (significant correlations). This cut-off correlation value can be applied to the correlations between experimental profiles. Using the aforementioned distribution, a level of confidence is chosen for significance. This is used to determine the lowest value of the correlation coefficient that exceeds the result that would have obtained by chance. Using this method, one obtains thresholds for positive correlation, negative correlation or both. Using this threshold(s), the user can filter the observed values of the pair wise correlation coefficients and eliminate those that do not exceed the threshold(s). Furthermore, an estimate of the false positive rate can be obtained for a given threshold. For each of the individual “random correlation” distributions, one can find how many observations fall outside the threshold range. This procedure provides a sequence of counts. The mean and the standard deviation of the sequence provide the average number of potential false positives and its standard deviation.


In an alternative analytical approach, variables chosen in the cross-sectional analysis are separately employed as predictors in a time-to-event analysis (survival analysis), where the event is the occurrence of preterm birth, and subjects with no event are considered censored at the time of giving birth. Given the specific pregnancy outcome (preterm birth event or no event), the random lengths of time each patient will be observed, and selection of proteomic and other features, a parametric approach to analyzing survival can be better than the widely applied semi-parametric Cox model. A Weibull parametric fit of survival permits the hazard rate to be monotonically increasing, decreasing, or constant, and also has a proportional hazards representation (as does the Cox model) and an accelerated failure-time representation. All the standard tools available in obtaining approximate maximum likelihood estimators of regression coefficients and corresponding functions are available with this model.


In addition the Cox models can be used, especially since reductions of numbers of covariates to manageable size with the lasso will significantly simplify the analysis, allowing the possibility of a nonparametric or semi-parametric approach to prediction of time to preterm birth. These statistical tools are known in the art and applicable to all manner of proteomic data. A set of biomarker, clinical and genetic data that can be easily determined, and that is highly informative regarding the probability for preterm birth and predicted time to a preterm birth event in said pregnant female is provided. Also, algorithms provide information regarding the probability for preterm birth in the pregnant female.


Accordingly, one skilled in the art understands that the probability for preterm birth according to the invention can be determined using either a quantitative or a categorical variable. For example, in practicing the methods of the invention the measurable feature of each of N biomarkers can be subjected to categorical data analysis to determine the probability for preterm birth as a binary categorical outcome. Alternatively, the methods of the invention may analyze the measurable feature of each of N biomarkers by initially calculating quantitative variables, in particular, predicted gestational age at birth. The predicted gestational age at birth can subsequently be used as a basis to predict risk of preterm birth. By initially using a quantitative variable and subsequently converting the quantitative variable into a categorical variable the methods of the invention take into account the continuum of measurements detected for the measurable features. For example, by predicting the gestational age at birth rather than making a binary prediction of preterm birth versus term birth, it is possible to tailor the treatment for the pregnant female. For example, an earlier predicted gestational age at birth will result in more intensive prenatal intervention, i.e. monitoring and treatment, than a predicted gestational age that approaches full term.


Among women with a predicted GAB of j days plus or minus k days, p(PTB) can estimated as the proportion of women in the PAPR clinical trial (see Example 1) with a predicted GAB of j days plus or minus k days who actually deliver before 37 weeks gestational age. More generally, for women with a predicted GAB of j days plus or minus k days, the probability that the actual gestational age at birth will be less than a specified gestational age, p(actual GAB<specified GAB), was estimated as the proportion of women in the PAPR clinical trial with a predicted GAB of j days plus or minus k days who actually deliver before the specified gestational age.


In the development of a predictive model, it can be desirable to select a subset of markers, i.e. at least 3, at least 4, at least 5, at least 6, up to the complete set of markers. Usually a subset of markers will be chosen that provides for the needs of the quantitative sample analysis, e.g. availability of reagents, convenience of quantitation, etc., while maintaining a highly accurate predictive model. The selection of a number of informative markers for building classification models requires the definition of a performance metric and a user-defined threshold for producing a model with useful predictive ability based on this metric. For example, the performance metric can be the AUC, the sensitivity and/or specificity of the prediction as well as the overall accuracy of the prediction model.


As will be understood by those skilled in the art, an analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include, without limitation, linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, and machine learning algorithms. Various methods are used in a training model. The selection of a subset of markers can be for a forward selection or a backward selection of a marker subset. The number of markers can be selected that will optimize the performance of a model without the use of all the markers. One way to define the optimum number of terms is to choose the number of terms that produce a model with desired predictive ability (e.g. an AUC>0.75, or equivalent measures of sensitivity/specificity) that lies no more than one standard error from the maximum value obtained for this metric using any combination and number of terms used for the given algorithm.


In yet another aspect, the invention provides kits for determining probability of preterm birth. The kit can include one or more agents for detection of biomarkers, a container for holding a biological sample isolated from a pregnant female; and printed instructions for reacting agents with the biological sample or a portion of the biological sample to detect the presence or amount of the isolated biomarkers in the biological sample. The agents can be packaged in separate containers. The kit can further comprise one or more control reference samples and reagents for performing an immunoassay.


The kit can comprise one or more containers for compositions contained in the kit. Compositions can be in liquid form or can be lyophilized. Suitable containers for the compositions include, for example, bottles, vials, syringes, and test tubes. Containers can be formed from a variety of materials, including glass or plastic. The kit can also comprise a package insert containing written instructions for methods of determining probability of preterm birth.


From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.


The following examples are provided by way of illustration, not limitation.


EXAMPLES
Example 1. Development of Sample Set for Discovery and Validation of Biomarkers for Preterm Birth

A standard protocol was developed governing conduct of the Proteomic Assessment of Preterm Risk (PAPR) clinical study. Specimens were obtained from women at 11 Institutional Review Board (IRB) approved sites across the United States. After providing informed consent, serum and plasma samples were obtained, as well as pertinent information regarding the patient's demographic characteristics, past medical and pregnancy history, current pregnancy history and concurrent medications. Following delivery, data were collected relating to maternal and infant conditions and complications. Serum and plasma samples were processed according to a protocol that requires standardized refrigerated centrifugation, aliquoting of the samples into 2-D bar-coded cryovials and subsequent freezing at −80° C.


Following delivery, preterm birth cases were individually reviewed to determine their status as either a spontaneous preterm birth or a medically indicated preterm birth. Only spontaneous preterm birth cases were used for this analysis. For discovery of biomarkers of preterm birth, serum samples from 86 preterm cases and 172 controls were analyzed covering gestational ages at blood draw (GABD) of 17 weeks and 0 days (17.0) to 28 weeks and 6 days (28.6). A separate sample set was also analyzed for purposes of verification and was composed of serum from 50 preterm cases and 100 controls, across the same gestational age range. The two controls for each case were matched by GABD and selected from several randomly generated panels of controls that matched the distribution of births reported in the 2012 National Vital Statistics Report. A protocol was instituted to ensure that laboratory staff were blinded to gestation age at birth and case vs control status of subjects used for both sample sets. Informatics staff were also blinded to the verification sample set until analytical analysis of samples was complete.


Serum samples were depleted of high abundance proteins using the Human 14 Multiple Affinity Removal System (MARS 14), which removes 14 of the most abundant proteins that are treated as uninformative with regard to the identification for disease-relevant changes in the serum proteome. To this end, equal volumes (50 μl) of each clinical, pooled human serum sample (HGS) sample, or a human pooled pregnant women serum sample (pHGS) were diluted with 150 μl Agilent column buffer A and filtered on a Captiva filter plate to remove precipitates. Filtered samples were depleted using a MARS-14 column (4.6×100 mm, Cat. #5188-6558, Agilent Technologies), according to manufacturer's protocol. Samples were chilled to 4° C. in the autosampler, the depletion column was run at room temperature, and collected fractions were kept at 4° C. until further analysis. The unbound fractions were collected for further analysis.


Depleted serum samples were, reduced with dithiothreitol, alkylated using iodoacetamide, and then digested with 5.0 μg Trypsin Gold-Mass Spec Grade (Promega) at 37° C. for 17 hours(±1 hour). Following trypsin digestion, a mixture of 187 Stable Isotope Standard (SIS) peptides were added to the samples and half of each sample was desalted on an Empore C18 96-well Solid Phase Extraction Plate (3M Bioanalytical Technologies). The plate was conditioned according to the manufacture's protocol. Peptides were washed with 300 μl 1.5% trifluoroacetic acid, 2% acetonitrile, eluted with 250 μl 1.5% trifluoroacetic acid, 95% acetonitrile, frozen at −80° C. for 30 minutes, and then lyophilized to dryness. Lyophilized peptides were reconstituted with 2% acetontile/0.1% formic acid containing three non-human internal standard (IS) peptides. Peptides were separated with a 30 min acetonitrile gradient at 400 μl/min on an Agilent Poroshell 120 EC-C18 column (2.1×100 mm, 2.7 μm) at 40° C. and injected into an Agilent 6490 Triple Quadrapole mass spectrometer.


Depleted and trypsin digested samples were analyzed using a scheduled Multiple Reaction Monitoring method (sMRM). The sMRM assay monitored 898 transitions that measured 259 biological peptides and 190 IS peptides (187 SIS+3 IS), representing 148 proteins. Chromatographic peaks were integrated using Mass Hunter Quantitative Analysis software (Agilent Technologies).


Data Analysis


Analysis of discovery and verification sample data was performed in two phases. In the first phase robust biomarkers were identified by selection using the discovery samples and confirmation using the independent verification sample set. In the second phase the discovery and verification data were combined and used to identify best analytes and panels of analytes for classifier development.


Phase I: Blinded Analysis


Initial classifier development focused on gestational ages 17.0 to 25.6. Using discovery samples a set of peptides corresponding to 62 proteins were selected based on preanalytic and analytic criteria. Analyte diagnostic performance was assessed in a series of narrow GABD windows that span three weeks with two weeks of overlap between adjacent windows. Based on consistency in diagnostic performance (up and down regulation in cases vs controls across GABD), a subset of 43 analytes was selected for further analysis.


For each narrow GABD window a set of reversals was formed using all the combinations of up and down regulated analytes within the narrow window. A reversal value is the ratio of the relative peak area of an up regulated analyte over the relative peak area of a down regulated analyte and serves to both normalize variability and amplify diagnostic signal. Out of all the possible reversals within a narrow window, a subset was selected based on their individual univariate performance (AUC>=0.6).


For each window reversal panels of varying sizes were formed (sizes of 2, 3, 4, 6, 8). For each panel size within a window, a Monte Carlo Cross Validation (MCCV) was performed by training and testing a logistic classifier iteratively 1,000 times on 70% and 30% of the samples, respectively. A panel size of 4, determined to be optimal by mean MCCV AUC, was subsequently used for identification of candidate reversals that perform well on panels. Candidate reversals were identified by frequency of occurrence on top performing logistic classifiers of panels of size 4 in MCCV analysis. For each window, three sets of reversal frequency tables were created using performance measures of either AUC, or partial AUC (pAUC) for sensitivity ranging from 0.7 to 1, or correlation of the classifier output score to time to birth value (TTB) (difference in days between GABD and gestational age at birth). From each of these reversal lists, the top 15 reversals were selected for further analysis.


For each GABD narrow window, reversal panels of size 2, 3, 4 were formed from each of the three lists (AUC, pAUC, and TTB) and based on the performance of a MCCV analysis, the top 15 panels for each panel size in each window were selected. Along with the top 15 reversals from each of the three lists (AUC, pAUC, and TTB) for each window, these top 15 panels of size 2, 3, 4, were used to train logistic classifiers on the discovery samples and the classification scores were generated for verification samples in a blinded fashion.


A third party statistician assessed the performance of all reversals and classifier panels and the AUC, pAUC for ROC curves and the TTB correlation of the classifier scores were reported.


Phase II: Unblinded Analysis


Following unblinding, discovery and verification data sets were combined and reanalyzed. Because the expression of diagnostic proteins may change across pregnancy we examined the levels of proteins as a function of GABD. A median smoothing window of +/−10 days was applied to generate the kinetic plots. Relative levels of proteins were expressed as the ratio of the endogenous peptide peak area over its corresponding SIS standard (relative ratio). Examples of proteins with levels that increase in pregnancy but are not different in PTB cases and controls are shown in FIGS. 3, 4 and 10. Measurement of the levels of such proteins could be useful in accurate dating of pregnancy (e.g. a pregnancy “clock”). The pregnancy clock predicts gestational age from the relative abundance of one or more proteins (transitions). Alternatively, in this same analysis we identified proteins whose levels change across GABD but show differences between PTB cases and controls FIG. 5. These proteins are obvious diagnostic candidates for PTB classifier development. The impact of forming a reversal using the ratio of an overexpressed protein over that of an underexpressed protein was also exemplified (FIGS. 8 and 21). It is clear that this results in an increase in separation of PTB cases and controls. Previous analysis suggested that levels of some analytes may be influenced by pre-pregnancy body weight index (BMI). CLIN. CHEM. 37/5, 667-672 (1991); European Journal of Endocrinology (2004) 150 161-171. For this reason the impact of BMI on separation was explored by expressing the reversal value across gestation in only those patients whose BMI is less than 35 (FIG. 21). This results in a further improvement in separation.


Reversal selection and classifier development in the combined discovery and verification data set mirrored earlier studies. We focused on the 3rd overlapping GABD window (Days 133-153) to exemplify analysis. MCCV analysis was performed to identify candidate reversals. To assess performance of panels, reversal values were combined in a simple LogSum classifier. The LogSum classifier assigns a score to each sample based on the sum of the logs of each reversal's relative ratio value for that sample. The lack of coefficients in a classifier of this type helps to avoid problems of overfitting. Anyone skilled in the art can derive an equivalent logistic classifier using the same analytes with well-established techniques. Multivariate performance of a panel of three top reversals formed from four proteins is shown as a histogram of AUC values obtained by cross validation and in ROC curves in FIG. 8. Previous analysis suggested that levels of some analytes may be influenced by pre-pregnancy body weight index (BMI).


We determined proteins and/or reversals, exemplified here by using ITIH4/CSH, that are strong predictors of time to birth (TTB) (FIG. 10). TTB is defined as the difference between the GABD the gestational age at birth (GAB). This has potential to enable prediction, either individually or in mathematical combination of such analytes to clinically estimate TTB (or GAB).


Example 2. Validation of the IBP4/SHBG sPTB Predictor

This example demonstrates validation of the IBP4/SHBG sPTB predictor identified in a large maternal serum proteomics effort in asymptomatic women early in pregnancy.


Subjects


The Proteomic Assessment of Preterm Risk (PAPR) study was conducted under a standardized protocol at eleven Institutional Review Board (IRB)-approved sites across the U.S. (Clinicaltrials.gov identifier: NCT01371019). Subjects were enrolled between 17 0/7 and 28 6/7 weeks GA. Dating was established using a predefined protocol of menstrual dating confirmed by early ultrasound biometry, or ultrasound alone, to provide the best clinically estimated gestational age. Body mass index (BMI) was derived from height and pre-pregnancy self-reported weight. Pregnancies with multiple gestations and with known or suspected major fetal anomalies were excluded. Pertinent information regarding subject demographic characteristics, past medical and pregnancy history, current pregnancy history and concurrent medications was collected and entered into an electronic case report form. Following delivery, data were collected for maternal and infant outcomes and complications. All deliveries were adjudicated as term (≥37 0/7 weeks GA), spontaneous preterm (including preterm premature rupture of membranes) or medically indicated preterm births. As indicated, discrepancies were clarified with the Principal Investigator at the study site. Adjudication was completed and the data locked prior to validation studies.


Sample Collection


Maternal blood was collected and processed as follows: a 10 minute room temperature clotting period, followed by immediate refrigerated centrifugation or placement on an ice water bath at 4-8° C. until centrifugation. Blood was centrifuged within 2.5 hours of collection and 0.5 ml serum aliquots were stored at −80° C. until analyzed.


Predictor Development Principles


Development of the IBP4/SHBG predictor included independent and sequential discovery, verification and validation steps consistent with Institute of Medicine (TOM) guidelines for best practices in ‘omics’ research. IOM (Institute of Medicine). Evolution of Translation Omics: Lessons Learned and the Path Forward. (Micheel C M, Nass S J, Omenn GS, eds.). Washington, D.C.: The National Academies Press.; 2012:1-355. Analytical validation preceded clinical validation sample analysis and included assessment of inter- and intra-batch precision, carryover and limit of detection.


The validation nested case/control analysis was performed on prespecified sPTB cases and control specimens independent of discovery and verification. sPTB cases included samples from nine sites in total, with two sites being unique to validation. Validation cases and controls underwent 100% on-site source document verification with each subject's medical record prior to mass spectrometry (MS) serum analysis. This process ensured that all subjects satisfied the inclusion and exclusion criteria, as well as confirmed medical/pregnancy complications and GA at birth assignments for all subjects at time of sample collection and delivery. Detailed analysis protocols, including the validation study design, analysis plan and a blinding protocol were pre-established. Personnel were blinded to subject case, control and GA at birth data assignments with the exception of the Director of Clinical Operations (DCO) and Clinical Data Manager. The data analysis plan included prespecified validation claims and a protocol for double independent external analyses. Predictor scores, calculated as described below, were determined for all subject samples by a blinded statistician. Case, control and GA data, linked to the predictor scores by the DCO, were subjected to independent external statistical analysis. Area under the receiver operating characteristic curve (AUROC) and significance testing results were then transferred back to the DCO. Transfer of data incorporated the use of the SUMPRODUCT function (Microsoft. Microsoft Excel. 2013) to ensure maintenance of data integrity. To provide an audit trail of data from each subject through to validation results, real-time digital time-stamping was applied to analytical data, plans and reports.


Validation Study Design


In the primary analysis, sPTB cases were defined as subjects with deliveries due to preterm premature rupture of the membranes (PPROM) or spontaneous onset of labor <37 0/7 weeks GA. Controls were subjects who delivered at ≥37 0/7 weeks GA. Prior discovery and verification analyses investigated 44 candidate biomarkers using serum samples collected across broad gestational age (17 0/7 through 25 6/7 weeks GA) (Supplementary Material). Discovery and verification identified an optimal narrow GA at blood draw interval (19 0/7 through 21 6/7 weeks) and two proteins, IBP4 and SHBG, used in a ratio (IBP4/SHBG) as the best predictor by AUROC for sPTB (Supplementary Material). In discovery and verification, subjects without extreme BMI values had improved classification performance by IBP4/SHBG (Supplementary Results). Following discovery and verification analyses, we proceeded to analytical and clinical validation.


Validation sPTB cases totaled 18 subjects collected between 19 0/7 through 21 6/7 weeks GA at blood draw (GABD), from a total available of 81 subjects across 17 0/7 through 28 6/7 weeks GA. Sets of controls, comprising two controls per sPTB case matched by GABD, were randomly selected using R Statistical program (R 3.0.2) (Team R C. R: a Language and Environment for Statistical Computing. Vienna, Austria; 2014. 2015; Matei A, Tiné Y. The R “sampling” package. European Conference on Quality in Survey Statistics. 2006) and compared to the term delivery distribution as outlined in the 2012 National Vital Statistics Report (Martin J A, Hamilton B E, Osterman M J, Curtin S C, Mathews T J. Births: Final Data for 2012. National Vital Statistics Reports. 2014; 63(09):1-86) using Chi-Square test. Randomly created control sets (in groups of 10) were examined for sets yielding a p-value approaching 1.0.


The primary objective was to validate the performance of the IBP4/SHBG ratio as a predictor for sPTB using AUROC (Team R C. R: a Language and Environment for Statistical Computing. Vienna, Austria; 2014. 2015; Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics. 2005; 21(20):7881). To control the overall multiple testing error rate (α=0.05), the fixed sequence approach (Dmitrienko A, Tamhane A C, Bretz F, eds. Multiple Testing Problems in Pharmaceutical Statistics. Boca Raton, Florida: CRC Press; 2009:1-320; Dmitrienko A, D'Agostino R B, Huque M F. Key multiplicity issues in clinical drug development. Stat Med. 2012; 32(7):1079-111. doi:10.1002/sim.5642.) was applied to GABD increments within the optimal interval (19 0/7 through 21 6/7 weeks GA) identified in discovery and verification with and without the application of a BMI stratification (see Supplementary Material). Significance was assessed by the Wilcoxon-Mann-Whitney statistic that tests equivalence to AUROC=0.5 (random chance). (Bamber D. The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of mathematical psychology. 1975; 12(4):387-415. doi:10.1016/0022-2496(75)90001-2; Mason S J, Graham N E. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. QJR Meteorol Soc. 2002; 128(584):2145-2166. doi:10.1256/003590002320603584.) For determinations of classification performance at GA boundaries other than <37 0/7 vs. ≥37 0/7 weeks GA (e.g. <36 0/7 vs. ≥36 0/7, <35 0/7 vs. ≥35 0/7), cases and controls were redefined as all subjects below and equal to/above the specific boundary, respectively.


Laboratory Methods


A systems biology approach was employed to generate a highly multiplexed multiple reaction monitoring (MRM) MS assay (Supplementary Methods and Results). The validation assay quantified proteotypic peptides specific to predictor proteins IBP4 and SHBG and other controls. Samples were processed in batches of 32, which were comprised of clinical subjects (24), pooled serum standards from healthy non-pregnant donors (HGS)(3), pooled serum standards from healthy pregnant donors (pHGS)(3) and phosphate buffered saline that served as process controls (2). For all analyses, serum samples were first depleted of high abundance and non-diagnostic proteins using MARS-14 immuno-depletion columns (Agilent Technologies), reduced with dithiothreitol, alkylated with iodoacetamide, and digested with trypsin. Heavy-labeled stable isotope standard (SIS) peptides were then added to samples, which were subsequently desalted and analyzed by reversed-phase liquid chromatography (LC)/MRM-MS. SIS peptides were used for normalization by generating response ratios (RR), where the peak area of a peptide fragment ion (i.e. transition) measured in serum was divided by that of the corresponding SIS transition spiked into the same serum sample.


The IBP4/SHBG Predictor


The predictor score was defined as the natural log of the ratio of the IBP4 and SHBG peptide transition response ratios:







S
=

ln

(


RR

IBP

4



RR
SHEG


)


,




where RR are the measured response ratios of the respective peptides.


Results



FIG. 23 summarizes the distribution of study subjects in PAPR. Between March, 2011 and August, 2013, 5,501 subjects were enrolled. As predefined in the protocol, 410 (6.7%) subjects were excluded from analysis due to receiving progestogen therapy after the first trimester of pregnancy. An additional 120 (2.2%) subjects were excluded due to early discontinuation, and 146 (2.7%) were lost to follow-up. A total of 4,825 subjects were available for analysis. There were 533 PTBs; 248 (4.7%) spontaneous and 285 (5.9%) medically indicated. Compared to those who delivered at term, subjects with a sPTB were more likely to have had one or more prior PTBs and to have experienced bleeding after 12 weeks of gestation in the study pregnancy (Table 1). Characteristics of sPTB cases and term controls selected for validation were not significantly different from each other, with the exception that there were significantly more Hispanic controls (47.5% vs. 33.3% p=0.035). Similarly, subjects selected for validation were largely representative of the study cohort as a whole (Table 1), with the exception of ethnicity of term controls.


Validation Analysis


In discovery and verification analyses the ratio of IBP4/SHBG and the interval between 19 0/7 through 21 6/7 weeks GA was identified as the best performing sPTB predictor by AUROC and GA interval, respectively (Supplementary Results, below). For validation, a predefined fixed sequence approach validated the IBP4/SHBG predictor with and without BMI stratification, with optimal performance identified for the GA interval of 19 1/7 through 20 6/7 weeks. Without taking BMI into consideration, validated performance was AUROC=0.67 (p=0.02) (Supplementary Results). However, as expected, performance was improved with a BMI stratification of >22 and ≤37 kg/m2 which corresponded to an AUROC of 0.75 (p=0.016, 95% CI 0.56-0.91) (FIG. 24). More detailed characterization of BMI stratification can be found in Supplementary Results. Performance measures of sensitivity, specificity, AUROC and odds ratios (ORs) were determined at varied case vs. control boundaries (Table 2). For sPTB vs. term birth (<37 0/7 vs. ≥37 0/7 weeks), the sensitivity and specificity was 0.75 and 0.74, respectively, with an odds ratio (OR) of 5.04 (95% CI 1.4-18). The results at other boundaries are summarized in Table 2. Accuracy of the test improved at lower GA boundaries.


The prevalence adjusted positive predictive value (PPV), a measure of clinical risk, is shown as a function of predictor score in FIG. 25. Stratification of subjects with increasing predictor score occurs as PPV increases from a background value (population sPTB rate of 7.3% for singleton births in the U.S.)(Martin et al., Births: final data for 2013. Natl Vital Stat Rep. 2015; 64(1):1-65 Martin J A, Hamilton B E, Osterman M J, Curtin S C, Matthews T J. Births: final data for 2013. Natl Vital Stat Rep. 2015; 64(1):1-65) to relative risks of 2× (14.6%) and 3× (21.9%) (dashed lines) and higher (FIG. 25). The distribution of IBP4/SHBG predictor score values for subjects color coded by GA at birth category are shown in box plots in FIG. 25. The earliest sPTB cases (<35 0/7 weeks GA) have higher predictor scores than late term controls (≥39 0/7 weeks GA) while the scores for late sPTB cases (≥35 0/7 through <37 0/7 weeks GA) overlap with early term controls (≥37 0/7 through <39 0/7 weeks GA) (FIG. 25). Validation subjects were identified as high or low risk according to a predictor score cut-off corresponding to 2× relative risk (PPV of 14.6%). The rate of births for the high and low risk groups were then displayed as events in a Kaplan Meier analysis (FIG. 26). From this analysis, those classified as high risk generally delivered earlier than those classified as low risk (p=0.0004).


Post Validation Analyses


Predictor performance was measured using a combination of subjects from the blinded verification (Supplementary data, below) and validation analyses within the optimal BMI and GA interval. The ROC curve for the combined sample set is shown and corresponds to an AUROC of 0.72 (p=0.013) (FIG. 27).


Using an 'omics approach we developed a maternal serum predictor comprised of the ratio of IBP4/SHBG levels at 19-20 weeks with a BMI interval of >22 and ≤37 kg/m2 that identified 75% of women destined for sPTB. Prior history of sPTB (Goldenberg et al., Epidemiology and causes of preterm birth. Lancet. 2008; 371(9606):75-84. doi:10.1016/50140-6736(08)60074-4, Petrini et al. Estimated effect of 17 alpha-hydroxyprogesterone caproate on preterm birth in the United States. Obstet Gynecol. 2005; 105(2):267-272) and cervical length measurements (Jams et al. The length of the cervix and the risk of spontaneous premature delivery. National Institute of Child Health and Human Development Maternal Fetal Medicine Unit Network. N Engl J Med. 1996; 334(9):567-72; Hassan et al. Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: a multicenter, randomized, double-blind, placebo-controlled trial. Ultrasound Obstet Gynecol. 2011; 38(1):18-31) are considered the best measures of clinical risk to date; however, either individually or in combination they fail to predict the majority of sPTBs.


An ideal sPTB prediction tool would be minimally invasive, performed early in gestation coinciding with timing of routine obstetrical visits, and would accurately identify those at highest risk. Current 'omics studies suggest that perturbations in the physiological state of pregnancy can be detected in maternal serum analytes measured in sPTB subjects. 'Omics discovery studies in PTB have included proteomic (Gravett et al. Proteomic analysis of cervical-vaginal fluid: identification of novel biomarkers for detection of intra-amniotic infection. J Proteome Res. 2007; 6(1):89-96; Goldenberg et al. The preterm prediction study: the value of new vs standard risk factors in predicting early and all spontaneous preterm births. NICHD MFMU Network. Am J Public Health. 1998; 88(2):233-8; Gravett et al. Diagnosis of intra-amniotic infection by proteomic profiling and identification of novel biomarkers. JAMA. 2004; 292(4):462-469; Pereira et al. Insights into the multifactorial nature of preterm birth: proteomic profiling of the maternal serum glycoproteome and maternal serum peptidome among women in preterm labor. Am J Obstet Gynecol. 2010; 202(6):555.e1-10; 32. Pereira et al. Identification of novel protein biomarkers of preterm birth in human cervical-vaginal fluid. J Proteome Res. 2007; 6(4):1269-76; Dasari et al. Comprehensive proteomic analysis of human cervical-vaginal fluid. J Proteome Res. 2007; 6(4):1258-1268; Esplin et al. Proteomic identification of serum peptides predicting subsequent spontaneous preterm birth. Am J Obstet Gynecol. 2010; 204(5):391.e1-8), transcriptomic (Weiner et al. Human effector/initiator gene sets that regulate myometrial contractility during term and preterm labor. Am J Obstet Gynecol. 2010; 202(5):474.e1-20; Chim et al. Systematic identification of spontaneous preterm birth-associated RNA transcripts in maternal plasma. PLoS ONE. 2012; 7(4):e34328. Enquobahrie et al. Early pregnancy peripheral blood gene expression and risk of preterm delivery: a nested case control study. BMC Pregnancy Childbirth. 2009; 9(1):56), genomic (Bezold et al. The genomics of preterm birth: from animal models to human studies. Genome Med. 2013; 5(4):34; Romero et al. Identification of fetal and maternal single nucleotide polymorphisms in candidate genes that predispose to spontaneous preterm labor with intact membranes. Am J Obstet Gynecol. 2010; 202(5):431.e1-34; Swaggart et al. Genomics of preterm birth. Cold Spring Harb Perspect Med. 2015; 5(2):a023127; Haataja et al. Mapping a new spontaneous preterm birth susceptibility gene, IGF1R, using linkage, haplotype sharing, and association analysis. PLoS Genet. 2011; 7(2):e1001293; McElroy et al. Maternal coding variants in complement receptor 1 and spontaneous idiopathic preterm birth. Hum Genet. 2013; 132(8):935-42), and metabolomic (Menon et al. Amniotic fluid metabolomic analysis in spontaneous preterm birth. Reprod Sci. 2014; 21(6):791-803) approaches. However, to date none of these approaches have produced validated testing methods to reliably predict the risk of sPTB in asymptomatic women.


The current invention is the result of a large prospective and contemporaneous clinical study that allowed independent discovery, verification and validation analyses, while adhering to TOM guidelines regarding omics' test development. It involved construction of a large and standardized multiplexed proteomic assay to probe biological pathways of relevance in pregnancy. The study size and relatively broad blood collection window (17 0/7 through 28 6/7 weeks GA) also enabled the identification of a GA interval where there were marked alterations in protein concentrations between sPTB cases and term controls. Use of a low complexity predictor model (i.e. the ratio of two proteins) limited the pitfalls of overfitting.


Application of the proteomic assay and model building led to the identification of a pair of critical proteins (IBP4 and SHBG) with consistently good predictive performance for sPTB. Despite the challenges of building a classifier for a condition attributed to multiple etiologies, the predictor demonstrated good performance at a cutoff of <37 0/7 vs. ≥37 0/7 weeks GA with an AUROC of 0.75. Importantly, accuracy of the predictor improves for earlier sPTBs (e.g. <35 0/7 weeks GA), enabling the detection of those sPTBs with the greatest potential for morbidity. Subjects determined to be at high risk for sPTB using the IBP4/SHBG predictor delivered significantly earlier than subjects identified as low risk. Our findings suggest that IBP4 and SHBG may perform important functions related to the etiologies of sPTB and/or act as convergence points in relevant biological pathways.


Universal transvaginal ultrasound (TVU) measurement of cervical length (CL) was not performed routinely at the majority of our study centers and was available for less than 1/3 of study subjects. It will be of interest to assess whether CL measurements improve upon the proteomic predictor in future studies or alternatively, if risk stratification by the IBP4/SHBG classifier identifies women that benefit most from serial CL measurements. Finally it will be intriguing to investigate the performance of the molecular predictor together with a BMI variable, or perhaps in combination with other medical/pregnancy history and sociodemographic characteristics.


In conclusion, a predefined predictive test for sPTB based on serum measurements of IBP4 and SHBG in asymptomatic parous and nulliparous women was validated in a completely independent set of subjects. Further functional studies on these proteins, their gene regulation and related pathways may help to elucidate the molecular and physiological underpinnings of sPTB. Application of this predictor should enable early and sensitive detection of women at risk of sPTB. This may improve pregnancy outcomes through increased clinical surveillance as well as to accelerate the development of clinical interventions for PTB prevention.


Supplementary Materials and Methods


Discovery and Verification Subjects


Discovery and verification subjects were derived from the PAPR study described above in this Example.


Discovery and Verification Principles


sPTB cases were defined as described above in this Example. Discovery and verification of the predictor was conducted according to guidelines for best practices in ‘omics’ research. (IOM (Institute of Medicine). Evolution of Translation Omics: Lessons Learned and the Path Forward. (Micheel C M, Nass S J, Omenn G S, eds.). Washington, DC: The National Academies Press.; 2012:1-355). Nested case/control analyses used sample sets completely independent of each other. Cases and controls selected for discovery and verification underwent central review for within-subject data discrepancies; no source document verification (SDV) with the medical record was performed. All sPTB cases and controls for discovery and verification were individually adjudicated by the Chief Medical Officer and discrepancies were clarified with the PI at the clinical site. Detailed analysis protocols, including study designs, analysis plans and a verification blinding protocol were pre-established. Laboratory and data analysis personnel were blinded to verification subject's case, control and GA data assignments. Predictor scores, calculated as described below, were assigned to all subjects by an internal blinded statistician. Case, control and GA data, linked to the predictor scores by the DCO, were provided to an independent external statistician for analysis. AUROC results were then transferred back to the DCO. Transfer of data utilized a SUMPRODUCT (Microsoft. Microsoft Excel. 2013) function in Excel to ensure maintenance of data integrity. To provide an audit trail of data from subjects through to verification results, digital timestamping was applied to analytical data, plans and reports.


Discovery and Verification Study Design


Discovery and verification sPTB cases totaled 86 and 50 subjects, respectively, collected across 17 0/7 through 28 6/7 weeks GA at blood draw (GABD). Subjects used in discovery and verification were completely independent of each other and independent from those used in validation. Matched controls were identified for sPTB cases in discovery and verification as described above in this Example.


Prevalence Analyses


Following discovery, verification and validation analyses, additional term controls, not used in prior studies, were selected from the PAPR database and processed in the laboratory using the MRM-MS assay applied in validation and described above in this Example. Using the Sampling package in R Statistical software (version 3.0.3) (Team R C. R: a Language and Environment for Statistical Computing. Vienna, Austria; 2014. 2015; Matei A, Tillé Y. The R “sampling” package. European Conference on Quality in Survey Statistics. 2006), sets of 187 subjects were randomly selected from the validated GA blood draw interval and compared via univariate statistical analyses (Chi-Square Test) against the gestational age at birth (GAB) data from the 2012 National Vital Statistics Report (NVSR). Martin et al.: Final Data for 2012. National Vital Statistics Reports. 2014; 63(09):1-86 Sets of controls most closely approximating the distribution of deliveries in the 2012 NVSR based on the best p value (approaching 1.0 with minimum acceptable value of 0.950) were then selected for comparison against the BMI distribution in the PAPR study as a whole. Using univariate statistical analyses (Chi-Square Test) against the BMI data from the PAPR study database, the sets of controls most closely approximating the distribution of BMI (approaching 1.0 with minimum acceptable value of 0.950) and the distribution of delivery timing in the NVSR were selected and compared to the GABD of the validated blood draw samples. The set that most closely approximated all three distributions was selected as the subject set for the Prevalence Study. Predictor score values for verification, validation and prevalence within the validation GABD interval and BMI restriction totaled 150 subjects. This composite dataset was used to obtain the best estimates of confidence intervals about the PPV curve in FIG. 25. Confidence intervals about the PPV were calculated with the normal approximation of the error for binomial proportions. Brown et al. Interval estimation for a binomial proportion. Statistical science. 2001; 16(2):101-133.


Laboratory Methods


A systems biology approach was employed to generate a highly multiplexed multiple reaction monitoring (MRM) mass spectrometry (MS) assay by iterative application of: literature curation, targeted and un-targeted proteomic discovery and small scale MRM-MS analyses of subject samples. The mature MRM-MS assay, measuring 147 proteins, was applied in discovery and verification studies. For all analyses, serum samples were processed in the laboratory as described above in this Example. Aliquots of pooled serum controls (pHGS) were used to calculate the inter-batch analytical coefficient of variation (CV) for IBP4 and SHBG.


General Predictor Development Strategy


A strategy was developed to avoid over-fitting and to overcome the dilution of biomarker performance expected across broad gestational age ranges due to the dynamic nature of protein expression during pregnancy. Ratios of up-regulated over down-regulated analyte intensities were employed in predictor development. Such “reversals” are similar to the top-scoring pair and 2-gene classifier strategies. (Geman et al. Classifying gene expression profiles from pair wise mRNA comparisons. Stat Appl Genet Mol Biol. 2004; 3(1):Article19; Price et al. Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas. Proc Natl Acad Sci USA. 2007; 104(9):3414-9) This approach allowed amplification of the diagnostic signal and self-normalization as both proteins in a “reversal” underwent the same pre-analytical and analytical processing steps. As a strategy to normalize peptide intensity measures in complex proteomics workflows, reversals are also similar to a recently introduced approach termed “endogenous protein normalization (EPN)”. (Li et al. An integrated quantification method to increase the precision, robustness, and resolution of protein measurement in human plasma samples. Clin Proteomics. 2015; 12(1):3; Li et al. A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci Transl Med. 2013; 5(207):207ra142) The number of candidate analytes used for model building was reduced by analytic criteria. Analytic filters included: cut-offs for analytical precision, intensity, evidence of interference, sample processing order dependence and pre-analytical stability. The total number of analytes in any one predictor was limited to a single reversal, thus avoiding complex mathematical models. Predictor scores were defined as the natural log of a single reversal value, where the reversal itself was a response ratio (defined above in this Example). Lastly, predictive performance was investigated in narrow overlapping 3-week intervals of gestation.


Receiver Operating Characteristic Curves


AUROC values and associated p-values were calculated for reversals as described above in this Example. The distribution and mean value for predictor AUROC in the combined discovery and verification set was calculated using a bootstrap sampling performed iteratively by selecting random sets of samples with replacement. Efron B, Tibshirani R J. An Introduction to the Bootstrap. Boca Raton, Florida: Chapman and Hall/CRC Press; 1994. The total number of selected samples at each iteration corresponded to the total available in the starting pool.


Supplementary Results


Discovery, verification and validation subject characteristics are summarized in Table 3. The percentage of subjects with one or more prior sPTBs in discovery sPTB cases were higher than in verification or validation, and other characteristics were largely consistent across the studies.


Discovery and Verification Analyses


Forty-four proteins were either up- or down-regulated in overlapping 3-week GA intervals and passed analytic filters (FIG. 28). Reversals were formed from the ratio of up-over down-regulated proteins and predictive performance tested in samples in each of the overlapping 3-week GA intervals. Performance for a subset of reversals displaying representative patterns is shown in FIG. 29. Waves of performance were evident: IBP4/SHBG and APOH/SHBG reversals possessed better AUROC values in early windows, while ITIH4/BGH3 and PSG2/BGH3 peaked later in gestation (FIG. 24). Some reversals had a consistent but moderate performance across the entire gestational age range (PSG2/PRG2) (FIG. 29). The top performing reversal overall, IBP4/SHBG, had an AUROC=0.74 in the interval from 19 0/7 through 21 6/7 (FIG. 29). AUROC performance of the IBP4/SHBG predictor increased to 0.79 when subjects were stratified by pre-pregnancy BMI<35 (kg/m2) (Table 4). Because of its consistently strong performance early in gestation (i.e. 17 0/7 through 22 6/7 weeks GA) (FIG. 29) and potentially desirable clinical utility the IBP4/SHBG predictor was selected for verification analysis.


The blinded IBP4/SHBG AUROC performance on verification samples was 0.77 and 0.79 for all subjects and BMI stratified subjects, respectively, in good agreement with performance obtained in discovery (Table 5). Following blinded verification, discovery and verification samples were combined for a bootstrap performance determination. A mean AUROC of 0.76 was obtained from 2,000 bootstrap iterations (FIG. 30).


BMI Validation Analyses


The performance of the IBP4/SHBG predictor was evaluated at several cut-offs of BMI in the validation samples (Table 5). AUROC measured performance modestly improved by elimination of either very high (e.g. >37 kg/m2) or low BMI (e.g. ≤22 kg/m2). Stratification by a combination of those two cut-offs gave an AUROC of 0.75 (Table 5).


Example 3. Correlation of Mass Spectrometry and Immunoassay Data

This example demonstrates results of a Myriad RBM screen identifying IBP4 and other biomarkers individual biomarkers for sPTB in the early, middle, and late gestational age collection windows, (2) correlation of MS and immunoassay results for SHBG/IBP4, and (3) clinical data relating to SHBG as a biomarker for sPTB.


RBM Data


Briefly, RBM assayed 40 cases and 40 controls from PAPR (20/20 from Early Window), 10/10 from Middle Window, 10/10 from Late Window). RBM used the Human Discovery MAP 250+ v2.0 (Myriad RBM, Austin, TX). The objective of these analyses is to develop multivariate models to predict PTB using multiple analytes. We used four modeling methods: random forest (rf), boosting, lasso, and logistic (logit). We perform a first round of variable selection in which each method independently selects the 15 best variables for that method. From the 15, the best analytes were selected independently by each of the four modeling methods using backward stepwise selection and estimation of area under the ROC curve (AUC) using out-of-bag bootstrap samples. Table 6 shows the top hits from several multivariable models. Table 7 shows Early Window (GABD 17-22 wks) Analyte Ranking by Different Multivariate Models. Table 8 shows Middle Window (GABD 23-25 wks) Analyte Ranking by Different Multivariate Models. Table 9 shows Late Window (GABD 26-28 weeks) Analyte Ranking by Different Multivariate Model.


Identifying Commercial ELISA Kits that Correlate With Mass Spec Data


Briefly, ELISA versus MS comparisons involved multiple studies using PAPR samples and ranging in size from 30-40 subjects. Each ELISA was performed according to the manufacture's protocol. The predicted concentration of each analyte by ELISA was then compared to MS derived relative ratios from identical samples. A Person's r correlation value was then generated for comparison. ELISA versus MS comparisons involved multiple studies using PAPR samples and ranging in size from 30-40 subjects. Each ELISA was performed according to the manufacture's protocol. The predicted concentration of each analyte by ELISA was then compared to MS derived relative ratios from identical samples. A Person's r correlation value was then generated for comparison. Table 10 provides epitope and clonality information for kits tested for analytes IBP4_HUMAN and SHBG_HUMAN. Table 11 shows that not all ELISA kits correlate with MS, even for proteins where correlation exists. See for example: IBP4, CHL1, ANGT, PAPP1.


One hundred and twenty previously frozen serum samples with known outcomes from the PAPR study were selected for comparison between ELISA and MS assays. These samples have a Gestational Age at Blood Draw (GABD) between 119 and 180 days. Samples were not excluded due to maternal BMI. ELISA's were performed on commercially available kits for IBP4 (AL-126, ANSCH Labs Webster, Texas), and SHBG (DSHBGOB, R&D Systems Minneapolis, Minnesota). Assays were run according to the manufactures' protocols. Internal standards were used for plate-to-plate normalization. The score was calculated from the ELISA concentration values according to LN([IBP4]/[SHBG]), and by MS according to LN(IBP4RR/SHBGRR), where RR refers to the relative ratio of endogenous peptide to SIS peptide peak areas. Scores derived from the two approaches were compared in case versus control separation (p values derived from unpaired t-tests assuming equal standard deviations) (FIG. 31).


Fifty seven previously frozen serum samples (19 sPTB cases, 38 term controls) with known outcomes from the PAPR study were selected for comparison between ELISA and MS assays. These samples have a Gestational Age at Blood Draw (GABD) between 133 and 148 days. ELISA's were performed on commercially available kits for IBP4 (AL-126, ANSCH Labs Webster, Texas), and SHBG (DSHBGOB, R&D Systems Minneapolis, Minnesota). Assays were run according to the manufactures' protocols. Samples run on different plates were normalized using internal standards. The score was calculated from the ELISA concentration values according to LN([IBP4]/[SHBG]), and by MS according to LN(IBP4RR/SHBGRR), where RR refers to the relative ratio of endogenous peptide to SIS peptide peak areas. Performance of the immunoassay by area under the receiver operating characteristic curve (AUC) was then determined and compared to the MS derived AUC on the same sample sets (FIG. 32). AUC values were also determined after applying a BMI stratification to the samples (BMI>22 ≤37) resulting in 34 total samples (13 sPTB cases, 21 term controls) (FIG. 33).


Sixty previously frozen serum samples with known outcomes from the PAPR study were analyzed by ELISA and MS assays. These samples have a predicted Gestational Age at Blood Draw (GABD) between 133 and 146 days. Correlation analyses were performed for samples at all BMI (FIG. 34, right panel) or for the subset of samples with a BMI >22 or ≤37 (FIG. 34, left panel). ELISA's were performed on commercially available kits for IBP4 (AL-126, ANSCH Labs Webster, Texas), and SHBG (DSHBGOB, R&D Systems Minneapolis, Minnesota). Assays were run according to the manufactures' protocols. Internal standards were used for plate-to-plate normalization. The score was calculated from the ELISA concentration values according to LN([IBP4]/[SHBG]), and by MS according to LN(IBP4RR/SHBGRR), where RR refers to the relative ratio of endogenous peptide to SIS peptide peak areas. Scores derived from the two approaches were compared by correlation and in case versus control separation (p values derived from unpaired t-tests assuming equal standard deviations). Table 12 shows IBP4 and SHBG ELISA Kits Demonstrating sPTB vs Control Separation (univariate).


Comparison of SHBG Measurements by Mass Spectrometry and Clinical Analyzers


Thirty five samples from individual subjects and serum pools of pregnant and non-pregnant women were simultaneously analyzed at Sera Prognostics and two independent reference laboratories, ARUP Laboratories and Intermountain Laboratory Services. Aliquots were transported refrigerated to each laboratory and shipping was coordinated so testing would begin on the same date for all three laboratories. ARUP utilizes a Roche cobas e602 analyzer and Intermountain uses the Abbott Architect CMIA, both semi-automated immunoassay instruments. Sera Prognostics employs a unique proteomic analysis method involving immuno-depletion of samples, enzymatic digestion and analyzed on an Agilent 6490 Mass Spectrometer. Results from both ARUP and IHC were reported in nmol/L while Sera uses the Relative Ratio (RR) of heavy and light peptide surrogates. Data from ARUP and Intermountain were compared to each other to determine accuracy (FIG. 39). Linearity and precision matched well throughout the broad range of results with a linearity slope of 1.032 and r2 value of 0.990. Each reference laboratory's data was then compared to Sera's RR and a linear regression plot (FIGS. 37 and 38). Data compared well to Sera results with ARUP having an r2 value of 0.937 and Intermountain having an r2 value of 0.934.


Example 4. SNPs, Insertions and Deletions and Structural Variants within the PreTRM IBP4 and SHBG Peptides

This example shows the known SNPs, insertions and deletions (indels) and structural variants within the PreTRM IBP4 and SHBG peptides.


Table 13 and Table 14 detail the known SNPs, insertions and deletions (indels) and structural variants within the PreTRM IBP4 and SHBG peptides. The information is derived from the Single Nucleotide Polymorphism database (dbSNP) Build 146. A single missense variation (G>C) in SHBG, A179P (dbSNP id: rs115336700) has the highest overall allelic frequency of 0.0048. While this allelic frequency is low, several subpopulations studied in the 1000 genomes project had significantly higher frequencies. These populations (allele frequencies) are; Americans of African Ancestry in SW USA (0.0492); African Carribbeans in Barbados (0.0313); Yourba in Ibadan, Nigeria (0.0278); Luhya in Webuye, Kenya (0.0101); Esan in Nigeria (0.0101); Colombians from Medellin, Colombia (0.0053); Gambian in Western Divisions in The Gambia (0.0044). All other studied subpopulations had no variation in this nucleotide position. The table header includes the cluster id—(dbSNP rs number), Heterozygosity—average heterozygosity, Validation—validation method (or blank with no validation), MAF—Minor Allele Frequency, Function—functional characteristic of the polymorphism, dbSNP allele—identity of allelic nucleotide, Protein residue—residue resulting from allele, Codon pos—position in codon, NP_001031.2 Amino acid pos—amino acid position in reference sequence NP_001031.2, and NM_001040.2 mRNA pos—nucleotide position in a reference sequence NM_001040.2.


Example 5. IBP4/SHBG Reversal Amplifies Diagnostic Signal for sPTB and Reduces Analytical Variability

This example demonstrates the amplification of diagnostic signal and reduction of variability obtained employing the IBP4/SHBG reversal strategy.


Shown are the levels of IBP4 and SHBG determined by MS across the indicated gestation age range for sPTB cases and term controls separately (FIG. 44 and FIG. 45). Curves were generated by a mean smoothing of the peptide relative ratios (endogenous peptide peak area over corresponding SIS peak area). Case versus control signal corresponds to an approximate maximal 10% difference for IBP4 and SHBG. When the score calculated as ln(IBP4RR/SHBGRR) is plotted an amplification of signal is evident (maximal difference of approximately 20%) (FIG. 46). These data demonstrate the amplification of diagnostic signal obtained employing the IBP4/SHBG reversal strategy.


Forming the ratio of the levels of two proteins may reduce the variability because each protein experiences the same analytical and preanalytical processing steps. To examine the impact on variability the CVs were determined for the individual proteins (RR of IBP4 and SHBG) and for IBP4 RR/SHBG RR ratio in pooled control serum samples from pregnant donors (pHGS). Pooled control samples, free of biological variability, were analyzed in multiple batches and across several days. Reversal variability is less than the variability associated with the individual proteins. (FIG. 48)


To investigate whether formation of reversals in general amplifies diagnostic signal we examined ROC performance (AUC) performance of high performing reversals (AUC >0.6) formed by the ratio of many proteins. Shown in the top panel of FIG. 47 is the range of AUC values (sPTB case vs term control) using datasets from samples collected between 19/0 weeks and 21/6 weeks gestation. The adjacent box plots show the range in ROC performance for the individual up-regulated and down-regulated proteins used to form the associated reversals. Similarly, p values derived from a Wilcoxon test (sPTB case vs. term controls) for reversals are more significant than those for the corresponding individual proteins (FIG. 47, bottom).


To investigate whether formation of reversals more generally reduces variability we examined the analytical variability for 72 different reversal values (i.e. ratio of relative peak areas versus the analytical variability of the individual proteins that comprise the reversals in pooled control serum samples from pregnant donors (pHGS). Pooled control samples, free of biological variability, were analyzed in multiple batches and across several days. Reversal variability is less than the variability associated with the individual proteins (FIG. 49).


Generalizability of the Reversal Strategy to Reduce Analytic Variability.



FIG. 48 reports the CVs calculated for pHGS specimens (pooled pregnant samples) analyzed in the lab in several batches, days and instruments. Because the CVs were calculated using pHGS specimens that are devoid of biological variability, they correspond to the measure of analytic variability introduced in the lab processing of samples. The analytic variability of associated with the ratioed value for 72 reversals is lower than the analytic variability of the relative peak areas of individual up-regulated and down-regulated proteins used to form the reversals FIG. 49.


Example 6. Medically Indicated PTB Analysis

This example confirms that the classifier is sensitive to a component of medically indicated PTB based on conditions such as preeclampsia or gestational diabetes.


PreTRM™ was developed and validated as a predictor for spontaneous PTB. About 75% of all PTB in the U.S. are spontaneous, the remaining are medically indicated due to some maternal or fetal complication (e.g. preeclampsia, intrauterine growth restriction, infection). 41 medically indicated PTB samples from the PAPR biobank were analyzed in the lab and PreTRM scores were calculated. The PreTRM™ scores were compared for those subjects annotated as medically indicated for preeclampsia versus other indications were compared. Subjects medically indicated for preterm delivery because of preeclampsia had significantly higher scores than others (FIG. 50).



FIG. 52 shows a reversal intensity heatmap with diabetes annotation. The red arrows show diabetes subjects. The samples are listed on the bottom with PTB cases on the right and term births on the left side of the screen. The diabetes patients are clustered on the right, showing that reversals can be identified that stratify gestational diabetes and thus that it is possible to build a diagnostic test from the biomarkers to predict gestational diabetes.


Example 7. Other Transitions and Peptides

Table 16 shows comparative IBP4 peptide and transition MS data. Four different heavy labeled peptides (R*+10 daltons) exemplify various transitions and their relative intensities that could be monitored to quantify IBP4. Those skilled in the art could select potentially any of these peptides or transitions or others not exemplified to quantify IBP4.


Table 17 shows comparative IBP4 peptide and transition MS data. IBP4 tryptic peptides derived from recombinant protein was analyzed by MRM-MS to identify candidate surrogate peptide and their transitions. Those skilled in the art could select potentially any of these peptides or transitions or others not exemplified to quantify IBP4. IBP4 was identified in RBM (above), then the synthetic peptide was ordered to build the assay.


Table 18 shows Comparative SHBG peptide and transition MS data. SHBG tryptic peptides derived from recombinant protein or pooled pregnant serum was analyzed by MRM-MS to identify candidate surrogate peptide and their transitions. Those skilled in the art could select potentially any of these peptides or transitions or others not exemplified to quantify SHBG. Also shown are isoform specific peptides identified in serum.


Table 19 shows proteins with altered serum levels across 17-25 weeks GA in PTB samples. * Additional proteins limited to weeks 19-21 GA in PTB. LC-MS (MRM) assay of 148 proteins from multiple pathways and analyzed serum samples from gestational age (GA) weeks 17-25 from 312 women (104 sPTB cases, 208 term controls). MRM peak area data was analyzed by hierarchical clustering, t-tests, and relationship to GA. Following analytic filtering, 25 proteins exhibited significant differences (p<0.05) in sPTB vs term subjects (Table 1). Levels of 14 proteins were higher and 3 were lower in sPTB samples across the entire GA range. Other proteins were found to be dynamically regulated in sub-intervals of the GA period. For example, in GA weeks 19-21, an additional 7 proteins were elevated and 1 was lower in sPTB.


Table 20 lists 44 proteins meeting analytical filters that were up- or down-regulated in sPTB vs. term controls.


Example 8. Mechanistic Insights from Serum Proteomic Biomarkers Predictive of Spontaneous Preterm Birth

This example demonstrates that, as specific protein expression changes dynamically throughout pregnancy, biomarker performance varies considerably across GA. Differentially expressed proteins have functions in steroid metabolism, placental development, immune tolerance, angiogenesis and maintenance of pregnancy. FIGS. 55, 57-59. These protein profile differences seen in sPTB reflect impaired developmental transitions within the fetal/placental compartment during the second trimester.


Briefly, the objective of the study described in this example was to gain insight into the physiological basis for biomarker association with spontaneous preterm birth (sPTB) prediction.


Study Design


Pathways such as inflammation, infection and bleeding have been implicated in the etiology of preterm birth. However, less is known about which proteins are measurable in blood and when in gestation they are disrupted. To answer these questions we created an LC-MS (MRM) assay of 148 proteins from multiple pathways and analyzed serum samples from gestational age (GA) weeks 17-25 from 312 women (104 sPTB cases, 208 term controls).


Briefly, serum samples were depleted of high abundance proteins, digested with trypsin and fortified with heavy-labeled stable isotope standard (SIS) peptides for nearly all of the proteins. SIS peptides were used for normalization by generating response ratios, where the peak area of a peptide fragment ion (i.e. transition) measured in serum was divided by that of the corresponding SIS transition. Response ratios of MRM peak area data were analyzed by hierarchical clustering, t-tests and relationship to GA.


As shown in FIG. 53, multiple peptides to the same protein are well correlated. Discrete branches (grouped by color) correspond to identifiable functional categories such as: acute-phase proteins, apolipoproteins and known pregnancy specific proteins. Protein complexes important in reproductive biology such as: PAPP1:PRG2, INHBE:INHBC, and IGF2:IBP3:ALS are evident. These quality assessments and highlighted relationships validate the highly multiplexed MRM-MS assay described in this application for use in probing the biology of pregnancy and the discovery of analytes predictive of sPTB.



FIG. 54 shows differentially expressed proteins that function in extracellular matrix interactions. TENX activates latent TGF-b and is localized to fetal and maternal stroma at transition points of cytotrophoblast differentiation. Alcaraz, L., et al. 2014 J. Cell Biol. 205(3) 409-428; Damsky, C., et al. 1992 J. Clin. Invest. 89(1) 210-222. Reduced serum TENX levels in sPTB indicate blood vessel defects or reduced TGF-b activity in placenta. NCAM1(CD56) is highly expressed on neural cells and natural killer cells. NCAM1 is also expressed by endovascular trophoblasts, but is reduced or absent in PE placentas. Red-Horse, K., et al. 2004 J. Clin. Invest. 114:744-754. Inverted serum NCAM1 levels in sPTB cases can reflect poor spiral artery remodeling and/or defective immunoregulation. CHL1 is homologous to NCAM1 and directs integrin-mediated cell migration. BGH3(TGFBI), a cell adhesion molecule expressed in vascular endothelial cells, and inhibits angiogenesis via specific interactions with av/03 integrin. Son, H-N., et al. 2013 Biochimica et Biophysica Acta 1833(10) 2378-2388. Elevated TGFBI in sPTB cases may indicate reduced placental angiogenesis.



FIG. 55 shows kinetic plots of differentially expressed proteins with functions in the IGF-2 pathway that show maximum separation at 18 weeks. IGF2 stimulates proliferation, differentiation and endometrial invasion by extravillous trophoblasts in early pregnancy. IBP4 binds and modulates the bioavailability of IGF2 at maternal-fetal interface. Elevated IBP4 and reduced IGF2 during the 1st trimester are correlated with IUGR and SGA, respectively. Qiu, Q., et al. 2012 J. Clin. Endocrino.l Metab. 97(8):E1429-39; Demetriou, C., et al. 2014 PLOS 9(1): e85454. PAPP1 is a placental-specific protease that cleaves IBP4 and releases active IGF2. Low serum PAPP1 levels early in pregnancy are associated with IUGR, PE and PTB. Huynh, L., et al. 2014 Canadian Family Physician 60(10) 899-903.PRG2 (proMBP) is expressed in placenta and covalently binds and inactivates PAPP1. The PRG2:PAPP1 inactive complex circulates in maternal serum. Huynh, L., et al. 2014 Canadian Family Physician 60(10) 899-903. Perturbed pathway regulation is consistent with compromised IGF2 activity in sPTB cases that may result in abnormal placentation. FIG. 56 A shows a schematic of the dynamic regulation and bioavailability of the aforementioned proteins during sPTB.



FIG. 56 B shows a schematic of intracellular signals preferentially activated by insulin binding to the IR-B and by insulin and IGFs binding to either IR-A or IGF1R. Belfiore and Malaguarnera, Endocrine-Related Cancer (2011) 18 R125-R147. IR-A and IGF1R activation by insulin and IGFs leads to the predominance of growth and proliferative signals through the phosphorylation of IRS1/2 and Shc proteins. Shc activation leads to the recruitment of Grb2/Sos complex with subsequent activation of Ras/Raf/MEK1 and Erk1/2. This latter kinase translocates to the nucleus and induces the transcription of several genes involved in cell proliferation and survival. Phosphorylation of IRS1/2 induces the activation of the PI3K/PDK1/AKT pathway. Besides its role in metabolic effects, AKT leads to the activation of effectors involved in the control of apoptosis and survival (BAD, Mdm2, FKHR, NFkB, and JNK) and protein synthesis and cell growth (mTOR).



FIG. 57 shows kinetic plots of differentially expressed proteins with functions in metabolic hormone balance. Sex hormone-binding globulin (SHBG), a placental protein, increases during pregnancy and determines bioavailability and metabolism of sex steroid hormones. Decreased SHBG levels result in higher free androgen and estrogen levels. Free androgens can be converted to estrogen by placental aromatase activity. Progesterone opposing activity of estrogens accelerate gestation/labor. Thyroxine-binding globulin (THBG) is induced by estrogen and increases ˜2.5-fold by mid-pregnancy. The elevated serum THBG levels in sPTB cases may result in reduced free thyroid hormone. Hypothyroidism in pregnancy is associated with increased risk of miscarriage and preterm birth. Stagnaro-Green A. and Pearce E. 2012 Nat. Rev. Endocrinol. 8(11):650-8. Angiotensinogen is increased ˜3-fold by estrogen by mid-pregnancy to stimulate the ˜40% increase in plasma volume. Up-regulation of ANGT could lead to gestational hypertension, a condition associated with increased risk of sPTB.



FIG. 58 shows kinetic plots of differentially expressed proteins with functions in angiogenesis. TIE1, an inhibitory co-receptor of the TIE2 angiopoietin receptor, blocks the ability of Ang-2 to stimulate angiogenesis. Seegar, T., et al. 2010 Mol. Cell. 37(5): 643-655. Pigment epithelial derived factor (PEDF), an anti-angiogenesis factor expressed in placenta, stimulates cleavage and inactivation of VEGFR-1 by gamma-secretase.10 Cathepsin D (CATD) cleaves prolactin to generate vasoinhibins that inhibit angiogenesis. Elevated serum CATD and vasoinhibins are associated with preeclampsia. Nakajima, R., et al. 2015 Hypertension Research 38, 899-901. Leucine-rich alpha-2-glycoprotein (LRG1/A2GL) promotes TGF-β signaling through binding co-receptor, endoglin. TGF-β activates endothelial cell mitogenesis and angiogenesis by the Smad1/5/8 signaling pathway. Wang, X., et al. 2013 Nature 499(7458). PSG3 induces anti-inflammatory cytokines from monocytes and macrophages, and stimulates angiogenesis through binding TGF-β. Low levels of PSGs are associated with IUGR. Moore, T., and Dveksler, G. 2014 Int. J. Dev. Biol. 58: 273-280. ENPP2(autotaxin), an ectoenzyme with lysophospholipase D activity, produces lysophosphatidic acid (LPA). LPA acts on placental receptors to stimulate angiogenesis and chemotaxis of NK cells and monocytes. Levels of Autotaxin are reduced in cases of PIH and early onset PE. Chen, S-U., et al. 2010 Endocrinology 151(1):369-379.



FIG. 59 shows kinetic plots of differentially expressed proteins with functions in innate immunity. LBP presents bacterial LPS to the Toll-like receptor-4 via its co-receptor CD14 to induce the inflammatory response of the innate immunity pathway. Fetuin-A (alpha-2-HS-glycoprotein) is a carrier protein for fatty acids in blood and the FetA-FA complex can bind and activate TLR4 receptor. Pal, D., et al. 2012 Nature Med. 18(8):1279-85.



FIG. 60 shows kinetic plots of differentially expressed proteins with functions in coagulation.



FIG. 61 shows kinetic plots of differentially expressed serum/secreted proteins.



FIG. 62 shows kinetic plots of differentially expressed PSGs/IBPs.



FIG. 63 shows kinetic plots of differentially expressed ECM/cell surface proteins.



FIG. 64 shows kinetic plots of differentially expressed complement/acute phase proteins-1.



FIG. 65 shows kinetic plots of differentially expressed complement/acute phase proteins-2.



FIG. 66 shows kinetic plots of differentially expressed complement/acute phase proteins-3.



FIG. 67 shows kinetic plots of differentially expressed complement/acute phase proteins-4.


Example 9. SDT4/SV4 Kinetic Analysis

This example provides kinetic analysis for all analytes initially exemplified in Example 1, supra, with data from 17 weeks 0 days, through 28 weeks, 6 days.


For FIGS. 68-85, average relative ratios for each peptide transition are plotted using the R ggplot2 package against GABD using a mean average smoothing function (window=+/−10 days). Graphs feature separate plots for case vs. control using two different gestational age at birth cutoffs (<37 0/7 vs >=37 0/7 weeks and <35 0/7 vs >=35 0/7 weeks). Plot titles display a protein short name, underscore, and the peptide sequence. Analyte sequences may have been trimmed for titles to fit on the plots.


The kinetic analyses exemplified herein serve several purposes. These analyses demonstrate whether analyte levels are changing during pregnancy and in which direction, whether they change differently for cases and controls, and illustrate diagnostic differences as a function of gestational age. In some cases, the diagnostic signal is located in a narrow gestational age range, and increases or decreases across time. The shape of kinetic plots also provides visual guidance for selection of proteins that pair well in reversals.


Analytes that were discovered to show significant case versus control separation in an early window, e.g. sample collection between 18 and 20 weeks of gestational age, include, for example, AFAM, B2M, CATD, CAH1, C1QB, C1S, F13A, GELS, FETUA, HEMO, LBP, PEDF, PEPD, PLMN, PRG2, SHBG, TENX, THRB, and VCAM1. Analytes that were discovered to show significant case versus control separation in a later window, e.g. sample collection between 26 and 28 weeks of gestational age, include, for example, ITIH4, HEP2, IBP3, IGF2, KNG1, PSG11, PZP, VASN, and VTDB. Separation of cases versus controls improved using cutoff of less than 35 0/7 versus greater or equal to 35 0/7 weeks versus less than 37 0/7 versus greater or equal to 37 0/7 weeks, as seen for analytes including, for example, AFAM, APOH, CAH1, CATD, CD14, CLUS, CRIS3, F13B, IBP6, ITIH4, LYAM1, PGRP2, PRDX, PSG2, PTGDS, SHBG and SPRL1. It was discovered that many inflammatory and immuno-modulatory molecules show improved separation using the lower gestational at birth cutoff. One skilled in the art will appreciate that any of the analytes showing significant separation between cases and controls shown in the accompanying Figures for a given time window are candidates for use in a reversal pair of the present inventions, as a single biomarker or as part of a biomarker panel of analytes.


Lastly, kinetic plots for analytes that lack a case versus control difference, but demonstrate changes in analyte intensity across pregnancy, are useful in a pregnancy clock according to the methods of the invention. These analytes, also referred to herein as “clock proteins”, can be used to date a pregnancy in the absence of or in conjunction with other dating methods (e.g. date of last menstrual period, ultrasound dating). Table 60 provides a list of clock proteins useful in a pregnancy clock of the invention.


Example 10. Discovery 2 Analysis of sPTB Cases

This example describes analysis of all previously analyzed sPTB cases as described in the preceding examples, their matched controls (2 per every case) and 2 new controls. This analysis described in this example expanded the commercial blood draw window beyond weeks 19 and 20, generated additional data with regards to prediction of sPTB <35 weeks based on larger number of samples from all previous examples, led to discovery of new analytes and reversals, defined molecular clock proteins, clarified risk thresholds and formed accurate validation claims for future clinical studies.


Sample Processing Methods


A standard protocol was developed governing conduct of the Proteomic Assessment of Preterm Risk (PAPR) clinical study. This protocol also specified that the samples and clinical information could be used to study other pregnancy complications. Specimens were obtained from women at 11 Internal Review Board (IRB) approved sites across the United States. After providing informed consent, serum and plasma samples were obtained, as well as pertinent information regarding the patient's demographic characteristics, past medical and pregnancy history, current pregnancy history and concurrent medications. Following delivery, data were collected relating to maternal and infant conditions and complications. Serum and plasma samples were processed according to a protocol that requires standardized refrigerated centrifugation, aliquoting of the samples into 0.5 ml 2-D bar-coded cryovials and subsequent freezing at −80° C.


Following delivery, preterm birth cases were individually reviewed to determine their status as either a spontaneous preterm birth or a medically indicated preterm birth. Only spontaneous preterm birth cases were used for this analysis. For discovery of biomarkers of preterm birth, LC-MS data was generated for 413 samples (82 sPTB cases, 331 term controls) spanning gestational ages 17 0/7-21 6/7 weeks, with each preterm sample matched to 4 term controls by gestational age at blood draw. Every gestational age day within 17 0/7-21 6/7 weeks included at least one sPTB case (and matched term controls), except for one day. 4 term controls were selected with blood draws from that day. One term control in the study that failed laboratory analysis was not reanalyzed.


The serum samples were subsequently depleted of high abundance proteins using the Human 14 Multiple Affinity Removal System (MARS-14), which removes 14 of the most abundant proteins. Equal volumes of each clinical sample or replicates of two quality control serum pools were diluted with column buffer and filtered to remove precipitates. Filtered samples were depleted using a MARS-14 column (4.6×100 mm, Agilent Technologies). Samples were chilled to 4° C. in the autosampler, the depletion column was run at room temperature, and collected fractions were kept at 4° C. until further analysis. The unbound fractions were collected for further analysis.


Depleted serum samples were reduced with dithiothreitol, alkylated using iodoacetamide, and then digested with trypsin. Following trypsin digestion, samples were fortified with a pool of stable isotope standards at concentrations that approximated the concentration of the surrogate peptide analyte. SIS fortified samples were mixed and split into two equal volumes. Each split was placed in −80° C. storage until ready to continue the work process. One frozen split from each sample was retrieved from −80° C. storage, allowed to thaw, and then desalted on a C18 solid phase extraction plate (Empore, 3M). Eluted peptides were lyophilized to dryness. The lyophilized samples were resolubilized in a reconstitution solution containing internal standards that monitor quality of the LC-MS step only (IS Recon).


Fully processed samples were analyzed using a dynamic Multiple Reaction Monitoring method (dMRM). The peptides were separated on a 2.1×100 mm Poroshell EC-C18, 2.7μ particle size column at a flow rate of 0.4 mL/min using an Agilent 1290 UPLC and eluted using an acetonitrile gradient into an Agilent 6490 triple quadrupole mass spectrometer with an electrospray source, operating in positive ion mode. The dMRM assay measured 442 transitions that correspond to 119 peptides and 77 proteins serving both diagnostic and quality roles. Chromatographic peaks were integrated using MassHunter Quantitative Analysis software (Agilent Technologies). Ratios of the chromatographic peak area of the surrogate peptide analyte to the corresponding SIS chromatographic peak area were reported.


A summary of the proteins, peptides and transitions for serum analytes, SIS transitions and IS Recon standards measured in the dMRM method is shown in Table 21. MARS-14 Depletion proteins identify analytes targeted by the MARS-14 immunodepletion column and are measured for quality control purposes. Quant transitions are used for relative response ratios and qual transitions serve quality control purposes. The asterisk (*) denotes name changes. CSH denotes that the peptide corresponds to both CSH1 and CSH2. HLAG now referred to as HLACI since the peptide is conserved in several class I HLA isotypes. LYAM3 now referred to as LYAM1 because, while the peptide sequence is present in each, it is only derived by trypsin cleavage from LYAM1. SOM2 now referred to as SOM2.CSH as the peptides are specific to both SOM2 and CSH.


Significant Protein and Reversal Selection


For each analyte, in each of the two week and three week overlapping window, with and without the BMI restriction, and with two SPTB definitions (37/37 and 35/35), the fold change value that denotes if the mean of the SPTB case samples was higher or lower than the mean of the TERM control samples, was calculated. Tables 22 and 23 show protein/transition AUROC for two week gestational age windows overlapping by one week (e.g. 119-132 refers to days 119-132 of pregnancy which equals gestational weeks 17 and 18). Performance in each two week window is reported for two different case vs control cut-offs (<37 0/7 vs >=37 0/7, <35 0/7 vs >=35 0/7) and with (rBMI) and without (aBMI) a BMI stratification. Tables 24 and 25 show protein/transition AUROC for three week gestational windows overlapping by two weeks (show in days, e.g. “119-139” refers to days 119-139 of pregnancy which equals gestational weeks 17, 18 and 19). Performance in each three week window is reported for two different case vs control cut-offs (<37 0/7 vs >=37 0/7, <35 0/7 vs >=35 0/7) and with (rBMI) and without (aBMI) a BMI stratification.



FIGS. 86 to 95 show kinetic plots of various peptide transitions for case vs. control using gestational age at birth cutoff of <37 0/7 vs >=37 0/7 weeks. FIGS. 96 to 105 show kinetic plots of various peptide transitions for case vs. control using gestational age at birth cutoff of <35 0/7 vs >=35 0/7 weeks. Briefly, average relative ratios for each peptide transition are plotted using the R ggplot2 package against GABD using a mean average smoothing function (window=+/−10 days). Graphs feature separate plots for case vs. control using two different gestational age at birth cutoffs (<37 0/7 vs >=37 0/7 weeks and <35 0/7 vs >=35 0/7 weeks). Plot titles display a protein short name, underscore, and the peptide sequence. Analyte sequences may have been trimmed for titles to fit on the plots.


Based on the fold change value, which denotes if the mean of the SPTB case samples was higher or lower than the mean of the TERM control samples, each analyte was marked as up or down regulated for each of the combinations (i.e. overlapping 2 or 3 week window, BMI restriction, and SPTB definition) and if an analyte had majority of the combinations marked as up regulated it was called an overall up regulated analyte and vice versa. This is shown in Table 26.


Based on these up and down regulation assignments (55 up regulated and 30 down regulated), reversals were created by dividing each of the up regulated analyte relative ratio value by that of a down regulated analyte and taking the natural logarithm of the result. This results in 1650 reversals (55×30=1650). For each reversal, an area under the ROC curve (AUCROC) denoting SPTB and TERM separation and a p-value denoting if the AUCROC value is significantly different from AUCROC=0.5 (i.e. no significant SPTB and TERM separation) was calculated. Performance of each reversal was tabulated for different conditions (e.g. gestational windows, with and without BMI restriction, and the two sPTB cut-offs), for those reversals with an AUCROC>0.6 and a p-value<0.05. Tables 27 to 42 show reversal classification performance for gestational weeks 17 and 18. Tables 47 to 58 show reversal classification performance for gestational weeks 17, 18 and 19. Tables 43 to 46 show reversal classification performance for gestational weeks 17 through 21. Additional reversals of potential significance are shown in Table 59.


Also demonstrated, was improved performance of predictors formed from more than one reversal (weeks 17-21). Briefly, reversals that gave strong predictive performance either early (e.g. weeks 17-19) or later (e.g. weeks 19-21) in this gestational age range were combined and performance was evaluated of predictors formed from combinations (SumLog) of multiple reversals for the entire blood draw range. This is shown in Table 61. Predictor score was derived from summing the Log values of the individual reversal (SumLog) but one skilled in the art could select other models (e.g. logistic regression). It is also contemplated to apply this multiple reversal approach to combinations of reversals specific to preterm premature rupture of membranes (PPROM) versus preterm labor in the absence of PPROM (PTL), fetal gender and gravidity. It is further contemplated that the predictor could contain an indicator variable that selects a subset of reversals to be used given knowledge of the blood draw period, fetal gender or gravidity.



FIG. 110 shows the relationships between the Predictor Score (ln IBP4/SHBG) and the prevalence adjusted relative risk of sPTB (Positive Predictive Value), using a cut-off of <37 0/7 weeks vs >=37 0/7 weeks gestation. Samples were drawn between 19 1/7 weeks and 20 6/7 weeks with BMI >22 <=37. The relative risk increases as predictor score increases from the background rate of 7.3% (average population risk of sPTB in singleton pregnancies) to approximately 50%. The screen positive rate curve for all score thresholds is superimposed. Confidence intervals (gray shade) were calculated assuming the binomially distributed observations and approximating the distribution of error with a normal distribution. Sample distribution by classifier score is shown by bar graph according to the color scheme in the figure legend.



FIG. 111 shows the relationships between the Predictor Score (ln IBP4/SHBG) and the prevalence adjusted relative risk of sPTB (Positive Predictive Value), using a cut-off of <35 0/7 weeks vs >=35 0/7 weeks gestation. Samples were drawn between 19 1/7 weeks and 20 6/7 weeks. The relative risk increases as predictor score increases from the background rate of 4.4% (average population risk of sPTB (<35) in singleton pregnancies) to approximately 50%. The screen positive rate curve for all score thresholds is superimposed. Confidence intervals (gray shade) were calculated assuming the binomially distributed observations and approximating the distribution of error with a normal distribution. Sample distribution by classifier score is shown by bar graph according to the color scheme in the figure legend.


Clinical Observations: sPTB, PPROM and PTL


Reversal performance (GABD weeks 17-21) was evaluated independently for two different phenotypes of sPTB, PPROM and PTL. PPROM more often occurs early and is associated with infection or inflammation. PTL can occur later and is generally considered a less severe phenotype. There were more significant reversals and with higher performance for PPROM and those reversals are populated with proteins known to be involved in inflammation and infection. Selection of reversals to build independent testing methods of PPROM and PTL, or to maximize performance overall with the combination of more than one reversal in a single predictor is contemplated. In the analysis shown in Tables 61 to 64, an AUC>0.65 and p<0.05 for either PPROM or PTL was required.


Table 61 shows reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control cut-off of <37 0/7 vs >37 0/7 weeks, without BMI stratification, separately for PPROM and PTL. Table 62 shows reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control cut-off of <37 0/7 vs >=37 0/7 weeks, with BMI stratification (>22 <=37), separately for PPROM and PTL. Table 63 shows reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control cut-off of <35 0/7 vs >=35 0/7 weeks, without BMI stratification, separately for PPROM and PTL. Table 64 shows reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control cut-off of <35 0/7 vs >=35 0/7 weeks, with BMI stratification (>22 <=37), separately for PPROM and PTL.


The best performing analytes for PTL and best performing analytes for PPROM for GABD weeks 19-20 were also determined and several reversals were constructed from the strongest performers. IBP4 is present as a good performer in both PTL and PPROM enabling its utility in general for sPTB. Table 76 lists transition AUROC for gestational weeks 19 1/7 through 20 6/7 using a case vs control cut-off of <37 0/7 vs >=37 0/7 weeks, without BMI stratification, for PTL. Table 77 lists transition AUROC for gestational weeks 19 1/7 through 20 6/7 using a case vs control cut-off of <37 0/7 vs >=37 0/7 weeks, without BMI stratification, for PPROM. FIG. 108 exemplifies reversals with good performance in weeks 19-20 in PTL. FIG. 109 exemplifies reversals with good performance in weeks 19-20 in PPROM.


Clinical Observations: Primigravida and Multigravida


Reversal performance (weeks 17-21) was further evaluated independently for two different phenotypes of sPTB, primigravida and multigravida. In Tables 65-68, the top performing reversals (weeks 17-21) are shown for primigravida (first time mothers) and multigravida subjects separately. First time mothers are most in need of a test to predict probability of PTB because they have no pregnancy history for physicians to determine/estimate risk. These results enable a test independent for these two groups, or to combine high performing reversals in a single classifier to predict risk for both. In the analysis shown in Tables 65-68, an AUC >0.65 and p<0.05 for either primigravida or multigravida was required.


Table 65 shows reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control cut-off of <37 0/7 vs >=37 0/7 weeks, without BMI stratification, separately for primigravida and multigravida. Table 66 shows reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control cut-off of <37 0/7 vs >=37 0/7 weeks, with BMI stratification (>22<=37), separately for primigravida and multigravida. Table 67 shows reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control cut-off of <35 0/7 vs >=35 0/7 weeks, without BMI stratification, separately for primigravida and multigravida. Table 68 shows reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control cut-off of <35 0/7 vs >=35 0/7 weeks, with BMI stratification (>22 <=37), separately for primigravida and multigravida.


Clinical Observations: Fetal Gender


Reversal performance (weeks 17-21) was further evaluated independently for subjects pregnant with a male vs a female fetus. Some reversals were discovered to have fetal gender specific predictive performance. FIG. 106 demonstrates fetal gender specific IBP4 and SHBG analyte and score (IBP4/SHBG) differences. IBP4 is significant higher in subjects with male fetuses. Performance of the reversal remains comparable for gestational age weeks 19-21 without BMI stratification (FIG. 106). Additionally, in the PAPR clinical trial male fetuses were discovered to be at increased risk of sPTB with a p value of 0.0002 and an odds ratio of 1.6. Lastly, fetal gender can be incorporated into a predictor (e.g. a reversal value plus fetal gender). In the analysis shown in Tables 69-72, an AUC>0.65 and p<0.05 for either male or female fetuses was required.


Table 69 shows reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control cut-off of <37 0/7 vs >=37 0/7 weeks, without BMI stratification, separately by fetal gender. Table 70 shows reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control cut-off of <37 0/7 vs >=37 0/7 weeks, with BMI stratification (>22 <=37), separately by fetal gender. Table 71 shows reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control cut-off of <35 0/7 vs >=35 0/7 weeks, without BMI stratification, separately by fetal gender. Table 72 shows reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control cut-off of <35 0/7 vs >=35 0/7 weeks, with BMI stratification (>22 <=37), separately by fetal gender.


Example 11. Correlation of Mass Spectrometry and Immunoassay Data

This example demonstrates implementation of an immunoassays using an MSD platform (e.g. MSD data correlating with commercial ELISA data and MS data for IBP4 and SHBG).


Materials


The following antibodies were used: sex hormone binding globulin (Biospacific Catalog #s 6002-100051 and 6001-100050; R&D Systems Catalog #s MAB2656 and AF2656), IGFBP-4 (Ansh Catalog #s AB-308-A1039 and AB-308-A1042). SHBG proteins from Origene (Catalog #TP328307), Biospacific (Catalog 065200), NIBSC (code: 95/560), and R&D Systems (only available as part of the ELISA SHBG kit) were tested as calibrator. Recombinant Human IGFBP-4 (Ansh, Catalog #AG-308-A1050) was used as a calibrator.


Creating Individual U-PLEX-Coupled Antibody Solutions


Each biotinylated antibody was diluted to 10 μg/mL in Diluent 100 for a final volume of >200 μL. Biotinylated antibody was then added to 300 μL of assigned U-PLEX Linker. (A different linker was used for each biotinylated antibody). Samples were vortexed and incubated at room temperature for 30 minutes. Stop Solution (200 μl) was added to each tube. Tubes were vortexed and incubated at room temperature for 30 minutes.


Preparation of Multiplex Coating Solution


Each U-PLEX-coupled antibody (600 μL) solution was combined into a single tube and vortexed to mix. When combining fewer than 10 antibodies, the solution volume was brought to up to 6 mL with stop solution to result in a final 1× concentration. Note that in these experiments, there was only a single antibody per well.


Coating the U-PLEX Plate.


Multiplex Coating Solution (50 μL) was added to each well. Plates were sealed with adhesive plate seal and incubated at room temperature for 1 hour or at 2-8° C. for overnight, with shaking at around 700 rpm. After washing 3 times with at least 1504, of 1× MSD wash buffer, plates were ready to use.


Sample Analysis


Aliquots, 50 μl, of sample or calibrator were added to each well. The plate was sealed and incubated at room temperature for 1 hour with shaking at around 700 rpm. The plate was then washed 3 times with at least 150 μL of 1×MSD wash buffer*. Detection antibody solution, 50 μL, was added to each well. After sealing, the plate was incubated at room temperature for 1 hour with shaking at around 700 rpm. The plate was washed 3 times with at least 150 μL of 1×MSD wash buffer. After addition of 150 μL of 2× Read Buffer to each well, the plate was read immediately on an MSD instrument.


SHBG Antibody and Calibrator Screening


All antibodies were tested in both capture-detector orientations, all pair wise combinations. Capture antibodies were prepared at 10 μg/mL, coupled to U-PLEX linkers, and coated onto the U-PLEX plate. The SHBG R&D Systems calibrator was diluted in Diluent 43 to create a 7-point standard curve with assay diluent blank. Samples were diluted as follows in Diluent 43 and tested in the assays: Sera SHBG “high” and “low” samples: 100- and 500-fold dilutions, and the Sera Pregnant pool: 100-, 200-, 400-, 800-fold dilutions. Detection antibodies were tested at 1 μg/mL in Diluent 3. Standard curves and binding to native analyte in serum were evaluated. Top analyte pairs were then tested with the NIB SC and Biospacific calibrators, with dilutions made as above.


IGFBP-4 Antibody and Calibrator Screening.


The two antibodies were tested in both capture-detector orientations. Capture antibodies were prepared at 10 μg/mL, coupled to U-PLEX linkers, and coated onto the U-PLEX plate. IGFBP-4 calibrator was diluted in Diluent 12 and to create a 7-point standard curve with assay diluent blank. Samples were diluted as follows in Diluent 12 and tested in the assays: Sera IGFBP-4 “high” and “low” samples: 5-fold, Sera Pregnant pool: 2-fold dilutions from 2- to 64-fold, and 2 individual human serum samples (MSD samples): 2-, 4-, 8- and 16-fold. Detection antibodies were tested at 1 μg/mL in Diluent 12. Standard curves and binding to native analyte in serum were evaluated.


SHBG and IGFBP-4 Testing Using 60 Sera Samples.


Antibody pair 12 was selected to measure SHBG in 60 plasma samples in duplicate from Sera. For IGFBP-4, pair 2 was selected. Plasma samples were diluted 1:1000 and 1:20 for SHBG and IGFBP-4, respectively. Results from the MSD ELISA were compared to commercial ELISA kits and to MS-MRM data.


Results:


SHBG Antibody Screen


Only antibody pair 1 (R&D mono capture, poly detection), gave a strong signal with the Origene calibrator, suggesting that this calibrator may represent a subpopulation of the endogenous SHBG analyte. Thus, additional calibrators were tested in subsequent studies to identify a calibrator that works with all pairs. Nevertheless, all antibody pairs recognized native analyte in the Sera High, Low, and Pregnant pool samples. R&D poly AF2656 and Biospacific mono 6001-100050 gave similar performance. Pairs 2, 3, and 12 showed roughly linear titration with sample dilution (Table 73). The top four antibody pairs were then tested for performance with three additional calibrators. Good calibrator curves were achieved for the 4 top pairs across the 3 calibrators (Table 74). Differences in signal may be in part due to differences in assigned concentration.


The bottom panel shows that the NIBSC or Biospacific signals relative to the R&D calibrator varied depending on antibody pair. Pairs 3 and 10 (same antibodies with the capture-detection orientation flipped) had a similar profile. Pair 2 gave lower signals for NIBSC and Biospacific (compare with Pair 3, same capture). Pair 12 gave higher signals for Biospacific and more than 3-fold higher signals for the NIBSC standard.


IGFBP-4 Antibody Screen


The antibody pair 2 standard curve gave 4-6 fold higher specific calibrator signals and background compared to Pair 1 (Table 75). Serum sample signals fell in the linear range for most dilutions tested; the pregnant pool approached background at the 32 and 64-fold dilutions. Pair 2 gave ˜12 fold higher signals for samples resulting in a 2-4 fold difference in quantification. Signal CVs were generally <5% for both pairs.


Measurement of SHBG and IGFBP-4 in 60 Serum Samples


For SHBG, with the 1000-fold dilution, samples fell between calibrator standards 1-3. The median measured concentration was 58.4 μg/mL. CVs of duplicate measurements were low with a median CV 2.4%. The median measured concentration for IGFBP-4 was 234 ng/ml and the median CV between duplicate samples was 2.2%. As shown in FIG. 107, good correlation was seen with both proteins in the MSD assay as compared to commercial ELISA kits and the MS-MRM assay.


From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.









TABLE 1







Maternal Characteristics and Pregnancy Outcomes Stratified by Timing of Delivery (sPTB and Term)










PAPR
Validation

















Cases
Controls

Case
Control

PAPR vs. Validation
















N (%)
N (%)

N (%)
N (%)

p-value
p-value



(N = 217)
(N = 4,292)
p-value
(N = 81)
(N = 162)
p-value
(Cases)
(Controls)


















Maternal Characteristics










Maternal Age at Enrollment, y


0.245


0.239
0.741
0.226


18-22 yrs
58 (26.7)
990 (23.1)

22 (27.2)
47 (29.0)





23-27 yrs
56 (25.8)
1,222 (28.5)

17 (21.0)
41 (25.3)





28-32 yrs
54 (24.9)
1,154 (26.9)

25 (30.9)
34 (21.0)





33-37 yrs
31 (14.3)
692 (16.1)

9 (11.1)
30 (18.5)





38 or More
18 (8.3)
234 (5.5)

8 (9.9)
10 (6.2)





Mean
28
28

28
28





Median
27
27

28
27





Interquartile Range
22-32
23-32

21-32
22-32





Body Mass Index, kg/m2


0.380


0.802
0.630
0.191


Less than 18.5
10 (4.7)
129 (3.1)

1 (1.3)
2 (1.3)





18.5-24.9
78 (36.8)
1,789 (42.3)

25 (31.3)
55 (34.6)





25.0-29.9
54 (25.5)
1,091 (25.8)

26 (32.5)
46 (28.9)





30.0-34.9
39 (18.4)
617 (15.6)

17 (21.3)
25 (15.7)





35.0-39.9
17 (8.0)
320 (7.6)

6 (7.5)
17 (10.7)





Greater than 40.0
14 (6.6)
286 (6.7)

5 (6.3)
14 (8.8)





Mean
27.8
27.5

28.4
29.1





Median
26.5
25.7

27.4
27.8





Interquartile Range
22.7-31.8
22.3-31.1

23.6-32.0
23.4-32.4





Education Level


<0.0002


0.201
0.711
0.094


Graduate Degree
13 (6.0)
461 (10.9)

6 (7.7)
14 (8.7)





College Diploma
34 (15.8)
701 (16.6)

10 (12.6)
22 (13.8)





Some College
51 (23.7)
936 (22.2)

19 (24.0)
23 (14.4)





High School
46 (21.4)
1,032 (24.5)

16 (20.2)
50 (31.3)

















Diploma/Equivalent






















Some High School
53 (24.6)
774 (18.4)

25 (31.6)
36 (22.5)





9 Grade or less
12 (5.8)
292 (6.9)

3 (3.8)
14 (8.7)





Other
6 (2.8)
23 (0.6)

0
1 (0.6)

















Ethnicity

0.157


0.035
0.226
0.003















Hispanic or Latino
89 (41.0)
1,557 (36.3)

27 (33.3)
77 (47.5)





Non-Hispanic or Latino
128 (59.0)
2,735 (63.7)

54 (66.7)
85 (52.5)





Race


0.887


0.811
0.953
0.071


American Indian/Alaskan
1 (0.5)
29 (0.7)

0
2 (1.2)





Native










Asian
4 (1.8)
131 (3.1)

1 (1.2)
1 (0.6)





Black or African-American
45 (20.7)
838 (19.5)

19 (23.5)
37 (22.8)





Native Hawaiian or Other
0
12 (0.30)

0
2 (1.2)





Pacific Islander










White
156 (71.9)
3,101 (72.3)

58 (71.6)
114 (70.4)





Other
11 (5.1)
193 (4.5)

3 (3.7)
6 (3.7)





Obstetrical Characteristics










Primigravida
64 (29.5)
1,212 (28.2)
0.689
27 (33.3)
39 (24.1)
0.126
0.522
0.247


Multigravida
153 (70.5)
3,080 (71.8)

54 (66.7)
123 (75.9)





Number of prior full-term


0.007


0.326
0.816
0.881


deliveries










1 or More
113 (73.8)
2,538 (82.4)

40 (74.5)
102 (82.9)





None
40 (26.2)
542 (17.6)

13 (24.5)
21 (17.1)





Number of prior Spontaneous


<0.0001


0.221
0.337
0.472


PTBs










1 or More
35 (22.9)
339 (11.0)

9 (16.7)
11 (8.9)





None
118 (77.1)
2,741 (89.0)

45 (83.3)
112 (91.1)





Lifestyle Characteristics










Smoking


0.412


0.719
0.555
0.283


Yes
34 (15.7)
588 (13.7)

15 (18.5)
27 (16.7)





No
183 (84.3)
3,704 (86.3)

66 (81.5)
135 (83.3)





Illicit Drugs


0.283


0.628
0.992
0.052


Yes
16 (7.4)
242 (5.6)

6 (7.4)
15 (9.3)





No
201 (92.6)
4,050 (94.4)

75 (92.6)
147 (90.7)





Alcohol


0.096


0.628
0.622
0.141


Yes
20 (9.2)
273 (6.4)

6 (7.4)
15 (9.3)





No
197 (90.8)
4,018 (93.6)

75 (92.6)
147 (90.7)





Alcohol Use


0.108


0.592
0.880
0.317


Yes (amount unknown)
3 (1.4)
39 (0.9)

0
2 (1.2)





Social (occasional)
16 (7.4)
230 (5.4)

6 (7.4)
13 (8.0)





Heavy (daily)
1 (0.5)
4 (0.09)

0
0





No
197 (90.8)
4,018 (93.6)

75 (92.6)
147 (90.7)





Medical Characteristics










Bleeding During Pregnancy


0.006


0.360
0.785
0.892


after 12 Wks










Yes
21 (9.7)
228 (5.3)

7 (8.6)
9 (5.6)





No
196 (90.3)
4,064 (94.7)

74 (91.4)
153 (94.4)





sPTB, spontaneous preterm birth; PTB, preterm birth; N, number of subjects.


Comparisons of clinical data between cases and controls were performed using Chi-square test or Fisher exact test or Mann-Whitney test, as appropriate (SAS System 9.4) and R (3.1.0).


Missing values are excluded in the frequency tables.

















TABLE 2





GA






Boundary
AUC
Sensitivity
Specificity
OR (95% CI)







<37 vs. ≥ 37
0.75 (p = 0.016)
0.75
0.74
5.04 (1.4-18)


<36 vs. ≥ 36
0.79 (p = 0.027)
0.83
0.83
17.33 (2.2-138)


<35 vs. ≥ 35
0.93 (p = 0.001)
1.00
0.83
34.47 (1.7-699)
















TABLE 3







Maternal Characteristics and Pregnancy Outcomes Stratified by Timing of Delivery (sPTD and Term)












Entire Validation Cohort
Validated Window



PAPR Study
(17 0/7- 28 weeks)
(191/7-206/7)

















Cases
Controls

Cases
Controls

Cases
Controls




N (%)
N (%)

N (%)
N (%)

N (%)
N (%)



Variables
(N = 217)
(N = 4,292)
P Value
(N = 81)
(N = 162)
P Value
(N = 18)
(N = 36)
P Value



















Maternal Characteristics











Maternal Age at Enrollment, y


0.245


0.239


0.387


18-22 yrs
58 (26.7)
990 (23.1)

22 (27.2)
47 (29.0)

6 (33.3)
13 (36.1)



23-27 yrs
56 (25.8)
1,222 (28.5)

17 (21.0)
41 (25.3)

6 (33.3)
9 (25.0)



28-32 yrs
54 (24.9)
1,154 (26.9)

25 (30.9)
34 (21.0)

5 (27.8)
5 (13.9)



33-37 yrs
31 (14.3)
692 (16.1)

9 (11.1)
30 (18.5)

1 (5.6)
7 (19.4)



38 or More
18 (8.3)
234 (5.5)

8 (9.9)
10 (6.2)

0
2 (5.6)



Mean
28
28

28
28

25
27



Median
27
27

28
27

25
25



Interquartile Range
22-32
23-32

21-32
22-32

21-30
22-33



Body Mass Index, kg/m2


0.380


0.802


0.959


Less than 18.5
10 (4.7)
129 (3.1)

1 (1.3)
2 (1.3)

0
0



18.5-24.9
78 (36.8)
1,789 (42.3)

25 (31.3)
55 (34.6)

8 (44.4)
16 (45.7)



25.0-29.9
54 (25.5)
1,091 (25.8)

26 (32.5)
46 (28.9)

4 (22.2)
9 (25.7)



30.0-34.9
39 (18.4)
617 (15.6)

17 (21.3)
25 (15.7)

3 (16.7)
4 (11.4)



35.0-39.9
17 (8.0)
320 (7.6)

6 (7.5)
17 (10.7)

2 (11.1)
5 (14.3)



Greater than 40.0
14 (6.6)
286 (6.7)

5 (6.3)
14 (8.8)

1 (5.6)
1 (2.9)



Mean
27.8
27.5

28.4
29.1

28.2
27.4



Median
26.5
25.7

27.4
27.8

26.5
27



Interquartile Range
22.7-31.8
22.3-31.1

23.6-32.0
23.4-32.4

23.8-33.7
22.3-30.6



Education Level


<0.0002


0.201


0.263


Graduate Degree
13 (6.0)
461 (10.9)

6 (7.7)
14 (8.7)

0
2 (5.7)



College Diploma
34 (15.8)
701 (16.6)

10 (12.6)
22 (13.8)

2 (11.1)
5 (14.3)



Some College
51 (23.7)
936 (22.2)

19 (24.0)
23 (14.4)

1 (5.6)
5 (14.3)



High School
46 (21.4)
1,032 (24.5)

16 (20.2)
50 (31.3)

5 (27.8)
14 (40.0)



Diploma/Equivalent











Some High School
53 (24.6)
774 (18.4)

25 (31.6)
36 (22.5)

9 (50.0)
6 (17.1)



9 Grade or less
12 (5.8)
292 (6.9)

3 (3.8)
14 (8.7)

1 (5.6)
3 (8.6)



Other
6 (2.8)
23 (0.6)

0
1 (0.6)

0
0



Ethnicity


0.157


0.035


0.844


Hispanic or Latino
89 (41.0)
1,557 (36.3)

27 (33.3)
77 (47.5)

7 (38.9)
15 (41.7)



Non-Hispanic or Latino
128 (59.0)
2,735 (63.7)

54 (66.7)
85 (52.5)

11 (61.1)
21 (58.3)



Race


0.887


0.811


0.319


American Indian/Alaskan
1 (0.5)
29 (0.7)

0
2 (1.2)

0
1 (2.8)



Native











Asian
4 (1.8)
131 (3.1)

1 (1.2)
1 (0.6)

0
1 (2.8)



Black or African-American
45 (20.7)
838 (19.5)

19 (23.5)
37 (22.8)

2 (11.1)
11 (30.6)



Native Hawaiian or Other
0
12 (0.30)

0
2 (1.2)

0
1 (2.8)



Pacific Islander











White
156 (71.9)
3,101 (72.3)

58 (71.6)
114 (70.4)

16 (88.9)
22 (61.1)



Other
11 (5.1)
193 (4.5)

3 (3.7)
6 (3.7)

0
0



Obstetrical Characteristics











Primigravida
64 (29.5)
1,212 (28.2)
0.689
27 (33.3)
39 (24.1)
0.126
5 (27.8)
8 (22.2)
0.652


Multigravida
153 (70.5)
3,080 (71.8)

54 (66.7)
123 (75.9)

13 (72.2)
28 (77.8)



Number of prior full-term deliveries


0.007


0.326


0.790


1 or More
113 (73.8)
2,538 (82.4)

40 (74.5)
102 (82.9)

10 (76.9)
22 (78.6)



None
40 (26.2)
542 (17.6)

13 (24.5)
21 (17.1)

3 (23.1)
6 (21.4)



Number of prior Spontaneous PTDs


<0.0001


0.221


0.524


1 or More
35 (22.9)
339 (11.0)

9 (16.7)
11 (8.9)

1 (7.7)
6 (21.4)



None
118 (77.1)
2,741 (89.0)

45 (83.3)
112 (91.1)

12 (92.3)
22 (78.6)



Lifestyle Characteristics











Smoking


0.412


0.719


1.000


Yes
34 (15.7)
588 (13.7)

15 (18.5)
27 (16.7)

3 (16.7)
6 (16.7)



No
183 (84.3)
3,704 (86.3)

66 (81.5)
135 (83.3)

15 (83.3)
30 (83.3)



Illicit Drugs


0.283


0.628


0.739


Yes
16 (7.4)
242 (5.6)

6 (7.4)
15 (9.3)

2 (11.1)
3 (8.3)



No
201 (92.6)
4,050 (94.4)

75 (92.6)
147 (90.7)

16 (88.9)
33 (91.7)



Alcohol


0.096


0.628


0.278


Yes
20 (9.2)
273 (6.4)

6 (7.4)
15 (9.3)

4 (22.2)
4 (11.1)



No
197 (90.8)
4,018 (93.6)

75 (92.6)
147 (90.7)

14 (77.8)
32 (88.9)



Alcohol Use


0.108


0.592


0.278


Yes (amount unknown)
3 (1.4)
39 (0.9)

0
2 (1.2)

0
0



Social (occasional)
16 (7.4)
230 (5.4)

6 (7.4)
13 (8.0)

4 (22.2)
4 (11.1)



Heavy (daily)
1 (0.5)
4 (0.09)

0
0

0
0



No
197 (90.8)
4,018 (93.6)

75 (92.6)
147 (90.7)

14 (77.8)
32 (88.9)



Medical Characteristics











Bleeding During Pregnancy after 12 Wks


0.006


0.360


0.308


Yes
21 (9.7)
228 (5.3)

7 (8.6)
9 (5.6)

0
2 (5.6)



No
196 (90.3)
4,064 (94.7)

74 (91.4)
153 (94.4)

18 (100.0)
34 (94.4)





sPTD, spontaneous preterm delivery; PTD, preterm delivery; N, number of subjects.


Comparisons of clinical data between cases and controls were performed using Chi-square test or Fisher exact test or Mann-Whitney test, as appropriate (SAS System 9.4) and R (3.1.0).


Missing values are excluded in the frequency tables.
















TABLE 4






Discovery
Verification
Validation







Sample #
86, 172
50, 100
81, 162


(17-28 wks)*





Sample #
22, 44†
 9, 18†
18, 36‡


(All BMI)*





AUC
0.74 (p = 8e−4)†
0.77 (p = 0.01)†
0.67 (p = 0.02)‡


(All BMI)





Sample #
17, 33†
 6, 17†
15, 29‡


(BMI < 35)*





AUC
0.79 (p = 3e−4)†
0.79 (p = 0.015)†
0.70 (p = 0.02)‡


(BMI < 35)





p values test equivalence to AUC = 0.5 by one-sided Wilcoxon-Mann-Whitney statistic


*Number of Cases , Number of Controls


†GA at blood draw weeks 19/0-21/6


‡Optimal GA at blood draw interval from fixed sequence validation (19/1-20/6)















TABLE 5






BMI (kg/m2)
AUROC








All BMI
0.67 (p = 0.044)



BMI Less or equal to 45
0.67 (p = 0.047)



BMI Less or equal 40
0.68 (p = 0.048)



BMI Less or equal 37
0.71 (p = 0.020)



BMI Larger than 18
0.67 (p = 0.047)



BMI Larger than 20
0.65 (p = 0.087)



BMI Larger than 22
0.69 (p = 0.048)



BMI larger than 22 and less or equal to 37
0.75 (p = 0.016)





p-values determined by Wilcoxon-Mann-Whitney statistic


GA at Blood Draw 19/1-20/6 weeks













TABLE 6







RBM Screen









Early Window (17-22 weeks)
Middle Window (23-25 weeks)
Late Window (26-28 weeks)












ANALYTE
AUC
ANALYTE
AUC
ANALYTE
AUC





Fibrinogen
0.76
Vascular.Cell.Adhesion.Molecule.1..VCAM.1.
0.96
Apolipoprotein.C.III..Apo.C.III.
0.97


Antileukoproteinase..ALP.
0.75
Epidermal.Growth.Factor.Receptor..EGFR.
0.79
Apolipoprotein.B..Apo.B.
0.85


Kidney.Injury.Molecule.1..KIM.1.
0.73
Carcinoembryonic.antigen.related.cell.ad-
0.78
Apolipoprotein.E..Apo.E.
0.85


Tissue.Inhibitor.of.Metallo-
0.72
hesion.molecule.1..CEACAM1.

Glutathione.S.Transferase.alpha..
0.82


proteinases.1..TIMP.1.

Carcinoembryonic.antigen.related.cell.ad-
0.76
GST.alpha.



Beta.2.Microglobulin..B2M.
0.69
hesion.molecule.6..CEACAM6.

Insulin.like.Growth.Factor.Binding.
0.81


Trefoil.Factor.3..TFF3.
0.69
Angiotensinogen
0.75
Protein.6..IGFBP6.



Tyrosine.kinase.with.Ig.and.EGF.ho-
0.69
Interleukin.6.receptor.subunit.beta..IL.6R.beta.
0.75
Tyrosine.kinase.with.Ig.and.EGF.
0.78


mology.domains.2..TIE.2.

CD5.Antigen.like..CD5L.
0.72
homology.domains.1..Tie.1.



Angiotensinogen
0.67
Pulmonary.surfactant.associated.protein.D..SP.D.
0.7
Insulin.like.Growth.Factor.Binding.
0.78


P.Selectin
0.67
Cathepsin.B..pro...CTSB.
0.7
Protein.4..IGFBP4.



Pepsinogen.I..PGI.
0.66
Growth.Hormone..GH.
0.69
Stem.Cell.Factor..SCF.
0.77


Prostate.Specific.Antigen..total..tPSA.
0.66
Beta.microseminoprotein..PSP94.
0.69
Phosphoserine.Aminotransferase..PSAT.
0.76


Pulmonary.and.Activation.Regulated.
0.66
Serotransferrin..Transferrin.
0.68
Trefoil.Factor.3..TFF3.
0.72


Chemokine..PARC.

Neuronal.Cell.Adhesion.Molecule..Nr.CAM.
0.67
Chemokine.CC.4..HCC.4.
0.71


Serum.Amyloid.P.Component..SAP.
0.66
Urokinase.type.Plasminogen.Activator..uPA.
0.67
Macrophage.Colony.Stimulating.Factor.
0.7


Tumor Necrosis.Factor.Receptor.I..
0.66
Vitronectin
0.65
1..M.CSF.



TNF.RI.

von.Willebrand.Factor..vWF.
0.65
Complement.Factor.H...Related.Protein.
0.7


Vascular.endothelial.growth.factor.re-
0.66
Testosterone..Total
0.65
1..CFHR1.



ceptor.3..VEGFR.3.

Lipocalin.1..LCN1.
0.65
Tyrosine.kinase.with.Ig.and.EGF.
0.69


Cathepsin.D
0.65
Squamous.Cell.Carcinoma.Antigen.1..SCCA.1.
0.64
homology.domains.2..TIE.2.



Fetuin.A
0.65
Monocyte.Chemotactic.Protein.1..MCP.1.
0.64
Prostate.Specific.Antigen..total..tPSA.
0.68


Platelet.endothelial.cell.adhesion.mo-
0.65
Tenascin.C..TN.C.
0.63
Glucagon.like.Peptide.1..total..GLP.1.
0.68


lecule..PECAM.1.

Complement.C3..C3.
0.63
total.



Cadherin.1..E.Cad.
0.64
Tamm.Horsfall.Urinary.Glycoprotein..THP
0.63
FASLG.Receptor..FAS.
0.67


Cancer.Antigen.15.3..CA.15.3.
0.64
Neuropilin.1
0.63
Insulin.like.Growth.Factor.Binding.
0.67


Progesterone
0.64
Midkine
0.62
Protein.5..IGFBP5.



Tenascin.C..TN.C.
0.64
Cortisol..Cortisol.
0.62
Urokinase.type.plasminogen.activator.
0.66


Aldose.Reductase
0.63
Immunoglobulin.M..IgM.
0.62
receptor..uPAR.



Angiopoietin.1..ANG.1.
0.63
Receptor.for.advanced.glycosylation.end.
0.62
Haptoglobin
0.66


Apolipoprotein.A.II..Apo.A.II.
0.63
products..RAGE.

Insulin.like.Growth.Factor.Binding.
0.66


Osteoprotegerin..OPG.
0.63
N.terminal.prohormone.of.brain.natriuretic.
0.62
Protein.2..IGFBP.2.



Follicle.Stimulating.Hormone..FSH.
0.62
peptide..NT.proBNP.

Kallikrein.5
0.66


Growth.Regulated.alpha.protein..
0.62
Macrophage.inflammatory.protein.3.beta..
0.62
Tenascin.C..TN.C.
0.65


GRO.alpha.

MIP.3.beta.

Cathepsin.D
0.65


Matrix.Metalloproteinase.7..MMP.7.
0.62
Kidney.Injury.Molecule.1..KIM.1.
0.61
Tumor Necrosis.Factor.Receptor.I..
0.65


Phosphoserine.Aminotransferase..PSAT.
0.62
Matrix.Metalloproteinase.9..total..MMP.9..total.
0.61
TNF.RI.



Serotransferrin..Transferrin.
0.62
Cellular.Fibronectin..cFib.
0.6
Interleukin.1.receptor.antagonist..IL.1ra.
0.64


Apolipoprotein.C.III..Apo.C.III.
0.61
Mesothelin..MSLN.
0.6
Proinsulin..Intact
0.64


Carbonic.anhydrase.9..CA.9.
0.61
Transthyretin..TTR.
0.6
Proinsulin..Total
0.64


Complement.C3..C3.
0.61
Collagen.IV
0.6
Matrix.Metalloproteinase.9..MMP.9.
0.64


Cystatin.C
0.61


Myeloid.Progenitor.Inhibitory.Factor.1.
0.64


Insulin.like.Growth.Factor.Binding.Pro-
0.61


MPIF.1.



tein.4..IGFBP4.



Angiopoietin.2..ANG.2.
0.64


Intercellular.Adhesion.Molecule.1..
0.61


von.Willebrand.Factor..vWF.
0.63


ICAM.1.



Cystatin.B
0.63


Macrophage.Colony.Stimulating.Fac-
0.61


Complement.C3..C3.
0.62


tor.1..M.CSF.



Midkine
0.62


Midkine
0.61


Matrix.Metalloproteinase.9..total..
0.62


Angiogenin
0.6


MMP.9..total.



C.Reactive.Protein..CRP.
0.6


Monokine.Induced.by.Gamma.Inter.
0.62


CD.40.antigen..CD40.
0.6


feron..MIG.



Cellular.Fibronectin..cFib.
0.6


Pulmonary.and.Activation.Regulated.
0.62


Interleukin.2.receptor.alpha..IL.2.re-
0.6


Chemokine..PARC.



ceptor.alpha.



Interleukin.2.receptor.alpha..IL.2.
0.62


Thrombospondin.4..TSP4.
0.6


receptor.alpha.







Interleukin.6.receptor.subunit.beta..
0.61






IL.6R.beta.







CD5.Antigen.like..CD5L.
0.61






Hepsin
0.61






Fetuin.A
0.61






B.Lymphocyte.Chemoattractant..BLC.
0.61






Antileukoproteinase..ALP.
0.61






Alpha.2.Macroglobulin..A2Macro.
0.61






Tissue.Inhibitor.of.Metalloproteinases.
0.61






1..TIMP.1.







Receptor.for.advanced.glycosylation.
0.6






end.products..RAGE.







Pancreatic.secretory.trypsin.inhibitor..
0.6






TATI.







Adiponectin
0.6






Lumican
0.6






Apolipoprotein.C.I..Apo.C.I.
0.6






Apolipoprotein.H..Apo.H.
0.6






Hepatocyte.Growth.Factor..HGF.
0.6
















TABLE 7







Early Window (GABD 17-22 wks) Analyte Ranking by Different Multivariate Models











rank
rf
boosting
lasso
logit














1
B.cell.activating.factor..BAFF.
Macrophage.inflammatory.pro-
Antileukoproteinase..ALP.
Apolipoprotein.A.II..Apo.A.




tein.3.beta..MIP.3.beta.

II.


2
Macrophage.inflammatory.pro-
B.cell.activating.factor..BAFF
Angiotensinogen
Apolipoprotein.a...Lp.a..



tein.3.beta..MIP.3.beta.





3
Fibrinogen
Kidney.Injury.Molecule.1..
Kidney.Injury.Molecule.1..KIM.1
Apolipoprotein.A.IV..Apo.A.




KIM.1.

IV.


4
Kidney.Injury.Molecule.1..
Fibrinogen
Progesterone
Apolipoprotein.B..Apo.B.



KIM.1.





5
Tissue.Inhibitor.of.Metallopro-
Beta.2.Microglobulin..B2M.
Monocyte.Chemotactic.Protein.1.
Apolipoprotein.C.III..Apo.C.



teinases.1..TIMP.1.

MCP.1.
III.


6
Tumor.necrosis.factor.ligand.
Tissue.Inhibitor.of.Metallopro-
Follicle.Stimulating.Hormone..
Apolipoprotein.H..Apo.H.



superfamily.member.12..Tweak
teinases.1..TIMP.1.
FSH.



7
Pulmonary.and.Activation.Reg-
N.terminal.prohormone.of.
Serotransferrin..Transferrin.
Angiotensin.Converting.En-



ulated.Chemokine..PARC.
brain.natriuretic.peptide..NT.

zyme..ACE.




proBNP.




8
Pancreatic.Polypeptide..PPP.
Antileukoproteinase..ALP.
Tyrosine.kinase.with.Ig.and.EGF.
Apolipoprotein.C.I..Apo.C.I.





homology.domains.2..TIE.2.



9
Angiotensinogen
Prostate.Specific.Antigen..total..
Thyroglobulin..TG.
B.Lymphocyte.Chemo-




tPSA.

attractant..BLC.


10
Prostate.Specific.Antigen..total..
Pancreatic.Polypeptide..PPP.
Cancer.Antigen.15.3..CA.15.3.
Adiponectin



tPSA.





11
Antileukoproteinase..ALP.
Collagen.IV
Pulmonary.and.Activation.
Angiotensinogen





Regulated.Chemokine..PARC.



12
Tyrosine.kinase.with.Ig.and.EGF.
Tyrosine.kinase.with.Ig.and.EGF.
Trefoil.Factor.3..TFF3.
AXL.Receptor.Tyrosine.



homology.domains.2..TIE.2.
homology.domains.2..TIE.2.

Kinase..AXL.


13
Cathepsin.D
Angiotensinogen
Midkine
Angiogenin


14
Beta.2.Microglobulin..B2M.
Cathepsin.D
Beta.2.Microglobulin..B2M.
Aldose.Reductase
















TABLE 8







Middle Window (GABD 23-25 wks) Analyte Ranking by Different Multivariate Models











rank
rf
boosting
lasso
logit














1
Vascular.Cell.Adhesion.Mole-
Vascular.Cell.Adhesion.Mole-
Vascular.Cell.Adhesion.Mole-
Alpha.Fetoprotein..AFP.



cule.1..VCAM.1.
cule.1..VCAM.1.
cule.1..VCAM.1.



2
Aldose.Reductase
Aldose.Reductase
Osteoprotegerin..OPG.
Adiponectin


3
Osteoprotegerin..OPG.
Osteoprotegerin..OPG.
Apolipoprotein.E..Apo.E.
Angiogenin


4
Insulin.like.Growth.Factor.
Angiotensinogen
Aldose.Reductase
Alpha.1.Antitrypsin..AAT.



Binding.Protein.3..IGFBP.3.





5
Carcinoembryonic.antigen.re-
Apolipoprotein.E..Apo.E.
Cancer.Antigen.72.4..CA.72.4
Angiotensin.Converting.En-



lated.cell.adhesion.molecule.1.


zyme..ACE.



CEACAM1.





6
Angiotensinogen
Interleukin.16..IL.16.
Epidermal.Growth.Factor.Re-
Alpha.1.Microglobulin..





ceptor..EGFR.
A1Micro.


7
Interleukin.16..IL.16.
Epidermal.Growth Factor.
Progesterone
Alpha.1.Antichymotrypsin..




Receptor..EGFR.

AACT.


8
Insulin.like.Growth.Factor.
Alpha.Fetoprotein..AFP.
Human.Chorionic.Gonado-
Alpha.2.Macroglobulin..



Binding.Protein.4..IGFBP4.

tropin.beta..hCG.
A2Macro.


9
Epidermal.Growth.Factor.Re-
Alpha.2.Macroglobulin..
Tissue.Inhibitor.of.Metallopro-
Aldose.Reductase



ceptor..EGFR.
A2Macro.
teinases.1..TIMP.1.



10
Carcinoembryonic.antigen.re-
Angiopoietin.2..ANG.2.
Alpha.Fetoprotein..AFP.
X6Ckine



lated.cell.adhesion.molecule.6.






CEACAM6.





11
Urokinase.type.Plasminogen.
Apolipoprotein.a...Lp.a..
Carcinoembryonic.antigen.re-
Angiopoietin.2..ANG.2.



Activator..uPA.

lated.cell.adhesion.molecule.1.






CEACAM1.



12
Tissue.Inhibitor.of.Metallopro-
Alpha.1.Microglobulin..
Insulin.like.Growth.Factor.Bi-
MHC.class.I.chain.related.pro-



teinases.1..TIMP.1.
A1Micro.
nding.Protein.5..IGFBP5.
tein.A..MICA.


13
Progesterone
Angiogenin
Lectin.Like.Oxidized.LDL.Re-
Neutrophil.Gelatinase.





ceptor.1..LOX.1.
Associated.Lipocalin..NGAL.


14
Interleukin.6.receptor.subunit.
B.cell.activating.factor..BAFF
FASLG.Receptor..FAS.
P.Selectin



beta..IL.6R.beta.





15
Thrombospondin.4..TSP4.
Adiponectin
Serotransferrin..Transferrin.
Tissue.Inhibitor.of.Metallopro-






teinases.2..TIMP.2.
















TABLE 9





Late Window (GABD 26-28 weeks) Analyte Ranking by Different Multivariate Models

















rank
rf
boosting





1
Apolipoprotein.C.III..Apo.C.III.
Apolipoprotein.C.III..Apo.C.III.


2
Apolipoprotein.E..Apo.E.
Apolipoprotein.E..Apo.E.


3
Insulin.like.Growth.Factor.Binding.Protein.4..IGFBP4.
EN.RAGE


4
Insulin.like.Growth.Factor.Binding.Protein.6..IGFBP6.
Alpha.Fetoprotein..AFP.


5
Apolipoprotein.B..Apo.B.
Apolipoprotein.B..Apo.B.


6
Interleukin.18..IL.18.
Angiotensinogen


7
Glutathione.S.Transferase.alpha..GST.alpha.
Angiotensin.Converting.Enzyme..ACE.


8
Stem.Cell.Factor..SCF.
Aldose.Reductase


9
Phosphoserine.Aminotransferase..PSAT.
Apolipoprotein.a...Lp.a..


10
Tyrosine.kinase.with.Ig.and.EGF.homology.domains.1..Tie.1.
Angiopoietin.2..ANG.2.


11
EN.RAGE
X6Ckine


12
Vascular.Endothelial.Growth.Factor.Receptor.1..VEGFR.1.
Alpha.2.Macroglobulin..A2Macro.


13
Insulin.like.Growth.Factor.Binding.Protein.2..IGFBP.2.
Angiogenin


14
Chemokine.CC.4..HCC.4.
Alpha.1.Antichymotrypsin..AACT.


15
Tyrosine.kinase.with.Ig.and.EGF.homology.domains.2..TIE.2.
Adiponectin





rank
lasso
logit





1
Apolipoprotein.C.III..Apo.C.III.
Alpha.1.Microglobulin..A1Micro.


2
Interleukin.18..IL.18.
Aldose.Reductase


3
Apolipoprotein.B..Apo.B.
Angiogenin


4
Glutathione.S.Transferase.alpha..GST.alpha.
Alpha.Fetoprotein..AFP.


5
Tyrosine.kinase.with.Ig.and.EGF.homology.domains.1..Tie.1.
Alpha.1.Antichymotrypsin..AACT.


6
Trefoil.Factor.3..TFF3.
Alpha.1.Antitrypsin..AAT.


7
Apolipoprotein.E..Apo.E.
X6Ckine


8
Insulin.like.Growth.Factor.Binding.Protein.4..IGFBP4.
Alpha.2.Macroglobulin..A2Macro.


9
FASLG.Receptor..FAS.
Adiponectin


10
Tyrosine.kinase.with.Ig.and.EGF.homology.domains.2..TIE.2.
Chromogranin.A..CgA.


11
Creatine.Kinase.MB..CK.MB.
Macrophage.Inflammatory.Protein.1.beta..MIP.1.beta.


12
Stem.Cell.Factor..SCF.
Angiopoietin.2..ANG.2.


13
Chemokine.CC.4..HCC.4.
Angiotensin.Converting.Enzyme..ACE.


14
Complement.Factor.H...Related.Protein.1..CFHR1.
Angiotensinogen


15
Alpha.2.Macroglobulin..A2Macro.
Apolipoprotein.a...Lp.a..
















TABLE 10







Table of epitope and clonality information for kits tested for analytes IBP4_HUMAN and


SHBG_HUMAN when available.



















Person's r








Correlation








Value




Catalog
Capture
Detection

ELISA


Analyte
Vendor
Number
Antibody
Antibody
Epitopes
vs MS

















IBP4_HUMAN
ANSCH
Webster,
AL-126
Monoclonal
Monoclonal
C-terminal
0.8631



Labs
Texas







SHBG_HUMAN
R&D
Minneapolis,
DSHBGOB
Monoclonal
Monoclonal
Unmapped
0.9228



Systems
Minnesota







SHBG_HUMAN
Raybiotech
Norcross,
ELH-SHBG
Monoclonal
Monoclonal
Unmapped
0.8675




Georgia







IBP4_HUMAN
ABNOVA
Taipei,
KA1873
Monoclonal
Polyclonal
Unknown
0.2635




Taiwan







IBP4_HUMAN
ABCAM
Cambridge,
ab 100542
Monoclonal
Polyclonal
Asp22-
0.3439




Massachusetts



Glu258



IBP4_HUMAN
ANSCH
Webster,
AL-128
Monoclonal
Monoclonal
N-terminus
0.2954



Labs
Texas



and









C-terminus
















TABLE 11







Analytes showing kits that either correlate with MS data or do not.








Correlating Data
Non-Correlating Data











Person's r

Person's r


Analyte
Correlation Value
Analyte
Correlation Value


(ELISA Kit #)
ELISA vs MS
(ELISA Kit #)
ELISA vs MS













ANGT_HUMAN #1
0.6192
A2GL_HUMAN
−0.2933


B2MG_HUMAN
0.8414
ANGT_HUMAN #2
−0.01351


BGH3_HUMAN
0.7159
APOH_HUMAN
0.2669


C06_HUMAN
0.8045
CHL1_HUMAN
0.0795


CD14_HUMAN
0.8004
CLUS_HUMAN
0.3132


CHL1_HUMAN
0.9271
CPN1_HUMAN
0.1775


FETUA_HUMAN
0.7259
CSH_HUMAN
−0.3172


IBP4_HUMAN#1
0.8631
FBLN1_HUMAN
0.1141


IGF2_HUMAN
0.6346
IBP4_HUMAN #2
0.3439


LBP_HUMAN
0.7389
IBP4_HUMAN #3
0.2365


PAPP1_HUMAN #1
0.9163
IBP4_HUMAN #4
0.2954


SHBG_HUMAN #1
0.9228
PAPP1_HUMAN #2
0.04381


SHBG_HUMAN #2
0.8675
PRG2_HUMAN #1
0.2699




PSG2_HUMAN #2
−0.06944




PTGDS_HUMAN
0.1627




TENX_HUMAN
−0.1116




TIE1_HUMAN
0.0384




VTDB_HUMAN
−0.2459




VTNC_HUMAN
0.1243
















TABLE 12







IBP4 and SHBG ELISA Kits Demonstrating sPTB vs Control Separation


(univariate)














Control vs







Case






Person's
Separation P-





Analyte
R
Value
Vendor

Catalogue #





IBP4_HUMAN
0.8631
0.0009
ANSCH Labs
Webster, Texas
AL-126


SHBG_HUMAN
0.8675
0.0374
R&D Systems
Minneapolis,
DSHBG0B






Minnesota

























TABLE 13





dbSNP rs#
Hetero-




Protein
Codon
NP_001543.2
NM_001552.2


cluster id
zygosity
Validation
MAF
Function
dbSNP allele
residue
position
Amino acid pos
mRNA pos







rs757185079
0


missense
C
Pro [P]
2
214
953






contig reference
A
GIn [Q]
2
214



rs759609271
0


nonsense
T

1
222
976






contig reference
C
Gln [Q]
1
222



rs765360682
0


missense
A
His [H]
2
223
980






contig reference
G
Arg [R]
2
223

























TABLE 14













NP_001031.2



dbSNP rs#
Hetero-



dbSNP
Protein
Codon
Amino acid
NM_001040.2


cluster id
zygosity
Validation
MAF
Function
allelle
residue
pos
pos
mRNA pos







rs751519873
0


missense
T
Val [V]
2
171
591






contig reference
C
Ala [A]
2
171



rs528701583
0
byCluster

synonymous
A
Ala [A]
3
171
592






contig reference
G
Ala [A]
3
171



rs201120578
0
byClusterWith1000-
0.0002
missense
T
Phe [F]
1
172
593




GenomeData













contig reference
C
Leu [L]
1
172



rs747379879
0


synonymous
C
Leu [L]
3
172
595






contig reference
T
Leu [L]
3
172



rs769030967
0


missense
C
Arg [R]
1
173
596






contig reference
G
Gly [G]
1
173



rs777068397
0


missense
C
Ala [A]
2
173
597






contig reference
G
Gly [G]
2
173







synonymous
C
Gly [G]
3
173







contig reference
G
Gly [G]
3
173



rs567677603
0
byCluster

synonymous
T
Pro [P]
3
178
613






contig reference
C
Pro [P]
3
178



rs115336700
0.01
byClusterbyFreqWith-
0.0048
missense
C
Pro [P]
1
179
614




1000GenomeData













contig reference
G
Ala [A]
1
179



rs765896254
0


missense
G
Ser [S]
2
181
621






contig reference
A
Asn [N]
2
181



rs143134553
0
byClusterWith1000-
0.0002
missense
A
Lys [K]
3
181
622




GenomeData













contig reference
C
Asn [N]
3
181



rs139379650
0


missense
T
Trp [W]
1
183
626






contig reference
C
Arg [R]
1
183



rs759318203
0


missense
A
Gln [Q]
2
183
627






contig reference
G
Arg [R]
2
183



rs367555757
0
byCluster

synonymous
A
Gly [G]
3
173
598


















TABLE 15







Discovery_BMI > 22 ≤ 37
Discovery_AllBMI
Discovery_BMI < 35



















GABD

MW



MW



MW




(days)
AUC
p-value
Cases
Control
AUC
p-value
Cases
Control
AUC
p-value
Cases
Control





133:143
0.822
0.0018
10
18
0.719
0.0064
16
32
0.788
0.0023
12
22


133:144
0.791
0.0031
11
20
0.702
0.0089
17
34
0.763
0.0037
13
24


133:145
0.786
0.0027
12
21
0.711
0.0053
18
36
0.766
0.0023
14
26


133:146
0.788
0.0023
12
22
0.726
0.0025
19
38
0.773
0.0016
14
28


133:147
0.804
0.001
13
22
0.730
0.0016
20
40
0.791
0.0006
15
29


133:148
0.804
0.001
13
22
0.730
0.0016
20
40
0.791
0.0006
15
29


133:149
0.804
0.001
13
22
0.730
0.0016
20
40
0.791
0.0006
15
29


133:150
0.804
0.001
13
22
0.730
0.0016
20
40
0.791
0.0006
15
29


133:151
0.773
0.0003
14
23
0.722
0.0018
21
42
0.778
0.0007
16
31


133:152
0.773
0.0023
14
23
0.722
0.0018
21
42
0.778
0.0007
16
31


133:153
0.787
0.0009
15
25
0.736
0.0008
22
44
0.790
0.0003
17
33












Verification_BMI > 22 ≤ 37
Verification_AllBMI
Verification_BMI < 35



















GABD

MW



MW



MW




(days)
AUC
p-value
Cases
Control
AUC
p-value
Cases
Control
AUC
p-value
Cases
Control





133:143
0.889
0.0364
2
9
0.750
0.0415
6
12
0.818
0.0278
4
11


133:144
0.889
0.0364
2
9
0.750
0.0415
6
12
0.818
0.0278
4
11


133:145
0.867
0.0245
3
10
0.765
0.023
7
14
0.815
0.0175
5
13


133:146
0.867
0.0245
3
10
0.765
0.023
7
14
0.815
0.0175
5
13


133:147
0.867
0.0245
3
10
0.765
0.023
7
14
0.815
0.0175
6
13


133:148
0.813
0.0291
4
12
0.727
0.0351
8
16
0.767
0.0274
6
15


133:149
0.839
0.0173
4
14
0.772
0.01
9
18
0.794
0.0149
6
17


133:150
0.839
0.0173
4
14
0.772
0.01
9
18
0.794
0.0149
6
17


133:151
0.839
0.0173
4
14
0.772
0.01
9
18
0.794
0.0149
6
17


133:152
0.839
0.0173
4
14
0.772
0.01
9
18
0.794
0.0149
6
17


133:153
0.839
0.0173
4
14
0.772
0.01
9
18
0.794
0.0149
6
17












Validation_BMI > 22 ≤ 37
Validation_AllBMI
Validation_BMI < 35



















GABD

MW



MW



MW




(days)
AUC
p-value
Cases
Control
AUC
p-value
Cases
Control
AUC
p-value
Cases
Control





133-143
0.867
0.0051
7
15
0.698
0.0572
12
24
0.766
0.0248
9
19


133-144
0.768
0.0185
10
19
0.670
0.058
16
32
0.695
0.0501
13
26


133-145
0.788
0.0073
11
21
0.685
0.0342
17
34
0.707
0.0305
14
28


133-146
0.750
0.0157
12
23
0.670
0.0438
18
36
0.697
0.0342
15
29


133-147
0.750
0.0157
12
23
0.670
0.0438
18
36
0.697
0.0342
15
29


133-148
0.750
0.0157
12
23
0.670
0.0438
18
36
0.697
0.0342
15
29


133-149
0.684
0.0157
14
26
0.623
0.127
20
40
0.649
0.091
17
32


133-150
0.684
0.0587
14
26
0.623
0.127
20
40
0.649
0.091
17
32


133-151
0.609
0.0587
16
27
0.555
0.4782
22
43
0.598
0.2489
19
33


133-152
0.628
0.1582
17
28
0.573
0.3327
23
46
0.609
0.1897
20
34


133-153
0.646
0.0988
18
29
0.574
0.3152
24
48
0.609
0.1897
20
34





GABD (days) refers to the interval of gestation age at blood draw in days


MW p-value tests equivalence to AUC = 0.5 by a one-sided Wilcoxon Mann Whitney statistic













TABLE 16







Summary of peak areas for transitions to four IBP4_HUMAN synthetic heavy peptides

















SEQ 










Peptide 
ID 
Protein 
Precursor
Precursor
Product
Product
Fragment
Retention



Sequence
NO:
Name
Mz
Charge
Mz
Charge
Ion
Time
Area



















LPGGLEPK
1
IBP4_HUMAN
409.75
2
211.14
1
b2
4.62
252768





LPGGLEPK
1
IBP4_HUMAN
409.75
2
325.19
1
b4
4.66
76266





LPGGLEPK
1
IBP4_HUMAN
409.75
2
705.40
1
y7
4.66
844128





LPGGLEPK
1
IBP4_HUMAN
409.75
2
608.35
1
y6
4.66
866360





LPGGLEPK
1
IBP4_HUMAN
409.75
2
551.33
1
y5
4.62
96412





LPGGLEPK
1
IBP4_HUMAN
409.75
2
252.18
1
y2
4.66
939572





LPGGLEPK
1
IBP4_HUMAN
409.75
2
353.20
2
y7
4.66
3489414





QCHPALDGQR
2
IBP4_HUMAN
596.28
2
289.10
1
b2
1.85
9703





QCHPALDGQR
2
IBP4_HUMAN
596.28
2
426.16
1
b3
1.85
14713





QCHPALDGQR
2
IBP4_HUMAN
596.28
2
822.36
1
b7
1.85
2136





QCHPALDGQR
2
IBP4_HUMAN
596.28
2
903.47
1
y8
1.85
17798





QCHPALDGQR
2
IBP4_HUMAN
596.28
2
766.41
1
y7
1.85
73221





QCHPALDGQR
2
IBP4_HUMAN
596.28
2
669.36
1
y6
1.85
5019





QCHPALDGQR
2
IBP4_HUMAN
596.28
2
598.32
1
y5
1.85
4078





QCHPALDGQR
2
IBP4_HUMAN
596.28
2
485.23
1
y4
1.85
4383





QCHPALDGQR
2
IBP4_HUMAN
596.28
2
370.21
1
y3
1.85
25859





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
289.10
1
b2
1.85
57043





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
426.16
1
b3
1.85
109467





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
523.21
1
b4
1.85
12019





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
594.25
1
b5
1.85
30122





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
213.58
2
b3
1.85
7249





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
262.11
2
b4
1.85
11989





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
297.63
2
b5
1.85
71677





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
354.17
2
b6
1.85
10532





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
411.68
2
b7
1.85
8062





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
766.41
1
y7
1.85
118740





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
669.36
1
y6
1.85
79410





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
598.32
1
y5
1.85
235615





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
485.23
1
y4
1.85
637333





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
370.21
1
y3
1.85
440794





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
313.19
1
y2
1.85
26708





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
532.25
2
y9
1.85
52271





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
452.24
2
y8
1.85
24399





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
383.71
2
y7
1.85
238180





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
335.18
2
y6
1.85
64484





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
299.66
2
y5
1.85
18478





QCHPALDGQR
2
IBP4_HUMAN
397.86
3
243.12
2
y4
1.85
50903





THEDLYIIPIPNCDR
3
IBP4_HUMAN
933.46
2
239.11
1
b2
8.25
35797





THEDLYIIPIPNCDR
3
IBP4_HUMAN
933.46
2
368.16
1
b3
8.25
15185





THEDLYIIPIPNCDR
3
IBP4_HUMAN
933.46
2
483.18
1
b4
8.25
14411





THEDLYIIPIPNCDR
3
IBP4_HUMAN
933.46
2
596.27
1
b5
8.25
19740





THEDLYIIPIPNCDR
3
IBP4_HUMAN
933.46
2
759.33
1
b6
8.25
35904





THEDLYIIPIPNCDR
3
IBP4_HUMAN
933.46
2
872.41
1
b7
8.25
38201





THEDLYIIPIPNCDR
3
IBP4_HUMAN
933.46
2
985.50
1
b8
8.25
38297





THEDLYIIPIPNCDR
3
IBP4_HUMAN
933.46
2
1195.64
1
b10
8.2
11054





THEDLYIIPIPNCDR
3
IBP4_HUMAN
933.46
2
1107.59
1
y9
8.25
22635





THEDLYIIPIPNCDR
3
IBP4_HUMAN
933.46
2
994.50
1
y8
8.25
33493





THEDLYIIPIPNCDR
3
IBP4_HUMAN
933.46
2
881.42
1
y7
8.25
98887





THEDLYIIPIPNCDR
3
IBP4_HUMAN
933.46
2
784.36
1
y6
8.25
2565





THEDLYIIPIPNCDR
3
IBP4_HUMAN
933.46
2
671.28
1
y5
8.25
31935





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
239.11
1
b2
8.25
13586





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
368.16
1
b3
8.25
6976





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
483.18
1
b4
8.25
12635





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
596.27
1
b5
8.25
36886





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
759.33
1
b6
8.25
138833





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
872.41
1
b7
8.25
190646





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
985.50
1
b8
8.25
54139





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
493.25
2
b8
8.25
13320





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
541.78
2
b9
8.25
6168





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
994.50
1
y8
8.25
5893





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
881.42
1
y7
8.25
297346





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
784.36
1
y6
8.25
14422





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
671.28
1
y5
8.25
212081





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
574.23
1
y4
8.25
10550





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
460.18
1
y3
8.25
4183





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
441.21
2
y7
8.25
59487





THEDLYIIPIPNCDR
3
IBP4_HUMAN
622.64
3
336.14
2
y5
8.25
48606





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
245.08
1
b2
2.94
1864





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
472.22
1
b4
2.94
7355





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
569.27
1
b5
2.94
1648





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
668.34
1
b6
2.94
30775





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
765.39
1
b7
2.94
1033





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
893.45
1
b8
2.94
6138





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
950.47
1
b9
2.94
4242





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
285.14
2
b5
2.94
680





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
334.67
2
b6
2.94
1704





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
383.20
2
b7
2.9
3561





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
447.23
2
b8
2.94
3333





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
475.74
2
b9
2.94
6911





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
1083.49
1
y9
2.94
11083





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
1026.47
1
y8
2.94
4195





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
939.43
1
y7
2.94
8994





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
779.40
1
y6
2.94
13897





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
651.34
1
y5
2.94
23600





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
564.31
1
y4
2.94
7164





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
435.27
1
y3
2.94
8441





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
322.19
1
y2
2.94
10343





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
866.43
2
y15
2.94
2751





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
830.91
2
y14
2.94
994





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
752.86
2
y13
2.94
2065





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
654.80
2
y11
2.94
26747





EDARPVPQGSCQSELHR
4
IBP4_HUMAN
659.31
3
542.25
2
y9
2.94
7872





Comparative IBP4 peptide and transition MS data. Four different heavy labelled peptides (R*+10 daltons) exemplify various transitions and their relative intensities that could be monitored to quantify IBP4. Those skilled in the art could select potentially any of these peptides or transitions or others not exemplified to quantify IBP4.













TABLE 17







Peak Area Summary for Transitions to IBP4_HUMAN Surveyed Using Recombinant Protein

















SEQ 










Peptide 
ID

Precursor
Precursor
Product
Product
Fragment
Retention



Sequence
NO:
Protein Name
Mz
Charge
Mz
Charge
lon
Time
Area



















CRPPVGCEELVR
5
sp|P22692|IBP4_HUMAN
491.24
3
317.14
1
b2
6.4
20339





CRPPVGCEELVR
5
sp|P22692|IBP4_HUMAN
491.24
3
414.19
1
b3
6.35
21220





CRPPVGCEELVR
5
sp|P22692|IBP4_HUMAN
491.24
3
610.31
1
b5
6.46
13132





CRPPVGCEELVR
5
sp|P22692|IBP4_HUMAN
491.24
3
667.33
1
b6
6.46
14894





CRPPVGCEELVR
5
sp|P22692|IBP4_HUMAN
491.24
3
207.60
2
b3
6.4
5605





CRPPVGCEELVR
5
sp|P22692|IBP4_HUMAN
491.24
3
256.13
2
b4
6.4
13853





CRPPVGCEELVR
5
sp|P22692|IBP4_HUMAN
491.24
3
414.19
2
b7
6.4
21460





CRPPVGCEELVR
5
sp|P22692|IBP4_HUMAN
491.24
3
862.41
1
y7
6.4
16655





CRPPVGCEELVR
5
sp|P22692|IBP4_HUMAN
491.24
3
805.39
1
y6
6.4
7047





CRPPVGCEELVR
5
sp|P22692|IBP4_HUMAN
491.24
3
645.36
1
y5
6.4
19298





CRPPVGCEELVR
5
sp|P22692|IBP4_HUMAN
491.24
3
516.31
1
y4
6.4
14093





CRPPVGCEELVR
5
sp|P22692|IBP4_HUMAN
491.24
3
387.27
1
y3
6.35
11771





CRPPVGCEELVR
5
sp|P22692|IBP4_HUMAN
491.24
3
274.19
1
y2
6.46
8168





CRPPVGCEELVR
5
sp|P22692|IBP4_HUMAN
491.24
3
578.29
2
y10
6.35
7367





CRPPVGCEELVR
5
sp|P22692|IBP4_HUMAN
491.24
3
403.20
2
y6
6.46
5605





VNGAPR
6
sp|P22692|IBP4_HUMAN
307.17
2
214.12
1
b2
1.28
227017





VNGAPR
6
sp|P22692|IBP4_HUMAN
307.17
2
220.12
2
b5
1.2
17711





VNGAPR
6
sp|P22692|IBP4_HUMAN
307.17
2
272.17
1
y2
1.16
9908





VNGAPR
6
sp|P22692|IBP4_HUMAN
307.17
2
257.64
2
y5
1.2
8484





VNGAPR
6
sp|P22692|IBP4_HUMAN
307.17
2
200.62
2
y4
1.2
3592





EDARPVPQGSCQSELHR
4
sp|P22692|IBP4_HUMAN
655.98
3
245.08
1
b2
5.45
1059





EDARPVPQGSCQSELHR
4
sp|P22692|IBP4_HUMAN
655.98
3
472.22
1
b4
5.35
1968





EDARPVPQGSCQSELHR
4
sp|P22692|IBP4_HUMAN
655.98
3
668.34
1
b6
5.45
7567





EDARPVPQGSCQSELHR
4
sp|P22692|IBP4_HUMAN
655.98
3
950.47
1
b9
5.35
908





EDARPVPQGSCQSELHR
4
sp|P22692|IBP4_HUMAN
655.98
3
519.25
2
b10
5.45
1513





EDARPVPQGSCQSELHR
4
sp|P22692|IBP4_HUMAN
655.98
3
1016.46
1
y8
5.45
757





EDARPVPQGSCQSELHR
4
sp|P22692|IBP4_HUMAN
655.98
3
929.43
1
y7
5.4
2876





EDARPVPQGSCQSELHR
4
sp|P22692|IBP4_HUMAN
655.98
3
641.34
1
y5
5.35
4389





EDARPVPQGSCQSELHR
4
sp|P22692|IBP4_HUMAN
655.98
3
312.18
1
y2
5.35
3481





EDARPVPQGSCQSELHR
4
sp|P22692|IBP4_HUMAN
655.98
3
649.80
2
y11
5.35
5449





EDARPVPQGSCQSELHR
4
sp|P22692|IBP4_HUMAN
655.98
3
537.24
2
y9
5.5
1513





EDARPVPQGSCQSELHR
4
sp|P22692|IBP4_HUMAN
655.98
3
321.17
2
y5
5.4
605





LAASQSR
7
sp|P22692|IBP4_HUMAN
366.70
2
343.20
1
b4
1.31
4692





LAASQSR
7
sp|P22692|IBP4_HUMAN
366.70
2
279.65
2
b6
1.31
45027





LAASQSR
7
sp|P22692|IBP4_HUMAN
366.70
2
262.15
1
y2
1.31
3481





LAASQSR
7
sp|P22692|IBP4_HUMAN
366.70
2
310.16
2
y6
1.26
8097





LAASQSR
7
sp|P22692|IBP4_HUMAN
366.70
2
274.64
2
y5
1.31
22173





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
928.45
2
483.18
1
b4
8.96
619





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
928.45
2
596.27
1
b5
8.96
1115





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
928.45
2
759.33
1
b6
9.08
1610





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
928.45
2
872.41
1
b7
8.96
3468





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
928.45
2
985.50
1
b8
9.04
3096





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
928.45
2
1097.58
1
y9
8.96
867





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
928.45
2
984.49
1
y8
9.04
1734





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
928.45
2
871.41
1
y7
9
4211





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
928.45
2
661.27
1
y5
8.96
2477





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
928.45
2
744.88
2
y12
9.04
743





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
239.11
1
b2
8.96
4211





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
368.16
1
b3
9
1486





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
483.18
1
b4
8.96
5511





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
596.27
1
b5
9.04
11580





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
759.33
1
b6
8.96
30343





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
872.41
1
b7
8.96
53318





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
985.50
1
b8
8.96
9660





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
380.17
2
b6
9
2353





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
436.71
2
b7
8.96
8174





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
493.25
2
b8
8.96
4830





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
541.78
2
b9
9.41
2477





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
984.49
1
y8
9
2229





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
871.41
1
y7
9
55981





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
774.36
1
y6
8.96
5202





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
661.27
1
y5
8.96
52141





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
564.22
1
y4
8.92
4582





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
492.75
2
y8
8.96
5264





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
436.21
2
y7
8.96
11147





THEDLYIIPIPNCDR
3
sp|P22692|IBP4_HUMAN
619.31
3
331.14
2
y5
8.96
10280





NGNFHPK
8
sp|P22692|IBP4_HUMAN
407.20
2
286.11
1
b3
1.41
26865





NGNFHPK
8
sp|P22692|IBP4_HUMAN
407.20
2
285.62
2
b5
1.41
21038





NGNFHPK
8
sp|P22692|IBP4_HUMAN
407.20
2
334.15
2
b6
1.36
1665





NGNFHPK
8
sp|P22692|IBP4_HUMAN
407.20
2
244.17
1
y2
1.31
1665





NGNFHPK
8
sp|P22692|IBP4_HUMAN
407.20
2
321.67
2
y5
1.36
2422





QCHPALDGQR
2
sp|P22692|IBP4_HUMAN
394.52
3
426.16
1
b3
4.96
2882





QCHPALDGQR
2
sp|P22692|IBP4_HUMAN
394.52
3
297.63
2
b5
4.96
2401





QCHPALDGQR
2
sp|P22692|IBP4_HUMAN
394.52
3
756.40
1
y7
4.96
4483





QCHPALDGQR
2
sp|P22692|IBP4_HUMAN
394.52
3
659.35
1
y6
4.91
2722





QCHPALDGQR
2
sp|P22692|IBP4_HUMAN
394.52
3
588.31
1
y5
4.96
4963





QCHPALDGQR
2
sp|P22692|IBP4_HUMAN
394.52
3
475.23
1
y4
4.96
23535





QCHPALDGQR
2
sp|P22692|IBP4_HUMAN
394.52
3
360.20
1
y3
4.96
13448





QCHPALDGQR
2
sp|P22692|IBP4_HUMAN
394.52
3
527.25
2
y9
5.02
640





QCHPALDGQR
2
sp|P22692|IBP4_HUMAN
394.52
3
378.70
2
y7
4.91
7204





CWCVDR
9
sp|P22692|IBP4_HUMAN
448.18
2
347.12
1
b2
6.46
2497





CWCVDR
9
sp|P22692|IBP4_HUMAN
448.18
2
735.32
1
y5
6.41
2573





CWCVDR
9
sp|P22692|IBP4_HUMAN
448.18
2
549.24
1
y4
6.46
14908





CWCVDR
9
sp|P22692|IBP4_HUMAN
448.18
2
389.21
1
y3
6.46
6584





CWCVDR
9
sp|P22692|IBP4_HUMAN
448.18
2
290.15
1
y2
6.46
4086





LPGGLEPK
1
sp|P22692|IBP4_HUMAN
405.74
2
211.14
1
b2
6.81
24216





LPGGLEPK
1
sp|P22692|IBP4_HUMAN
405.74
2
325.19
1
b4
6.81
16119





LPGGLEPK
1
sp|P22692|IBP4_HUMAN
405.74
2
567.31
1
b6
6.76
8778





LPGGLEPK
1
sp|P22692|IBP4_HUMAN
405.74
2
697.39
1
y7
6.76
71815





LPGGLEPK
1
sp|P22692|IBP4_HUMAN
405.74
2
600.34
1
y6
6.76
141209





LPGGLEPK
1
sp|P22692|IBP4_HUMAN
405.74
2
543.31
1
y5
6.76
17481





LPGGLEPK
1
sp|P22692|IBP4_HUMAN
405.74
2
244.17
1
y2
6.81
149987





LPGGLEPK
1
sp|P22692|IBP4_HUMAN
405.74
2
349.20
2
y7
6.76
370277





LPGGLEPK
1
sp|P22692|IBP4_HUMAN
405.74
2
243.65
2
y4
6.76
7265





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
300.16
1
b3
7.47
5764





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
575.21
1
b5
7.42
1121





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
712.27
1
b6
7.47
961





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
840.33
1
b7
7.53
6084





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
953.41
1
b8
7.42
3682





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
420.67
2
b7
7.47
3682





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
477.21
2
b8
7.42
3282





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
570.24
2
b10
7.42
961





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
973.49
1
y8
7.47
5764





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
836.43
1
y7
7.47
29618





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
708.37
1
y6
7.47
22734





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
595.28
1
y5
7.47
39705





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
524.25
1
y4
7.47
23535





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
409.22
1
y3
7.47
35862





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
322.19
1
y2
7.47
3682





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
681.32
2
y11
7.42
103024





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
624.77
2
y10
7.47
58757





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
567.26
2
y9
7.42
31860





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
487.25
2
y8
7.47
18411





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
354.69
2
y6
7.47
2401





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
298.15
2
y5
7.53
6084





GELDCHQLADSFR
10
sp|P22692|IBP4_HUMAN
516.57
3
262.63
2
y4
7.47
1601
















TABLE 18







Peak area summary for the different transitions for SHBG HUMAN



























Pooled












Pregnant



SEQ 

Pre-
Pre-
Prod-
Prod-
Frag-
Reten-
rSHBG
Serum



ID

cursor
cursor
uct
uct
ment
tion
Peak
Peak


Peptide Sequence
NO:
Protein Name
Mz
Charge
Mz
Charge
Ion
Time
Area
Area




















TSSSFEVR
11
sp|P04278|SHBG_HUMAN
456.72
2
811.39
1
y7
6.18
26852
96178





TSSSFEVR
11
sp|P04278|SHBG_HUMAN
456.72
2
724.36
1
y6
6.18
104140
406657





TSSSFEVR
11
sp|P04278|SHBG_HUMAN
456.72
2
637.33
1
y5
6.18
39819
152232





TSSSFEVR
11
sp|P04278|SHBG_HUMAN
456.72
2
550.30
1
y4
6.18
33489
134866





TSSSFEVR
11
sp|P04278|SHBG_HUMAN
456.72
2
403.23
1
y3
6.18
27156
91485





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
288.13
1
b2
9.44
28789
430926





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
403.16
1
b3
9.44
48399
551674





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
629.26
1
b5
9.44
5719
37766





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
686.28
1
b6
9.44
4288
48075





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
785.35
1
b7
9.44
19603
255484





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
898.43
1
b8
9.44
9799
106444





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
1045.50
1
b9
9.44
2959
34703





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
1153.59
1
y10
9.49
2043
48983





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
1054.52
1
y9
9.44
23075
403061





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
941.44
1
y8
9.44
17663
302129





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
794.37
1
y7
9.39
10616
212103





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
631.30
1
y6
9.44
13070
199732





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
574.28
1
y5
9.44
2040
35430





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
459.26
1
y4
9.49
5716
86862





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
358.21
1
y3
9.44
1836
39288





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
244.17
1
y2
9.49
11027
123399





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
776.37
2
y14
9.44
12561
174726





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
718.86
2
y13
9.44
38597
604225





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
919.93
2
287.65
2
y5
9.49
4901
88390





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
288.13
1
b2
9.44
8782
30219





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
403.16
1
b3
9.44
7759
81236





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
686.28
1
b6
9.44
8984
65110





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
785.35
1
b7
9.44
30014
161864





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
898.43
1
b8
9.44
12149
65219





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
1045.50
1
b9
9.44

20004





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
343.64
2
b6
9.44

22039





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
449.72
2
b8
9.44

13058





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
523.25
2
b9
9.49

10924





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
633.30
2
b11
9.39

27875





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
741.33
2
b13
9.44

23467





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
1054.52
1
y9
9.49

22048





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
941.44
1
y8
9.39
27157
111649





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
794.37
1
y7
9.44
43700
251500





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
631.30
1
y6
9.44
56356
290887





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
574.28
1
y5
9.39
7863
50921





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
459.26
1
y4
9.49
12457
66024





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
358.21
1
y3
9.39
8376
26955





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
244.17
1
y2
9.39
17667
74103





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
776.37
2
y14
9.49

22867





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
718.86
2
y13
9.44

11628





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
471.22
2
y8
9.44

21129





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
397.69
2
y7
9.39
9192
46444





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
316.16
2
y6
9.49

37345





TWDPEGVIFYGDTNPK
12
sp|P04278|SHBG_HUMAN
613.62
3
287.65
2
y5
9.44

17354





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
576.78
2
231.06
1
b2
10.57
2450
218844





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
576.78
2
417.14
1
b3
10.62
4085
660895





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
576.78
2
564.21
1
b4
10.67
2652
190972





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
576.78
2
695.25
1
b5
10.62

56841





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
576.78
2
922.50
1
y7
10.62

206072





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
576.78
2
736.42
1
y6
10.62
12655
1487537





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
576.78
2
589.35
1
y5
10.62
16227
1563060





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
576.78
2
458.31
1
y4
10.67
4489
681922





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
576.78
2
345.22
1
y3
10.57
7755
826140





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
576.78
2
288.20
1
y2
10.62

100631





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
576.78
2
519.27
2
y8
10.62

25104





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
576.78
2
461.75
2
y7
10.62

83186





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
384.86
3
417.14
1
b3
10.62

11229





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
384.86
3
564.21
1
b4
10.57

7349





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
384.86
3
589.35
1
y5
10.57

2450





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
384.86
3
458.31
1
y4
10.62

16538





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
384.86
3
345.22
1
y3
10.62

30524





DDWFMLGLR
13
sp|P04278|SHBG_HUMAN
384.86
3
288.20
1
y2
10.51

3880





DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
329.16
1
b3
7.84
5943
24455


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
555.25
1
b5
7.72

8188


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
796.39
1
b7
7.84
3326
13408


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
909.48
1
b8
7.84
5227
15675


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
1046.54
1
b9
7.72

12351


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
1160.58
1
b10
7.84
5462
11163


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
523.77
2
b9
7.72

8555


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
580.79
2
b10
7.84
4630
24587


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
649.32
2
b11
7.78
8555
24107


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
742.36
2
b12
7.9
4753
20193


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
777.88
2
b13
7.9
8312
19238


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
841.91
2
b14
7.72

8551


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
898.45
2
b15
7.84
6656
29217


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
1062.54
2
b19
7.84
3328
6649


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
1155.63
1
y11
7.9
11995
32069


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
969.55
1
y10
7.84
16386
47509


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
898.51
1
y9
7.84
9025
26601


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
770.45
1
y8
7.78
6410
16278


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
657.37
1
y7
7.84
4990
21850


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
556.32
1
y6
7.9
3089
8193


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
457.25
1
y5
7.9
3324
9848


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
329.19
1
y3
7.9
7600
11648


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
1062.56
2
y19
7.78
3802
9572


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
646.85
2
y12
7.9
3328
7497


AGPR















DGRPEIQLHNHWAQLTVG
14
sp|P04278|SHBG_HUMAN
818.09
3
329.19
2
y7
7.84
10685
5422


AGPR















WHQVEVK
15
sp|P04278|SHBG_HUMAN
463.25
2
324.15
1
b2
5.82
95843
143834





WHQVEVK
15
sp|P04278|SHBG_HUMAN
463.25
2
452.20
1
b3
5.88
24228
30155





WHQVEVK
15
sp|P04278|SHBG_HUMAN
463.25
2
551.27
1
b4
5.82
10215
16269





WHQVEVK
15
sp|P04278|SHBG_HUMAN
463.25
2
680.32
1
b5
5.88
31354
35986





WHQVEVK
15
sp|P04278|SHBG_HUMAN
463.25
2
779.38
1
b6
5.82
8316
12828





WHQVEVK
15
sp|P04278|SHBG_HUMAN
463.25
2
739.41
1
y6
5.82
29929
37874





WHQVEVK
15
sp|P04278|SHBG_HUMAN
463.25
2
602.35
1
y5
5.82
57721
77194





WHQVEVK
15
sp|P04278|SHBG_HUMAN
463.25
2
246.18
1
y2
5.82
91450
141340





WHQVEVK
15
sp|P04278|SHBG_HUMAN
463.25
2
370.21
2
y6
5.82
88601
90134





WHQVEVK
15
sp|P04278|SHBG_HUMAN
309.17
3
324.15
1
b2
5.82
89310
94424





WHQVEVK
15
sp|P04278|SHBG_HUMAN
309.17
3
452.20
1
b3
5.88
82658
107490





WHQVEVK
15
sp|P04278|SHBG_HUMAN
309.17
3
551.27
1
b4
5.82
57008
47029





WHQVEVK
15
sp|P04278|SHBG_HUMAN
309.17
3
340.66
2
b5
5.82
47270
48456





WHQVEVK
15
sp|P04278|SHBG_HUMAN
309.17
3
602.35
1
y5
5.82
20904
24944





WHQVEVK
15
sp|P04278|SHBG_HUMAN
309.17
3
474.29
1
y4
5.82
43114
35632





WHQVEVK
15
sp|P04278|SHBG_HUMAN
309.17
3
246.18
1
y2
5.82
284438
306895





WHQVEVK
15
sp|P04278|SHBG_HUMAN
309.17
3
370.21
2
y6
5.82
431957
434922





WHQVEVK
15
sp|P04278|SHBG_HUMAN
309.17
3
301.68
2
y5
5.82
32539
42866





WHQVEVK
15
sp|P04278|SHBG_HUMAN
309.17
3
237.65
2
y4
5.82
24000
22570





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
261.09
1
b2
9.56
9976
176237





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
318.11
1
b3
9.5
4160
68533





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
433.14
1
b4
9.56
11047
235634





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
520.17
1
b5
9.44

89909





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
619.24
1
b6
9.56
21139
230412





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
732.32
1
b7
9.56
13304
236332





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
845.41
1
b8
9.56
12592
166750





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
974.45
1
b9
9.56
5708
94539





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
1073.52
1
b10
9.44

58323





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
1188.55
1
b11
9.44

32055





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
260.59
2
b5
9.44

29113





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
1158.60
1
y10
9.5
20897
448830





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
1045.52
1
y9
9.56
32183
563430





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
916.47
1
y8
9.56
29571
345839





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
817.41
1
y7
9.62
26010
438470





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
702.38
1
y6
9.56
13669
211762





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
645.36
1
y5
9.5
4037
32785





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
516.31
1
y4
9.56
5585
68764





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
387.27
1
y3
9.56
5459
81359





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
945.46
2
288.20
1
y2
9.5
9506
114023





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
261.09
1
b2
9.56
6062
51794





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
433.14
1
b4
9.5
9495
42761





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
619.24
1
b6
9.38
12348
65809





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
732.32
1
b7
9.5
21619
85170





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
974.45
1
b9
9.5

22572





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
366.67
2
b7
9.56
4985
27676





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
423.21
2
b8
9.44

36344





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
487.73
2
b9
9.5

20069





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
1045.52
1
y9
9.56
9148
74821





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
916.47
1
y8
9.56
21496
135854





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
817.41
1
y7
9.5
57831
380769





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
702.38
1
y6
9.56
46795
236942





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
645.36
1
y5
9.56
8320
42640





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
516.31
1
y4
9.62
21264
102732





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
387.27
1
y3
9.5
9267
84073





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
288.20
1
y2
9.32
12234
53912





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
685.88
2
y12
9.44

17945





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
458.74
2
y8
9.44

19110





MEGDSVLLEVDGEEVLR
16
sp|P04278|SHBG_HUMAN
630.64
3
323.18
2
y5
9.56

24717





QVSGPLTSK
17
sp|P04278|SHBG_HUMAN
458.76
2
228.13
1
b2
5.86
11214
57191





QVSGPLTSK
17
sp|P04278|SHBG_HUMAN
458.76
2
788.45
1
y8
5.86
2990
19062





QVSGPLTSK
17
sp|P04278|SHBG_HUMAN
458.76
2
689.38
1
y7
5.86
61053
282713





QVSGPLTSK
17
sp|P04278|SHBG_HUMAN
458.76
2
602.35
1
y6
5.86
22679
104538





QVSGPLTSK
17
sp|P04278|SHBG_HUMAN
458.76
2
545.33
1
y5
5.86
27536
123604





QVSGPLTSK
17
sp|P04278|SHBG_HUMAN
458.76
2
448.28
1
y4
5.86
5233
26420





QVSGPLTSK
17
sp|P04278|SHBG_HUMAN
458.76
2
335.19
1
y3
5.86
29403
111637





QVSGPLTSK
17
sp|P04278|SHBG_HUMAN
458.76
2
234.14
1
y2
5.86
21802
79995





QVSGPLTSK
17
sp|P04278|SHBG_HUMAN
458.76
2
345.20
2
y7
5.86
14455
58815





QVSGPLTSK
17
sp|P04278|SHBG_HUMAN
458.76
2
301.68
2
y6
5.86
2990
18189





QVSGPLTSK
17
sp|P04278|SHBG_HUMAN
458.76
2
273.17
2
y5
5.86
16948
89586





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
298.21
1
b3
10.65
6981
63802





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
355.23
1
b4
10.72
4236
56059





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
412.26
1
b5
10.65
25923
402833





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
525.34
1
b6
10.65
41881
404680





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
638.42
1
b7
10.59
14960
144040





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
785.49
1
b8
10.65
10219
105535





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
1144.65
1
y11
10.65
22931
282840





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
1087.63
1
y10
10.65
10465
140548





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
1030.60
1
y9
10.72
6483
125959





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
917.52
1
y8
10.65
49362
594214





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
804.44
1
y7
10.65
76280
973633





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
657.37
1
y6
10.65
93730
1204642





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
560.32
1
y5
10.59
3242
53952





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
489.28
1
y4
10.65

49330





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
402.25
1
y3
10.65

23177





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
288.20
1
y2
10.65

18686





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
629.37
2
y12
10.65
5481
73517





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
572.83
2
y11
10.72

11466





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
402.72
2
y7
10.65

20181





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
329.19
2
y6
10.65

21538





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
721.43
2
245.14
2
y4
10.65

6485





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
298.21
1
b3
10.65

15331





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
412.26
1
b5
10.65
13956
193878





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
525.34
1
b6
10.65
24679
323212





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
638.42
1
b7
10.65
11589
110026





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
785.49
1
b8
10.59
2494
16200





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
319.72
2
b7
10.65

14451





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
393.25
2
b8
10.59
3745
12199





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
917.52
1
y8
10.65

21931





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
804.44
1
y7
10.65
7478
96064





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
657.37
1
y6
10.65
79020
937227





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
560.32
1
y5
10.65
19940
364330





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
489.28
1
y4
10.65
14459
185782





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
402.25
1
y3
10.59
4236
37877





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
288.20
1
y2
10.59

15698





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
402.72
2
y7
10.59
9968
81983





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
329.19
2
y6
10.65
67299
722053





IALGGLLFPASNLR
18
sp|P04278|SHBG_HUMAN
481.29
3
245.14
2
y4
10.72

16079





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
211.14
1
b2
9.72
142292
756192





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
324.23
1
b3
9.72
160489
866724





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
423.30
1
b4
9.66
194131
842302





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
212.15
2
b4
9.66
3491
131435





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
296.20
2
b6
9.66
4983
68644





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
1113.61
1
y10
9.72
24667
97571





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
1000.52
1
y9
9.66
27161
108785





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
901.46
1
y8
9.72
469991
1998965





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
804.40
1
y7
9.66
9969
74638





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
733.37
1
y6
9.66
9723
52218





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
620.28
1
y5
9.66
9966
75133





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
505.26
1
y4
9.72
28658
150379





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
605.83
2
y11
9.66
39377
199487





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
500.77
2
y9
9.66
11339
51218





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
451.23
2
y8
9.66
47221
214689





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
662.38
2
310.64
2
y5
9.66
48970
270761





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
441.92
3
211.14
1
b2
9.72
3988
4863





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
441.92
3
324.23
1
b3
9.72
3235
20432





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
441.92
3
423.30
1
b4
9.66
12709
38129





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
441.92
3
591.39
1
b6
9.72
20185
50468





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
441.92
3
704.47
1
b7
9.72

4615





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
441.92
3
260.68
2
b5
9.66
2987
5981





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
441.92
3
733.37
1
y6
9.66
3988
9096





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
441.92
3
620.28
1
y5
9.66
23677
67284





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
441.92
3
505.26
1
y4
9.66
19692
45854





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
441.92
3
448.23
1
y3
9.66
2243
8470





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
441.92
3
367.19
2
y6
9.72

5484





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
441.92
3
310.64
2
y5
9.59
4736
6356





LPLVPALDGCLR
19
sp|P04278|SHBG_HUMAN
441.92
3
253.13
2
y4
9.72
3491
8842





DSWLDK
20
sp|P04278|SHBG_HUMAN
382.18
2
203.07
1
b2
7.1
36632






DSWLDK
20
sp|P04278|SHBG_HUMAN
382.18
2
389.15
1
b3
7.1
2990






DSWLDK
20
sp|P04278|SHBG_HUMAN
382.18
2
648.34
1
y5
7.1
10216






DSWLDK
20
sp|P04278|SHBG_HUMAN
382.18
2
561.30
1
y4
7.1
59060






DSWLDK
20
sp|P04278|SHBG_HUMAN
382.18
2
375.22
1
y3
7.1
75758






DSWLDK
20
sp|P04278|SHBG_HUMAN
382.18
2
262.14
1
y2
7.1
71394






DSWLDK
20
sp|P04278|SHBG_HUMAN
382.18
2
324.67
2
y5
7.1
11711






DSWLDK
20
sp|P04278|SHBG_HUMAN
382.18
2
281.16
2
y4
7.1
7726






QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
200.10
1
b2
6.84
126856
265599





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
329.15
1
b3
6.84
225724
470069





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
442.23
1
b4
6.8
64901
134361





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
529.26
1
b5
6.84
20563
41566





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
600.30
1
b6
6.88
15019
27276





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
687.33
1
b7
6.84
7335
19406





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
758.37
1
b8
6.84
8226
19758





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
1131.60
1
y11
6.84
80998
171464





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
1002.56
1
y10
6.84
83503
195346





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
889.47
1
y9
6.84
365275
865394





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
802.44
1
y8
6.84
170577
346969





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
731.40
1
y7
6.84
184606
420174





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
644.37
1
y6
6.84
99233
217518





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
573.34
1
y5
6.84
204455
471407





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
476.28
1
y4
6.8
9298






QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
375.24
1
y3
6.8
9116






QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
288.20
1
y2
6.84
7689






QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
566.30
2
y11
6.8
7063






QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
665.85
2
501.78
2
y10
6.84
8043






QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
200.10
1
b2
6.84
4738
70979





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
329.15
1
b3
6.8
8223
26541





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
442.23
1
b4
6.84
9478
15644





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
529.26
1
b5
6.8
6614






QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
600.30
1
b6
6.8
5900
23599





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
687.33
1
b7
6.75
2859






QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
344.17
2
b7
6.84
2682






QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
731.40
1
y7
6.84
7869






QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
644.37
1
y6
6.88
12335






QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
573.34
1
y5
6.84
138213
82159





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
476.28
1
y4
6.8
33434
19037





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
375.24
1
y3
6.88
18686
11795





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
288.20
1
y2
6.8

139993





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
445.24
2
y9
6.84
1789
8675





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
401.72
2
y8
6.75

75276





QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
322.69
2
y6
6.84
4828






QAEISASAPTSLR
21
sp|P04278|SHBG_HUMAN
444.24
3
287.17
2
y5
6.8
99236
33965





SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
248.07
1
b2
9.75
42019
101416


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
363.10
1
b3
9.7
85912
184040


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
462.17
1
b4
9.7
38534
77277


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
591.21
1
b5
9.7
40944
79511


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
678.24
1
b6
9.7
23602
59566


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
792.28
1
b7
9.75
48097
86937


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
946.36
1
b9
9.75
58289
107231


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
1059.44
1
b10
9.7
53017
96052


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
445.17
2
b8
9.75
12607
47034


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
473.68
2
b9
9.7
50063
86740


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
530.22
2
b10
9.7
36838
58848


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
603.76
2
b11
9.7
11442
36577


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
660.30
2
b12
9.75
15913
24059


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
757.35
2
b14
9.7
25030
42298


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
1132.57
1
y10
9.7
110857
213116


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
1035.52
1
y9
9.7
34689
70918


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
978.50
1
y8
9.66
13408
29510


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
877.45
1
y7
9.75
21816
44261


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
749.39
1
y6
9.7
44877
76365


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
678.36
1
y5
9.7
30398
67608


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
549.31
1
y4
9.75
29679
77350


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
288.20
1
y2
9.7

24322


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
878.97
2
y16
9.75
10731
14845


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
671.86
2
y12
9.75
8226
15831


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
615.32
2
y11
9.7
754906
1053051


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
566.79
2
y10
9.7
83146
139155


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
375.20
2
y6
9.7
10192
19233


NLR















SCDVESNPGIFLPPGTQAEF
22
sp|P04278|SHBG_HUMAN
850.08
3
275.16
2
y4
9.79

19761


NLR















DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
229.12
1
b2
10.33

5965





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
326.17
1
b3
10.46

11667





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
454.23
1
b4
10.4

8742





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
551.28
1
b5
10.4

6984





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
688.34
1
b6
10.33

16485





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
759.38
1
b7
10.33

19657





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
888.42
1
b8
10.4

38546





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
1171.55
1
b10
10.4

8234





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
276.14
2
b5
10.52

7732





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
586.28
2
b10
10.46

6088





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
695.33
2
b12
10.46

5961





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
738.85
2
b13
10.4

8373





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
852.90
2
b15
10.4

6596





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
909.45
2
b16
10.27

7093





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
937.96
2
b17
10.4

12049





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
994.50
2
b18
10.4

6720





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
963.55
1
y9
10.46

8243





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
892.51
1
y8
10.4

28277





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
745.45
1
y7
10.4

17877





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
658.41
1
y6
10.33

6455





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
545.33
1
y5
10.33

15214





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
430.30
1
y4
10.4

51478





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
317.22
1
y3
10.4

24348





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
260.20
1
y2
10.4

11287





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
1010.04
2
y18
10.33

67074





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
953.50
2
y17
10.4

226206





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
904.97
2
y16
10.33

7357





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
840.94
2
y15
10.4

137962





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
792.41
2
y14
10.4

11410





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
688.37
2
y12
10.33

12934





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
575.32
2
y10
10.33

3557





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
373.23
2
y7
10.33

16856





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
1067.55
2
215.65
2
y4
10.27

6851





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
229.12
1
b2
10.33

54641





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
888.42
1
b8
10.33

15214





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
1149.63
1
y10
10.33

11157





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
963.55
1
y9
10.33
3928
87243





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
892.51
1
y8
10.38
8027
165351





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
745.45
1
y7
10.33
6318
159006





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
658.41
1
y6
10.33

67207





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
545.33
1
y5
10.33
2393
59596





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
430.30
1
y4
10.38
3584
86992





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
317.22
1
y3
10.33
2390
60223





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
260.20
1
y2
10.33

19028





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
953.50
2
y17
10.38
6828
77604





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
840.94
2
y15
10.38
9905
125911





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
792.41
2
y14
10.33

17238





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
688.37
2
y12
10.4

8880





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
623.85
2
y11
10.38
4778
57062





DIPQPHAEPWAFSLDLGLK
23
sp|P04278|SHBG_HUMAN
712.04
3
446.76
2
y8
10.33

28150





VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
312.23
1
b3
12.14

14018


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
399.26
1
b4
12.09

13357


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
486.29
1
b5
12.09

10441


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
543.31
1
b6
12.14

15143


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
630.35
1
b7
12.17
3930
14951


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
687.37
1
b8
12.13
3925
26904


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
784.42
1
b9
12.09

7900


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
841.44
1
b10
12.13
3930
10719


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
954.53
1
b11
12.13
2903
25772


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
1069.55
1
b12
12.13
4955
16747


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
1182.64
1
b13
12.04
4099
31707


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
535.28
2
b12
12.04

5641


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
936.55
2
b20
12.04

13640


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
1190.79
1
y11
12.13
17593
91335


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
1093.73
1
y10
12.09

8089


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
980.65
1
y9
12.09

21070


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
881.58
1
y8
12.08
18961
80043


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
768.50
1
y7
12.13
18444
102065


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
711.48
1
y6
12.08
3074
21355


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
598.39
1
y5
12.08
47057
292259


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
501.34
1
y4
12.09

3760


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
388.26
1
y3
12.08
2732
21073


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
260.20
1
y2
12.04
3074
11477


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
1087.64
2
y22
12.08
3077
21073


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
1031.10
2
y21
12.09

15240


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
987.59
2
y20
12.09

8371


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
944.07
2
y19
12.13
3415
11761


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
915.56
2
y18
12.14

8558


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
872.04
2
y17
12.13
4609
19566


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
843.53
2
y16
12.04

15899


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
766.49
2
y14
12.14

4141


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
652.44
2
y12
12.14

8088


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
1186.71
2
441.29
2
y8
12.09

6774


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
312.23
1
b3
12.13
42888
65949


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
399.26
1
b4
12.13
21029
43367


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
486.29
1
b5
12.07
7286
7151


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
543.31
1
b6
12.18
9370
12223


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
630.35
1
b7
12.13
18326
24266


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
687.37
1
b8
12.13
19156
21728


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
784.42
1
b9
12.13
11660
23424


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
841.44
1
b10
12.13
16347
20317


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
954.53
1
b11
12.13
15821
19379


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
1069.55
1
b12
12.07
46738
71574


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
1182.64
1
b13
12.13
47885
64624


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
421.22
2
b10
12.13
5101
13732


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
477.77
2
b11
12.18
5206
6681


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
535.28
2
b12
12.13
11661
18625


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
591.82
2
b13
12.07
30187
42141


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
640.35
2
b14
12.13
52254
63769


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
696.89
2
b15
12.13
16655
17121


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
746.42
2
b16
12.13
8535
10155


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
936.55
2
b20
12.07
5000
8561


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
1190.79
1
y11
12.13
51215
73554


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
1093.73
1
y10
12.07
23529
31977


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
980.65
1
y9
12.07
51626
77042


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
881.58
1
y8
12.13
153018
225474


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
768.50
1
y7
12.07
369345
512663


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
711.48
1
y6
12.13
64333
87008


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
598.39
1
y5
12.13
329370
537778


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
501.34
1
y4
12.13
10510
16372


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
388.26
1
y3
12.13
30707
60384


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
260.20
1
y2
12.07
18529
33308


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
872.04
2
y17
12.13
4166
6771


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
766.49
2
y14
12.07
12077
14396


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
652.44
2
y12
12.07
7494
10257


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
595.90
2
y11
12.07
33522
42701


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
547.37
2
y10
12.13
3954
4984


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
441.29
2
y8
12.13
7701
15425


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
356.24
2
y6
12.07
6871
8751


LQLK















VVLSSGSGPGLDLPLVLGLP
24
sp|P04278|SHBG_HUMAN
791.48
3
299.70
2
y5
12.07
7701
9689


LQLK















VVLSQGSK
25
sp|P04278|SHBG_HUMAN
409.24
2
312.23
1
b3
5.25
14004
16657





VVLSQGSK
25
sp|P04278|SHBG_HUMAN
409.24
2
584.34
1
b6
5.22

9128





VVLSQGSK
25
sp|P04278|SHBG_HUMAN
409.24
2
718.41
1
y7
5.25
101369
154048





VVLSQGSK
25
sp|P04278|SHBG_HUMAN
409.24
2
619.34
1
y6
5.25
860577
1157529





VVLSQGSK
25
sp|P04278|SHBG_HUMAN
409.24
2
506.26
1
y5
5.21
168229
273074





VVLSQGSK
25
sp|P04278|SHBG_HUMAN
409.24
2
419.22
1
y4
5.25
40477
58906





VVLSQGSK
25
sp|P04278|SHBG_HUMAN
409.24
2
291.17
1
y3
5.25
56277
98421





VVLSQGSK
25
sp|P04278|SHBG_HUMAN
409.24
2
234.14
1
y2
5.3
18448
21652





LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
229.12
1
b2
7.22
175928






LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
328.19
1
b3
7.22
30537
50598





LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
443.21
1
b4
7.22
24914






LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
571.27
1
b5
7.18
8188






LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
642.31
1
b6
7.06

27320





LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
869.44
1
b8
7.06

22459





LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
435.22
2
b8
7.06

24039





LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
930.46
1
y8
7.22
66345
99621





LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
815.44
1
y7
7.22
128600
224769





LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
716.37
1
y6
7.22
176273
329489





LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
601.34
1
y5
7.22
112569
239451





LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
473.28
1
y4
7.18
84667
185259





LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
402.25
1
y3
7.18
69746
100254





LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
289.16
1
y2
7.22
55177
96879





LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
408.22
2
y7
7.18
21442






LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
358.69
2
y6
7.18
4997






LDVDQALNR
26
sp|P04278|SHBG_HUMAN
522.28
2
201.63
2
y3
7.22
10549






ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
256.17
1
b3
12.18

79381


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
369.25
1
b4
12.12

20134


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
466.30
1
b5
12.23

11181


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
676.44
1
b7
12.12

14124


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
733.46
1
b8
12.07

12965


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
846.54
1
b9
12.18

19293


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
917.58
1
b10
12.18

14550


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
282.18
2
b6
12.07

7805


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
1069.59
1
y9
12.12

6538


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
842.46
1
y7
12.07

8531


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
656.38
1
y6
12.23

14766


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
585.35
1
y5
12.18

9813


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
457.25
1
y4
12.18

45762


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
1063.14
2
y20
12.12

8012


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
1027.62
2
y19
12.07

17082


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
971.08
2
y18
12.12

214978


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
922.55
2
y17
12.12

7694


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
1155.20
2
478.28
2
y8
12.12

7702


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
256.17
1
b3
12.07

842606


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
369.25
1
b4
12.12

82661


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
466.30
1
b5
12.07

17819


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
563.36
1
b6
12.02

10122


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
733.46
1
b8
12.12

9487


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
282.18
2
b6
12.07

48813


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
367.23
2
b8
12.07

11705


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
1182.67
1
y10
12.07

25519


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
1069.59
1
y9
12.12

53562


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
955.55
1
y8
12.12

29098


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
842.46
1
y7
12.07

164685


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
656.38
1
y6
12.12

180607


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
585.35
1
y5
12.07

93202


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
457.25
1
y4
12.12

285196


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
360.20
1
y3
12.12

8859


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
232.14
1
y2
12.12

13702


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
1027.62
2
y19
12.07

7692


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
971.08
2
y18
12.07

616149


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
922.55
2
y17
12.12

82239


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
874.02
2
y16
12.12

25832


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
817.48
2
y15
12.07

64945


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
788.97
2
y14
12.12

12867


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
732.43
2
y13
12.07

48079


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
696.91
2
y12
12.07

72642


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
648.38
2
y11
12.12

238495


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
591.84
2
y10
12.12

11281


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
535.30
2
y9
12.12

19196


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
478.28
2
y8
12.07

92887


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
421.74
2
y7
12.12

29947


QGR















ALALPPLGLAPLLNLWAKP
27
sp|P04278|SHBG_HUMAN
770.47
3
293.18
2
y5
12.02

12438


QGR















SHEIWTHSCPQSPGNGTD
28
sp|P04278|SHBG_HUMAN
768.99
3
467.22
1
b4
7.56

7050


ASH















SHEIWTHSCPQSPGNGTD
28
sp|P04278|SHBG_HUMAN
768.99
3
653.30
1
b5
7.46

43014


ASH















SHEIWTHSCPQSPGNGTD
28
sp|P04278|SHBG_HUMAN
768.99
3
446.21
2
b7
7.61

9066


ASH















SHEIWTHSCPQSPGNGTD
28
sp|P04278|SHBG_HUMAN
768.99
3
682.30
2
b11
7.41

6441


ASH















SHEIWTHSCPQSPGNGTD
28
sp|P04278|SHBG_HUMAN
768.99
3
774.34
2
b13
7.46

6544


ASH















SHEIWTHSCPQSPGNGTD
28
sp|P04278|SHBG_HUMAN
768.99
3
942.39
1
y10
7.46

4031


ASH















SHEIWTHSCPQSPGNGTD
28
sp|P04278|SHBG_HUMAN
768.99
3
701.28
1
y7
7.41

8864


ASH















SHEIWTHSCPQSPGNGTD
28
sp|P04278|SHBG_HUMAN
768.99
3
530.22
1
y5
7.41

6044


ASH















SHEIWTHSCPQSPGNGTD
28
sp|P04278|SHBG_HUMAN
768.99
3
429.17
1
y4
7.46

13502


ASH















SHEIWTHSCPQSPGNGTD
28
sp|P04278|SHBG_HUMAN
768.99
3
314.15
1
y3
7.41

19243


ASH















SHEIWTHSCPQSPGNGTD
28
sp|P04278|SHBG_HUMAN
768.99
3
243.11
1
y2
7.51

46537


ASH















SHEIWTHSCPQSPGNGTD
28
sp|P04278|SHBG_HUMAN
768.99
3
664.27
2
y13
7.41

9468


ASH















SHEIWTHSCPQSPGNGTD
28
sp|P04278|SHBG_HUMAN
768.99
3
428.18
2
y9
7.51

13303


ASH















SHEIWTHSCPQSPGNGTD
28
sp|P04278|SHBG_HUMAN
768.99
3
351.15
2
y7
7.46

6446


ASH















SHEIWTHSCPQSPGNGTD
28
sp|P04278|SHBG_HUMAN
768.99
3
215.09
2
y4
7.51

11478


ASH















Different Isoforms












LPAEISASAPTSLR
29
sp|P04278-
706.89
2
211.14
1
b2
10.93

86522




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
706.89
2
282.18
1
b3
10.88

73637




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
706.89
2
411.22
1
b4
10.98

8856




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
706.89
2
682.38
1
b7
10.93

19344




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
706.89
2
840.45
1
b9
10.88

21252




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
706.89
2
937.50
1
b10
10.88

28413




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
706.89
2
341.69
2
b7
10.88

17422




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
706.89
2
385.21
2
b8
10.93

9772




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
706.89
2
573.34
1
y5
10.88

6857




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
706.89
2
476.28
1
y4
10.93

197840




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
706.89
2
288.20
1
y2
10.93

6351




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
706.89
2
445.24
2
y9
10.88

23775




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
706.89
2
287.17
2
y5
10.83

12993




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
211.14
1
b2
10.93

148281




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
282.18
1
b3
10.93

23973




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
411.22
1
b4
10.93

17728




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
524.31
1
b5
10.93

3629




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
682.38
1
b7
10.93

8865




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
840.45
1
b9
10.93

1614




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
937.50
1
b10
10.93

1914




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
341.69
2
b7
10.88

8765




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
385.21
2
b8
10.88

4734




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
469.25
2
b10
10.88

4633




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
563.29
2
b12
10.88

3025




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
644.37
1
y6
10.93

5434




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
476.28
1
y4
10.88

333632




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
288.20
1
y2
10.88

5642




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
650.35
2
y13
10.88

12993




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
566.30
2
y11
10.93

1813




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
445.24
2
y9
10.88

36867




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
366.21
2
y7
10.93

4734




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
322.69
2
y6
10.93

3424




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
287.17
2
y5
10.88

19746




5|SHBG_HUMAN













LPAEISASAPTSLR
29
sp|P04278-
471.60
3
238.64
2
y4
10.83

9876




5|SHBG_HUMAN













TLPPLFA
30
sp|P04278-
379.73
2
312.19
1
b3
5.99

99852




2|SHBG_HUMAN













TLPPLFA
30
sp|P04278-
379.73
2
350.21
1
y3
5.99

830722




2|SHBG_HUMAN













TLPPLFA
30
sp|P04278-
379.73
2
237.12
1
y2
5.99

1013802




2|SHBG_HUMAN













TLPPLFA
30
sp|P04278-
379.73
2
272.66
2
y5
5.99

2760482




2|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
389.13
1
b4
10.84

355452


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
476.16
1
b5
10.84

71118


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
577.21
1
b6
10.84

15469


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
289.11
2
b6
10.84

29667


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
332.62
2
b7
10.84

471567


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
406.16
2
b8
10.84

26243


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
486.17
2
b9
10.84

28271


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
542.72
2
b10
10.84

11031


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
599.74
2
b11
10.84

15214


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
628.25
2
b12
10.84

27636


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
813.35
2
b15
10.84

12932


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
858.46
1
y7
10.84

12672


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
745.37
1
y6
10.84

32451


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
488.26
1
y4
10.84

16233


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
360.20
1
y3
10.84

54774


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
819.40
2
y14
10.84

40433


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
651.82
2
y11
10.9

31186


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
515.26
2
y9
10.78

15092


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
458.24
2
y8
10.78

16351


R

4|SHBG_HUMAN













GEDSSTSFCLNGLWAQGQ
31
sp|P04278-
704.98
3
373.19
2
y6
10.84

39431


R

4|SHBG_HUMAN
























TABLE 19







Proteins with altered serum levels across 17-25 weeks


GA in PTB samples









Protein
Change
Functional Category





THRB
up
coagulation/acute phase response


VTNC
up
cell adhesion/acute phase response


HEMO
up
heme transport/acute phase response


FETUA
up
inflammation/acute phase response


LBP
up
innate immunity/acute phase response


IBP4
up
growth factor regulation


CD14
up
innate immunity


HABP2
up
cell adhesion/migration


INHBC
up
growth factor regulation


CFAB
up
complement/acute phase response


ICAM1
up
cell adhesion/migration


IC1
up
complement/acute phase response


APOH
up
coagulation/autoimmunity


B2MG
up
MHC/immunity


C1S
up*
Complement


APOE
up*
cholesterol metabolism


APOC3
up*
triglyceride metabolism


PEDF
up*
angiogenesis


CATD
up*
ECM remodelling/cell migration


INHBE
up*
growth factor regulation


IBP6
up*
growth factor regulation


PRG2
down
growth factor regulation


SHBG
down
inflammation/steroid metabolism


GELS
down
actin binding/acute phase response


PSG4
down*
growth factor regulation





*Additional proteins limited to weeks 19-21 GA in PTB.













TABLE 20







44 Proteins Meeting Analytical Filters That Were Up- or Down-Regulated in sPTD


vs. Term Controls










Short



Uniprot ID
Name
Protein Name





A2GL_HUMAN
LRG1
Leucine-rich alpha-2-glycoprotein


AFAM_HUMAN
AFM
Afamin


ANGT_HUMAN
AGT
Angiotensinogen


APOC3_HUMAN
APOC3
Apolipoprotein C-III


APOH_HUMAN
APOH
Beta-2-glycoprotein 1


B2MG_HUMAN
B2M
Beta-2-microglobulin


BGH3_HUMAN
TGFBI
Transforming growth factor-beta-induced protein ig-h3


CATD_HUMAN
CTSD
Cathepsin D


CBPN_HUMAN
CPN1
Carboxypeptidase N catalytic chain


CD14_HUMAN
CD14
Monocyte differentiation antigen CD14


CFAB_HUMAN
CFB
Complement factor B


CHL1_HUMAN
CHL1
Neural cell adhesion molecule L1-like protein


CO5_HUMAN
C5
Complement C5


CO6_HUMAN
C6
Complement component C6


CO8A_HUMAN
C8A
Complement component C8 alpha chain


CRIS3_HUMAN
CRISP3
Cysteine-rich secretory protein 3


ENPP2_HUMAN
ENPP2
Ectonucleotide pyrophosphatase/phosphodiesterase family member 2


F13B_HUMAN
F13B
Coagulation factor XIII B chain


FBLN3_HUMAN
EFEMP1
EGF-containing fibulin-like extracellular matrix protein 1


FETUA_HUMAN
AHSG
Alpha-2-HS-glycoprotein


HABP2_HUMAN
HABP2
Hyaluronan-binding protein 2


HEMO_HUMAN
HPX
Hemopexin


HLAG_HUMAN
HLA-G*
HLA class I histocompatibility antigen, alpha chain G


IBP2_HUMAN
IGFBP2
Insulin-like growth factor-binding protein 2


IBP3_HUMAN
IGFBP3
Insulin-like growth factor-binding protein 3


IBP4_HUMAN
IGFBP4
Insulin-like growth factor-binding protein 4


INHBC_HUMAN
INHBC
Inhibin beta C chain


ITIH3_HUMAN
ITIH3
Inter-alpha-trypsin inhibitor heavy chain H3


ITIH4_HUMAN
ITIH4
Inter-alpha-trypsin inhibitor heavy chain H4 N-term


ITIH4_HUMAN
ITIH4
Inter-alpha-trypsin inhibitor heavy chain H4 C-Term


KNG1_HUMAN
KNG1
Kininogen-1


LBP_HUMAN
LBP
Lipopolysaccharide-binding protein


LYAM3_HUMAN
SELP
P-selectin


PAPP1_HUMAN
PAPPA
Pappalysin-1


PEDF_HUMAN
SERPINF1
Pigment epithelium-derived factor


PGRP2_HUMAN
PGLYRP2
N-acetylmuramoyl-L-alanine amidase


PRG2_HUMAN
PRG2
Bone marrow proteoglycan


PSG11_HUMAN
PSG11
Pregnancy-specific beta-1-glycoprotein 11


PSG2_HUMAN
PSG2
Pregnancy-specific beta-1-glycoprotein 2


PSG9_HUMAN
PSG9
Pregnancy-specific beta-1-glycoprotein 9


SHBG_HUMAN
SHBG
Sex hormone-binding globulin


TENX_HUMAN
TNXB
Tenascin-X


TIE1_HUMAN
TIE1
Tyrosine-protein kinase receptor Tie-1


VTNC_HUMAN
VTN
Vitronectin





*peptide surrogate for HLA-G was not unique to this protein.



















TABLE 21







SEQ
Trans-
MARS14

SEQ




ID
ition
Depleted

ID


Protein
Transition
NO:
Type
Protein
SIS Transition
NO:





















A1AG1_HUMAN
NWGLSVYADKPETTK_570.3_301.1
32
quant
Depleted
IS_NWGLSVYADKPETTK_573.0_301.1
32





A1AG1_HUMAN
NWGLSVYADKPETTK_570.3_818.4
32
qual
Depleted
IS_NWGLSVYADKPETTK_573.0_826.4
32





A1AT_HUMAN
LSITGTYDLK_555.8_696.4
33
qual
Depleted
IS_LSITGTYDLK_559.8_704.4
33





A1AT_HUMAN
LSITGTYDLK_555.8_797.4
33
quant
Depleted
IS_LSITGTYDLK_559.8_805.4
33





A2GL_HUMAN
DLLLPQPDLR_590.3_229.1
34
qual

IS_DLLLPQPDLR_595.3_229.1
34





A2GL_HUMAN
DLLLPQPDLR_590.3_725.4
34
quant

IS_DLLLPQPDLR_595.3_735.4
34





A2GL_HUMAN
LQVLGK_329.2_204.1
35
qual








A2GL_HUMAN
LQVLGK_329.2_416.3
35
quant








A2MG_HUMAN
LHTEAQIQEEGTVVELTGR_704.0_674.4
36
qual
Depleted
IS_LHTEAQIQEEGTVVELTGR_707.4_680.3
36





A2MG_HUMAN
LHTEAQIQEEGTVVELTGR_704.0_680.3
36
quant
Depleted
IS_LHTEAQIQEEGTVVELTGR_707.4_684.4
36





AFAM_HUMAN
DADPDTFFAK_563.8_302.1
37
qual

IS_DADPDTFFAK_567.8_302.1
37





AFAM_HUMAN
DADPDTFFAK_563.8_825.4
37
quant

IS_DADPDTFFAK_567.8_833.4
37





AFAM_HUMAN
HFQNLGK_422.2_285.1
38
quant

IS_HFQNLGK_426.2_285.1
38





AFAM_HUMAN
HFQNLGK_422.2_527.2
38
qual

IS_HFQNLGK_426.2_527.2
38





ALBU_HUMAN
LVTDLTK_395.2_213.2
39
qual
Depleted
IS_LVTDLTK_399.2_213.2
39





ALBU_HUMAN
LVTDLTK_395.2_577.3
39
quant
Depleted
IS_LVTDLTK_399.2_585.3
39





ALS_HUMAN
IRPHTFTGLSGLR_485.6_432.3
40
quant

IS_IRPHTFTGLSGLR_488.9_442.3
40





ALS_HUMAN
IRPHTFTGLSGLR_485.6_545.3
40
qual

IS_IRPHTFTGLSGLR_488.9_555.3
40





ALS_HUMAN
LEYLLLSR_503.8_447.3
41
qual








ALS_HUMAN
LEYLLLSR_503.8_745.4
41
quant








ANGT_HUMAN
DPTFIPAPIQAK_433.2_461.2
42
qual

IS_DPTFIPAPIQAK_435.9_461.2
42





ANGT_HUMAN
DPTFIPAPIQAK_433.2_556.3
42
quant

IS_DPTFIPAPIQAK_435.9_564.4
42





ANGT_HUMAN
SLDFTELDVAAEK_719.4_316.2
43
quant








ANGT_HUMAN
SLDFTELDVAAEK_719.4_874.5
43
qual








APOA1_HUMAN
AKPALEDLR_506.8_288.2
44
qual
Depleted
IS_AKPALEDLR_511.8_298.2
44





APOA1_HUMAN
AKPALEDLR_506.8_813.5
44
quant
Depleted
IS_AKPALEDLR_511.8_823.5
44





APOA2_HUMAN
SPELQAEAK_486.8_659.4
45
qual
Depleted
IS_SPELQAEAK_490.8_667.4
45





APOA2_HUMAN
SPELQAEAK_486.8_788.4
45
quant
Depleted
IS_SPELQAEAK_490.8_796.4
45





APOC3_HUMAN
DYWSTVK_449.7_347.2
46
qual








APOC3_HUMAN
DYWSTVK_449.7_620.3
46
quant








APOC3_HUMAN
GWVTDGFSSLK_598.8_854.4
47
quant

IS_GWVTDGFSSLK_602.8_862.4
47





APOC3_HUMAN
GWVTDGFSSLK_598.8_953.5
47
qual

IS_GWVTDGFSSLK_602.8_961.5
47





APOH_HUMAN
ATVVYQGER_511.8_652.3
48
quant

IS_ATVVYQGER_516.8_662.3
48





APOH_HUMAN
ATVVYQGER_511.8_751.4
48
qual

IS_ATVVYQGER_516.8_761.4
48





APOH_HUMAN
EHSSLAFWK_552.8_267.1
49
qual








APOH_HUMAN
EHSSLAFWK_552.8_838.4
49
quant








B2MG_HUMAN
VEHSDLSFSK_383.5_234.1
50
qual

IS_VEHSDLSFSK_386.2_242.2
50





B2MG_HUMAN
VEHSDLSFSK_383.5_468.2
50
quant

IS_VEHSDLSFSK_386.2_476.3
50





B2MG_HUMAN
VNHVTLSQPK_374.9_244.2
51
qual

IS_VNHVTLSQPK_377.6_252.2
51





B2MG_HUMAN
VNHVTLSQPK_374.9_459.3
51
quant

IS_VNHVTLSQPK_377.6_467.3
51





BGH3_HUMAN
LTLLAPLNSVFK_658.4_804.5
52
quant

IS_LTLLAPLNSVFK_662.4_812.5
52





BGH3_HUMAN
LTLLAPLNSVFK_658.4_875.5
52
qual

IS_LTLLAPLNSVFK_662.4_883.5
52





BGH3_HUMAN
VLTDELK_409.2_605.3
53
quant








BGH3_HUMAN
VLTDELK_409.2_718.4
53
qual








C163A_HUMAN
INPASLDK_429.2_462.3
54
qual

IS_INPASLDK_433.2_470.3
54





C163A_HUMAN
INPASLDK_429.2_630.4
54
quant

IS_INPASLDK_433.2_638.4
54





C1QB_HUMAN
VPGLYYFTYHASSR_554.3_420.2
55
quant

IS_VPGLYYFTYHASSR_557.6_430.2
55





C1QB_HUMAN
VPGLYYFTYHASSR_554.3_720.3
55
qual

IS_VPGLYYFTYHASSR_557.6_730.4
55





CAH1_HUMAN
GGPFSDSYR_493.2_627.3
56
quant

IS_GGPFSDSYR_498.2_637.3
56





CAH1_HUMAN
GGPFSDSYR_493.2_774.3
56
qual

IS_GGPFSDSYR_498.2_784.3
56





CATD_HUMAN
VGFAEAAR_410.7_517.3
57
qual

IS_VGFAEAAR_415.7_527.3
57





CATD_HUMAN
VGFAEAAR_410.7_721.4
57
quant

IS_VGFAEAAR_415.7_731.4
57





CATD_HUMAN
VSTLPAITLK_521.8_642.4
58
quant

IS_VSTLPAITLK_525.8_650.4
58





CATD_HUMAN
VSTLPAITLK_521.8_856.6
58
qual

IS_VSTLPAITLK_525.8_864.6
58





CBPN_HUMAN
EALIQFLEQVHQGIK_585.0_526.3
59
qual

IS_EALIQFLEQVHQGIK_587.7_530.3
59





CBPN_HUMAN
EALIQFLEQVHQGIK_585.0_720.4
59
quant

IS_EALIQFLEQVHQGIK_587.7_724.4
59





CBPN_HUMAN
NNANGVDLNR_543.8_229.1
60
quant

IS_NNANGVDLNR_548.8_229.1
60





CBPN_HUMAN
NNANGVDLNR_543.8_858.4
60
qual

IS_NNANGVDLNR_548.8_868.5
60





CD14_HUMAN
LTVGAAQVPAQLLVGALR_8890_416.3
61
quant

IS_LTVGAAQVPAQLLVGALR_894.0_426.3
61





CD14_HUMAN
LTVGAAQVPAQLLVGALR_889.0_628.4
61
qual

IS_LTVGAAQVPAQLLVGALR_894.0_638.4
61





CD14_HUMAN
SWLAELQQWLKPGLK_599.7_274.1
62
quant

IS_SWLAELQQWLKPGLK_602.3_274.1
62





CD14_HUMAN
SWLAELQQWLKPGLK_599.7_670.4
62
qual

IS_SWLAELQQWLKPGLK_602.3_674.4
62





CFAB_HUMAN
VSEADSSNADWVTK_754.9_347.2
63
quant








CFAB_HUMAN
VSEADSSNADWVTK_754.9_533.3
63
qual








CFAB_HUMAN
YGLVTYATYPK_638.3_334.2
64
qual

IS_YGLVTYATYPK_642.3_334.2
64





CFAB_HUMAN
YGLVTYATYPK_638.3_843.4
64
quant

IS_YGLVTYATYPK_642.3_851.4
64





CHL1_HUMAN
TAVTANLDIR_537.3_288.2
65
qual








CHL1_HUMAN
TAVTANLDIR_537.3_802.4
65
quant








CHL1_HUMAN
VIAVNEVGR_478.8_574.3
66
qual

IS_VIAVNEVGR_483.8_584.3
66





CHL1_HUMAN
VIAVNEVGR_478.8_744.4
66
quant

IS_VIAVNEVGR_483.8_754.4
66





CLUS_HUMAN
ASSIIDELFQDR_697.4_678.4
67
qual

IS_ASSIIDELFQDR_702.4_688.4
67





CLUS_HUMAN
ASSIIDELFQDR_697.4_922.4
67
quant

IS_ASSIIDELFQDR_702.4_932.4
67





CLUS_HUMAN
LFDSDPITVTVPVEVSR_937.5_1086.6
68
quant

IS_LFDSDPITVTVPVEVSR_942.5_1096.6
68





CLUS_HUMAN
LFDSDPITVTVPVEVSR_937.5_985.6
68
qual

IS_LFDSDPITVTVPVEVSR_942.5_995.6
68





CO3_HUMAN
IHWESASLLR_606.3_251.2
69
quant
Depleted
IS_IHWESASLLR_611.3_251.2
69





CO3_HUMAN
IHWESASLLR_606.3_437.2
69
qual
Depleted
IS_IHWESASLLR_611.3_437.2
69





CO5_HUMAN
TLLPVSKPEIR_418.3_288.2
70
qual

IS_TLLPVSKPEIR_421.6_298.2
70





CO5_HUMAN
TLLPVSKPEIR_418.3_514.3
70
quant

IS_TLLPVSKPEIR_421.6_524.3
70





CO5_HUMAN
VFQFLEK_455.8_276.2
71
qual

IS_VFQFLEK_459.8_284.2
71





CO5_HUMAN
VFQFLEK_455.8_811.4
71
quant

IS_VFQFLEK_459.8_819.4
71





CO6_HUMAN
ALNHLPLEYNSALYSR_621.0_538.3
72
quant

IS_ALNHLPLEYNSALYSR_624.3_548.3
72





CO6_HUMAN
ALNHLPLEYNSALYSR_621.0_696.4
72
qual

IS_ALNHLPLEYNSALYSR_624.3_706.4
72





CO6_HUMAN
SEYGAALAWEK_612.8_788.4
73
qual








CO6_HUMAN
SEYGAALAWEK_612.8_845.5
73
quant








CO8A_HUMAN
SLLQPNK_400.2_358.2
74
qual

IS_SLLQPNK_404.2_366.2
74





CO8A_HUMAN
SLLQPNK_400.2_599.4
74
quant

IS_SLLQPNK_404.2_607.4
74





CO8A_HUMAN
YHFEALADTGISSEFYDNANDLL
75
quant






SK_940.8_761.4










CO8A_HUMAN
YHFEALADTGISSEFYDNANDLL
75
qual






SK_940.8_874.5










CO8B_HUMAN
QALEEFQK_496.8_551.3
76
qual

IS_QALEEFQK_500.8_559.3
76





CO8B_HUMAN
QALEEFQK_496.8_680.3
76
quant

IS_QALEEFQK_500.8_688.3
76





CO8B_HUMAN
SGFSFGFK_438.7_585.3
77
quant








CO8B_HUMAN
SGFSFGFK_438.7_732.4
77
qual








CRIS3_HUMAN
AVSPPAR_349.2_258.1
78
qual

IS_AVSPPAR_354.2_258.1
78





CRIS3_HUMAN
AVSPPAR_349.2_343.2
78
quant

IS_AVSPPAR_354.2_353.2
78





CRIS3_HUMAN
YEDLYSNCK_596.3_784.4
79
qual

IS_YEDLYSNCK_600.3_792.4
79





CRIS3_HUMAN
YEDLYSNCK_596.3_899.4
79
quant

IS_YEDLYSNCK_600.3_907.4
79





CSH_HUMAN*
AHQLAIDTYQEFEETYIPK_766.0_
80
qual

IS_AHQLAIDTYQEFEETYIPK_768.7_
80



521.3



521.3






CSH_HUMAN*
AHQLAIDTYQEFEETYIPK_766.0_
80
quant

IS_AHQLAIDTYQEFEETYIPK_768.7_
80



634.4



634.4






CSH_HUMAN*
ISLLLIESWLEPVR_834.5_371.2
81
qual

IS_ISLLLIESWLEPVR_839.5_381.2
81





CSH_HUMAN*
ISLLLIESWLEPVR_834.5_500.3
81
quant

IS_ISLLLIESWLEPVR_839.5_510.3
81





ENPP2_HUMAN
TEFLSNYLTNVDDITLVPGTLGR_
82
quant

IS_TEFLSNYLTNVDDITLVPGTLGR_
82



846.8_600.3



850.1_610.4






ENPP2_HUMAN
TEFLSNYLTNVDDITLVPGTLGR
82
qual

IS_TEFLSNYLTNVDDITLVPGTLGR_
82



846.8_699.4



850.1_709.4






ENPP2_HUMAN
TYLHTYESEI_628.3_1124.5
83
quant

IS_TYLHTYESEI_631.8_1124.5
83





ENPP2_HUMAN
TYLHTYESEI_628.3_908.4
83
qual

IS_TYLHTYESEI_631.8_908.4
83





F13B_HUMAN
GDTYPAELYITGSILR_885.0_1332.8
84
quant

IS_GDTYPAELYITGSILR_890.0_1342.8
84





F13B_HUMAN
GDTYPAELYITGSILR_885.0_274.1
84
qual

IS_GDTYPAELYITGSILR_890.0_274.1
84





F13B_HUMAN
IAQYYYTFK_598.8_395.2
85
qual








F13B_HUMAN
IAQYYYTFK_598.8_884.4
85
quant








FBLN1_HUMAN
TGYYFDGISR_589.8_694.4
86
qual

IS_TGYYFDGISR_594.8_704.4
86





FBLN1_HUMAN
TGYYFDGISR_589.8_857.4
86
quant

IS_TGYYFDGISR_594.8_867.4
86





FBLN3_HUMAN
IPSNPSHR_303.2_496.3
87
quant

IS_IPSNPSHR_306.5_506.3
87





FBLN3_HUMAN
IPSNPSHR_303.2_610.3
87
qual

IS_IPSNPSHR_306.5_620.3
87





FETUA_HUMAN
FSVVYAK_407.2_381.2
88
qual

IS_FSVVYAK_411.2_389.2
88





FETUA_HUMAN
FSVVYAK_407.2_579.4
88
quant

IS_FSVVYAK_411.2_587.4
88





FETUA_HUMAN
HTLNQIDEVK_598.8_951.5
89
qual

IS_HTLNQIDEVK_602.8_951.5
89





FETUA_HUMAN
HTLNQIDEVK_598.8_958.5
89
quant

IS_HTLNQIDEVK_602.8_966.5
89





FIBA_HUMAN
ESSSHHPGIAEFPSR_546.6_353.7
90
qual
Depleted
IS_ESSSHHPGIAEFPSR_549.9_358.7
90





FIBA_HUMAN
ESSSHHPGIAEFPSR_546.6_502.2
90
quant
Depleted
IS_ESSSHHPGIAEFPSR_549.9_502.2
90





FIBB_HUMAN
QGFGNVATNTDGK_654.8_319.2
91
qual
Depleted
IS_QGFGNVATNTDGK_658.8_327.2
91





FIBB_HUMAN
QGFGNVATNTDGK_654.8_706.3
91
quant
Depleted
IS_QGFGNVATNTDGK_658.8_714.4
91





HABP2_HUMAN
FLNWIK_410.7_560.3
92
quant

IS_FLNWIK_414.7_568.3
92





HABP2_HUMAN
FLNWIK_410.7_673.4
92
qual

IS_FLNWIK_414.7_681.4
92





HEMO_HUMAN
NFPSPVDAAFR_610.8_775.4
93
qual

IS_NFPSPVDAAFR_615.8_785.4
93





HEMO_HUMAN
NFPSPVDAAFR_610.8_959.5
93
quant

IS_NFPSPVDAAFR_615.8_969.5
93





HEMO_HUMAN
SGAQATWTELPWPHEK_613.3_510.3
94
qual








HEMO_HUMAN
SGAQATWTELPWPHEK_613.3_793.4
94
quant








HLAG_HUMAN*
WAAVVVPSGEEQR_714.4_428.2
95
qual

IS_WAAVVVPSGEEQR_719.4_428.2
95





HLAG_HUMAN*
WAAVVVPSGEEQR_714.4_802.4
95
quant

IS_WAAVVVPSGEEQR_719.4_812.4
95





HPT_HUMAN
TEGDGVYTLNNEK_720.3_403.2
96
qual
Depleted
IS_TEGDGVYTLNNEK_724.3_403.2
96





HPT_HUMAN
TEGDGVYTLNNEK_720.3_881.4
96
quant
Depleted
IS_TEGDGVYTLNNEK_724.3_889.5
96





IBP1_HUMAN
VVESLAK_373.2_547.3
97
quant

IS_VVESLAK_377.2_555.3
97





IBP1_HUMAN
VVESLAK_373.2_646.4
97
qual

IS_VVESLAK_377.2_654.4
97





IBP2_HUMAN
LIQGAPTIR_484.8_227.2
98
qual

IS_LIQGAPTIR_489.8_227.2
98





IBP2_HUMAN
LIQGAPTIR_484.8_742.4
98
quant

IS_LIQGAPTIR_489.8_752.4
98





IBP3_HUMAN
FLNVLSPR_473.3_472.3
99
qual

IS_FLNVLSPR_478.3_482.3
99





IBP3_HUMAN
FLNVLSPR_473.3_685.4
99
quant

IS_FLNVLSPR_478.3_695.4
99





IBP3_HUMAN
YGQPLPGYTTK_612.8_666.3
100
qual

IS_YGQPLPGYTTK_616.8_674.4
100





IBP3_HUMAN
YGQPLPGYTTK_612.8_876.5
100
quant

IS_YGQPLPGYTTK_616.8_884.5
100





IBP4_HUMAN
QCHPALDGQR_394.5_360.2
2
qual

IS_QCHPALDGQR_397.9_370.2
2





IBP4_HUMAN
QCHPALDGQR_394.5_475.2
2
quant

IS_QCHPALDGQR_397.9_485.2
2





IBP6_HUMAN
GAQTLYVPNCDHR_510.9_312.2
101
qual

IS_GAQTLYVPNCDHR_514.2_322.2
101





IBP6_HUMAN
GAQTLYVPNCDHR_510.9_637.8
101
quant

IS_GAQTLYVPNCDHR_514.2_642.8
101





IBP6_HUMAN
HLDSVLQQLQTEVYR_610.3_667.3
102
qual

IS_HLDSVLQQLQTEVYR_613.7_677.3
102





IBP6_HUMAN
HLDSVLQQLQTEVYR_610.3_795.4
102
quant

IS_HLDSVLQQLQTEVYR_613.7_805.4
102





IGF2_HUMAN
GIVEECCFR_585.3_771.3
103
qual

IS_GIVEECCFR_590.3_781.3
103





IGF2_HUMAN
GIVEECCFR_585.3_900.3
103
quant

IS_GIVEECCFR_590.3_910.3
103





IGF2_HUMAN
SCDLALLETYCATPAK_906.9_1040.5
104
qual








IGF2_HUMAN
SCDLALLETYCATPAK_906.9_1153.6
104
quant








IGHG3_HUMAN
ALPAPIEK_419.8_327.7
105
quant
Depleted
IS_ALPAPIEK_423.8_331.7
105





IGHG3_HUMAN
ALPAPIEK_419.8_654.4
105
qual
Depleted
IS_ALPAPIEK_423.8_662.4
105





IGHM_HUMAN
GFPSVLR_388.2_286.2
106
quant
Depleted
IS_GFPSVLR_393.2_291.2
106





IGHM_HUMAN
GFPSVLR_388.2_571.4
106
qual
Depleted
IS_GFPSVLR_393.2_581.4
106





INHBC_HUMAN
LDFHFSSDR_375.2_448.2
107
qual

IS_LDFHFSSDR_378.5_453.2
107





INHBC_HUMAN
LDFHFSSDR_375.2_611.3
107
quant

IS_LDFHFSSDR_378.5_621.3
107





IS_Recon
IS_ASSILAT_662.4_313.1
108
qual








IS_Recon
IS_ASSILAT_662.4_359.2
108
quant








IS_Recon
IS_ELWFSDDPDVTK_726.3_559.3
109
quant








IS_Recon
IS_ELWFSDDPDVTK_726.3_876.4
109
qual








IS_Recon
IS_NVDQSLLELHK_432.6_397.3
110
quant








IS_Recon
IS_NVDQSLLELHK_432.6_639.4
110
qual








ITIH3_HUMAN
ALDLSLK_380.2_185.1
111
qual

IS_ALDLSLK_384.2_185.1
111





ITIH3_HUMAN
ALDLSLK_380.2_575.3
111
quant

IS_ALDLSLK_384.2_583.4
111





ITIH4_HUMAN
ILDDLSPR_464.8_587.3
112
qual

IS_ILDDLSPR_469.8_597.3
112





ITIH4_HUMAN
ILDDLSPR_464.8_702.3
112
quant

IS_ILDDLSPR_469.8_712.4
112





ITIH4_HUMAN
NPLVWVHASPEHVVVTR_647.4_325.2
113
quant

IS_NPLVWVHASPEHVVVTR_650.7_325.2
113





ITIH4_HUMAN
NPLVWVHASPEHVVVTR_647.4_936.5
113
qual

IS_NPLVWVHASPEHVVVTR_650.7_946.5
113





ITIH4_HUMAN
QLGLPGPPDVPDHAAYHPF_676.7_263.1
114
quant

IS_QLGLPGPPDVPDHAAYHPF_680.0_273.2
114





ITIH4_HUMAN
QLGLPGPPDVPDHAAYHPF_676.7_299.2
114
qual

IS_QLGLPGPPDVPDHAAYHPF_680.0_299.2
114





ITIH4_HUMAN
VRPQQLVK_484.3_609.4
115
quant








ITIH4_HUMAN
VRPQQLVK_484.3_722.4
115
qual








KNG1_HUMAN
DIPTNSPELEETLTHTITK_713.7_756.4
116
quant

IS_DIPTNSPELEETLTHTITK_716.4_760.4
116





KNG1_HUMAN
DIPTNSPELEETLTHTITK_713.7_799.9
116
qual

IS_DIPTNSPELEETLTHTITK_716.4_803.9
116





KNG1_HUMAN
QVVAGLNFR_502.3_606.3
117
qual

IS_QVVAGLNFR_507.3_616.3
117





KNG1_HUMAN
QVVAGLNFR_502.3_677.4
117
quant

IS_QVVAGLNFR_507.3_687.4
117





LBP_HUMAN
ITGFLKPGK_320.9_301.2
118
quant

IS_ITGFLKPGK_323.5_309.2
118





LBP_HUMAN
ITGFLKPGK_320.9_429.3
118
qual

IS_ITGFLKPGK_323.5_437.3
118





LBP_HUMAN
ITLPDFTGDLR_624.3_288.2
119
qual

IS_ITLPDFTGDLR_629.3_298.2
119





LBP_HUMAN
ITLPDFTGDLR_624.3_920.5
119
quant

IS_ITLPDFTGDLR_629.3_930.5
119





LYAM3_HUMAN*
SYYWIGIR_529.3_644.4
120
qual

IS_SYYWIGIR_534.3_654.4
120





LYAM3_HUMAN*
SYYWIGIR_529.3_807.5
120
quant

IS_SYYWIGIR_534.3_817.5
120





NCAM1_HUMAN
GLGEISAASEFK_604.8_357.2
121
qual

IS_GLGEISAASEFK_608.8_357.2
121





NCAM1_HUMAN
GLGEISAASEFK_604.8_739.4
121
quant

IS_GLGEISAASEFK_608.8_747.4
121





PAPP1_HUMAN
DIPHWLNPTR_416.9_373.2
122
quant

IS_DIPHWLNPTR_420.2_383.2
122





PAPP1_HUMAN
DIPHWLNPTR_416.9_600.4
122
qual

IS_DIPHWLNPTR_420.2_610.4
122





PAPP1_HUMAN
LDGSTHLNIFFAK_488.3_739.4
123
quant








PAPP1_HUMAN
LDGSTHLNIFFAK_488.3_852.5
123
qual








PEDF_HUMAN
LQSLFDSPDFSK_692.3_329.2
124
qual

IS_LQSLFDSPDFSK_696.4_329.2
124





PEDF_HUMAN
LQSLFDSPDFSK_692.3_942.4
124
quant

IS_LQSLFDSPDFSK_696.4_950.4
124





PEDF_HUMAN
TVQAVLTVPK_528.3_428.3
125
qual

IS_TVQAVLTVPK_532.3_432.3
125





PEDF_HUMAN
TVQAVLTVPK_528.3_855.5
125
quant

IS_TVQAVLTVPK_532.3_863.5
125





PGRP2_HUMAN
AGLLRPDYALLGHR_518.0_369.2
126
quant

IS_AGLLRPDYALLGHR_521.3_379.2
126





PGRP2_HUMAN
AGLLRPDYALLGHR_518.0_595.4
126
qual

IS_AGLLRPDYALLGHR_521.3_605.4
126





PGRP2_HUMAN
DGSPDVTTADIGANTPDATK_973.5_
127
quant






531.3










PGRP2_HUMAN
DGSPDVTTADIGANTPDATK_973.5_
127
qual






844.4










PRDX2_HUMAN
GLFIIDGK_431.8_319.2
128
qual

IS_GLFIIDGK_435.8_327.2
128





PRDX2_HUMAN
GLFIIDGK_431.8_545.3
128
quant

IS_GLFIIDGK_435.8_553.3
128





PRG2_HUMAN
WNFAYWAAHQPWSR_607.3_545.3
129
quant

IS_WNFAYWAAHQPWSR_610.6_555.3
129





PRG2_HUMAN
WNFAYWAAHQPWSR_607.3_673.3
129
qual

IS_WNFAYWAAHQPWSR_610.6_683.3
129





PSG1_HUMAN
DLYHYITSYVVDGEIIIYGPAYSGR_
130
qual






955.5_650.3










PSG1_HUMAN
DLYHYITSYVVDGEIIIYGPAYSGR_
130
quant






955.5_707.3










PSG1_HUMAN
FQLPGQK_409.2_276.1
131
quant

IS_FQLPGQK_413.2_276.1
131





PSG1_HUMAN
FQLPGQK_409.2_429.2
131
qual

IS_FQLPGQK_413.2_437.3
131





PSG11_HUMAN
LFIPQITPK_528.8_261.2
132
qual

IS_LFIPQITPK_532.8_261.2
132





PSG11_HUMAN
LFIPQITPK_528.8_683.4
132
quant

IS_LFIPQITPK_532.8_691.4
132





PSG2_HUMAN
IHPSYTNYR_384.2_338.2
133
qual

IS_IHPSYTNYR_387.5_348.2
133





PSG2_HUMAN
IHPSYTNYR_384.2_452.2
133
quant

IS_IHPSYTNYR_387.5_462.2
133





PSG3_HUMAN
VSAPSGTGHLPGLNPL_758.9_229.2
134
quant

IS_VSAPSGTGHLPGLNPL_762.4_236.2
134





PSG3_HUMAN
VSAPSGTGHLPGLNPL_758.9_610.4
134
qual

IS_VSAPSGTGHLPGLNPL_762.4_617.4
134





PSG9_HUMAN
DVLLLVHNLPQNLPGYFWYK_810.4_
135
qual

IS_DVLLLVHNLPQNLPGYFWYK_813.1_
135



328.2



328.2






PSG9_HUMAN
DVLLLVHNLPQNLPGYFWYK_810.4_
135
quant

IS_DVLLLVHNLPQNLPGYFWYK_813.1_
135



960.5



968.5






PSG9_HUMAN
LFIPQITR_494.3_614.4
136
quant

IS_LFIPQITR_499.3_624.4
136





PSG9_HUMAN
LFIPQITR_494.3_727.4
136
qual

IS_LFIPQITR_499.3_737.5
136





PTGDS_HUMAN
GPGEDFR_389.2_322.2
137
qual

IS_GPGEDFR_394.2_332.2
137





PTGDS_HUMAN
GPGEDFR_389.2_623.3
137
quant

IS_GPGEDFR_394.2_633.3
137





SHBG_HUMAN
ALALPPLGLAPLLNLWAKPQGR_770.5_
27
quant






256.2










SHBG_HUMAN
ALALPPLGLAPLLNLWAKPQGR_770.5_
27
qual






457.3










SHBG_HUMAN
IALGGLLFPASNLR_481.3_412.3
18
qual

IS_IALGGLLFPASNLR_484.6_412.3
18





SHBG_HUMAN
IALGGLLFPASNLR_481.3_6574
18
quant

IS_IALGGLLFPASNLR_484.6_667.4
18





SOM2_HUMAN*
NYGLLYCFR_603.3_278.1
138
quant

IS_NYGLLYCFR_608.3_278.1
138





SOM2_HUMAN*
NYGLLYCFR_603.3_758.4
138
qual

IS_NYGLLYCFR_608.3_768.4
138





SOM2_HUMAN*
SVEGSCGF_421.7_223.1
139
qual

IS_SVEGSCGF_424.7_223.1
139





SOM2_HUMAN*
SVEGSCGF_421.7_383.1
139
quant

IS_SVEGSCGF_424.7_383.1
139





SPRL1_HUMAN
VLTHSELAPLR_412.6_512.3
140
quant

IS_VLTHSELAPLR_415.9_517.3
140





SPRL1_HUMAN
VLTHSELAPLR_412.6_568.8
140
qual

IS_VLTHSELAPLR_415.9_573.8
140





TENX_HUMAN
LNWEAPPGAFDSFLLR_917.0_414.2
141
qual

IS_LNWEAPPGAFDSFLLR_922.0_414.2
141





TENX_HUMAN
LNWEAPPGAFDSFLLR_917.0_614.3
141
quant

IS_LNWEAPPGAFDSFLLR_922.0_614.3
141





TENX_HUMAN
LSQLSVTDVTTSSLR_803.9_1165.6
142
quant

IS_LSQLSVTDVTTSSLR_808.9_1175.6
142





TENX_HUMAN
LSQLSVTDVTTSSLR_803.9_979.5
142
qual

IS_LSQLSVTDVTTSSLR_808.9_989.5
142





THBG_HUMAN
AVLHIGEK_289.5_292.2
143
qual

IS_AVLHIGEK_292.2_296.2
143





THBG_HUMAN
AVLHIGEK_289.5_348.7
143
quant

IS_AVLHIGEK_292.2_352.7
143





TIE1_HUMAN
VSWSLPLVPGPLVGDGFLLR_708.1_
144
qual

IS_VSWSLPLVPGPLVGDGFLLR_711.4_
144



543.8



548.8






TIE1_HUMAN
VSWSLPLVPGPLVGDGFLLR_708.1_
144
quant

IS_VSWSLPLVPGPLVGDGFLLR_711.4_
144



620.9



625.9






TRFE_HUMAN
YLGEEYVK_500.8_277.2
145
qual
Depleted
IS_YLGEEYVK_504.8_277.2
145





TRFE_HUMAN
YLGEEYVK_500.8_724.4
145
quant
Depleted
IS_YLGEEYVK_504.8_732.4
145





TTHY_HUMAN
VEIDTK_352.7_476.3
146
quant
Depleted
IS_VEIDTK_356.7_484.3
146





TTHY_HUMAN
VEIDTK_352.7_605.3
146
qual
Depleted
IS_VEIDTK_356.7_613.3
146





VTDB_HUMAN
ELPEHTVK_476.8_347.2
147
qual

IS_ELPEHTVK_480.8_355.2
147





VTDB_HUMAN
ELPEHTVK_476.8_710.4
147
quant

IS_ELPEHTVK_480.8_718.4
147





VTDB_HUMAN
VLEPTLK_400.3_458.3
148
qual








VTDB_HUMAN
VLEPTLK_400.3_587.3
148
quant








VTNC_HUMAN
GQYCYELDEK_652.8_1119.5
149
quant

IS_GQYCYELDEK_656.8_1127.5
149





VTNC_HUMAN
GQYCYELDEK_652.8_276.2
149
qual

IS_GQYCYELDEK_656.8_284.2
149





VTNC_HUMAN
VDTVDPPYPR_579.8_629.3
150
quant

IS_VDTVDPPYPR_584.8_639.3
150





VTNC_HUMAN
VDTVDPPYPR_579.8_744.4
150
qual

IS_VDTVDPPYPR_584.8_754.4
150





*Denotes name changes. CSH denotes that the peptide corresponds to both CSH1 and CSH2. HLAG now referred to as HLACI since the peptide is conserved in several class I HLA isotypes. LYAM3 now referred to as LYAM1 because, while the peptide sequence is present in each, it is only derived by trypsin cleavage from LYAM1. SOM2 now referred to as SOM2.CSH as the


peptides are specific to both SOM2 and CSH.

























TABLE 22








119_
119_
119_
119_
126_
126_
126_
126_
133_
133_




SEQ 
132_
132_
132_
1322_
139_
139_
139_
139_
146_
146_




ID
aBMI_
rBMI_
aBMI_
rBMI_
aBMI_
rBMI_
aBMI_
rBMI_
aBMI_
rBMI_


Protein
Transition
NO:
37
37
35
35
37
37
35
35
37
37



























A2GL
A2GL_DLLLPQPDLR
34
0.508
0.511
0.534
0.513
0.568
0.608
0.519
0.522
0.562
0.602





AFAM
AFAM_DADPDTFFAK
37
0.594
0.551
0.601
0.564
0.551
0.558
0.553
0.578
0.549
0.584





AFAM
AFAM_HFQNLGK
38
0.583
0.533
0.589
0.540
0.540
0.534
0.534
0.556
0.554
0.591





ALS
ALS_IRPHTFTGLSGLR
40
0.515
0.509
0.530
0.560
0.507
0.503
0.511
0.504
0.513
0.524





ANGT
ANGT_DPTFIPAPIQAK
42
0.577
0.622
0.666
0.685
0.574
0.608
0.573
0.616
0.507
0.544





APOC3
APOC3_GWVTDGFSSLK
47
0.582
0.576
0.510
0.548
0.605
0.611
0.607
0.593
0.635
0.617





APOH
APOH_ATVVYQGER
48
0.540
0.523
0.577
0.555
0.629
0.612
0.595
0.621
0.606
0.590





B2MG
B2MG_VEHSDLSFSK
50
0.533
0.566
0.502
0.507
0.522
0.505
0.512
0.521
0.558
0.548





B2MG
B2MG_VNHVTLSQPK
51
0.512
0.582
0.517
0.540
0.524
0.501
0.554
0.560
0.593
0.580





BGH3
BGH3_LTLLAPLNSVFK
52
0.562
0.575
0.557
0.610
0.509
0.512
0.531
0.538
0.522
0.557





C163A
C163A_INPASLDK
54
0.520
0.561
0.604
0.617
0.546
0.583
0.594
0.605
0.511
0.515





C1QB
C1QB_VPGLYYFTYHASSR
55
0.573
0.607
0.538
0.573
0.586
0.631
0.565
0.560
0.596
0.588





CAH1
CAH1_GGPFSDSYR
56
0.560
0.560
0.563
0.553
0.500
0.590
0.563
0.605
0.543
0.581





CATD
CATD_VGFAEAAR
57
0.516
0.523
0.585
0.555
0.501
0.546
0.545
0.553
0.550
0.507





CATD
CATD_VSTLPAITLK
58
0.525
0.512
0.606
0.613
0.515
0.550
0.540
0.536
0.542
0.530





CBPN
CBPN_EALIQFLEQVHQGIK
59
0.508
0.563
0.567
0.585
0.508
0.509
0.549
0.582
0.517
0.507





CBPN
CBPN_NNANGVDLNR
60
0.514
0.519
0.579
0.606
0.521
0.507
0.502
0.516
0.505
0.526





CD14
CD14_LTVGAAQVPAQLLVGALR
61
0.532
0.539
0.578
0.626
0.608
0.623
0.635
0.665
0.605
0.577





CD14
CD14_SWLAELQQWLKPGLK
62
0.550
0.547
0.540
0.549
0.589
0.594
0.599
0.608
0.594
0.567





CFAB
CFAB_YGLVTYATYPK
64
0.635
0.605
0.514
0.522
0.574
0.556
0.530
0.572
0.564
0.592





CHL1
CHL1_VIAVNEVGR
66
0.670
0.680
0.669
0.661
0.550
0.592
0.549
0.554
0.514
0.522





CLUS
CLUS_ASSIIDELFQDR
67
0.563
0.557
0.713
0.667
0.554
0.530
0.685
0.649
0.526
0.541





CLUS
CLUS_LFDSDPITVTVPVEVSR
68
0.559
0.529
0.643
0.562
0.557
0.525
0.687
0.623
0.522
0.514





CO5
CO5_TLLPVSKPEIR
70
0.590
0.610
0.613
0.632
0.570
0.606
0.541
0.563
0.567
0.592





CO5
CO5_VFQFLEK
71
0.568
0.588
0.533
0.560
0.555
0.571
0.542
0.526
0.576
0.579





CO6
CO6_ALNHLPLEYNSALYSR
72
0.619
0.647
0.721
0.795
0.553
0.537
0.592
0.621
0.524
0.541





CO8A
CO8A_SLLQPNK
74
0.512
0.536
0.515
0.537
0.574
0.566
0.561
0.547
0.610
0.638





CO8B
CO8B_QALEEFQK
76
0.528
0.522
0.522
0.500
0.576
0.563
0.546
0.501
0.605
0.633





CRIS3
CRIS3_AVSPPAR
78
0.513
0.543
0.592
0.626
0.508
0.562
0.567
0.587
0.530
0.577





CRIS3
CRIS3_YEDLYSNCK
79
0.530
0.539
0.631
0.654
0.529
0.574
0.596
0.616
0.544
0.602





CSH
CSH_AHQLAIDTYQEFEETYIPK
80
0.615
0.550
0.534
0.516
0.568
0.566
0.570
0.540
0.527
0.540





CSH
CSH_ISLLLIESWLEPVR
81
0.597
0.528
0.515
0.506
0.530
0.521
0.550
0.520
0.543
0.558





ENPP2
ENPP2_TEFLSNYLTNVDDITLVPGTLGR
82
0.547
0.522
0.795
0.795
0.501
0.532
0.593
0.674
0.560
0.565





ENPP2
ENPP2_TYLHTYESEI
83
0.557
0.508
0.762
0.772
0.506
0.548
0.597
0.673
0.567
0.553





F13B
F13B_GDTYPAELYITGSILR
84
0.563
0.557
0.528
0.533
0.569
0.576
0.588
0.623
0.503
0.516





FBLN1
FBLN1_TGYYFDGISR
86
0.609
0.585
0.506
0.560
0.594
0.581
0.562
0.519
0.536
0.550





FBLN3
FBLN3_IPSNPSHR
87
0.538
0.553
0.503
0.553
0.529
0.528
0.509
0.503
0.510
0.537





FETUA
FETUA_FSVVYAK
88
0.527
0.519
0.521
0.531
0.502
0.539
0.544
0.586
0.525
0.513





FETUA
FETUA_HTLNQIDEVK
89
0.532
0.506
0.559
0.599
0.503
0.528
0.587
0.618
0.523
0.514





HABP2
HABP2_FLNWIK
92
0.678
0.680
0.732
0.780
0.585
0.605
0.630
0.603
0.550
0.543





HEMO
HEMO_NFPSPVDAAFR
93
0.524
0.502
0.575
0.555
0.557
0.529
0.522
0.519
0.552
0.502





HLACI
HLACI_WAAVVVPSGEEQR
95
0.534
0.504
0.530
0.549
0.512
0.529
0.541
0.515
0.538
0.514





IBP1
IBP1_VVESLAK
97
0.578
0.556
0.559
0.516
0.546
0.528
0.557
0.542
0.516
0.518





IBP2
IBP2_LIQGAPTIR
98
0.539
0.525
0.521
0.518
0.505
0.507
0.517
0.563
0.501
0.500





IBP3
IBP3_FLNVLSPR
99
0.504
0.557
0.576
0.637
0.505
0.545
0.536
0.567
0.530
0.535





IBP3
IBP3_YGQPLPGYTTK
100
0.500
0.530
0.606
0.628
0.511
0.542
0.562
0.557
0.559
0.578





IBP4
IBP4_QCHPALDGQR
2
0.501
0.542
0.542
0.555
0.590
0.590
0.591
0.626
0.691
0.723





IBP6
IBP6_GAQTLYVPNCDHR
101
0.527
0.603
0.528
0.592
0.535
0.527
0.593
0.552
0.561
0.503





IBP6
IBP6_HLDSVLQQLQTEVYR
102
0.512
0.557
0.512
0.570
0.517
0.533
0.545
0.520
0.541
0.504





IGF2
IGF2_GIVEECCFR
103
0.523
0.545
0.704
0.743
0.542
0.558
0.627
0.667
0.567
0.573





INHBC
INHBC_LDFHFSSDR
107
0.575
0.534
0.573
0.643
0.586
0.595
0.530
0.522
0.619
0.665





ITIH3
ITIH3_ALDLSLK
111
0.525
0.534
0.522
0.564
0.529
0.527
0.516
0.518
0.544
0.519





ITIH4
ITIH4_ILDDLSPR
112
0.513
0.553
0.541
0.599
0.537
0.563
0.504
0.552
0.551
0.546





ITIH4
ITIH4_NPLVWVHASPEHVVVTR
113
0.501
0.532
0.586
0.595
0.573
0.589
0.505
0.514
0.587
0.556





ITIH4
ITIH4_QLGLPGPPDVPDHAAYHPF
114
0.518
0.506
0.537
0.565
0.547
0.538
0.523
0.568
0.526
0.520





KNG1
KNG1_DIPTNSPELEETLTHTITK
116
0.529
0.530
0.560
0.652
0.557
0.542
0.559
0.617
0.564
0.522





KNG1
KNG1_QVVAGLNFR
117
0.511
0.501
0.587
0.667
0.542
0.539
0.593
0.646
0.584
0.557





LBP
LBP_ITGFLKPGK
118
0.575
0.512
0.510
0.500
0.578
0.545
0.501
0.565
0.566
0.546





LBP
LBP_ITLPDFTGDLR
119
0.598
0.546
0.508
0.533
0.590
0.569
0.515
0.535
0.591
0.585





LYAM1
LYAM1_SYYWIGIR
120
0.550
0.600
0.574
0.654
0.567
0.623
0.666
0.720
0.542
0.580





NCAM1
NCAM1_GLGEISAASEFK
121
0.592
0.570
0.595
0.615
0.541
0.545
0.502
0.579
0.515
0.530





PAPP1
PAPP1_DIPHWLNPTR
122
0.571
0.505
0.531
0.524
0.505
0.520
0.525
0.569
0.533
0.512





PEDF
PEDF_LQSLFDSPDFSK
124
0.594
0.575
0.517
0.513
0.563
0.540
0.502
0.520
0.555
0.542





PEDF
PEDF_TVQAVLTVPK
125
0.604
0.607
0.574
0.603
0.584
0.598
0.561
0.601
0.560
0.557





PGRP2
PGRP2_AGLLRPDYALLGHR
126
0.581
0.575
0.590
0.577
0.539
0.583
0.528
0.592
0.507
0.527





PRDX2
PRDX2_GLFIIDGK
128
0.544
0.533
0.615
0.588
0.510
0.604
0.535
0.570
0.582
0.613





PRG2
PRG2_WNFAYWAAHQPWSR
129
0.564
0.527
0.507
0.538
0.545
0.507
0.515
0.511
0.590
0.535





PSG11
PSG11_LFIPQITPK
132
0.503
0.520
0.532
0.575
0.521
0.578
0.520
0.576
0.502
0.541





PSG1
PSG1_FQLPGQK
131
0.600
0.571
0.646
0.582
0.546
0.564
0.501
0.511
0.501
0.507





PSG2
PSG2_IHPSYTNYR
133
0.520
0.597
0.681
0.742
0.509
0.562
0.638
0.704
0.536
0.568





PSG3
PSG3_VSAPSGTGHLPGLNPL
134
0.650
0.577
0.568
0.533
0.604
0.603
0.549
0.546
0.606
0.634





PSG9
PSG9_DVLLLVHNLPQNLPGYFWYK
135
0.602
0.596
0.569
0.526
0.562
0.578
0.623
0.599
0.526
0.558





PSG9
PSG9_LFIPQITR
136
0.575
0.565
0.638
0.555
0.543
0.552
0.654
0.670
0.521
0.547





PTGDS
PTGDS_GPGEDFR
137
0.527
0.597
0.542
0.557
0.538
0.547
0.550
0.594
0.559
0.598





SHBG
SHBG_IALGGLLFPASNLR
18
0.580
0.567
0.563
0.641
0.575
0.574
0.562
0.532
0.588
0.586





SOM2.CSH
SOM2.CSH_NYGLLYCFR
138
0.604
0.535
0.547
0.509
0.531
0.515
0.525
0.517
0.554
0.590





SOM2.CSH
SOM2.CSH_SVEGSCGF
139
0.589
0.528
0.570
0.537
0.529
0.547
0.507
0.502
0.544
0.511





SPRL1
SPRL1_VLTHSELAPLR
140
0.534
0.545
0.528
0.526
0.516
0.583
0.533
0.504
0.530
0.557





TENX
TENX_LNWEAPPGAFDSFLLR
141
0.582
0.562
0.534
0.527
0.577
0.640
0.602
0.583
0.567
0.577





TENX
TENX_LSQLSVTDVTTSSLR
142
0.519
0.523
0.534
0.562
0.568
0.634
0.578
0.560
0.560
0.571





THBG
THBG_AVLHIGEK
143
0.558
0.571
0.503
0.564
0.506
0.521
0.509
0.507
0.550
0.554





TIE1
TIE1_VSWSLPLVPGPLVGDGFLLR
144
0.549
0.592
0.524
0.561
0.578
0.613
0.572
0.525
0.507
0.501





VTDB
VTDB_ELPEHTVK
147
0.557
0.538
0.516
0.586
0.506
0.515
0.517
0.530
0.529
0.512





VTNC
VTNC_GQYCYELDEK
149
0.663
0.674
0.641
0.694
0.612
0.638
0.618
0.641
0.582
0.606





VTNC
VTNC_VDTVDPPYPR
150
0.622
0.633
0.547
0.555
0.603
0.621
0.585
0.586
0.624
0.634




























TABLE 23








133_
133_
140_
140_
140_
140_
119_
119_
119_
119_




SEQ 
146_
146_
153_
153_
153_
153_
153_
153_
153_
153_




ID
aBMI_
rBMI_
aBMI_
rBMI_
aBMI_
rBMI_
aBMI_
rBMI_
aBMI
rBMI_


Protein
Transition
NO:
35
35
37
37
35
35
37
37
35
35



























A2GL
A2GL_DLLLPQPDLR
34
0.517
0.541
0.566
0.577
0.544
0.580
0.554
0.568
0.520
0.533





AFAM
AFAM_DADPDTFFAK
37
0.573
0.676
0.589
0.615
0.658
0.691
0.557
0.557
0.590
0.620





AFAM
AFAM_HFQNLGK
38
0.551
0.662
0.624
0.680
0.712
0.778
0.559
0.561
0.590
0.626





ALS
ALS_IRPHTFTGLSGLR
40
0.531
0.501
0.542
0.505
0.509
0.510
0.504
0.513
0.521
0.519





ANGT
ANGT_DPTFIPAPIQAK
42
0.567
0.547
0.557
0.601
0.555
0.586
0.549
0.589
0.558
0.593





APOC3
APOC3_GWVTDGFSSLK
47
0.672
0.596
0.674
0.635
0.591
0.501
0.622
0.599
0.587
0.539





APOH
APOH_ATVVYQGER
48
0.674
0.733
0.531
0.547
0.588
0.626
0.580
0.563
0.573
0.591





B2MG
B2MG_VEHSDLSFSK
50
0.519
0.591
0.599
0.596
0.553
0.503
0.543
0.520
0.536
0.508





B2MG
B2MG_VNHVTLSQPK
51
0.568
0.505
0.659
0.642
0.615
0.557
0.570
0.539
0.571
0.553





BGH3
BGH3_LTLLAPLNSVFK
52
0.562
0.621
0.595
0.623
0.532
0.553
0.542
0.564
0.516
0.518





C163A
C163A_INPASLDK
54
0.532
0.549
0.593
0.572
0.555
0.519
0.504
0.527
0.530
0.540





C1QB
C1QB_VPGLYYFTYHASSR
55
0.593
0.672
0.603
0.574
0.509
0.555
0.575
0.583
0.539
0.547





CAH1
CAH1_GGPFSDSYR
56
0.626
0.623
0.514
0.584
0.585
0.524
0.507
0.500
0.557
0.549





CATD
CATD_VGFAEAAR
57
0.660
0.637
0.693
0.686
0.819
0.817
0.576
0.547
0.626
0.634





CATD
CATD_VSTLPAITLK
58
0.674
0.719
0.671
0.692
0.802
0.866
0.564
0.549
0.623
0.651





CBPN
CBPN_EALIQFLEQVHQGIK
59
0.558
0.651
0.552
0.581
0.589
0.553
0.507
0.542
0.510
0.506





CBPN
CBPN_NNANGVDLNR
60
0.512
0.551
0.589
0.604
0.619
0.604
0.516
0.541
0.550
0.546





CD14
CD14_LTVGAAQVPAQLLVGALR
61
0.648
0.617
0.586
0.568
0.612
0.579
0.577
0.558
0.615
0.600





CD14
CD14_SWLAELQQWLKPGLK
62
0.635
0.583
0.585
0.560
0.638
0.579
0.577
0.554
0.601
0.569





CFAB
CFAB_YGLVTYATYPK
64
0.530
0.508
0.613
0.643
0.601
0.655
0.599
0.601
0.522
0.528





CHL1
CHL1_VIAVNEVGR
66
0.564
0.583
0.563
0.503
0.534
0.541
0.568
0.577
0.505
0.506





CLUS
CLUS_ASSIIDELFQDR
67
0.618
0.568
0.512
0.563
0.500
0.521
0.534
0.546
0.628
0.592





CLUS
CLUS_LFDSDPITVTVPVEVSR
68
0.669
0.615
0.512
0.517
0.562
0.611
0.521
0.511
0.610
0.543





CO5
CO5_TLLPVSKPEIR
70
0.528
0.540
0.580
0.560
0.531
0.566
0.577
0.589
0.548
0.525





CO5
CO5_VFQFLEK
71
0.547
0.522
0.599
0.568
0.556
0.515
0.577
0.575
0.540
0.511





CO6
CO6_ALNHLPLEYNSALYSR
72
0.508
0.517
0.516
0.508
0.591
0.637
0.554
0.566
0.549
0.560





CO8A
COSA_SLLQPNK
74
0.602
0.585
0.604
0.588
0.584
0.582
0.574
0.557
0.563
0.553





CO8B
CO8B_QALEEFQK
76
0.594
0.584
0.608
0.611
0.613
0.635
0.578
0.567
0.565
0.549





CRIS3
CRIS3_AVSPPAR
78
0.614
0.686
0.563
0.594
0.595
0.611
0.525
0.571
0.582
0.608





CRIS3
CRIS3_YEDLYSNCK
79
0.616
0.694
0.570
0.606
0.588
0.590
0.539
0.580
0.596
0.620





CSH
CSH_AHQLAIDTYQEFEETYIPK
80
0.582
0.539
0.571
0.570
0.517
0.541
0.526
0.509
0.535
0.513





CSH
CSH_ISLLLIESWLEPVR
81
0.569
0.525
0.542
0.542
0.525
0.533
0.515
0.505
0.531
0.511





ENPP2
ENPP2_TEFLSNYLTNVDDITLVPGTLGR
82
0.583
0.509
0.703
0.737
0.650
0.659
0.574
0.571
0.517
0.558





ENPP2
ENPP2_TYLHTYESEI
83
0.591
0.519
0.711
0.722
0.692
0.664
0.576
0.559
0.500
0.545





F13B
F13B_GDTYPAELYITGSILR
84
0.590
0.614
0.526
0.515
0.578
0.571
0.529
0.528
0.584
0.590





FBLN1
FBLN1_TGYYFDGISR
86
0.632
0.575
0.519
0.588
0.562
0.537
0.537
0.521
0.542
0.550





FBLN3
FBLN3_IPSNPSHR
87
0.575
0.670
0.528
0.524
0.617
0.649
0.523
0.506
0.545
0.559





FETUA
FETUA_FSVVYAK
88
0.568
0.692
0.658
0.652
0.659
0.660
0.552
0.534
0.530
0.517





FETUA
FETUA_HTLNQIDEVK
89
0.611
0.699
0.656
0.655
0.715
0.761
0.544
0.529
0.524
0.531





HABP2
HABP2_FLNWIK
92
0.605
0.517
0.623
0.587
0.516
0.541
0.595
0.592
0.591
0.544





HEMO
HEMO_NFPSPVDAAFR
93
0.509
0.587
0.634
0.658
0.502
0.514
0.567
0.536
0.501
0.538





HLACI
HLACI_WAAVVVPSGEEQR
95
0.537
0.538
0.574
0.591
0.604
0.552
0.527
0.543
0.502
0.508





IBP1
IBP1_VVESLAK
97
0.619
0.625
0.525
0.518
0.650
0.702
0.537
0.510
0.597
0.563





IBP2
IBP2_LIQGAPTIR
98
0.548
0.576
0.527
0.526
0.685
0.734
0.522
0.507
0.554
0.552





IBP3
IBP3_FLNVLSPR
99
0.514
0.532
0.525
0.574
0.581
0.611
0.532
0.566
0.507
0.514





IBP3
IBP3_YGQPLPGYTTK
100
0.525
0.525
0.548
0.617
0.505
0.521
0.547
0.581
0.552
0.540





IBP4
IBP4_QCHPALDGQR
2
0.600
0.624
0.677
0.688
0.530
0.568
0.608
0.606
0.539
0.530





IBP6
IBP6_GAQTLYVPNCDHR
101
0.569
0.557
0.501
0.524
0.593
0.562
0.522
0.533
0.526
0.505





IBP6
IBP6_HLDSVLQQLQTEVYR
102
0.519
0.539
0.521
0.514
0.559
0.523
0.520
0.521
0.511
0.506





IGF2
IGF2_GIVEECCFR
103
0.527
0.513
0.580
0.623
0.529
0.590
0.569
0.592
0.578
0.579





INHBC
INHBC_LDFHFSSDR
107
0.610
0.625
0.672
0.698
0.608
0.636
0.608
0.612
0.545
0.517





ITIH3
ITIH3_ALDLSLK
111
0.525
0.580
0.612
0.623
0.547
0.557
0.557
0.557
0.513
0.519





ITIH4
ITIH4_ILDDLSPR
112
0.500
0.546
0.538
0.510
0.521
0.626
0.531
0.537
0.501
0.508





ITIH4
ITIH4_NPLVWVHASPEHVVVTR
113
0.556
0.621
0.507
0.508
0.719
0.822
0.534
0.528
0.559
0.597





ITIH4
ITIH4_QLGLPGPPDVPDHAAYHPF
114
0.507
0.666
0.509
0.551
0.613
0.626
0.512
0.505
0.520
0.582





KNG1
KNG1_DIPTNSPELEETLTHTITK
116
0.522
0.599
0.609
0.593
0.512
0.588
0.558
0.535
0.523
0.525





KNG1
KNG1_QVVAGLNFR
117
0.581
0.528
0.664
0.653
0.634
0.548
0.562
0.554
0.602
0.602





LBP
LBP_ITGFLKPGK
118
0.521
0.593
0.640
0.645
0.542
0.615
0.587
0.559
0.505
0.565





LBP
LBP_ITLPDFTGDLR
119
0.524
0.581
0.672
0.681
0.505
0.550
0.609
0.588
0.524
0.521





LYAM1
LYAM1_SYYWIGIR
120
0.701
0.765
0.554
0.585
0.663
0.687
0.552
0.596
0.651
0.696





NCAM1
NCAM1_GLGEISAASEFK
121
0.587
0.501
0.515
0.505
0.535
0.553
0.536
0.531
0.501
0.557





PAPP1
PAPP1_DIPHWLNPTR
122
0.504
0.632
0.582
0.507
0.513
0.622
0.540
0.519
0.525
0.594





PEDF
PEDF_LQSLFDSPDFSK
124
0.560
0.580
0.616
0.659
0.615
0.649
0.577
0.571
0.545
0.565





PEDF
PEDF_TVQAVLTVPK
125
0.587
0.620
0.587
0.560
0.573
0.562
0.577
0.570
0.577
0.598





PGRP2
PGRP2_AGLLRPDYALLGHR
126
0.618
0.721
0.569
0.580
0.668
0.703
0.560
0.578
0.576
0.627





PRDX2
PRDX2_GLFIIDGK
128
0.620
0.598
0.551
0.537
0.609
0.542
0.525
0.530
0.547
0.536





PRG2
PRG2_WNFAYWAAHQPWSR
129
0.563
0.552
0.586
0.505
0.556
0.535
0.565
0.501
0.520
0.529





PSG11
PSG11_LFIPQITPK
132
0.570
0.523
0.562
0.544
0.517
0.604
0.511
0.516
0.500
0.501





PSG1
PSG1_FQLPGQK
131
0.606
0.524
0.558
0.577
0.510
0.548
0.524
0.509
0.508
0.535





PSG2
PSG2_IHPSYTNYR
133
0.592
0.721
0.551
0.544
0.515
0.537
0.522
0.563
0.597
0.660





PSG3
PSG3_VSAPSGTGHLPGLNPL
134
0.614
0.559
0.517
0.520
0.571
0.546
0.581
0.563
0.557
0.506





PSG9
PSG9_DVLLLVHNLPQNLPGYFWYK
135
0.535
0.516
0.525
0.604
0.605
0.669
0.546
0.567
0.547
0.500





PSG9
PSG9_LFIPQITR
136
0.527
0.541
0.506
0.585
0.573
0.617
0.528
0.541
0.571
0.554





PTGDS
PTGDS_GPGEDFR
137
0.603
0.671
0.567
0.595
0.535
0.521
0.536
0.532
0.537
0.545





SHBG
SHBG_IALGGLLFPASNLR
18
0.688
0.761
0.594
0.579
0.717
0.772
0.585
0.576
0.611
0.613





SOM2.CSH
SOM2.CSH_NYGLLYCFR
138
0.538
0.529
0.608
0.612
0.509
0.501
0.501
0.527
0.513
0.520





SOM2.CSH
SOM2.CSH_SVEGSCGF
139
0.538
0.579
0.531
0.539
0.612
0.684
0.525
0.539
0.542
0.565





SPRL1
SPRL1_VLTHSELAPLR
140
0.648
0.623
0.502
0.510
0.658
0.631
0.502
0.543
0.578
0.555





TENX
TENX_LNWEAPPGAFDSFLLR
141
0.622
0.569
0.614
0.530
0.531
0.682
0.576
0.573
0.550
0.519





TENX
TENX_LSQLSVTDVTTSSLR
142
0.606
0.546
0.571
0.519
0.644
0.825
0.550
0.542
0.508
0.588





THBG
THBG_AVLHIGEK
143
0.534
0.539
0.556
0.571
0.532
0.530
0.518
0.507
0.520
0.500





TIE1
TIE1_VSWSLPLVPGPLVGDGFLLR
144
0.551
0.526
0.578
0.559
0.527
0.515
0.513
0.531
0.536
0.502





VTDB
VTDB_ELPEHTVK
147
0.567
0.653
0.524
0.547
0.611
0.611
0.506
0.502
0.528
0.533





VTNC
VTNC_GQYCYELDEK
149
0.560
0.555
0.680
0.698
0.625
0.651
0.623
0.635
0.598
0.617





VTNC
VTNC_VDTVDPPYPR
150
0.595
0.566
0.673
0.670
0.568
0.533
0.625
0.629
0.574
0.553


























TABLE 24








119_
119_
119_
119_
126_
126_
126_
126_




SEQ 
139_
139_
139_
139_
146_
146_
146_
146_




ID
aBMI_
rBMI_
aBMI_
rBMI_
aBMI_
rBMI_
aBMI_
rBMI_


Protein
Transition
NO:
37
37
35
35
37
37
35
35

























A2GL
A2GL_DLLLPQPDLR
34
0.549
0.565
0.503
0.500
0.552
0.596
0.511
0.513





AFAM
AFAM_DADPDTFFAK
37
0.543
0.531
0.554
0.579
0.575
0.594
0.586
0.633





AFAM
AFAM_HFQNLGK
38
0.526
0.501
0.529
0.544
0.579
0.593
0.568
0.612





ALS
ALS_IRPHTFTGLSGLR
40
0.516
0.526
0.532
0.533
0.536
0.530
0.518
0.511





ANGT
ANGT_DPTFIPAPIQAK
42
0.541
0.564
0.565
0.590
0.561
0.616
0.534
0.578





APOC3
APOC3_GWVTDGFSSLK
47
0.596
0.579
0.582
0.557
0.624
0.627
0.626
0.605





APOH
APOH_ATVVYQGER
48
0.604
0.573
0.567
0.577
0.597
0.591
0.610
0.654





B2MG
B2MG_VEHSDLSFSK
50
0.510
0.528
0.521
0.519
0.529
0.520
0.506
0.556





B2MG
B2MG_VNHVTLSQPK
51
0.523
0.531
0.545
0.538
0.556
0.539
0.563
0.535





BGH3
BGH3_LTLLAPLNSVFK
52
0.516
0.531
0.507
0.502
0.534
0.553
0.537
0.551





C163A
C163A_INPASLDK
54
0.532
0.578
0.573
0.581
0.511
0.534
0.568
0.596





C1QB
C1QB_VPGLYYFTYHASSR
55
0.564
0.582
0.544
0.544
0.606
0.640
0.556
0.572





CAH1
CAH1_GGPFSDSYR
56
0.500
0.550
0.547
0.569
0.502
0.546
0.571
0.578





CATD
CATD_VGFAEAAR
57
0.519
0.534
0.531
0.531
0.525
0.512
0.580
0.572





CATD
CATD_VSTLPAITLK
58
0.511
0.534
0.537
0.530
0.514
0.503
0.572
0.593





CBPN
CBPN_EALIQFLEQVHQGIK
59
0.514
0.519
0.527
0.544
0.501
0.518
0.528
0.580





CBPN
CBPN_NNANGVDLNR
60
0.525
0.504
0.510
0.506
0.506
0.530
0.530
0.504





CD14
CD14_LTVGAAQVPAQLLVGALR
61
0.573
0.558
0.616
0.623
0.604
0.611
0.647
0.662





CD14
CD14_SWLAELQQWLKPGLK
62
0.570
0.552
0.579
0.570
0.591
0.593
0.624
0.614





CFAB
CFAB_YGLVTYATYPK
64
0.590
0.573
0.520
0.548
0.582
0.591
0.510
0.501





CHL1
CHL1_VIAVNEVGR
66
0.570
0.610
0.518
0.516
0.563
0.578
0.541
0.556





CLUS
CLUS_ASSIIDELFQDR
67
0.545
0.533
0.695
0.666
0.547
0.548
0.644
0.590





CLUS
CLUS_LFDSDPITVTVPVEVSR
68
0.539
0.507
0.697
0.635
0.547
0.531
0.657
0.584





CO5
CO5_TLLPVSKPEIR
70
0.580
0.603
0.560
0.584
0.565
0.596
0.541
0.512





CO5
CO5_VFQFLEK
71
0.564
0.576
0.537
0.527
0.566
0.577
0.547
0.509





CO6
CO6_ALNHLPLEYNSALYSR
72
0.572
0.582
0.604
0.643
0.547
0.555
0.573
0.599





CO8A
CO8A_SLLQPNK
74
0.557
0.538
0.547
0.527
0.590
0.593
0.585
0.587





CO8B
CO8B_QALEEFQK
76
0.563
0.544
0.535
0.512
0.587
0.590
0.578
0.563





CRIS3
CRIS3_AVSPPAR
78
0.509
0.559
0.579
0.608
0.526
0.568
0.596
0.640





CRIS3
CRIS3_YEDLYSNCK
79
0.528
0.564
0.603
0.632
0.544
0.585
0.613
0.657





CSH
CSH_AHQLAIDTYQEFEETYIPK
80
0.574
0.571
0.555
0.535
0.519
0.505
0.574
0.559





CSH
CSH_ISLLLIESWLEPVR
81
0.543
0.531
0.535
0.517
0.501
0.514
0.561
0.544





ENPP2
ENPP2_TEFLSNYLTNVDDITLVPGTLGR
82
0.511
0.522
0.611
0.700
0.550
0.543
0.535
0.606





ENPP2
ENPP2_TYLHTYESEI
83
0.509
0.535
0.607
0.689
0.553
0.528
0.529
0.609





F13B
F13B_GDTYPAELYITGSILR
84
0.557
0.557
0.585
0.605
0.527
0.543
0.572
0.593





FBLN1
FBLN1_TGYYFDGISR
86
0.568
0.536
0.537
0.532
0.578
0.533
0.601
0.509





FBLN3
FBLN3_IPSNPSHR
87
0.522
0.503
0.503
0.505
0.527
0.524
0.550
0.571





FETUA
FETUA_FSVVYAK
88
0.504
0.544
0.533
0.575
0.531
0.509
0.543
0.610





FETUA
FETUA_HTLNQIDEVK
89
0.510
0.546
0.564
0.596
0.536
0.530
0.567
0.600





HABP2
HABP2_FLNWIK
92
0.576
0.593
0.630
0.598
0.606
0.610
0.650
0.615





HEMO
HEMO_NFPSPVDAAFR
93
0.534
0.530
0.505
0.545
0.559
0.547
0.505
0.557





HLACI
HLACI_WAAVVVPSGEEQR
95
0.503
0.513
0.556
0.542
0.503
0.521
0.525
0.525





IBP1
IBP1_VVESLAK
97
0.543
0.528
0.574
0.508
0.540
0.509
0.584
0.540





IBP2
IBP2_LIQGAPTIR
98
0.519
0.501
0.505
0.540
0.507
0.515
0.532
0.519





IBP3
IBP3_FLNVLSPR
99
0.537
0.565
0.556
0.588
0.506
0.531
0.504
0.518





IBP3
IBP3_YGQPLPGYTTK
100
0.544
0.563
0.583
0.582
0.508
0.542
0.538
0.518





IBP4
IBP4_QCHPALDGQR
2
0.572
0.552
0.573
0.589
0.626
0.636
0.563
0.568





IBP6
IBP6_GAQTLYVPNCDHR
101
0.532
0.540
0.584
0.531
0.528
0.531
0.544
0.515





IBP6
IBP6_HLDSVLQQLQTEVYR
102
0.519
0.543
0.546
0.504
0.516
0.522
0.508
0.501





IGF2
IGF2_GIVEECCFR
103
0.566
0.577
0.636
0.681
0.528
0.546
0.577
0.584





INHBC
INHBC_LDFHFSSDR
107
0.575
0.564
0.511
0.551
0.613
0.637
0.566
0.546





ITIH3
ITIH3_ALDLSLK
111
0.531
0.526
0.501
0.504
0.534
0.529
0.522
0.544





ITIH4
ITIH4_ILDDLSPR
112
0.528
0.544
0.512
0.558
0.541
0.567
0.507
0.506





ITIH4
ITIH4_NPLVWVHASPEHVVVTR
113
0.546
0.536
0.523
0.529
0.572
0.587
0.523
0.545





ITIH4
ITIH4_QLGLPGPPDVPDHAAYHPF
114
0.514
0.520
0.532
0.547
0.547
0.555
0.506
0.587





KNG1
KNG1_DIPTNSPELEETLTHTITK
116
0.535
0.503
0.537
0.577
0.568
0.565
0.535
0.549





KNG1
KNG1_QVVAGLNFR
117
0.517
0.506
0.590
0.628
0.571
0.570
0.594
0.607





LBP
LBP_ITGFLKPGK
118
0.562
0.511
0.523
0.526
0.582
0.562
0.507
0.591





LBP
LBP_ITLPDFTGDLR
119
0.576
0.533
0.536
0.500
0.601
0.595
0.506
0.565





LYAM1
LYAM1_SYYWIGIR
120
0.558
0.603
0.646
0.691
0.548
0.594
0.672
0.739





NCAM1
NCAM1_GLGEISAASEFK
121
0.567
0.556
0.524
0.559
0.527
0.535
0.505
0.565





PAPP1
PAPP1_DIPHWLNPTR
122
0.518
0.524
0.539
0.582
0.548
0.510
0.515
0.555





PEDF
PEDF_LQSLFDSPDFSK
124
0.558
0.530
0.514
0.526
0.577
0.570
0.527
0.540





PEDF
PEDF_TVQAVLTVPK
125
0.571
0.569
0.575
0.606
0.586
0.597
0.574
0.609





PGRP2
PGRP2_AGLLRPDYALLGHR
126
0.554
0.574
0.525
0.574
0.524
0.553
0.548
0.610





PRDX2
PRDX2_GLFIIDGK
128
0.511
0.567
0.517
0.531
0.533
0.577
0.551
0.548





PRG2
PRG2_WNFAYWAAHQPWSR
129
0.555
0.505
0.502
0.519
0.577
0.518
0.563
0.511





PSG11
PSG11_LFIPQITPK
132
0.505
0.552
0.508
0.565
0.515
0.556
0.542
0.558





PSG1
PSG1_FQLPGQK
131
0.560
0.570
0.502
0.508
0.529
0.531
0.522
0.505





PSG2
PSG2_IHPSYTNYR
133
0.511
0.570
0.656
0.714
0.528
0.572
0.609
0.713





PSG3
PSG3_VSAPSGTGHLPGLNPL
134
0.615
0.611
0.547
0.538
0.615
0.603
0.603
0.561





PSG9
PSG9_DVLLLVHNLPQNLPGYFWYK
135
0.557
0.555
0.625
0.597
0.560
0.595
0.546
0.507





PSG9
PSG9_LFIPQITR
136
0.539
0.529
0.649
0.656
0.547
0.576
0.565
0.547





PTGDS
PTGDS_GPGEDFR
137
0.520
0.502
0.542
0.572
0.540
0.551
0.561
0.594





SHBG
SHBG_IALGGLLFPASNLR
18
0.576
0.578
0.541
0.509
0.584
0.570
0.613
0.613





SOM2.CSH
SOM2.CSH_NYGLLYCFR
138
0.546
0.526
0.523
0.506
0.502
0.529
0.546
0.516





SOM2.CSH
SOM2.CSH_SVEGSCGF
139
0.538
0.551
0.503
0.510
0.502
0.525
0.551
0.583





SPRL1
SPRL1_VLTHSELAPLR
140
0.508
0.559
0.536
0.515
0.523
0.571
0.585
0.548





TENX
TENX_LNWEAPPGAFDSFLLR
141
0.556
0.590
0.590
0.568
0.588
0.606
0.598
0.536





TENX
TENX_LSQLSVTDVTTSSLR
142
0.538
0.573
0.562
0.544
0.567
0.591
0.566
0.505





THBG
THBG_AVLHIGEK
143
0.502
0.536
0.512
0.502
0.507
0.520
0.521
0.508





TIE1
TIE1_VSWSLPLVPGPLVGDGFLLR
144
0.559
0.596
0.563
0.514
0.537
0.550
0.553
0.506





VTDB
VTDB_ELPEHTVK
147
0.505
0.528
0.513
0.504
0.501
0.501
0.561
0.580





VTNC
VTNC_GQYCYELDEK
149
0.602
0.604
0.599
0.611
0.624
0.662
0.605
0.635





VTNC
VTNC_VDTVDPPYPR
150
0.601
0.599
0.582
0.573
0.627
0.651
0.582
0.570


























TABLE 25








133_
133_
133_
133_
119_
119_
119_
119_




SEQ 
153_
153_
153_
153_
153_
153_
153_
153_




ID
aBMI_
rBMI_
aBMI_
rBMI_
aBMI_
rBMI_
aBMI_
rBMI_


Protein
Transition
NO:
37
37
35
35
37
37
35
35

























A2GL
A2GL_DLLLPQPDLR
34
0.581
0.597
0.538
0.549
0.554
0.568
0.520
0.533





AFAM
AFAM_DADPDTFFAK
37
0.539
0.561
0.584
0.647
0.557
0.557
0.590
0.620





AFAM
AFAM_HFQNLGK
38
0.549
0.584
0.595
0.679
0.559
0.561
0.590
0.626





ALS
ALS_IRPHTFTGLSGLR
40
0.503
0.515
0.517
0.503
0.504
0.513
0.521
0.519





ANGT
ANGT_DPTFIPAPIQAK
42
0.533
0.566
0.501
0.542
0.549
0.589
0.558
0.593





APOC3
APOC3_GWVTDGFSSLK
47
0.643
0.611
0.628
0.530
0.622
0.599
0.587
0.539





APOH
APOH_ATVVYQGER
48
0.601
0.584
0.632
0.656
0.580
0.563
0.573
0.591





B2MG
B2MG_VEHSDLSFSK
50
0.582
0.565
0.544
0.527
0.543
0.520
0.536
0.508





B2MG
B2MG_VNHVTLSQPK
51
0.613
0.599
0.582
0.551
0.570
0.539
0.571
0.553





BGH3
BGH3_LTLLAPLNSVFK
52
0.533
0.562
0.549
0.586
0.542
0.564
0.516
0.518





C163A
C163A_INPASLDK
54
0.524
0.505
0.509
0.515
0.504
0.527
0.530
0.540





C1QB
C1QB_VPGLYYFTYHASSR
55
0.579
0.564
0.577
0.613
0.575
0.583
0.539
0.547





CAH1
CAH1_GGPFSDSYR
56
0.522
0.531
0.610
0.598
0.507
0.500
0.557
0.549





CATD
CATD_VGFAEAAR
57
0.610
0.589
0.719
0.722
0.576
0.547
0.626
0.634





CATD
CATD_VSTLPAITLK
58
0.593
0.594
0.729
0.772
0.564
0.549
0.623
0.651





CBPN
CBPN_EALIQFLEQVHQGIK
59
0.504
0.530
0.516
0.552
0.507
0.542
0.510
0.506





CBPN
CBPN_NNANGVDLNR
60
0.529
0.549
0.533
0.510
0.516
0.541
0.550
0.546





CD14
CD14_LTVGAAQVPAQLLVGALR
61
0.600
0.567
0.620
0.582
0.577
0.558
0.615
0.600





CD14
CD14_SWLAELQQWLKPGLK
62
0.591
0.556
0.617
0.569
0.577
0.554
0.601
0.569





CFAB
CFAB_YGLVTYATYPK
64
0.579
0.596
0.529
0.523
0.599
0.601
0.522
0.528





CHL1
CHL1_VIAVNEVGR
66
0.515
0.519
0.564
0.573
0.568
0.577
0.505
0.506





CLUS
CLUS_ASSIIDELFQDR
67
0.518
0.539
0.591
0.560
0.534
0.546
0.628
0.592





CLUS
CLUS_LFDSDPITVTVPVEVSR
68
0.504
0.504
0.589
0.526
0.521
0.511
0.610
0.543





CO5
CO5_TLLPVSKPEIR
70
0.576
0.583
0.522
0.525
0.577
0.589
0.548
0.525





CO5
CO5_VFQFLEK
71
0.583
0.570
0.538
0.519
0.577
0.575
0.540
0.511





CO6
CO6_ALNHLPLEYNSALYSR
72
0.517
0.514
0.536
0.569
0.554
0.566
0.549
0.560





CO8A
CO8A_SLLQPNK
74
0.599
0.600
0.579
0.557
0.574
0.557
0.563
0.553





CO8B
CO8B_QALEEFQK
76
0.602
0.610
0.580
0.567
0.578
0.567
0.565
0.549





CRIS3
CRIS3_AVSPPAR
78
0.531
0.586
0.576
0.598
0.525
0.571
0.582
0.608





CRIS3
CRIS3_YEDLYSNCK
79
0.541
0.601
0.580
0.603
0.539
0.580
0.596
0.620





CSH
CSH_AHQLAIDTYQEFEETYIPK
80
0.523
0.533
0.550
0.513
0.526
0.509
0.535
0.513





CSH
CSH_ISLLLIESWLEPVR
81
0.531
0.546
0.548
0.511
0.515
0.505
0.531
0.511





ENPP2
ENPP2_TEFLSNYLTNVDDITLVPGTLGR
82
0.592
0.605
0.593
0.545
0.574
0.571
0.517
0.558





ENPP2
ENPP2_TYLHTYESEI
83
0.595
0.594
0.610
0.550
0.576
0.559
0.500
0.545





F13B
F13B_GDTYPAELYITGSILR
84
0.512
0.514
0.607
0.617
0.529
0.528
0.584
0.590





FBLN1
FBLN1_TGYYFDGISR
86
0.506
0.572
0.572
0.581
0.537
0.521
0.542
0.550





FBLN3
FBLN3_IPSNPSHR
87
0.515
0.524
0.571
0.622
0.523
0.506
0.545
0.559





FETUA
FETUA_FSVVYAK
88
0.562
0.558
0.532
0.508
0.552
0.534
0.530
0.517





FETUA
FETUA_HTLNQIDEVK
89
0.551
0.541
0.511
0.511
0.544
0.529
0.524
0.531





HABP2
HABP2_FLNWIK
92
0.556
0.546
0.539
0.562
0.595
0.592
0.591
0.544





HEMO
HEMO_NFPSPVDAAFR
93
0.588
0.552
0.526
0.528
0.567
0.536
0.501
0.538





HLACI
HLACI_WAAVVVPSGEEQR
95
0.522
0.564
0.518
0.513
0.527
0.543
0.502
0.508





IBP1
IBP1_VVESLAK
97
0.518
0.510
0.613
0.602
0.537
0.510
0.597
0.563





IBP2
IBP2_LIQGAPTIR
98
0.509
0.521
0.569
0.590
0.522
0.507
0.554
0.552





IBP3
IBP3_FLNVLSPR
99
0.545
0.568
0.525
0.541
0.532
0.566
0.507
0.514





IBP3
IBP3_YGQPLPGYTTK
100
0.573
0.608
0.529
0.501
0.547
0.581
0.552
0.540





IBP4
IBP4_QCHPALDGQR
2
0.674
0.694
0.571
0.570
0.608
0.606
0.539
0.530





IBP6
IBP6_GAQTLYVPNCDHR
101
0.549
0.502
0.541
0.529
0.522
0.533
0.526
0.505





IBP6
IBP6_HLDSVLQQLQTEVYR
102
0.540
0.501
0.515
0.524
0.520
0.521
0.511
0.506





IGF2
IGF2_GIVEECCFR
103
0.593
0.618
0.528
0.513
0.569
0.592
0.578
0.579





INHBC
INHBC_LDFHFSSDR
107
0.622
0.652
0.582
0.573
0.608
0.612
0.545
0.517





ITIH3
ITIH3_ALDLSLK
111
0.575
0.567
0.507
0.505
0.557
0.557
0.513
0.519





ITIH4
ITIH4_ILDDLSPR
112
0.542
0.524
0.518
0.559
0.531
0.537
0.501
0.508





ITIH4
ITIH4_NPLVWVHASPEHVVVTR
113
0.551
0.526
0.617
0.683
0.534
0.528
0.559
0.597





ITIH4
ITIH4_QLGLPGPPDVPDHAAYHPF
114
0.511
0.516
0.535
0.645
0.512
0.505
0.520
0.582





KNG1
KNG1_DIPTNSPELEETLTHTITK
116
0.575
0.535
0.508
0.552
0.558
0.535
0.523
0.525





KNG1
KNG1_QVVAGLNFR
117
0.596
0.582
0.596
0.559
0.562
0.554
0.602
0.602





LBP
LBP_ITGFLKPGK
118
0.595
0.582
0.504
0.590
0.587
0.559
0.505
0.565





LBP
LBP_ITLPDFTGDLR
119
0.619
0.613
0.526
0.543
0.609
0.588
0.524
0.521





LYAM1
LYAM1_SYYWIGIR
120
0.557
0.603
0.678
0.708
0.552
0.596
0.651
0.696





NCAM1
NCAM1_GLGEISAASEFK
121
0.505
0.512
0.541
0.535
0.536
0.531
0.501
0.557





PAPP1
PAPP1_DIPHWLNPTR
122
0.516
0.542
0.530
0.640
0.540
0.519
0.525
0.594





PEDF
PEDF_LQSLFDSPDFSK
124
0.568
0.565
0.570
0.600
0.577
0.571
0.545
0.565





PEDF
PEDF_TVQAVLTVPK
125
0.566
0.552
0.574
0.592
0.577
0.570
0.577
0.598





PGRP2
PGRP2_AGLLRPDYALLGHR
126
0.549
0.578
0.645
0.717
0.560
0.578
0.576
0.627





PRDX2
PRDX2_GLFIIDGK
128
0.561
0.562
0.619
0.595
0.525
0.530
0.547
0.536





PRG2
PRG2_WNFAYWAAHQPWSR
129
0.564
0.504
0.522
0.569
0.565
0.501
0.520
0.529





PSG11
PSG11_LFIPQITPK
132
0.527
0.507
0.522
0.529
0.511
0.516
0.500
0.501





PSG1
PSG1_FQLPGQK
131
0.519
0.544
0.555
0.516
0.524
0.509
0.508
0.535





PSG2
PSG2_IHPSYTNYR
133
0.528
0.550
0.558
0.624
0.522
0.563
0.597
0.660





PSG3
PSG3_VSAPSGTGHLPGLNPL
134
0.546
0.558
0.550
0.508
0.581
0.563
0.557
0.506





PSG9
PSG9_DVLLLVHNLPQNLPGYFWYK
135
0.516
0.553
0.529
0.505
0.546
0.567
0.547
0.500





PSG9
PSG9_LFIPQITR
136
0.502
0.528
0.542
0.552
0.528
0.541
0.571
0.554





PTGDS
PTGDS_GPGEDFR
137
0.568
0.602
0.568
0.592
0.536
0.532
0.537
0.545





SHBG
SHBG_IALGGLLFPASNLR
18
0.588
0.585
0.686
0.728
0.585
0.576
0.611
0.613





SOM2.CSH
SOM2.CSH_NYGLLYCFR
138
0.560
0.588
0.511
0.546
0.501
0.527
0.513
0.520





SOM2.CSH
SOM2.CSH_SVEGSCGF
139
0.509
0.532
0.549
0.573
0.525
0.539
0.542
0.565





SPRL1
SPRL1_VLTHSELAPLR
140
0.512
0.533
0.619
0.582
0.502
0.543
0.578
0.555





TENX
TENX_LNWEAPPGAFDSFLLR
141
0.576
0.578
0.558
0.519
0.576
0.573
0.550
0.519





TENX
TENX_LSQLSVTDVTTSSLR
142
0.564
0.554
0.504
0.599
0.550
0.542
0.508
0.588





THBG
THBG_AVLHIGEK
143
0.557
0.547
0.527
0.529
0.518
0.507
0.520
0.500





TIE1
TIE1_VSWSLPLVPGPLVGDGFLLR
144
0.512
0.506
0.542
0.528
0.513
0.531
0.536
0.502





VTDB
VTDB_ELPEHTVK
147
0.542
0.524
0.551
0.597
0.506
0.502
0.528
0.533





VTNC
VTNC_GQYCYELDEK
149
0.603
0.618
0.573
0.581
0.623
0.635
0.598
0.617





VTNC
VTNC_VDTVDPPYPR
150
0.629
0.626
0.583
0.552
0.625
0.629
0.574
0.553
















TABLE 26







Up- and down-regulated proteins/transitions used for reversals












SEQ





ID



Protein
Transition
NO:
Reg













AFAM
AFAM_DADPDTFFAK
37
up





AFAM
AFAM_HFQNLGK
38
up





ANGT
ANGT_DPTFIPAPIQAK
42
up





APOC3
APOC3_GWVTDGFSSLK
47
up





APOH
APOH_ATVVYQGER
48
up





CD14
CD14_LTVGAAQVPAQLLVGALR
61
up





CD14
CD14_SWLAELQQWLKPGLK
62
up





CLUS
CLUS_ASSIIDELFQDR
67
up





CLUS
CLUS_LFDSDPITVTVPVEVSR
68
up





CO8A
CO8A_SLLQPNK
74
up





CO8B
CO8B_QALEEFQK
76
up





F13B
F13B_GDTYPAELYITGSILR
84
up





IBP4
IBP4_QCHPALDGQR
2
up





PEDF
PEDF_LQSLFDSPDFSK
124
up





PEDF
PEDF_TVQAVLTVPK
125
up





PRDX2
PRDX2_GLFIIDGK
128
up





PSG2
PSG2_IHPSYTNYR
133
up





PTGDS
PTGDS_GPGEDFR
137
up





VTNC
VTNC_GQYCYELDEK
149
up





VTNC
VTNC_VDTVDPPYPR
150
up





B2MG
B2MG_VNHVTLSQPK
51
up





BGH3
BGH3_LTLLAPLNSVFK
52
up





CBPN
CBPN_NNANGVDLNR
60
up





CO5
CO5_TLLPVSKPEIR
70
up





CO5
CO5_VFQFLEK
71
up





IBP6
IBP6_HLDSVLQQLQTEVYR
102
up





INHBC
INHBC_LDFHFSSDR
107
up





KNG1
KNG1_DIPTNSPELEETLTHTITK
116
up





KNG1
KNG1_QVVAGLNFR
117
up





THBG
THBG_AVLHIGEK
143
up





CATD
CATD_VGFAEAAR
57
up





CO6
CO6_ALNHLPLEYNSALYSR
72
up





ITIH4
ITIH4_NPLVWVHASPEHVVVTR
113
up





A2GL
A2GL_DLLLPQPDLR
34
up





CAH1
CAH1_GGPFSDSYR
56
up





CATD
CATD_VSTLPAITLK
58
up





CBPN
CBPN_EALIQFLEQVHQGIK
59
up





HABP2
HABP2_FLNWIK
92
up





CFAB
CFAB_YGLVTYATYPK
64
up





HEMO
HEMO_NFPSPVDAAFR
93
up





LBP
LBP_ITGFLKPGK
118
up





LBP
LBP_ITLPDFTGDLR
119
up





PAPP1
PAPP1_DIPHWLNPTR
122
up





FETUA
FETUA_FSVVYAK
88
up





FETUA
FETUA_HTLNQIDEVK
89
up





IBP6
IBP6_GAQTLYVPNCDHR
101
up





ITIH3
ITIH3_ALDLSLK
111
up





B2MG
B2MG_VEHSDLSFSK
50
up





ENPP2
ENPP2_TYLHTYESEI
83
up





HLACI
HLACI_WAAVVVPSGEEQR
95
up





ITIH4
ITIH4_QLGLPGPPDVPDHAAYHPF
114
up





C1QB
C1QB_VPGLYYFTYHASSR
55
up





ENPP2
ENPP2_TEFLSNYLTNVDDITLVPGTLGR
82
up





FBLN3
FBLN3_IPSNPSHR
87
up





PSG11
PSG11_LFIPQITPK
132
up





ITIH4
ITIH4_ILDDLSPR
112
down





PSG1
PSG1_FQLPGQK
131
down





CHL1
CHL1_VIAVNEVGR
66
down





CSH
CSH_ISLLLIESWLEPVR
81
down





NCAM1
NCAM1_GLGEISAASEFK
121
down





PRG2
PRG2_WNFAYWAAHQPWSR
129
down





SOM2.CSH
SOM2.CSH_NYGLLYCFR
138
down





ALS
ALS_IRPHTFTGLSGLR
40
down





FBLN1
FBLN1_TGYYFDGISR
86
down





PSG9
PSG9_LFIPQITR
136
down





CSH
CSH_AHQLAIDTYQEFEETYIPK
80
down





VTDB
VTDB_ELPEHTVK
147
down





IBP3
IBP3_FLNVLSPR
99
down





IBP3
IBP3_YGQPLPGYTTK
100
down





PSG9
PSG9_DVLLLVHNLPQNLPGYFWYK
135
down





TENX
TENX_LSQLSVTDVTTSSLR
142
down





IBP1
IBP1_VVESLAK
97
down





IBP2
IBP2_LIQGAPTIR
98
down





SOM2.CSH
SOM2.CSH_SVEGSCGF
139
down





SPRL1
SPRL1_VLTHSELAPLR
140
down





TENX
TENX_LNWEAPPGAFDSFLLR
141
down





TIE1
TIE1_VSWSLPLVPGPLVGDGFLLR
144
down





C163A
C163A_INPASLDK
54
down





IGF2
IGF2_GIVEECCFR
103
down





PSG3
PSG3_VSAPSGTGHLPGLNPL
134
down





CRIS3
CRIS3_AVSPPAR
78
down





CRIS3
CRIS3_YEDLYSNCK
79
down





LYAM1
LYAM1_SYYWIGIR
120
down





PGRP2
PGRP2_AGLLRPDYALLGHR
126
down





SHBG
SHBG_IALGGLLFPASNLR
18
down
















TABLE 27







Reversal Classification Performance, weeks 17 and 18.


Reversal AUROC for gestational weeks 17 and 18 using 


a case vs control cut-off of <37 0/7 vs >=37 0/7 


weeks, without BMI stratification.











SEQ ID




Reversal
NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_CHL1_VIAVNEVGR
 34 & 66
0.027
0.633





A2GL_DLLLPQPDLR_vs_PSG3_VSAPSGTGHLPGLNPL
 34 & 134
0.036
0.626





AFAM_DADPDTFFAK_vs_CHL1_VIAVNEVGR
 37 & 66
0.005
0.669





AFAM_DADPDTFFAK_vs_PSG3_VSAPSGTGHLPGLNPL
 37 & 134
0.001
0.699





AFAM_DADPDTFFAK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 37 & 144
0.020
0.640





AFAM_DADPDTFFAK_vs_VTDB_ELPEHTVK
 37 & 147
0.043
0.622





AFAM_HFQNLGK_vs_CHL1_VIAVNEVGR
 38 & 66
0.003
0.679





AFAM_HFQNLGK_vs_NCAM1_GLGEISAASEFK
 38 & 121
0.036
0.626





AFAM_HFQNLGK_vs_PSG3_VSAPSGTGHLPGLNPL
 38 & 134
0.004
0.676





AFAM_HFQNLGK_vs_VTDB_ELPEHTVK
 38 & 147
0.037
0.625





ANGT_DPTFIPAPIQAK_vs_CHL1_VIAVNEVGR
 42 & 66
0.008
0.659





ANGT_DPTFIPAPIQAK_vs_CSH_AHQLAIDTYQEFEETYIPK
 42 & 80
0.006
0.665





ANGT_DPTFIPAPIQAK_vs_CSH_ISLLLIESWLEPVR
 42 & 81
0.023
0.637





ANGT_DPTFIPAPIQAK_vs_FBLN1_TGYYFDGISR
 42 & 86
0.025
0.635





ANGT_DPTFIPAPIQAK_vs_NCAM1_GLGEISAASEFK
 42 & 121
0.040
0.624





ANGT_DPTFIPAPIQAK_vs_PSG1_FQLPGQK
 42 & 131
0.036
0.626





ANGT_DPTFIPAPIQAK_vs_PSG3_VSAPSGTGHLPGLNPL
 42 & 134
0.004
0.675





ANGT_DPTFIPAPIQAK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK 
 42 & 135
0.042
0.623





ANGT_DPTFIPAPIQAK_vs_SOM2.CSH_NYGLLYCFR
 42 & 138
0.012
0.651





ANGT_DPTFIPAPIQAK_vs_SOM2.CSH_SVEGSCGF
 42 & 139
0.032
0.631





APOC3_GWVTDGFSSLK_vs_CHL1_VIAVNEVGR
 47 & 66
0.047
0.619





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.021
0.639





APOH_ATVVYQGER_vs_CHL1_VIAVNEVGR
 48 & 66
0.008
0.660





APOH_ATVVYQGER_vs_CSH_AHQLAIDTYQEFEETYIPK
 48 & 80
0.039
0.624





APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLNPL
 48 & 134
0.024
0.636





B2MG_VEHSDLSFSK_vs_CHL1_VIAVNEVGR
 50 & 66
0.042
0.622





B2MG_VNHVTLSQPK_vs_CHL1_VIAVNEVGR
 51 & 66
0.023
0.637





B2MG_VNHVTLSQPK_vs_PSG3_VSAPSGTGHLPGLNPL
 51 & 134
0.046
0.620





BGH3_LTLLAPLNSVFK_vs_CHL1_VIAVNEVGR
 52 & 66
0.006
0.666





BGH3_LTLLAPLNSVFK_vs_CSH_AHQLAIDTYQEFEETYIPK
 52 & 80
0.014
0.648





BGH3_LTLLAPLNSVFK_vs_CSH_ISLLLIESWLEPVR
 52 & 81
0.050
0.618





BGH3_LTLLAPLNSVFK_vs_FBLN1_TGYYFDGISR
 52 & 86
0.020
0.640





BGH3_LTLLAPLNSVFK_vs_PSG3_VSAPSGTGHLPGLNPL
 52 & 134
0.024
0.636





BGH3_LTLLAPLNSVFK_vs_SHBG_IALGGLLFPASNLR
 52 & 18
0.029
0.632





BGH3_LTLLAPLNSVFK_vs_SOM2.CSH_NYGLLYCFR
 52 & 138
0.043
0.622





C1QB_VPGLYYFTYHASSR_vs_CHL1_VIAVNEVGR
 55 & 66
0.018
0.643





C1QB_VPGLYYFTYHASSR_vs_CSH_AHQLAIDTYQEFEETYIPK
 55 & 80
0.010
0.655





C1QB_VPGLYYFTYHASSR_vs_CSH_ISLLLIESWLEPVR
 55 & 81
0.016
0.645





C1QB_VPGLYYFTYHASSR_vs_FBLN1_TGYYFDGISR
 55 & 86
0.046
0.620





C1QB_VPGLYYFTYHASSR_vs_IBP2_LIQGAPTIR
 55 & 98
0.017
0.644





C1QB_VPGLYYFTYHASSR_vs_PGRP2_AGLLRPDYALLGHR
 55 & 126
0.032
0.629





C1QB_VPGLYYFTYHASSR_vs_PSG3_VSAPSGTGHLPGLNPL
 55 & 134
0.028
0.632





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.036
0.627





C1QB_VPGLYYFTYHASSR_vs_SOM2.CSH_NYGLLYCFR
 55 & 138
0.011
0.653





C1QB_VPGLYYFTYHASSR_vs_SOM2.CSH_SVEGSCGF
 55 & 139
0.048
0.621





CBPN_EALIQFLEQVHQGIK_vs_PSG3_VSAPSGTGHLPGLNPL
 59 & 134
0.038
0.625





CBPN_EALIQFLEQVHQGIK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 59 & 135
0.037
0.626





CBPN_NNANGVDLNR_vs_CHL1_VIAVNEVGR
 60 & 66
0.044
0.621





CBPN_NNANGVDLNR_vs_PSG3_VSAPSGTGHLPGLNPL
 60 & 134
0.044
0.622





CD14_LTVGAAQVPAQLLVGALR_vs_CHL1_VIAVNEVGR
 61 & 66
0.011
0.652





CD14_LTVGAAQVPAQLLVGALR_vs_CSH_AHQLAIDTYQEFEETYIPK
 61 & 80
0.046
0.620





CD14_LTVGAAQVPAQLLVGALR_vs_PSG3_VSAPSGTGHLPGLNPL
 61 & 134
0.032
0.629





CD14_SWLAELQQWLKPGLK_vs_CHL1_VIAVNEVGR
 62 & 66
0.005
0.667





CD14_SWLAELQQWLKPGLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 62 & 80
0.024
0.636





CD14_SWLAELQQWLKPGLK_vs_PSG3_VSAPSGTGHLPGLNPL
 62 & 134
0.015
0.646





CFAB_YGLVTYATYPK_vs_C163A_INPASLDK
 64 & 54
0.045
0.621





CFAB_YGLVTYATYPK_vs_CHL1_VIAVNEVGR
 64 & 66
0.001
0.703





CFAB_YGLVTYATYPK_vs_CSH_AHQLAIDTYQEFEETYIPK
 64 & 80
0.011
0.654





CFAB_YGLVTYATYPK_vs_CSH_ISLLLIESWLEPVR
 64 & 81
0.024
0.636





CFAB_YGLVTYATYPK_vs_FBLN1_TGYYFDGISR
 64 & 86
0.023
0.637





CFAB_YGLVTYATYPK_vs_LYAM1_SYYWIGIR
 64 & 120
0.034
0.628





CFAB_YGLVTYATYPK_vs_NCAM1_GLGEISAASEFK
 64 & 121
0.005
0.671





CFAB_YGLVTYATYPK_vs_PGRP2_AGLLRPDYALLGHR
 64 & 126
0.012
0.651





CFAB_YGLVTYATYPK_vs_PSG1_FQLPGQK
 64 & 131
0.032
0.629





CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGLNPL
 64 & 134
0.000
0.722





CFAB_YGLVTYATYPK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 64 & 135
0.031
0.630





CFAB_YGLVTYATYPK_vs_SHBG_IALGGLLFPASNLR
 64 & 18
0.015
0.646





CFAB_YGLVTYATYPK_vs_SOM2.CSH_NYGLLYCFR
 64 & 138
0.020
0.640





CFAB_YGLVTYATYPK_vs_SOM2.CSH_SVEGSCGF
 64 & 139
0.027
0.635





CFAB_YGLVTYATYPK_vs_TENX_LNWEAPPGAFDSFLLR
 64 & 141
0.031
0.630





CFAB_YGLVTYATYPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 64 & 144
0.012
0.652





CFAB_YGLVTYATYPK_vs_VTDB_ELPEHTVK
 64 & 147
0.006
0.664





CLUS_ASSIIDELFQDR_vs_CHL1_VIAVNEVGR
 67 & 66
0.002
0.682





CLUS_ASSIIDELFQDR_vs_CSH_AHQLAIDTYQEFEETYIPK
 67 & 80
0.027
0.633





CLUS_ASSIIDELFQDR_vs_FBLN1_TGYYFDGISR
 67 & 86
0.028
0.633





CLUS_ASSIIDELFQDR_vs_NCAM1_GLGEISAASEFK
 67 & 121
0.042
0.622





CLUS_ASSIIDELFQDR_vs_PSG3_VSAPSGTGHLPGLNPL
 67 & 134
0.007
0.664





CLUS_ASSIIDELFQDR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK 
 67 & 135
0.035
0.627





CLUS_ASSIIDELFQDR_vs_VTDB_ELPEHTVK
 67 & 147
0.032
0.629





CLUS_LFDSDPITVTVPVEVSR_vs_CHL1_VIAVNEVGR
 68 & 66
0.003
0.679





CLUS_LFDSDPITVTVPVEVSR_vs_CSH_AHQLAIDTYQEFEETYIPK
 68 & 80
0.047
0.620





CLUS_LFDSDPITVTVPVEVSR_vs_FBLN1_TGYYFDGISR
 68 & 86
0.028
0.633





CLUS_LFDSDPITVTVPVEVSR_vs_PSG3_VSAPSGTGHLPGLNPL
 68 & 134
0.014
0.648





CLUS_LFDSDPITVTVPVEVSR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 68 & 135
0.034
0.628





CLUS_LFDSDPITVTVPVEVSR_vs_VTDB_ELPEHTVK
 68 & 147
0.038
0.625





CO5_TLLPVSKPEIR_vs_CHL1_VIAVNEVGR
 70 & 66
0.002
0.683





CO5_TLLPVSKPEIR_vs_CSH_AHQLAIDTYQEFEETYIPK
 70 & 80
0.021
0.640





CO5_TLLPVSKPEIR_vs_FBLN1_TGYYFDGISR
 70 & 86
0.033
0.628





CO5_TLLPVSKPEIR_vs_NCAM1_GLGEISAASEFK
 70 & 121
0.033
0.628





CO5_TLLPVSKPEIR_vs_PGRP2_AGLLRPDYALLGHR
 70 & 126
0.043
0.622





CO5_TLLPVSKPEIR_vs_PSG3_VSAPSGTGHLPGLNPL
 70 & 134
0.002
0.688





CO5_TLLPVSKPEIR_vs_SOM2.CSH_NYGLLYCFR
 70 & 138
0.038
0.625





CO5_VFQFLEK_vs_CHL1_VIAVNEVGR
 71 & 66
0.002
0.686





CO5_VFQFLEK_vs_CSH_AHQLAIDTYQEFEETYIPK
 71 & 80
0.020
0.640





CO5_VFQFLEK_vs_FBLN1_TGYYFDGISR
 71 & 86
0.033
0.628





CO5_VFQFLEK_vs_NCAM1_GLGEISAASEFK
 71 & 121
0.034
0.628





CO5_VFQFLEK_vs_PGRP2_AGLLRPDYALLGHR
 71 & 126
0.046
0.620





CO5_VFQFLEK_vs_PSG3_VSAPSGTGHLPGLNPL
 71 & 134
0.002
0.685





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
 71 & 18
0.043
0.622





CO5_VFQFLEK_vs_SOM2.CSH_NYGLLYCFR
 71 & 138
0.038
0.625





CO5_VFQFLEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 71 & 144
0.047
0.619





CO6_ALNHLPLEYNSALYSR_vs_CHL1_VIAVNEVGR
 72 & 66
0.000
0.723





CO6_ALNHLPLEYNSALYSR_vs_CSH_AHQLAIDTYQEFEETYIPK
 72 & 80
0.010
0.655





CO6_ALNHLPLEYNSALYSR_vs_CSH_ISLLLIESWLEPVR
 72 & 81
0.035
0.627





CO6_ALNHLPLEYNSALYSR_vs_FBLN1_TGYYFDGISR
 72 & 86
0.013
0.649





CO6_ALNHLPLEYNSALYSR_vs_NCAM1_GLGEISAASEFK
 72 & 121
0.010
0.656





CO6_ALNHLPLEYNSALYSR_vs_PGRP2_AGLLRPDYALLGHR
 72 & 126
0.049
0.619





CO6_ALNHLPLEYNSALYSR_vs_PSG1_FQLPGQK
 72 & 131
0.043
0.622





CO6_ALNHLPLEYNSALYSR_vs_PSG3_VSAPSGTGHLPGLNPL
 72 & 134
0.001
0.699





CO6_ALNHLPLEYNSALYSR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 72 & 135
0.041
0.623





CO6_ALNHLPLEYNSALYSR_vs_SOM2.CSH_NYGLLYCFR
 72 & 138
0.019
0.641





CO6_ALNHLPLEYNSALYSR_vs_SOM2.CSH_SVEGSCGF
 72 & 139
0.028
0.634





CO6_ALNHLPLEYNSALYSR_vs_TENX_LNWEAPPGAFDSFLLR
 72 & 141
0.036
0.626





CO6_ALNHLPLEYNSALYSR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 72 & 144
0.019
0.641





CO6_ALNHLPLEYNSALYSR_vs_VTDB_ELPEHTVK
 72 & 147
0.009
0.657





CO8A_SLLQPNK_vs_CHL1_VIAVNEVGR
 74 & 66
0.007
0.661





CO8A_SLLQPNK_vs_PSG3_VSAPSGTGHLPGLNPL
 74 & 134
0.005
0.671





CO8B_QALEEFQK_vs_CHL1_VIAVNEVGR
 76 & 66
0.019
0.642





CO8B_QALEEFQK_vs_CSH_AHQLAIDTYQEFEETYIPK
 76 & 80
0.046
0.620





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
 76 & 134
0.013
0.649





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG3VSAPSGTGHLPGLNPL
 82 & 134
0.033
0.629





ENPP2_TYLHTYESEI_vs_PSG3_VSAPSGTGHLPGLNPL
 83 & 134
0.032
0.629





F13B_GDTYPAELYITGSILR_vs_CHL1_VIAVNEVGR
 84 & 66
0.003
0.680





F13B_GDTYPAELYITGSILR_vs_CSH_AHQLAIDTYQEFEETYIPK
 84 & 80
0.035
0.627





F13B_GDTYPAELYITGSILR_vs_FBLN1_TGYYFDGISR
 84 & 86
0.035
0.627





F13B_GDTYPAELYITGSILR_vs_PSG3_VSAPSGTGHLPGLNPL
 84 & 134
0.007
0.663





FBLN3_IPSNPSHR_vs_CHL1_VIAVNEVGR
 87 & 66
0.049
0.619





FETUA_FSVVYAK_vs_CHL1_VIAVNEVGR
 88 & 66
0.009
0.658





FETUA_FSVVYAK_vs_PGRP2_AGLLRPDYALLGHR
 88 & 126
0.042
0.623





FETUA_FSVVYAK_vs_PSG3_VSAPSGTGHLPGLNPL
 88 & 134
0.009
0.658





FETUA_HTLNQIDEVK_vs_CHL1_VIAVNEVGR
 89 & 66
0.009
0.657





FETUA_HTLNQIDEVK_vs_PSG3_VSAPSGTGHLPGLNPL
 89 & 134
0.017
0.643





HABP2_FLNWIK_vs_CHL1_VIAVNEVGR
 92 & 66
0.000
0.739





HABP2_FLNWIK_vs_CSH_AHQLAIDTYQEFEETYIPK
 92 & 80
0.002
0.687





HABP2_FLNWIK_vs_CSH_ISLLLIESWLEPVR
 92 & 81
0.005
0.667





HABP2_FLNWIK_vs_FBLN1_TGYYFDGISR
 92 & 86
0.003
0.679





HABP2_FLNWIK_vs_IBP3_FLNVLSPR
 92 & 99
0.038
0.625





HABP2_FLNWIK_vs_IBP3_YGQPLPGYTTK
 92 & 100
0.029
0.631





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.008
0.659





HABP2_FLNWIK_vs_ITIH4_ILDDLSPR
 92 & 112
0.003
0.680





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.018
0.643





HABP2_FLNWIK_vs_NCAM1_GLGEISAASEFK
 92 & 121
0.002
0.683





HABP2_FLNWIK_vs_PGRP2_AGLLRPDYALLGHR
 92 & 126
0.004
0.672





HABP2_FLNWIK_vs_PRG2_WNFAYWAAHQPWSR
 92 & 129
0.027
0.633





HABP2_FLNWIK_vs_PSG1_FQLPGQK
 92 & 131
0.014
0.649





HABP2_FLNWIK_vs_PSG3_VSAPSGTGHLPGLNPL
 92 & 134
0.000
0.750





HABP2_FLNWIK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 92 & 135
0.015
0.646





HABP2_FLNWIK_vs_PSG9_LFIPQITR
 92 & 136
0.043
0.622





HABP2_FLNWIK_vs_SHBG_IALGGLLFPASNLR
 92 & 18
0.010
0.655





HABP2_FLNWIK_vs_SOM2.CSH_NYGLLYCFR
 92 & 138
0.004
0.674





HABP2_FLNWIK_vs_SOM2.CSH_SVEGSCGF
 92 & 139
0.005
0.673





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.016
0.645





HABP2_FLNWIK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 92 & 144
0.004
0.673





HABP2_FLNWIK_vs_VTDB_ELPEHTVK
 92 & 147
0.000
0.711





HEMO_NFPSPVDAAFR_vs_CHL1_VIAVNEVGR
 93 & 66
0.004
0.673





HEMO_NFPSPVDAAFR_vs_CSH_AHQLAIDTYQEFEETYIPK
 93 & 80
0.047
0.619





HEMO_NFPSPVDAAFR_vs_PSG3_VSAPSGTGHLPGLNPL
 93 & 134
0.016
0.645





IBP4_QCHPALDGQR_vs_CHL1_VIAVNEVGR
  2 & 66
0.023
0.637





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.021
0.640





IBP6_HLDSVLQQLQTEVYR_vs_PSG3_VSAPSGTGHLPGLNPL
102 & 134
0.032
0.629





INHBC_LDFHFSSDR_vs_CHL1_VIAVNEVGR
107 & 66
0.010
0.655





INHBC_LDFHFSSDR_vs_CSH_AHQLAIDTYQEFEETYIPK
107 & 80
0.050
0.618





INHBC_LDFHFSSDR_vs_PRG2_WNFAYWAAHQPWSR
107 & 129
0.048
0.619





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.007
0.663





INHBC_LDFHFSSDR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
107 & 135
0.049
0.619





ITIH3_ALDLSLK_vs_PSG3_VSAPSGTGHLPGLNPL
111 & 134
0.041
0.623





KNG1_DIPTNSPELEETLTHTITK_vs_CHL1_VIAVNEVGR
116 & 66
0.013
0.650





KNG1_DIPTNSPELEETLTHTITK_vs_CSH_AHQLAIDTYQEFEETYIPK
116 & 80
0.032
0.629





KNG1_DIPTNSPELEETLTHTITK_vs_PSG3_VSAPSGTGHLPGLNPL
116 & 134
0.007
0.661





KNG1_DIPTNSPELEETLTHTITK_vs_SOM2.CSHNYGLLYCFR
116 & 138
0.049
0.619





KNG1_QVVAGLNFR_vs_CHL1_VIAVNEVGR
117 & 66
0.023
0.637





KNG1_QVVAGLNFR_vs_PSG3_VSAPSGTGHLPGLNPL
117 & 134
0.041
0.623





LBP_ITGFLKPGK_vs_CHL1_VIAVNEVGR
118 & 66
0.024
0.636





LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNPL
118 & 134
0.011
0.654





LBP_ITLPDFTGDLR_vs_CHL1_VIAVNEVGR
119 & 66
0.008
0.661





LBP_ITLPDFTGDLR_vs_CSH_AHQLAIDTYQEFEETYIPK
119 & 80
0.041
0.623





LBP_ITLPDFTGDLR_vs_FBLN1_TGYYFDGISR
119 & 86
0.049
0.619





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.046
0.620





LBP_ITLPDFTGDLR_vs_NCAM1_GLGEISAASEFK
119 & 121
0.042
0.623





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGLNPL
119 & 134
0.006
0.665





LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.047
0.619





LBP_ITLPDFTGDLR_vs_SOM2.CSH_SVEGSCGF
119 & 139
0.049
0.620





LBP_ITLPDFTGDLR_vs_VTDB_ELPEHTVK
119 & 147
0.019
0.641





PEDF_LQSLFDSPDFSK_vs_CHL1_VIAVNEVGR
124 & 66
0.003
0.681





PEDF_LQSLFDSPDFSK_vs_CSH_AHQLAIDTYQEFEETYIPK
124 & 80
0.020
0.640





PEDF_LQSLFDSPDFSK_vs_CSH_ISLLLIESWLEPVR
124 & 81
0.044
0.621





PEDF_LQSLFDSPDFSK_vs_FBLN1_TGYYFDGISR
124 & 86
0.026
0.634





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.050
0.618





PEDF_LQSLFDSPDFSK_vs_PSG1_FQLPGQK
124 & 131
0.025
0.635





PEDF_LQSLFDSPDFSK_vs_PSG3_VSAPSGTGHLPGLNPL
124 & 134
0.006
0.666





PEDF_LQSLFDSPDFSK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
124 & 135
0.036
0.627





PEDF_LQSLFDSPDFSK_vs_SOM2.CSH_NYGLLYCFR
124 & 138
0.027
0.633





PEDF_LQSLFDSPDFSK_vs_SOM2.CSH_SVEGSCGF
124 & 139
0.049
0.620





PEDF_LQSLFDSPDFSK_vs_TENX_LNWEAPPGAFDSFLLR
124 & 141
0.043
0.622





PEDF_LQSLFDSPDFSK_vs_VTDB_ELPEHTVK
124 & 147
0.025
0.635





PEDF_TVQAVLTVPK_vs_CHL1_VIAVNEVGR
125 & 66
0.004
0.675





PEDF_TVQAVLTVPK_vs_CSH_AHQLAIDTYQEFEETYIPK
125 & 80
0.015
0.646





PEDF_TVQAVLTVPK_vs_CSH_ISLLLIESWLEPVR
125 & 81
0.039
0.624





PEDF_TVQAVLTVPK_vs_FBLN1_TGYYFDGISR
125 & 86
0.018
0.642





PEDF_TVQAVLTVPK_vs_NCAM1_GLGEISAASEFK
125 & 121
0.033
0.628





PEDF_TVQAVLTVPK_vs_PSG1_FQLPGQK
125 & 131
0.032
0.629





PEDF_TVQAVLTVPK_vs_PSG3_VSAPSGTGHLPGLNPL
125 & 134
0.004
0.673





PEDF_TVQAVLTVPK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
125 & 135
0.050
0.618





PEDF_TVQAVLTVPK_vs_SOM2.CSH_NYGLLYCFR
125 & 138
0.040
0.624





PEDF_TVQAVLTVPK_vs_VTDB_ELPEHTVK
125 & 147
0.023
0.637





VTNC_GQYCYELDEK_vs_CHL1_VIAVNEVGR
149 & 66
0.000
0.719





VTNC_GQYCYELDEK_vs_CSH_AHQLAIDTYQEFEETYIPK
149 & 80
0.006
0.665





VTNC_GQYCYELDEK_vs_CSH_ISLLLIESWLEPVR
149 & 81
0.013
0.650





VTNC_GQYCYELDEK_vs_FBLN1_TGYYFDGISR
149 & 86
0.008
0.659





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.046
0.620





VTNC_GQYCYELDEK_vs_ITIH4_ILDDLSPR
149 & 112
0.040
0.624





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.020
0.640





VTNC_GQYCYELDEK_vs_NCAM1_GLGEISAASEFK
149 & 121
0.008
0.659





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.005
0.670





VTNC_GQYCYELDEK_vs_PSG1_FQLPGQK
149 & 131
0.021
0.639





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.000
0.743





VTNC_GQYCYELDEK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
149 & 135
0.029
0.631





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.014
0.648





VTNC_GQYCYELDEK_vs_SOM2.CSH_NYGLLYCFR
149 & 138
0.010
0.655





VTNC_GQYCYELDEK_vs_SOM2.CSH_SVEGSCGF
149 & 139
0.009
0.660





VTNC_GQYCYELDEK_vs_TENX_LNWEAPPGAFDSFLLR
149 & 141
0.023
0.637





VTNC_GQYCYELDEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
149 & 144
0.006
0.665





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.001
0.694





VTNC_VDTVDPPYPR_vs_CHL1_VIAVNEVGR
150 & 66
0.000
0.712





VTNC_VDTVDPPYPR_vs_CSH_AHQLAIDTYQEFEETYIPK
150 & 80
0.010
0.654





VTNC_VDTVDPPYPR_vs_CSH_ISLLLIESWLEPVR
150 & 81
0.029
0.631





VTNC_VDTVDPPYPR_vs_FBLN1_TGYYFDGISR
150 & 86
0.034
0.628





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.034
0.628





VTNC_VDTVDPPYPR_vs_NCAM1_GLGEISAASEFK
150 & 121
0.021
0.640





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126
0.039
0.625





VTNC_VDTVDPPYPR_vs_PSG1_FQLPGQK
150 & 131
0.033
0.628





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.000
0.720





VTNC_VDTVDPPYPR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
150 & 135
0.035
0.627





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.043
0.622





VTNC_VDTVDPPYPR_vs_SOM2.CSH_NYGLLYCFR
150 & 138
0.023
0.637





VTNC_VDTVDPPYPR_vs_SOM2.CSH_SVEGSCGF
150 & 139
0.023
0.639





VTNC_VDTVDPPYPR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
150 & 144
0.043
0.622





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.003
0.677
















TABLE 28







Reversal Classification Performance, weeks 17 and 18.


Reversal AUROC for gestational weeks 17 and 18 using 


a case vs control cut-off of <37 0/7 vs >=37 0/7 weeks, 


with BMI stratification (>22 <=37).











SEQ ID




Reversal
NO:
pval
ROC_AUC





AFAM_DADPDTFFAK_vs_CHL1_VIAVNEVGR
 37 & 66
0.040
0.647





AFAM_DADPDTFFAK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 37 & 144
0.030
0.656





AFAM_HFQNLGK_vs_CHL1_VIAVNEVGR
 38 & 66
0.022
0.664





ANGT_DPTFIPAPIQAK_vs_CHL1_VIAVNEVGR
 42 & 66
0.017
0.671





ANGT_DPTFIPAPIQAK_vs_CSH_AHQLAIDTYQEFEETYIPK
 42 & 80
0.037
0.650





ANGT_DPTFIPAPIQAK_vs_NCAM1_GLGEISAASEFK
 42 & 121
0.043
0.645





ANGT_DPTFIPAPIQAK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 42 & 144
0.033
0.653





APOH_ATVVYQGER_vs_CHL1_VIAVNEVGR
 48 & 66
0.031
0.655





BGH3_LTLLAPLNSVFK_vs_CHL1_VIAVNEVGR
 52 & 66
0.016
0.672





C1QB_VPGLYYFTYHASSR_vs_CHL1_VIAVNEVGR
 55 & 66
0.019
0.669





C1QB_VPGLYYFTYHASSR_vs_CSH_AHQLAIDTYQEFEETYIPK
 55 & 80
0.038
0.648





C1QB_VPGLYYFTYHASSR_vs_CSH_ISLLLIESWLEPVR
 55 & 81
0.046
0.643





C1QB_VPGLYYFTYHASSR_vs_FBLN1_TGYYFDGISR
 55 & 86
0.037
0.650





C1QB_VPGLYYFTYHASSR_vs_IBP2_LIQGAPTIR
 55 & 98
0.042
0.646





C1QB_VPGLYYFTYHASSR_vs_LYAM1_SYYWIGIR
 55 & 120
0.043
0.645





C1QB_VPGLYYFTYHASSR_vs_PGRP2_AGLLRPDYALLGHR
 55 & 126
0.030
0.656





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.037
0.650





C1QB_VPGLYYFTYHASSR_vs_SOM2.CSH_NYGLLYCFR
 55 & 138
0.029
0.657





C1QB_VPGLYYFTYHASSR_vs_SPRL1_VLTHSELAPLR
 55 & 140
0.034
0.652





CBPN_EALIQFLEQVHQGIK_vs_CHL1_VIAVNEVGR
 59 & 66
0.047
0.642





CD14_SWLAELQQWLKPGLK_vs_CHL1_VIAVNEVGR
 62 & 66
0.031
0.655





CFAB_YGLVTYATYPK_vs_CHL1_VIAVNEVGR
 64 & 66
0.006
0.697





CFAB_YGLVTYATYPK_vs_NCAM1_GLGEISAASEFK
 64 & 121
0.017
0.671





CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGLNPL
 64 & 134
0.021
0.666





CFAB_YGLVTYATYPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 64 & 144
0.038
0.648





CLUS_ASSIIDELFQDR_vs_CHL1_VIAVNEVGR
 67 & 66
0.014
0.675





CLUS_LFDSDPITVTVPVEVSR_vs_CHL1_VIAVNEVGR
 68 & 66
0.022
0.664





CO5_TLLPVSKPEIR_vs_CHL1_VIAVNEVGR
 70 & 66
0.006
0.696





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.044
0.644





CO5_TLLPVSKPEIR_vs_PSG3_VSAPSGTGHLPGLNPL
 70 & 134
0.038
0.648





CO5_VFQFLEK_vs_CHL1_VIAVNEVGR
 71 & 66
0.005
0.701





CO5_VFQFLEK_vs_PSG3_VSAPSGTGHLPGLNPL
 71 & 134
0.048
0.642





CO5_VFQFLEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 71 & 144
0.038
0.648





CO6_ALNHLPLEYNSALYSR_vs_CHL1_VIAVNEVGR
 72 & 66
0.001
0.741





CO6_ALNHLPLEYNSALYSR_vs_FBLN1_TGYYFDGISR
 72 & 86
0.045
0.643





CO6_ALNHLPLEYNSALYSR_VS_LYAM1_SYYWIGIR
 72 & 120
0.036
0.650





CO6_ALNHLPLEYNSALYSR_vs_PSG3_VSAPSGTGHLPGLNPL
 72 & 134
0.028
0.658





CO6_ALNHLPLEYNSALYSR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 72 & 144
0.007
0.693





CO6_ALNHLPLEYNSALYSR_vs_VTDB_ELPEHTVK
 72 & 147
0.041
0.647





F13B_GDTYPAELYITGSILR_vs_CHL1_VIAVNEVGR
 84 & 66
0.021
0.665





HABP2_FLNWIK_vs_CHL1_VIAVNEVGR
 92 & 66
0.001
0.729





HABP2_FLNWIK_vs_FBLN1_TGYYFDGISR
 92 & 86
0.032
0.654





HABP2_FLNWIK_vs_IBP3_FLNVLSPR
 92 & 99
0.040
0.647





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.018
0.670





HABP2_FLNWIK_vs_ITIH4_ILDDLSPR
 92 & 112
0.030
0.655





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.017
0.671





HABP2_FLNWIK_vs_NCAM1_GLGEISAASEFK
 92 & 121
0.014
0.675





HABP2_FLNWIK_vs_PGRP2_AGLLRPDYALLGHR
 92 & 126
0.034
0.652





HABP2_FLNWIK_vs_PSG3_VSAPSGTGHLPGLNPL
 92 & 134
0.005
0.699





HABP2_FLNWIK_vs_SHBG_IALGGLLFPASNLR
 92 & 18
0.034
0.652





HABP2_FLNWIK_vs_SPRL1_VLTHSELAPLR
 92 & 140
0.046
0.643





HABP2_FLNWIK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 92 & 144
0.003
0.709





HABP2_FLNWIK_vs_VTDB_ELPEHTVK
 92 & 147
0.005
0.700





HEMO_NFPSPVDAAFR_vs_CHL1_VIAVNEVGR
 93 & 66
0.020
0.667





IBP4_QCHPALDGQR_vs_CHL1_VIAVNEVGR
  2 & 66
0.034
0.652





KNG1_DIPTNSPELEETLTHTITK_vs_CHL1_VIAVNEVGR
116 & 66
0.022
0.664





PEDF_LQSLFDSPDFSK_vs_CHL1_VIAVNEVGR
124 & 66
0.008
0.691





PEDF_TVQAVLTVPK_vs_CHL1_VIAVNEVGR
125 & 66
0.009
0.688





PEDF_TVQAVLTVPK_vs_VTDB_ELPEHTVK
125 & 147
0.049
0.641





PSG2_IHPSYTNYR_vs_CHL1_VIAVNEVGR
133 & 66
0.021
0.665





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.012
0.680





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.025
0.660





PSG2_IHPSYTNYR_VS_NCAM1_GLGEISAASEFK
133 & 121
0.048
0.642





PSG2_IHPSYTNYR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
133 & 135
0.012
0.679





PSG2_IHPSYTNYR_vs_PSG9_LFIPQITR
133 & 136
0.033
0.653





PSG2_IHPSYTNYR_vs_VTDB_ELPEHTVK
133 & 147
0.043
0.645





VTNC_GQYCYELDEK_vs_C163A_INPASLDK
149 & 54
0.044
0.644





VTNC_GQYCYELDEK_vs_CHL1_VIAVNEVGR
149 & 66
0.001
0.744





VTNC_GQYCYELDEK_vs_FBLN1_TGYYFDGISR
149 & 86
0.038
0.648





VTNC_GQYCYELDEK_vs_IBP3_FLNVLSPR
149 & 99
0.030
0.655





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.016
0.672





VTNC_GQYCYELDEK_vs_NCAM1_GLGEISAASEFK
149 & 121
0.020
0.667





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.014
0.677





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.009
0.688





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.045
0.643





VTNC_GQYCYELDEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
149 & 144
0.004
0.704





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.003
0.712





VTNC_VDTVDPPYPR_vs_CHL1_VIAVNEVGR
150 & 66
0.002
0.726





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.023
0.663





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.023
0.664





VTNC_VDTVDPPYPR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
150 & 144
0.028
0.657





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.009
0.688
















TABLE 29







Reversal Classification Performance, weeks 17 and 18.


Reversal AUROC for gestational weeks 17 and 18 using a 


case vs control cut-off of <35 0/7 vs >=35 0/7 weeks, 


without BMI stratification.











SEQ ID




Reversal
NO :
pval
ROC_AUC





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.021
0.744





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.023
0.741





ANGT_DPTFIPAPIQAK_vs_IGF2_GIVEECCFR
 42 & 103
0.017
0.752





CLUS_ASSIIDELFQDR_vs_CHL1_VIAVNEVGR
 67 & 66
0.018
0.749





CLUS_ASSIIDELFQDR_vs_IBP3_FLNVLSPR
 67 & 99
0.043
0.713





CLUS_ASSIIDELFQDR_vs_IGF2_GIVEECCFR
 67 & 103
0.005
0.795





CLUS_LFDSDPITVTVPVEVSR_vs_CHL1_VIAVNEVGR
 68 & 66
0.046
0.710





CLUS_LFDSDPITVTVPVEVSR_vs_IGF2_GIVEECCFR
 68 & 103
0.012
0.765





CO5_TLLPVSKPEIR_vs_IGF2_GIVEECCFR
 70 & 103
0.048
0.709





CO6_ALNHLPLEYNSALYSR_vs_CHL1_VIAVNEVGR
 72 & 66
0.018
0.750





CO6_ALNHLPLEYNSALYSR_vs_IBP3_YGQPLPGYTTK
 72 & 100
0.047
0.710





CO6_ALNHLPLEYNSALYSR_vs_IGF2_GIVEECCFR
 72 & 103
0.007
0.787





CO6_ALNHLPLEYNSALYSR_vs_PSG3_VSAPSGTGHLPGLNPL
 72 & 134
0.040
0.717





CO6_ALNHLPLEYNSALYSR_vs_VTDB_ELPEHTVK
 72 & 147
0.034
0.724





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_ALS_IRPHTFTGLSGLR
 82 & 40
0.012
0.766





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_CSH_ISLLLIESWLEPVR
 82 & 81
0.037
0.721





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_FBLN1_TGYYFDGISR
 82 & 86
0.026
0.735





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IBP3_FLNVLSPR
 82 & 99
0.025
0.737





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IBP3_YGQPLPGYTTK
 82 & 100
0.029
0.731





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_ITIH4_ILDDLSPR
 82 & 112
0.010
0.773





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_NCAM1_GLGEISAASEFK
 82 & 121
0.007
0.785





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PGRP2_AGLLRPDYALLGHR
 82 & 126
0.012
0.767





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG1_FQLPGQK
 82 & 131
0.011
0.769





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 82 & 135
0.043
0.713





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_LFIPQITR
 82 & 136
0.018
0.749





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_VS_SPRL1_VLTHSELAPLR
 82 & 140
0.035
0.722





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_TENX_LNWEAPPGAFDSFLLR
 82 & 141
0.046
0.710





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_TENX_LSQLSVTDVTTSSLR
 82 & 142
0.024
0.739





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 82 & 144
0.016
0.754





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_VTDBELPEHTVK
 82 & 147
0.008
0.781





ENPP2_TYLHTYESEI_vs_ALS_IRPHTFTGLSGLR
 83 & 40
0.026
0.735





ENPP2_TYLHTYESEI_vs_ITIH4_ILDDLSPR
 83 & 112
0.028
0.732





ENPP2_TYLHTYESEI_vs_NCAM1_GLGEISAASEFK
 83 & 121
0.021
0.744





ENPP2_TYLHTYESEI_vs_PGRP2_AGLLRPDYALLGHR
 83 & 126
0.013
0.762





ENPP2_TYLHTYESEI_vs_PSG1_FQLPGQK
 83 & 131
0.021
0.744





ENPP2_TYLHTYESEI_vs_PSG9_LFIPQITR
 83 & 136
0.034
0.723





ENPP2_TYLHTYESEI_vs_TENX_LSQLSVTDVTTSSLR
 83 & 142
0.038
0.719





ENPP2_TYLHTYESEI_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 83 & 144
0.031
0.728





ENPP2_TYLHTYESEI_vs_VTDB_ELPEHTVK
 83 & 147
0.010
0.770





HABP2_FLNWIK_vs_CHL1_VIAVNEVGR
 92 & 66
0.014
0.758





HABP2_FLNWIK_vs_IBP3_FLNVLSPR
 92 & 99
0.040
0.717





HABP2_FLNWIK_vs_IBP3_YGQPLPGYTTK
 92 & 100
0.043
0.714





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.006
0.790





HABP2_FLNWIK_vs_ITIH4_ILDDLSPR
 92 & 112
0.043
0.714





HABP2_FLNWIK_vs_PSG3_VSAPSGTGHLPGLNPL
 92 & 134
0.028
0.732





HABP2_FLNWIK_vs_SOM2.CSH_SVEGSCGF
 92 & 139
0.047
0.710





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.020
0.746





PSG2_IHPSYTNYR_vs_C163A_INPASLDK
133 & 54
0.044
0.712





PSG2_IHPSYTNYR_vs_CHL1_VIAVNEVGR
133 & 66
0.026
0.734





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.025
0.736





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.017
0.751





PSG2_IHPSYTNYR_vs_CSH_AHQLAIDTYQEFEETYIPK
133 & 80
0.034
0.723





PSG2_IHPSYTNYR_vs_IGF2_GIVEECCFR
133 & 103
0.018
0.750





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.031
0.728





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.032
0.727





PSG2_IHPSYTNYR_vs_SOM2.CSH_NYGLLYCFR
133 & 138
0.044
0.712





PSG2_IHPSYTNYR_vs_SOM2.CSH_SVEGSCGF
133 & 139
0.028
0.731





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.032
0.726
















TABLE 30







Reversal Classification Performance, weeks 17 and 18.


Reversal AUROC for gestational weeks 17 and 18 using 


a case vs control cut-off of <35 0/7 vs >=35 0/7 weeks, 


with BMI stratification (>22 <= 37).











SEQ ID




Reversal
NO:
pval
ROC_AUC





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.042
0.749





ANGT_DPTFIPAPIQAK_vs_IBP3_FLNVLSPR
 42 & 99
0.033
0.762





ANGT_DPTFIPAPIQAK_vs_IBP3_YGQPLPGYTTK
 42 & 100
0.041
0.751





ANGT_DPTFIPAPIQAK_vs_IGF2_GIVEECCFR
 42 & 103
0.017
0.793





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
 51 & 103
0.042
0.749





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
 61 & 103
0.042
0.749





CLUS_ASSIIDELFQDR_vs_IGF2_GIVEECCFR
 67 & 103
0.020
0.786





CLUS_LFDSDPITVTVPVEVSR_vs_IGF2_GIVEECCFR
 68 & 103
0.047
0.744





CO5_TLLPVSKPEIR_vs_IGF2_GIVEECCFR
 70 & 103
0.039
0.753





CO6_ALNHLPLEYNSALYSR_vs_CHL1_VIAVNEVGR
 72 & 66
0.026
0.773





CO6_ALNHLPLEYNSALYSR_vs_IBP3_FLNVLSPR
 72 & 99
0.016
0.795





CO6_ALNHLPLEYNSALYSR_vs_IBP3_YGQPLPGYTTK
 72 & 100
0.025
0.775





CO6_ALNHLPLEYNSALYSR_vs_IGF2_GIVEECCFR
 72 & 103
0.005
0.842





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGIR
 72 & 120
0.025
0.775





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_ALS_IRPHTFTGLSGLR
 82 & 40
0.041
0.751





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_CSH_ISLLLIESWLEPVR
 82 & 81
0.029
0.767





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_ITIH4_ILDDLSPR
 82 & 112
0.019
0.788





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_NCAM1_GLGEISAASEFK
 82 & 121
0.022
0.782





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PGRP2_AGLLRPDYALLGHR
 82 & 126
0.026
0.773





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG1_FQLPGQK
 82 & 131
0.039
0.753





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_IALGGLLFPASNLR
 82 & 18
0.044
0.747





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SOM2.CSH_NYGLLYCFR
 82 & 138
0.049
0.742





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_TENX_LSQLSVTDVTTSSLR
 82 & 142
0.029
0.767





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 82 & 144
0.015
0.799





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_VTDB_ELPEHTVK
 82 & 147
0.014
0.802





ENPP2_TYLHTYESEI_vs_CSH_ISLLLIESWLEPVR
 83 & 81
0.047
0.744





ENPP2_TYLHTYESEI_vs_ITIH4_ILDDLSPR
 83 & 112
0.038
0.755





ENPP2_TYLHTYESEI_vs_NCAM1_GLGEISAASEFK
 83 & 121
0.034
0.760





ENPP2_TYLHTYESEI_vs_PGRP2_AGLLRPDYALLGHR
 83 & 126
0.033
0.762





ENPP2_TYLHTYESEI_vs_SHBG_IALGGLLFPASNLR
 83 & 18
0.044
0.747





ENPP2_TYLHTYESEI_vs_TENX_LSQLSVTDVTTSSLR
 83 & 142
0.033
0.762





ENPP2_TYLHTYESEI_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 83 & 144
0.021
0.784





ENPP2_TYLHTYESEI_vs_VTDB_ELPEHTVK
 83 & 147
0.011
0.811





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
 84 & 103
0.034
0.760





HABP2_FLNWIK_vs_CHL1_VIAVNEVGR
 92 & 66
0.037
0.756





HABP2_FLNWIK_vs_IBP3_FLNVLSPR
 92 & 99
0.016
0.797





HABP2_FLNWIK_vs_IBP3_YGQPLPGYTTK
 92 & 100
0.032
0.764





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.005
0.842





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.028
0.769





HABP2_FLNWIK_vs_SOM2.CSH_SVEGSCGF
 92 & 139
0.045
0.746





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_CRIS3_YEDLYSNCK
114 & 79
0.046
0.745





KNG1_DIPTNSPELEETLTHTITK_vs_IGF2_GIVEECCFR
116 & 103
0.033
0.762





KNG1_QVVAGLNFR_vs_IBP3_FLNVLSPR
117 & 99
0.018
0.791





KNG1_QVVAGLNFR_vs_IBP3_YGQPLPGYTTK
117 & 100
0.027
0.771





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.006
0.839





PSG2_IHPSYTNYR_vs_C163A_INPASLDK
133 & 54
0.030
0.766





PSG2_IHPSYTNYR_vs_CHL1_VIAVNEVGR
133 & 66
0.023
0.778





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.008
0.826





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.010
0.817





PSG2_IHPSYTNYR_vs_CSH_AHQLAIDTYQEFEETYIPK
133 & 80
0.037
0.756





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.014
0.800





PSG2_IHPSYTNYR_vs_IBP3_FLNVLSPR
133 & 99
0.015
0.799





PSG2_IHPSYTNYR_vs_IBP3_YGQPLPGYTTK
133 & 100
0.022
0.780





PSG2_IHPSYTNYR_vs_IGF2_GIVEECCFR
133 & 103
0.005
0.842





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.008
0.828





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.028
0.769





PSG2_IHPSYTNYR_vs_SOM2.CSH_SVEGSCGF
133 & 139
0.040
0.752





THBG_AVLHIGEK_vs_IGF2_GIVEECCFR
143 & 103
0.042
0.749





VTNC_GQYCYELDEK_vs_IBP3_FLNVLSPR
149 & 99
0.042
0.749





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.015
0.799
















TABLE 31







Reversal Classification Performance, weeks 18 and 19. 


Reversal AUROC for gestational weeks 18 and 19 using a case vs 


control cut-off of <37 0/7 vs >=37 0/7 weeks, without BMI 


stratification.











SEQ ID




Reversal
NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_CSH_AHQLAIDTYQEFEETYIPK
 34 & 80
0.030
0.603





A2GL_DLLLPQPDLR_vs_FBLN1_TGYYFDGISR
 34 & 86
0.016
0.613





A2GL_DLLLPQPDLR_vs_PSG3_VSAPSGTGHLPGLNPL
 34 & 134
0.003
0.642





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.015
0.615





A2GL_DLLLPQPDLR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 34 & 144
0.024
0.607





AFAM_DADPDTFFAK_vs_FBLN1_TGYYFDGISR
 37 & 86
0.034
0.600





AFAM_DADPDTFFAK_vs_PSG3_VSAPSGTGHLPGLNPL
 37 & 134
0.015
0.615





AFAM_DADPDTFFAK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 37 & 144
0.009
0.623





AFAM_HFQNLGK_vs_PSG3_VSAPSGTGHLPGLNPL
 38 & 134
0.025
0.606





AFAM_HFQNLGK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 38 & 144
0.021
0.609





ANGT_DPTFIPAPIQAK_vs_CSH_AHQLAIDTYQEFEETYIPK
 42 & 80
0.014
0.616





ANGT_DPTFIPAPIQAK_vs_FBLN1_TGYYFDGISR
 42 & 86
0.008
0.625





ANGT_DPTFIPAPIQAK_vs_PSG3_VSAPSGTGHLPGLNPL
 42 & 134
0.005
0.633





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.018
0.612





ANGT_DPTFIPAPIQAK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 42 & 144
0.010
0.621





APOC3_GWVTDGFSSLK_vs_ALS_IRPHTFTGLSGLR
 47 & 40
0.018
0.612





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.002
0.648





APOC3_GWVTDGFSSLK_vs_CHL1_VIAVNEVGR
 47 & 66
0.033
0.601





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.022
0.608





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.014
0.616





APOC3_GWVTDGFSSLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 47 & 80
0.007
0.627





APOC3_GWVTDGFSSLK_vs_CSH_ISLLLIESWLEPVR
 47 & 81
0.022
0.608





APOC3_GWVTDGFSSLK_vs_FBLN1_TGYYFDGISR
 47 & 86
0.012
0.619





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.017
0.613





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
 47 & 100
0.026
0.605





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.016
0.614





APOC3_GWVTDGFSSLK_vs_ITIH4_ILDDLSPR
 47 & 112
0.032
0.601





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.009
0.623





APOC3_GWVTDGFSSLK_vs_NCAM1_GLGEISAASEFK
 47 & 121
0.028
0.604





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.026
0.605





APOC3_GWVTDGFSSLK_vs_PRG2_WNFAYWAAHQPWSR
 47 & 129
0.024
0.607





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.002
0.644





APOC3_GWVTDGFSSLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 47 & 135
0.034
0.600





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.018
0.611





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_NYGLLYCFR
 47 & 138
0.022
0.608





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_SVEGSCGF
 47 & 139
0.025
0.607





APOC3_GWVTDGFSSLK_vs_TENX_LNWEAPPGAFDSFLLR
 47 & 141
0.018
0.612





APOC3_GWVTDGFSSLK_vs_TENX_LSQLSVTDVTTSSLR
 47 & 142
0.017
0.612





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.005
0.632





APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
 47 & 147
0.025
0.606





APOH_ATVVYQGER_vs_ALS_IRPHTFTGLSGLR
 48 & 40
0.034
0.600





APOH_ATVVYQGER_vs_C163A_INPASLDK
 48 & 54
0.023
0.607





APOH_ATVVYQGER_vs_CSH_AHQLAIDTYQEFEETYIPK
 48 & 80
0.011
0.620





APOH_ATVVYQGER_vs_FBLN1_TGYYFDGISR
 48 & 86
0.002
0.645





APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
 48 & 103
0.024
0.607





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.017
0.613





APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGHR
 48 & 126
0.025
0.606





APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLNPL
 48 & 134
0.001
0.664





APOH_ATVVYQGER_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 48 & 135
0.030
0.603





APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
 48 & 18
0.008
0.625





APOH_ATVVYQGER_vs_TENX_LNWEAPPGAFDSFLLR
 48 & 141
0.016
0.614





APOH_ATVVYQGER_vs_TENX_LSQLSVTDVTTSSLR
 48 & 142
0.013
0.617





APOH_ATVVYQGER_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 48 & 144
0.002
0.645





APOH_ATVVYQGER_vs_VTDB_ELPEHTVK
 48 & 147
0.030
0.602





B2MG_VNHVTLSQPK_vs_PSG3_VSAPSGTGHLPGLNPL
 51 & 134
0.019
0.611





C1QB_VPGLYYFTYHASSR_vs_CSH_AHQLAIDTYQEFEETYIPK
 55 & 80
0.006
0.630





C1QB_VPGLYYFTYHASSR_vs_CSH_ISLLLIESWLEPVR
 55 & 81
0.020
0.610





C1QB_VPGLYYFTYHASSR_vs_FBLN1_TGYYFDGISR
 55 & 86
0.006
0.631





C1QB_VPGLYYFTYHASSR_vs_LYAM1_SYYWIGIR
 55 & 120
0.030
0.603





C1QB_VPGLYYFTYHASSR_vs_PGRP2_AGLLRPDYALLGHR
 55 & 126
0.024
0.606





C1QB_VPGLYYFTYHASSR_vs_PSG3_VSAPSGTGHLPGLNPL
 55 & 134
0.006
0.630





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.006
0.629





C1QB_VPGLYYFTYHASSR_vs_SOM2.CSH_NYGLLYCFR
 55 & 138
0.016
0.613





C1QB_VPGLYYFTYHASSR_vs_TENX_LNWEAPPGAFDSFLLR
 55 & 141
0.028
0.604





C1QB_VPGLYYFTYHASSR_vs_TENX_LSQLSVTDVTTSSLR
 55 & 142
0.020
0.610





C1QB_VPGLYYFTYHASSR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 55 & 144
0.013
0.618





CBPN_EALIQFLEQVHQGIK_vs_FBLN1_TGYYFDGISR
 59 & 86
0.030
0.603





CD14_LTVGAAQVPAQLLVGALR_vs_CSH_AHQLAIDTYQEFEETYIPK
 61 & 80
0.017
0.613





CD14_LTVGAAQVPAQLLVGALR_vs_FBLN1_TGYYFDGISR
 61 & 86
0.010
0.622





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.025
0.606





CD14_LTVGAAQVPAQLLVGALR_vs_PSG3_VSAPSGTGHLPGLNPL
 61 & 134
0.003
0.641





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.025
0.606





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LNWEAPPGAFDSFLLR
 61 & 141
0.021
0.609





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LSQLSVTDVTTSSLR
 61 & 142
0.019
0.611





CD14_LTVGAAQVPAQLLVGALR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 61 & 144
0.004
0.637





CD14_SWLAELQQWLKPGLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 62 & 80
0.024
0.607





CD14_SWLAELQQWLKPGLK_vs_FBLN1_TGYYFDGISR
 62 & 86
0.010
0.621





CD14_SWLAELQQWLKPGLK_vs_PSG3_VSAPSGTGHLPGLNPL
 62 & 134
0.006
0.631





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
 62 & 18
0.026
0.605





CD14_SWLAELQQWLKPGLK_vs_TENX_LNWEAPPGAFDSFLLR
 62 & 141
0.027
0.604





CD14_SWLAELQQWLKPGLK_vs_TENX_LSQLSVTDVTTSSLR
 62 & 142
0.025
0.606





CD14_SWLAELQQWLKPGLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 62 & 144
0.006
0.631





CFAB_YGLVTYATYPK_vs_C163A_INPASLDK
 64 & 54
0.015
0.615





CFAB_YGLVTYATYPK_vs_CSH_AHQLAIDTYQEFEETYIPK
 64 & 80
0.034
0.600





CFAB_YGLVTYATYPK_vs_FBLN1_TGYYFDGISR
 64 & 86
0.032
0.601





CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGLNPL
 64 & 134
0.006
0.631





CFAB_YGLVTYATYPK_vs_SHBG_IALGGLLFPASNLR
 64 & 18
0.028
0.604





CFAB_YGLVTYATYPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 64 & 144
0.003
0.642





CLUS_ASSIIDELFQDR_vs_FBLN1_TGYYFDGISR
 67 & 86
0.021
0.609





CLUS_ASSIIDELFQDR_vs_PSG3_VSAPSGTGHLPGLNPL
 67 & 134
0.013
0.618





CLUS_LFDSDPITVTVPVEVSR_vs_FBLN1_TGYYFDGISR
 68 & 86
0.026
0.605





CLUS_LFDSDPITVTVPVEVSR_vs_PSG3_VSAPSGTGHLPGLNPL
 68 & 134
0.018
0.611





CO5_TLLPVSKPEIR_vs_FBLN1_TGYYFDGISR
 70 & 86
0.020
0.610





CO5_TLLPVSKPEIR_vs_PSG3_VSAPSGTGHLPGLNPL
 70 & 134
0.011
0.620





CO5_TLLPVSKPEIR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 70 & 144
0.012
0.618





CO5_VFQFLEK_vs_FBLN1_TGYYFDGISR
 71 & 86
0.020
0.610





CO5_VFQFLEK_vs_PSG3_VSAPSGTGHLPGLNPL
 71 & 134
0.024
0.607





CO5_VFQFLEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 71 & 144
0.011
0.620





CO6_ALNHLPLEYNSALYSR_vs_FBLN1_TGYYFDGISR
 72 & 86
0.024
0.607





CO6_ALNHLPLEYNSALYSR_vs_PSG3_VSAPSGTGHLPGLNPL
 72 & 134
0.020
0.610





CO6_ALNHLPLEYNSALYSR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 72 & 144
0.006
0.630





COSA_SLLQPNK_vs_CSH_AHQLAIDTYQEFEETYIPK
 74 & 80
0.020
0.610





COSA_SLLQPNK_vs_FBLN1_TGYYFDGISR
 74 & 86
0.021
0.609





CO8A_SLLQPNK_vs_PSG3_VSAPSGTGHLPGLNPL
 74 & 134
0.007
0.627





COSA_SLLQPNK_vs_TENX_LNWEAPPGAFDSFLLR
 74 & 141
0.021
0.609





COSA_SLLQPNK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 74 & 144
0.001
0.652





CO8B_QALEEFQK_vs_CSH_AHQLAIDTYQEFEETYIPK
 76 & 80
0.016
0.614





CO8B_QALEEFQK_vs_FBLN1_TGYYFDGISR
 76 & 86
0.034
0.600





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
 76 & 134
0.007
0.627





CO8B_QALEEFQK_vs_TENX_LNWEAPPGAFDSFLLR
 76 & 141
0.019
0.611





CO8B_QALEEFQK_vs_TENX_LSQLSVTDVTTSSLR
 76 & 142
0.024
0.607





CO8B_QALEEFQK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 76 & 144
0.001
0.654





F13B_GDTYPAELYITGSILR_VS_FBLN1_TGYYFDGISR
 84 & 86
0.011
0.620





F13B_GDTYPAELYITGSILR_vs_PSG3_VSAPSGTGHLPGLNPL
 84 & 134
0.005
0.631





F13B_GDTYPAELYITGSILR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 84 & 144
0.023
0.607





FBLN3_IPSNPSHR_vs_SHBG_IALGGLLFPASNLR
 87 & 18
0.031
0.602





FETUA_FSVVYAK_vs_PSG3_VSAPSGTGHLPGLNPL
 88 & 134
0.025
0.606





FETUA_FSVVYAK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 88 & 144
0.033
0.601





FETUA_HTLNQIDEVK_vs_PSG3_VSAPSGTGHLPGLNPL
 89 & 134
0.024
0.607





FETUA_HTLNQIDEVK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 89 & 144
0.033
0.601





HABP2_FLNWIK_vs_FBLN1_TGYYFDGISR
 92 & 86
0.013
0.617





HABP2_FLNWIK_vs_PSG3_VSAPSGTGHLPGLNPL
 92 & 134
0.004
0.635





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.024
0.607





HABP2_FLNWIK_vs_TENX_LSQLSVTDVTTSSLR
 92 & 142
0.029
0.603





HABP2_FLNWIK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 92 & 144
0.010
0.622





HEMO_NFPSPVDAAFR_vs_FBLN1_TGYYFDGISR
 93 & 86
0.024
0.607





HEMO_NFPSPVDAAFR_vs_PSG3_VSAPSGTGHLPGLNPL
 93 & 134
0.008
0.624





HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPASNLR
 93 & 18
0.030
0.602





HEMO_NFPSPVDAAFR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 93 & 144
0.011
0.620





IBP4_QCHPALDGQR_vs_CSH_AHQLAIDTYQEFEETYIPK
  2 & 80
0.025
0.606





IBP4_QCHPALDGQR_vs_FBLN1_TGYYFDGISR
  2 & 86
0.004
0.636





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.033
0.601





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.000
0.668





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.011
0.621





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFDSFLLR
  2 & 141
0.028
0.603





IBP4_QCHPALDGQR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
  2 & 144
0.006
0.629





IBP6_GAQTLYVPNCDHR_vs_FBLN1_TGYYFDGISR
101 & 86
0.026
0.605





IBP6_GAQTLYVPNCDHR_vs_PSG3_VSAPSGTGHLPGLNPL
101 & 134
0.014
0.617





IBP6_HLDSVLQQLQTEVYR_vs_FBLN1_TGYYFDGISR
102 & 86
0.023
0.608





IBP6_HLDSVLQQLQTEVYR_vs_PSG3_VSAPSGTGHLPGLNPL
102 & 134
0.014
0.617





INHBC_LDFHFSSDR_vs_C163A_INPASLDK
107 & 54
0.013
0.617





INHBC_LDFHFSSDR_vs_FBLN1_TGYYFDGISR
107 & 86
0.016
0.614





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.005
0.634





INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDSFLLR
107 & 141
0.012
0.618





INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSSLR
107 & 142
0.020
0.610





INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
107 & 144
0.011
0.620





ITIH3_ALDLSLK_vs_PSG3_VSAPSGTGHLPGLNPL
111 & 134
0.033
0.601





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.024
0.606





ITIH4_NPLVWVHASPEHVVVTR_vs_FBLN1_TGYYFDGISR
113 & 86
0.018
0.612





ITIH4_NPLVWVHASPEHVVVTR_vs_PSG3_VSAPSGTGHLPGLNPL
113 & 134
0.015
0.615





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_PSG3_VSAPSGTGHLPGLNPL
114 & 134
0.029
0.604





KNG1_DIPTNSPELEETLTHTITK_vs_CSH_AHQLAIDTYQEFEETYIPK
116 & 80
0.023
0.607





KNG1_DIPTNSPELEETLTHTITK_vs_FBLN1_TGYYFDGISR
116 & 86
0.018
0.612





KNG1_DIPTNSPELEETLTHTITK_vs_PSG3_VSAPSGTGHLPGLNPL
116 & 134
0.005
0.634





KNG1_DIPTNSPELEETLTHTITK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
116 & 144
0.010
0.621





KNG1_QVVAGLNFR_Vs_FBLN1_TGYYFDGISR
117 & 86
0.022
0.608





KNG1_QVVAGLNFR_vs_PSG3_VSAPSGTGHLPGLNPL
117 & 134
0.014
0.616





KNG1_QVVAGLNFR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
117 & 144
0.032
0.601





LBP_ITGFLKPGK_vs_C163A_INPASLDK
118 & 54
0.007
0.627





LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNPL
118 & 134
0.002
0.646





LBP_ITGFLKPGK_vs_SHBG_IALGGLLFPASNLR
118 & 18
0.019
0.610





LBP_ITGFLKPGK_vs_SOM2.CSH_SVEGSCGF
118 & 139
0.032
0.602





LBP_ITGFLKPGK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
118 & 144
0.022
0.608





LBP_ITLPDFTGDLR_vs_C163A_INPASLDK
119 & 54
0.004
0.635





LBP_ITLPDFTGDLR_vs_CHL1_VIAVNEVGR
119 & 66
0.027
0.605





LBP_ITLPDFTGDLR_vs_CSH_AHQLAIDTYQEFEETYIPK
119 & 80
0.014
0.616





LBP_ITLPDFTGDLR_vs_FBLN1_TGYYFDGISR
119 & 86
0.017
0.612





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.031
0.602





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGLNPL
119 & 134
0.001
0.652





LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.013
0.618





LBP_ITLPDFTGDLR_vs_SOM2.CSH_SVEGSCGF
119 & 139
0.018
0.612





LBP_ITLPDFTGDLR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
119 & 144
0.015
0.615





LBP_ITLPDFTGDLR_vs_VTDB_ELPEHTVK
119 & 147
0.034
0.600





PEDF_LQSLFDSPDFSK_vs_C163A_INPASLDK
124 & 54
0.033
0.601





PEDF_LQSLFDSPDFSK_vs_FBLN1_TGYYFDGISR
124 & 86
0.022
0.608





PEDF_LQSLFDSPDFSK_vs_PSG3_VSAPSGTGHLPGLNPL
124 & 134
0.005
0.634





PEDF_LQSLFDSPDFSK_vs_TENX_LNWEAPPGAFDSFLLR
124 & 141
0.028
0.604





PEDF_LQSLFDSPDFSK_vs_TENX_LSQLSVTDVTTSSLR
124 & 142
0.018
0.611





PEDF_LQSLFDSPDFSK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
124 & 144
0.014
0.616





PEDF_TVQAVLTVPK_vs_C163A_INPASLDK
125 & 54
0.021
0.609





PEDF_TVQAVLTVPK_vs_CSH_AHQLAIDTYQEFEETYIPK
125 & 80
0.027
0.605





PEDF_TVQAVLTVPK_vs_FBLN1_TGYYFDGISR
125 & 86
0.010
0.622





PEDF_TVQAVLTVPK_vs_PSG3_VSAPSGTGHLPGLNPL
125 & 134
0.003
0.643





PEDF_TVQAVLTVPK_vs_TENX_LNWEAPPGAFDSFLLR
125 & 141
0.019
0.611





PEDF_TVQAVLTVPK_vs_TENX_LSQLSVTDVTTSSLR
125 & 142
0.018
0.612





PEDF_TVQAVLTVPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
125 & 144
0.007
0.628





PTGDS_GPGEDFR_vs_FBLN1_TGYYFDGISR
137 & 86
0.023
0.607





PTGDS_GPGEDFR_vs_PSG3_VSAPSGTGHLPGLNPL
137 & 134
0.013
0.618





VTNC_GQYCYELDEK_vs_C163A_INPASLDK
149 & 54
0.014
0.616





VTNC_GQYCYELDEK_vs_CSH_AHQLAIDTYQEFEETYIPK
149 & 80
0.019
0.611





VTNC_GQYCYELDEK_vs_FBLN1_TGYYFDGISR
149 & 86
0.004
0.638





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.007
0.627





VTNC_GQYCYELDEK_vs_NCAM1_GLGEISAASEFK
149 & 121
0.031
0.602





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.012
0.619





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.001
0.657





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.005
0.632





VTNC_GQYCYELDEK_vs_SOM2.CSH_SVEGSCGF
149 & 139
0.034
0.601





VTNC_GQYCYELDEK_vs_TENX_LNWEAPPGAFDSFLLR
149 & 141
0.032
0.601





VTNC_GQYCYELDEK_vs_TENX_LSQLSVTDVTTSSLR
149 & 142
0.026
0.605





VTNC_GQYCYELDEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
149 & 144
0.001
0.655





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.028
0.604





VTNC_VDTVDPPYPR_vs_FBLN1_TGYYFDGISR
150 & 86
0.014
0.616





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.012
0.618





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.001
0.650





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.015
0.615





VTNC_VDTVDPPYPR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
150 & 144
0.004
0.637
















TABLE 32







Reversal Classification Performance, weeks 18 and 19.


Reversal AUROC for gestational weeks 18 and 19 using a 


case vs control cut-off of <37 0/7 vs >=37 0/7 weeks, 


with BMI stratification (>22 <=37).











SEQ ID




Reversal
NO:
pval
ROC_AUC













A2GL_DLLLPQPDLR_vs_C163A_INPASLDK
 34 & 54
0.021
0.634





A2GL_DLLLPQPDLR_vs_CRIS3_AVSPPAR
 34 & 78
0.049
0.614





A2GL_DLLLPQPDLR_vs_CRIS3_YEDLYSNCK
 34 & 79
0.041
0.619





A2GL_DLLLPQPDLR_vs_CSH_AHQLAIDTYQEFEETYIPK
 34 & 80
0.042
0.618





A2GL_DLLLPQPDLR_vs_FBLN1_TGYYFDGISR
 34 & 86
0.034
0.623





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.011
0.648





A2GL_DLLLPQPDLR_vs_PGRP2_AGLLRPDYALLGHR
 34 & 126
0.020
0.636





A2GL_DLLLPQPDLR_vs_PSG3_VSAPSGTGHLPGLNPL
 34 & 134
0.010
0.651





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.018
0.637





A2GL_DLLLPQPDLR_vs_SPRL1_VLTHSELAPLR
 34 & 140
0.019
0.637





A2GL_DLLLPQPDLR_vs_TENX_LNWEAPPGAFDSFLLR
 34 & 141
0.021
0.634





A2GL_DLLLPQPDLR_vs_TENX_LSQLSVTDVTTSSLR
 34 & 142
0.018
0.637





A2GL_DLLLPQPDLR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 34 & 144
0.010
0.651





AFAM_DADPDTFFAK_vs_C163A_INPASLDK
 37 & 54
0.048
0.615





AFAM_DADPDTFFAK_vs_PSG3_VSAPSGTGHLPGLNPL
 37 & 134
0.021
0.634





AFAM_DADPDTFFAK_vs_TENX_LNWEAPPGAFDSFLLR
 37 & 141
0.030
0.626





AFAM_DADPDTFFAK_vs_TENX_LSQLSVTDVTTSSLR
 37 & 142
0.033
0.624





AFAM_DADPDTFFAK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 37 & 144
0.007
0.656





AFAM_HFQNLGK_vs_TENX_LNWEAPPGAFDSFLLR
 38 & 141
0.034
0.623





AFAM_HFQNLGK_vs_TENX_LSQLSVTDVTTSSLR
 38 & 142
0.034
0.623





AFAM_HFQNLGK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 38 & 144
0.030
0.626





ANGT_DPTFIPAPIQAK_vs_C163A_INPASLDK
 42 & 54
0.032
0.625





ANGT_DPTFIPAPIQAK_vs_CHL1_VIAVNEVGR
 42 & 66
0.026
0.629





ANGT_DPTFIPAPIQAK_vs_CRIS3_AVSPPAR
 42 & 78
0.043
0.618





ANGT_DPTFIPAPIQAK_vs_CRIS3_YEDLYSNCK
 42 & 79
0.038
0.621





ANGT_DPTFIPAPIQAK_vs_CSH_AHQLAIDTYQEFEETYIPK
 42 & 80
0.006
0.658





ANGT_DPTFIPAPIQAK_vs_CSH_ISLLLIESWLEPVR
 42 & 81
0.035
0.622





ANGT_DPTFIPAPIQAK_vs_FBLN1_TGYYFDGISR
 42 & 86
0.011
0.647





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.012
0.645





ANGT_DPTFIPAPIQAK_vs_PGRP2_AGLLRPDYALLGHR
 42 & 126
0.031
0.625





ANGT_DPTFIPAPIQAK_vs_PSG1_FQLPGQK
 42 & 131
0.048
0.615





ANGT_DPTFIPAPIQAK_vs_PSG3_VSAPSGTGHLPGLNPL
 42 & 134
0.006
0.660





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.012
0.646





ANGT_DPTFIPAPIQAK_vs_SOM2.CSH_NYGLLYCFR
 42 & 138
0.046
0.616





ANGT_DPTFIPAPIQAK_vs_SOM2.CSH_SVEGSCGF
 42 & 139
0.007
0.660





ANGT_DPTFIPAPIQAK_vs_SPRL1_VLTHSELAPLR
 42 & 140
0.029
0.627





ANGT_DPTFIPAPIQAK_vs_TENX_LNWEAPPGAFDSFLLR
 42 & 141
0.012
0.646





ANGT_DPTFIPAPIQAK_vs_TENX_LSQLSVTDVTTSSLR
 42 & 142
0.008
0.654





ANGT_DPTFIPAPIQAK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 42 & 144
0.006
0.660





APOC3_GWVTDGFSSLK_vs_ALS_IRPHTFTGLSGLR
 47 & 40
0.030
0.626





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.001
0.689





APOC3_GWVTDGFSSLK_vs_CHL1_VIAVNEVGR
 47 & 66
0.046
0.616





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.013
0.645





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.009
0.651





APOC3_GWVTDGFSSLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 47 & 80
0.028
0.628





APOC3_GWVTDGFSSLK_vs_FBLN1_TGYYFDGISR
 47 & 86
0.038
0.620





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.020
0.635





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
 47 & 100
0.044
0.617





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.029
0.627





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.011
0.648





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.037
0.621





APOC3_GWVTDGFSSLK_vs_PSG1_FQLPGQK
 47 & 131
0.034
0.623





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.010
0.651





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.048
0.615





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_SVEGSCGF
 47 & 139
0.043
0.619





APOC3_GWVTDGFSSLK_vs_TENX_LNWEAPPGAFDSFLLR
 47 & 141
0.015
0.641





APOC3_GWVTDGFSSLK_vs_TENX_LSQLSVTDVTTSSLR
 47 & 142
0.015
0.642





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.012
0.645





APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
 47 & 147
0.041
0.619





APOH_ATVVYQGER_vs_C163A_INPASLDK
 48 & 54
0.032
0.625





APOH_ATVVYQGER_vs_CHL1_VIAVNEVGR
 48 & 66
0.049
0.614





APOH_ATVVYQGER_vs_CSH_AHQLAIDTYQEFEETYIPK
 48 & 80
0.040
0.619





APOH_ATVVYQGER_vs_FBLN1_TGYYFDGISR
 48 & 86
0.019
0.636





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.017
0.638





APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGHR
 48 & 126
0.031
0.626





APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLNPL
 48 & 134
0.013
0.644





APOH_ATVVYQGER_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 48 & 135
0.024
0.631





APOH_ATVVYQGER_vs_SPRL1_VLTHSELAPLR
 48 & 140
0.039
0.620





APOH_ATVVYQGER_vs_TENX_LNWEAPPGAFDSFLLR
 48 & 141
0.011
0.648





APOH_ATVVYQGER_vs_TENX_LSQLSVTDVTTSSLR
 48 & 142
0.008
0.653





APOH_ATVVYQGER_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 48 & 144
0.015
0.642





C1QB_VPGLYYFTYHASSR_vs_ALS_IRPHTFTGLSGLR
 55 & 40
0.030
0.626





C1QB_VPGLYYFTYHASSR_vs_C163A_INPASLDK
 55 & 54
0.010
0.650





C1QB_VPGLYYFTYHASSR_vs_CHL1_VIAVNEVGR
 55 & 66
0.011
0.647





C1QB_VPGLYYFTYHASSR_vs_CRIS3_AVSPPAR
 55 & 78
0.017
0.638





C1QB_VPGLYYFTYHASSR_vs_CRIS3_YEDLYSNCK
 55 & 79
0.022
0.633





C1QB_VPGLYYFTYHASSR_vs_CSH_AHQLAIDTYQEFEETYIPK
 55 & 80
0.004
0.669





C1QB_VPGLYYFTYHASSR_vs_CSH_ISLLLIESWLEPVR
 55 & 81
0.010
0.650





C1QB_VPGLYYFTYHASSR_vs_FBLN1_TGYYFDGISR
 55 & 86
0.005
0.665





C1QB_VPGLYYFTYHASSR_vs_IBP2_LIQGAPTIR
 55 & 98
0.036
0.622





C1QB_VPGLYYFTYHASSR_vs_IBP3_FLNVLSPR
 55 & 99
0.022
0.633





C1QB_VPGLYYFTYHASSR_vs_IBP3_YGQPLPGYTTK
 55 & 100
0.027
0.628





C1QB_VPGLYYFTYHASSR_vs_IGF2_GIVEECCFR
 55 & 103
0.011
0.648





C1QB_VPGLYYFTYHASSR_vs_ITIH4_ILDDLSPR
 55 & 112
0.024
0.631





C1QB_VPGLYYFTYHASSR_vs_LYAM1_SYYWIGIR
 55 & 120
0.004
0.668





C1QB_VPGLYYFTYHASSR_vs_NCAM1_GLGEISAASEFK
 55 & 121
0.019
0.636





C1QB_VPGLYYFTYHASSR_vs_PGRP2_AGLLRPDYALLGHR
 55 & 126
0.004
0.669





C1QB_VPGLYYFTYHASSR_vs_PSG1_FQLPGQK
 55 & 131
0.020
0.636





C1QB_VPGLYYFTYHASSR_vs_PSG3_VSAPSGTGHLPGLNPL
 55 & 134
0.004
0.665





C1QB_VPGLYYFTYHASSR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 55 & 135
0.024
0.632





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.003
0.673





C1QB_VPGLYYFTYHASSR_vs_SOM2.CSH_NYGLLYCFR
 55 & 138
0.008
0.654





C1QB_VPGLYYFTYHASSR_vs_SOM2.CSH_SVEGSCGF
 55 & 139
0.010
0.652





C1QB_VPGLYYFTYHASSR_VS_SPRL1_VLTHSELAPLR
 55 & 140
0.010
0.651





C1QB_VPGLYYFTYHASSR_vs_TENX_LNWEAPPGAFDSFLLR
 55 & 141
0.004
0.666





C1QB_VPGLYYFTYHASSR_vs_TENX_LSQLSVTDVTTSSLR
 55 & 142
0.002
0.681





C1QB_VPGLYYFTYHASSR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 55 & 144
0.004
0.666





C1QB_VPGLYYFTYHASSR_vs_VTDB_ELPEHTVK
 55 & 147
0.034
0.623





CAH1_GGPFSDSYR_vs_C163A_INPASLDK
 56 & 54
0.033
0.624





CAH1_GGPFSDSYR_vs_CRIS3_YEDLYSNCK
 56 & 79
0.045
0.617





CAH1_GGPFSDSYR_vs_PSG1_FQLPGQK
 56 & 131
0.046
0.616





CAH1_GGPFSDSYR_vs_PSG3_VSAPSGTGHLPGLNPL
 56 & 134
0.029
0.627





CAH1_GGPFSDSYR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 56 & 135
0.048
0.615





CAH1_GGPFSDSYR_vs_SHBG_IALGGLLFPASNLR
 56 & 18
0.044
0.617





CAH1_GGPFSDSYR_vs_TENX_LNWEAPPGAFDSFLLR
 56 & 141
0.038
0.621





CAH1_GGPFSDSYR_vs_TENX_LSQLSVTDVTTSSLR
 56 & 142
0.026
0.630





CAH1_GGPFSDSYR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 56 & 144
0.040
0.619





CBPN_EALIQFLEQVHQGIK_vs_FBLN1_TGYYFDGISR
 59 & 86
0.050
0.614





CBPN_EALIQFLEQVHQGIK_vs_LYAM1_SYYWIGIR
 59 & 120
0.030
0.626





CBPN_EALIQFLEQVHQGIK_vs_TENX_LNWEAPPGAFDSFLLR
 59 & 141
0.028
0.627





CBPN_EALIQFLEQVHQGIK_vs_TENX_LSQLSVTDVTTSSLR
 59 & 142
0.029
0.627





CBPN_EALIQFLEQVHQGIK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 59 & 144
0.049
0.614





CBPN_NNANGVDLNR_vs_FBLN1_TGYYFDGISR
 60 & 86
0.045
0.617





CBPN_NNANGVDLNR_vs_TENX_LNWEAPPGAFDSFLLR
 60 & 141
0.045
0.617





CD14_LTVGAAQVPAQLLVGALR_vs_C163A_INPASLDK
 61 & 54
0.033
0.624





CD14_LTVGAAQVPAQLLVGALR_vs_FBLN1_TGYYFDGISR
 61 & 86
0.036
0.622





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.011
0.648





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.032
0.625





CD14_LTVGAAQVPAQLLVGALR_vs_PSG3_VSAPSGTGHLPGLNPL
 61 & 134
0.024
0.631





CD14_LTVGAAQVPAQLLVGALR_vs_SPRL1_VLTHSELAPLR
 61 & 140
0.041
0.619





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LNWEAPPGAFDSFLLR
 61 & 141
0.007
0.657





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LSQLSVTDVTTSSLR
 61 & 142
0.004
0.665





CD14_LTVGAAQVPAQLLVGALR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 61 & 144
0.007
0.657





CD14_SWLAELQQWLKPGLK_vs_C163A_INPASLDK
 62 & 54
0.037
0.621





CD14_SWLAELQQWLKPGLK_vs_FBLN1_TGYYFDGISR
 62 & 86
0.034
0.623





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.026
0.630





CD14_SWLAELQQWLKPGLK_vs_PSG3_VSAPSGTGHLPGLNPL
 62 & 134
0.043
0.618





CD14_SWLAELQQWLKPGLK_vs_TENX_LNWEAPPGAFDSFLLR
 62 & 141
0.010
0.649





CD14_SWLAELQQWLKPGLK_vs_TENX_LSQLSVTDVTTSSLR
 62 & 142
0.006
0.661





CD14_SWLAELQQWLKPGLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 62 & 144
0.012
0.646





CFAB_YGLVTYATYPK_vs_C163A_INPASLDK
 64 & 54
0.025
0.630





CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGLNPL
 64 & 134
0.040
0.620





CFAB_YGLVTYATYPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 64 & 144
0.011
0.648





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.043
0.618





CLUS_ASSIIDELFQDR_vs_TENX_LNWEAPPGAFDSFLLR
 67 & 141
0.030
0.626





CLUS_ASSIIDELFQDR_vs_TENX_LSQLSVTDVTTSSLR
 67 & 142
0.023
0.632





CLUS_LFDSDPITVTVPVEVSR_vs_TENX_LNWEAPPGAFDSFLLR
 68 & 141
0.043
0.618





CLUS_LFDSDPITVTVPVEVSR_vs_TENX_LSQLSVTDVTTSSLR
 68 & 142
0.041
0.619





CO5_TLLPVSKPEIR_vs_FBLN1_TGYYFDGISR
 70 & 86
0.045
0.617





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.014
0.643





CO5_TLLPVSKPEIR_vs_PGRP2_AGLLRPDYALLGHR
 70 & 126
0.043
0.618





CO5_TLLPVSKPEIR_vs_PSG3_VSAPSGTGHLPGLNPL
 70 & 134
0.019
0.636





CO5_TLLPVSKPEIR_vs_TENX_LNWEAPPGAFDSFLLR
 70 & 141
0.016
0.640





CO5_TLLPVSKPEIR_vs_TENX_LSQLSVTDVTTSSLR
 70 & 142
0.011
0.647





CO5_TLLPVSKPEIR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 70 & 144
0.010
0.650





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.027
0.628





CO5_VFQFLEK_vs_TENX_LNWEAPPGAFDSFLLR
 71 & 141
0.016
0.641





CO5_VFQFLEK_vs_TENX_LSQLSVTDVTTSSLR
 71 & 142
0.020
0.635





CO5_VFQFLEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 71 & 144
0.016
0.640





CO6_ALNHLPLEYNSALYSR_vs_TENX_LNWEAPPGAFDSFLLR
 72 & 141
0.019
0.637





CO6_ALNHLPLEYNSALYSR_vs_TENX_LSQLSVTDVTTSSLR
 72 & 142
0.016
0.640





CO6_ALNHLPLEYNSALYSR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 72 & 144
0.014
0.642





CO8A_SLLQPNK_vs_C163A_INPASLDK
 74 & 54
0.036
0.622





CO8A_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.035
0.623





CO8A_SLLQPNK_vs_PSG3_VSAPSGTGHLPGLNPL
 74 & 134
0.030
0.626





CO8A_SLLQPNK_vs_TENX_LNWEAPPGAFDSFLLR
 74 & 141
0.007
0.656





CO8A_SLLQPNK_vs_TENX_LSQLSVTDVTTSSLR
 74 & 142
0.009
0.651





CO8A_SLLQPNK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 74 & 144
0.005
0.664





CO8B_QALEEFQK_vs_C163A_INPASLDK
 76 & 54
0.049
0.614





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
 76 & 134
0.037
0.621





CO8B_QALEEFQK_vs_SPRL1_VLTHSELAPLR
 76 & 140
0.046
0.616





CO8B_QALEEFQK_vs_TENX_LNWEAPPGAFDSFLLR
 76 & 141
0.005
0.663





CO8B_QALEEFQK_vs_TENX_LSQLSVTDVTTSSLR
 76 & 142
0.006
0.659





CO8B_QALEEFQK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 76 & 144
0.005
0.664





F13B_GDTYPAELYITGSILR_vs_CHL1_VIAVNEVGR
 84 & 66
0.031
0.625





F13B_GDTYPAELYITGSILR_vs_CSH_AHQLAIDTYQEFEETYIPK
 84 & 80
0.035
0.623





F13B_GDTYPAELYITGSILR_vs_FBLN1_TGYYFDGISR
 84 & 86
0.036
0.622





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.020
0.636





F13B_GDTYPAELYITGSILR_vs_PSG3_VSAPSGTGHLPGLNPL
 84 & 134
0.022
0.633





F13B_GDTYPAELYITGSILR_vs_TENX_LNWEAPPGAFDSFLLR
 84 & 141
0.011
0.647





F13B_GDTYPAELYITGSILR_vs_TENX_LSQLSVTDVTTSSLR
 84 & 142
0.006
0.658





F13B_GDTYPAELYITGSILR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 84 & 144
0.024
0.631





HABP2_FLNWIK_vs_C163A_INPASLDK
 92 & 54
0.027
0.628





HABP2_FLNWIK_vs_CHL1_VIAVNEVGR
 92 & 66
0.040
0.620





HABP2_FLNWIK_vs_FBLN1_TGYYFDGISR
 92 & 86
0.028
0.628





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.022
0.633





HABP2_FLNWIK_vs_PSG3_VSAPSGTGHLPGLNPL
 92 & 134
0.016
0.640





HABP2_FLNWIK_vs_SOM2.CSH_SVEGSCGF
 92 & 139
0.048
0.617





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.014
0.642





HABP2_FLNWIK_vs_TENX_LSQLSVTDVTTSSLR
 92 & 142
0.012
0.646





HABP2_FLNWIK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 92 & 144
0.008
0.654





HABP2_FLNWIK_vs_VTDB_ELPEHTVK
 92 & 147
0.042
0.618





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
 93 & 120
0.049
0.614





HEMO_NFPSPVDAAFR_vs_TENX_LNWEAPPGAFDSFLLR
 93 & 141
0.017
0.639





HEMO_NFPSPVDAAFR_vs_TENX_LSQLSVTDVTTSSLR
 93 & 142
0.028
0.628





HEMO_NFPSPVDAAFR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 93 & 144
0.041
0.619





IBP4_QCHPALDGQR_vs_C163A_INPASLDK
  2 & 54
0.031
0.625





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.042
0.618





IBP4_QCHPALDGQR_vs_CSH_AHQLAIDTYQEFEETYIPK
  2 & 80
0.048
0.615





IBP4_QCHPALDGQR_vs_FBLN1_TGYYFDGISR
  2 & 86
0.030
0.626





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.019
0.636





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
  2 & 126
0.020
0.635





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.008
0.654





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.033
0.624





IBP4_QCHPALDGQR_vs_SPRL1_VLTHSELAPLR
  2 & 140
0.041
0.619





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFDSFLLR
  2 & 141
0.013
0.645





IBP4_QCHPALDGQR_vs_TENX_LSQLSVTDVTTSSLR
  2 & 142
0.011
0.648





IBP4_QCHPALDGQR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
  2 & 144
0.007
0.656





INHBC_LDFHFSSDR_vs_C163A_INPASLDK
107 & 54
0.011
0.647





INHBC_LDFHFSSDR_vs_FBLN1_TGYYFDGISR
107 & 86
0.038
0.620





INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 & 103
0.047
0.615





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.043
0.618





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.009
0.652





INHBC_LDFHFSSDR_vs_SPRL1_VLTHSELAPLR
107 & 140
0.026
0.629





INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDSFLLR
107 & 141
0.004
0.666





INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSSLR
107 & 142
0.006
0.658





INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
107 & 144
0.016
0.640





ITIH4_NPLVWVHASPEHVVVTR_vs_CHL1_VIAVNEVGR
113 & 66
0.044
0.617





ITIH4_NPLVWVHASPEHVVVTR_vs_CRIS3_AVSPPAR
113 & 78
0.045
0.616





ITIH4_NPLVWVHASPEHVVVTR_vs_CRIS3_YEDLYSNCK
113 & 79
0.035
0.622





ITIH4_NPLVWVHASPEHVVVTR_vs_CSH_AHOLAIDTYQEFEETYIPK
113 & 80
0.042
0.618





ITIH4_NPLVWVHASPEHVVVTR_vs_FBLN1_TGYYFDGISR
113 & 86
0.041
0.619





ITIH4_NPLVWVHASPEHVVVTR_vs_LYAM1_SYYWIGIR
113 & 120
0.017
0.638





ITIH4_NPLVWVHASPEHVVVTR_vs_PGRP2_AGLLRPDYALLGHR
113 & 126
0.027
0.629





ITIH4_NPLVWVHASPEHVVVTR_vs_PSG3_VSAPSGTGHLPGLNPL
113 & 134
0.042
0.618





ITIH4_NPLVWVHASPEHVVVTR_vs_SHBG_IALGGLLFPASNLR
113 & 18
0.042
0.618





ITIH4_NPLVWVHASPEHVVVTR_vs_SOM2.CSHSVEGSCGF
113 & 139
0.045
0.618





ITIH4_NPLVWVHASPEHVVVTR_vs_TENX_LNWEAPPGAFDSFLLR
113 & 141
0.016
0.641





ITIH4_NPLVWVHASPEHVVVTR_vs_TENX_LSQLSVTDVTTSSLR
113 & 142
0.011
0.647





ITIH4_NPLVWVHASPEHVVVTR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
113 & 144
0.044
0.617





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.042
0.618





KNG1_DIPTNSPELEETLTHTITK_vs_PSG3_VSAPSGTGHLPGLNPL
116 & 134
0.049
0.614





KNG1_DIPTNSPELEETLTHTITK_vs_TENX_LNWEAPPGAFDSFLLR
116 & 141
0.038
0.621





KNG1_DIPTNSPELEETLTHTITK_vs_TENX_LSQLSVTDVTTSSLR
116 & 142
0.024
0.631





KNG1_DIPTNSPELEETLTHTITK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
116 & 144
0.043
0.618





KNG1_QVVAGLNFR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
117 & 144
0.044
0.617





LBP_ITGFLKPGK_vs_C163A_INPASLDK
118 & 54
0.037
0.621





LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNPL
118 & 134
0.028
0.628





LBP_ITLPDFTGDLR_vs_C163A_INPASLDK
119 & 54
0.021
0.634





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.045
0.617





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGLNPL
119 & 134
0.017
0.639





PEDF_LQSLFDSPDFSK_vs_C163A_INPASLDK
124 & 54
0.042
0.618





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.034
0.623





PEDF_LQSLFDSPDFSK_vs_PSG3_VSAPSGTGHLPGLNPL
124 & 134
0.044
0.617





PEDF_LQSLFDSPDFSK_vs_TENX_LNWEAPPGAFDSFLLR
124 & 141
0.019
0.636





PEDF_LQSLFDSPDFSK_vs_TENX_LSQLSVTDVTTSSLR
124 & 142
0.009
0.651





PEDF_TVQAVLTVPK_vs_C163A_INPASLDK
125 & 54
0.009
0.652





PEDF_TVQAVLTVPK_vs_CHL1_VIAVNEVGR
125 & 66
0.025
0.630





PEDF_TVQAVLTVPK_vs_CRIS3_AVSPPAR
125 & 78
0.049
0.614





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.044
0.617





PEDF_TVQAVLTVPK_vs_CSH_AHQLAIDTYQEFEETYIPK
125 & 80
0.039
0.620





PEDF_TVQAVLTVPK_vs_FBLN1_TGYYFDGISR
125 & 86
0.041
0.619





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.012
0.646





PEDF_TVQAVLTVPK_vs_PSG3_VSAPSGTGHLPGLNPL
125 & 134
0.011
0.647





PEDF_TVQAVLTVPK_vs_SOM2.CSH_SVEGSCGF
125 & 139
0.040
0.621





PEDF_TVQAVLTVPK_vs_TENX_LNWEAPPGAFDSFLLR
125 & 141
0.005
0.663





PEDF_TVQAVLTVPK_vs_TENX_LSQLSVTDVTTSSLR
125 & 142
0.003
0.673





PEDF_TVQAVLTVPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
125 & 144
0.006
0.658





PRDX2_GLFIIDGK_vs_C163A_INPASLDK
128 & 54
0.013
0.644





PRDX2_GLFIIDGK_vs_CRIS3_AVSPPAR
128 & 78
0.038
0.621





PRDX2_GLFIIDGK_vs_CRIS3_YEDLYSNCK
128 & 79
0.024
0.632





PRDX2_GLFIIDGK_vs_LYAM1_SYYWIGIR
128 & 120
0.035
0.623





PRDX2_GLFIIDGK_vs_PSG3_VSAPSGTGHLPGLNPL
128 & 134
0.020
0.635





PRDX2_GLFIIDGK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
128 & 135
0.047
0.615





PRDX2_GLFIIDGK_vs_SHBG_IALGGLLFPASNLR
128 & 18
0.029
0.627





PRDX2_GLFIIDGK_vs_TENX_LNWEAPPGAFDSFLLR
128 & 141
0.022
0.633





PRDX2_GLFIIDGK_vs_TENX_LSQLSVTDVTTSSLR
128 & 142
0.021
0.634





PRDX2_GLFIIDGK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
128 & 144
0.030
0.626





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.017
0.639





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.037
0.621





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.042
0.618





PSG2_IHPSYTNYR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
133 & 135
0.016
0.640





PSG2_IHPSYTNYR_vs_TENX_LNWEAPPGAFDSFLLR
133 & 141
0.041
0.619





PSG2_IHPSYTNYR_vs_TENX_LSQLSVTDVTTSSLR
133 & 142
0.026
0.629





PTGDS_GPGEDFR_vs_PSG3_VSAPSGTGHLPGLNPL
137 & 134
0.048
0.615





PTGDS_GPGEDFR_vs_TENX_LNWEAPPGAFDSFLLR
137 & 141
0.036
0.622





PTGDS_GPGEDFR_vs_TENX_LSQLSVTDVTTSSLR
137 & 142
0.043
0.618





PTGDS_GPGEDFR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
137 & 144
0.028
0.628





VTNC_GQYCYELDEK_vs_C163A_INPASLDK
149 & 54
0.005
0.664





VTNC_GQYCYELDEK_vs_CHL1_VIAVNEVGR
149 & 66
0.019
0.636





VTNC_GQYCYELDEK_vs_CRIS3_AVSPPAR
149 & 78
0.021
0.634





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.020
0.635





VTNC_GQYCYELDEK_vs_CSH_AHQLAIDTYQEFEETYIPK
149 & 80
0.027
0.629





VTNC_GQYCYELDEK_vs_FBLN1_TGYYFDGISR
149 & 86
0.012
0.645





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.002
0.678





VTNC_GQYCYELDEK_vs_NCAM1_GLGEISAASEFK
149 & 121
0.039
0.620





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.006
0.659





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.004
0.666





VTNC_GQYCYELDEK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
149 & 135
0.037
0.621





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.013
0.644





VTNC_GQYCYELDEK_vs_SOM2.CSH_SVEGSCGF
149 & 139
0.020
0.637





VTNC_GQYCYELDEK_vs_SPRL1_VLTHSELAPLR
149 & 140
0.023
0.632





VTNC_GQYCYELDEK_vs_TENX_LNWEAPPGAFDSFLLR
149 & 141
0.008
0.653





VTNC_GQYCYELDEK_vs_TENX_LSQLSVTDVTTSSLR
149 & 142
0.007
0.657





VTNC_GQYCYELDEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
149 & 144
0.001
0.690





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.020
0.636





VTNC_VDTVDPPYPR_vs_C163A_INPASLDK
150 & 54
0.018
0.638





VTNC_VDTVDPPYPR_vs_CRIS3_AVSPPAR
150 & 78
0.040
0.620





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.038
0.621





VTNC_VDTVDPPYPR_VS_FBLN1_TGYYFDGISR
150 & 86
0.040
0.619





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.004
0.666





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126
0.027
0.629





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.007
0.658





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.030
0.626





VTNC_VDTVDPPYPR_vs_SOM2.CSH_SVEGSCGF
150 & 139
0.046
0.617





VTNC_VDTVDPPYPR_vs_SPRL1_VLTHSELAPLR
150 & 140
0.043
0.618





VTNC_VDTVDPPYPR_vs_TENX_LNWEAPPGAFDSFLLR
150 & 141
0.021
0.634





VTNC_VDTVDPPYPR_vs_TENX_LSQLSVTDVTTSSLR
150 & 142
0.016
0.640





VTNC_VDTVDPPYPR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
150 & 144
0.004
0.669





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.032
0.625
















TABLE 33







Reversal Classification Performance, weeks 18 and 19.


Reversal AUROC for gestational weeks 18 and 19 using 


a case vs control cut-off of <35 0/7 vs >=35 0/7 weeks, 


without BMI stratification.











SEQ ID




Reversal
NO:
pval
ROC_AUC





ANGT_DPTFIPAPIQAK_vs_IGF2_GIVEECCFR
 42 & 103
0.039
0.650





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.023
0.665





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.018
0.673





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.040
0.650





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.019
0.671





APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
 48 & 79
0.042
0.648





APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
 48 & 103
0.049
0.644





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.017
0.675





B2MG_VNHVTLSQPK_vs_C163A_INPASLDK
 51 & 54
0.026
0.663





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.019
0.671





CATD_VGFAEAAR_vs_C163A_INPASLDK
 57 & 54
0.029
0.659





CBPN_EALIQFLEQVHQGIK_vs_PSG9_LFIPQITR
 59 & 136
0.032
0.656





CBPN_NNANGVDLNR_vs_LYAM1_SYYWIGIR
 60 & 120
0.038
0.652





CD14_LTVGAAQVPAQLLVGALR_vs_C163A_INPASLDK
 61 & 54
0.029
0.659





CD14_LTVGAAQVPAQLLVGALR_vs_CSH_AHQLAIDTYQEFEETYIPK
 61 & 80
0.039
0.651





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
 61 & 103
0.024
0.664





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.005
0.703





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LSQLSVTDVTTSSLR
 61 & 142
0.032
0.657





CD14_LTVGAAQVPAQLLVGALR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 61 & 144
0.012
0.684





CD14_LTVGAAQVPAQLLVGALR_vs_VTDB_ELPEHTVK
 61 & 147
0.026
0.663





CD14_SWLAELQQWLKPGLK_vs_C163A_INPASLDK
 62 & 54
0.036
0.653





CD14_SWLAELQQWLKPGLK_vs_IGF2_GIVEECCFR
 62 & 103
0.047
0.645





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.018
0.672





CD14_SWLAELQQWLKPGLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 62 & 144
0.022
0.667





CLUS_ASSIIDELFQDR_vs_C163A_INPASLDK
 67 & 54
0.032
0.656





CLUS_ASSIIDELFQDR_vs_IBP3_FLNVLSPR
 67 & 99
0.038
0.651





CLUS_ASSIIDELFQDR_vs_IBP3_YGQPLPGYTTK
 67 & 100
0.026
0.662





CLUS_ASSIIDELFQDR_vs_IGF2_GIVEECCFR
 67 & 103
0.003
0.718





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.004
0.712





CLUS_ASSIIDELFQDR_vs_VTDB_ELPEHTVK
 67 & 147
0.029
0.659





CLUS_LFDSDPITVTVPVEVSR_vs_C163A_INPASLDK
 68 & 54
0.029
0.660





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_YEDLYSNCK
 68 & 79
0.023
0.666





CLUS_LFDSDPITVTVPVEVSR_vs_CSH_AHQLAIDTYQEFEETYIPK
 68 & 80
0.047
0.645





CLUS_LFDSDPITVTVPVEVSR_vs_IBP3_FLNVLSPR
 68 & 99
0.017
0.674





CLUS_LFDSDPITVTVPVEVSR_vs_IBP3_YGQPLPGYTTK
 68 & 100
0.011
0.686





CLUS_LFDSDPITVTVPVEVSR_vs_IGF2_GIVEECCFR
 68 & 103
0.001
0.734





CLUS_LFDSDPITVTVPVEVSR_vs_ITIH4_ILDDLSPR
 68 & 112
0.048
0.644





CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGIR
 68 & 120
0.003
0.713





CLUS_LFDSDPITVTVPVEVSR_vs_TENX_LNWEAPPGAFDSFLLR
 68 & 141
0.030
0.658





CLUS_LFDSDPITVTVPVEVSR_vs_TENX_LSQLSVTDVTTSSLR
 68 & 142
0.047
0.645





CLUS_LFDSDPITVTVPVEVSR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 68 & 144
0.041
0.649





CLUS_LFDSDPITVTVPVEVSR_vs_VTDB_ELPEHTVK
 68 & 147
0.013
0.682





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.021
0.668





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.027
0.661





CO6_ALNHLPLEYNSALYSR_vs_IGF2_GIVEECCFR
 72 & 103
0.020
0.669





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGIR
 72 & 120
0.009
0.689





CO6_ALNHLPLEYNSALYSR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 72 & 144
0.021
0.669





COSA_SLLQPNK_vs_IGF2_GIVEECCFR
 74 & 103
0.048
0.644





COSA_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.010
0.687





CO8A_SLLQPNK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 74 & 144
0.028
0.660





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
 76 & 120
0.043
0.647





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 82 & 135
0.050
0.643





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_LFIPQITR
 82 & 136
0.027
0.662





ENPP2_TYLHTYESEI_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 83 & 135
0.050
0.643





ENPP2_TYLHTYESEI_vs_PSG9_LFIPQITR
 83 & 136
0.028
0.660





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
 84 & 79
0.045
0.646





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
 84 & 103
0.017
0.674





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.006
0.700





FETUA_FSVVYAK_vs_PSG9_LFIPQITR
 88 & 136
0.030
0.658





FETUA_HTLNQIDEVK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 89 & 135
0.037
0.652





FETUA_HTLNQIDEVK_vs_PSG9_LFIPQITR
 89 & 136
0.017
0.673





HABP2_FLNWIK_vs_C163A_INPASLDK
 92 & 54
0.021
0.668





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.030
0.658





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.015
0.677





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.049
0.644





HABP2_FLNWIK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 92 & 144
0.021
0.668





HABP2_FLNWIK_vs_VTDB_ELPEHTVK
 92 & 147
0.037
0.652





HEMO_NFPSPVDAAFR_vs_IGF2_GIVEECCFR
 93 & 103
0.045
0.647





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
 93 & 120
0.035
0.654





IBP4_QCHPALDGQR_vs_C163A_INPASLDK
  2 & 54
0.029
0.660





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.040
0.649





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.020
0.670





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.026
0.662





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.005
0.705





IBP6_GAQTLYVPNCDHR_vs_C163A_INPASLDK
101 & 54
0.015
0.678





IBP6_GAQTLYVPNCDHR_vs_IGF2_GIVEECCFR
101 & 103
0.035
0.654





IBP6_GAQTLYVPNCDHR_vs_LYAM1_SYYWIGIR
101 & 120
0.025
0.664





IBP6_HLDSVLQQLQTEVYR_vs_C163A_INPASLDK
102 & 54
0.015
0.678





IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIGIR
102 & 120
0.032
0.656





KNG1_DIPTNSPELEETLTHTITK_vs_IGF2_GIVEECCFR
116 & 103
0.048
0.644





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.016
0.675





KNG1_QVVAGLNFR_vs_C163A_INPASLDK
117 & 54
0.049
0.643





KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.040
0.650





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.010
0.687





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.007
0.697





KNG1_QVVAGLNFR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
117 & 144
0.043
0.648





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.046
0.646





PEDF_TVQAVLTVPK_VS_LYAM1_SYYWIGIR
125 & 120
0.021
0.668





PSG2_IHPSYTNYR_vs_C163A_INPASLDK
133 & 54
0.024
0.665





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.021
0.668





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.013
0.681





PSG2_IHPSYTNYR_vs_CSH_AHQLAIDTYQEFEETYIPK
133 & 80
0.020
0.670





PSG2_IHPSYTNYR_vs_CSH_ISLLLIESWLEPVR
133 & 81
0.041
0.649





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.010
0.688





PSG2_IHPSYTNYR_vs_IBP3_YGQPLPGYTTK
133 & 100
0.041
0.649





PSG2_IHPSYTNYR_vs_IGF2_GIVEECCFR
133 & 103
0.030
0.659





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.007
0.696





PSG2_IHPSYTNYR_vs_NCAM1_GLGEISAASEFK
133 & 121
0.050
0.643





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.024
0.664





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.033
0.655





PSG2_IHPSYTNYR_vs_SOM2.CSH_NYGLLYCFR
133 & 138
0.037
0.652





PSG2_IHPSYTNYR_vs_SPRL1_VLTHSELAPLR
133 & 140
0.043
0.648





PSG2_IHPSYTNYR_vs_TENX_LNWEAPPGAFDSFLLR
133 & 141
0.030
0.658





PSG2_IHPSYTNYR_vs_TENX_LSQLSVTDVTTSSLR
133 & 142
0.023
0.665





PSG2_IHPSYTNYR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
133 & 144
0.037
0.652





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 & 120
0.045
0.646





THBG_AVLHIGEK_vs_LYAM1_SYYWIGIR
143 & 120
0.036
0.653





VTNC_GQYCYELDEK_vs_C163A_INPASLDK
149 & 54
0.041
0.649





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.032
0.657





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.006
0.700





VTNC_GQYCYELDEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
149 & 144
0.047
0.645





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.015
0.678
















TABLE 34







Reversal Classification Performance, weeks 18 and 19.


Reversal AUROC for gestational weeks 18 and 19 using 


a case vs control cut-off of <35 0/7 vs >=35 0/7 


weeks, with BMI stratification (>22 <=37).











SEQ ID




Reversal
NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.040
0.686





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.022
0.707





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.045
0.682





ANGT_DPTFIPAPIQAK_vs_IGF2_GIVEECCFR
 42 & 103
0.029
0.699





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.016
0.718





APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
 48 & 103
0.033
0.694





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.026
0.702





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.018
0.715





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR 
 61 & 103
0.028
0.700





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.006
0.748





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.044
0.683





CD14_LTVGAAQVPAQLLVGALR_vs_VTDB_ELPEHTVK
 61 & 147
0.041
0.685





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.036
0.691





CLUS_ASSIIDELFQDR_vs_IGF2_GIVEECCFR
 67 & 103
0.009
0.737





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.010
0.733





CLUS_LFDSDPITVTVPVEVSR_vs_IGF2_GIVEECCFR
 68 & 103
0.021
0.710





CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGIR
 68 & 120
0.027
0.700





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.017
0.717





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.035
0.691





CO6_ALNHLPLEYNSALYSR_vs_IGF2_GIVEECCFR
 72 & 103
0.016
0.719





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGIR
 72 & 120
0.014
0.724





COSA_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.024
0.705





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 82 & 135
0.042
0.684





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_LFIPQITR
 82 & 136
0.011
0.731





ENPP2_TYLHTYESEI_vs_NCAM1_GLGEISAASEFK
 83 & 121
0.047
0.680





ENPP2_TYLHTYESEI_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 83 & 135
0.042
0.684





ENPP2_TYLHTYESEI_vs_PSG9_LFIPQITR
 83 & 136
0.012
0.727





ENPP2_TYLHTYESEI_vs_VTDB_ELPEHTVK
 83 & 147
0.037
0.689





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
 84 & 103
0.009
0.737





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.006
0.748





FETUA_FSVVYAK_vs_PSG9_LFIPQITR
 88 & 136
0.043
0.684





FETUA_HTLNQIDEVK_vs_PSG9_LFIPQITR
 89 & 136
0.037
0.689





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.045
0.682





IBP4_QCHPALDGQR_vs_C163A_INPASLDK
  2 & 54
0.048
0.679





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.043
0.684





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.010
0.733





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.004
0.759





KNG1_DIPTNSPELEETLTHTITK_vs_IGF2_GIVEECCFR
116 & 103
0.020
0.710





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.010
0.734





KNG1_QVVAGLNFR_vs_IBP3_FLNVLSPR
117 & 99
0.029
0.698





KNG1_QVVAGLNFR_vs_IBP3_YGQPLPGYTTK
117 & 100
0.034
0.692





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.004
0.760





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.007
0.746





LBP_ITGFLKPGK_vs_PSG9_LFIPQITR
118 & 136
0.044
0.682





PAPP1_DIPHWLNPTR_vs_LYAM1_SYYWIGIR
122 & 120
0.046
0.681





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.018
0.714





PSG2_IHPSYTNYR_vs_ALS_IRPHTFTGLSGLR
133 & 40
0.038
0.688





PSG2_IHPSYTNYR_vs_C163A_INPASLDK
133 & 54
0.012
0.728





PSG2_IHPSYTNYR_vs_CHL1_VIAVNEVGR
133 & 66
0.036
0.691





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.008
0.741





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.007
0.743





PSG2_IHPSYTNYR_vs_CSH_AHQLAIDTYQEFEETYIPK
133 & 80
0.024
0.705





PSG2_IHPSYTNYR_vs_CSH_ISLLLIESWLEPVR
133 & 81
0.044
0.683





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.017
0.716





PSG2_IHPSYTNYR_vs_IBP3_FLNVLSPR
133 & 99
0.019
0.712





PSG2_IHPSYTNYR_vs_IBP3_YGQPLPGYTTK
133 & 100
0.025
0.704





PSG2_IHPSYTNYR_vs_IGF2_GIVEECCFR
133 & 103
0.010
0.733





PSG2_IHPSYTNYR_vs_ITIH4_ILDDLSPR
133 & 112
0.026
0.702





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.002
0.777





PSG2_IHPSYTNYR_vs_PGRP2_AGLLRPDYALLGHR
133 & 126
0.032
0.694





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.010
0.733





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.028
0.699





PSG2_IHPSYTNYR_vs_SOM2.CSH_NYGLLYCFR
133 & 138
0.036
0.690





PSG2_IHPSYTNYR_vs_SOM2.CSH_SVEGSCGF
133 & 139
0.045
0.682





PSG2_IHPSYTNYR_vs_TENX LNWEAPPGAFDSFLLR
133 & 141
0.024
0.705





PSG2_IHPSYTNYR_vs_TENX_LSQLSVTDVTTSSLR
133 & 142
0.018
0.715





PSG2_IHPSYTNYR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
133 & 144
0.046
0.681





PSG2_IHPSYTNYR_vs_VTDB_ELPEHTVK
133 & 147
0.021
0.710





PTGDS_GPGEDFR_vs_C163A_INPASLDK
137 & 54
0.036
0.690





PTGDS_GPGEDFR_vs_IGF2_GIVEECCFR
137 & 103
0.043
0.684





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 & 120
0.031
0.696





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.022
0.707





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.006
0.749





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.023
0.705
















TABLE 35







Reversal Classification Performance, weeks 19 and 20.


Reversal AUROC for gestational weeks 19 and 20 using 


a case vs control cut-off of <37 0/7 vs >=37 0/7 


weeks, without BMI stratification.











SEQ ID




Reversal
NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_PRG2_WNFAYWAAHQPWSR
 34 & 129
0.018
0.618





A2GL_DLLLPQPDLR_vs_PSG3_VSAPSGTGHLPGLNPL
 34 & 134
0.013
0.624





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.023
0.613





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.045
0.600





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.021
0.616





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.013
0.624





AFAM_HFQNLGK_vs_PRG2_WNFAYWAAHQPWSR
 38 & 129
0.036
0.605





AFAM_HFQNLGK_vs_PSG3_VSAPSGTGHLPGLNPL
 38 & 134
0.031
0.608





APOC3_GWVTDGFSSLK_vs_ALS_IRPHTFTGLSGLR
 47 & 40
0.007
0.635





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.009
0.631





APOC3_GWVTDGFSSLK_vs_CHL1_VIAVNEVGR
 47 & 66
0.027
0.611





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.007
0.635





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.007
0.635





APOC3_GWVTDGFSSLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 47 & 80
0.015
0.621





APOC3_GWVTDGFSSLK_vs_CSH_ISLLLIESWLEPVR
 47 & 81
0.027
0.610





APOC3_GWVTDGFSSLK_vs_FBLN1_TGYYFDGISR
 47 & 86
0.009
0.631





APOC3_GWVTDGFSSLK_vs_IBP2_LIQGAPTIR
 47 & 98
0.037
0.604





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.001
0.659





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
 47 & 100
0.002
0.651





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.001
0.660





APOC3_GWVTDGFSSLK_vs_ITIH4_ILDDLSPR
 47 & 112
0.007
0.636





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.003
0.648





APOC3_GWVTDGFSSLK_vs_NCAM1_GLGEISAASEFK
 47 & 121
0.012
0.626





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.011
0.626





APOC3_GWVTDGFSSLK_vs_PRG2_WNFAYWAAHQPWSR
 47 & 129
0.004
0.642





APOC3_GWVTDGFSSLK_vs_PSG1_FQLPGQK
 47 & 131
0.031
0.608





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.001
0.659





APOC3_GWVTDGFSSLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 47 & 135
0.044
0.601





APOC3_GWVTDGFSSLK_vs_PSG9_LFIPQITR
 47 & 136
0.042
0.602





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.004
0.645





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_NYGLLYCFR
 47 & 138
0.028
0.610





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_SVEGSCGF
 47 & 139
0.028
0.610





APOC3_GWVTDGFSSLK_vs_SPRL1_VLTHSELAPLR
 47 & 140
0.008
0.634





APOC3_GWVTDGFSSLK_vs_TENX_LNWEAPPGAFDSFLLR
 47 & 141
0.005
0.641





APOC3_GWVTDGFSSLK_vs_TENX_LSQLSVTDVTTSSLR
 47 & 142
0.005
0.640





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.006
0.638





APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
 47 & 147
0.005
0.641





APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
 48 & 79
0.043
0.601





APOH_ATVVYQGER_vs_IBP3_FLNVLSPR
 48 & 99
0.031
0.608





APOH_ATVVYQGER_vs_IBP3_YGQPLPGYTTK
 48 & 100
0.012
0.626





APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
 48 & 103
0.004
0.646





APOH_ATVVYQGER_vs_PRG2_WNFAYWAAHQPWSR
 48 & 129
0.033
0.606





APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLNPL
 48 & 134
0.003
0.650





APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
 48 & 18
0.014
0.622





APOH_ATVVYQGER_vs_TENX_LNWEAPPGAFDSFLLR
 48 & 141
0.025
0.612





APOH_ATVVYQGER_vs_TENX_LSQLSVTDVTTSSLR
 48 & 142
0.021
0.615





B2MG_VEHSDLSFSK_vs_PSG3_VSAPSGTGHLPGLNPL
 50 & 134
0.036
0.605





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
 51 & 103
0.010
0.628





B2MG_VNHVTLSQPK_vs_PRG2_WNFAYWAAHQPWSR
 51 & 129
0.020
0.617





B2MG_VNHVTLSQPK_vs_PSG3_VSAPSGTGHLPGLNPL
 51 & 134
0.011
0.626





B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
 51 & 18
0.019
0.617





B2MG_VNHVTLSQPK_vs_TENX_LSQLSVTDVTTSSLR
 51 & 142
0.037
0.604





BGH3_LTLLAPLNSVFK_vs_PRG2_WNFAYWAAHQPWSR
 52 & 129
0.035
0.605





BGH3_LTLLAPLNSVFK_vs_PSG3_VSAPSGTGHLPGLNPL
 52 & 134
0.043
0.601





C1QB_VPGLYYFTYHASSR_vs_IGF2_GIVEECCFR
 55 & 103
0.022
0.614





C1QB_VPGLYYFTYHASSR_vs_PRG2_WNFAYWAAHQPWSR
 55 & 129
0.011
0.627





C1QB_VPGLYYFTYHASSR_vs_PSG3_VSAPSGTGHLPGLNPL
 55 & 134
0.008
0.633





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.012
0.625





C1QB_VPGLYYFTYHASSR_vs_TENX_LNWEAPPGAFDSFLLR
 55 & 141
0.031
0.608





C1QB_VPGLYYFTYHASSR_vs_TENX_LSQLSVTDVTTSSLR
 55 & 142
0.040
0.602





CATD_VGFAEAAR_vs_PRG2_WNFAYWAAHQPWSR
 57 & 129
0.033
0.607





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
 61 & 103
0.011
0.626





CD14_LTVGAAQVPAQLLVGALR_vs_PRG2_WNFAYWAAHQPWSR
 61 & 129
0.028
0.610





CD14_LTVGAAQVPAQLLVGALR_vs_PSG3_VSAPSGTGHLPGLNPL
 61 & 134
0.008
0.633





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.022
0.615





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LNWEAPPGAFDSFLLR
 61 & 141
0.027
0.611





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LSQLSVTDVTTSSLR
 61 & 142
0.028
0.610





CD14_SWLAELQQWLKPGLK_vs_IGF2_GIVEECCFR
 62 & 103
0.034
0.606





CD14_SWLAELQQWLKPGLK_vs_PRG2_WNFAYWAAHQPWSR
 62 & 129
0.033
0.607





CD14_SWLAELQQWLKPGLK_vs_PSG3_VSAPSGTGHLPGLNPL
 62 & 134
0.014
0.622





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
 62 & 18
0.034
0.606





CD14_SWLAELQQWLKPGLK_vs_TENX_LNWEAPPGAFDSFLLR
 62 & 141
0.042
0.602





CFAB_YGLVTYATYPK_vs_IGF2_GIVEECCFR
 64 & 103
0.030
0.609





CFAB_YGLVTYATYPK_vs_PRG2_WNFAYWAAHQPWSR
 64 & 129
0.037
0.604





CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGLNPL
 64 & 134
0.022
0.615





CLUS_ASSIIDELFQDR_vs_PSG3_VSAPSGTGHLPGLNPL
 67 & 134
0.036
0.605





CO5_TLLPVSKPEIR_vs_PRG2_WNFAYWAAHQPWSR
 70 & 129
0.037
0.604





CO5_TLLPVSKPEIR_vs_PSG3_VSAPSGTGHLPGLNPL
 70 & 134
0.017
0.619





CO5_VFQFLEK_vs_PRG2_WNFAYWAAHQPWSR
 71 & 129
0.031
0.608





CO5_VFQFLEK_vs_PSG3_VSAPSGTGHLPGLNPL
 71 & 134
0.023
0.614





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
 71 & 18
0.035
0.605





CO6_ALNHLPLEYNSALYSR_vs_PSG3_VSAPSGTGHLPGLNPL
 72 & 134
0.034
0.606





COSA_SLLQPNK_vs_IBP3_FLNVLSPR
 74 & 99
0.044
0.600





COSA_SLLQPNK_vs_IBP3_YGQPLPGYTTK
 74 & 100
0.026
0.611





COSA_SLLQPNK_vs_IGF2_GIVEECCFR
 74 & 103
0.004
0.643





CO8A_SLLQPNK_vs_PRG2_WNFAYWAAHQPWSR
 74 & 129
0.021
0.615





COSA_SLLQPNK_vs_PSG3_VSAPSGTGHLPGLNPL
 74 & 134
0.009
0.631





COSA_SLLQPNK_vs_SHBG_IALGGLLFPASNLR
 74 & 18
0.019
0.617





COSA_SLLQPNK_vs_SPRL1_VLTHSELAPLR
 74 & 140
0.035
0.605





CO8A_SLLQPNK_vs_TENX_LNWEAPPGAFDSFLLR
 74 & 141
0.024
0.613





COSA_SLLQPNK_vs_TENX_LSQLSVTDVTTSSLR
 74 & 142
0.019
0.617





COSA_SLLQPNK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 74 & 144
0.026
0.611





CO8B_QALEEFQK_vs_CRIS3_YEDLYSNCK
 76 & 79
0.038
0.604





CO8B_QALEEFQK_vs_IBP3_FLNVLSPR
 76 & 99
0.025
0.612





CO8B_QALEEFQK_vs_IBP3_YGQPLPGYTTK
 76 & 100
0.019
0.618





CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
 76 & 103
0.002
0.654





CO8B_QALEEFQK_vs_PRG2_WNFAYWAAHQPWSR
 76 & 129
0.021
0.616





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
 76 & 134
0.004
0.645





CO8B_QALEEFQK_vs_SHBG_IALGGLLFPASNLR
 76 & 18
0.020
0.616





CO8B_QALEEFQK_vs_SPRL1_VLTHSELAPLR
 76 & 140
0.021
0.615





CO8B_QALEEFQK_vs_TENX_LNWEAPPGAFDSFLLR
 76 & 141
0.015
0.622





CO8B_QALEEFQK_vs_TENX_LSQLSVTDVTTSSLR
 76 & 142
0.010
0.628





CO8B_QALEEFQK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 76 & 144
0.017
0.620





CO8B_QALEEFQK_vs_VTDB_ELPEHTVK
 76 & 147
0.041
0.602





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PRG2WNFAYWAAHQPWSR
 82 & 129
0.033
0.607





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_IALGGLLFPASNLR
 82 & 18
0.033
0.606





ENPP2_TYLHTYESEI_vs_PRG2_WNFAYWAAHQPWSR
 83 & 129
0.040
0.603





ENPP2_TYLHTYESEI_vs_PSG3_VSAPSGTGHLPGLNPL
 83 & 134
0.044
0.601





ENPP2_TYLHTYESEI_vs_SHBG_IALGGLLFPASNLR
 83 & 18
0.036
0.605





FBLN3_IPSNPSHR_vs_SHBG_IALGGLLFPASNLR
 87 & 18
0.038
0.604





FETUA_FSVVYAK_vs_IGF2_GIVEECCFR
 88 & 103
0.031
0.608





FETUA_FSVVYAK_vs_PRG2_WNFAYWAAHQPWSR
 88 & 129
0.033
0.606





FETUA_FSVVYAK_vs_PSG3_VSAPSGTGHLPGLNPL
 88 & 1.34
0.017
0.619





FETUA_HTLNQIDEVK_vs_PRG2_WNFAYWAAHQPWSR
 89 & 129
0.019
0.617





FETUA_HTLNQIDEVK_vs_PSG3_VSAPSGTGHLPGLNPL
 89 & 134
0.010
0.628





FETUA_HTLNQIDEVK_vs_SHBG_IALGGLLFPASNLR
 89 & 18
0.027
0.610





FETUA_HTLNQIDEVK_vs_TENX_LNWEAPPGAFDSFLLR
 89 & 141
0.045
0.600





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.031
0.608





HABP2_FLNWIK_vs_PSG3_VSAPSGTGHLPGLNPL
 92 & 134
0.043
0.601





HEMO_NFPSPVDAAFR_vs_PSG3_VSAPSGTGHLPGLNPL
 93 & 134
0.029
0.609





HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPASNLR
 93 & 18
0.028
0.610





IBP4_QCHPALDGQR_vs_ALS_IRPHTFTGLSGLR
  2 & 40
0.024
0.612





IBP4_QCHPALDGQR_vs_CHL1_VIAVNEVGR
  2 & 66
0.027
0.610





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.004
0.644





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.003
0.650





IBP4_QCHPALDGQR_vs_FBLN1_TGYYFDGISR
  2 & 86
0.020
0.617





IBP4_QCHPALDGQR_vs_IBP3_FLNVLSPR
  2 & 99
0.014
0.622





IBP4_QCHPALDGQR_vs_IBP3_YGQPLPGYTTK
  2 & 100
0.005
0.639





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.000
0.677





IBP4_QCHPALDGQR_vs_ITIH4_ILDDLSPR
  2 & 112
0.003
0.650





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.005
0.641





IBP4_QCHPALDGQR_vs_NCAM1_GLGEISAASEFK
  2 & 121
0.027
0.610





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
  2 & 126
0.011
0.627





IBP4_QCHPALDGQR_vs_PRG2_WNFAYWAAHQPWSR
  2 & 129
0.002
0.658





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.000
0.710





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.001
0.673





IBP4_QCHPALDGQR_vs_SPRL1_VLTHSELAPLR
  2 & 140
0.004
0.646





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFDSFLLR
  2 & 141
0.002
0.655





IBP4_QCHPALDGQR_vs_TENX_LSQLSVTDVTTSSLR
  2 & 142
0.005
0.641





IBP4_QCHPALDGQR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
  2 & 144
0.004
0.645





IBP4_QCHPALDGQR_vs_VTDB_ELPEHTVK
  2 & 147
0.002
0.658





IBP6_GAQTLYVPNCDHR_vs_PRG2_WNFAYWAAHQPWSR
101 & 129
0.038
0.604





IBP6_GAQTLYVPNCDHR_vs_PSG3_VSAPSGTGHLPGLNPL
101 & 134
0.024
0.613





IBP6_GAQTLYVPNCDHR_vs_SHBG_IALGGLLFPASNLR
101 & 18
0.045
0.600





IBP6_HLDSVLQQLQTEVYR_vs_PRG2_WNFAYWAAHQPWSR
102 & 129
0.032
0.607





IBP6_HLDSVLQQLQTEVYR_vs_PSG3_VSAPSGTGHLPGLNPL
102 & 134
0.023
0.613





IBP6_HLDSVLQQLQTEVYR_vs_SHBG_IALGGLLFPASNLR
102 & 18
0.032
0.607





INHBC_LDFHFSSDR_vs_CRIS3_YEDLYSNCK
107 & 79
0.043
0.601





INHBC_LDFHFSSDR_vs_IBP3_FLNVLSPR
107 & 99
0.015
0.621





INHBC_LDFHFSSDR_vs_IBP3_YGQPLPGYTTK
107 & 100
0.011
0.627





INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 & 103
0.002
0.652





INHBC_LDFHFSSDR_vs_ITIH4_ILDDLSPR
107 & 112
0.041
0.602





INHBC_LDFHFSSDR_vs_LYAM1_SYYWIGIR
107 & 120
0.041
0.602





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.040
0.603





INHBC_LDFHFSSDR_vs_PRG2_WNFAYWAAHQPWSR
107 & 129
0.016
0.620





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.003
0.647





INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNLR
107 & 18
0.008
0.632





INHBC_LDFHFSSDR_VS_SPRL1_VLTHSELAPLR
107 & 140
0.035
0.605





INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDSFLLR
107 & 141
0.007
0.634





INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSSLR
107 & 142
0.009
0.630





INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
107 & 144
0.024
0.612





INHBC_LDFHFSSDR_vs_VTDB_ELPEHTVK
107 & 147
0.025
0.612





ITIH3_ALDLSLK_vs_PRG2_WNFAYWAAHQPWSR
111 & 129
0.024
0.613





ITIH3_ALDLSLK_vs_PSG3_VSAPSGTGHLPGLNPL
111 & 134
0.042
0.602





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.024
0.612





ITIH4_NPLVWVHASPEHVVVTR_vs_PRG2_WNFAYWAAHQPWSR
113 & 129
0.020
0.616





ITIH4_NPLVWVHASPEHVVVTR_vs_PSG3_VSAPSGTGHLPGLNPL
113 & 134
0.016
0.620





ITIH4_NPLVWVHASPEHVVVTR_vs_SHBG_IALGGLLFPASNLR
113 & 18
0.034
0.606





KNG1_DIPTNSPELEETLTHTITK_vs_IGF2_GIVEECCFR
116 & 103
0.030
0.609





KNG1_DIPTNSPELEETLTHTITK_vs_PRG2_WNFAYWAAHQPWSR
116 & 129
0.032
0.607





KNG1_DIPTNSPELEETLTHTITK_vs_PSG3_VSAPSGTGHLPGLNPL
116 & 134
0.020
0.617





KNG1_DIPTNSPELEETLTHTITK_vs_SHBG_IALGGLLFPASNLR
116 & 18
0.041
0.602





KNG1_DIPTNSPELEETLTHTITK_vs_TENX_LSQLSVTDVTTSSLR
116 & 142
0.043
0.601





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.032
0.607





KNG1_QVVAGLNFR_vs_PRG2_WNFAYWAAHQPWSR
117 & 129
0.035
0.606





KNG1_QVVAGLNFR_vs_PSG3_VSAPSGTGHLPGLNPL
117 & 134
0.014
0.623





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.025
0.612





LBP_ITGFLKPGK_vs_CRIS3_YEDLYSNCK
118 & 79
0.044
0.600





LBP_ITGFLKPGK_vs_IGF2_GIVEECCFR
118 & 103
0.043
0.601





LBP_ITGFLKPGK_vs_PRG2_WNFAYWAAHQPWSR
118 & 129
0.022
0.615





LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNPL
118 & 134
0.006
0.637





LBP_ITGFLKPGK_vs_SHBG_IALGGLLFPASNLR
118 & 18
0.033
0.606





LBP_ITLPDFTGDLR_vs_CRIS3_AVSPPAR
119 & 78
0.024
0.613





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.018
0.618





LBP_ITLPDFTGDLR_vs_IGF2_GIVEECCFR
119 & 103
0.024
0.613





LBP_ITLPDFTGDLR_vs_PRG2_WNFAYWAAHQPWSR
119 & 129
0.011
0.628





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGLNPL
119 & 134
0.002
0.652





LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.011
0.628





PEDF_LQSLFDSPDFSK_vs_PSG3_VSAPSGTGHLPGLNPL
124 & 134
0.015
0.621





PEDF_LQSLFDSPDFSK_vs_TENX_LSQLSVTDVTTSSLR
124 & 142
0.045
0.600





PEDF_TVQAVLTVPK_vs_PRG2_WNFAYWAAHQPWSR
125 & 129
0.037
0.604





PEDF_TVQAVLTVPK_vs_PSG3_VSAPSGTGHLPGLNPL
125 & 134
0.017
0.619





PRDX2_GLFIIDGK_vs_PRG2_WNFAYWAAHQPWSR
128 & 129
0.018
0.618





PRDX2_GLFIIDGK_vs_PSG3_VSAPSGTGHLPGLNPL
128 & 134
0.019
0.617





PRDX2_GLFIIDGK_vs_SHBG_IALGGLLFPASNLR
128 & 18
0.026
0.611





PRDX2_GLFIIDGK_vs_TENX_LNWEAPPGAFDSFLLR
128 & 141
0.022
0.614





PRDX2_GLFIIDGK_vs_TENX_LSQLSVTDVTTSSLR
128 & 142
0.042
0.602





PTGDS_GPGEDFR_vs_PRG2_WNFAYWAAHQPWSR
137 & 129
0.026
0.611





PTGDS_GPGEDFR_vs_PSG3_VSAPSGTGHLPGLNPL
137 & 134
0.028
0.610





THBG_AVLHIGEK_vs_PRG2_WNFAYWAAHQPWSR
143 & 129
0.029
0.609





THBG_AVLHIGEK_vs_PSG3_VSAPSGTGHLPGLNPL
143 & 134
0.018
0.618





THBG_AVLHIGEK_vs_SHBG_IALGGLLFPASNLR
143 & 18
0.033
0.606





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.030
0.609





VTNC_GQYCYELDEK_vs_PRG2_WNFAYWAAHQPWSR
149 & 129
0.018
0.618





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.014
0.622





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.009
0.631





VTNC_VDTVDPPYPR_vs_IBP3_YGQPLPGYTTK
150 & 100
0.033
0.607





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.013
0.624





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.033
0.606





VTNC_VDTVDPPYPR_vs_PRG2_WNFAYWAAHQPWSR
150 & 129
0.014
0.623





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.004
0.642





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.004
0.643





VTNC_VDTVDPPYPR_vs_TENX_LNWEAPPGAFDSFLLR
150 & 141
0.032
0.607





VTNC_VDTVDPPYPR_vs_TENX_LSQLSVTDVTTSSLR
150 & 142
0.043
0.601





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.015
0.621
















TABLE 36







Reversal Classification Performance, weeks 19 and 20.


Reversal AUROC for gestational weeks 19 and 20 using


a case vs control cut-off of <37 0/7 vs >=37 0/7 weeks,


with BMI stratification (>22 <= 37).











SEQ ID

ROC_


Reversal
NO:
pval
AUC





A2GL_DLLLPQPDLR_vs_CRIS3_AVSPPAR
34 & 78
0.041
0.628





A2GL_DLLLPQPDLR_vs_CRIS3_YEDLYSNCK
34 & 79
0.024
0.641





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
34 &
0.034
0.633



120







A2GL_DLLLPQPDLR_vs_PSG3_VSAPSGTGHLPGLN
34 &
0.011
0.659


PL
134







A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
34 & 18
0.030
0.636





AFAM_DADPDTFFAK_vs_IBP3_YGQPLPGYTTK
37 &
0.044
0.626



100







AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
37 &
0.036
0.631



103







AFAM_DADPDTFFAK_vs_PSG3_VSAPSGTGHLPGL
37 &
0.028
0.637


NPL
134







AFAM_HFQNLGK_vs_IBP3_FLNVLSPR
38 & 99
0.040
0.628





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
38 &
0.018
0.647



100







AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
38 &
0.018
0.648



103







AFAM_HFQNLGK_vs_PSG3_VSAPSGTGHLPGLNPL
38 &
0.014
0.654



134







AFAM_HFQNLGK_vs_TENX_LNWEAPPGAFDSFLLR
38 &
0.047
0.624



141







ANGT_DPTFIPAPIQAK_vs_CRIS3_YEDLYSNCK
42 & 79
0.047
0.624





ANGT_DPTFIPAPIQAK_vs_PSG3_VSAPSGTGHLPG
42 &
0.025
0.640


LNPL
134







APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
47 & 54
0.035
0.632





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
47 & 78
0.011
0.658





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
47 & 79
0.009
0.663





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
47 & 99
0.032
0.634





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
47 &
0.035
0.632



100







APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
47 &
0.024
0.642



103







APOC3_GWVTDGFSSLK_vs_ITIH4_ILDDLSPR
47 &
0.046
0.625



112







APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
47 &
0.015
0.652



120







APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLP
47 &
0.010
0.661


GLNPL
134







APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASN
47 & 18
0.024
0.641


LR








APOC3_GWVTDGFSSLK_vs_SOM2.CSH_SVEGSCG
47 &
0.049
0.623


F
139







APOC3_GWVTDGFSSLK_vs_SPRL1_VLTHSELAPLR
47 &
0.049
0.623



140







APOC3_GWVTDGFSSLK_vs_TENX_LNWEAPPGAF
47 &
0.048
0.624


DSFLLR
141







APOC3_GWVTDGFSSLK_vs_TENX_LSQLSVTDVTTS
47 &
0.049
0.623


SLR
142







APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
47 &
0.042
0.627



147







APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
48 & 79
0.037
0.631





APOH_ATVVYQGER_vs_IBP3_YGQPLPGYTTK
48 &
0.039
0.629



100







APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
48 &
0.046
0.625



103







APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLN
48 &
0.013
0.656


PL
134







B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
51 & 79
0.025
0.640





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
51 &
0.038
0.630



103







B2MG_VNHVTLSQPK_vs_PSG3_VSAPSGTGHLPGL
51 &
0.028
0.637


NPL
134







BGH3_LTLLAPLNSVFK_vs_CRIS3_YEDLYSNCK
52 & 79
0.036
0.631





BGH3_LTLLAPLNSVFK_vs_PSG3_VSAPSGTGHLPGL
52 &
0.031
0.635


NPL
134







C1QB_VPGLYYFTYHASSR_vs_PSG3_VSAPSGTGHL
55 &
0.019
0.647


PGLNPL
134







C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPAS
55 & 18
0.047
0.624


NLR








CAH1_GGPFSDSYR_vs_CRIS3_YEDLYSNCK
56 & 79
0.036
0.631





CAH1_GGPFSDSYR_vs_PSG3_VSAPSGTGHLPGLNP
56 &
0.028
0.637


L
134







CBPN_NNANGVDLNR_vs_PSG3_VSAPSGTGHLPGL
60 &
0.023
0.643


NPL
134







CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_YEDLYS
61 & 79
0.034
0.633


NCK








CD14_LTVGAAQVPAQLLVGALR_vs_PSG3_VSAPS
61 &
0.029
0.637


GTGHLPGLNPL
134







CD14_SWLAELQQWLKPGLK_vs_PSG3_VSAPSGTG
62 &
0.040
0.628


HLPGLNPL
134







CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGL
64 &
0.020
0.646


NPL
134







CLUS_ASSIIDELFQDR_vs_PSG3_VSAPSGTGHLPGL
67 &
0.027
0.638


NPL
134







CO5_TLLPVSKPEIR_vs_CRIS3_AVSPPAR
70 & 78
0.049
0.623





CO5_TLLPVSKPEIR_vs_CRIS3_YEDLYSNCK
70 & 79
0.039
0.629





CO5_TLLPVSKPEIR_vs_PSG3_VSAPSGTGHLPGLNP
70 &
0.010
0.661


L
134







CO5_VFQFLEK_vs_CRIS3_YEDLYSNCK
71 & 79
0.041
0.628





CO5_VFQFLEK_vs_PSG3_VSAPSGTGHLPGLNPL
71 &
0.028
0.637



134







CO6_ALNHLPLEYNSALYSR_vs_PSG3_VSAPSGTGH
72 &
0.050
0.623


LPGLNPL
134







COSA_SLLQPNK_vs_CRIS3_AVSPPAR
74 & 78
0.039
0.629





COSA_SLLQPNK_vs_CRIS3_YEDLYSNCK
74 & 79
0.016
0.651





CO8A_SLLQPNK_vs_IBP3_YGQPLPGYTTK
74 &
0.038
0.630



100







COSA_SLLQPNK_vs_IGF2_GIVEECCFR
74 &
0.015
0.652



103







CO8A_SLLQPNK_vs_PSG3_VSAPSGTGHLPGLNPL
74 &
0.004
0.680



134







COSA_SLLQPNK_vs_SHBG_IALGGLLFPASNLR
74 & 18
0.031
0.635





COSA_SLLQPNK_vs_SPRL1_VLTHSELAPLR
74 &
0.018
0.648



140







COSA_SLLQPNK_vs_TENX_LNWEAPPGAFDSFLLR
74 &
0.022
0.644



141







CO8A_SLLQPNK_vs_TENX_LSQLSVTDVTTSSLR
74 &
0.017
0.650



142







CO8B_QALEEFQK_vs_ALS_IRPHTFTGLSGLR
76 & 40
0.035
0.632





CO8B_QALEEFQK_vs_CRIS3_AVSPPAR
76 & 78
0.017
0.649





CO8B_QALEEFQK_vs_CRIS3_YEDLYSNCK
76 & 79
0.008
0.665





CO8B_QALEEFQK_vs_IBP3_FLNVLSPR
76 & 99
0.028
0.638





CO8B_QALEEFQK_vs_IBP3_YGQPLPGYTTK
76 &
0.017
0.649



100







CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
76 &
0.005
0.677



103







CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
76 &
0.039
0.629



120







CO8B_QALEEFQK_vs_NCAM1_GLGEISAASEFK
76 &
0.035
0.632



121







CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
76 &
0.002
0.698



134







CO8B_QALEEFQK_vs_SHBG_IALGGLLFPASNLR
76 & 18
0.027
0.639





CO8B_QALEEFQK_vs_SPRL1_VLTHSELAPLR
76 &
0.008
0.666



140







CO8B_QALEEFQK_vs_TENX_LNWEAPPGAFDSF
76 & 141
0.008
0.665


LLR








CO8B_QALEEFQK_vs_TENX_LSQLSVTDVTTSSLR
76 & 142
0.005
0.674





CO8B_QALEEFQK_vs_TIE1_VSWSLPLVPGPLVG
76 & 144
0.024
0.642


DGFLLR








CO8B_QALEEFQK_vs_VTDB_ELPEHTVK
76 & 147
0.020
0.645





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG
82 & 18
0.046
0.625


IALGGLLFPASNLR








F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNC
84 & 79
0.040
0.628


K








FETUA_FSVVYAK_vs_PSG3_VSAPSGTGHLPGLN
88 & 134
0.038
0.630


PL








FETUA_HTLNQIDEVK_vs_PSG3_VSAPSGTGHLP
89 & 134
0.040
0.629


GLNPL








IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
2 & 78
0.002
0.693





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
2 & 79
0.001
0.704





IBP4_QCHPALDGQR_vs_IBP3_FLNVLSPR
2 & 99
0.034
0.632





IBP4_QCHPALDGQR_vs_IBP3_YGQPLPGYTTK
2 & 100
0.010
0.660





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
2 & 103
0.003
0.687





IBP4_QCHPALDGQR_vs_ITIH4_ILDDLSPR
2 & 112
0.014
0.654





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
2 & 120
0.002
0.695





IBP4_QCHPALDGQR_VS_NCAM1_GLGEISAASEF
2 & 121
0.023
0.642


K








IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALL
2 & 126
0.016
0.651


GHR








IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPG
2 & 134
0.000
0.741


LNPL








IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNL
2 & 18
0.002
0.690


R








IBP4_QCHPALDGQR_vs_SPRL1_VLTHSELAPLR
2 & 140
0.006
0.671





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFD
2 & 141
0.005
0.674


SFLLR








IBP4_QCHPALDGQR_vs_TENX_LSQLSVTDVTTSS
2 & 142
0.009
0.662


LR








IBP4_QCHPALDGQR_vs_TIE1_VSWSLPLVPGPLV
2 & 144
0.012
0.657


GDGFLLR








IBP4_QCHPALDGQR_vs_VTDB_ELPEHTVK
2 & 147
0.003
0.686





INHBC_LDFHFSSDR_vs_ALS_IRPHTFTGLSGLR
107 & 40
0.024
0.642





INHBC_LDFHFSSDR_vs_CRIS3_AVSPPAR
107 & 78
0.029
0.637





INHBC_LDFHFSSDR_vs_CRIS3_YEDLYSNCK
107 & 79
0.015
0.652





INHBC_LDFHFSSDR_vs_IBP3_FLNVLSPR
107 & 99
0.007
0.669





INHBC_LDFHFSSDR_vs_IBP3_YGQPLPGYTTK
107 &
0.005
0.674



100







INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 &
0.002
0.695



103







INHBC_LDFHFSSDR_vs_ITIH4_ILDDLSPR
107 &
0.033
0.633



112







INHBC_LDFHFSSDR_v_LYAM1_SYYWIGIR
107 &
0.030
0.636



120







INHBC_LDFHFSSDR_vs_NCAM1_GLGEISAASEF
107 &
0.047
0.624


K
121







INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLG
107 &
0.036
0.631


HR
126







INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGL
107 &
0.001
0.710


NPL
134







INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNL
107 & 18
0.008
0.666


R








INHBC_LDFHFSSDR_vs_SPRL1_VLTHSELAPLR
107 &
0.019
0.646



140







INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDS
107 &
0.002
0.693


FLLR
141







INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSS
107 &
0.003
0.689


LR
142







INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLV
107 &
0.029
0.637


GDGFLLR
144







INHBC_LDFHFSSDR_vs_VTDB_ELPEHTVK
107 &
0.008
0.666



147







ITIH3_ALDLSLK_vs_CRIS3_YEDLYSNCK
111 & 79
0.044
0.626





KNG1_DIPTNSPELEETLTHTITK_vs_CRIS3_YED
116 & 79
0.040
0.628


LYSNCK








KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.049
0.623





KNG1_QVVAGLNFR_vs_PSG3_VSAPSGTGHLPG
117 &
0.033
0.633


LNPL
134







LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNP
118 &
0.021
0.644


L
134







LBP_ITLPDFTGDLR_vs_CRIS3_AVSPPAR
119 & 78
0.031
0.635





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.021
0.645





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGL
119 &
0.008
0.666


NPL
134







LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.021
0.644





PEDF_LQSLFDSPDFSK_vs_PSG3_VSAPSGTGHLP
124 &
0.036
0.631


GLNPL
134







PEDF_TVQAVLTVPK_vs_PSG3_VSAPSGTGHLPG
125 &
0.017
0.649


LNPL
134







PRDX2_GLFIIDGK_vs_CRIS3_AVSPPAR
128 & 78
0.019
0.647





PRDX2_GLFIIDGK_vs_CRIS3_YEDLYSNCK
128 & 79
0.012
0.658





PRDX2_GLFIIDGK_vs_LYAM1_SYYWIGIR
128 &
0.028
0.637



120







PRDX2_GLFIIDGK_vs_PGRP2_AGLLRPDYALLGH
128 &
0.049
0.623


R
126







PRDX2_GLFIIDGK_vs_PSG3_VSAPSGTGHLPGLN
128 &
0.005
0.676


PL
134







PRDX2_GLFIIDGK_vs_SHBG_IALGGLLFPASNLR
128 & 18
0.021
0.645





PRDX2_GLFIIDGK_vs_SPRL1_VLTHSELAPLR
128 &
0.049
0.623



140







PRDX2_GLFIIDGK_vs_TENX_LNWEAPPGAFDSFL
128 &
0.017
0.650


LR
141







PRDX2_GLFIIDGK_vs_TENX_LSQLSVTDVTTSSLR
128 &
0.030
0.636



142







PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLN
133 &
0.044
0.626


PL
134







PTGDS_GPGEDFR_vs_CRIS3_YEDLYSNCK
137 & 79
0.037
0.630





PTGDS_GPGEDFR_vs_IGF2_GIVEECCFR
137 &
0.048
0.624



103







PTGDS_GPGEDFR_vs_PSG3_VSAPSGTGHLPGLN
137 &
0.020
0.645


PL
134







THBG_AVLHIGEK_vs_PSG3_VSAPSGTGHLPGLN
143 &
0.026
0.639


PL
134







VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.037
0.630





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPG
149 &
0.013
0.655


LNPL
134







VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNL
149 & 18
0.024
0.641


R








VTNC_VDTVDPPYPR_vs_CRIS3_AVSPPAR
150 & 78
0.032
0.634





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.023
0.643





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 &
0.036
0.631



120







VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPG
150 &
0.005
0.675


LNPL
134







VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASN
150 & 18
0.013
0.656


LR
















TABLE 37







Reversal Classification Performance, weeks 19 and 20.


Reversal AUROC for gestational weeks 19 and 20 using a


case vs control cut-off of <35 0/7 vs >=35 0/7 weeks,


without BMI stratification.











SEQ ID

ROC_


Reversal
NO:
pval
AUC





AFAM_DADPDTFFAK_vs_LYAM1_SYYWIGIR
37 &
0.047
0.659



120







AFAM_DADPDTFFAK_vs_SHBG_IALGGLLFPASNLR
37 & 18
0.043
0.663





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
38 &
0.040
0.664



120







APOC3_GWVTDGFSSLK_vs_ALS_IRPHTFTGLSGLR
47 & 40
0.018
0.690





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
47 & 54
0.024
0.680





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
47 & 78
0.008
0.714





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
47 & 79
0.009
0.710





APOC3_GWVTDGFSSLK_vs_CSH_AHQLAIDTYQEF
47 & 80
0.018
0.689


EETYIPK








APOC3_GWVTDGFSSLK_vs_CSH_ISLLLIESWLEPVR
47 & 81
0.025
0.680





APOC3_GWVTDGFSSLK_vs_FBLN1_TGYYFDGISR
47 & 86
0.017
0.691





APOC3_GWVTDGFSSLK_vs_IBP1_VVESLAK
47 & 97
0.022
0.683





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
47 & 99
0.019
0.688





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
47 &
0.020
0.686



100







APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
47 &
0.026
0.679



103







APOC3_GWVTDGFSSLK_vs_ITIH4_ILDDLSPR
47 &
0.016
0.694



112







APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
47 &
0.001
0.756



120







APOC3_GWVTDGFSSLK_vs_NCAM1_GLGEISAASE
47 &
0.031
0.673


FK
121







APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALL
47 &
0.009
0.711


GHR
126







APOC3_GWVTDGFSSLK_vs_PSG1_FQLPGQK
47 &
0.027
0.677



131







APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLP
47 &
0.021
0.684


GLNPL
134







APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASN
47 & 18
0.008
0.713


LR








APOC3_GWVTDGFSSLK_vs_SOM2.CSH_NYGLLYC
47 &
0.029
0.675


FR
138







APOC3_GWVTDGFSSLK_vs_SOM2.CSH_SVEGSCG
47 &
0.020
0.687


F
139







APOC3_GWVTDGFSSLK_vs_SPRL1_VLTHSELAPLR
47 &
0.014
0.697



140







APOC3_GWVTDGFSSLK_vs_TENX_LNWEAPPGAF
47 &
0.017
0.691


DSFLLR
141







APOC3_GWVTDGFSSLK_vs_TENX_LSQLSVTDVTTS
47 &
0.015
0.694


SLR
142







APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPL
47 &
0.012
0.702


VGDGFLLR
144







APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
47 &
0.010
0.708



147







APOH_ATVVYQGER_vs_ALS_IRPHTFTGLSGLR
48 & 40
0.039
0.666





APOH_ATVVYQGER_vs_CRIS3_AVSPPAR
48 & 78
0.018
0.690





APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
48 & 79
0.013
0.698





APOH_ATVVYQGER_vs_FBLN1_TGYYFDGISR
48 & 86
0.029
0.675





APOH_ATVVYQGER_vs_IBP1_VVESLAK
48 & 97
0.033
0.671





APOH_ATVVYQGER_vs_IBP3_YGQPLPGYTTK
48 &
0.040
0.664



100







APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
48 &
0.045
0.660



103







APOH_ATVVYQGER_vs_ITIH4_ILDDLSPR
48 &
0.020
0.686



112







APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
48 &
0.001
0.762



120







APOH_ATVVYQGER_vs_NCAM1_GLGEISAASEFK
48 &
0.047
0.659



121







APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGH
48 &
0.003
0.736


R
126







APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLN
48 &
0.005
0.725


PL
134







APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
48 & 18
0.005
0.726





APOH_ATVVYQGER_VS_SPRL1_VLTHSELAPLR
48 &
0.007
0.718



140







APOH_ATVVYQGER_vs_TENX_LNWEAPPGAFDSFL
48 &
0.010
0.705


LR
141







APOH_ATVVYQGER_vs_TENX_LSQLSVTDVTTSSLR
48 &
0.012
0.702



142







APOH_ATVVYQGER_vs_TIE1_VSWSLPLVPGPLVG
48 &
0.041
0.664


DGFLLR
144







APOH_ATVVYQGER_vs_VTDB_ELPEHTVK
48 &
0.002
0.749



147







B2MG_VEHSDLSFSK_vs_LYAM1_SYYWIGIR
50 &
0.018
0.690



120







B2MG_VNHVTLSQPK_vs_CRIS3_AVSPPAR
51 & 78
0.047
0.659





B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
51 & 79
0.047
0.659





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
51 &
0.003
0.735



120







B2MG_VNHVTLSQPK_vs_PGRP2_AGLLRPDYALLG
51 &
0.039
0.666


HR
126







B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
51 & 18
0.019
0.688





B2MG_VNHVTLSQPK_vs_SPRL1_VLTHSELAPLR
51 &
0.037
0.667



140







BGH3_LTLLAPLNSVFK_vs_LYAM1_SYYWIGIR
52 &
0.025
0.679



120







CAH1_GGPFSDSYR_vs_CRIS3_AVSPPAR
56 & 78
0.026
0.679





CAH1_GGPFSDSYR_vs_CRIS3_YEDLYSNCK
56 & 79
0.029
0.675





CAH1_GGPFSDSYR_vs_IBP1_VVESLAK
56 & 97
0.036
0.668





CAH1_GGPFSDSYR_vs_LYAM1_SYYWIGIR
56 &
0.015
0.694



120







CAH1_GGPFSDSYR_vs_PGRP2_AGLLRPDYALLGHR
56 &
0.032
0.672



126







CAH1_GGPFSDSYR_vs_SHBG_IALGGLLFPASNLR
56 & 18
0.017
0.691





CAH1_GGPFSDSYR_vs_TENX_LNWEAPPGAFDSFLL
56 &
0.028
0.676


R
141







CAH1_GGPFSDSYR_vs_TENX_LSQLSVTDVTTSSLR
56 &
0.039
0.665



142







CATD_VGFAEAAR_vs_C163A_INPASLDK
57 & 54
0.006
0.719





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
57 & 78
0.012
0.700





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
57 & 79
0.014
0.696





CATD_VGFAEAAR_vs_CSH_AHQLAIDTYQEFEETYIP
57 & 80
0.011
0.704


K








CATD_VGFAEAAR_vs_CSH_ISLLLIESWLEPVR
57 & 81
0.016
0.692





CATD_VGFAEAAR_vs_FBLN1_TGYYFDGISR
57 & 86
0.012
0.701





CATD_VGFAEAAR_vs_IBP1_VVESLAK
57 & 97
0.048
0.659





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
57 &
0.034
0.670



103







CATD_VGFAEAAR_vs_ITIH4_ILDDLSPR
57 &
0.026
0.679



112







CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
57 &
0.001
0.758



120







CATD_VGFAEAAR_vs_NCAM1_GLGEISAASEFK
57 &
0.035
0.669



121







CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
57 &
0.006
0.720



126







CATD_VGFAEAAR_vs_PRG2_WNFAYWAAHQPWS
57 &
0.048
0.658


R
129







CATD_VGFAEAAR_vs_PSG1_FQLPGQK
57 &
0.008
0.713



131







CATD_VGFAEAAR_vs_PSG3_VSAPSGTGHLPGLNPL
57 &
0.015
0.695



134







CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
57 & 18
0.006
0.719





CATD_VGFAEAAR_vs_SOM2.CSH_NYGLLYCFR
57 &
0.028
0.676



138







CATD_VGFAEAAR_vs_SOM2.CSH_SVEGSCGF
57 &
0.020
0.687



139







CATD_VGFAEAAR_vs_SPRL1_VLTHSELAPLR
57 &
0.007
0.716



140







CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLL
57 &
0.004
0.730


R
141







CATD_VGFAEAAR_vs_TENX_LSQLSVTDVTTSSLR
57 &
0.004
0.733



142







CATD_VGFAEAAR_vs_TIE1_VSWSLPLVPGPLVGDG
57 &
0.016
0.693


FLLR
144







CATD_VGFAEAAR_vs_VTDB_ELPEHTVK
57 &
0.019
0.687



147







CATD_VSTLPAITLK_vs_ALS_IRPHTFTGLSGLR
58 & 40
0.031
0.673





CATD_VSTLPAITLK_vs_C163A_INPASLDK
58 & 54
0.026
0.678





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
58 & 78
0.012
0.702





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
58 & 79
0.014
0.696





CATD_VSTLPAITLK_vs_CSH_AHQLAIDTYQEFEETYI
58 & 80
0.022
0.683


PK








CATD_VSTLPAITLK_vs_CSH_ISLLLIESWLEPVR
58 & 81
0.034
0.670





CATD_VSTLPAITLK_vs_FBLN1_TGYYFDGISR
58 & 86
0.011
0.704





CATD_VSTLPAITLK_vs_IBP3_FLNVLSPR
58 & 99
0.033
0.671





CATD_VSTLPAITLK_vs_IBP3_YGQPLPGYTTK
58 &
0.029
0.675



100







CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
58 &
0.014
0.697



103







CATD_VSTLPAITLK_vs_ITIH4_ILDDLSPR
58 &
0.030
0.674



112







CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
58 &
0.002
0.749



120







CATD_VSTLPAITLK_vs_NCAM1_GLGEISAASEFK
58 &
0.024
0.681



121







CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
58 &
0.005
0.727



126







CATD_VSTLPAITLK_vs_PSG1_FQLPGQK
58 &
0.025
0.679



131







CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNP
58 &
0.009
0.710


L
134







CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
58 & 18
0.005
0.723





CATD_VSTLPAITLK_vs_SOM2.CSH_NYGLLYCFR
58 &
0.039
0.665



138







CATD_VSTLPAITLK_vs_SOM2.CSH_SVEGSCGF
58 &
0.046
0.660



139







CATD_VSTLPAITLK_vs_SPRL1_VLTHSELAPLR
58 &
0.006
0.720



140







CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLL
58 &
0.003
0.741


R
141







CATD_VSTLPAITLK_vs_TENX_LSQLSVTDVTTSSLR
58 &
0.003
0.737



142







CATD_VSTLPAITLK_vs_TIE1_VSWSLPLVPGPLVGD
58 &
0.026
0.679


GFLLR
144







CATD_VSTLPAITLK_vs_VTDB_ELPEHTVK
58 &
0.007
0.717



147







CBPN_EALIQFLEQVHQGIK_vs_SHBG_IALGGLLFPA
59 & 18
0.038
0.667


SNLR








CBPN_NNANGVDLNR_vs_LYAM1_SYYWIGIR
60 &
0.032
0.672



120







CBPN_NNANGVDLNR_vs_SPRL1_VLTHSELAPLR
60 &
0.018
0.690



140







CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_AVSPP
61 & 78
0.042
0.663


AR








CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_YEDLYS
61 & 79
0.036
0.668


NCK








CD14_LTVGAAQVPAQLLVGALR_vs_CSH_AHQLAI
61 & 80
0.043
0.663


DTYQEFEETYIPK








CD14_LTVGAAQVPAQLLVGALR_vs_FBLN1_TGYYF
61 & 86
0.022
0.684


DGISR








CD14_LTVGAAQVPAQLLVGALR_vs_IBP1_VVESLA
61 & 97
0.044
0.661


K








CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYW
61 &
0.001
0.759


IGIR
120







CD14_LTVGAAQVPAQLLVGALR_vs_NCAM1_GLGE
61 &
0.043
0.663


ISAASEFK
121







CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLR
61 &
0.011
0.704


PDYALLGHR
126







CD14_LTVGAAQVPAQLLVGALR_vs_PSG3_VSAPS
61 &
0.020
0.687


GTGHLPGLNPL
134







CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGL
61 & 18
0.008
0.713


LFPASNLR








CD14_LTVGAAQVPAQLLVGALR_vs_SPRL1_VLTHS
61 &
0.015
0.695


ELAPLR
140







CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LNWEA
61 &
0.026
0.678


PPGAFDSFLLR
141







CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LSQLSV
61 &
0.019
0.688


TDVTTSSLR
142







CD14_LTVGAAQVPAQLLVGALR_vs_TIE1_VSWSLP
61 &
0.022
0.683


LVPGPLVGDGFLLR
144







CD14_LTVGAAQVPAQLLVGALR_vs_VTDB_ELPEHT
61 &
0.005
0.727


VK
147







CD14_SWLAELQQWLKPGLK_vs_FBLN1_TGYYFDGI
62 & 86
0.033
0.671


SR








CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGI
62 &
0.002
0.743


R
120







CD14_SWLAELQQWLKPGLK_vs_PGRP2_AGLLR
62 & 126
0.014
0.697


PDYALLGHR








CD14_SWLAELQQWLKPGLK_vs_PSG3_VSAPSG
62 & 134
0.031
0.673


TGHLPGLNPL








CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGL
62 & 18
0.011
0.703


LFPASNLR








CD14_SWLAELQQWLKPGLK_vs_SPRL1_VLTHSE
62 & 140
0.021
0.685


LAPLR








CD14_SWLAELQQWLKPGLK_vs_TENX_LNWEA
62 & 141
0.042
0.663


PPGAFDSFLLR








CD14_SWLAELQQWLKPGLK_vs_TENX_LSQLSV
62 & 142
0.028
0.676


TDVTTSSLR








CD14_SWLAELQQWLKPGLK_vs_TIE1_VSWSLPL
62 & 144
0.026
0.679


VPGPLVGDGFLLR








CD14_SWLAELQQWLKPGLK_vs_VTDB_ELPEHT
62 & 147
0.007
0.718


VK








CLUS_ASSIIDELFQDR_vs_FBLN1_TGYYFDGISR
67 & 86
0.048
0.658





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
67 & 120
0.004
0.728





CLUS_ASSIIDELFQDR_vs_PGRP2_AGLLRPDYALL
67 & 126
0.036
0.668


GHR








CLUS_ASSIIDELFQDR_vs_SHBG_IALGGLLFPASN
67 & 18
0.008
0.713


LR








CLUS_ASSIIDELFQDR_vs_SPRL1_VLTHSELAPLR
67 & 140
0.031
0.673


CLUS_ASSIIDELFQDR_vs_TENX_LSQLSVTDVTTS
67 & 142
0.045
0.660


SLR








CLUS_ASSIIDELFQDR_vs_VTDB_ELPEHTVK
67 & 147
0.015
0.695


CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_AVSPPA
68 & 78
0.034
0.670


R








CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_YEDLYS
68 & 79
0.028
0.676


NCK








CLUS_LFDSDPITVTVPVEVSR_vs_FBLN1_TGYYF
68 & 86
0.036
0.668


DGISR








CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWI
68 & 120
0.001
0.767


GIR








CLUS_LFDSDPITVTVPVEVSR_vs_PGRP2_AGLLR
68 & 126
0.013
0.699


PDYALLGHR








CLUS_LFDSDPITVTVPVEVSR_vs_PSG3_VSAPSG
68 & 134
0.020
0.686


TGHLPGLNPL








CLUS_LFDSDPITVTVPVEVSR_vs_SHBG_IALGGL
68 & 18
0.004
0.730


LFPASNLR








CLUS_LFDSDPITVTVPVEVSR_vs_SPRL1_VLTHSE
68 & 140
0.012
0.702


LAPLR








CLUS_LFDSDPITVTVPVEVSR_vs_TENX_LNWEA
68 & 141
0.021
0.684


PPGAFDSFLLR








CLUS_LFDSDPITVTVPVEVSR_v_TENX_LSQLSV
68 & 142
0.013
0.698


TDVTTSSLR








CLUS_LFDSDPITVTVPVEVSR_vs_VTDB_ELPEHT
68 & 147
0.002
0.753


VK








CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
70 & 120
0.009
0.710





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
70 & 18
0.027
0.677





CO5_TLLPVSKPEIR_vs_SPRL1_VLTHSELAPLR
70 & 140
0.028
0.676





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
71 & 120
0.013
0.699





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
71 & 18
0.030
0.674





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGI
72 & 120
0.017
0.692


R








CO6_ALNHLPLEYNSALYSR_vs_SHBG_IALGGLLF
72 & 18
0.040
0.665


PASNLR








COSA_SLLQPNK_vs_LYAM1_SYYWIGIR
74 & 120
0.009
0.711





COSA_SLLQPNK_vs_PGRP2_AGLLRPDYALLGHR
74 & 126
0.045
0.661





CO8A_SLLQPNK_vs_SHBG_IALGGLLFPASNLR
74 & 18
0.033
0.671





COSA_SLLQPNK_vs_SPRL1_VLTHSELAPLR
74 & 140
0.036
0.668





CO8A_SLLQPNK_vs_TIE1_VSWSLPLVPGPLVGD
74 & 144
0.040
0.665


GFLLR








CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
76 & 120
0.009
0.711





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGL
76 & 134
0.035
0.669


NPL








CO8B_QALEEFQK_vs_SHBG_IALGGLLFPASNLR
76 & 18
0.036
0.668





CO8B_QALEEFQK_vs_SPRL1_VLTHSELAPLR
76 & 140
0.025
0.679





CO8B_QALEEFQK_vs_TENX_LSQLSVTDVTTSSLR
76 & 142
0.043
0.662





CO8B_QALEEFQK_vs_TIE1_VSWSLPLVPGPLVG
76 & 144
0.032
0.672


DGFLLR











ENPP2_TYLHTYESEI_vs_LYAM1_SYYWIGIR
83 & 120
0.043
0.662





F13B_GDTYPAELYITGSILR_vs_CRIS3_AVSPPAR
84 & 78
0.024
0.681





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNC
84 & 79
0.022
0.683


K








F13B_GDTYPAELYITGSILR_vs_FBLN1_TGYYFDG
84 & 86
0.046
0.660


ISR








F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGI
84 & 120
0.001
0.754


R








F13B_GDTYPAELYITGSILR_vs_PGRP2_AGLLRPD
84 & 126
0.037
0.667


YALLGHR








F13B_GDTYPAELYITGSILR_VS_SHBG_IALGGLLF
84 & 18
0.011
0.703


PASNLR








F13B_GDTYPAELYITGSILR_vs_SPRL1_VLTHSEL
84 & 140
0.016
0.694


APLR








F13B_GDTYPAELYITGSILR_vs_TENX_LNWEAPP
84 & 141
0.046
0.660


GAFDSFLLR








F13B_GDTYPAELYITGSILR_vs_TENX_LSQLSVTD
84 & 142
0.030
0.673


VTTSSLR








F13B_GDTYPAELYITGSILR_vs_VTDB_ELPEHTVK
84 & 147
0.043
0.662





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
92 & 120
0.017
0.692





HABP2_FLNWIK_vs_PGRP2_AGLLRPDYALLGHR
92 & 126
0.027
0.677





HABP2_FLNWIK_vs_SHBG_IALGGLLFPASNLR
92 & 18
0.020
0.687





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLL
92 & 141
0.033
0.671


R








HABP2_FLNWIK_vs_TENX_LSQLSVTDVTTSSLR
92 & 142
0.030
0.673





HABP2_FLNWIK_vs_VTDB_ELPEHTVK
92 & 147
0.022
0.684





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
93 & 120
0.020
0.686





HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPAS
93 & 18
0.022
0.684


NLR








IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
2 & 78
0.006
0.720





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
2 & 79
0.009
0.708





IBP4_QCHPALDGQR_vs_FBLN1_TGYYFDGISR
2 & 86
0.040
0.664





IBP4_QCHPALDGQR_vs_IBP1_VVESLAK
2 & 97
0.038
0.666





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
2 & 120
0.001
0.761





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALL
2 & 126
0.026
0.678


GHR








IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLP
2 & 134
0.013
0.698


GLNPL








IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASN
2 & 18
0.005
0.725


LR








IBP4_QCHPALDGQR_vs_SPRL1_VLTHSELAPLR
2 & 140
0.007
0.715





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFD
2 & 141
0.047
0.659


SFLLR








IBP4_QCHPALDGQR_vs_TENX_LSQLSVTDVTTS
2 & 142
0.044
0.661


SLR








IBP4_QCHPALDGQR_vs_VTDB_ELPEHTVK
2 & 147
0.033
0.671





IBP6_GAQTLYVPNCDHR_vs_LYAM1_SYYWIGIR
101 &
0.049
0.657



120







IBP6_GAQTLYVPNCDHR_vs_SHBG_IALGGLLFP
101 & 18
0.033
0.671


ASNLR








IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIG
102 &
0.026
0.679


IR
120







IBP6_HLDSVLQQLQTEVYR_vs_SHBG_IALGGLLF
102 & 18
0.033
0.671


PASNLR








INHBC_LDFHFSSDR_vs_LYAM1_SYYWIGIR
107 &
0.038
0.666



120







INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALL
107 &
0.044
0.661


GHR
126







INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNL
107 & 18
0.043
0.662


R








INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDS
107 &
0.047
0.659


FLLR
141







INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSS
107 &
0.047
0.659


LR
142







KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYY
116 &
0.013
0.700


WIGIR
120







KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 &
0.003
0.734



120







KNG1_QVVAGLNFR_vs_PGRP2_AGLLRPDYALL
117 &
0.048
0.659


GHR
126







KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNL
117 & 18
0.012
0.702


R








KNG1_QVVAGLNFR_vs_SPRL1_VLTHSELAPLR
117 &
0.020
0.687



140







PEDF_LQSLFDSPDFSK_vs_CRIS3_AVSPPAR
124 & 78
0.022
0.683





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.026
0.679





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 &
0.005
0.726



120







PEDF_LQSLFDSPDFSK_vs_SHBG_IALGGLLFPAS
124 & 18
0.045
0.660


NLR








PEDF_TVQAVLTVPK_vs_CRIS3_AVSPPAR
125 & 78
0.023
0.683





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.024
0.681





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 &
0.003
0.736



120







PEDF_TVQAVLTVPK_vs_PSG3_VSAPSGTGHLPG
125 &
0.047
0.659


LNPL
134







PEDF_TVQAVLTVPK_vs_SHBG_IALGGLLFPASNL
125 & 18
0.024
0.681


R








PEDF_TVQAVLTVPK_vs_SPRL1_VLTHSELAPLR
125 &
0.029
0.675



140







PEDF_TVQAVLTVPK_vs_TENX_LSQLSVTDVTTSS
125 &
0.038
0.667


LR
142







PEDF_TVQAVLTVPK_vs_VTDB_ELPEHTVK
125 &
0.036
0.668



147







PRDX2_GLFIIDGK_vs_CRIS3_AVSPPAR
128 & 78
0.032
0.672





PRDX2_GLFIIDGK_vs_CRIS3_YEDLYSNCK
128 & 79
0.029
0.675





PRDX2_GLFIIDGK_vs_IBP1_VVESLAK
128 & 97
0.033
0.671





PRDX2_GLFIIDGK_vs_LYAM1_SYYWIGIR
128 &
0.013
0.700



120







PRDX2_GLFIIDGK_vs_PGRP2_AGLLRPDYALLGH
128 &
0.028
0.676


R
126







PRDX2_GLFIIDGK_vs_PSG3_VSAPSGTGHLPGLN
128 &
0.047
0.659


PL
134







PRDX2_GLFIIDGK_vs_SHBG_IALGGLLFPASNLR
128 & 18
0.012
0.702





PRDX2_GLFIIDGK_vs_TENX_LNWEAPPGAFDSF
128 &
0.020
0.687


LLR
141







PRDX2_GLFIIDGK_vs_TENX_LSQLSVTDVTTSSLR
128 &
0.028
0.676



142







PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.023
0.682





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 &
0.043
0.662



120







PSG2_IHPSYTNYR_vs_SPRL1_VLTHSELAPLR
133 &
0.049
0.657



140







PTGDS_GPGEDFR_vs_CRIS3_AVSPPAR
137 & 78
0.031
0.673





PTGDS_GPGEDFR_vs_CRIS3_YEDLYSNCK
137 & 79
0.035
0.669





PTGDS_GPGEDFR_vs_FBLN1_TGYYFDGISR
137 & 86
0.032
0.672





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 &
0.007
0.715



120







PTGDS_GPGEDFR_vs_PGRP2_AGLLRPDYALLGH
137 &
0.044
0.661


R
126







PTGDS_GPGEDFR_vs_SHBG_IALGGLLFPASNLR
137 & 18
0.033
0.671





PTGDS_GPGEDFR_vs_SOM2.CSH_SVEGSCGF
137 &
0.041
0.664



139







PTGDS_GPGEDFR_VS_SPRL1_VLTHSELAPLR
137 &
0.016
0.692



140







THBG_AVLHIGEK_vs_LYAM1_SYYWIGIR
143 &
0.013
0.698



120







THBG_AVLHIGEK_vs_SHBG_IALGGLLFPASNLR
143 & 18
0.041
0.664





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 &
0.015
0.696



120







VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASN
149 & 18
0.031
0.672


LR








VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 &
0.008
0.712



120







VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALL
150 &
0.040
0.664


GHR
126







VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASN
150 & 18
0.014
0.696


LR








VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 &
0.030
0.673



147
















TABLE 38







Reversal Classification Performance, weeks 19 and 20.


Reversal AUROC for gestational weeks 19 and 20 using


a case vs control cut-off of <35 0/7 vs


>=35 0/7 weeks, with BMI stratification (>22 <= 37).











SEQ ID

ROC_


Reversal
NO:
pval
AUC





AFAM_DADPDTFFAK_vs_CRIS3_YEDLYSNCK
37 & 79
0.048
0.709





AFAM_DADPDTFFAK_vs_LYAM1_SYYWIGIR
37 &
0.027
0.734



120







AFAM_DADPDTFFAK_vs_PGRP2_AGLLRPDYALLG
37 &
0.007
0.788


HR
126







AFAM_DADPDTFFAK_vs_SHBG_IALGGLLFPASNLR
37 & 18
0.010
0.771





AFAM_DADPDTFFAK_vs_VTDB_ELPEHTVK
37 &
0.027
0.734



147







AFAM_HFQNLGK_vs_IBP1_VVESLAK
38 & 97
0.045
0.726





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
38 &
0.021
0.744



120







AFAM_HFQNLGK_vs_PGRP2_AGLLRPDYALLGHR
38 &
0.012
0.766



126







AFAM_HFQNLGK_vs_SHBG_IALGGLLFPASNLR
38 & 18
0.016
0.756





AFAM_HFQNLGK_vs_VTDB_ELPEHTVK
38 &
0.036
0.722



147







ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNL
42 & 18
0.025
0.737


R








APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
47 &
0.033
0.726



120







APOH_ATVVYQGER_vs_CRIS3_AVSPPAR
48 & 78
0.020
0.746





APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
48 & 79
0.013
0.762





APOH_ATVVYQGER_vs_ITIH4_ILDDLSPR
48 &
0.043
0.714



112







APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
48 &
0.003
0.816



120







APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGH
48 &
0.001
0.855


R
126







APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
48 & 18
0.003
0.819





APOH_ATVVYQGER_vs_SPRL1_VLTHSELAPLR
48 &
0.043
0.714



140







APOH_ATVVYQGER_vs_VTDB_ELPEHTVK
48 &
0.001
0.839



147







B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
51 &
0.008
0.782



120







B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
51 & 18
0.022
0.742





BGH3_LTLLAPLNSVFK_vs_LYAM1_SYYWIGIR
52 &
0.028
0.732



120







BGH3_LTLLAPLNSVFK_vs_PGRP2_AGLLRPDYALLG
52 &
0.034
0.725


HR
126







BGH3_LTLLAPLNSVFK_vs_SHBG_IALGGLLFPASNL
52 & 18
0.027
0.734


R








BGH3_LTLLAPLNSVFK_vs_SOM2.CSH_SVEGSCGF
52 &
0.040
0.717



139







CAH1_GGPFSDSYR_vs_CRIS3_AVSPPAR
56 & 78
0.031
0.729





CAH1_GGPFSDSYR_vs_CRIS3_YEDLYSNCK
56 & 79
0.042
0.715





CAH1_GGPFSDSYR_VS_LYAM1_SYYWIGIR
56 &
0.033
0.726



120







CAH1_GGPFSDSYR_vs_PGRP2_AGLLRPDYALLGHR
56 &
0.045
0.712



126







CAH1_GGPFSDSYR_vs_SHBG_IALGGLLFPASNLR
56 & 18
0.020
0.747





CATD_VGFAEAAR_vs_C163A_INPASLDK
57 & 54
0.035
0.723





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
57 & 78
0.029
0.731





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
57 & 79
0.038
0.720





CATD_VGFAEAAR_vs_CSH_AHQLAIDTYQEFEETYIP
57 & 80
0.028
0.733


K








CATD_VGFAEAAR_vs_CSH_ISLLLIESWLEPVR
57 & 81
0.038
0.720





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
57 &
0.006
0.789



120







CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
57 &
0.018
0.751



126







CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
57 & 18
0.013
0.762





CATD_VGFAEAAR_vs_SOM2.CSH_SVEGSCGF
57 &
0.044
0.713



139







CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLL
57 &
0.045
0.712


R
141







CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
58 & 78
0.016
0.754





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
58 & 79
0.014
0.760





CATD_VSTLPAITLK_vs_CSH_AHQLAIDTYQEFEETYI
58 & 80
0.029
0.731


PK








CATD_VSTLPAITLK_vs_CSH_ISLLLIESWLEPVR
58 & 81
0.041
0.716





CATD_VSTLPAITLK_vs_ITIH4_ILDDLSPR
58 &
0.024
0.739



112







CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
58 &
0.002
0.822



120







CATD_VSTLPAITLK_vs_NCAM1_GLGEISAASEFK
58 &
0.045
0.712



121







CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
58 &
0.004
0.809



126







CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
58 & 18
0.005
0.795





CATD_VSTLPAITLK_vs_SPRL1_VLTHSELAPLR
58 &
0.037
0.721



140







CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLL
58 &
0.014
0.759


R
141







CATD_VSTLPAITLK_vs_TENX_LSQLSVTDVTTSSLR
58 &
0.021
0.745



142







CATD_VSTLPAITLK_vs_VTDB_ELPEHTVK
58 &
0.013
0.764



147







CBPN_NNANGVDLNR_vs_SHBG_IALGGLLFPASNL
60 & 18
0.040
0.718


R








CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_AVSPP
61 & 78
0.041
0.716


AR








CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_YEDLYS
61 & 79
0.028
0.732


NCK








CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYW
61 &
0.005
0.799


IGIR
120







CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLR
61 &
0.012
0.766


PDYALLGHR
126







CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGL
61 & 18
0.011
0.768


LFPASNLR








CD14_LTVGAAQVPAQLLVGALR_vs_VTDB_ELPEHT
61 &
0.016
0.756


VK
147







CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGI
62 &
0.015
0.758


R
120







CD14_SWLAELQQWLKPGLK_vs_PGRP2_AGLLRPD
62 &
0.024
0.739


YALLGHR
126







CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFP
62 & 18
0.017
0.752


ASNLR








CD14_SWLAELQQWLKPGLK_vs_VTDB_ELPEHTVK
62 &
0.034
0.725



147







CLUS_ASSIIDELFQDR_vs_CRIS3_AVSPPAR
67 & 78
0.035
0.723





CLUS_ASSIIDELFQDR_vs_CRIS3_YEDLYSNCK
67 & 79
0.040
0.718





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
67 &
0.018
0.751



120







CLUS_ASSIIDELFQDR_vs_PGRP2_AGLLRPDYALLG
67 &
0.042
0.715


HR
126







CLUS_ASSIIDELFQDR_vs_SHBG_IALGGLLFPASNLR
67 & 18
0.013
0.763





CLUS_ASSIIDELFQDR_vs_VTDB_ELPEHTVK
67 &
0.040
0.717



147







CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_AVSPPAR
68 & 78
0.031
0.729





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_YEDLYSNC
68 & 79
0.031
0.728


K








CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGI
68 &
0.011
0.768


R
120







CLUS_LFDSDPITVTVPVEVSR_vs_PGRP2_AGLLRPD
68 &
0.031
0.728


YALLGHR
126







CLUS_LFDSDPITVTVPVEVSR_vs_SHBG_IALGGLL
68 & 18
0.009
0.776


FPASNLR








CLUS_LFDSDPITVTVPVEVSR_vs_VTDB_ELPEHT
68 & 147
0.035
0.723


VK








CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
70 & 120
0.033
0.726





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
70 & 18
0.018
0.750





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
71 & 18
0.031
0.728





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGI
72 & 120
0.041
0.716


R








CO6_ALNHLPLEYNSALYSR_vs_SHBG_IALGGLLF
72 & 18
0.024
0.739


PASNLR








COSA_SLLQPNK_vs_LYAM1_SYYWIGIR
74 & 120
0.029
0.731





CO8A_SLLQPNK_vs_PGRP2_AGLLRPDYALLGHR
74 & 126
0.044
0.713





CO8A_SLLQPNK_vs_SHBG_IALGGLLFPASNLR
74 & 18
0.034
0.725





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
76 & 120
0.028
0.733





CO8B_QALEEFQK_vs_SHBG_IALGGLLFPASNLR
76 & 18
0.041
0.716





F13B_GDTYPAELYITGSILR_vs_CRIS3_AVSPPAR
84 & 78
0.015
0.757





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNC
84 & 79
0.016
0.756


K








F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGI
84 & 120
0.003
0.815


R








F13B_GDTYPAELYITGSILR_vs_PGRP2_AGLLRPD
84 & 126
0.015
0.758


YALLGHR








F13B_GDTYPAELYITGSILR_vs_SHBG_IALGGLLF
84 & 18
0.004
0.801


PASNLR








F13B_GDTYPAELYITGSILR_vs_VTDB_ELPEHTVK
84 & 147
0.023
0.740





FBLN3_IPSNPSHR_vs_CHL1_VIAVNEVGR
87 & 66
0.036
0.722





HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPAS
93 & 18
0.036
0.722


NLR








IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
2 & 78
0.008
0.780





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
2 & 79
0.012
0.766





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
2 & 120
0.001
0.861





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALL
2 & 126
0.014
0.761


GHR








IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNL
2 & 18
0.002
0.827


R








IBP4_QCHPALDGQR_vs_VTDB_ELPEHTVK
2 & 147
0.021
0.745





IBP6_GAQTLYVPNCDHR_vs_LYAM1_SYYWIGIR
101 &
0.050
0.708



120







IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIGI
102 &
0.013
0.763


R
120







IBP6_HLDSVLQQLQTEVYR_vs_SHBG_IALGGLLF
102 & 18
0.026
0.735


PASNLR








INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLG
107 &
0.043
0.714


HR
126







KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 &
0.013
0.762



120







KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNL
117 & 18
0.033
0.726


R








PAPP1_DIPHWLNPTR_vs_CRIS3_AVSPPAR
122 & 78
0.048
0.709





PAPP1_DIPHWLNPTR_vs_CRIS3_YEDLYSNCK
122 & 79
0.045
0.712





PAPP1_DIPHWLNPTR_vs_CSH_ISLLLIESWLEPV
122 & 81
0.048
0.709


R








PAPP1_DIPHWLNPTR_vs_LYAM1_SYYWIGIR
122 &
0.021
0.745



120







PAPP1_DIPHWLNPTR_vs_PRG2_WNFAYWAAH
122 &
0.033
0.726


QPWSR
129







PAPP1_DIPHWLNPTR_vs_PSG1_FQLPGQK
122 &
0.040
0.718



131







PAPP1_DIPHWLNPTR_vs_SHBG_IALGGLLFPAS
122 & 18
0.035
0.723


NLR








PAPP1_DIPHWLNPTR_vs_SOM2.CSH_SVEGSCG
122 &
0.018
0.750


F
139







PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 &
0.015
0.758



120







PEDF_LQSLFDSPDFSK_vs_SHBG_IALGGLLFPAS
124 & 18
0.024
0.739


NLR








PEDF_LQSLFDSPDFSK_vs_VTDB_ELPEHTVK
124 &
0.048
0.709



147







PEDF_TVQAVLTVPK_vs_CRIS3_AVSPPAR
125 & 78
0.047
0.710





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 &
0.008
0.783



120







PEDF_TVQAVLTVPK_vs_SHBG_IALGGLLFPASNL
125 & 18
0.009
0.777


R








PEDF_TVQAVLTVPK_vs_VTDB_ELPEHTVK
125 &
0.031
0.729



147







PRDX2_GLFIIDGK_vs_SHBG_IALGGLLFPASNLR
128 & 18
0.019
0.748





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.016
0.756





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.018
0.750





PSG2_IHPSYTNYR_vs_IBP1_VVESLAK
133 & 97
0.030
0.730





PSG2_IHPSYTNYR_vs_IBP2_LIQGAPTIR
133 & 98
0.026
0.736





PSG2_IHPSYTNYR_vs_ITIH4_ILDDLSPR
133 &
0.019
0.749



112







PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 &
0.007
0.788



120







PSG2_IHPSYTNYR_vs_PGRP2_AGLLRPDYALLGH
133 &
0.022
0.742


R
126







PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLN
133 &
0.024
0.739


PL
134







PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.005
0.794





PSG2_IHPSYTNYR_vs_SOM2.CSH_SVEGSCGF
133 &
0.036
0.722



139







PSG2_IHPSYTNYR_vs_SPRL1_VLTHSELAPLR
133 &
0.022
0.743



140







PSG2_IHPSYTNYR_vs_TENX_LNWEAPPGAFDSF
133 &
0.028
0.733


LLR
141







PSG2_IHPSYTNYR_vs_TENX_LSQLSVTDVTTSSLR
133 &
0.029
0.731



142







PSG2_IHPSYTNYR_vs_VTDB_ELPEHTVK
133 &
0.013
0.764



147







PTGDS_GPGEDFR_vs_CRIS3_AVSPPAR
137 & 78
0.020
0.747





PTGDS_GPGEDFR_vs_CRIS3_YEDLYSNCK
137 & 79
0.019
0.749





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 &
0.003
0.814



120







PTGDS_GPGEDFR_vs_PGRP2_AGLLRPDYALLGH
137 &
0.012
0.766


R
126







PTGDS_GPGEDFR_vs_SHBG_IALGGLLFPASNLR
137 & 18
0.019
0.748





PTGDS_GPGEDFR_vs_SOM2.CSH_SVEGSCGF
137 &
0.010
0.774



139







PTGDS_GPGEDFR_vs_VTDB_ELPEHTVK
137 &
0.027
0.734



147







VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 &
0.024
0.739



120







VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNL
149 & 18
0.030
0.730


R








VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 &
0.025
0.738



120







VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALL
150 &
0.046
0.711


GHR
126







VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASN
150 & 18
0.012
0.765


LR









68 & 18
















TABLE 39







Reversal Classification Performance, weeks 20 and 21.


Reversal AUROC for gestational weeks 20 and 21 using


a case vs control cut-off of <37 0/7 vs >=37 0/7


weeks, without BMI stratification.











SEQ ID

ROC_


Reversal
NO:
pval
AUC





A2GL_DLLLPQPDLR_vs_IGF2_GIVEECCFR
34 & 103
0.028
0.636





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
34 & 18
0.035
0.631





A2GL_DLLLPQPDLR_vs_TENX_LNWEAPPGAFDSFL
34 & 141
0.035
0.631


LR








AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
37 & 103
0.011
0.659





AFAM_DADPDTFFAK_vs_TENX_LNWEAPPGAFDSF
37 & 141
0.027
0.638


LLR








AFAM_HFQNLGK_vs_CHL1_VIAVNEVGR
38 & 66
0.036
0.631





AFAM_HFQNLGK_vs_IBP3_FLNVLSPR
38 & 99
0.028
0.636





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
38 & 100
0.008
0.666





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
38 & 103
0.001
0.713





AFAM_HFQNLGK_vs_PRG2_WNFAYWAAHQPWS
38 & 129
0.036
0.631


R








AFAM_HFQNLGK_vs_SHBG_IALGGLLFPASNLR
38 & 18
0.035
0.631





AFAM_HFQNLGK_vs_TENX_LNWEAPPGAFDSFLLR
38 & 141
0.008
0.664





AFAM_HFQNLGK_vs_TENX_LSQLSVTDVTTSSLR
38 & 142
0.023
0.641





ANGT_DPTFIPAPIQAK_vs_TENX_LNWEAPPGAFDS
42 & 141
0.020
0.644


FLLR








APOC3_GWVTDGFSSLK_vs_ALS_IRPHTFTGLSGLR
47 & 40
0.014
0.653





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
47 & 54
0.045
0.625





APOC3_GWVTDGFSSLK_vs_CHL1_VIAVNEVGR
47 & 66
0.010
0.660





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
47 & 78
0.006
0.669





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
47 & 79
0.006
0.670





APOC3_GWVTDGFSSLK_vs_CSH_AHQLAIDTYQEF
47 & 80
0.013
0.654


EETYIPK








APOC3_GWVTDGFSSLK_vs_CSH_ISLLLIESWLEPVR
47 & 81
0.017
0.648





APOC3_GWVTDGFSSLK_vs_FBLN1_TGYYFDGISR
47 & 86
0.012
0.656





APOC3_GWVTDGFSSLK_vs_IBP1_VVESLAK
47 & 97
0.033
0.633





APOC3_GWVTDGFSSLK_vs_IBP2_LIQGAPTIR
47 & 98
0.021
0.644





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
47 & 99
0.003
0.685





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
47 & 100
0.003
0.684





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
47 & 103
0.001
0.699





APOC3_GWVTDGFSSLK_vs_ITIH4_ILDDLSPR
47 & 112
0.003
0.682





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
47 & 120
0.002
0.692





APOC3_GWVTDGFSSLK_vs_NCAM1_GLGEISAASE
47 & 121
0.016
0.650


FK








APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALL
47 & 126
0.001
0.699


GHR








APOC3_GWVTDGFSSLK_vs_PRG2_WNFAYWAAH
47 & 129
0.006
0.670


QPWSR








APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLP
47 & 134
0.010
0.660


GLNPL








APOC3_GWVTDGFSSLK_vs_PSG9_DVLLLVHNLPQ
47 & 135
0.018
0.647


NLPGYFWYK








APOC3_GWVTDGFSSLK_vs_PSG9_LFIPQITR
47 & 136
0.018
0.647





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASN
47 & 18
0.002
0.688


LR








APOC3_GWVTDGFSSLK_vs_SOM2.CSH_NYGLLYC
47 & 138
0.028
0.636


FR








APOC3_GWVTDGFSSLK_vs_SOM2.CSH_SVEGSCG
47 & 139
0.011
0.658


F








APOC3_GWVTDGFSSLK_vs_SPRL1_VLTHSELAPLR
47 & 140
0.008
0.665





APOC3_GWVTDGFSSLK_vs_TENX_LNWEAPPGAF
47 & 141
0.002
0.693


DSFLLR








APOC3_GWVTDGFSSLK_vs_TENX_LSQLSVTDVTTS
47 & 142
0.003
0.682


SLR








APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPL
47 & 144
0.013
0.654


VGDGFLLR








APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
47 & 147
0.003
0.683





APOH_ATVVYQGER_vs_TENX_LNWEAPPGAFDSFL
48 & 141
0.042
0.627


LR








B2MG_VEHSDLSFSK_vs_IGF2_GIVEECCFR
50 & 103
0.026
0.638





B2MG_VEHSDLSFSK_vs_LYAM1_SYYWIGIR
50 & 120
0.037
0.630





B2MG_VEHSDLSFSK_vs_PGRP2_AGLLRPDYALLGH
50 & 126
0.033
0.633


R








B2MG_VEHSDLSFSK_vs_SHBG_IALGGLLFPASNLR
50 & 18
0.021
0.644





B2MG_VEHSDLSFSK_vs_TENX_LNWEAPPGAFDSF
50 & 141
0.008
0.664


LLR








B2MG_VEHSDLSFSK_vs_TENX_LSQLSVTDVTTSSLR
50 & 142
0.042
0.627





B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
51 & 79
0.046
0.624





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
51 & 103
0.006
0.672





B2MG_VNHVTLSQPK_vs_ITIH4_ILDDLSPR
51 & 112
0.038
0.629





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
51 & 120
0.017
0.648





B2MG_VNHVTLSQPK_vs_PGRP2_AGLLRPDYALLG
51 & 126
0.012
0.657


HR








B2MG_VNHVTLSQPK_vs_PRG2_WNFAYWAAHQP
51 & 129
0.050
0.622


WSR








B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
51 & 18
0.009
0.662





B2MG_VNHVTLSQPK_vs_TENX_LNWEAPPGAFDS
51 & 141
0.005
0.675


FLLR








B2MG_VNHVTLSQPK_vs_TENX_LSQLSVTDVTTSSL
51 & 142
0.030
0.635


R








BGH3_LTLLAPLNSVFK_vs_CRIS3_YEDLYSNCK
52 & 79
0.023
0.641





BGH3_LTLLAPLNSVFK_vs_IGF2_GIVEECCFR
52 & 103
0.009
0.662





BGH3_LTLLAPLNSVFK_vs_LYAM1_SYYWIGIR
52 & 120
0.048
0.623





BGH3_LTLLAPLNSVFK_vs_PGRP2_AGLLRPDYALLG
52 & 126
0.050
0.622


HR








BGH3_LTLLAPLNSVFK_vs_PRG2_WNFAYWAAHQ
52 & 129
0.043
0.626


PWSR








BGH3_LTLLAPLNSVFK_vs_SHBG_IALGGLLFPASNL
52 & 18
0.045
0.625


R








BGH3_LTLLAPLNSVFK_vs_TENX LNWEAPPGAFDS
52 & 141
0.011
0.658


FLLR








BGH3_LTLLAPLNSVFK_vs_TENX_LSQLSVTDVTTSS
52 & 142
0.039
0.628


LR








C1QB_VPGLYYFTYHASSR_vs_IGF2_GIVEECCFR
55 & 103
0.014
0.652





C1QB_VPGLYYFTYHASSR_vs_PRG2_WNFAYWAA
55 & 129
0.049
0.623


HQPWSR








C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPAS
55 & 18
0.040
0.628


NLR








C1QB_VPGLYYFTYHASSR_vs_TENX_LNWEAPPGA
55 & 141
0.009
0.663


FDSFLLR








C1QB_VPGLYYFTYHASSR_vs_TENX_LSQLSVTDVTT
55 & 142
0.038
0.629


SSLR








CATD_VGFAEAAR_vs_ALS_IRPHTFTGLSGLR
57 & 40
0.024
0.641





CATD_VGFAEAAR_vs_CHL1_VIAVNEVGR
57 & 66
0.009
0.662





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
57 & 78
0.014
0.652





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
57 & 79
0.008
0.666





CATD_VGFAEAAR_vs_CSH_AHQLAIDTYQEFEETYIP
57 & 80
0.038
0.629


K








CATD_VGFAEAAR_vs_CSH_ISLLLIESWLEPVR
57 & 81
0.048
0.623





CATD_VGFAEAAR_vs_FBLN1_TGYYFDGISR
57 & 86
0.040
0.628





CATD_VGFAEAAR_vs_IBP2_LIQGAPTIR
57 & 98
0.049
0.623





CATD_VGFAEAAR_vs_IBP3_FLNVLSPR
57 & 99
0.006
0.671





CATD_VGFAEAAR_vs_IBP3_YGQPLPGYTTK
57 & 100
0.007
0.667





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
57 & 103
0.001
0.714





CATD_VGFAEAAR_vs_ITIH4_ILDDLSPR
57 & 112
0.010
0.661





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
57 & 120
0.006
0.671





CATD_VGFAEAAR_VS_NCAM1_GLGEISAASEFK
57 & 121
0.026
0.639





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
57 & 126
0.003
0.685





CATD_VGFAEAAR_vs_PRG2_WNFAYWAAHQPWS
57 & 129
0.002
0.688


R








CATD_VGFAEAAR_vs_PSG3_VSAPSGTGHLPGLNPL
57 & 134
0.008
0.666





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
57 & 18
0.009
0.662





CATD_VGFAEAAR_vs_SOM2.CSH_SVEGSCGF
57 & 139
0.039
0.629





CATD_VGFAEAAR_vs_SPRL1_VLTHSELAPLR
57 & 140
0.012
0.656





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLL
57 & 141
0.000
0.739


R








CATD_VGFAEAAR_vs_TENX_LSQLSVTDVTTSSLR
57 & 142
0.001
0.713





CATD_VGFAEAAR_vs_VTDB_ELPEHTVK
57 & 147
0.008
0.666





CATD_VSTLPAITLK_vs_ALS_IRPHTFTGLSGLR
58 & 40
0.037
0.630





CATD_VSTLPAITLK_vs_CHL1_VIAVNEVGR
58 & 66
0.009
0.663





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
58 & 78
0.022
0.643





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
58 & 79
0.013
0.655





CATD_VSTLPAITLK_vs_CSH_ISLLLIESWLEPVR
58 & 81
0.049
0.623





CATD_VSTLPAITLK_vs_FBLN1_TGYYFDGISR
58 & 86
0.034
0.632





CATD_VSTLPAITLK_vs_IBP2_LIQGAPTIR
58 & 98
0.037
0.630





CATD_VSTLPAITLK_vs_IBP3_FLNVLSPR
58 & 99
0.006
0.671





CATD_VSTLPAITLK_vs_IBP3_YGQPLPGYTTK
58 & 100
0.010
0.660





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
58 & 103
0.001
0.712





CATD_VSTLPAITLK_vs_ITIH4_ILDDLSPR
58 & 112
0.014
0.653





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
58 & 120
0.011
0.659





CATD_VSTLPAITLK_vs_NCAM1_GLGEISAASEFK
58 & 121
0.031
0.634





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
58 & 126
0.002
0.691





CATD_VSTLPAITLK_vs_PRG2_WNFAYWAAHQPW
58 & 129
0.005
0.677


SR








CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNP
58 & 134
0.012
0.657


L








CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
58 & 18
0.005
0.677





CATD_VSTLPAITLK_vs_SPRL1_VLTHSELAPLR
58 & 140
0.028
0.637





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLL
58 & 141
0.000
0.731


R








CATD_VSTLPAITLK_vs_TENX_LSQLSVTDVTTSSLR
58 & 142
0.001
0.710





CATD_VSTLPAITLK_vs_VTDB_ELPEHTVK
58 & 147
0.019
0.646





CBPN_EALIQFLEQVHQGIK_vs_SHBG_IALGGLLFPA
59 & 18
0.037
0.630


SNLR








CBPN_EALIQFLEQVHQGIK_vs_TENX_LNWEAPPG
59 & 141
0.027
0.637


AFDSFLLR








CBPN_NNANGVDLNR_vs_IGF2_GIVEECCFR
60 & 103
0.030
0.635





CBPN_NNANGVDLNR_vs_PGRP2_AGLLRPDYALLG
60 & 126
0.041
0.627


HR








CBPN_NNANGVDLNR_VS_SHBG_IALGGLLFPASNL
60 & 18
0.024
0.641


R








CBPN_NNANGVDLNR_vs_TENX_LNWEAPPGAFDS
60 & 141
0.011
0.657


FLLR








CBPN_NNANGVDLNR_vs_TENX_LSQLSVTDVTTSSL
60 & 142
0.031
0.634


R








CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEEC
61 & 103
0.028
0.636


CFR








CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGL
61 & 18
0.033
0.632


LFPASNLR








CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LNWEA
61 & 141
0.014
0.652


PPGAFDSFLLR








CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFP
62 & 18
0.039
0.628


ASNLR








CD14_SWLAELQQWLKPGLK_vs_TENX_LNWEAPP
62 & 141
0.019
0.646


GAFDSFLLR








CFAB_YGLVTYATYPK_vs_IGF2_GIVEECCFR
64 & 103
0.010
0.660





CFAB_YGLVTYATYPK_vs_PGRP2_AGLLRPDYALLG
64 & 126
0.044
0.625


HR








CFAB_YGLVTYATYPK_vs_SHBG_IALGGLLFPASNLR
64 & 18
0.049
0.623





CFAB_YGLVTYATYPK_vs_TENX_LNWEAPPGAFDSF
64 & 141
0.015
0.651


LLR








CFAB_YGLVTYATYPK_vs_TENX_LSQLSVTDVTTSSL
64 & 142
0.047
0.623


R








CO5_TLLPVSKPEIR_vs_IGF2_GIVEECCFR
70 & 103
0.047
0.623





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
70 & 18
0.041
0.627





CO5_TLLPVSKPEIR_vs_TENX_LNWEAPPGAFDSFLL
70 & 141
0.021
0.644


R








CO5_VFQFLEK_vs_IGF2_GIVEECCFR
71 & 103
0.041
0.627





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
71 & 18
0.042
0.627





CO5_VFQFLEK_vs_TENX_LNWEAPPGAFDSFLLR
71 & 141
0.014
0.653





CO5_VFQFLEK_vs_TENX_LSQLSVTDVTTSSLR
71 & 142
0.047
0.623





CO6_ALNHLPLEYNSALYSR_vs_TENX_LNWEAPPGA
72 & 141
0.043
0.626


FDSFLLR








COSA_SLLQPNK_vs_IGF2_GIVEECCFR
74 & 103
0.012
0.655





CO8A_SLLQPNK_vs_PGRP2_AGLLRPDYALLGHR
74 & 126
0.032
0.633





COSA_SLLQPNK_vs_SHBG_IALGGLLFPASNLR
74 & 18
0.048
0.623





CO8A_SLLQPNK_vs_TENX_LNWEAPPGAFDSFLLR
74 & 141
0.009
0.662





COSA_SLLQPNK_vs_TENX_LSQLSVTDVTTSSLR
74 & 142
0.021
0.644





CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
76 & 103
0.009
0.663





CO8B_QALEEFQK_vs_PGRP2_AGLLRPDYALLGHR
76 & 126
0.040
0.628





CO8B_QALEEFQK_vs_SHBG_IALGGLLFPASNLR
76 & 18
0.045
0.625





CO8B_QALEEFQK_vs_TENX_LNWEAPPGAFDSFLL
76 & 141
0.006
0.670


R








CO8B_QALEEFQK_vs_TENX_LSQLSVTDVTTSSLR
76 & 142
0.012
0.655





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_ALS_IRP
82 & 40
0.002
0.695


HTFTGLSGLR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_C163A_I
82 & 54
0.036
0.631


NPASLDK








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_CHL1_V
82 & 66
0.002
0.690


IAVNEVGR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_CRIS3_A
82 & 78
0.005
0.673


VSPPAR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_CRIS3_Y
82 & 79
0.004
0.679


EDLYSNCK








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_CSH_AH
82 & 80
0.012
0.656


QLAIDTYQEFEETYIPK








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_CSH_ISL
82 & 81
0.014
0.652


LLIESWLEPVR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_FBLN1
82 & 86
0.007
0.669


TGYYFDGISR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IBP1_V
82 & 97
0.027
0.638


VESLAK








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IBP2_LI
82 & 98
0.008
0.664


QGAPTIR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IBP3_FL
82 & 99
0.001
0.708


NVLSPR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IBP3_Y
82 & 100
0.001
0.708


GQPLPGYTTK








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IGF2_GI
82 & 103
0.000
0.736


VEECCFR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_ITIH4_IL
82 & 112
0.001
0.710


DDLSPR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_LYAM1
82 & 120
0.001
0.704


SYYWIGIR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_NCAM1
82 & 121
0.013
0.655


GLGEISAASEFK








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PGRP2
82 & 126
0.001
0.708


AGLLRPDYALLGHR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PRG2
82 & 129
0.003
0.684


WNFAYWAAHQPWSR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG3_V
82 & 134
0.004
0.681


SAPSGTGHLPGLNPL








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_D
82 & 135
0.016
0.650


VLLLVHNLPQNLPGYFWYK








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_L
82 & 136
0.027
0.637


FIPQITR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_I
82 & 18
0.000
0.720


ALGGLLFPASNLR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SOM2.C
82 & 138
0.032
0.633


SH_NYGLLYCFR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SOM2.C
82 & 139
0.020
0.645


SH_SVEGSCGF








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SPRL1
82 & 140
0.005
0.674


VLTHSELAPLR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_TENX_L
82 & 141
0.001
0.715


NWEAPPGAFDSFLLR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_TENX_L
82 & 142
0.001
0.700


SQLSVTDVTTSSLR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_TIE1_VS
82 & 144
0.006
0.671


WSLPLVPGPLVGDGFLLR








ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_VTDB_E
82 & 147
0.001
0.711


LPEHTVK








ENPP2_TYLHTYESEI_vs_ALS_IRPHTFTGLSGLR
83 & 40
0.001
0.707





ENPP2_TYLHTYESEI_vs_C163A_INPASLDK
83 & 54
0.016
0.650





ENPP2_TYLHTYESEI_vs_CHL1_VIAVNEVGR
83 & 66
0.002
0.694





ENPP2_TYLHTYESEI_vs_CRIS3_AVSPPAR
83 & 78
0.004
0.680





ENPP2_TYLHTYESEI_vs_CRIS3_YEDLYSNCK
83 & 79
0.002
0.689





ENPP2_TYLHTYESEI_vs_CSH_AHQLAIDTYQEFEETY
83 & 80
0.006
0.670


IPK








ENPP2_TYLHTYESEI_vs_CSH_ISLLLIESWLEPVR
83 & 81
0.008
0.664





ENPP2_TYLHTYESEI_vs_FBLN1_TGYYFDGISR
83 & 86
0.007
0.669





ENPP2_TYLHTYESEI_vs_IBP1_VVESLAK
83 & 97
0.028
0.636





ENPP2_TYLHTYESEI_vs_IBP2_LIQGAPTIR
83 & 98
0.007
0.666





ENPP2_TYLHTYESEI_vs_IBP3_FLNVLSPR
83 & 99
0.000
0.719





ENPP2_TYLHTYESEI_vs_IBP3_YGQPLPGYTTK
83 & 100
0.001
0.716





ENPP2_TYLHTYESEI_vs_IGF2_GIVEECCFR
83 & 103
0.000
0.741





ENPP2_TYLHTYESEI_vs_ITIH4_ILDDLSPR
83 & 112
0.001
0.716





ENPP2_TYLHTYESEI_vs_LYAM1_SYYWIGIR
83 & 120
0.001
0.712





ENPP2_TYLHTYESEI_vs_NCAM1_GLGEISAASEF
83 & 121
0.010
0.660


K








ENPP2_TYLHTYESEI_vs_PGRP2_AGLLRPDYALLG
83 & 126
0.001
0.714


HR








ENPP2_TYLHTYESEI_vs_PRG2_WNFAYWAAHQ
83 & 129
0.003
0.686


PWSR








ENPP2_TYLHTYESEI_vs_PSG1_FQLPGQK
83 & 131
0.047
0.623





ENPP2_TYLHTYESEI_vs_PSG3_VSAPSGTGHLPG
83 & 134
0.004
0.678


LNPL








ENPP2_TYLHTYESEI_vs_PSG9_DVLLLVHNLPQN
83 & 135
0.018
0.647


LPGYFWYK








ENPP2_TYLHTYESEI_vs_PSG9_LFIPQITR
83 & 136
0.027
0.637





ENPP2_TYLHTYESEI_vs_SHBG_IALGGLLFPASNL
83 & 18
0.000
0.722


R








ENPP2_TYLHTYESEI_vs_SOM2.CSH_NYGLLYCFR
83 & 138
0.019
0.646


ENPP2_TYLHTYESEI_vs_SOM2.CSH_SVEGSCGF
83 & 139
0.010
0.661





ENPP2_TYLHTYESEI_vs_SPRL1_VLTHSELAPLR
83 & 140
0.003
0.686





ENPP2_TYLHTYESEI_vs_TENX_LNWEAPPGAFDS
83 & 141
0.000
0.728


FLLR








ENPP2_TYLHTYESEI_vs_TENX_LSQLSVTDVTTSS
83 & 142
0.001
0.712


LR








ENPP2_TYLHTYESEI_vs_TIE1_VSWSLPLVPGPLV
83 & 144
0.003
0.685


GDGFLLR








ENPP2_TYLHTYESEI_vs_VTDB_ELPEHTVK
83 & 147
0.001
0.713





FBLN3_IPSNPSHR_vs_SHBG_IALGGLLFPASNLR
87 & 18
0.041
0.627





FETUA_FSVVYAK_vs_CHL1_VIAVNEVGR
88 & 66
0.016
0.650





FETUA_FSVVYAK_vs_CRIS3_AVSPPAR
88 & 78
0.030
0.635





FETUA_FSVVYAK_vs_CRIS3_YEDLYSNCK
88 & 79
0.017
0.648





FETUA_FSVVYAK_vs_IBP3_FLNVLSPR
88 & 99
0.018
0.646





FETUA_FSVVYAK_vs_IBP3_YGQPLPGYTTK
88 & 100
0.014
0.652





FETUA_FSVVYAK_vs_IGF2_GIVEECCFR
88 & 103
0.001
0.701





FETUA_FSVVYAK_vs_ITIH4_ILDDLSPR
88 & 112
0.034
0.632





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
88 & 120
0.023
0.642





FETUA_FSVVYAK_vs_PGRP2_AGLLRPDYALLGH
88 & 126
0.011
0.659


R








FETUA_FSVVYAK_vs_PRG2_WNFAYWAAHQPW
88 & 129
0.012
0.657


SR








FETUA_FSVVYAK_vs_PSG3_VSAPSGTGHLPGLN
88 & 134
0.033
0.633


PL








FETUA_FSVVYAK_vs_SHBG_IALGGLLFPASNLR
88 & 18
0.010
0.660





FETUA_FSVVYAK_vs_TENX_LNWEAPPGAFDSFL
88 & 141
0.002
0.694


LR








FETUA_FSVVYAK_vs_TENX_LSQLSVTDVTTSSLR
88 & 142
0.007
0.668





FETUA_FSVVYAK_vs_VTDB_ELPEHTVK
88 & 147
0.007
0.668





FETUA_HTLNQIDEVK_vs_CHL1_VIAVNEVGR
89 & 66
0.013
0.654





FETUA_HTLNQIDEVK_vs_CRIS3_AVSPPAR
89 & 78
0.046
0.624





FETUA_HTLNQIDEVK_vs_CRIS3_YEDLYSNCK
89 & 79
0.027
0.638





FETUA_HTLNQIDEVK_vs_IBP3_FLNVLSPR
89 & 99
0.036
0.630





FETUA_HTLNQIDEVK_vs_IBP3_YGQPLPGYTTK
89 & 100
0.041
0.627





FETUA_HTLNQIDEVK_vs_IGF2_GIVEECCFR
89 & 103
0.004
0.681





FETUA_HTLNQIDEVK_vs_LYAM1_SYYWIGIR
89 & 120
0.041
0.627





FETUA_HTLNQIDEVK_vs_PGRP2_AGLLRPDYALL
89 & 126
0.024
0.640


GHR








FETUA_HTLNQIDEVK_vs_PRG2_WNFAYWAAH
89 & 129
0.015
0.651


QPWSR








FETUA_HTLNQIDEVK_vs_PSG3_VSAPSGTGHLP
89 & 134
0.037
0.630


GLNPL








FETUA_HTLNQIDEVK_vs_SHBG_IALGGLLFPASN
89 & 18
0.009
0.662


LR








FETUA_HTLNQIDEVK_vs_TENX_LNWEAPPGAF
89 & 141
0.001
0.701


DSFLLR








FETUA_HTLNQIDEVK_vs_TENX_LSQLSVTDVTTS
89 & 142
0.005
0.673


SLR








FETUA_HTLNQIDEVK_vs_VTDB_ELPEHTVK
89 & 147
0.025
0.639





HABP2_FLNWIK_vs_IBP3_FLNVLSPR
92 & 99
0.039
0.628





HABP2_FLNWIK_vs_IBP3_YGQPLPGYTTK
92 & 100
0.039
0.629





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
92 & 103
0.005
0.674





HABP2_FLNWIK_vs_SHBG_IALGGLLFPASNLR
92 & 18
0.046
0.624





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLL
92 & 141
0.006
0.669


R








HABP2_FLNWIK_vs_TENX_LSQLSVTDVTTSSLR
92 & 142
0.021
0.644





HEMO_NFPSPVDAAFR_vs_IGF2_GIVEECCFR
93 & 103
0.043
0.626





HEMO_NFPSPVDAAFR_vs_PGRP2_AGLLRPDYA
93 & 126
0.050
0.622


LLGHR








HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPAS
93 & 18
0.017
0.648


NLR








HEMO_NFPSPVDAAFR_vs_TENX_LNWEAPPGA
93 & 141
0.013
0.654


FDSFLLR








IBP4_QCHPALDGQR_vs_CHL1_VIAVNEVGR
2 & 66
0.023
0.642





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
2 & 78
0.027
0.638





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
2 & 79
0.013
0.655





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
2 & 103
0.005
0.676





IBP4_QCHPALDGQR_vs_ITIH4_ILDDLSPR
2 & 112
0.014
0.653





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
2 & 120
0.013
0.654





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALL
2 & 126
0.005
0.674


GHR








IBP4_QCHPALDGQR_vs_PRG2_WNFAYWAAHQ
2 & 129
0.016
0.649


PWSR








IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNL
2 & 18
0.003
0.685


R








IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFD
2 & 141
0.001
0.702


SFLLR








IBP4_QCHPALDGQR_vs_TENX_LSQLSVTDVTTSS
2 & 142
0.016
0.649


LR








IBP4_QCHPALDGQR_vs_VTDB_ELPEHTVK
2 & 147
0.022
0.643





INHBC_LDFHFSSDR_vs_CHL1_VIAVNEVGR
107 & 66
0.016
0.649





INHBC_LDFHFSSDR_vs_CRIS3_AVSPPAR
107 & 78
0.044
0.625





INHBC_LDFHFSSDR_vs_CRIS3_YEDLYSNCK
107 & 79
0.025
0.639





INHBC_LDFHFSSDR_vs_IBP3_FLNVLSPR
107 & 99
0.014
0.653





INHBC_LDFHFSSDR_vs_IBP3_YGQPLPGYTTK
107 &
0.012
0.655



100







INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 &
0.001
0.707



103







INHBC_LDFHFSSDR_vs_ITIH4_ILDDLSPR
107 &
0.009
0.662



112







INHBC_LDFHFSSDR_vs_LYAM1_SYYWIGIR
107 &
0.014
0.652



120







INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLG
107 &
0.006
0.672


HR
126







INHBC_LDFHFSSDR_vs_PRG2_WNFAYWAAHQ
107 &
0.031
0.634


PWSR
129







INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGL
107 &
0.019
0.646


NPL
134







INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNL
107 & 18
0.006
0.672


R








INHBC_LDFHFSSDR_vs_SPRL1_VLTHSELAPLR
107 &
0.035
0.631



140







INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDS
107 &
0.003
0.684


FLLR
141







INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSS
107 &
0.009
0.662


LR
142







INHBC_LDFHFSSDR_vs_VTDB_ELPEHTVK
107 &
0.008
0.666



147







ITIH3_ALDLSLK_vs_CRIS3_YEDLYSNCK
111 & 79
0.043
0.626





ITIH3_ALDLSLK_vs_IGF2_GIVEECCFR
111 &
0.037
0.630



103







ITIH3_ALDLSLK_vs_LYAM1_SYYWIGIR
111 &
0.034
0.632



120







ITIH3_ALDLSLK_vs_PGRP2_AGLLRPDYALLGHR
111 &
0.008
0.665



126







ITIH3_ALDLSLK_vs_PRG2_WNFAYWAAHQPWS
111 &
0.035
0.631


R
129







ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.010
0.660





ITIH3_ALDLSLK_vs_TENX_LNWEAPPGAFDSFLL
111 &
0.016
0.650


R
141







ITIH3_ALDLSLK_vs_TENX_LSQLSVTDVTTSSLR
111 &
0.049
0.622



142







KNG1_DIPTNSPELEETLTHTITK_vs_IGF2_GIVEEC
116 &
0.026
0.639


CFR
103







KNG1_DIPTNSPELEETLTHTITK_vs_SHBG_IALGG
116 & 18
0.023
0.642


LLFPASNLR








KNG1_DIPTNSPELEETLTHTITK_vs_TENX_LNWE
116 &
0.006
0.671


APPGAFDSFLLR
141







KNG1_DIPTNSPELEETLTHTITK_vs_TENX_LSQLS
116 &
0.032
0.634


VTDVTTSSLR
142







KNG1_QVVAGLNFR_vs_CHL1_VIAVNEVGR
117 & 66
0.037
0.630





KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.049
0.622





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 &
0.014
0.653



103







KNG1_QVVAGLNFR_vs_ITIH4_ILDDLSPR
117 &
0.026
0.638



112







KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 &
0.024
0.641



120







KNG1_QVVAGLNFR_vs_PGRP2_AGLLRPDYALL
117 &
0.016
0.649


GHR
126







KNG1_QVVAGLNFR_vs_PRG2_WNFAYWAAHQ
117 &
0.037
0.630


PWSR
129







KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNL
117 & 18
0.005
0.675


R








KNG1_QVVAGLNFR_vs_TENX_LNWEAPPGAFDS
117 &
0.003
0.685


FLLR
141







KNG1_QVVAGLNFR_vs_TENX_LSQLSVTDVTTSS
117 &
0.032
0.634


LR
142







KNG1_QVVAGLNFR_vs_VTDB_ELPEHTVK
117 &
0.030
0.635



147







LBP_ITGFLKPGK_vs_CHL1_VIAVNEVGR
118 & 66
0.029
0.636





LBP_ITGFLKPGK_vs_CRIS3_AVSPPAR
118 & 78
0.009
0.663





LBP_ITGFLKPGK_vs_CRIS3_YEDLYSNCK
118 & 79
0.005
0.674





LBP_ITGFLKPGK_vs_IBP2_LIQGAPTIR
118 & 98
0.035
0.631





LBP_ITGFLKPGK_vs_IBP3_FLNVLSPR
118 & 99
0.022
0.642





LBP_ITGFLKPGK_vs_IBP3_YGQPLPGYTTK
118 &
0.012
0.657



100







LBP_ITGFLKPGK_vs_IGF2_GIVEECCFR
118 &
0.003
0.684



103







LBP_ITGFLKPGK_vs_ITIH4_ILDDLSPR
118 &
0.020
0.645



112







LBP_ITGFLKPGK_vs_LYAM1_SYYWIGIR
118 &
0.008
0.664



120







LBP_ITGFLKPGK_vs_PGRP2_AGLLRPDYALLGHR
118 &
0.014
0.653



126







LBP_ITGFLKPGK_vs_PRG2_WNFAYWAAHQPW
118 &
0.018
0.646


SR
129







LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNP
118 &
0.016
0.650


L
134







LBP_ITGFLKPGK_vs_PSG9_DVLLLVHNLPQNLPG
118 &
0.045
0.625


YFWYK
135







LBP_ITGFLKPGK_vs_SHBG_IALGGLLFPASNLR
118 & 18
0.009
0.662





LBP_ITGFLKPGK_vs_SPRL1_VLTHSELAPLR
118 &
0.024
0.640



140







LBP_ITGFLKPGK_vs_TENX_LNWEAPPGAFDSFLL
118 &
0.005
0.676


R
141







LBP_ITGFLKPGK_vs_TENX_LSQLSVTDVTTSSLR
118 &
0.019
0.646



142







LBP_ITGFLKPGK_vs_VTDB_ELPEHTVK
118 &
0.010
0.659



147







LBP_ITLPDFTGDLR_vs_ALS_IRPHTFTGLSGLR
119 & 40
0.019
0.646





LBP_ITLPDFTGDLR_vs_CHL1_VIAVNEVGR
119 & 66
0.009
0.663





LBP_ITLPDFTGDLR_vs_CRIS3_AVSPPAR
119 & 78
0.003
0.686





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.002
0.696





LBP_ITLPDFTGDLR_vs_IBP1_VVESLAK
119 & 97
0.046
0.624





LBP_ITLPDFTGDLR_vs_IBP2_LIQGAPTIR
119 & 98
0.012
0.656





LBP_ITLPDFTGDLR_vs_IBP3_FLNVLSPR
119 & 99
0.004
0.679





LBP_ITLPDFTGDLR_vs_IBP3_YGQPLPGYTTK
119 &
0.002
0.694



100







LBP_ITLPDFTGDLR_vs_IGF2_GIVEECCFR
119 &
0.001
0.713



103







LBP_ITLPDFTGDLR_vs_ITIH4_ILDDLSPR
119 &
0.003
0.688



112







LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 &
0.002
0.690



120







LBP_ITLPDFTGDLR_vs_NCAM1_GLGEISAASEFK
119 &
0.040
0.628



121







LBP_ITLPDFTGDLR_vs_PGRP2_AGLLRPDYALLG
119 &
0.002
0.692


HR
126







LBP_ITLPDFTGDLR_vs_PRG2_WNFAYWAAHQP
119 &
0.007
0.667


WSR
129







LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGL
119 &
0.007
0.667


NPL
134







LBP_ITLPDFTGDLR_vs_PSG9_DVLLLVHNLPQNL
119 &
0.025
0.639


PGYFWYK
135







LBP_ITLPDFTGDLR_vs_PSG9_LFIPQITR
119 &
0.037
0.630



136







LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.002
0.690





LBP_ITLPDFTGDLR_vs_SOM2.CSH_SVEGSCGF
119 &
0.032
0.634



139







LBP_ITLPDFTGDLR_vs_SPRL1_VLTHSELAPLR
119 &
0.007
0.668



140







LBP_ITLPDFTGDLR_vs_TENX_LNWEAPPGAFDSF
119 &
0.001
0.705


LLR
141







LBP_ITLPDFTGDLR_vs_TENX_LSQLSVTDVTTSSL
119 &
0.004
0.678


R
142







LBP_ITLPDFTGDLR_vs_TIE1_VSWSLPLVPGPLVG
119 &
0.020
0.645


DGFLLR
144







LBP_ITLPDFTGDLR_vs_VTDB_ELPEHTVK
119 &
0.002
0.695



147







PAPP1_DIPHWLNPTR_vs_C163A_INPASLDK
122 & 54
0.050
0.622


PAPP1_DIPHWLNPTR_vs_CSH_AHQLAIDTYQEF
122 & 80
0.035
0.631


EETYIPK








PAPP1_DIPHWLNPTR_vs_CSH_ISLLLIESWLEPV
122 & 81
0.044
0.625


R








PAPP1_DIPHWLNPTR_vs_SOM2.CSH_NYGLLYC
122 &
0.021
0.643


FR
138







PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.030
0.635





PEDF_LQSLFDSPDFSK_vs_IGF2_GIVEECCFR
124 &
0.011
0.658



103







PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 &
0.036
0.631



120







PEDF_LQSLFDSPDFSK_vs_PGRP2_AGLLRPDYAL
124 &
0.033
0.632


LGHR
126







PEDF_LQSLFDSPDFSK_vs_TENX_LNWEAPPGAF
124 &
0.008
0.666


DSFLLR
141







PEDF_LQSLFDSPDFSK_vs_TENX_LSQLSVTDVTT
124 &
0.035
0.631


SSLR
142







PEDF_TVQAVLTVPK_vs_IGF2_GIVEECCFR
125 &
0.016
0.650



103







PEDF_TVQAVLTVPK_vs_TENX_LNWEAPPGAFD
125 &
0.016
0.650


SFLLR
141







PSG11_LFIPQITPK_vs_PRG2_WNFAYWAAHQP
132 &
0.043
0.626


WSR
129







PTGDS_GPGEDFR_vs_SHBG_IALGGLLFPASNLR
137 & 18
0.033
0.632





PTGDS_GPGEDFR_vs_TENX_LNWEAPPGAFDSF
137 &
0.015
0.651


LLR
141







PTGDS_GPGEDFR_vs_TENX_LSQLSVTDVTTSSLR
137 &
0.046
0.624



142







THBG_AVLHIGEK_vs_TENX_LNWEAPPGAFDSFL
143 &
0.040
0.628


LR
141







VTNC_GQYCYELDEK_vs_CHL1_VIAVNEVGR
149 & 66
0.038
0.629





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.049
0.623





VTNC_GQYCYELDEK_vs_IBP3_FLNVLSPR
149 & 99
0.017
0.648





VTNC_GQYCYELDEK_vs_IBP3_YGQPLPGYTTK
149 &
0.020
0.645



100







VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 &
0.002
0.689



103







VTNC_GQYCYELDEK_vs_ITIH4_ILDDLSPR
149 &
0.024
0.641



112







VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 &
0.039
0.629



120







VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALL
149 &
0.028
0.636


GHR
126







VTNC_GQYCYELDEK_vs_PRG2_WNFAYWAAHQ
149 &
0.045
0.625


PWSR
129







VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPG
149 &
0.039
0.629


LNPL
134







VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNL
149 & 18
0.006
0.672


R








VTNC_GQYCYELDEK_vs_TENX_LNWEAPPGAFD
149 &
0.003
0.683


SFLLR
141







VTNC_GQYCYELDEK_vs_TENX_LSQLSVTDVTTSS
149 &
0.013
0.654


LR
142







VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 &
0.005
0.673



147







VTNC_VDTVDPPYPR_vs_CHL1_VIAVNEVGR
150 & 66
0.025
0.640





VTNC_VDTVDPPYPR_vs_CRIS3_AVSPPAR
150 & 78
0.050
0.622





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.040
0.628





VTNC_VDTVDPPYPR_vs_IBP3_FLNVLSPR
150 & 99
0.021
0.644





VTNC_VDTVDPPYPR_vs_IBP3_YGQPLPGYTTK
150 &
0.023
0.641



100







VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 &
0.003
0.686



103







VTNC_VDTVDPPYPR_vs_ITIH4_ILDDLSPR
150 &
0.017
0.648



112







VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 &
0.018
0.646



120







VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALL
150 &
0.020
0.645


GHR
126







VTNC_VDTVDPPYPR_vs_PRG2_WNFAYWAAHQ
150 &
0.034
0.632


PWSR
129







VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASN
150 & 18
0.005
0.675


LR








VTNC_VDTVDPPYPR_vs_TENX_LNWEAPPGAFD
150 &
0.003
0.687


SFLLR
141







VTNC_VDTVDPPYPR_vs_TENX_LSQLSVTDVTTS
150 &
0.013
0.654


SLR
142







VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 &
0.003
0.686



147
















TABLE 40







Reversal Classification Performance, weeks 20 and 21.


Reversal AUROC for gestational weeks 20 and 21 using a case  


vs control cut-off of <37 0/7 vs >=37 0/7 weeks, with BMI


stratification (>22 <= 37).










Reversal
SEQ ID NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_IGF2_GIVEECCFR
 34 & 103
0.022
0.667





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.049
0.644





A2GL_DLLLPQPDLR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 34 & 135
0.044
0.647





A2GL_DLLLPQPDLR_vs_PSG9_LFIPQITR
 34 & 136
0.043
0.648





AFAM_DADPDTFFAK_vs_IBP3_FLNVLSPR
 37 & 99
0.032
0.656





AFAM_DADPDTFFAK_vs_IBP3_YGQPLPGYTTK
 37 & 100
0.005
0.703





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.004
0.710





AFAM_HFQNLGK_vs_ALS_IRPHTFTGLSGLR
 38 & 40
0.026
0.662





AFAM_HFQNLGK_vs_CRIS3_YEDLYSNCK
 38 & 79
0.038
0.651





AFAM_HFQNLGK_vs_IBP3_FLNVLSPR
 38 & 99
0.003
0.718





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.000
0.757





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.000
0.775





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
 38 & 120
0.045
0.646





AFAM_HFQNLGK_vs_PGRP2_AGLLRPDYALLGHR
 38 & 126
0.025
0.664





AFAM_HFQNLGK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 38 & 135
0.028
0.660





ANGT_DPTFIPAPIQAK_vs_CRIS3_AVSPPAR
 42 & 78
0.044
0.647





ANGT_DPTFIPAPIQAK_vs_CRIS3_YEDLYSNCK
 42 & 79
0.031
0.657





ANGT_DPTFIPAPIQAK_vs_IBP3_FLNVLSPR
 42 & 99
0.037
0.653





ANGT_DPTFIPAPIQAK_vs_IBP3_YGQPLPGYTTK
 42 & 100
0.011
0.686





ANGT_DPTFIPAPIQAK_vs_IGF2_GIVEECCFR
 42 & 103
0.007
0.697





ANGT_DPTFIPAPIQAK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 42 & 135
0.048
0.645





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.038
0.651





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.024
0.665





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.015
0.678





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.029
0.659





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
 47 & 100
0.019
0.672





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.016
0.675





APOC3_GWVTDGFSSLK_vs_ITIH4_ILDDLSPR
 47 & 112
0.029
0.659





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.021
0.669





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.018
0.673





APOC3_GWVTDGFSSLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 47 & 135
0.013
0.681





APOC3_GWVTDGFSSLK_vs_PSG9_LFIPQITR
 47 & 136
0.017
0.675





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.020
0.670





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_SVEGSCGF
 47 & 139
0.031
0.658





APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
 47 & 147
0.050
0.643





B2MG_VEHSDLSFSK_vs_CRIS3_AVSPPAR
 50 & 78
0.049
0.644





B2MG_VEHSDLSFSK_vs_CRIS3_YEDLYSNCK
 50 & 79
0.021
0.668





B2MG_VEHSDLSFSK_vs_IBP3_YGQPLPGYTTK
 50 & 100
0.049
0.644





B2MG_VEHSDLSFSK_vs_IGF2_GIVEECCFR
 50 & 103
0.017
0.675





B2MG_VEHSDLSFSK_vs_LYAM1_SYYWIGIR
 50 & 120
0.024
0.665





B2MG_VEHSDLSFSK_vs_PGRP2_AGLLRPDYALLGHR
 50 & 126
0.043
0.648





B2MG_VEHSDLSFSK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 50 & 135
0.044
0.647





B2MG_VEHSDLSFSK_vs_SHBG_IALGGLLFPASNLR
 50 & 18
0.037
0.652





B2MG_VNHVTLSQPK_vs_CRIS3_AVSPPAR
 51 & 78
0.047
0.645





B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
 51 & 79
0.028
0.661





B2MG_VNHVTLSQPK_vs_IBP3_YGQPLPGYTTK
 51 & 100
0.028
0.661





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
 51 & 103
0.008
0.695





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.016
0.676





B2MG_VNHVTLSQPK_vs_PGRP2_AGLLRPDYALLGHR
 51 & 126
0.020
0.670





B2MG_VNHVTLSQPK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 51 & 135
0.028
0.660





B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
 51 & 18
0.019
0.671





BGH3_LTLLAPLNSVFK_vs_CRIS3_AVSPPAR
 52 & 78
0.033
0.656





BGH3_LTLLAPLNSVFK_vs_CRIS3_YEDLYSNCK
 52 & 79
0.006
0.700





BGH3_LTLLAPLNSVFK_vs_IBP3_YGQPLPGYTTK
 52 & 100
0.028
0.660





BGH3_LTLLAPLNSVFK_vs_IGF2_GIVEECCFR
 52 & 103
0.010
0.688





BGH3_LTLLAPLNSVFK_vs_LYAM1_SYYWIGIR
 52 & 120
0.031
0.657





BGH3_LTLLAPLNSVFK_vs_PGRP2_AGLLRPDYALLGHR
 52 & 126
0.036
0.653





BGH3_LTLLAPLNSVFK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 52 & 135
0.028
0.660





BGH3_LTLLAPLNSVFK_vs_TENX_LNWEAPPGAFDSFLLR
 52 & 141
0.047
0.645





C1QB_VPGLYYFTYHASSR_vs_IGF2_GIVEECCFR
 55 & 103
0.041
0.649





C1QB_VPGLYYFTYHASSR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 55 & 135
0.040
0.650





CATD_VGFAEAAR_vs_ALS_IRPHTFTGLSGLR
 57 & 40
0.022
0.667





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
 57 & 78
0.015
0.678





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
 57 & 79
0.006
0.701





CATD_VGFAEAAR_vs_IBP3_FLNVLSPR
 57 & 99
0.003
0.714





CATD_VGFAEAAR_vs_IBP3_YGQPLPGYTTK
 57 & 100
0.002
0.726





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
 57 & 103
0.001
0.750





CATD_VGFAEAAR_vs_ITIH4_ILDDLSPR
 57 & 112
0.019
0.672





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
 57 & 120
0.014
0.679





CATD_VGFAEAAR_vs_NCAM1_GLGEISAASEFK
 57 & 121
0.030
0.659





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
 57 & 126
0.008
0.693





CATD_VGFAEAAR_vs_PRG2_WNFAYWAAHQPWSR
 57 & 129
0.041
0.649





CATD_VGFAEAAR_vs_PSG3_VSAPSGTGHLPGLNPL
 57 & 134
0.031
0.657





CATD_VGFAEAAR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 57 & 135
0.011
0.686





CATD_VGFAEAAR_vs_PSG9_LFIPQITR
 57 & 136
0.026
0.662





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.026
0.663





CATD_VGFAEAAR_vs_SOM2.CSH_SVEGSCGF
 57 & 139
0.027
0.662





CATD_VGFAEAAR_vs_SPRL1_VLTHSELAPLR
 57 & 140
0.035
0.654





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.005
0.707





CATD_VGFAEAAR_vs_TENX_LSQLSVTDVTTSSLR
 57 & 142
0.020
0.670





CATD_VGFAEAAR_vs_VTDB_ELPEHTVK
 57 & 147
0.026
0.662





CATD_VSTLPAITLK_vs_ALS_IRPHTFTGLSGLR
 58 & 40
0.013
0.681





CATD_VSTLPAITLK_vs_CHL1_VIAVNEVGR
 58 & 66
0.028
0.660





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
 58 & 78
0.009
0.692





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
 58 & 79
0.004
0.712





CATD_VSTLPAITLK_vs_CSH_ISLLLIESWLEPVR
 58 & 81
0.042
0.648





CATD_VSTLPAITLK_vs_IBP2_LIQGAPTIR
 58 & 98
0.038
0.651





CATD_VSTLPAITLK_vs_IBP3_FLNVLSPR
 58 & 99
0.002
0.730





CATD_VSTLPAITLK_vs_IBP3_YGQPLPGYTTK
 58 & 100
0.001
0.737





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
 58 & 103
0.000
0.762





CATD_VSTLPAITLK_vs_ITIH4_ILDDLSPR
 58 & 112
0.007
0.695





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
 58 & 120
0.010
0.687





CATD_VSTLPAITLK_vs_NCAM1_GLGEISAASEFK
 58 & 121
0.024
0.665





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
 58 & 126
0.002
0.727





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
 58 & 134
0.038
0.651





CATD_VSTLPAITLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 58 & 135
0.012
0.684





CATD_VSTLPAITLK_vs_PSG9_LFIPQITR
 58 & 136
0.019
0.672





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
 58 & 18
0.007
0.695





CATD_VSTLPAITLK_vs_SOM2.CSH_SVEGSCGF
 58 & 139
0.027
0.662





CATD_VSTLPAITLK_vs_SPRL1_VLTHSELAPLR
 58 & 140
0.029
0.659





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.002
0.722





CATD_VSTLPAITLK_vs_TENX_LSQLSVTDVTTSSLR
 58 & 142
0.007
0.697





CATD_VSTLPAITLK_vs_VTDB_ELPEHTVK
 58 & 147
0.029
0.659





CBPN_EALIQFLEQVHQGIK_vs_IBP3_YGQPLPGYTTK
 59 & 100
0.037
0.652





CBPN_EALIQFLEQVHQGIK_vs_IGF2_GIVEECCFR
 59 & 103
0.028
0.660





CBPN_NNANGVDLNR_vs_CRIS3_YEDLYSNCK
 60 & 79
0.043
0.648





CBPN_NNANGVDLNR_vs_IBP3_FLNVLSPR
 60 & 99
0.032
0.656





CBPN_NNANGVDLNR_vs_IBP3_YGQPLPGYTTK
 60 & 100
0.013
0.681





CBPN_NNANGVDLNR_vs_IGF2_GIVEECCFR
 60 & 103
0.006
0.701





CBPN_NNANGVDLNR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 60 & 135
0.044
0.647





CBPN_NNANGVDLNR_vs_SHBG_IALGGLLFPASNLR
 60 & 18
0.038
0.651





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
 61 & 103
0.033
0.656





CFAB_YGLVTYATYPK_vs_IBP3_FLNVLSPR
 64 & 99
0.032
0.656





CFAB_YGLVTYATYPK_vs_IBP3_YGQPLPGYTTK
 64 & 100
0.013
0.681





CFAB_YGLVTYATYPK_vs_IGF2_GIVEECCFR
 64 & 103
0.010
0.689





CFAB_YGLVTYATYPK_vs_LYAM1_SYYWIGIR
 64 & 120
0.035
0.654





CFAB_YGLVTYATYPK_vs_PGRP2_AGLLRPDYALLGHR
 64 & 126
0.048
0.645





CLUS_ASSIIDELFQDR_vs_IBP3_YGQPLPGYTTK
 67 & 100
0.049
0.644





CLUS_ASSIIDELFQDR_vs_IGF2_GIVEECCFR
 67 & 103
0.027
0.662





CO8A_SLLQPNK_vs_IGF2_GIVEECCFR
 74 & 103
0.030
0.659





CO8B_QALEEFQK_vs_IBP3_YGQPLPGYTTK
 76 & 100
0.039
0.651





CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
 76 & 103
0.017
0.675





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_ALS_IRPHTFTGLSGLR
 82 & 40
0.001
0.737





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_C163A_INPASLDK
 82 & 54
0.019
0.672





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_CHL1_VIAVNEVGR
 82 & 66
0.013
0.681





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_CRIS3_AVSPPAR
 82 & 78
0.006
0.700





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_CRIS3_YEDLYSNCK
 82 & 79
0.003
0.716





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_CSH_AHQLAIDTYQEFEETYIPK
 82 & 80
0.011
0.686





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_CSH_ISLLLIESWLEPVR
 82 & 81
0.012
0.684





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_FBLN1_TGYYFDGISR
 82 & 86
0.037
0.653





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IBP2_LIQGAPTIR
 82 & 98
0.008
0.692





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IBP3_FLNVLSPR
 82 & 99
0.001
0.744





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IBP3_YGQPLPGYTTK
 82 & 100
0.000
0.758





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IGF2_GIVEECCFR
 82 & 103
0.000
0.767





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_ITIH4_ILDDLSPR
 82 & 112
0.001
0.748





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_LYAM1_SYYWIGIR
 82 & 120
0.001
0.748





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_NCAM1_GLGEISAASEFK
 82 & 121
0.010
0.687





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PGRP2_AGLLRPDYALLGHR
 82 & 126
0.001
0.742





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PRG2_WNFAYWAAHQPWSR
 82 & 129
0.033
0.656





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG3_VSAPSGTGHLPGLNPL
 82 & 134
0.015
0.677





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 82 & 135
0.002
0.726





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_LFIPQITR
 82 & 136
0.005
0.703





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_IALGGLLFPASNLR
 82 & 18
0.001
0.747





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SOM2.CSH_NYGLLYCFR
 82 & 138
0.030
0.659





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SOM2.CSH_SVEGSCGF
 82 & 139
0.005
0.707





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SPRL1_VLTHSELAPLR
 82 & 140
0.007
0.698





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_TENX_LNWEAPPGAFDSFLLR
 82 & 141
0.005
0.706





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_TENX_LSQLSVTDVTTSSLR
 82 & 142
0.013
0.681





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 82 & 144
0.009
0.691





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_VTDB_ELPEHTVK
 82 & 147
0.002
0.722





ENPP2_TYLHTYESEI_vs_ALS_IRPHTFTGLSGLR
 83 & 40
0.001
0.733





ENPP2_TYLHTYESEI_vs_C163A_INPASLDK
 83 & 54
0.015
0.678





ENPP2_TYLHTYESEI_vs_CHL1_VIAVNEVGR
 83 & 66
0.018
0.673





ENPP2_TYLHTYESEI_vs_CRIS3_AVSPPAR
 83 & 78
0.009
0.692





ENPP2_TYLHTYESEI_vs_CRIS3_YEDLYSNCK
 83 & 79
0.003
0.716





ENPP2_TYLHTYESEI_vs_CSH_AHQLAIDTYQEFEETYIPK
 83 & 80
0.007
0.695





ENPP2_TYLHTYESEI_vs_CSH_ISLLLIESWLEPVR
 83 & 81
0.010
0.689





ENPP2_TYLHTYESEI_vs_IBP2_LIQGAPTIR
 83 & 98
0.010
0.689





ENPP2_TYLHTYESEI_vs_IBP3_FLNVLSPR
 83 & 99
0.002
0.728





ENPP2_TYLHTYESEI_vs_IBP3_YGQPLPGYTTK
 83 & 100
0.000
0.755





ENPP2_TYLHTYESEI_vs_IGF2_GIVEECCFR
 83 & 103
0.001
0.749





ENPP2_TYLHTYESEI_vs_ITIH4_ILDDLSPR
 83 & 112
0.002
0.727





ENPP2_TYLHTYESEI_vs_LYAM1_SYYWIGIR
 83 & 120
0.001
0.733





ENPP2_TYLHTYESEI_vs_NCAM1_GLGEISAASEFK
 83 & 121
0.020
0.670





ENPP2_TYLHTYESEI_vs_PGRP2_AGLLRPDYALLGHR
 83 & 126
0.002
0.725





ENPP2_TYLHTYESEI_vs_PSG3_VSAPSGTGHLPGLNPL
 83 & 134
0.025
0.664





ENPP2_TYLHTYESEI_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 83 & 135
0.004
0.712





ENPP2_TYLHTYESEI_vs_PSG9_LFIPQITR
 83 & 136
0.008
0.693





ENPP2_TYLHTYESEI_vs_SHBG_IALGGLLFPASNLR
 83 & 18
0.001
0.747





ENPP2_TYLHTYESEI_vs_SOM2.CSH_NYGLLYCFR
 83 & 138
0.028
0.661





ENPP2_TYLHTYESEI_vs_SOM2.CSH_SVEGSCGF
 83 & 139
0.003
0.716





ENPP2_TYLHTYESEI_vs_SPRL1_VLTHSELAPLR
 83 & 140
0.009
0.691





ENPP2_TYLHTYESEI_vs_TENX_LNWEAPPGAFDSFLLR
 83 & 141
0.006
0.702





ENPP2_TYLHTYESEI_vs_TENX_LSQLSVTDVTTSSLR
 83 & 142
0.013
0.682





ENPP2_TYLHTYESEI_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 83 & 144
0.011
0.686





ENPP2_TYLHTYESEI_vs_VTDB_ELPEHTVK
 83 & 147
0.005
0.705





FETUA_FSVVYAK_vs_CRIS3_AVSPPAR
 88 & 78
0.025
0.664





FETUA_FSVVYAK_vs_CRIS3_YEDLYSNCK
 88 & 79
0.009
0.692





FETUA_FSVVYAK_vs_IBP3_FLNVLSPR
 88 & 99
0.016
0.676





FETUA_FSVVYAK_vs_IBP3_YGQPLPGYTTK
 88 & 100
0.006
0.700





FETUA_FSVVYAK_vs_IGF2_GIVEECCFR
 88 & 103
0.003
0.718





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
 88 & 120
0.024
0.665





FETUA_FSVVYAK_vs_PGRP2_AGLLRPDYALLGHR
 88 & 126
0.047
0.645





FETUA_FSVVYAK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 88 & 135
0.026
0.663





FETUA_FSVVYAK_vs_SHBG_IALGGLLFPASNLR
 88 & 18
0.040
0.650





FETUA_FSVVYAK_vs_VTDB_ELPEHTVK
 88 & 147
0.049
0.644





FETUA_HTLNQIDEVK_vs_CRIS3_AVSPPAR
 89 & 78
0.037
0.653





FETUA_HTLNQIDEVK_vs_CRIS3_YEDLYSNCK
 89 & 79
0.015
0.678





FETUA_HTLNQIDEVK_vs_IBP3_FLNVLSPR
 89 & 99
0.017
0.675





FETUA_HTLNQIDEVK_vs_IBP3_YGQPLPGYTTK
 89 & 100
0.007
0.696





FETUA_HTLNQIDEVK_vs_IGF2_GIVEECCFR
 89 & 103
0.003
0.715





FETUA_HTLNQIDEVK_vs_LYAM1_SYYWIGIR
 89 & 120
0.041
0.649





FETUA_HTLNQIDEVK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 89 & 135
0.029
0.659





FETUA_HTLNQIDEVK_vs_SHBG_IALGGLLFPASNLR
 89 & 18
0.029
0.659





HABP2_FLNWIK_vs_IBP3_FLNVLSPR
 92 & 99
0.044
0.647





HABP2_FLNWIK_vs_IBP3_YGQPLPGYTTK
 92 & 100
0.024
0.664





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.018
0.673





HEMO_NFPSPVDAAFR_vs_CRIS3_AVSPPAR
 93 & 78
0.047
0.645





HEMO_NFPSPVDAAFR_vs_CRIS3_YEDLYSNCK
 93 & 79
0.025
0.664





HEMO_NFPSPVDAAFR_vs_IBP3_FLNVLSPR
 93 & 99
0.045
0.646





HEMO_NFPSPVDAAFR_vs_IBP3_YGQPLPGYTTK
 93 & 100
0.030
0.659





HEMO_NFPSPVDAAFR_vs_IGF2_GIVEECCFR
 93 & 103
0.014
0.679





HEMO_NFPSPVDAAFR_vs_ITIH4_ILDDLSPR
 93 & 112
0.017
0.674





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
 93 & 120
0.048
0.645





HEMO_NFPSPVDAAFR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 93 & 135
0.031
0.658





HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPASNLR
 93 & 18
0.021
0.669





HLACI_WAAVVVPSGEEQR_vs_CRIS3_YEDLYSNCK
 95 & 79
0.047
0.645





HLACI_WAAVVVPSGEEQR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 95 & 135
0.007
0.695





HLACI_WAAVVVPSGEEQR_vs_PSG9_LFIPQITR
 95 & 136
0.011
0.685





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.010
0.689





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.002
0.722





IBP4_QCHPALDGQR_vs_IBP3_FLNVLSPR
  2 & 99
0.028
0.661





IBP4_QCHPALDGQR_vs_IBP3_YGQPLPGYTTK
  2 & 100
0.011
0.685





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.004
0.711





IBP4_QCHPALDGQR_vs_ITIH4_ILDDLSPR
  2 & 112
0.012
0.684





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.005
0.705





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
  2 & 126
0.007
0.697





IBP4_QCHPALDGQR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
  2 & 135
0.019
0.672





IBP4_QCHPALDGQR_vs_PSG9_LFIPQITR
  2 & 136
0.036
0.653





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.007
0.696





IBP4_QCHPALDGQR_vs_SOM2.CSH_SVEGSCGF
  2 & 139
0.018
0.673





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFDSFLLR
  2 & 141
0.025
0.664





IBP4_QCHPALDGQR_vs_VTDB_ELPEHTVK
  2 & 147
0.038
0.651





INHBC_LDFHFSSDR_vs_ALS_IRPHTFTGLSGLR
107 & 40
0.028
0.660





INHBC_LDFHFSSDR_vs_CRIS3_AVSPPAR
107 & 78
0.026
0.663





INHBC_LDFHFSSDR_vs_CRIS3_YEDLYSNCK
107 & 79
0.012
0.684





INHBC_LDFHFSSDR_vs_IBP3_FLNVLSPR
107 & 99
0.011
0.685





INHBC_LDFHFSSDR_vs_IBP3_YGQPLPGYTTK
107 & 100
0.006
0.703





INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 & 103
0.001
0.735





INHBC_LDFHFSSDR_vs_ITIH4_ILDDLSPR
107 & 112
0.016
0.675





INHBC_LDFHFSSDR_vs_LYAM1_SYYWIGIR
107 & 120
0.016
0.675





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.016
0.675





INHBC_LDFHFSSDR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
107 & 135
0.019
0.671





INHBC_LDFHFSSDR_vs_PSG9_LFIPQITR
107 & 136
0.033
0.656





INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNLR
107 & 18
0.013
0.681





INHBC_LDFHFSSDR_vs_SPRL1_VLTHSELAPLR
107 & 140
0.036
0.653





INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDSFLLR
107 & 141
0.023
0.666





INHBC_LDFHFSSDR_vs_VTDB_ELPEHTVK
107 & 147
0.025
0.664





ITIH3_ALDLSLK_vs_CRIS3_AVSPPAR
111 & 78
0.040
0.650





ITIH3_ALDLSLK_vs_CRIS3_YEDLYSNCK
111 & 79
0.032
0.656





ITIH3_ALDLSLK_vs_IGF2_GIVEECCFR
111 & 103
0.044
0.647





ITIH3_ALDLSLK_vs_LYAM1_SYYWIGIR
111 & 120
0.036
0.653





ITIH3_ALDLSLK_vs_PGRP2_AGLLRPDYALLGHR
111 & 126
0.022
0.667





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.017
0.675





KNG1_DIPTNSPELEETLTHTITK_vs_CRIS3_YEDLYSNCK
116 & 79
0.023
0.666





KNG1_DIPTNSPELEETLTHTITK_vs_IGF2_GIVEECCFR
116 & 103
0.019
0.672





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.049
0.644





KNG1_DIPTNSPELEETLTHTITK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
116 & 135
0.033
0.656





KNG1_QVVAGLNFR_vs_CRIS3_AVSPPAR
117 & 78
0.044
0.647





KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.021
0.669





KNG1_QVVAGLNFR_vs_IBP3_FLNVLSPR
117 & 99
0.028
0.661





KNG1_QVVAGLNFR_vs_IBP3_YGQPLPGYTTK
117 & 100
0.014
0.680





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.007
0.697





KNG1_QVVAGLNFR_vs_ITIH4_ILDDLSPR
117 & 112
0.039
0.651





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.017
0.674





KNG1_QVVAGLNFR_vs_PGRP2_AGLLRPDYALLGHR
117 & 126
0.034
0.655





KNG1_QVVAGLNFR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
117 & 135
0.028
0.660





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.031
0.657





LBP_ITGFLKPGK_vs_CRIS3_AVSPPAR
118 & 78
0.018
0.673





LBP_ITGFLKPGK_vs_CRIS3_YEDLYSNCK
118 & 79
0.006
0.700





LBP_ITGFLKPGK_vs_IBP3_FLNVLSPR
118 & 99
0.039
0.651





LBP_ITGFLKPGK_vs_IBP3_YGQPLPGYTTK
118 & 100
0.017
0.674





LBP_ITGFLKPGK_vs_IGF2_GIVEECCFR
118 & 103
0.006
0.700





LBP_ITGFLKPGK_vs_ITIH4_ILDDLSPR
118 & 112
0.037
0.652





LBP_ITGFLKPGK_vs_LYAM1_SYYWIGIR
118 & 120
0.016
0.676





LBP_ITGFLKPGK_vs_PGRP2_AGLLRPDYALLGHR
118 & 126
0.023
0.666





LBP_ITGFLKPGK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
118 & 135
0.013
0.682





LBP_ITGFLKPGK_vs_PSG9_LFIPQITR
118 & 136
0.020
0.670





LBP_ITGFLKPGK_vs_SHBG_IALGGLLFPASNLR
118 & 18
0.014
0.680





LBP_ITGFLKPGK_vs_SOM2.CSH_SVEGSCGF
118 & 139
0.024
0.664





LBP_ITGFLKPGK_vs_SPRL1_VLTHSELAPLR
118 & 140
0.044
0.647





LBP_ITGFLKPGK_vs_VTDB_ELPEHTVK
118 & 147
0.031
0.658





LBP_ITLPDFTGDLR_vs_ALS_IRPHTFTGLSGLR
119 & 40
0.031
0.657





LBP_ITLPDFTGDLR_vs_CRIS3_AVSPPAR
119 & 78
0.004
0.710





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.002
0.727





LBP_ITLPDFTGDLR_vs_IBP2_LIQGAPTIR
119 & 98
0.031
0.658





LBP_ITLPDFTGDLR_vs_IBP3_FLNVLSPR
119 & 99
0.007
0.698





LBP_ITLPDFTGDLR_vs_IBP3_YGQPLPGYTTK
119 & 100
0.003
0.717





LBP_ITLPDFTGDLR_vs_IGF2_GIVEECCFR
119 & 103
0.001
0.733





LBP_ITLPDFTGDLR_vs_ITIH4_ILDDLSPR
119 & 112
0.004
0.710





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.003
0.716





LBP_ITLPDFTGDLR_vs_NCAM1_GLGEISAASEFK
119 & 121
0.045
0.646





LBP_ITLPDFTGDLR_vs_PGRP2_AGLLRPDYALLGHR
119 & 126
0.002
0.722





LBP_ITLPDFTGDLR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
119 & 135
0.005
0.703





LBP_ITLPDFTGDLR_vs_PSG9_LFIPQITR
119 & 136
0.010
0.689





LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.003
0.716





LBP_ITLPDFTGDLR_vs_SOM2.CSH_SVEGSCGF
119 & 139
0.011
0.686





LBP_ITLPDFTGDLR_vs_SPRL1_VLTHSELAPLR
119 & 140
0.013
0.681





LBP_ITLPDFTGDLR_vs_TENX_LNWEAPPGAFDSFLLR
119 & 141
0.014
0.680





LBP ITLPDFTGDLR_vs_TENX_LSQLSVTDVTTSSLR
119 & 142
0.044
0.647





LBP_ITLPDFTGDLR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
119 & 144
0.039
0.651





LBP_ITLPDFTGDLR_vs_VTDB_ELPEHTVK
119 & 147
0.006
0.701





PEDF_LQSLFDSPDFSK_vs_CRIS3_AVSPPAR
124 & 78
0.022
0.667





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.009
0.690





PEDF_LQSLFDSPDFSK_vs_IBP3_YGQPLPGYTTK
124 & 100
0.045
0.646





PEDF_LQSLFDSPDFSK_vs_IGF2_GIVEECCFR
124 & 103
0.011
0.686





PEDF_LQSLFDSPDFSK_vs_ITIH4_ILDDLSPR
124 & 112
0.049
0.644





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.024
0.665





PEDF_LQSLFDSPDFSK_vs_PGRP2_AGLLRPDYALLGHR
124 & 126
0.035
0.654





PEDF_LQSLFDSPDFSK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
124 & 135
0.037
0.653





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.037
0.652





PTGDS_GPGEDFR_vs_CRIS3_YEDLYSNCK
137 & 79
0.041
0.649





PTGDS_GPGEDFR_vs_IGF2_GIVEECCFR
137 & 103
0.024
0.665





THBG_AVLHIGEK_vs_CRIS3_YEDLYSNCK
143 & 79
0.050
0.643





VTNC_GQYCYELDEK_vs_CRIS3_AVSPPAR
149 & 78
0.047
0.645





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.024
0.665





VTNC_GQYCYELDEK_vs_IBP3_FLNVLSPR
149 & 99
0.011
0.686





VTNC_GQYCYELDEK_vs_IBP3_YGQPLPGYTTK
149 & 100
0.003
0.718





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.003
0.719





VTNC_GQYCYELDEK_vs_ITIH4_ILDDLSPR
149 & 112
0.017
0.675





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.026
0.663





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.042
0.648





VTNC_GQYCYELDEK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
149 & 135
0.028
0.660





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.013
0.681





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.037
0.653





VTNC_VDTVDPPYPR_vs_CRIS3_AVSPPAR
150 & 78
0.037
0.652





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.022
0.667





VTNC_VDTVDPPYPR_vs_IBP3_FLNVLSPR
150 & 99
0.015
0.677





VTNC_VDTVDPPYPR_vs_IBP3_YGQPLPGYTTK
150 & 100
0.006
0.699





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.004
0.710





VTNC_VDTVDPPYPR_vs_ITIH4_ILDDLSPR
150 & 112
0.037
0.653





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.018
0.673





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126
0.044
0.647





VTNC_VDTVDPPYPR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
150 & 135
0.021
0.668





VTNC_VDTVDPPYPR_vs_PSG9_LFIPQITR
150 & 136
0.041
0.649





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.012
0.684





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.028
0.660



 83 & 126
















TABLE 41







Reversal Classification Performance, weeks 20 and 21.


Reversal AUROC for gestational weeks 20 and 21 using a case vs 


control cut-offs of <35 0/7 vs >=35 0/7 weeks, without BMI


stratification.










Reversal
SEQ ID NO:
pval
ROC_AUC 





AFAM_DADPDTFFAK_vs_IBP2_LIQGAPTIR
 37 & 98
0.042
0.703





AFAM_DADPDTFFAK_vs_PGRP2_AGLLRPDYALLGHR
 37 & 126
0.045
0.701





AFAM_DADPDTFFAK_vs_SHBG_IALGGLLFPASNLR
 37 & 18
0.036
0.709





AFAM_HFQNLGK_vs_ALS_IRPHTFTGLSGLR
 38 & 40
0.020
0.732





AFAM_HFQNLGK_vs_IBP2_LIQGAPTIR
 38 & 98
0.024
0.726





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.048
0.698





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.048
0.698





AFAM_HFQNLGK_vs_ITIH4_ILDDLSPR
 38 & 112
0.033
0.714





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
 38 & 120
0.031
0.715





AFAM_HFQNLGK_vs_PGRP2_AGLLRPDYALLGHR
 38 & 126
0.017
0.738





AFAM_HFQNLGK_vs_PSG3_VSAPSGTGHLPGLNPL
 38 & 134
0.029
0.719





AFAM_HFQNLGK_vs_SHBG_IALGGLLFPASNLR
 38 & 18
0.017
0.738





AFAM_HFQNLGK_vs_SOM2.CSH_SVEGSCGF
 38 & 139
0.048
0.698





AFAM_HFQNLGK_vs_SPRL1_VLTHSELAPLR
 38 & 140
0.018
0.737





AFAM_HFQNLGK_vs_VTDB_ELPEHTVK
 38 & 147
0.014
0.746





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.019
0.735





APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
 48 & 18
0.045
0.701





B2MG_VEHSDLSFSK_vs_IBP2_LIQGAPTIR
 50 & 98
0.049
0.697





B2MG_VEHSDLSFSK_vs_SHBG_IALGGLLFPASNLR
 50 & 18
0.029
0.718





B2MG_VNHVTLSQPK_vs_IBP2_LIQGAPTIR
 51 & 98
0.049
0.697





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.031
0.716





B2MG_VNHVTLSQPK_vs_PGRP2_AGLLRPDYALLGHR
 51 & 126
0.035
0.711





B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
 51 & 18
0.028
0.720





B2MG_VNHVTLSQPK_vs_SOM2.CSH_SVEGSCGF
 51 & 139
0.049
0.697





B2MG_VNHVTLSQPK_vs_SPRL1_VLTHSELAPLR
 51 & 140
0.046
0.700





CATD_VGFAEAAR_vs_ALS_IRPHTFTGLSGLR
 57 & 40
0.001
0.828





CATD_VGFAEAAR_vs_C163A_INPASLDK
 57 & 54
0.001
0.832





CATD_VGFAEAAR_vs_CHL1_VIAVNEVGR
 57 & 66
0.023
0.728





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
 57 & 78
0.017
0.738





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
 57 & 79
0.018
0.737





CATD_VGFAEAAR_vs_CSH_AHQLAIDTYQEFEETYIPK
 57 & 80
0.001
0.824





CATD_VGFAEAAR_vs_CSH_ISLLLIESWLEPVR
 57 & 81
0.001
0.819





CATD_VGFAEAAR_vs_FBLN1_TGYYFDGISR
 57 & 86
0.001
0.832





CATD_VGFAEAAR_vs_IBP1_VVESLAK
 57 & 97
0.004
0.791





CATD_VGFAEAAR_vs_IBP2_LIQGAPTIR
 57 & 98
0.003
0.793





CATD_VGFAEAAR_vs_IBP3_FLNVLSPR
 57 & 99
0.012
0.751





CATD_VGFAEAAR_vs_IBP3_YGQPLPGYTTK
 57 & 100
0.007
0.768





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
 57 & 103
0.006
0.776





CATD_VGFAEAAR_vs_ITIH4_ILDDLSPR
 57 & 112
0.003
0.797





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
 57 & 120
0.001
0.832





CATD_VGFAEAAR_vs_NCAM1_GLGEISAASEFK
 57 & 121
0.010
0.756





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
 57 & 126
0.000
0.859





CATD_VGFAEAAR_vs_PRG2_WNFAYWAAHQPWSR
 57 & 129
0.001
0.822





CATD_VGFAEAAR_vs_PSG1_FQLPGQK
 57 & 131
0.009
0.760





CATD_VGFAEAAR_vs_PSG3_VSAPSGTGHLPGLNPL
 57 & 134
0.001
0.821





CATD_VGFAEAAR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 57 & 135
0.006
0.777





CATD_VGFAEAAR_vs_PSG9_LFIPQITR
 57 & 136
0.014
0.747





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.003
0.802





CATD_VGFAEAAR_vs_SOM2.CSH_NYGLLYCFR
 57 & 138
0.001
0.823





CATD_VGFAEAAR_vs_SOM2.CSH_SVEGSCGF
 57 & 139
0.001
0.831





CATD_VGFAEAAR_vs_SPRL1_VLTHSELAPLR
 57 & 140
0.000
0.864





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.001
0.819





CATD_VGFAEAAR_vs_TENX_LSQLSVTDVTTSSLR
 57 & 142
0.006
0.776





CATD_VGFAEAAR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 57 & 144
0.005
0.779





CATD_VGFAEAAR_vs_VTDB_ELPEHTVK
 57 & 147
0.000
0.855





CATD_VSTLPAITLK_vs_ALS_IRPHTFTGLSGLR
 58 & 40
0.001
0.826





CATD_VSTLPAITLK_vs_C163A_INPASLDK
 58 & 54
0.012
0.752





CATD_VSTLPAITLK_vs_CHL1_VIAVNEVGR
 58 & 66
0.023
0.727





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
 58 & 78
0.029
0.718





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
 58 & 79
0.028
0.720





CATD_VSTLPAITLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 58 & 80
0.003
0.798





CATD_VSTLPAITLK_vs_CSH_ISLLLIESWLEPVR
 58 & 81
0.003
0.800





CATD_VSTLPAITLK_vs_FBLN1_TGYYFDGISR
 58 & 86
0.001
0.838





CATD_VSTLPAITLK_vs_IBP1_VVESLAK
 58 & 97
0.004
0.791





CATD_VSTLPAITLK_vs_IBP2_LIQGAPTIR
 58 & 98
0.003
0.797





CATD_VSTLPAITLK_vs_IBP3_FLNVLSPR
 58 & 99
0.006
0.774





CATD_VSTLPAITLK_vs_IBP3_YGQPLPGYTTK
 58 & 100
0.006
0.774





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
 58 & 103
0.005
0.779





CATD_VSTLPAITLK_vs_ITIH4_ILDDLSPR
 58 & 112
0.008
0.767





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
 58 & 120
0.002
0.805





CATD_VSTLPAITLK_vs_NCAM1_GLGEISAASEFK
 58 & 121
0.012
0.750





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
 58 & 126
0.001
0.844





CATD_VSTLPAITLK_vs_PRG2_WNFAYWAAHQPWSR
 58 & 129
0.004
0.785





CATD_VSTLPAITLK_vs_PSG1_FQLPGQK
 58 & 131
0.016
0.740





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
 58 & 134
0.001
0.831





CATD_VSTLPAITLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 58 & 135
0.018
0.736





CATD_VSTLPAITLK_vs_PSG9_LFIPQITR
 58 & 136
0.033
0.714





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
 58 & 18
0.002
0.803





CATD_VSTLPAITLK_vs_SOM2.CSH_NYGLLYCFR
 58 & 138
0.003
0.796





CATD_VSTLPAITLK_vs_SOM2.CSH_SVEGSCGF
 58 & 139
0.003
0.796





CATD_VSTLPAITLK_vs_SPRL1_VLTHSELAPLR
 58 & 140
0.001
0.830





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.001
0.820





CATD_VSTLPAITLK_vs_TENX_LSQLSVTDVTTSSLR
 58 & 142
0.008
0.767





CATD_VSTLPAITLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 58 & 144
0.009
0.760





CATD_VSTLPAITLK_vs_VTDB_ELPEHTVK
 58 & 147
0.001
0.819





CBPN_EALIQFLEQVHQGIK_vs_SHBG_IALGGLLFPASNLR
 59 & 18
0.008
0.764





CBPN_NNANGVDLNR_vs_SHBG_IALGGLLFPASNLR
 60 & 18
0.016
0.740





CBPN_NNANGVDLNR_vs_SPRL1_VLTHSELAPLR
 60 & 140
0.037
0.709





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.034
0.712





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.027
0.721





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.038
0.708





CD14_SWLAELQQWLKPGLK_vs_PGRP2_AGLLRPDYALLGHR
 62 & 126
0.029
0.718





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
 62 & 18
0.026
0.722





CD14_SWLAELQQWLKPGLK_vs_VTDB_ELPEHTVK
 62 & 147
0.021
0.731





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.045
0.701





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PGRP2_AGLLRPDYALLGHR
 82 & 126
0.045
0.701





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_IALGGLLFPASNLR
 82 & 18
0.032
0.715





ENPP2_TYLHTYESEI_vs_ALS_IRPHTFTGLSGLR
 83 & 40
0.031
0.715





ENPP2_TYLHTYESEI_vs_IBP1_VVESLAK
 83 & 97
0.047
0.699





ENPP2_TYLHTYESEI_vs_IBP2_LIQGAPTIR
 83 & 98
0.038
0.708





ENPP2_TYLHTYESEI_vs_ITIH4_ILDDLSPR
 83 & 112
0.047
0.699





ENPP2_TYLHTYESEI_vs_LYAM1_SYYWIGIR
 83 & 120
0.026
0.722





ENPP2_TYLHTYESEI_vs_PGRP2_AGLLRPDYALLGHR
 83 & 126
0.020
0.732





ENPP2_TYLHTYESEI_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 83 & 135
0.049
0.697





ENPP2_TYLHTYESEI_vs_SHBG_IALGGLLFPASNLR
 83 & 18
0.017
0.739





ENPP2_TYLHTYESEI_vs_SOM2.CSH_SVEGSCGF
 83 & 139
0.036
0.710





ENPP2_TYLHTYESEI_vs_SPRL1_VLTHSELAPLR
 83 & 140
0.028
0.720





ENPP2_TYLHTYESEI_vs_VTDB_ELPEHTVK
 83 & 147
0.025
0.725





F13B_GDTYPAELYITGSILR_vs_IBP2_LIQGAPTIR
 84 & 98
0.031
0.715





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.042
0.703





F13B_GDTYPAELYITGSILR_vs_PGRP2_AGLLRPDYALLGHR
 84 & 126
0.040
0.706





F13B_GDTYPAELYITGSILR_vs_SHBG_IALGGLLFPASNLR
 84 & 18
0.021
0.731





F13B_GDTYPAELYITGSILR_vs_SPRL1_VLTHSELAPLR
 84 & 140
0.042
0.703





FETUA_FSVVYAK_vs_IBP2_LIQGAPTIR
 88 & 98
0.026
0.722





FETUA_FSVVYAK_vs_ITIH4_ILDDLSPR
 88 & 112
0.024
0.726





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
 88 & 120
0.010
0.756





FETUA_FSVVYAK_vs_PGRP2_AGLLRPDYALLGHR
 88 & 126
0.031
0.715





FETUA_FSVVYAK_vs_PSG3_VSAPSGTGHLPGLNPL
 88 & 134
0.043
0.703





FETUA_FSVVYAK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 88 & 135
0.045
0.701





FETUA_FSVVYAK_vs_SHBG_IALGGLLFPASNLR
 88 & 18
0.021
0.731





FETUA_FSVVYAK_vs_SOM2.CSH_SVEGSCGF
 88 & 139
0.031
0.716





FETUA_FSVVYAK_vs_SPRL1_VLTHSELAPLR
 88 & 140
0.016
0.741





FETUA_FSVVYAK_vs_VTDB_ELPEHTVK
 88 & 147
0.001
0.818





FETUA_HTLNQIDEVK_vs_ALS_IRPHTFTGLSGLR
 89 & 40
0.033
0.713





FETUA_HTLNQIDEVK_vs_IBP2_LIQGAPTIR
 89 & 98
0.018
0.737





FETUA_HTLNQIDEVK_vs_ITIH4_ILDDLSPR
 89 & 112
0.022
0.729





FETUA_HTLNQIDEVK_vs_LYAM1_SYYWIGIR
 89 & 120
0.012
0.751





FETUA_HTLNQIDEVK_vs_PGRP2_AGLLRPDYALLGHR
 89 & 126
0.028
0.720





FETUA_HTLNQIDEVK_vs_PSG3_VSAPSGTGHLPGLNPL
 89 & 134
0.024
0.726





FETUA_HTLNQIDEVK_vs_SHBG_IALGGLLFPASNLR
 89 & 18
0.007
0.768





FETUA_HTLNQIDEVK_vs_SPRL1_VLTHSELAPLR
 89 & 140
0.008
0.764





FETUA_HTLNQIDEVK_vs_VTDB_ELPEHTVK
 89 & 147
0.003
0.792





HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPASNLR
 93 & 18
0.038
0.708





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.036
0.709





IBP6_GAQTLYVPNCDHR_vs_TENX_LSQLSVTDVTTSSLR
101 & 142
0.044
0.702





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.021
0.732





ITIH4_NPLVWVHASPEHVVVTR_vs_ITIH4_ILDDLSPR
113 & 112
0.022
0.729





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.040
0.706





KNG1_QVVAGLNFR_vs_PGRP2_AGLLRPDYALLGHR
117 & 126
0.025
0.725





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.006
0.773





KNG1_QVVAGLNFR_vs_VTDB_ELPEHTVK
117 & 147
0.049
0.697





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.033
0.713





PEDF_LQSLFDSPDFSK_vs_SHBG_IALGGLLFPASNLR
124 & 18
0.035
0.711





PEDF_LQSLFDSPDFSK_vs_VTDB_ELPEHTVK
124 & 147
0.034
0.712





PRDX2_GLFIIDGK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
128 & 135
0.049
0.697





PRDX2_GLFIIDGK_vs_SHBG_IALGGLLFPASNLR
128 & 18
0.035
0.711





PTGDS_GPGEDFR_vs_SHBG_IALGGLLFPASNLR
137 & 18
0.041
0.704





THBG_AVLHIGEK_vs_VTDB_ELPEHTVK
143 & 147
0.023
0.728





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.026
0.723





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.032
0.715





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.033
0.714
















TABLE 42







Reversal Classification Performance, weeks 20 and 21.


Reversal AUROC for gestational weeks 20 and 21 using a case vs 


control cut-off of <35 0/7 vs >=35 0/7 weeks, with BMI


stratification (>22 <= 37).










Reversal
SEQ ID NO:
pval
ROC_AUC 





A2GL_DLLLPQPDLR_vs_IBP1_VVESLAK
 34 & 97
0.042
0.734





A2GL_DLLLPQPDLR_vs_IBP2_LIQGAPTIR
 34 & 98
0.043
0.732





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.033
0.745





A2GL_DLLLPQPDLR_vs_SOM2.CSH_SVEGSCGF
 34 & 139
0.048
0.727





AFAM_DADPDTFFAK_vs_IBP2_LIQGAPTIR
 37 & 98
0.034
0.743





AFAM_DADPDTFFAK_vs_ITIH4_ILDDLSPR
 37 & 112
0.032
0.747





AFAM_DADPDTFFAK_vs_LYAM1_SYYWIGIR
 37 & 120
0.023
0.761





AFAM_DADPDTFFAK_vs_PGRP2_AGLLRPDYALLGHR
 37 & 126
0.032
0.747





AFAM_DADPDTFFAK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 37 & 135
0.043
0.732





AFAM_DADPDTFFAK_vs_SHBG_IALGGLLFPASNLR
 37 & 18
0.015
0.779





AFAM_DADPDTFFAK_vs_SOM2.CSH_SVEGSCGF
 37 & 139
0.039
0.738





AFAM_HFQNLGK_vs_ALS_IRPHTFTGLSGLR
 38 & 40
0.019
0.769





AFAM_HFQNLGK_vs_IBP1_VVESLAK
 38 & 97
0.042
0.734





AFAM_HFQNLGK_vs_IBP2_LIQGAPTIR
 38 & 98
0.014
0.781





AFAM_HFQNLGK_vs_ITIH4_ILDDLSPR
 38 & 112
0.008
0.807





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
 38 & 120
0.006
0.817





AFAM_HFQNLGK_vs_PGRP2_AGLLRPDYALLGHR
 38 & 126
0.010
0.797





AFAM_HFQNLGK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 38 & 135
0.033
0.745





AFAM_HFQNLGK_vs_SHBG_IALGGLLFPASNLR
 38 & 18
0.006
0.816





AFAM_HFQNLGK_vs_SOM2.CSH_SVEGSCGF
 38 & 139
0.014
0.783





AFAM_HFQNLGK_vs_SPRL1_VLTHSELAPLR
 38 & 140
0.020
0.767





AFAM_HFQNLGK_vs_VTDB_ELPEHTVK
 38 & 147
0.010
0.797





ANGT_DPTFIPAPIQAK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 42 & 135
0.047
0.729





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.012
0.788





APOH_ATVVYQGER_vs_IBP1_VVESLAK
 48 & 97
0.036
0.741





APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGHR
 48 & 126
0.033
0.745





APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
 48 & 18
0.020
0.767





B2MG_VEHSDLSFSK_vs_IBP2_LIQGAPTIR
 50 & 98
0.042
0.734





B2MG_VEHSDLSFSK_vs_SHBG_IALGGLLFPASNLR
 50 & 18
0.026
0.756





B2MG_VEHSDLSFSK_vs_SOM2.CSH_SVEGSCGF
 50 & 139
0.040
0.736





B2MG_VEHSDLSFSK_vs_TENX_LSQLSVTDVTTSSLR
 50 & 142
0.030
0.749





B2MG_VNHVTLSQPK_vs_IBP1_VVESLAK
 51 & 97
0.045
0.731





B2MG_VNHVTLSQPK_vs_IBP2_LIQGAPTIR
 51 & 98
0.032
0.747





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.042
0.734





B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
 51 & 18
0.019
0.769





B2MG_VNHVTLSQPK_vs_SOM2.CSH_SVEGSCGF
 51 & 139
0.039
0.738





B2MG_VNHVTLSQPK_vs_TENX_LSQLSVTDVTTSSLR
 51 & 142
0.019
0.769





CATD_VGFAEAAR_vs_ALS_IRPHTFTGLSGLR
 57 & 40
0.007
0.812





CATD_VGFAEAAR_vs_C163A_INPASLDK
 57 & 54
0.001
0.886





CATD_VGFAEAAR_vs_CHL1_VIAVNEVGR
 57 & 66
0.032
0.747





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
 57 & 78
0.019
0.769





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
 57 & 79
0.020
0.767





CATD_VGFAEAAR_vs_CSH_AHQLAIDTYQEFEETYIPK
 57 & 80
0.001
0.866





CATD_VGFAEAAR_vs_CSH_ISLLLIESWLEPVR
 57 & 81
0.001
0.868





CATD_VGFAEAAR_vs_FBLN1_TGYYFDGISR
 57 & 86
0.010
0.796





CATD_VGFAEAAR_vs_IBP1_VVESLAK
 57 & 97
0.001
0.870





CATD_VGFAEAAR_vs_IBP2_LIQGAPTIR
 57 & 98
0.001
0.868





CATD_VGFAEAAR_vs_IBP3_FLNVLSPR
 57 & 99
0.029
0.750





CATD_VGFAEAAR_vs_IBP3_YGQPLPGYTTK
 57 & 100
0.016
0.776





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
 57 & 103
0.030
0.749





CATD_VGFAEAAR_vs_ITIH4_ILDDLSPR
 57 & 112
0.003
0.837





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
 57 & 120
0.001
0.866





CATD_VGFAEAAR_vs_NCAM1_GLGEISAASEFK
 57 & 121
0.008
0.807





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
 57 & 126
0.001
0.892





CATD_VGFAEAAR_vs_PRG2_WNFAYWAAHQPWSR
 57 & 129
0.008
0.805





CATD_VGFAEAAR_vs_PSG1_FQLPGQK
 57 & 131
0.013
0.785





CATD_VGFAEAAR_vs_PSG3_VSAPSGTGHLPGLNPL
 57 & 134
0.016
0.778





CATD_VGFAEAAR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 57 & 135
0.003
0.846





CATD_VGFAEAAR_vs_PSG9_LFIPQITR
 57 & 136
0.009
0.801





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.003
0.841





CATD_VGFAEAAR_vs_SOM2.CSH_NYGLLYCFR
 57 & 138
0.001
0.868





CATD_VGFAEAAR_vs_SOM2.CSH_SVEGSCGF
 57 & 139
0.001
0.875





CATD_VGFAEAAR_vs_SPRL1_VLTHSELAPLR
 57 & 140
0.002
0.848





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.017
0.774





CATD_VGFAEAAR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 57 & 144
0.014
0.783





CATD_VGFAEAAR_vs_VTDB_ELPEHTVK
 57 & 147
0.002
0.848





CATD_VSTLPAITLK_vs_ALS_IRPHTFTGLSGLR
 58 & 40
0.001
0.866





CATD_VSTLPAITLK_vs_C163A_INPASLDK
 58 & 54
0.003
0.846





CATD_VSTLPAITLK_vs_CHL1_VIAVNEVGR
 58 & 66
0.010
0.796





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
 58 & 78
0.013
0.787





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
 58 & 79
0.011
0.794





CATD_VSTLPAITLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 58 & 80
0.001
0.886





CATD_VSTLPAITLK_vs_CSH_ISLLLIESWLEPVR
 58 & 81
0.001
0.895





CATD_VSTLPAITLK_vs_FBLN1_TGYYFDGISR
 58 & 86
0.003
0.843





CATD_VSTLPAITLK_vs_IBP1_VVESLAK
 58 & 97
0.000
0.906





CATD_VSTLPAITLK_vs_IBP2_LIQGAPTIR
 58 & 98
0.001
0.882





CATD_VSTLPAITLK_vs_IBP3_FLNVLSPR
 58 & 99
0.009
0.799





CATD_VSTLPAITLK_vs_IBP3_YGQPLPGYTTK
 58 & 100
0.010
0.797





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
 58 & 103
0.016
0.778





CATD_VSTLPAITLK_vs_ITIH4_ILDDLSPR
 58 & 112
0.001
0.870





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
 58 & 120
0.001
0.888





CATD_VSTLPAITLK_vs_NCAM1_GLGEISAASEFK
 58 & 121
0.004
0.826





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
 58 & 126
0.000
0.926





CATD_VSTLPAITLK_vs_PRG2_WNFAYWAAHQPWSR
 58 & 129
0.016
0.776





CATD_VSTLPAITLK_vs_PSG1_FQLPGQK
 58 & 131
0.013
0.787





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
 58 & 134
0.006
0.814





CATD_VSTLPAITLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 58 & 135
0.004
0.830





CATD_VSTLPAITLK_vs_PSG9_LFIPQITR
 58 & 136
0.010
0.797





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
 58 & 18
0.001
0.875





CATD_VSTLPAITLK_vs_SOM2.CSH_NYGLLYCFR
 58 & 138
0.001
0.875





CATD_VSTLPAITLK_vs_SOM2.CSH_SVEGSCGF
 58 & 139
0.001
0.886





CATD_VSTLPAITLK_vs_SPRL1_VLTHSELAPLR
 58 & 140
0.001
0.868





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.005
0.821





CATD_VSTLPAITLK_vs_TENX_LSQLSVTDVTTSSLR
 58 & 142
0.028
0.752





CATD_VSTLPAITLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 58 & 144
0.006
0.816





CATD_VSTLPAITLK_vs_VTDB_ELPEHTVK
 58 & 147
0.002
0.863





CBPN_EALIQFLEQVHQGIK_vs_SHBG_IALGGLLFPASNLR
 59 & 18
0.014
0.783





CBPN_EALIQFLEQVHQGIK_vs_TENX_LSQLSVTDVTTSSLR
 59 & 142
0.043
0.732





CBPN_NNANGVDLNR_vs_SHBG_IALGGLLFPASNLR
 60 & 18
0.011
0.794





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.048
0.727





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.017
0.774





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LSQLSVTDVTTSSLR
 61 & 142
0.037
0.740





CD14_SWLAELQQWLKPGLK_vs_IBP1_VVESLAK
 62 & 97
0.047
0.729





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
 62 & 18
0.024
0.759





CD14_SWLAELQQWLKPGLK_vs_TENX_LSQLSVTDVTTSSLR
 62 & 142
0.036
0.741





CFAB_YGLVTYATYPK_vs_SHBG_IALGGLLFPASNLR
 64 & 18
0.042
0.734





CLUS_ASSIIDELFQDR_vs_SHBG_IALGGLLFPASNLR
 67 & 18
0.037
0.740





CLUS_ASSIIDELFQDR_vs_TENX_LSQLSVTDVTTSSLR
 67 & 142
0.018
0.772





CLUS_LFDSDPITVTVPVEVSR_vs_TENX_LSQLSVTDVTTSSLR
 68 & 142
0.008
0.803





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.045
0.731





CO5_TLLPVSKPEIR_vs_TENX_LSQLSVTDVTTSSLR
 70 & 142
0.012
0.790





CO5_VFQFLEK_vs_TENX_LSQLSVTDVTTSSLR
 71 & 142
0.026
0.756





CO6_ALNHLPLEYNSALYSR_vs_SHBG_IALGGLLFPASNLR
 72 & 18
0.029
0.750





CO6_ALNHLPLEYNSALYSR_vs_TENX_LSQLSVTDVTTSSLR
 72 & 142
0.007
0.810





CO8B_QALEEFQK_vs_IBP1_VVESLAK
 76 & 97
0.043
0.732





CO8B_QALEEFQK_vs_SHBG_IALGGLLFPASNLR
 76 & 18
0.033
0.745





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IBP1_VVESLAK
 82 & 97
0.048
0.727





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IBP2_LIQGAPTIR
 82 & 98
0.040
0.736





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PGRP2_AGLLRPDYALLGHR
 82 & 126
0.043
0.732





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 82 & 135
0.033
0.745





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_IALGGLLFPASNLR
 82 & 18
0.032
0.747





ENPP2_TYLHTYESEI_vs_IBP1_VVESLAK
 83 & 97
0.045
0.731





ENPP2_TYLHTYESEI_vs_IBP2_LIQGAPTIR
 83 & 98
0.039
0.738





ENPP2_TYLHTYESEI_vs_PGRP2_AGLLRPDYALLGHR
 83 & 126
0.043
0.732





ENPP2_TYLHTYESEI_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 83 & 135
0.037
0.740





ENPP2_TYLHTYESEI_vs_SHBG_IALGGLLFPASNLR
 83 & 18
0.020
0.767





ENPP2_TYLHTYESEI_vs_SOM2.CSH_SVEGSCGF
 83 & 139
0.042
0.734





F13B_GDTYPAELYITGSILR_vs_IBP1_VVESLAK
 84 & 97
0.048
0.727





F13B_GDTYPAELYITGSILR_vs_IBP2_LIQGAPTIR
 84 & 98
0.020
0.767





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.036
0.741





F13B_GDTYPAELYITGSILR_vs_PGRP2_AGLLRPDYALLGHR
 84 & 126
0.047
0.729





F13B_GDTYPAELYITGSILR_vs_SHBG_IALGGLLFPASNLR
 84 & 18
0.011
0.794





F13B_GDTYPAELYITGSILR_vs_TENX_LSQLSVTDVTTSSLR
 84 & 142
0.040
0.736





FBLN3_IPSNPSHR_vs_TENX_LSQLSVTDVTTSSLR
 87 & 142
0.016
0.778





FETUA_FSVVYAK_vs_IBP1_VVESLAK
 88 & 97
0.034
0.743





FETUA_FSVVYAK_vs_IBP2_LIQGAPTIR
 88 & 98
0.017
0.774





FETUA_FSVVYAK_vs_ITIH4_ILDDLSPR
 88 & 112
0.012
0.790





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
 88 & 120
0.007
0.808





FETUA_FSVVYAK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 88 & 135
0.021
0.765





FETUA_FSVVYAK_vs_SHBG_IALGGLLFPASNLR
 88 & 18
0.013
0.787





FETUA_FSVVYAK_vs_SOM2.CSH_SVEGSCGF
 88 & 139
0.023
0.761





FETUA_FSVVYAK_vs_VTDB_ELPEHTVK
 88 & 147
0.010
0.797





FETUA_HTLNQIDEVK_vs_IBP1_VVESLAK
 89 & 97
0.036
0.741





FETUA_HTLNQIDEVK_vs_IBP2_LIQGAPTIR
 89 & 98
0.009
0.801





FETUA_HTLNQIDEVK_vs_ITIH4_ILDDLSPR
 89 & 112
0.003
0.837





FETUA_HTLNQIDEVK_vs_LYAM1_SYYWIGIR
 89 & 120
0.005
0.823





FETUA_HTLNQIDEVK_vs_PGRP2_AGLLRPDYALLGHR
 89 & 126
0.016
0.778





FETUA_HTLNQIDEVK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 89 & 135
0.026
0.756





FETUA_HTLNQIDEVK_vs_SHBG_IALGGLLFPASNLR
 89 & 18
0.003
0.844





FETUA_HTLNQIDEVK_vs_SOM2.CSH_SVEGSCGF
 89 & 139
0.021
0.765





FETUA_HTLNQIDEVK_vs_SPRL1_VLTHSELAPLR
 89 & 140
0.019
0.769





FETUA_HTLNQIDEVK_vs_VTDB_ELPEHTVK
 89 & 147
0.004
0.830





HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPASNLR
 93 & 18
0.021
0.765





HEMO_NFPSPVDAAFR_vs_TENX_LSQLSVTDVTTSSLR
 93 & 142
0.023
0.761





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.023
0.761





IBP4_QCHPALDGQR_vs_TENX_LSQLSVTDVTTSSLR
  2 & 142
0.018
0.772





IBP6_GAQTLYVPNCDHR_vs_TENX_LSQLSVTDVTTSSLR
101 & 142
0.008
0.805





IBP6_HLDSVLQQLQTEVYR_vs_SHBG_IALGGLLFPASNLR
102 & 18
0.042
0.734





IBP6_HLDSVLQQLQTEVYR_vs_TENX_LSQLSVTDVTTSSLR
102 & 142
0.006
0.816





ITIH3_ALDLSLK_vs_IBP1_VVESLAK
111 & 97
0.032
0.747





ITIH3_ALDLSLK_vs_IBP2_LIQGAPTIR
111 & 98
0.019
0.770





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.006
0.816





ITIH4_NPLVWVHASPEHVVVTR_vs_ALS_IRPHTFTGLSGLR
113 & 40
0.028
0.753





ITIH4_NPLVWVHASPEHVVVTR_vs_CSH_AHQLAIDTYQEFEETYIPK
113 & 80
0.043
0.733





ITIH4_NPLVWVHASPEHVVVTR_vs_FBLN1_TGYYFDGISR
113 & 86
0.019
0.769





ITIH4_NPLVWVHASPEHVVVTR_vs_IBP3_FLNVLSPR
113 & 99
0.009
0.799





ITIH4_NPLVWVHASPEHVVVTR_vs_IBP3_YGQPLPGYTTK
113 & 100
0.023
0.762





ITIH4_NPLVWVHASPEHVVVTR_vs_IGF2_GIVEECCFR
113 & 103
0.010
0.795





ITIH4_NPLVWVHASPEHVVVTR_vs_ITIH4_ILDDLSPR
113 & 112
0.048
0.727





ITIH4_NPLVWVHASPEHVVVTR_vs_NCAM1_GLGEISAASEFK
113 & 121
0.033
0.745





ITIH4_NPLVWVHASPEHVVVTR_vs_PSG3_VSAPSGTGHLPGLNPL
113 & 134
0.010
0.797





ITIH4_NPLVWVHASPEHVVVTR_vs_SOM2.CSH_NYGLLYCFR
113 & 138
0.036
0.742





ITIH4_NPLVWVHASPEHVVVTR_vs_SPRL1_VLTHSELAPLR
113 & 140
0.038
0.738





ITIH4_NPLVWVHASPEHVVVTR_vs_TENX_LNWEAPPGAFDSFLLR
113 & 141
0.021
0.766





ITIH4_NPLVWVHASPEHVVVTR_vs_TENX_LSQLSVTDVTTSSLR
113 & 142 
0.003
0.842





ITIH4_NPLVWVHASPEHVVVTR_vs_VTDB_ELPEHTVK
113 & 147
0.021
0.766





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_TENX_LSQLSVTDVTTSSLR
114 & 142
0.037
0.740





KNG1_DIPTNSPELEETLTHTITK_vs_TENX_LSQLSVTDVTTSSLR
116 & 142
0.020
0.767





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.028
0.752





KNG1_QVVAGLNFR_vs_TENX_LSQLSVTDVTTSSLR
117 & 142 
0.021
0.765





LBP_ITGFLKPGK_vs_TENX_LSQLSVTDVTTSSLR
118 & 142
0.018
0.772





PAPP1_DIPHWLNPTR_vs_IBP1_VVESLAK
122 & 97
0.037
0.740





PAPP1_DIPHWLNPTR_vs_IBP2_LIQGAPTIR
122 & 98
0.023
0.761





PAPP1_DIPHWLNPTR_vs_PGRP2_AGLLRPDYALLGHR
122 & 126
0.037
0.740





PAPP1_DIPHWLNPTR_vs_SHBG_IALGGLLFPASNLR
122 & 18
0.033
0.745





PAPP1_DIPHWLNPTR_vs_SOM2.CSH_SVEGSCGF
122 & 139
0.010
0.797





PEDF_LQSLFDSPDFSK_vs_IBP1_VVESLAK
124 & 97
0.036
0.741





PEDF_LQSLFDSPDFSK_vs_IBP2_LIQGAPTIR
124 & 98
0.040
0.736





PEDF_LQSLFDSPDFSK_vs_ITIH4_ILDDLSPR
124 & 112
0.025
0.758





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.028
0.752





PEDF_LQSLFDSPDFSK_vs_PGRP2_AGLLRPDYALLGHR
124 & 126
0.048
0.727





PEDF_LQSLFDSPDFSK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
124 & 135
0.045
0.731





PEDF_LQSLFDSPDFSK_vs_SHBG_IALGGLLFPASNLR
124 & 18
0.011
0.794





PEDF_LQSLFDSPDFSK_vs_VTDB_ELPEHTVK
124 & 147
0.030
0.749





PEDF_TVQAVLTVPK_vs_SHBG_IALGGLLFPASNLR
125 & 18
0.024
0.759





PEDF_TVQAVLTVPK_vs_TENX_LSQLSVTDVTTSSLR
125 & 142
0.020
0.767





PSG11_LFIPQITPK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
132 & 135
0.026
0.756





PSG11_LFIPQITPK_vs_SOM2.CSH_SVEGSCGF
132 & 139
0.028
0.752





PTGDS_GPGEDFR_vs_SHBG_IALGGLLFPASNLR
137 & 18
0.030
0.749





PTGDS_GPGEDFR_vs_SOM2.CSH_SVEGSCGF
137 & 139
0.042
0.734





THBG_AVLHIGEK_vs_SHBG_IALGGLLFPASNLR
143 & 18
0.040
0.736





THBG_AVLHIGEK_vs_TENX_LSQLSVTDVTTSSLR
143 & 142
0.025
0.758





VTNC_GQYCYELDEK_vs_ITIH4_ILDDLSPR
149 & 112
0.026
0.756





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.029
0.750





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.010
0.797





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.018
0.772
















TABLE 43







Reversal Classification Performance, weeks 17 through 21.


Reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs 


control cut-off of <37 0/7 vs >=37 0/7 weeks, without


BMI stratification.










Reversal
SEQ ID NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_PSG3_VSAPSGTGHLPGLNPL
 34 & 134
0.002
0.609





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.002
0.610





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.001
0.614





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.003
0.605





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.001
0.620





AFAM_HFQNLGK_vs_PSG3_VSAPSGTGHLPGLNPL
 38 & 134
0.003
0.608





APOC3_GWVTDGFSSLK_vs_ALS_IRPHTFTGLSGLR
 47 & 40
0.001
0.622





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.001
0.623





APOC3_GWVTDGFSSLK_vs_CHL1_VIAVNEVGR
 47 & 66
0.001
0.618





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.001
0.618





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.001
0.623





APOC3_GWVTDGFSSLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 47 & 80
0.001
0.624





APOC3_GWVTDGFSSLK_vs_CSH_ISLLLIESWLEPVR
 47 & 81
0.002
0.610





APOC3_GWVTDGFSSLK_vs_FBLN1_TGYYFDGISR
 47 & 86
0.001
0.618





APOC3_GWVTDGFSSLK_vs_IBP2_LIQGAPTIR
 47 & 98
0.004
0.602





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.000
0.633





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
 47 & 100
0.000
0.632





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.000
0.640





APOC3_GWVTDGFSSLK_vs_ITIH4_ILDDLSPR
 47 & 112
0.001
0.623





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.000
0.633





APOC3_GWVTDGFSSLK_vs_NCAM1_GLGEISAASEFK
 47 & 121
0.001
0.618





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.000
0.630





APOC3_GWVTDGFSSLK_vs_PRG2_WNFAYWAAHQPWSR
 47 & 129
0.001
0.622





APOC3_GWVTDGFSSLK_vs_PSG1_FQLPGQK
 47 & 131
0.004
0.603





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.000
0.644





APOC3_GWVTDGFSSLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 47 & 135
0.003
0.607





APOC3_GWVTDGFSSLK_vs_PSG9_LFIPQITR
 47 & 136
0.004
0.601





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.000
0.630





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_NYGLLYCFR
 47 & 138
0.003
0.605





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_SVEGSCGF
 47 & 139
0.001
0.616





APOC3_GWVTDGFSSLK_vs_SPRL1_VLTHSELAPLR
 47 & 140
0.002
0.609





APOC3_GWVTDGFSSLK_vs_TENX_LNWEAPPGAFDSFLLR
 47 & 141
0.000
0.631





APOC3_GWVTDGFSSLK_vs_TENX_LSQLSVTDVTTSSLR
 47 & 142
0.001
0.624





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.000
0.628





APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
 47 & 147
0.000
0.627





APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
 48 & 103
0.002
0.613





APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLNPL
 48 & 134
0.002
0.612





APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
 48 & 18
0.003
0.606





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
 51 & 103
0.003
0.607





B2MG_VNHVTLSQPK_vs_PSG3_VSAPSGTGHLPGLNPL
 51 & 134
0.004
0.603





B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
 51 & 18
0.002
0.609





C1QB_VPGLYYFTYHASSR_vs_IGF2_GIVEECCFR
 55 & 103
0.002
0.613





C1QB_VPGLYYFTYHASSR_vs_PGRP2_AGLLRPDYALLGHR
 55 & 126
0.005
0.601





C1QB_VPGLYYFTYHASSR_vs_PRG2_WNFAYWAAHQPWSR
 55 & 129
0.005
0.601





C1QB_VPGLYYFTYHASSR_vs_PSG3_VSAPSGTGHLPGLNPL
 55 & 134
0.003
0.605





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.001
0.616





C1QB_VPGLYYFTYHASSR_vs_TENX_LNWEAPPGAFDSFLLR
 55 & 141
0.003
0.605





CATD_VGFAEAAR_vs_PSG3_VSAPSGTGHLPGLNPL
 57 & 134
0.002
0.612





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.005
0.600





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.003
0.606





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
 58 & 134
0.003
0.606





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
 58 & 18
0.005
0.600





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.005
0.601





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
 61 & 103
0.004
0.604





CD14_LTVGAAQVPAQLLVGALR_vs_PSG3_VSAPSGTGHLPGLNPL
 61 & 134
0.003
0.605





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.003
0.605





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LNWEAPPGAFDSFLLR
 61 & 141
0.004
0.602





CD14_SWLAELQQWLKPGLK_vs_PSG3_VSAPSGTGHLPGLNPL
 62 & 134
0.004
0.604





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
 62 & 18
0.002
0.609





CD14_SWLAELQQWLKPGLK_vs_TENX_LNWEAPPGAFDSFLLR
 62 & 141
0.004
0.602





CFAB_YGLVTYATYPK_vs_CHL1_VIAVNEVGR
 64 & 66
0.002
0.608





CFAB_YGLVTYATYPK_vs_IGF2_GIVEECCFR
 64 & 103
0.001
0.623





CFAB_YGLVTYATYPK_vs_LYAM1_SYYWIGIR
 64 & 120
0.004
0.603





CFAB_YGLVTYATYPK_vs_PGRP2_AGLLRPDYALLGHR
 64 & 126
0.003
0.608





CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGLNPL
 64 & 134
0.000
0.632





CFAB_YGLVTYATYPK_vs_SHBG_IALGGLLFPASNLR
 64 & 18
0.001
0.621





CFAB_YGLVTYATYPK_vs_TENX_LNWEAPPGAFDSFLLR
 64 & 141
0.002
0.611





CFAB_YGLVTYATYPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 64 & 144
0.001
0.613





CFAB_YGLVTYATYPK_vs_VTDB_ELPEHTVK
 64 & 147
0.004
0.601





CO5_TLLPVSKPEIR_vs_IGF2_GIVEECCFR
 70 & 103
0.004
0.603





CO5_TLLPVSKPEIR_vs_PSG3_VSAPSGTGHLPGLNPL
 70 & 134
0.001
0.618





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.002
0.610





CO5_TLLPVSKPEIR_vs_TENX_LNWEAPPGAFDSFLLR
 70 & 141
0.004
0.602





CO5_VFQFLEK_vs_PSG3_VSAPSGTGHLPGLNPL
 71 & 134
0.001
0.614





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
 71 & 18
0.002
0.612





CO5_VFQFLEK_vs_TENX_LNWEAPPGAFDSFLLR
 71 & 141
0.004
0.602





CO6_ALNHLPLEYNSALYSR_vs_SHBG_IALGGLLFPASNLR
 72 & 18
0.004
0.603





CO8A_SLLQPNK_vs_IGF2_GIVEECCFR
 74 & 103
0.001
0.617





CO8A_SLLQPNK_vs_PSG3_VSAPSGTGHLPGLNPL
 74 & 134
0.002
0.613





CO8A_SLLQPNK_vs_SHBG_IALGGLLFPASNLR
 74 & 18
0.002
0.608





CO8A_SLLQPNK_vs_TENX_LNWEAPPGAFDSFLLR
 74 & 141
0.002
0.612





CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
 76 & 103
0.001
0.620





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
 76 & 134
0.001
0.619





CO8B_QALEEFQK_vs_SHBG_IALGGLLFPASNLR
 76 & 18
0.003
0.606





CO8B_QALEEFQK_vs_TENX_LNWEAPPGAFDSFLLR
 76 & 141
0.001
0.616





CO8B_QALEEFQK_vs_TENX_LSQLSVTDVTTSSLR
 76 & 142
0.003
0.606





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG3_VSAPSGTGHLPGLNPL
 82 & 134
0.003
0.604





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_IALGGLLFPASNLR
 82 & 18
0.001
0.617





ENPP2_TYLHTYESEI_vs_IGF2_GIVEECCFR
 83 & 103
0.004
0.602





ENPP2_TYLHTYESEI_vs_LYAM1_SYYWIGIR
 83 & 120
0.004
0.602





ENPP2_TYLHTYESEI_vs_PSG3_VSAPSGTGHLPGLNPL
 83 & 134
0.004
0.602





ENPP2_TYLHTYESEI_vs_SHBG_IALGGLLFPASNLR
 83 & 18
0.002
0.611





FBLN3_IPSNPSHR_vs_SHBG_IALGGLLFPASNLR
 87 & 18
0.003
0.605





FETUA_FSVVYAK_vs_IGF2_GIVEECCFR
 88 & 103
0.000
0.629





FETUA_FSVVYAK_vs_PSG3_VSAPSGTGHLPGLNPL
 88 & 134
0.001
0.617





FETUA_FSVVYAK_vs_SHBG_IALGGLLFPASNLR
 88 & 18
0.004
0.604





FETUA_FSVVYAK_vs_TENX_LNWEAPPGAFDSFLLR
 88 & 141
0.003
0.607





FETUA_HTLNQIDEVK_vs_IGF2_GIVEECCFR
 89 & 103
0.002
0.610





FETUA_HTLNQIDEVK_vs_PSG3_VSAPSGTGHLPGLNPL
 89 & 134
0.002
0.612





FETUA_HTLNQIDEVK_vs_SHBG_IALGGLLFPASNLR
 89 & 18
0.004
0.603





FETUA_HTLNQIDEVK_vs_TENX_LNWEAPPGAFDSFLLR
 89 & 141
0.002
0.612





HABP2_FLNWIK_vs_CHL1_VIAVNEVGR
 92 & 66
0.003
0.607





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.000
0.628





HABP2_FLNWIK_vs_PSG3_VSAPSGTGHLPGLNPL
 92 & 134
0.001
0.623





HABP2_FLNWIK_vs_SHBG_IALGGLLFPASNLR
 92 & 18
0.003
0.607





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.001
0.617





HABP2_FLNWIK_vs_TENX_LSQLSVTDVTTSSLR
 92 & 142
0.004
0.601





HEMO_NFPSPVDAAFR_vs_PSG3_VSAPSGTGHLPGLNPL
 93 & 134
0.005
0.600





HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPASNLR
 93 & 18
0.001
0.614





HEMO_NFPSPVDAAFR_vs_TENX_LNWEAPPGAFDSFLLR
 93 & 141
0.004
0.601





IBP4_QCHPALDGQR_vs_CHL1_VIAVNEVGR
  2 & 66
0.002
0.610





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.004
0.601





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.000
0.626





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.003
0.606





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
  2 & 126
0.000
0.625





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.000
0.644





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.000
0.635





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFDSFLLR
  2 & 141
0.001
0.619





INHBC_LDFHFSSDR_vs_CHL1_VIAVNEVGR
107 & 66
0.002
0.613





INHBC_LDFHFSSDR_vs_IBP3_FLNVLSPR
107 & 99
0.001
0.614





INHBC_LDFHFSSDR_vs_IBP3_YGQPLPGYTTK
107 & 100
0.001
0.617





INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 & 103
0.000
0.637





INHBC_LDFHFSSDR_vs_ITIH4_ILDDLSPR
107 & 112
0.005
0.600





INHBC_LDFHFSSDR_vs_LYAM1_SYYWIGIR
107 & 120
0.004
0.601





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.001
0.621





INHBC_LDFHFSSDR_vs_PRG2_WNFAYWAAHQPWSR
107 & 129
0.003
0.605





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.000
0.636





INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNLR
107 & 18
0.001
0.617





INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDSFLLR
107 & 141
0.000
0.627





INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSSLR
107 & 142
0.002
0.610





INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
107 & 144
0.003
0.606





INHBC_LDFHFSSDR_vs_VTDB_ELPEHTVK
107 & 147
0.001
0.613





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.000
0.625





KNG1_DIPTNSPELEETLTHTITK_vs_PSG3_VSAPSGTGHLPGLNPL
116 & 134
0.002
0.609





KNG1_DIPTNSPELEETLTHTITK_vs_SHBG_IALGGLLFPASNLR
116 & 18
0.004
0.601





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.005
0.601





LBP_ITGFLKPGK_vs_CHL1_VIAVNEVGR
118 & 66
0.004
0.602





LBP_ITGFLKPGK_vs_CRIS3_YEDLYSNCK
118 & 79
0.003
0.606





LBP_ITGFLKPGK_vs_IGF2_GIVEECCFR
118 & 103
0.002
0.612





LBP_ITGFLKPGK_vs_LYAM1_SYYWIGIR
118 & 120
0.003
0.607





LBP_ITGFLKPGK_vs_PGRP2_AGLLRPDYALLGHR
118 & 126
0.003
0.605





LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNPL
118 & 134
0.000
0.638





LBP_ITGFLKPGK_vs_SHBG_IALGGLLFPASNLR
118 & 18
0.001
0.621





LBP_ITGFLKPGK_vs_TENX_LNWEAPPGAFDSFLLR
118 & 141
0.005
0.600





LBP_ITGFLKPGK_vs_VTDB_ELPEHTVK
118 & 147
0.004
0.601





LBP_ITLPDFTGDLR_vs_C163A_INPASLDK
119 & 54
0.002
0.608





LBP_ITLPDFTGDLR_vs_CHL1_VIAVNEVGR
119 & 66
0.001
0.619





LBP_ITLPDFTGDLR_vs_CRIS3_AVSPPAR
119 & 78
0.001
0.615





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.001
0.620





LBP_ITLPDFTGDLR_vs_CSH_AHQLAIDTYQEFEETYIPK
119 & 80
0.004
0.603





LBP_ITLPDFTGDLR_vs_IBP3_FLNVLSPR
119 & 99
0.003
0.604





LBP_ITLPDFTGDLR_vs_IBP3_YGQPLPGYTTK
119 & 100
0.002
0.610





LBP_ITLPDFTGDLR_vs_IGF2_GIVEECCFR
119 & 103
0.000
0.629





LBP_ITLPDFTGDLR_vs_ITIH4_ILDDLSPR
119 & 112
0.002
0.608





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.000
0.625





LBP_ITLPDFTGDLR_vs_NCAM1_GLGEISAASEFK
119 & 121
0.003
0.606





LBP_ITLPDFTGDLR_vs_PGRP2_AGLLRPDYALLGHR
119 & 126
0.001
0.622





LBP_ITLPDFTGDLR_vs_PRG2_WNFAYWAAHQPWSR
119 & 129
0.002
0.611





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGLNPL
119 & 134
0.000
0.651





LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.000
0.636





LBP_ITLPDFTGDLR_vs_SOM2.CSH_SVEGSCGF
119 & 139
0.003
0.608





LBP_ITLPDFTGDLR_vs_TENX_LNWEAPPGAFDSFLLR
119 & 141
0.001
0.619





LBP_ITLPDFTGDLR_vs_TENX_LSQLSVTDVTTSSLR
119 & 142
0.003
0.606





LBP_ITLPDFTGDLR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
119 & 144
0.002
0.610





LBP_ITLPDFTGDLR_vs_VTDB_ELPEHTVK
119 & 147
0.000
0.626





PEDF_LQSLFDSPDFSK_vs_IGF2_GIVEECCFR
124 & 103
0.004
0.602





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.005
0.601





PEDF_LQSLFDSPDFSK_vs_PSG3_VSAPSGTGHLPGLNPL
124 & 134
0.001
0.617





PEDF_LQSLFDSPDFSK_vs_SHBG_IALGGLLFPASNLR
124 & 18
0.004
0.603





PEDF_LQSLFDSPDFSK_vs_TENX_LNWEAPPGAFDSFLLR
124 & 141
0.001
0.614





PEDF_LQSLFDSPDFSK_vs_TENX_LSQLSVTDVTTSSLR
124 & 142
0.004
0.602





PEDF_TVQAVLTVPK_vs_IGF2_GIVEECCFR
125 & 103
0.003
0.608





PEDF_TVQAVLTVPK_vs_PSG3_VSAPSGTGHLPGLNPL
125 & 134
0.002
0.613





PEDF_TVQAVLTVPK_vs_TENX_LNWEAPPGAFDSFLLR
125 & 141
0.002
0.610





VTNC_GQYCYELDEK_vs_ALS_IRPHTFTGLSGLR
149 & 40
0.005
0.600





VTNC_GQYCYELDEK_vs_CHL1_VIAVNEVGR
149 & 66
0.002
0.613





VTNC_GQYCYELDEK_vs_IBP3_FLNVLSPR
149 & 99
0.002
0.609





VTNC_GQYCYELDEK_vs_IBP3_YGQPLPGYTTK
149 & 100
0.001
0.618





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.000
0.636





VTNC_GQYCYELDEK_vs_ITIH4_ILDDLSPR
149 & 112
0.004
0.603





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.001
0.617





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.001
0.621





VTNC_GQYCYELDEK_vs_PRG2_WNFAYWAAHQPWSR
149 & 129
0.003
0.608





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.000
0.646





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.000
0.640





VTNC_GQYCYELDEK_vs_TENX_LNWEAPPGAFDSFLLR
149 & 141
0.001
0.619





VTNC_GQYCYELDEK_vs_TENX_LSQLSVTDVTTSSLR
149 & 142
0.004
0.604





VTNC_GQYCYELDEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
149 & 144
0.002
0.609





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.000
0.630





VTNC_VDTVDPPYPR_vs_CHL1_VIAVNEVGR
150 & 66
0.001
0.615





VTNC_VDTVDPPYPR_vs_IBP3_YGQPLPGYTTK
150 & 100
0.003
0.606





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.000
0.631





VTNC_VDTVDPPYPR_vs_ITIH4_ILDDLSPR
150 & 112
0.004
0.604





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.001
0.622





VTNC_VDTVDPPYPR_vs_NCAM1_GLGEISAASEFK
150 & 121
0.005
0.601





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126 
0.001
0.617





VTNC_VDTVDPPYPR_vs_PRG2_WNFAYWAAHQPWSR
150 & 129
0.004
0.603





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.000
0.642





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.000
0.632





VTNC_VDTVDPPYPR_vs_TENX_LNWEAPPGAFDSFLLR
150 & 141
0.001
0.616





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.000
0.642
















TABLE 44







Reversal Classification Performance, weeks 17 through 21.


Reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs 


control cut-off of <37 0/7 vs >=37 0/7 weeks, with


BMI stratification (>22 <= 37).










Reversal
SEQ ID NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_CRIS3_AVSPPAR
 34 & 78
0.016
0.604





A2GL_DLLLPQPDLR_vs_CRIS3_YEDLYSNCK
 34 & 79
0.008
0.613





A2GL_DLLLPQPDLR_vs_IGF2_GIVEECCFR
 34 & 103
0.006
0.617





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.003
0.629





A2GL_DLLLPQPDLR_vs_PGRP2_AGLLRPDYALLGHR
 34 & 126
0.011
0.609





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.009
0.612





AFAM_DADPDTFFAK_vs_IBP3_FLNVLSPR
 37 & 99
0.014
0.605





AFAM_DADPDTFFAK_vs_IBP3_YGQPLPGYTTK
 37 & 100
0.004
0.623





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.002
0.636





AFAM_DADPDTFFAK_vs_PSG3_VSAPSGTGHLPGLNPL
 37 & 134
0.020
0.600





AFAM_HFQNLGK_vs_CHL1_VIAVNEVGR
 38 & 66
0.018
0.602





AFAM_HFQNLGK_vs_IBP3_FLNVLSPR
 38 & 99
0.005
0.619





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.002
0.635





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.001
0.637





AFAM_HFQNLGK_vs_PSG3_VSAPSGTGHLPGLNPL
 38 & 134
0.011
0.609





ANGT_DPTFIPAPIQAK_vs_CHL1_VIAVNEVGR
 42 & 66
0.015
0.605





ANGT_DPTFIPAPIQAK_vs_CRIS3_AVSPPAR
 42 & 78
0.007
0.615





ANGT_DPTFIPAPIQAK_vs_CRIS3_YEDLYSNCK
 42 & 79
0.006
0.618





ANGT_DPTFIPAPIQAK_vs_IBP3_YGQPLPGYTTK
 42 & 100
0.019
0.601





ANGT_DPTFIPAPIQAK_vs_IGF2_GIVEECCFR
 42 & 103
0.008
0.614





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.009
0.612





ANGT_DPTFIPAPIQAK_vs_PGRP2_AGLLRPDYALLGHR
 42 & 126
0.016
0.604





ANGT_DPTFIPAPIQAK_vs_PSG3_VSAPSGTGHLPGLNPL
 42 & 134
0.012
0.608





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.003
0.626





ANGT_DPTFIPAPIQAK_vs_SOM2.CSH_SVEGSCGF
 42 & 139
0.013
0.607





ANGT_DPTFIPAPIQAK_vs_TENX_LNWEAPPGAFDSFLLR
 42 & 141
0.012
0.607





APOC3_GWVTDGFSSLK_vs_ALS_IRPHTFTGLSGLR
 47 & 40
0.010
0.610





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.003
0.628





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.003
0.627





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.002
0.632





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.004
0.625





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
 47 & 100
0.005
0.621





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.003
0.628





APOC3_GWVTDGFSSLK_vs_ITIH4_ILDDLSPR
 47 & 112
0.016
0.603





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.002
0.630





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.006
0.617





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.005
0.621





APOC3_GWVTDGFSSLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 47 & 135
0.008
0.613





APOC3_GWVTDGFSSLK_vs_PSG9_LFIPQITR
 47 & 136
0.019
0.601





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.008
0.613





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_SVEGSCGF
 47 & 139
0.016
0.604





APOC3_GWVTDGFSSLK_vs_TENX_LNWEAPPGAFDSFLLR
 47 & 141
0.009
0.613





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.009
0.611





APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
 47 & 147
0.011
0.609





APOH_ATVVYQGER_vs_IBP3_YGQPLPGYTTK
 48 & 100
0.009
0.613





APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
 48 & 103
0.008
0.613





B2MG_VEHSDLSFSK_vs_IGF2_GIVEECCFR
 50 & 103
0.016
0.603





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
 51 & 103
0.008
0.614





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.016
0.603





BGH3_LTLLAPLNSVFK_vs_CHL1_VIAVNEVGR
 52 & 66
0.017
0.602





BGH3_LTLLAPLNSVFK_vs_CRIS3_AVSPPAR
 52 & 78
0.017
0.603





BGH3_LTLLAPLNSVFK_vs_CRIS3_YEDLYSNCK
 52 & 79
0.007
0.616





BGH3_LTLLAPLNSVFK_vs_IGF2_GIVEECCFR
 52 & 103
0.013
0.607





BGH3_LTLLAPLNSVFK_vs_LYAM1_SYYWIGIR
 52 & 120
0.008
0.614





BGH3_LTLLAPLNSVFK_vs_SHBG_IALGGLLFPASNLR
 52 & 18
0.019
0.601





BGH3_LTLLAPLNSVFK_vs_TENX_LNWEAPPGAFDSFLLR
 52 & 141
0.013
0.606





C1QB_VPGLYYFTYHASSR_vs_CRIS3_YEDLYSNCK
 55 & 79
0.018
0.602





C1QB_VPGLYYFTYHASSR_vs_IBP3_FLNVLSPR
 55 & 99
0.012
0.608





C1QB_VPGLYYFTYHASSR_vs_IBP3_YGQPLPGYTTK
 55 & 100
0.010
0.610





C1QB_VPGLYYFTYHASSR_vs_IGF2_GIVEECCFR
 55 & 103
0.002
0.630





C1QB_VPGLYYFTYHASSR_vs_LYAM1_SYYWIGIR
 55 & 120
0.010
0.611





C1QB_VPGLYYFTYHASSR_vs_PGRP2_AGLLRPDYALLGHR
 55 & 126
0.006
0.618





C1QB_VPGLYYFTYHASSR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 55 & 135
0.015
0.605





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.006
0.617





C1QB_VPGLYYFTYHASSR_vs_TENX_LNWEAPPGAFDSFLLR
 55 & 141
0.013
0.607





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
 58 & 103
0.018
0.601





CBPN_EALIQFLEQVHQGIK_vs_LYAM1_SYYWIGIR
 59 & 120
0.007
0.615





CBPN_EALIQFLEQVHQGIK_vs_SHBG_IALGGLLFPASNLR
 59 & 18
0.013
0.606





CBPN_NNANGVDLNR_vs_IGF2_GIVEECCFR
 60 & 103
0.015
0.604





CBPN_NNANGVDLNR_vs_LYAM1_SYYWIGIR
 60 & 120
0.014
0.606





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
 61 & 103
0.017
0.603





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.012
0.607





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.015
0.605





CFAB_YGLVTYATYPK_vs_CHL1_VIAVNEVGR
 64 & 66
0.013
0.606





CFAB_YGLVTYATYPK_vs_CRIS3_AVSPPAR
 64 & 78
0.018
0.601





CFAB_YGLVTYATYPK_vs_CRIS3_YEDLYSNCK
 64 & 79
0.010
0.611





CFAB_YGLVTYATYPK_vs_IBP3_FLNVLSPR
 64 & 99
0.016
0.603





CFAB_YGLVTYATYPK_vs_IBP3_YGQPLPGYTTK
 64 & 100
0.010
0.610





CFAB_YGLVTYATYPK_vs_IGF2_GIVEECCFR
 64 & 103
0.003
0.628





CFAB_YGLVTYATYPK_vs_LYAM1_SYYWIGIR
 64 & 120
0.004
0.623





CFAB_YGLVTYATYPK_vs_PGRP2_AGLLRPDYALLGHR
 64 & 126
0.012
0.608





CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGLNPL
 64 & 134
0.006
0.619





CFAB_YGLVTYATYPK_vs_SHBG_IALGGLLFPASNLR
 64 & 18
0.009
0.613





CFAB_YGLVTYATYPK_vs_TENX_LNWEAPPGAFDSFLLR
 64 & 141
0.019
0.600





CFAB_YGLVTYATYPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 64 & 144
0.005
0.620





CLUS_ASSIIDELFQDR_vs_CRIS3_YEDLYSNCK
 67 & 79
0.019
0.601





CLUS_ASSIIDELFQDR_vs_IGF2_GIVEECCFR
 67 & 103
0.014
0.605





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.016
0.603





CO5_TLLPVSKPEIR_vs_CRIS3_AVSPPAR
 70 & 78
0.015
0.604





CO5_TLLPVSKPEIR_vs_CRIS3_YEDLYSNCK
 70 & 79
0.009
0.612





CO5_TLLPVSKPEIR_vs_IGF2_GIVEECCFR
 70 & 103
0.008
0.614





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.004
0.625





CO5_TLLPVSKPEIR_vs_PGRP2_AGLLRPDYALLGHR
 70 & 126
0.009
0.611





CO5_TLLPVSKPEIR_vs_PSG3_VSAPSGTGHLPGLNPL
 70 & 134
0.007
0.616





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.008
0.613





CO5_TLLPVSKPEIR_vs_TENX_LNWEAPPGAFDSFLLR
 70 & 141
0.019
0.601





CO5_VFQFLEK_vs_CRIS3_AVSPPAR
 71 & 78
0.019
0.601





CO5_VFQFLEK_vs_CRIS3_YEDLYSNCK
 71 & 79
0.013
0.607





CO5_VFQFLEK_vs_IGF2_GIVEECCFR
 71 & 103
0.014
0.606





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.005
0.619





CO5_VFQFLEK_vs_PGRP2_AGLLRPDYALLGHR
 71 & 126
0.013
0.607





CO5_VFQFLEK_vs_PSG3_VSAPSGTGHLPGLNPL
 71 & 134
0.016
0.604





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
 71 & 18
0.010
0.610





CO5_VFQFLEK_vs_TENX_LNWEAPPGAFDSFLLR
 71 & 141
0.019
0.601





CO6_ALNHLPLEYNSALYSR_vs_CHL1_VIAVNEVGR
 72 & 66
0.017
0.602





CO6_ALNHLPLEYNSALYSR_vs_IGF2_GIVEECCFR
 72 & 103
0.009
0.612





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGIR
 72 & 120
0.011
0.609





CO6_ALNHLPLEYNSALYSR_vs_PGRP2_AGLLRPDYALLGHR
 72 & 126
0.017
0.602





CO8A_SLLQPNK_vs_IGF2_GIVEECCFR
 74 & 103
0.008
0.613





COSA_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.018
0.602





CO8A_SLLQPNK_vs_TENX_LNWEAPPGAFDSFLLR
 74 & 141
0.016
0.603





CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
 76 & 103
0.006
0.617





CO8B_QALEEFQK_vs_TENX_LNWEAPPGAFDSFLLR
 76 & 141
0.010
0.610





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IGF2_GIVEECCFR
 82 & 103
0.018
0.601





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_LYAM1_SYYWIGIR
 82 & 120
0.005
0.620





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_IALGGLLFPASNLR
 82 & 18
0.005
0.622





ENPP2_TYLHTYESEI_vs_LYAM1_SYYWIGIR
 83 & 120
0.013
0.607





ENPP2_TYLHTYESEI_vs_SHBG_IALGGLLFPASNLR
 83 & 18
0.015
0.605





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
 84 & 103
0.009
0.613





FETUA_FSVVYAK_vs_IGF2_GIVEECCFR
 88 & 103
0.004
0.624





FETUA_HTLNQIDEVK_vs_IGF2_GIVEECCFR
 89 & 103
0.012
0.608





HABP2_FLNWIK_vs_CHL1_VIAVNEVGR
 92 & 66
0.014
0.605





HABP2_FLNWIK_vs_IBP3_FLNVLSPR
 92 & 99
0.010
0.610





HABP2_FLNWIK_vs_IBP3_YGQPLPGYTTK
 92 & 100
0.006
0.618





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.001
0.636





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.012
0.608





HABP2_FLNWIK_vs_PSG3_VSAPSGTGHLPGLNPL
 92 & 134
0.018
0.602





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.012
0.608





IBP4_QCHPALDGQR_vs_CHL1_VIAVNEVGR
  2 & 66
0.013
0.607





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.005
0.621





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.002
0.635





IBP4_QCHPALDGQR_vs_IBP3_FLNVLSPR
  2 & 99
0.009
0.611





IBP4_QCHPALDGQR_vs_IBP3_YGQPLPGYTTK
  2 & 100
0.003
0.626





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.001
0.646





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.001
0.640





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
  2 & 126
0.001
0.637





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.005
0.622





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.002
0.634





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFDSFLLR
  2 & 141
0.008
0.614





IBP4_QCHPALDGQR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
  2 & 144
0.007
0.615





IBP4_QCHPALDGQR_vs_VTDB_ELPEHTVK
  2 & 147
0.017
0.603





INHBC_LDFHFSSDR_vs_ALS_IRPHTFTGLSGLR
107 & 40
0.008
0.614





INHBC_LDFHFSSDR_vs_CHL1_VIAVNEVGR
107 & 66
0.007
0.616





INHBC_LDFHFSSDR_vs_CRIS3_AVSPPAR
107 & 78
0.015
0.604





INHBC_LDFHFSSDR_vs_CRIS3_YEDLYSNCK
107 & 79
0.008
0.614





INHBC_LDFHFSSDR_vs_IBP3_FLNVLSPR
107 & 99
0.002
0.634





INHBC_LDFHFSSDR_vs_IBP3_YGQPLPGYTTK
107 & 100
0.001
0.639





INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 & 103
0.001
0.649





INHBC_LDFHFSSDR_vs_ITIH4_ILDDLSPR
107 & 112
0.016
0.603





INHBC_LDFHFSSDR_vs_LYAM1_SYYWIGIR
107 & 120
0.008
0.613





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.005
0.620





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.002
0.635





INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNLR
107 & 18
0.006
0.619





INHBC_LDFHFSSDR_vs_SPRL1_VLTHSELAPLR
107 & 140
0.006
0.617





INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDSFLLR
107 & 141
0.001
0.637





INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSSLR
107 & 142
0.008
0.614





INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
107 & 144
0.010
0.610





INHBC_LDFHFSSDR_vs_VTDB_ELPEHTVK
107 & 147
0.003
0.627





ITIH3_ALDLSLK_vs_CRIS3_AVSPPAR
111 & 78
0.013
0.607





ITIH3_ALDLSLK_vs_CRIS3_YEDLYSNCK
111 & 79
0.009
0.611





ITIH3_ALDLSLK_vs_LYAM1_SYYWIGIR
111 & 120
0.008
0.615





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.004
0.623





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.013
0.606





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.014
0.605





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.013
0.607





LBP_ITGFLKPGK_vs_CRIS3_AVSPPAR
118 & 78
0.019
0.600





LBP_ITGFLKPGK_vs_CRIS3_YEDLYSNCK
118 & 79
0.012
0.608





LBP_ITGFLKPGK_vs_LYAM1_SYYWIGIR
118 & 120
0.011
0.609





LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNPL
118 & 134
0.019
0.600





LBP_ITGFLKPGK_vs_SHBG_IALGGLLFPASNLR
118 & 18
0.015
0.604





LBP_ITLPDFTGDLR_vs_C163A_INPASLDK
119 & 54
0.011
0.609





LBP_ITLPDFTGDLR_vs_CRIS3_AVSPPAR
119 & 78
0.004
0.624





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.002
0.630





LBP_ITLPDFTGDLR_vs_IBP3_YGQPLPGYTTK
119 & 100
0.013
0.606





LBP_ITLPDFTGDLR_vs_IGF2_GIVEECCFR
119 & 103
0.005
0.621





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.002
0.635





LBP_ITLPDFTGDLR_vs_PGRP2_AGLLRPDYALLGHR
119 & 126
0.004
0.622





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGLNPL
119 & 134
0.006
0.617





LBP_ITLPDFTGDLR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
119 & 135
0.017
0.603





LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.004
0.624





LBP_ITLPDFTGDLR_vs_SOM2.CSH_SVEGSCGF
119 & 139
0.015
0.605





LBP_ITLPDFTGDLR_vs_TENX_LNWEAPPGAFDSFLLR
119 & 141
0.017
0.603





LBP_ITLPDFTGDLR_vs_VTDB_ELPEHTVK
119 & 147
0.012
0.608





PEDF_LQSLFDSPDFSK_vs_CRIS3_AVSPPAR
124 & 78
0.007
0.616





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.004
0.623





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.005
0.621





PEDF_LQSLFDSPDFSK_vs_TENX_LNWEAPPGAFDSFLLR
124 & 141 
0.011
0.610





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.010
0.610





PEDF_TVQAVLTVPK_vs_IGF2_GIVEECCFR
125 & 103
0.018
0.602





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.009
0.612





PEDF_TVQAVLTVPK_vs_TENX_LNWEAPPGAFDSFLLR
125 & 141
0.016
0.603





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.018
0.602





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.015
0.604





PSG2_IHPSYTNYR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
133 & 135
0.014
0.605





VTNC_GQYCYELDEK_vs_ALS_IRPHTFTGLSGLR
149 & 40
0.013
0.607





VTNC_GQYCYELDEK_vs_CHL1_VIAVNEVGR
149 & 66
0.005
0.621





VTNC_GQYCYELDEK_vs_CRIS3_AVSPPAR
149 & 78
0.005
0.621





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.003
0.627





VTNC_GQYCYELDEK_vs_IBP3_FLNVLSPR
149 & 99
0.002
0.630





VTNC_GQYCYELDEK_vs_IBP3_YGQPLPGYTTK
149 & 100
0.001
0.647





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.000
0.653





VTNC_GQYCYELDEK_vs_ITIH4_ILDDLSPR
149 & 112
0.011
0.609





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.000
0.650





VTNC_GQYCYELDEK_vs_NCAM1_GLGEISAASEFK
149 & 121
0.015
0.604





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.002
0.635





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.001
0.640





VTNC_GQYCYELDEK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
149 & 135
0.011
0.609





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.001
0.640





VTNC_GQYCYELDEK_vs_SOM2.CSH_SVEGSCGF
149 & 139
0.020
0.600





VTNC_GQYCYELDEK_vs_SPRL1_VLTHSELAPLR
149 & 140
0.013
0.607





VTNC_GQYCYELDEK_vs_TENX_LNWEAPPGAFDSFLLR
149 & 141
0.005
0.620





VTNC_GQYCYELDEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
149 & 144
0.004
0.624





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.001
0.646





VTNC_VDTVDPPYPR_vs_CHL1_VIAVNEVGR
150 & 66
0.007
0.616





VTNC_VDTVDPPYPR_vs_CRIS3_AVSPPAR
150 & 78
0.004
0.624





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.003
0.629





VTNC_VDTVDPPYPR_vs_IBP3_FLNVLSPR
150 & 99
0.006
0.618





VTNC_VDTVDPPYPR_vs_IBP3_YGQPLPGYTTK
150 & 100
0.002
0.630





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.001
0.641





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.000
0.653





VTNC_VDTVDPPYPR_vs_NCAM1_GLGEISAASEFK
150 & 121
0.013
0.607





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126
0.004
0.624





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.002
0.630





VTNC_VDTVDPPYPR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
150 & 135
0.012
0.608





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.002
0.633





VTNC_VDTVDPPYPR_vs_SPRL1_VLTHSELAPLR
150 & 140
0.018
0.601





VTNC_VDTVDPPYPR_vs_TENX_LNWEAPPGAFDSFLLR
150 & 141
0.009
0.612





VTNC_VDTVDPPYPR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
150 & 144
0.012
0.608





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.001
0.648
















TABLE 45







Reversal Classification Performance, weeks 17 through 21.


Reversal AUROC for gestational weeks 17 0/7 through 21 6/7 


using a case vs control cut-off of <35 0/7 vs >=35 0/7 


weeks, without BMI stratification.











SEQ ID




Reversal
NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_IBP1_VVESLAK
 34 & 97
0.046
0.615





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.023
0.631





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.013
0.642





AFAM_DADPDTFFAK_vs_LYAM1_SYYWIGIR
 37 & 120
0.012
0.644





AFAM_DADPDTFFAK_vs_PGRP2_AGLLRPDYALLGHR
 37 & 126
0.041
0.618





AFAM_DADPDTFFAK_vs_SHBG_IALGGLLFPASNLR
 37 & 18
0.050
0.613





AFAM_HFQNLGK_vs_ALS_IRPHTFTGLSGLR
 38 & 40
0.035
0.621





AFAM_HFQNLGK_vs_CRIS3_YEDLYSNCK
 38 & 79
0.036
0.621





AFAM_HFQNLGK_vs_IBP1_VVESLAK
 38 & 97
0.044
0.618





AFAM_HFQNLGK_vs_IBP3_FLNVLSPR
 38 & 99
0.048
0.614





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.013
0.642





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.005
0.661





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
 38 & 120
0.010
0.648





AFAM_HFQNLGK_vs_PGRP2_AGLLRPDYALLGHR
 38 & 126
0.041
0.617





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.010
0.648





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.027
0.627





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.042
0.617





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.015
0.639





APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
 48 & 79
0.027
0.627





APOH_ATVVYQGER_vs_IBP1_VVESLAK
 48 & 97
0.046
0.615





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.011
0.647





APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGHR
 48 & 126
0.045
0.615





B2MG_VEHSDLSFSK_vs_LYAM1_SYYWIGIR
 50 & 120
0.009
0.651





B2MG_VNHVTLSQPK_vs_CRIS3_AVSPPAR
 51 & 78
0.040
0.618





B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
 51 & 79
0.024
0.630





B2MG_VNHVTLSQPK_vs_IBP1_VVESLAK
 51 & 97
0.047
0.614





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
 51 & 103
0.040
0.618





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.002
0.676





B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
 51 & 18
0.032
0.624





CATD_VGFAEAAR_vs_ALS_IRPHTFTGLSGLR
 57 & 40
0.022
0.632





CATD_VGFAEAAR_vs_C163A_INPASLDK
 57 & 54
0.001
0.697





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
 57 & 78
0.013
0.643





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
 57 & 79
0.008
0.653





CATD_VGFAEAAR_vs_CSH_AHQLAIDTYQEFEETYIPK
 57 & 80
0.005
0.661





CATD_VGFAEAAR_vs_CSH_ISLLLIESWLEPVR
 57 & 81
0.009
0.651





CATD_VGFAEAAR_vs_FBLN1_TGYYFDGISR
 57 & 86
0.018
0.636





CATD_VGFAEAAR_vs_IBP1_VVESLAK
 57 & 97
0.010
0.648





CATD_VGFAEAAR_vs_IBP2_LIQGAPTIR
 57 & 98
0.050
0.613





CATD_VGFAEAAR_vs_IBP3_FLNVLSPR
 57 & 99
0.026
0.628





CATD_VGFAEAAR_vs_IBP3_YGQPLPGYTTK
 57 & 100
0.019
0.635





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
 57 & 103
0.003
0.669





CATD_VGFAEAAR_vs_ITIH4_ILDDLSPR
 57 & 112
0.020
0.634





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
 57 & 120
0.001
0.688





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
 57 & 126
0.009
0.650





CATD_VGFAEAAR_vs_PSG3_VSAPSGTGHLPGLNPL
 57 & 134
0.008
0.652





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.012
0.644





CATD_VGFAEAAR_vs_SOM2.CSH_NYGLLYCFR
 57 & 138
0.010
0.649





CATD_VGFAEAAR_vs_SOM2.CSH_SVEGSCGF
 57 & 139
0.007
0.655





CATD_VGFAEAAR_vs_SPRL1_VLTHSELAPLR
 57 & 140
0.009
0.650





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.004
0.666





CATD_VGFAEAAR_vs_TENX_LSQLSVTDVTTSSLR
 57 & 142
0.013
0.643





CATD_VGFAEAAR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 57 & 144
0.014
0.642





CATD_VGFAEAAR_vs_VTDB_ELPEHTVK
 57 & 147
0.023
0.631





CATD_VSTLPAITLK_vs_ALS_IRPHTFTGLSGLR
 58 & 40
0.020
0.634





CATD_VSTLPAITLK_vs_C163A_INPASLDK
 58 & 54
0.004
0.664





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
 58 & 78
0.012
0.645





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
 58 & 79
0.006
0.657





CATD_VSTLPAITLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 58 & 80
0.013
0.644





CATD_VSTLPAITLK_vs_CSH_ISLLLIESWLEPVR
 58 & 81
0.023
0.631





CATD_VSTLPAITLK_vs_FBLN1_TGYYFDGISR
 58 & 86
0.017
0.638





CATD_VSTLPAITLK_vs_IBP1_VVESLAK
 58 & 97
0.012
0.645





CATD_VSTLPAITLK_vs_IBP3_FLNVLSPR
 58 & 99
0.017
0.637





CATD_VSTLPAITLK_vs_IBP3_YGQPLPGYTTK
 58 & 100
0.013
0.643





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
 58 & 103
0.003
0.670





CATD_VSTLPAITLK_vs_ITIH4_ILDDLSPR
 58 & 112
0.045
0.615





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
 58 & 120
0.001
0.684





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
 58 & 126
0.010
0.649





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
 58 & 134
0.006
0.658





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
 58 & 18
0.012
0.644





CATD_VSTLPAITLK_vs_SOM2.CSH_NYGLLYCFR
 58 & 138
0.023
0.631





CATD_VSTLPAITLK_vs_SOM2.CSH_SVEGSCGF
 58 & 139
0.020
0.634





CATD_VSTLPAITLK_vs_SPRL1_VLTHSELAPLR
 58 & 140
0.015
0.640





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.004
0.666





CATD_VSTLPAITLK_vs_TENX_LSQLSVTDVTTSSLR
 58 & 142
0.015
0.640





CATD_VSTLPAITLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 58 & 144
0.026
0.628





CATD_VSTLPAITLK_vs_VTDB_ELPEHTVK
 58 & 147
0.037
0.620





CBPN_EALIQFLEQVHQGIK_vs_LYAM1_SYYWIGIR
 59 & 120
0.020
0.634





CBPN_NNANGVDLNR_vs_LYAM1_SYYWIGIR
 60 & 120
0.007
0.656





CBPN_NNANGVDLNR_vs_SPRL1_VLTHSELAPLR
 60 & 140
0.026
0.628





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_YEDLYSNCK
 61 & 79
0.028
0.627





CD14_LTVGAAQVPAQLLVGALR_vs_CSH_AHQLAIDTYQEFEETYIPK 
 61 & 80
0.044
0.616





CD14_LTVGAAQVPAQLLVGALR_vs_IBP1_VVESLAK
 61 & 97
0.019
0.635





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
 61 & 103
0.015
0.640





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.002
0.681





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.009
0.650





CD14_LTVGAAQVPAQLLVGALR_vs_PSG3_VSAPSGTGHLPGLNPL
 61 & 134
0.045
0.615





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.011
0.647





CD14_LTVGAAQVPAQLLVGALR_vs_SOM2.CSH_SVEGSCGF
 61 & 139
0.033
0.623





CD14_LTVGAAQVPAQLLVGALR_vs_SPRL1_VLTHSELAPLR
 61 & 140
0.034
0.622





CD14_LTVGAAQVPAQLLVGALR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 61 & 144
0.020
0.633





CD14_LTVGAAQVPAQLLVGALR_vs_VTDB_ELPEHTVK
 61 & 147
0.011
0.647





CD14_SWLAELQQWLKPGLK_vs_CRIS3_YEDLYSNCK
 62 & 79
0.033
0.623





CD14_SWLAELQQWLKPGLK_vs_IBP1_VVESLAK
 62 & 97
0.021
0.633





CD14_SWLAELQQWLKPGLK_vs_IGF2_GIVEECCFR
 62 & 103
0.025
0.629





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.003
0.669





CD14_SWLAELQQWLKPGLK_vs_PGRP2_AGLLRPDYALLGHR
 62 & 126
0.015
0.640





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
 62 & 18
0.017
0.638





CD14_SWLAELQQWLKPGLK_vs_SOM2.CSH_SVEGSCGF
 62 & 139
0.041
0.618





CD14_SWLAELQQWLKPGLK_vs_SPRL1_VLTHSELAPLR
 62 & 140
0.049
0.613





CD14_SWLAELQQWLKPGLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 62 & 144
0.024
0.630





CD14_SWLAELQQWLKPGLK_vs_VTDB_ELPEHTVK
 62 & 147
0.014
0.641





CFAB_YGLVTYATYPK_vs_LYAM1_SYYWIGIR
 64 & 120
0.044
0.616





CLUS_ASSIIDELFQDR_vs_CRIS3_AVSPPAR
 67 & 78
0.028
0.627





CLUS_ASSIIDELFQDR_vs_CRIS3_YEDLYSNCK
 67 & 79
0.016
0.638





CLUS_ASSIIDELFQDR_vs_IBP1_VVESLAK
 67 & 97
0.039
0.619





CLUS_ASSIIDELFQDR_vs_IBP3_YGQPLPGYTTK
 67 & 100
0.047
0.614





CLUS_ASSIIDELFQDR_vs_IGF2_GIVEECCFR
 67 & 103
0.011
0.645





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.001
0.683





CLUS_ASSIIDELFQDR_vs_PGRP2_AGLLRPDYALLGHR
 67 & 126
0.026
0.628





CLUS_ASSIIDELFQDR_vs_PSG3_VSAPSGTGHLPGLNPL
 67 & 134
0.037
0.620





CLUS_ASSIIDELFQDR_vs_SHBG_IALGGLLFPASNLR
 67 & 18
0.017
0.638





CLUS_ASSIIDELFQDR_vs_VTDB_ELPEHTVK
 67 & 147
0.013
0.643





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_AVSPPAR
 68 & 78
0.028
0.627





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_YEDLYSNCK
 68 & 79
0.014
0.642





CLUS_LFDSDPITVTVPVEVSR_vs_IBP1_VVESLAK
 68 & 97
0.039
0.619





CLUS_LFDSDPITVTVPVEVSR_vs_IBP3_YGQPLPGYTTK
 68 & 100
0.046
0.615





CLUS_LFDSDPITVTVPVEVSR_vs_IGF2_GIVEECCFR
 68 & 103
0.015
0.640





CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGIR
 68 & 120
0.004
0.668





CLUS_LFDSDPITVTVPVEVSR_vs_PGRP2_AGLLRPDYALLGHR
 68 & 126
0.049
0.613





CLUS_LFDSDPITVTVPVEVSR_vs_SHBG_IALGGLLFPASNLR
 68 & 18
0.023
0.631





CLUS_LFDSDPITVTVPVEVSR_vs_VTDB_ELPEHTVK
 68 & 147
0.014
0.642





CO5_TLLPVSKPEIR_vs_CRIS3_YEDLYSNCK
 70 & 79
0.036
0.620





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.005
0.663





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.043
0.616





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.015
0.641





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGIR
 72 & 120
0.006
0.657





CO6_ALNHLPLEYNSALYSR_vs_SHBG_IALGGLLFPASNLR
 72 & 18
0.039
0.619





CO8A_SLLQPNK_vs_IBP1_VVESLAK
 74 & 97
0.046
0.615





COSA_SLLQPNK_vs_IGF2_GIVEECCFR
 74 & 103
0.047
0.614





CO8A_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.007
0.654





CO8B_QALEEFQK_vs_IBP1_VVESLAK
 76 & 97
0.036
0.621





CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
 76 & 103
0.046
0.615





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
 76 & 120
0.018
0.636





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
 76 & 134
0.046
0.615





F13B_GDTYPAELYITGSILR_vs_CRIS3_AVSPPAR
 84 & 78
0.021
0.633





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
 84 & 79
0.013
0.643





F13B_GDTYPAELYITGSILR_vs_IBP1_VVESLAK
 84 & 97
0.033
0.623





F13B_GDTYPAELYITGSILR_vs_IBP3_YGQPLPGYTTK
 84 & 100
0.039
0.619





F13B_GDTYPAELYITGSILR_VS_IGF2_GIVEECCFR
 84 & 103
0.011
0.646





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.001
0.695





F13B_GDTYPAELYITGSILR_vs_PGRP2_AGLLRPDYALLGHR
 84 & 126
0.031
0.624





F13B_GDTYPAELYITGSILR_vs_SHBG_IALGGLLFPASNLR
 84 & 18
0.020
0.634





F13B_GDTYPAELYITGSILR_vs_SPRL1_VLTHSELAPLR
 84 & 140
0.031
0.624





FETUA_FSVVYAK_vs_CRIS3_YEDLYSNCK
 88 & 79
0.045
0.615





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
 88 & 120
0.007
0.654





FETUA_HTLNQIDEVK_vs_LYAM1_SYYWIGIR
 89 & 120
0.016
0.638





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.033
0.623





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
 93 & 120
0.019
0.635





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.021
0.632





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.011
0.647





IBP4_QCHPALDGQR_vs_IBP1_VVESLAK
  2 & 97
0.042
0.617





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.047
0.614





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.003
0.669





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.033
0.623





IBP6_HLDSVLQQLQTEVYR_vs_CRIS3_YEDLYSNCK
102 & 79
0.044
0.616





IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIGIR
102 & 120
0.022
0.631





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.039
0.619





KNG1_DIPTNSPELEETLTHTITK_vs_IBP1_VVESLAK
116 & 97
0.048
0.614





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.012
0.645





KNG1_QVVAGLNFR_vs_CRIS3_AVSPPAR
117 & 78
0.041
0.618





KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.020
0.634





KNG1_QVVAGLNFR_vs_IBP1_VVESLAK
117 & 97
0.024
0.630





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.020
0.634





KNG1_QVVAGLNFR_vs_ITIH4_ILDDLSPR
117 & 112
0.038
0.619





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.002
0.682





KNG1_QVVAGLNFR_vs_PGRP2_AGLLRPDYALLGHR
117 & 126
0.027
0.627





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.016
0.639





KNG1_QVVAGLNFR_vs_VTDB_ELPEHTVK
117 & 147
0.041
0.618





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.031
0.624





PEDF_LQSLFDSPDFSK_vs_CRIS3_AVSPPAR
124 & 78
0.034
0.622





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.026
0.628





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.004
0.664





PEDF_TVQAVLTVPK_vs_CRIS3_AVSPPAR
125 & 78
0.027
0.627





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.017
0.638





PEDF_TVQAVLTVPK_vs_IGF2_GIVEECCFR
125 & 103
0.029
0.626





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.002
0.677





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.015
0.640





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.011
0.646





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.020
0.634





PSG2_IHPSYTNYR_vs_IBP1_VVESLAK
133 & 97
0.027
0.627





PSG2_IHPSYTNYR_vs_IBP2_LIQGAPTIR
133 & 98
0.028
0.626





PSG2_IHPSYTNYR_vs_IGF2_GIVEECCFR
133 & 103
0.042
0.617





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.006
0.658





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.025
0.629





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.014
0.642





PSG2_IHPSYTNYR_vs_SPRL1_VLTHSELAPLR
133 & 140
0.036
0.621





PTGDS_GPGEDFR_vs_CRIS3_YEDLYSNCK
137 & 79
0.036
0.621





PTGDS_GPGEDFR_vs_IBP1_VVESLAK
137 & 97
0.050
0.613





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 & 120
0.018
0.636





THBG_AVLHIGEK_vs_LYAM1_SYYWIGIR
143 & 120
0.015
0.640





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.033
0.622





VTNC_GQYCYELDEK_vs_IBP1_VVESLAK
149 & 97
0.048
0.614





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.029
0.625





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.002
0.675





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.044
0.616





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.032
0.623





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.030
0.625





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.040
0.618





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.049
0.613





VTNC_VDTVDPPYPR_VS_LYAM1_SYYWIGIR
150 & 120
0.004
0.665





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.038
0.619
















TABLE 46







Reversal Classification Performance, weeks 17 through 21.


Reversal AUROC for gestational weeks 17 0/7 through 21 6/7 


using a case vs control cut-off of <35 0/7 vs >=35 0/7 weeks, 


with BMI stratification (>22 <= 37).











SEQ ID




Reversal
NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_CRIS3_YEDLYSNCK
 34 & 79
0.047
0.637





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.006
0.689





AFAM_DADPDTFFAK_vs_CRIS3_YEDLYSNCK
 37 & 79
0.027
0.652





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.018
0.663





AFAM_DADPDTFFAK_vs_LYAM1_SYYWIGIR
 37 & 120
0.007
0.687





AFAM_DADPDTFFAK_vs_PGRP2_AGLLRPDYALLGHR
 37 & 126
0.016
0.666





AFAM_DADPDTFFAK_vs_SOM2.CSH_SVEGSCGF
 37 & 139
0.049
0.636





AFAM_HFQNLGK_vs_ALS_IRPHTFTGLSGLR
 38 & 40
0.035
0.645





AFAM_HFQNLGK_vs_CRIS3_AVSPPAR
 38 & 78
0.043
0.640





AFAM_HFQNLGK_vs_CRIS3_YEDLYSNCK
 38 & 79
0.020
0.660





AFAM_HFQNLGK_vs_IBP3_FLNVLSPR
 38 & 99
0.039
0.642





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.031
0.648





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.009
0.680





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
 38 & 120
0.005
0.693





AFAM_HFQNLGK_vs_PGRP2_AGLLRPDYALLGHR
 38 & 126
0.013
0.672





AFAM_HFQNLGK_vs_SOM2.CSH_SVEGSCGF
 38 & 139
0.026
0.653





ANGT_DPTFIPAPIQAK_vs_CRIS3_AVSPPAR
 42 & 78
0.035
0.645





ANGT_DPTFIPAPIQAK_vs_CRIS3_YEDLYSNCK
 42 & 79
0.031
0.648





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.004
0.697





ANGT_DPTFIPAPIQAK_vs_PGRP2_AGLLRPDYALLGHR
 42 & 126
0.029
0.650





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.028
0.651





ANGT_DPTFIPAPIQAK_vs_SOM2.CSH_SVEGSCGF
 42 & 139
0.049
0.636





APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
 48 & 79
0.029
0.650





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.016
0.667





APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGHR
 48 & 126
0.016
0.665





B2MG_VEHSDLSFSK_vs_LYAM1_SYYWIGIR
 50 & 120
0.015
0.668





B2MG_VNHVTLSQPK_vs_CRIS3_AVSPPAR
 51 & 78
0.044
0.639





B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
 51 & 79
0.031
0.649





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.002
0.709





CATD_VGFAEAAR_vs_ALS_IRPHTFTGLSGLR
 57 & 40
0.031
0.649





CATD_VGFAEAAR_vs_C163A_INPASLDK
 57 & 54
0.001
0.722





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
 57 & 78
0.018
0.664





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
 57 & 79
0.010
0.677





CATD_VGFAEAAR_vs_CSH_AHQLAIDTYQEFEETYIPK
 57 & 80
0.008
0.682





CATD_VGFAEAAR_vs_CSH_ISLLLIESWLEPVR
 57 & 81
0.011
0.676





CATD_VGFAEAAR_vs_IBP3_FLNVLSPR
 57 & 99
0.027
0.652





CATD_VGFAEAAR_vs_IBP3_YGQPLPGYTTK
 57 & 100
0.036
0.644





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
 57 & 103
0.009
0.679





CATD_VGFAEAAR_vs_ITIH4_ILDDLSPR
 57 & 112
0.034
0.646





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
 57 & 120
0.001
0.720





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
 57 & 126
0.009
0.680





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.029
0.651





CATD_VGFAEAAR_vs_SOM2.CSH_NYGLLYCFR
 57 & 138
0.016
0.666





CATD_VGFAEAAR_vs_SOM2.CSH_SVEGSCGF
 57 & 139
0.011
0.675





CATD_VGFAEAAR_vs_SPRL1_VLTHSELAPLR
 57 & 140
0.045
0.638





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.028
0.652





CATD_VSTLPAITLK_vs_ALS_IRPHTFTGLSGLR
 58 & 40
0.017
0.664





CATD_VSTLPAITLK_vs_C163A_INPASLDK
 58 & 54
0.004
0.698





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
 58 & 78
0.009
0.681





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
 58 & 79
0.004
0.698





CATD_VSTLPAITLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 58 & 80
0.011
0.676





CATD_VSTLPAITLK_vs_CSH_ISLLLIESWLEPVR
 58 & 81
0.020
0.661





CATD_VSTLPAITLK_vs_IBP1_VVESLAK
 58 & 97
0.039
0.642





CATD_VSTLPAITLK_vs_IBP3_FLNVLSPR
 58 & 99
0.012
0.673





CATD_VSTLPAITLK_vs_IBP3_YGQPLPGYTTK
 58 & 100
0.019
0.661





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
 58 & 103
0.005
0.693





CATD_VSTLPAITLK_vs_ITIH4_ILDDLSPR
 58 & 112
0.033
0.647





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
 58 & 120
0.001
0.727





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
 58 & 126
0.004
0.700





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
 58 & 134
0.030
0.649





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
 58 & 18
0.019
0.662





CATD_VSTLPAITLK_vs_SOM2.CSH_NYGLLYCFR
 58 & 138
0.025
0.654





CATD_VSTLPAITLK_vs_SOM2.CSH_SVEGSCGF
 58 & 139
0.018
0.663





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.014
0.669





CBPN_EALIQFLEQVHQGIK_VS_LYAM1_SYYWIGIR
 59 & 120
0.019
0.662





CBPN_NNANGVDLNR_vs_CRIS3_YEDLYSNCK
 60 & 79
0.047
0.637





CBPN_NNANGVDLNR_vs_LYAM1_SYYWIGIR
 60 & 120
0.006
0.689





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_AVSPPAR
 61 & 78
0.046
0.637





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_YEDLYSNCK
 61 & 79
0.030
0.650





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.003
0.708





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.009
0.679





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.033
0.647





CD14_LTVGAAQVPAQLLVGALR_vs_SOM2.CSH_SVEGSCGF
 61 & 139
0.044
0.639





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.009
0.679





CD14_SWLAELQQWLKPGLK_vs_PGRP2_AGLLRPDYALLGHR
 62 & 126
0.022
0.657





CFAB_YGLVTYATYPK_vs_LYAM1_SYYWIGIR
 64 & 120
0.038
0.643





CLUS_ASSIIDELFQDR_vs_CRIS3_AVSPPAR
 67 & 78
0.029
0.651





CLUS_ASSIIDELFQDR_vs_CRIS3_YEDLYSNCK
 67 & 79
0.018
0.663





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.003
0.703





CLUS_ASSIIDELFQDR_vs_PGRP2_AGLLRPDYALLGHR
 67 & 126
0.035
0.645





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_YEDLYSNCK
 68 & 79
0.027
0.652





CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGIR
 68 & 120
0.021
0.659





CO5_TLLPVSKPEIR_vs_CRIS3_YEDLYSNCK
 70 & 79
0.047
0.637





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.006
0.688





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.024
0.655





CO6_ALNHLPLEYNSALYSR_VS_LYAM1_SYYWIGIR
 72 & 120
0.006
0.689





CO6_ALNHLPLEYNSALYSR_vs_PGRP2_AGLLRPDYALLGHR
 72 & 126
0.026
0.653





COSA_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.012
0.674





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
 76 & 120
0.036
0.644





F13B_GDTYPAELYITGSILR_vs_CRIS3_AVSPPAR
 84 & 78
0.016
0.665





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
 84 & 79
0.012
0.672





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
 84 & 103
0.035
0.646





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.001
0.729





F13B_GDTYPAELYITGSILR_vs_PGRP2_AGLLRPDYALLGHR
 84 & 126
0.015
0.668





F13B_GDTYPAELYITGSILR_vs_SHBG_IALGGLLFPASNLR
 84 & 18
0.031
0.649





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
 88 & 120
0.013
0.671





FETUA_HTLNQIDEVK_vs_LYAM1_SYYWIGIR
 89 & 120
0.011
0.674





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
 93 & 120
0.026
0.653





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.035
0.645





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.017
0.664





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.003
0.706





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.046
0.638





IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIGIR
102 & 120
0.017
0.664





ITIH3_ALDLSLK_vs_LYAM1_SYYWIGIR
111 & 120
0.028
0.652





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.049
0.636





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.011
0.675





KNG1_QVVAGLNFR_vs_CRIS3_AVSPPAR
117 & 78
0.034
0.646





KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.020
0.661





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.035
0.645





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.002
0.714





KNG1_QVVAGLNFR_vs_PGRP2_AGLLRPDYALLGHR
117 & 126
0.025
0.654





PAPP1_DIPHWLNPTR_vs_C163A_INPASLDK
122 & 54
0.050
0.635





PAPP1_DIPHWLNPTR_vs_CRIS3_AVSPPAR
122 & 78
0.014
0.669





PAPP1_DIPHWLNPTR_vs_CRIS3_YEDLYSNCK
122 & 79
0.011
0.675





PAPP1_DIPHWLNPTR_vs_CSH_AHQLAIDTYQEFEETYIPK
122 & 80
0.044
0.639





PAPP1_DIPHWLNPTR_vs_CSH_ISLLLIESWLEPVR
122 & 81
0.040
0.642





PAPP1_DIPHWLNPTR_vs_LYAM1_SYYWIGIR
122 & 120
0.006
0.689





PAPP1_DIPHWLNPTR_vs_PGRP2_AGLLRPDYALLGHR
122 & 126
0.039
0.642





PAPP1_DIPHWLNPTR_vs_PRG2_WNFAYWAAHQPWSR
122 & 129
0.008
0.681





PAPP1_DIPHWLNPTR_vs_SHBG_IALGGLLFPASNLR
122 & 18
0.039
0.643





PAPP1_DIPHWLNPTR_vs_SOM2.CSH_NYGLLYCFR
122 & 138
0.039
0.642





PAPP1_DIPHWLNPTR_vs_SOM2.CSH_SVEGSCGF
122 & 139
0.005
0.693





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.047
0.637





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.005
0.693





PEDF_TVQAVLTVPK_vs_CRIS3_AVSPPAR
125 & 78
0.042
0.640





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.027
0.653





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.003
0.705





PEDF_TVQAVLTVPK_vs_PGRP2_AGLLRPDYALLGHR
125 & 126
0.030
0.649





PSG2_IHPSYTNYR_vs_ALS_IRPHTFTGLSGLR
133 & 40
0.030
0.649





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.004
0.700





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.004
0.700





PSG2_IHPSYTNYR_vs_CSH_AHQLAIDTYQEFEETYIPK 
133 & 80
0.032
0.648





PSG2_IHPSYTNYR_vs_CSH_ISLLLIESWLEPVR
133 & 81
0.047
0.637





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.040
0.641





PSG2_IHPSYTNYR_vs_IBP1_VVESLAK
133 & 97
0.040
0.641





PSG2_IHPSYTNYR_vs_IBP2_LIQGAPTIR
133 & 98
0.009
0.681





PSG2_IHPSYTNYR_vs_IBP3_FLNVLSPR
133 & 99
0.028
0.652





PSG2_IHPSYTNYR_vs_IBP3_YGQPLPGYTTK
133 & 100
0.029
0.650





PSG2_IHPSYTNYR_vs_IGF2_GIVEECCFR
133 & 103
0.017
0.664





PSG2_IHPSYTNYR_vs_ITIH4_ILDDLSPR
133 & 112
0.016
0.666





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.001
0.729





PSG2_IHPSYTNYR_vs_PGRP2_AGLLRPDYALLGHR
133 & 126
0.007
0.686





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.014
0.669





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.004
0.700





PSG2_IHPSYTNYR_vs_SOM2.CSH_SVEGSCGF
133 & 139
0.013
0.671





PSG2_IHPSYTNYR_vs_SPRL1_VLTHSELAPLR
133 & 140
0.028
0.652





PSG2_IHPSYTNYR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
133 & 144
0.049
0.635





PSG2_IHPSYTNYR_vs_VTDB_ELPEHTVK
133 & 147
0.021
0.659





PTGDS_GPGEDFR_vs_CRIS3_AVSPPAR
137 & 78
0.042
0.640





PTGDS_GPGEDFR_vs_CRIS3_YEDLYSNCK
137 & 79
0.030
0.650





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 & 120
0.011
0.676





THBG_AVLHIGEK_vs_LYAM1_SYYWIGIR
143 & 120
0.024
0.655





VTNC_GQYCYELDEK_vs_CRIS3_AVSPPAR
149 & 78
0.041
0.641





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.023
0.657





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.001
0.719





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.021
0.659





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.047
0.637





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.047
0.637





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.007
0.685
















TABLE 47







Reversal Classification Performance, weeks 17, 18 and 19.


Reversal AUROC for gestational weeks 17 0/7 through 19 6/7 


using a case vs control cut-off of <37 0/7 vs >=37 0/7 weeks, 


without BMI stratification.











SEQ ID




Reversal
NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_PSG3_VSAPSGTGHLPGLNPL
 34 & 134
0.003
0.628





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.021
0.600





AFAM_DADPDTFFAK_vs_PSG3_VSAPSGTGHLPGLNPL
 37 & 134
0.007
0.617





AFAM_DADPDTFFAK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 37 & 144
0.016
0.606





AFAM_HFQNLGK_vs_PSG3_VSAPSGTGHLPGLNPL
 38 & 134
0.012
0.609





ANGT_DPTFIPAPIQAK_vs_CSH_AHQLAIDTYQEFEETYIPK
 42 & 80
0.017
0.605





ANGT_DPTFIPAPIQAK_vs_PSG3_VSAPSGTGHLPGLNPL
 42 & 134
0.011
0.610





APOC3_GWVTDGFSSLK_vs_ALS_IRPHTFTGLSGLR
 47 & 40
0.017
0.605





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.006
0.621





APOC3_GWVTDGFSSLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 47 & 80
0.009
0.614





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.013
0.608





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
 47 & 100
0.017
0.604





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.013
0.608





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.015
0.606





APOC3_GWVTDGFSSLK_vs_NCAM1_GLGEISAASEFK
 47 & 121
0.020
0.602





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.002
0.633





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.022
0.600





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.009
0.614





APOH_ATVVYQGER_vs_CHL1_VIAVNEVGR
 48 & 66
0.021
0.600





APOH_ATVVYQGER_vs_CSH_AHQLAIDTYQEFEETYIPK
 48 & 80
0.009
0.614





APOH_ATVVYQGER_vs_FBLN1_TGYYFDGISR
 48 & 86
0.011
0.610





APOH_ATVVYQGER_vs_IBP3_YGQPLPGYTTK
 48 & 100
0.014
0.607





APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
 48 & 103
0.008
0.616





APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLNPL
 48 & 134
0.000
0.654





APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
 48 & 18
0.010
0.612





APOH_ATVVYQGER_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 48 & 144
0.010
0.613





APOH_ATVVYQGER_vs_VTDB_ELPEHTVK
 48 & 147
0.021
0.601





B2MG_VNHVTLSQPK_vs_PSG3_VSAPSGTGHLPGLNPL
 51 & 134
0.010
0.613





C1QB_VPGLYYFTYHASSR_vs_CSH_AHQLAIDTYQEFEETYIPK
 55 & 80
0.009
0.613





C1QB_VPGLYYFTYHASSR_vs_PSG3_VSAPSGTGHLPGLNPL
 55 & 134
0.010
0.613





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.013
0.608





C1QB_VPGLYYFTYHASSR_vs_SOM2.CSH_NYGLLYCFR
 55 & 138
0.021
0.600





CD14_LTVGAAQVPAQLLVGALR_vs_CSH_AHQLAIDTYQEFEETYIPK
 61 & 80
0.021
0.600





CD14_LTVGAAQVPAQLLVGALR_vs_PSG3_VSAPSGTGHLPGLNPL
 61 & 134
0.004
0.624





CD14_SWLAELQQWLKPGLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 62 & 80
0.020
0.601





CD14_SWLAELQQWLKPGLK_vs_PSG3_VSAPSGTGHLPGLNPL
 62 & 134
0.004
0.625





CD14_SWLAELQQWLKPGLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 62 & 144
0.020
0.602





CFAB_YGLVTYATYPK_vs_C163A_INPASLDK
 64 & 54
0.007
0.617





CFAB_YGLVTYATYPK_vs_CHL1_VIAVNEVGR
 64 & 66
0.011
0.611





CFAB_YGLVTYATYPK_vs_CSH_AHQLAIDTYQEFEETYIPK
 64 & 80
0.010
0.612





CFAB_YGLVTYATYPK_vs_IGF2_GIVEECCFR
 64 & 103
0.014
0.607





CFAB_YGLVTYATYPK_vs_NCAM1_GLGEISAASEFK
 64 & 121
0.009
0.614





CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGLNPL
 64 & 134
0.001
0.645





CFAB_YGLVTYATYPK_vs_SHBG_IALGGLLFPASNLR
 64 & 18
0.008
0.615





CFAB_YGLVTYATYPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 64 & 144
0.001
0.639





CFAB_YGLVTYATYPK_vs_VTDB_ELPEHTVK
 64 & 147
0.016
0.605





CLUS_ASSIIDELFQDR_vs_PSG3_VSAPSGTGHLPGLNPL
 67 & 134
0.006
0.619





CLUS_LFDSDPITVTVPVEVSR_vs_PSG3_VSAPSGTGHLPGLNPL
 68 & 134
0.013
0.608





CO5_TLLPVSKPEIR_vs_PSG3_VSAPSGTGHLPGLNPL
 70 & 134
0.001
0.641





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.020
0.602





CO5_TLLPVSKPEIR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 70 & 144
0.011
0.610





CO5_VFQFLEK_vs_PSG3_VSAPSGTGHLPGLNPL
 71 & 134
0.003
0.629





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
 71 & 18
0.018
0.604





CO5_VFQFLEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 71 & 144
0.009
0.614





CO6_ALNHLPLEYNSALYSR_vs_CHL1_VIAVNEVGR
 72 & 66
0.020
0.601





CO6_ALNHLPLEYNSALYSR_vs_IGF2_GIVEECCFR
 72 & 103
0.014
0.607





CO6_ALNHLPLEYNSALYSR_vs_PSG3_VSAPSGTGHLPGLNPL
 72 & 134
0.002
0.634





CO6_ALNHLPLEYNSALYSR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 72 & 144
0.004
0.626





COSA_SLLQPNK_vs_CSH_AHQLAIDTYQEFEETYIPK
 74 & 80
0.017
0.605





CO8A_SLLQPNK_vs_PSG3_VSAPSGTGHLPGLNPL
 74 & 134
0.002
0.632





CO8A_SLLQPNK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 74 & 144
0.004
0.625





CO8B_QALEEFQK_vs_CSH_AHQLAIDTYQEFEETYIPK
 76 & 80
0.012
0.609





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
 76 & 134
0.003
0.631





CO8B_QALEEFQK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 76 & 144
0.003
0.628





F13B_GDTYPAELYITGSILR_vs_CHL1_VIAVNEVGR
 84 & 66
0.020
0.601





F13B_GDTYPAELYITGSILR_vs_PSG3_VSAPSGTGHLPGLNPL
 84 & 134
0.004
0.625





FETUA_FSVVYAK_vs_PSG3_VSAPSGTGHLPGLNPL
 88 & 134
0.010
0.612





FETUA_HTLNQIDEVK_vs_PSG3_VSAPSGTGHLPGLNPL
 89 & 134
0.016
0.605





HABP2_FLNWIK_vs_CHL1_VIAVNEVGR
 92 & 66
0.019
0.602





HABP2_FLNWIK_vs_FBLN1_TGYYFDGISR
 92 & 86
0.021
0.601





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.012
0.609





HABP2_FLNWIK_vs_PSG3_VSAPSGTGHLPGLNPL
 92 & 134
0.001
0.640





HABP2_FLNWIK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 92 & 144
0.017
0.604





HEMO_NFPSPVDAAFR_vs_PSG3_VSAPSGTGHLPGLNPL
 93 & 134
0.005
0.622





IBP4_QCHPALDGQR_vs_CHL1_VIAVNEVGR
  2 & 66
0.021
0.601





IBP4_QCHPALDGQR_vs_CSH_AHQLAIDTYQEFE
  2 & 80
0.017
0.604





IBP4_QCHPALDGQR_vs_FBLN1_TGYYFDGISR
  2 & 86
0.017
0.604





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.014
0.607





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.000
0.660





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.011
0.612





IBP6_GAQTLYVPNCDHR_vs_PSG3_VSAPSGTGHLPGLNPL
101 & 134
0.008
0.616





IBP6_HLDSVLQQLQTEVYR_vs_PSG3_VSAPSGTGHLPGLNPL
102 & 134
0.006
0.621





INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 & 103
0.015
0.606





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.003
0.631





INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
107 & 144
0.019
0.602





ITIH3_ALDLSLK_vs_PSG3_VSAPSGTGHLPGLNPL
111 & 134
0.018
0.603





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.020
0.602





KNG1_DIPTNSPELEETLTHTITK_vs_PSG3_VSAPSGTGHLPGLNPL
116 & 134
0.004
0.627





KNG1_QVVAGLNFR_vs_PSG3_VSAPSGTGHLPGLNPL
117 & 134
0.017
0.604





LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNPL
118 & 134
0.003
0.631





LBP_ITLPDFTGDLR_vs_C163A_INPASLDK
119 & 54
0.012
0.609





LBP_ITLPDFTGDLR_vs_CSH_AHQLAIDTYQEFEETYIPK
119 & 80
0.019
0.602





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGLNPL
119 & 134
0.001
0.640





LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.013
0.608





LBP_ITLPDFTGDLR_vs_SOM2.CSH_SVEGSCGF
119 & 139
0.021
0.602





PEDF_LQSLFDSPDFSK_vs_PSG3_VSAPSGTGHLPGLNPL
124 & 134
0.002
0.633





PEDF_TVQAVLTVPK_vs_CSH_AHQLAIDTYQEFEETYIPK
125 & 80
0.020
0.601





PEDF_TVQAVLTVPK_vs_PSG3_VSAPSGTGHLPGLNPL
125 & 134
0.002
0.636





PEDF_TVQAVLTVPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
125 & 144
0.018
0.603





PTGDS_GPGEDFR_vs_PSG3_VSAPSGTGHLPGLNPL
137 & 134
0.012
0.609





THBG_AVLHIGEK_vs_PSG3_VSAPSGTGHLPGLNPL
143 & 134
0.021
0.601





VTNC_GQYCYELDEK_vs_CHL1_VIAVNEVGR
149 & 66
0.013
0.608





VTNC_GQYCYELDEK_vs_CSH_AHQLAIDTYQEFEETYIPK
149 & 80
0.012
0.609





VTNC_GQYCYELDEK_vs_FBLN1_TGYYFDGISR
149 & 86
0.010
0.612





VTNC_GQYCYELDEK_vs_IBP3_YGQPLPGYTTK
149 & 100
0.016
0.605





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.011
0.611





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.009
0.613





VTNC_GQYCYELDEK_VS_NCAM1_GLGEISAASEFK
149 & 121
0.010
0.612





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.008
0.616





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.000
0.658





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.004
0.625





VTNC_GQYCYELDEK_vs_SOM2.CSH_SVEGSCGF
149 & 139
0.019
0.603





VTNC_GQYCYELDEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
149 & 144
0.002
0.633





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.012
0.610





VTNC_VDTVDPPYPR_vs_CHL1_VIAVNEVGR
150 & 66
0.018
0.603





VTNC_VDTVDPPYPR_vs_CSH_AHQLAIDTYQEFEETYIPK
150 & 80
0.015
0.606





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.018
0.604





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.010
0.613





VTNC_VDTVDPPYPR_vs_NCAM1_GLGEISAASEFK
150 & 121
0.011
0.610





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126
0.021
0.601





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.000
0.656





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.010
0.612





VTNC_VDTVDPPYPR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
150 & 144
0.007
0.618





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.007
0.617
















TABLE 48







Reversal Classification Performance, weeks 17, 18 and 19.


Reversal AUROC for gestational weeks 17 0/7 through 19 6/7 


using a case vs control cut-off of <37 0/7 vs >=37 0/7 weeks, 


with BMI stratification (>22 <=37).











SEQ ID




Reversal
NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_PSG3_VSAPSGTGHLPGLNPL
 34 & 134
0.030
0.616





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.046
0.607





AFAM_DADPDTFFAK_vs_PSG3_VSAPSGTGHLPGLNPL
 37 & 134
0.030
0.616





AFAM_DADPDTFFAK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 37 & 144
0.020
0.624





ANGT_DPTFIPAPIQAK_vs_CSH_AHQLAIDTYQEFEETYIPK
 42 & 80
0.024
0.621





ANGT_DPTFIPAPIQAK_vs_PSG3_VSAPSGTGHLPGLNPL
 42 & 134
0.022
0.622





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.040
0.610





ANGT_DPTFIPAPIQAK_vs_SOM2.CSH_SVEGSCGF
 42 & 139
0.016
0.630





ANGT_DPTFIPAPIQAK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 42 & 144
0.034
0.613





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.007
0.643





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.044
0.607





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.039
0.610





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.045
0.607





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.047
0.606





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.023
0.621





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.050
0.605





APOH_ATVVYQGER_vs_CHL1_VIAVNEVGR
 48 & 66
0.047
0.606





APOH_ATVVYQGER_vs_IBP3_YGQPLPGYTTK
 48 & 100
0.043
0.608





APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLNPL
 48 & 134
0.026
0.619





C1QB_VPGLYYFTYHASSR_vs_C163A_INPASLDK
 55 & 54
0.048
0.605





C1QB_VPGLYYFTYHASSR_vs_CHL1_VIAVNEVGR
 55 & 66
0.033
0.614





C1QB_VPGLYYFTYHASSR_vs_CSH_AHQLAIDTYQEFEETYIPK
 55 & 80
0.026
0.619





C1QB_VPGLYYFTYHASSR_vs_IBP3_YGQPLPGYTTK
 55 & 100
0.049
0.605





C1QB_VPGLYYFTYHASSR_vs_IGF2_GIVEECCFR
 55 & 103
0.021
0.623





C1QB_VPGLYYFTYHASSR_vs_LYAM1_SYYWIGIR
 55 & 120
0.024
0.621





C1QB_VPGLYYFTYHASSR_vs_PGRP2_AGLLRPDYALLGHR
 55 & 126
0.020
0.624





C1QB_VPGLYYFTYHASSR_vs_PSG3_VSAPSGTGHLPGLNPL
 55 & 134
0.022
0.622





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.017
0.627





C1QB_VPGLYYFTYHASSR_vs_SOM2.CSH_NYGLLYCFR
 55 & 138
0.040
0.610





C1QB_VPGLYYFTYHASSR_vs_SOM2.CSH_SVEGSCGF
 55 & 139
0.040
0.611





C1QB_VPGLYYFTYHASSR_vs_TENX_LNWEAPPGAFDSFLLR
 55 & 141
0.046
0.606





C1QB_VPGLYYFTYHASSR_vs_TENX_LSQLSVTDVTTSSLR
 55 & 142
0.038
0.611





C1QB_VPGLYYFTYHASSR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 55 & 144
0.033
0.614





CBPN_EALIQFLEQVHQGIK_vs_LYAM1_SYYWIGIR
 59 & 120
0.044
0.607





CFAB_YGLVTYATYPK_vs_C163A_INPASLDK
 64 & 54
0.008
0.642





CFAB_YGLVTYATYPK_vs_CHL1_VIAVNEVGR
 64 & 66
0.030
0.616





CFAB_YGLVTYATYPK_vs_NCAM1_GLGEISAASEFK
 64 & 121
0.022
0.622





CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGLNPL
 64 & 134
0.014
0.631





CFAB_YGLVTYATYPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 64 & 144
0.007
0.643





CLUS_ASSIIDELFQDR_vs_PSG3_VSAPSGTGHLPGLNPL
 67 & 134
0.048
0.605





CO5_TLLPVSKPEIR_vs_CHL1_VIAVNEVGR
 70 & 66
0.019
0.625





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.014
0.632





CO5_TLLPVSKPEIR_vs_PGRP2_AGLLRPDYALLGHR
 70 & 126
0.039
0.610





CO5_TLLPVSKPEIR_vs_PSG3_VSAPSGTGHLPGLNPL
 70 & 134
0.006
0.647





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.037
0.611





CO5_TLLPVSKPEIR_vs_TENX_LNWEAPPGAFDSFLLR
 70 & 141
0.040
0.609





CO5_TLLPVSKPEIR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 70 & 144
0.012
0.635





CO5_TLLPVSKPEIR_vs_VTDB_ELPEHTVK
 70 & 147
0.047
0.606





CO5_VFQFLEK_vs_CHL1_VIAVNEVGR
 71 & 66
0.036
0.612





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.021
0.623





CO5_VFQFLEK_vs_PGRP2_AGLLRPDYALLGHR
 71 & 126
0.035
0.612





CO5_VFQFLEK_vs_PSG3_VSAPSGTGHLPGLNPL
 71 & 134
0.016
0.628





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
 71 & 18
0.034
0.613





CO5_VFQFLEK_vs_TENX_LNWEAPPGAFDSFLLR
 71 & 141
0.036
0.612





CO5_VFQFLEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 71 & 144
0.012
0.634





CO6_ALNHLPLEYNSALYSR_vs_C163A_INPASLDK
 72 & 54
0.043
0.608





CO6_ALNHLPLEYNSALYSR_vs_CHL1_VIAVNEVGR
 72 & 66
0.014
0.631





CO6_ALNHLPLEYNSALYSR_vs_IGF2_GIVEECCFR
 72 & 103
0.043
0.608





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGIR
 72 & 120
0.026
0.619





CO6_ALNHLPLEYNSALYSR_vs_PSG3_VSAPSGTGHLPGLNPL
 72 & 134
0.012
0.634





CO6_ALNHLPLEYNSALYSR_vs_TENX_LNWEAPPGAFDSFLLR
 72 & 141
0.022
0.622





CO6_ALNHLPLEYNSALYSR_vs_TENX_LSQLSVTDVTTSSLR
 72 & 142
0.036
0.612





CO6_ALNHLPLEYNSALYSR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 72 & 144
0.004
0.654





CO8A_SLLQPNK_vs_CHL1_VIAVNEVGR
 74 & 66
0.049
0.605





COSA_SLLQPNK_vs_PSG3_VSAPSGTGHLPGLNPL
 74 & 134
0.025
0.619





COSA_SLLQPNK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 74 & 144
0.011
0.635





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
 76 & 134
0.032
0.614





CO8B_QALEEFQK_vs_TENX_LNWEAPPGAFDSFLLR
 76 & 141
0.041
0.609





CO8B_QALEEFQK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 76 & 144
0.012
0.634





F13B_GDTYPAELYITGSILR_vs_CHL1_VIAVNEVGR
 84 & 66
0.021
0.623





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
 84 & 103
0.042
0.609





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.040
0.609





F13B_GDTYPAELYITGSILR_vs_PSG3_VSAPSGTGHLPGLNPL
 84 & 134
0.027
0.618





HABP2_FLNWIK_vs_C163A_INPASLDK
 92 & 54
0.028
0.617





HABP2_FLNWIK_vs_CHL1_VIAVNEVGR
 92 & 66
0.017
0.628





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.023
0.622





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.033
0.614





HABP2_FLNWIK_vs_NCAM1_GLGEISAASEFK
 92 & 121
0.036
0.612





HABP2_FLNWIK_vs_PSG3_VSAPSGTGHLPGLNPL
 92 & 134
0.008
0.642





HABP2_FLNWIK_vs_SHBG_IALGGLLFPASNLR
 92 & 18
0.044
0.608





HABP2_FLNWIK_vs_SOM2.CSH_SVEGSCGF
 92 & 139
0.034
0.615





HABP2_FLNWIK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 92 & 144
0.009
0.639





HABP2_FLNWIK_vs_VTDB_ELPEHTVK
 92 & 147
0.021
0.623





IBP4_QCHPALDGQR_vs_CHL1_VIAVNEVGR
  2 & 66
0.038
0.611





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.039
0.610





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.012
0.633





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.044
0.607





IBP4_QCHPALDGQR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
  2 & 144
0.037
0.611





INHBC_LDFHFSSDR_vs_C163A_INPASLDK
107 & 54
0.025
0.620





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.016
0.629





INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDSFLLR
107 & 141
0.030
0.616





INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
107 & 144
0.049
0.605





PEDF_LQSLFDSPDFSK_vs_C163A_INPASLDK
124 & 54
0.047
0.606





PEDF_LQSLFDSPDFSK_vs_PSG3_VSAPSGTGHLPGLNPL
124 & 134
0.037
0.611





PEDF_TVQAVLTVPK_vs_C163A_INPASLDK
125 & 54
0.021
0.623





PEDF_TVQAVLTVPK_vs_CHL1_VIAVNEVGR
125 & 66
0.026
0.619





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.038
0.611





PEDF_TVQAVLTVPK_vs_PSG3_VSAPSGTGHLPGLNPL
125 & 134
0.018
0.627





PEDF_TVQAVLTVPK_vs_TENX_LNWEAPPGAFDSFLLR
125 & 141
0.041
0.609





PEDF_TVQAVLTVPK_vs_TENX_LSQLSVTDVTTSSLR
125 & 142
0.042
0.608





PEDF_TVQAVLTVPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
125 & 144
0.028
0.617





PRDX2_GLFIIDGK_vs_C163A_INPASLDK
128 & 54
0.039
0.610





PRDX2_GLFIIDGK_vs_PSG3_VSAPSGTGHLPGLNPL
128 & 134
0.047
0.606





PSG2_IHPSYTNYR_vs_C163A_INPASLDK
133 & 54
0.034
0.613





PSG2_IHPSYTNYR_vs_CHL1_VIAVNEVGR
133 & 66
0.048
0.606





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.045
0.607





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.049
0.605





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.031
0.615





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.024
0.620





PSG2_IHPSYTNYR_vs_PSG1_FQLPGQK
133 & 131
0.047
0.606





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.028
0.617





PSG2_IHPSYTNYR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
133 & 135
0.026
0.619





PSG2_IHPSYTNYR_vs_SOM2.CSH_SVEGSCGF
133 & 139
0.043
0.609





PSG2_IHPSYTNYR_vs_TENX_LSQLSVTDVTTSSLR
133 & 142
0.037
0.611





VTNC_GQYCYELDEK_vs_C163A_INPASLDK
149 & 54
0.007
0.643





VTNC_GQYCYELDEK_vs_CHL1_VIAVNEVGR
149 & 66
0.011
0.635





VTNC_GQYCYELDEK_vs_CRIS3_AVSPPAR
149 & 78
0.035
0.612





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.042
0.609





VTNC_GQYCYELDEK_vs_CSH_AHQLAIDTYQEFEETYIPK
149 & 80
0.040
0.609





VTNC_GQYCYELDEK_vs_IBP3_FLNVLSPR
149 & 99
0.046
0.606





VTNC_GQYCYELDEK_vs_IBP3_YGQPLPGYTTK
149 & 100
0.039
0.610





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.035
0.612





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.009
0.640





VTNC_GQYCYELDEK_vs_NCAM1_GLGEISAASEFK
149 & 121
0.039
0.610





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.017
0.627





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.004
0.652





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.021
0.623





VTNC_GQYCYELDEK_vs_SOM2.CSH_SVEGSCGF
149 & 139
0.028
0.618





VTNC_GQYCYELDEK_vs_TENX_LNWEAPPGAFDSFLLR
149 & 141
0.042
0.609





VTNC_GQYCYELDEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
149 & 144
0.003
0.658





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.013
0.632





VTNC_VDTVDPPYPR_vs_C163A_INPASLDK
150 & 54
0.019
0.625





VTNC_VDTVDPPYPR_vs_CHL1_VIAVNEVGR
150 & 66
0.022
0.622





VTNC_VDTVDPPYPR_vs_CRIS3_AVSPPAR
150 & 78
0.047
0.606





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.008
0.640





VTNC_VDTVDPPYPR_vs_NCAM1_GLGEISAASEFK
150 & 121
0.037
0.611





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126
0.044
0.607





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.005
0.648





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.036
0.612





VTNC_VDTVDPPYPR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
150 & 144
0.010
0.637





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.013
0.633
















TABLE 49







Reversal Classification Performance, weeks 17, 18 and 19.


Reversal AUROC for gestational weeks 17 0/7 through 19 6/7 


using a case vs control cut-off of <35 0/7 vs >=35 0/7 weeks, 


without BMI stratification.











SEQ ID




Reversal
NO:
pval
ROC_AUC





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.036
0.648





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.046
0.641





ANGT_DPTFIPAPIQAK_vs_IGF2_GIVEECCFR
 42 & 103
0.025
0.658





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.038
0.646





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.049
0.639





B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
 51 & 79
0.043
0.643





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
 51 & 103
0.039
0.646





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.034
0.650





BGH3_LTLLAPLNSVFK_vs_PSG9_LFIPQITR
 52 & 136
0.049
0.639





CBPN_EALIQFLEQVHQGIK_vs_PSG9_LFIPQITR
 59 & 136
0.047
0.640





CBPN_NNANGVDLNR_vs_LYAM1_SYYWIGIR
 60 & 120
0.039
0.646





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
 61 & 103
0.015
0.672





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.014
0.674





CD14_LTVGAAQVPAQLLVGALR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 61 & 144
0.021
0.663





CD14_SWLAELQQWLKPGLK_vs_IGF2_GIVEECCFR
 62 & 103
0.031
0.653





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.038
0.647





CD14_SWLAELQQWLKPGLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 62 & 144
0.036
0.648





CLUS_ASSIIDELFQDR_vs_ALS_IRPHTFTGLSGLR
 67 & 40
0.043
0.643





CLUS_ASSIIDELFQDR_vs_C163A_INPASLDK
 67 & 54
0.041
0.644





CLUS_ASSIIDELFQDR_vs_CRIS3_YEDLYSNCK
 67 & 79
0.034
0.650





CLUS_ASSIIDELFQDR_vs_IBP3_FLNVLSPR
 67 & 99
0.014
0.674





CLUS_ASSIIDELFQDR_vs_IBP3_YGQPLPGYTTK
 67 & 100
0.010
0.681





CLUS_ASSIIDELFQDR_vs_IGF2_GIVEECCFR
 67 & 103
0.001
0.732





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.004
0.702





CLUS_ASSIIDELFQDR_vs_VTDB_ELPEHTVK
 67 & 147
0.034
0.650





CLUS_LFDSDPITVTVPVEVSR_vs_ALS_IRPHTFTGLSGLR
 68 & 40
0.039
0.645





CLUS_LFDSDPITVTVPVEVSR_vs_C163A_INPASLDK
 68 & 54
0.037
0.647





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_AVSPPAR
 68 & 78
0.027
0.656





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_YEDLYSNCK
 68 & 79
0.012
0.678





CLUS_LFDSDPITVTVPVEVSR_vs_CSH_AHQLAIDTYQEFEETYIPK
 68 & 80
0.050
0.638





CLUS_LFDSDPITVTVPVEVSR_vs_IBP3_FLNVLSPR
 68 & 99
0.005
0.700





CLUS_LFDSDPITVTVPVEVSR_vs_IBP3_YGQPLPGYTTK
 68 & 100
0.003
0.707





CLUS_LFDSDPITVTVPVEVSR_vs_IGF2_GIVEECCFR
 68 & 103
0.000
0.749





CLUS_LFDSDPITVTVPVEVSR_vs_ITIH4_ILDDLSPR
 68 & 112
0.030
0.653





CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGIR
 68 & 120
0.004
0.705





CLUS_LFDSDPITVTVPVEVSR_vs_TENX_LNWEAPPGAFDSFLLR
 68 & 141
0.028
0.655





CLUS_LFDSDPITVTVPVEVSR_vs_TENX_LSQLSVTDVTTSSLR
 68 & 142
0.045
0.641





CLUS_LFDSDPITVTVPVEVSR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 68 & 144
0.035
0.648





CLUS_LFDSDPITVTVPVEVSR_VS_VTDB_ELPEHTVK
 68 & 147
0.015
0.672





CO5_TLLPVSKPEIR_vs_CRIS3_YEDLYSNCK
 70 & 79
0.047
0.640





CO5_TLLPVSKPEIR_vs_IGF2_GIVEECCFR
 70 & 103
0.036
0.648





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.021
0.663





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.039
0.645





CO6_ALNHLPLEYNSALYSR_vs_IGF2_GIVEECCFR
 72 & 103
0.012
0.677





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGIR
 72 & 120
0.007
0.690





CO6_ALNHLPLEYNSALYSR_vs_TENX_LNWEAPPGAFDSFLLR
 72 & 141
0.038
0.647





CO6_ALNHLPLEYNSALYSR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 72 & 144
0.017
0.669





COSA_SLLQPNK_vs_IGF2_GIVEECCFR
 74 & 103
0.036
0.648





CO8A_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.021
0.663





COSA_SLLQPNK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 74 & 144
0.046
0.641





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 82 & 135
0.027
0.656





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_LFIPQITR
 82 & 136
0.016
0.670





ENPP2_TYLHTYESEI_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 83 & 135
0.034
0.650





ENPP2_TYLHTYESEI_vs_PSG9_LFIPQITR
 83 & 136
0.023
0.661





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
 84 & 79
0.032
0.651





F13B_GDTYPAELYITGSILR_vs_IBP3_YGQPLPGYTTK
 84 & 100
0.049
0.639





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
 84 & 103
0.008
0.686





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.009
0.686





FETUA_FSVVYAK_vs_PSG9_LFIPQITR
 88 & 136
0.034
0.650





FETUA_HTLNQIDEVK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 89 & 135
0.037
0.647





FETUA_HTLNQIDEVK_vs_PSG9_LFIPQITR
 89 & 136
0.024
0.659





HABP2_FLNWIK_vs_C163A_INPASLDK
 92 & 54
0.032
0.651





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.014
0.674





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.020
0.664





HABP2_FLNWIK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 92 & 144
0.021
0.663





HEMO_NFPSPVDAAFR_vs_IGF2_GIVEECCFR
 93 & 103
0.029
0.654





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.034
0.649





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.017
0.668





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.015
0.672





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.012
0.676





IBP6_GAQTLYVPNCDHR_vs_C163A_INPASLDK
101 & 54
0.031
0.652





IBP6_GAQTLYVPNCDHR_vs_CRIS3_YEDLYSNCK
101 & 79
0.045
0.642





IBP6_GAQTLYVPNCDHR_vs_IGF2_GIVEECCFR
101 & 103
0.020
0.664





IBP6_GAQTLYVPNCDHR_vs_LYAM1_SYYWIGIR
101 & 120
0.041
0.644





IBP6_HLDSVLQQLQTEVYR_vs_C163A_INPASLDK
102 & 54
0.027
0.656





IBP6_HLDSVLQQLQTEVYR_vs_CRIS3_YEDLYSNCK
102 & 79
0.036
0.648





IBP6_HLDSVLQQLQTEVYR_vs_IGF2_GIVEECCFR
102 & 103
0.026
0.658





IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIGIR
102 & 120
0.045
0.641





KNG1_DIPTNSPELEETLTHTITK_vs_IGF2_GIVEECCFR
116 & 103
0.037
0.647





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.036
0.648





KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.031
0.653





KNG1_QVVAGLNFR_vs_IBP3_YGQPLPGYTTK
117 & 100
0.030
0.653





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.006
0.695





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.013
0.676





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.047
0.640





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.037
0.647





PEDF_TVQAVLTVPK_vs_IGF2_GIVEECCFR
125 & 103
0.042
0.643





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.019
0.665





PSG2_IHPSYTNYR_vs_ALS_IRPHTFTGLSGLR
133 & 40
0.029
0.654





PSG2_IHPSYTNYR_vs_C163A_INPASLDK
133 & 54
0.016
0.670





PSG2_IHPSYTNYR_vs_CHL1_VIAVNEVGR
133 & 66
0.049
0.639





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.008
0.687





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.005
0.697





PSG2_IHPSYTNYR_vs_CSH_AHQLAIDTYQEFEETYIPK
133 & 80
0.011
0.680





PSG2_IHPSYTNYR_vs_CSH_ISLLLIESWLEPVR
133 & 81
0.026
0.658





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.007
0.689





PSG2_IHPSYTNYR_vs_IBP1_VVESLAK
133 & 97
0.027
0.656





PSG2_IHPSYTNYR_vs_IBP2_LIQGAPTIR
133 & 98
0.031
0.652





PSG2_IHPSYTNYR_vs_IBP3_FLNVLSPR
133 & 99
0.021
0.663





PSG2_IHPSYTNYR_vs_IBP3_YGQPLPGYTTK
133 & 100
0.016
0.669





PSG2_IHPSYTNYR_vs_IGF2_GIVEECCFR
133 & 103
0.010
0.681





PSG2_IHPSYTNYR_vs_ITIH4_ILDDLSPR
133 & 112
0.027
0.656





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.004
0.702





PSG2_IHPSYTNYR_vs_NCAM1_GLGEISAASEFK
133 & 121
0.021
0.663





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.013
0.676





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.025
0.658





PSG2_IHPSYTNYR_vs_SOM2.CSH_NYGLLYCFR
133 & 138
0.019
0.665





PSG2_IHPSYTNYR_vs_SOM2.CSH_SVEGSCGF
133 & 139
0.034
0.650





PSG2_IHPSYTNYR_vs_SPRL1_VLTHSELAPLR
133 & 140
0.024
0.660





PSG2_IHPSYTNYR_vs_TENX_LNWEAPPGAFDSFLLR
133 & 141
0.017
0.668





PSG2_IHPSYTNYR_vs_TENX_LSQLSVTDVTTSSLR
133 & 142
0.014
0.674





PSG2_IHPSYTNYR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
133 & 144
0.019
0.666





PSG2_IHPSYTNYR_vs_VTDB_ELPEHTVK
133 & 147
0.036
0.648





PTGDS_GPGEDFR_vs_CRIS3_YEDLYSNCK
137 & 79
0.043
0.643





PTGDS_GPGEDFR_vs_IGF2_GIVEECCFR
137 & 103
0.046
0.641





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.025
0.658





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.014
0.674





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.043
0.643





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.020
0.664
















TABLE 50







Reversal Classification Performance, weeks 17, 18 and 19.


Reversal AUROC for gestational weeks 17 0/7 through 19 6/7 using a 


case vs control cut-off of <35 0/7 vs >=35 0/7 weeks, with


BMI stratification (>22 <=37).










Reversal
SEQ ID NO:
pval
ROC_AUC 





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.012
0.718





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.023
0.696





ANGT_DPTFIPAPIQAK_vs_IGF2_GIVEECCFR
 42 & 103
0.019
0.702





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.035
0.682





APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
 48 & 103
0.040
0.678





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
 51 & 103
0.033
0.684





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.037
0.680





CBPN_NNANGVDLNR_vs_LYAM1_SYYWIGIR
 60 & 120
0.048
0.671





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
 61 & 103
0.020
0.702





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.020
0.702





CLUS_ASSIIDELFQDR_vs_CRIS3_YEDLYSNCK
 67 & 79
0.038
0.679





CLUS_ASSIIDELFQDR_vs_IBP3_FLNVLSPR
 67 & 99
0.034
0.684





CLUS_ASSIIDELFQDR_vs_IGF2_GIVEECCFR
 67 & 103
0.004
0.751





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.010
0.722





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_YEDLYSNCK
 68 & 79
0.031
0.687





CLUS_LFDSDPITVTVPVEVSR_vs_IBP3_FLNVLSPR
 68 & 99
0.033
0.685





CLUS_LFDSDPITVTVPVEVSR_vs_IGF2_GIVEECCFR
 68 & 103
0.008
0.731





CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGIR
 68 & 120
0.028
0.690





CO5_TLLPVSKPEIR_vs_IGF2_GIVEECCFR
 70 & 103
0.029
0.689





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.015
0.710





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.045
0.673





CO6_ALNHLPLEYNSALYSR_vs_IGF2_GIVEECCFR
 72 & 103
0.008
0.731





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGIR
 72 & 120
0.011
0.720





CO8A_SLLQPNK_vs_IGF2_GIVEECCFR
 74 & 103
0.049
0.671





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_ALS_IRPHTFTGLSGLR
 82 & 40
0.033
0.684





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_FBLN1_TGYYFDGISR
 82 & 86
0.020
0.701





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_ITIH4_ILDDLSPR
 82 & 112
0.036
0.681





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_NCAM1_GLGEISAASEFK
 82 & 121
0.026
0.693





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PRG2_WNFAYWAAHQPWSR
 82 & 129
0.042
0.676





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 82 & 135
0.019
0.702





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_LFIPQITR
 82 & 136
0.006
0.739





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_VTDB_ELPEHTVK
 82 & 147
0.016
0.709





ENPP2_TYLHTYESEI_vs_ALS_IRPHTFTGLSGLR
 83 & 40
0.042
0.676





ENPP2_TYLHTYESEI_vs_FBLN1_TGYYFDGISR
 83 & 86
0.025
0.693





ENPP2_TYLHTYESEI_vs_ITIH4_ILDDLSPR
 83 & 112
0.043
0.675





ENPP2_TYLHTYESEI_vs_NCAM1_GLGEISAASEFK
 83 & 121
0.030
0.688





ENPP2_TYLHTYESEI_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 83 & 135
0.027
0.692





ENPP2_TYLHTYESEI_vs_PSG9_LFIPQITR
 83 & 136
0.009
0.727





ENPP2_TYLHTYESEI_vs_VTDB_ELPEHTVK
 83 & 147
0.015
0.712





F13B_GDTYPAELYITGSILR_vs_CRIS3_AVSPPAR
 84 & 78
0.043
0.675





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
 84 & 79
0.030
0.688





F13B_GDTYPAELYITGSILR_vs_IBP3_FLNVLSPR
 84 & 99
0.040
0.678





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
 84 & 103
0.004
0.750





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.012
0.718





HEMO_NFPSPVDAAFR_vs_IGF2_GIVEECCFR
 93 & 103
0.045
0.673





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.035
0.682





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.006
0.737





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.013
0.715





IBP6_HLDSVLQQLQTEVYR_vs_IGF2_GIVEECCFR
102 & 103
0.049
0.670





KNG1_DIPTNSPELEETLTHTITK_vs_IGF2_GIVEECCFR
116 & 103
0.019
0.704





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.030
0.688





KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.037
0.681





KNG1_QVVAGLNFR_vs_IBP3_FLNVLSPR
117 & 99
0.019
0.703





KNG1_QVVAGLNFR_vs_IBP3_YGQPLPGYTTK
117 & 100
0.024
0.696





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.002
0.763





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.014
0.713





PAPP1_DIPHWLNPTR_vs_C163A_INPASLDK
122 & 54
0.049
0.670





PAPP1_DIPHWLNPTR_vs_CRIS3_AVSPPAR
122 & 78
0.034
0.683





PAPP1_DIPHWLNPTR_vs_CRIS3_YEDLYSNCK
122 & 79
0.025
0.693





PAPP1_DIPHWLNPTR_vs_LYAM1_SYYWIGIR
122 & 120
0.036
0.681





PEDF_TVQAVLTVPK_vs_IGF2_GIVEECCFR
125 & 103
0.031
0.687





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.022
0.699





PSG2_IHPSYTNYR_vs_ALS_IRPHTFTGLSGLR
133 & 40
0.018
0.705





PSG2_IHPSYTNYR_vs_C163A_INPASLDK
133 & 54
0.010
0.723





PSG2_IHPSYTNYR_vs_CHL1_VIAVNEVGR
133 & 66
0.042
0.676





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.003
0.758





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.003
0.759





PSG2_IHPSYTNYR_vs_CSH_AHQLAIDTYQEFEETYIPK
133 & 80
0.014
0.713





PSG2_IHPSYTNYR_vs_CSH_ISLLLIESWLEPVR
133 & 81
0.029
0.690





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.014
0.712





PSG2_IHPSYTNYR_vs_IBP2_LIQGAPTIR
133 & 98
0.038
0.679





PSG2_IHPSYTNYR_vs_IBP3_FLNVLSPR
133 & 99
0.007
0.732





PSG2_IHPSYTNYR_vs_IBP3_YGQPLPGYTTK
133 & 100
0.010
0.722





PSG2_IHPSYTNYR_vs_IGF2_GIVEECCFR
133 & 103
0.003
0.754





PSG2_IHPSYTNYR_vs_ITIH4_ILDDLSPR
133 & 112
0.015
0.710





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.002
0.773





PSG2_IHPSYTNYR_vs_NCAM1_GLGEISAASEFK
133 & 121
0.035
0.683





PSG2_IHPSYTNYR_vs_PGRP2_AGLLRPDYALLGHR
133 & 126
0.021
0.700





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.007
0.733





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.028
0.691





PSG2_IHPSYTNYR_vs_SOM2.CSH_NYGLLYCFR
133 & 138
0.021
0.699





PSG2_IHPSYTNYR_vs_SOM2.CSH_SVEGSCGF
133 & 139
0.023
0.697





PSG2_IHPSYTNYR_vs_SPRL1_VLTHSELAPLR
133 & 140
0.042
0.676





PSG2_IHPSYTNYR_vs_TENX_LNWEAPPGAFDSFLLR
133 & 141
0.016
0.708





PSG2_IHPSYTNYR_vs_TENX_LSQLSVTDVTTSSLR
133 & 142
0.011
0.720





PSG2_IHPSYTNYR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
133 & 144
0.031
0.687





PSG2_IHPSYTNYR_vs_VTDB_ELPEHTVK
133 & 147
0.017
0.707





PTGDS_GPGEDFR_vs_CRIS3_YEDLYSNCK
137 & 79
0.042
0.676





PTGDS_GPGEDFR_vs_IGF2_GIVEECCFR
137 & 103
0.021
0.700





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.018
0.704





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.017
0.707





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.048
0.671





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.040
0.677
















TABLE 51







Reversal Classification Performance, weeks 18, 19 and 20.


Reversal AUROC for gestational weeks 18 0/7 through 20 6/7 using 


 a case vs control cut-off of <37 0/7 vs >=37 0/7 weeks, 


without BMI stratification.










Reversal
SEQ ID NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_PSG3_VSAPSGTGHLPGLNPL
 34 & 134
0.001
0.633





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.008
0.608





AFAM_DADPDTFFAK_vs_PSG3_VSAPSGTGHLPGLNPL
 37 & 134
0.001
0.630





AFAM_HFQNLGK_vs_PRG2_WNFAYWAAHQPWSR
 38 & 129
0.010
0.605





AFAM_HFQNLGK_vs_PSG3_VSAPSGTGHLPGLNPL
 38 & 134
0.001
0.636





AFAM_HFQNLGK_vs_SHBG_IALGGLLFPASNLR
 38 & 18
0.013
0.602





AFAM_HFQNLGK_vs_TENX_LNWEAPPGAFDSFLLR
 38 & 141
0.007
0.610





ANGT_DPTFIPAPIQAK_vs_FBLN1_TGYYFDGISR
 42 & 86
0.008
0.608





ANGT_DPTFIPAPIQAK_vs_PRG2_WNFAYWAAHQPWSR
 42 & 129
0.010
0.605





ANGT_DPTFIPAPIQAK_vs_PSG3_VSAPSGTGHLPGLNPL
 42 & 134
0.001
0.635





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.005
0.614





APOC3_GWVTDGFSSLK_vs_ALS_IRPHTFTGLSGLR
 47 & 40
0.004
0.618





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.001
0.638





APOC3_GWVTDGFSSLK_vs_CHL1_VIAVNEVGR
 47 & 66
0.003
0.620





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.001
0.631





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.001
0.635





APOC3_GWVTDGFSSLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 47 & 80
0.002
0.627





APOC3_GWVTDGFSSLK_vs_CSH_ISLLLIESWLEPVR
 47 & 81
0.006
0.613





APOC3_GWVTDGFSSLK_vs_FBLN1_TGYYFDGISR
 47 & 86
0.001
0.634





APOC3_GWVTDGFSSLK_vs_IBP2_LIQGAPTIR
 47 & 98
0.011
0.603





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.001
0.630





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
 47 & 100
0.002
0.623





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.001
0.633





APOC3_GWVTDGFSSLK_vs_ITIH4_ILDDLSPR
 47 & 112
0.003
0.623





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.001
0.637





APOC3_GWVTDGFSSLK_vs_NCAM1_GLGEISAASEFK
 47 & 121
0.004
0.617





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.003
0.620





APOC3_GWVTDGFSSLK_vs_PRG2_WNFAYWAAHQPWSR
 47 & 129
0.001
0.637





APOC3_GWVTDGFSSLK_vs_PSG1_FQLPGQK
 47 & 131
0.009
0.606





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.000
0.662





APOC3_GWVTDGFSSLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 47 & 135
0.005
0.615





APOC3_GWVTDGFSSLK_vs_PSG9_LFIPQITR
 47 & 136
0.006
0.612





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.001
0.632





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_NYGLLYCFR
 47 & 138
0.006
0.611





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_SVEGSCGF
 47 & 139
0.008
0.609





APOC3_GWVTDGFSSLK_vs_SPRL1_VLTHSELAPLR
 47 & 140
0.004
0.618





APOC3_GWVTDGFSSLK_vs_TENX_LNWEAPPGAFDSFLLR
 47 & 141
0.001
0.634





APOC3_GWVTDGFSSLK_vs_TENX_LSQLSVTDVTTSSLR
 47 & 142
0.001
0.630





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.001
0.638





APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
 47 & 147
0.001
0.630





APOH_ATVVYQGER_vs_FBLN1_TGYYFDGISR
 48 & 86
0.005
0.614





APOH_ATVVYQGER_vs_PRG2_WNFAYWAAHQPWSR
 48 & 129
0.013
0.601





APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLNPL
 48 & 134
0.000
0.649





APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
 48 & 18
0.006
0.613





APOH_ATVVYQGER_vs_TENX_LNWEAPPGAFDSFLLR
 48 & 141
0.008
0.607





APOH_ATVVYQGER_vs_TENX_LSQLSVTDVTTSSLR
 48 & 142
0.013
0.602





B2MG_VEHSDLSFSK_vs_PSG3_VSAPSGTGHLPGLNPL
 50 & 134
0.011
0.604





B2MG_VNHVTLSQPK_vs_PSG3_VSAPSGTGHLPGLNPL
 51 & 134
0.002
0.623





BGH3_LTLLAPLNSVFK_vs_PSG3_VSAPSGTGHLPGLNPL
 52 & 134
0.007
0.610





C1QB_VPGLYYFTYHASSR_vs_CHL1_VIAVNEVGR
 55 & 66
0.005
0.613





C1QB_VPGLYYFTYHASSR_vs_CSH_AHQLAIDTYQEFEETYIPK
 55 & 80
0.005
0.614





C1QB_VPGLYYFTYHASSR_vs_FBLN1_TGYYFDGISR
 55 & 86
0.001
0.630





C1QB_VPGLYYFTYHASSR_vs_IGF2_GIVEECCFR
 55 & 103
0.010
0.605





C1QB_VPGLYYFTYHASSR_vs_PGRP2_AGLLRPDYALLGHR
 55 & 126
0.010
0.605





C1QB_VPGLYYFTYHASSR_vs_PRG2_WNFAYWAAHQPWSR
 55 & 129
0.001
0.632





C1QB_VPGLYYFTYHASSR_vs_PSG3_VSAPSGTGHLPGLNPL
 55 & 134
0.000
0.649





C1QB_VPGLYYFTYHASSR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 55 & 135
0.013
0.602





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.001
0.641





C1QB_VPGLYYFTYHASSR_vs_SPRL1_VLTHSELAPLR
 55 & 140
0.011
0.603





C1QB_VPGLYYFTYHASSR_vs_TENX_LNWEAPPGAFDSFLLR
 55 & 141
0.002
0.624





C1QB_VPGLYYFTYHASSR_vs_TENX_LSQLSVTDVTTSSLR
 55 & 142
0.003
0.619





C1QB_VPGLYYFTYHASSR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 55 & 144
0.007
0.610





CD14_LTVGAAQVPAQLLVGALR_vs_FBLN1_TGYYFDGISR
 61 & 86
0.011
0.604





CD14_LTVGAAQVPAQLLVGALR_vs_PRG2_WNFAYWAAHQPWSR
 61 & 129
0.013
0.602





CD14_LTVGAAQVPAQLLVGALR_vs_PSG3_VSAPSGTGHLPGLNPL
 61 & 134
0.000
0.646





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.006
0.611





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LNWEAPPGAFDSFLLR
 61 & 141
0.004
0.616





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LSQLSVTDVTTSSLR
 61 & 142
0.007
0.609





CD14_LTVGAAQVPAQLLVGALR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 61 & 144
0.011
0.604





CD14_SWLAELQQWLKPGLK_vs_FBLN1_TGYYFDGISR
 62 & 86
0.013
0.602





CD14_SWLAELQQWLKPGLK_vs_PRG2_WNFAYWAAHQPWSR
 62 & 129
0.013
0.602





CD14_SWLAELQQWLKPGLK_vs_PSG3_VSAPSGTGHLPGLNPL
 62 & 134
0.001
0.637





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
 62 & 18
0.007
0.610





CD14_SWLAELQQWLKPGLK_vs_TENX_LNWEAPPGAFDSFLLR
 62 & 141
0.006
0.611





CD14_SWLAELQQWLKPGLK_vs_TENX_LSQLSVTDVTTSSLR
 62 & 142
0.012
0.603





CD14_SWLAELQQWLKPGLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 62 & 144
0.014
0.601





CFAB_YGLVTYATYPK_vs_PRG2_WNFAYWAAHQPWSR
 64 & 129
0.013
0.601





CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGLNPL
 64 & 134
0.000
0.646





CFAB_YGLVTYATYPK_vs_SHBG_IALGGLLFPASNLR
 64 & 18
0.008
0.607





CFAB_YGLVTYATYPK_vs_TENX_LNWEAPPGAFDSFLLR
 64 & 141
0.010
0.605





CFAB_YGLVTYATYPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 64 & 144
0.004
0.618





CLUS_ASSIIDELFQDR_vs_PSG3_VSAPSGTGHLPGLNPL
 67 & 134
0.002
0.628





CLUS_ASSIIDELFQDR_vs_TENX_LNWEAPPGAFDSFLLR
 67 & 141
0.014
0.600





CLUS_LFDSDPITVTVPVEVSR_vs_PSG3_VSAPSGTGHLPGLNPL
 68 & 134
0.004
0.617





CO5_TLLPVSKPEIR_vs_PSG3_VSAPSGTGHLPGLNPL
 70 & 134
0.001
0.631





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.014
0.600





CO5_TLLPVSKPEIR_vs_TENX_LNWEAPPGAFDSFLLR
 70 & 141
0.014
0.600





CO5_VFQFLEK_vs_FBLN1_TGYYFDGISR
 71 & 86
0.012
0.603





CO5_VFQFLEK_vs_PSG3_VSAPSGTGHLPGLNPL
 71 & 134
0.002
0.629





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
 71 & 18
0.009
0.606





CO5_VFQFLEK_vs_TENX_LNWEAPPGAFDSFLLR
 71 & 141
0.011
0.604





CO6_ALNHLPLEYNSALYSR_vs_PSG3_VSAPSGTGHLPGLNPL
 72 & 134
0.002
0.624





CO6_ALNHLPLEYNSALYSR_vs_TENX_LNWEAPPGAFDSFLLR
 72 & 141
0.013
0.602





CO8A_SLLQPNK_vs_CHL1_VIAVNEVGR
 74 & 66
0.011
0.604





CO8A_SLLQPNK_vs_FBLN1_TGYYFDGISR
 74 & 86
0.013
0.601





CO8A_SLLQPNK_vs_PSG3_VSAPSGTGHLPGLNPL
 74 & 134
0.000
0.643





CO8A_SLLQPNK_vs_SHBG_IALGGLLFPASNLR
 74 & 18
0.006
0.612





CO8A_SLLQPNK_vs_TENX_LNWEAPPGAFDSFLLR
 74 & 141
0.002
0.624





CO8A_SLLQPNK_vs_TENX_LSQLSVTDVTTSSLR
 74 & 142
0.007
0.610





CO8A_SLLQPNK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 74 & 144
0.003
0.622





CO8B_QALEEFQK_vs_FBLN1_TGYYFDGISR
 76 & 86
0.014
0.600





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
 76 & 134
0.000
0.645





CO8B_QALEEFQK_vs_SHBG_IALGGLLFPASNLR
 76 & 18
0.006
0.612





CO8B_QALEEFQK_vs_TENX_LNWEAPPGAFDSFLLR
 76 & 141
0.002
0.628





CO8B_QALEEFQK_vs_TENX_LSQLSVTDVTTSSLR
 76 & 142
0.004
0.619





CO8B_QALEEFQK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 76 & 144
0.002
0.627





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG3_VSAPSGTGHLPGLNPL
 82 & 134
0.012
0.602





ENPP2_TYLHTYESEI_vs_PSG3_VSAPSGTGHLPGLNPL
 83 & 134
0.013
0.601





F13B_GDTYPAELYITGSILR_vs_PSG3_VSAPSGTGHLPGLNPL
 84 & 134
0.005
0.615





FBLN3_IPSNPSHR_vs_SHBG_IALGGLLFPASNLR
 87 & 18
0.007
0.611





FETUA_FSVVYAK_vs_PSG3_VSAPSGTGHLPGLNPL
 88 & 134
0.001
0.633





FETUA_FSVVYAK_vs_TENX_LNWEAPPGAFDSFLLR
 88 & 141
0.013
0.601





FETUA_HTLNQIDEVK_vs_PRG2_WNFAYWAAHQPWSR
 89 & 129
0.010
0.604





FETUA_HTLNQIDEVK_vs_PSG3_VSAPSGTGHLPGLNPL
 89 & 134
0.001
0.640





FETUA_HTLNQIDEVK_vs_SHBG_IALGGLLFPASNLR
 89 & 18
0.013
0.601





FETUA_HTLNQIDEVK_vs_TENX_LNWEAPPGAFDSFLLR
 89 & 141
0.005
0.614





HABP2_FLNWIK_vs_CHL1_VIAVNEVGR
 92 & 66
0.006
0.613





HABP2_FLNWIK_vs_FBLN1_TGYYFDGISR
 92 & 86
0.005
0.615





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.005
0.613





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.014
0.601





HABP2_FLNWIK_vs_PRG2_WNFAYWAAHQPWSR
 92 & 129
0.005
0.615





HABP2_FLNWIK_vs_PSG3_VSAPSGTGHLPGLNPL
 92 & 134
0.000
0.658





HABP2_FLNWIK_vs_SHBG_IALGGLLFPASNLR
 92 & 18
0.004
0.618





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.001
0.631





HABP2_FLNWIK_vs_TENX_LSQLSVTDVTTSSLR
 92 & 142
0.003
0.621





HABP2_FLNWIK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 92 & 144
0.005
0.613





HABP2_FLNWIK_vs_VTDB_ELPEHTVK
 92 & 147
0.008
0.609





HEMO_NFPSPVDAAFR_vs_PSG3_VSAPSGTGHLPGLNPL
 93 & 134
0.002
0.625





HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPASNLR
 93 & 18
0.007
0.610





HEMO_NFPSPVDAAFR_vs_TENX_LNWEAPPGAFDSFLLR
 93 & 141
0.006
0.612





IBP4_QCHPALDGQR_vs_CHL1_VIAVNEVGR
  2 & 66
0.003
0.619





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.009
0.607





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.004
0.618





IBP4_QCHPALDGQR_vs_FBLN1_TGYYFDGISR
  2 & 86
0.002
0.629





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.012
0.602





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.008
0.608





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
  2 & 126
0.009
0.606





IBP4_QCHPALDGQR_vs_PRG2_WNFAYWAAHQPWSR
  2 & 129
0.004
0.619





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.000
0.688





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.001
0.639





IBP4_QCHPALDGQR_vs_SPRL1_VLTHSELAPLR
  2 & 140
0.010
0.605





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFDSFLLR
  2 & 141
0.001
0.634





IBP4_QCHPALDGQR_vs_TENX_LSQLSVTDVTTSSLR
  2 & 142
0.006
0.612





IBP4_QCHPALDGQR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
  2 & 144
0.003
0.619





IBP4_QCHPALDGQR_vs_VTDB_ELPEHTVK
  2 & 147
0.007
0.610





IBP6_GAQTLYVPNCDHR_vs_PSG3_VSAPSGTGHLPGLNPL
101 & 134
0.008
0.608





IBP6_HLDSVLQQLQTEVYR_vs_PSG3_VSAPSGTGHLPGLNPL
102 & 134
0.006
0.612





INHBC_LDFHFSSDR_vs_CHL1_VIAVNEVGR
107 & 66
0.005
0.614





INHBC_LDFHFSSDR_vs_FBLN1_TGYYFDGISR
107 & 86
0.004
0.616





INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 & 103
0.003
0.622





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.008
0.609





INHBC_LDFHFSSDR_v_PRG2_WNFAYWAAHQPWSR
107 & 129
0.002
0.624





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.000
0.659





INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNLR
107 & 18
0.003
0.620





INHBC_LDFHFSSDR_vs_SPRL1_VLTHSELAPLR
107 & 140
0.008
0.608





INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDSFLLR
107 & 141
0.001
0.637





INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSSLR
107 & 142
0.002
0.624





INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
107 & 144
0.003
0.620





INHBC_LDFHFSSDR_vs_VTDB_ELPEHTVK
107 & 147
0.008
0.608





ITIH3_ALDLSLK_vs_PSG3_VSAPSGTGHLPGLNPL
111 & 134
0.006
0.612





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.006
0.612





ITIH4_NPLVWVHASPEHVVVTR_vs_PRG2_WNFAYWAAHQPWSR
113 & 129
0.007
0.611





ITIH4_NPLVWVHASPEHVVVTR_vs_PSG3_VSAPSGTGHLPGLNPL
113 & 134
0.003
0.623





ITIH4_NPLVWVHASPEHVVVTR_vs_SHBG_IALGGLLFPASNLR
113 & 18
0.014
0.601





ITIH4_NPLVWVHASPEHVVVTR_vs_TENX_LNWEAPPGAFDSFLLR
113 & 141
0.014
0.601





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_PSG3_VSAPSGTGHLPGLNPL
114 & 134
0.014
0.601





KNG1_DIPTNSPELEETLTHTITK_vs_PSG3_VSAPSGTGHLPGLNPL
116 & 134
0.000
0.643





KNG1_DIPTNSPELEETLTHTITK_vs_SHBG_IALGGLLFPASNLR
116 & 18
0.008
0.608





KNG1_DIPTNSPELEETLTHTITK_vs_TENX_LNWEAPPGAFDSFLLR
116 & 141
0.010
0.606





KNG1_QVVAGLNFR_vs_FBLN1_TGYYFDGISR
117 & 86
0.013
0.601





KNG1_QVVAGLNFR_vs_PSG3_VSAPSGTGHLPGLNPL
117 & 134
0.001
0.636





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.008
0.608





LBP_ITGFLKPGK_vs_CHL1_VIAVNEVGR
118 & 66
0.009
0.607





LBP_ITGFLKPGK_vs_CRIS3_AVSPPAR
118 & 78
0.011
0.603





LBP_ITGFLKPGK_vs_CRIS3_YEDLYSNCK
118 & 79
0.006
0.612





LBP_ITGFLKPGK_vs_LYAM1_SYYWIGIR
118 & 120
0.011
0.604





LBP_ITGFLKPGK_vs_PRG2_WNFAYWAAHQPWSR
118 & 129
0.007
0.611





LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNPL
118 & 134
0.000
0.659





LBP_ITGFLKPGK_vs_SHBG_IALGGLLFPASNLR
118 & 18
0.004
0.617





LBP_ITGFLKPGK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
118 & 144
0.013
0.601





LBP_ITLPDFTGDLR_vs_C163A_INPASLDK
119 & 54
0.006
0.611





LBP_ITLPDFTGDLR_vs_CHL1_VIAVNEVGR
119 & 66
0.003
0.621





LBP_ITLPDFTGDLR_vs_CRIS3_AVSPPAR
119 & 78
0.004
0.619





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.002
0.624





LBP_ITLPDFTGDLR_vs_CSH_AHQLAIDTYQEFEETYIPK
119 & 80
0.013
0.601





LBP_ITLPDFTGDLR_vs_FBLN1_TGYYFDGISR
119 & 86
0.007
0.610





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.004
0.618





LBP_ITLPDFTGDLR_vs_PRG2_WNFAYWAAHQPWSR
119 & 129
0.003
0.623





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGLNPL
119 & 134
0.000
0.670





LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.001
0.633





LBP_ITLPDFTGDLR_vs_TENX_LNWEAPPGAFDSFLLR
119 & 141
0.007
0.610





LBP_ITLPDFTGDLR_vs_TENX_LSQLSVTDVTTSSLR
119 & 142
0.009
0.607





LBP_ITLPDFTGDLR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
119 & 144
0.006
0.613





LBP_ITLPDFTGDLR_vs_VTDB_ELPEHTVK
119 & 147 
0.004
0.618





PEDF_LQSLFDSPDFSK_vs_CRIS3_AVSPPAR
124 & 78
0.012
0.602





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.008
0.608





PEDF_LQSLFDSPDFSK_vs_FBLN1_TGYYFDGISR
124 & 86
0.013
0.601





PEDF_LQSLFDSPDFSK_vs_PSG3_VSAPSGTGHLPGLNPL
124 & 134
0.000
0.646





PEDF_LQSLFDSPDFSK_vs_SHBG_IALGGLLFPASNLR
124 & 18
0.012
0.602





PEDF_LQSLFDSPDFSK_vs_TENX_LNWEAPPGAFDSFLLR
124 & 141
0.004
0.619





PEDF_LQSLFDSPDFSK_vs_TENX_LSQLSVTDVTTSSLR
124 & 142
0.004
0.616





PEDF_TVQAVLTVPK_vs_CHL1_VIAVNEVGR
125 & 66
0.014
0.600





PEDF_TVQAVLTVPK_vs_FBLN1_TGYYFDGISR
125 & 86
0.008
0.608





PEDF_TVQAVLTVPK_vs_PRG2_WNFAYWAAHQPWSR
125 & 129
0.010
0.605





PEDF_TVQAVLTVPK_vs_PSG3_VSAPSGTGHLPGLNPL
125 & 134
0.000
0.649





PEDF_TVQAVLTVPK_vs_SHBG_IALGGLLFPASNLR
125 & 18
0.014
0.600





PEDF_TVQAVLTVPK_vs_TENX_LNWEAPPGAFDSFLLR
125 & 141
0.004
0.618





PEDF_TVQAVLTVPK_vs_TENX_LSQLSVTDVTTSSLR
125 & 142
0.007
0.609





PTGDS_GPGEDFR_vs_PSG3_VSAPSGTGHLPGLNPL
137 & 134
0.005
0.614





THBG_AVLHIGEK_vs_PSG3_VSAPSGTGHLPGLNPL
143 & 134
0.008
0.609





VTNC_GQYCYELDEK_vs_CHL1_VIAVNEVGR
149 & 66
0.008
0.609





VTNC_GQYCYELDEK_vs_FBLN1_TGYYFDGISR
149 & 86
0.003
0.620





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.010
0.605





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.005
0.614





VTNC_GQYCYELDEK_vs_PRG2_WNFAYWAAHQPWSR
149 & 129
0.003
0.623





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.000
0.669





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.000
0.642





VTNC_GQYCYELDEK_vs_TENX_LNWEAPPGAFDSFLLR
149 & 141
0.004
0.618





VTNC_GQYCYELDEK_vs_TENX_LSQLSVTDVTTSSLR
149 & 142
0.006
0.612





VTNC_GQYCYELDEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
149 & 144
0.002
0.624





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.003
0.623





VTNC_VDTVDPPYPR_vs_CHL1_VIAVNEVGR
150 & 66
0.010
0.605





VTNC_VDTVDPPYPR_vs_FBLN1_TGYYFDGISR
150 & 86
0.007
0.610





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.004
0.618





VTNC_VDTVDPPYPR_vs_PRG2_WNFAYWAAHQPWSR
150 & 129
0.005
0.615





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.000
0.669





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.001
0.634





VTNC_VDTVDPPYPR_vs_TENX_LNWEAPPGAFDSFLLR
150 & 141
0.005
0.614





VTNC_VDTVDPPYPR_vs_TENX_LSQLSVTDVTTSSLR
150 & 142
0.010
0.605





VTNC_VDTVDPPYPR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
150 & 144
0.004
0.617





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.001
0.635
















TABLE 52







Reversal Classification Performance, weeks 18, 19 and 20.


Reversal AUROC for gestational weeks 18 0/7 through 20 6/7 using 


a case vs control cut-off of <37 0/7 vs >=37 0/7 weeks, with


BMI stratification (>22 <=37).











SEQ 




Reversal
ID NO:
pval
ROC_AUC













A2GL_DLLLPQPDLR_vs_CRIS3_AVSPPAR
 34 & 78
0.015
0.621





A2GL_DLLLPQPDLR_vs_CRIS3_YEDLYSNCK
 34 & 79
0.009
0.631





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.006
0.638





A2GL_DLLLPQPDLR_vs_PGRP2_AGLLRPDYALLGHR
 34 & 126
0.032
0.608





A2GL_DLLLPQPDLR_vs_PSG3_VSAPSGTGHLPGLNPL
 34 & 134
0.003
0.648





A2GL_DLLLPQPDLR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 34 & 135
0.014
0.623





A2GL_DLLLPQPDLR_vs_PSG9_LFIPQITR
 34 & 136
0.034
0.606





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.010
0.628





A2GL_DLLLPQPDLR_vs_SPRL1_VLTHSELAPLR
 34 & 140
0.017
0.620





A2GL_DLLLPQPDLR_vs_TENX_LNWEAPPGAFDSFLLR
 34 & 141
0.031
0.608





A2GL_DLLLPQPDLR_vs_TENX_LSQLSVTDVTTSSLR
 34 & 142
0.042
0.602





A2GL_DLLLPQPDLR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 34 & 144
0.020
0.616





AFAM_DADPDTFFAK_vs_CRIS3_YEDLYSNCK
 37 & 79
0.018
0.619





AFAM_DADPDTFFAK_vs_IBP3_FLNVLSPR
 37 & 99
0.041
0.602





AFAM_DADPDTFFAK_vs_IBP3_YGQPLPGYTTK
 37 & 100
0.036
0.605





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.013
0.624





AFAM_DADPDTFFAK_vs_LYAM1_SYYWIGIR
 37 & 120
0.029
0.609





AFAM_DADPDTFFAK_vs_PSG3_VSAPSGTGHLPGLNPL
 37 & 134
0.003
0.650





AFAM_DADPDTFFAK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 37 & 135
0.019
0.618





AFAM_DADPDTFFAK_vs_PSG9_LFIPQITR
 37 & 136
0.042
0.602





AFAM_DADPDTFFAK_vs_SPRL1_VLTHSELAPLR
 37 & 140
0.042
0.602





AFAM_DADPDTFFAK_vs_TENX_LNWEAPPGAFDSFLLR
 37 & 141
0.011
0.627





AFAM_DADPDTFFAK_vs_TENX_LSQLSVTDVTTSSLR
 37 & 142
0.022
0.614





AFAM_DADPDTFFAK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 37 & 144
0.018
0.619





AFAM_HFQNLGK_vs_CHL1_VIAVNEVGR
 38 & 66
0.018
0.618





AFAM_HFQNLGK_vs_CRIS3_YEDLYSNCK
 38 & 79
0.021
0.615





AFAM_HFQNLGK_vs_IBP3_FLNVLSPR
 38 & 99
0.033
0.607





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.026
0.611





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.024
0.613





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
 38 & 120
0.023
0.614





AFAM_HFQNLGK_vs_PSG3_VSAPSGTGHLPGLNPL
 38 & 134
0.003
0.648





AFAM_HFQNLGK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 38 & 135
0.012
0.626





AFAM_HFQNLGK_vs_PSG9_LFIPQITR
 38 & 136
0.029
0.610





AFAM_HFQNLGK_vs_SHBG_IALGGLLFPASNLR
 38 & 18
0.046
0.600





AFAM_HFQNLGK_vs_SPRL1_VLTHSELAPLR
 38 & 140
0.017
0.619





AFAM_HFQNLGK_vs_TENX_LNWEAPPGAFDSFLLR
 38 & 141
0.009
0.632





AFAM_HFQNLGK_vs_TENX_LSQLSVTDVTTSSLR
 38 & 142
0.015
0.622





AFAM_HFQNLGK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 38 & 144
0.029
0.610





AFAM_HFQNLGK_vs_VTDB_ELPEHTVK
 38 & 147
0.037
0.605





ANGT_DPTFIPAPIQAK_vs_CHL1_VIAVNEVGR
 42 & 66
0.010
0.630





ANGT_DPTFIPAPIQAK_vs_CRIS3_AVSPPAR
 42 & 78
0.010
0.628





ANGT_DPTFIPAPIQAK_vs_CRIS3_YEDLYSNCK
 42 & 79
0.006
0.637





ANGT_DPTFIPAPIQAK_vs_CSH_AHQLAIDTYQEFEETYIPK
 42 & 80
0.042
0.602





ANGT_DPTFIPAPIQAK_vs_FBLN1_TGYYFDGISR
 42 & 86
0.036
0.605





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.011
0.627





ANGT_DPTFIPAPIQAK_vs_NCAM1_GLGEISAASEFK
 42 & 121
0.025
0.613





ANGT_DPTFIPAPIQAK_vs_PGRP2_AGLLRPDYALLGHR
 42 & 126
0.028
0.610





ANGT_DPTFIPAPIQAK_vs_PSG3_VSAPSGTGHLPGLNPL
 42 & 134
0.001
0.669





ANGT_DPTFIPAPIQAK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 42 & 135
0.013
0.625





ANGT_DPTFIPAPIQAK_vs_PSG9_LFIPQITR
 42 & 136
0.031
0.608





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.002
0.655





ANGT_DPTFIPAPIQAK_vs_SOM2.CSH_SVEGSCGF
 42 & 139
0.019
0.619





ANGT_DPTFIPAPIQAK_vs_SPRL1_VLTHSELAPLR
 42 & 140
0.019
0.618





ANGT_DPTFIPAPIQAK_vs_TENX_LNWEAPPGAFDSFLLR
 42 & 141
0.010
0.628





ANGT_DPTFIPAPIQAK_vs_TENX_LSQLSVTDVTTSSLR
 42 & 142
0.011
0.627





ANGT_DPTFIPAPIQAK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 42 & 144
0.019
0.617





ANGT_DPTFIPAPIQAK_vs_VTDB_ELPEHTVK
 42 & 147
0.032
0.607





APOC3_GWVTDGFSSLK_vs_ALS_IRPHTFTGLSGLR
 47 & 40
0.013
0.624





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.001
0.662





APOC3_GWVTDGFSSLK_vs_CHL1_VIAVNEVGR
 47 & 66
0.013
0.624





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.001
0.663





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.001
0.669





APOC3_GWVTDGFSSLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 47 & 80
0.016
0.621





APOC3_GWVTDGFSSLK_vs_CSH_ISLLLIESWLEPVR
 47 & 81
0.024
0.613





APOC3_GWVTDGFSSLK_vs_FBLN1_TGYYFDGISR
 47 & 86
0.015
0.622





APOC3_GWVTDGFSSLK_vs_IBP2_LIQGAPTIR
 47 & 98
0.035
0.606





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.004
0.643





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
 47 & 100
0.008
0.633





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.005
0.641





APOC3_GWVTDGFSSLK_vs_ITIH4_ILDDLSPR
 47 & 112
0.016
0.620





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.001
0.660





APOC3_GWVTDGFSSLK_VS_NCAM1_GLGEISAASEFK
 47 & 121
0.014
0.623





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.008
0.633





APOC3_GWVTDGFSSLK_vs_PRG2_WNFAYWAAHQPWSR
 47 & 129
0.041
0.603





APOC3_GWVTDGFSSLK_vs_PSG1_FQLPGQK
 47 & 131
0.022
0.615





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.001
0.664





APOC3_GWVTDGFSSLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 47 & 135
0.005
0.642





APOC3_GWVTDGFSSLK_vs_PSG9_LFIPQITR
 47 & 136
0.007
0.636





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.008
0.633





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_NYGLLYCFR
 47 & 138
0.035
0.606





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_SVEGSCGF
 47 & 139
0.015
0.624





APOC3_GWVTDGFSSLK_vs_SPRL1_VLTHSELAPLR
 47 & 140
0.010
0.629





APOC3_GWVTDGFSSLK_vs_TENX_LNWEAPPGAFDSFLLR
 47 & 141
0.005
0.641





APOC3_GWVTDGFSSLK_vs_TENX_LSQLSVTDVTTSSLR
 47 & 142
0.007
0.636





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.004
0.644





APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
 47 & 147
0.007
0.634





APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
 48 & 79
0.025
0.612





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.031
0.608





APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLNPL
 48 & 134
0.013
0.625





APOH_ATVVYQGER_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 48 & 135
0.008
0.633





APOH_ATVVYQGER_vs_PSG9_LFIPQITR
 48 & 136
0.020
0.617





APOH_ATVVYQGER_vs_SPRL1_VLTHSELAPLR
 48 & 140
0.036
0.605





APOH_ATVVYQGER_vs_TENX_LNWEAPPGAFDSFLLR
 48 & 141
0.028
0.610





APOH_ATVVYQGER_vs_TENX_LSQLSVTDVTTSSLR
 48 & 142
0.027
0.611





B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
 51 & 79
0.030
0.609





B2MG_VNHVTLSQPK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 51 & 135
0.024
0.613





BGH3_LTLLAPLNSVFK_vs_CHL1_VIAVNEVGR
 52 & 66
0.036
0.605





BGH3_LTLLAPLNSVFK_vs_CRIS3_AVSPPAR
 52 & 78
0.039
0.604





BGH3_LTLLAPLNSVFK_vs_CRIS3_YEDLYSNCK
 52 & 79
0.022
0.615





BGH3_LTLLAPLNSVFK_vs_LYAM1_SYYWIGIR
 52 & 120
0.027
0.611





BGH3_LTLLAPLNSVFK_vs_PSG3_VSAPSGTGHLPGLNPL
 52 & 134
0.028
0.610





BGH3_LTLLAPLNSVFK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 52 & 135
0.030
0.609





BGH3_LTLLAPLNSVFK_vs_PSG9_LFIPQITR
 52 & 136
0.046
0.600





BGH3_LTLLAPLNSVFK_vs_SHBG_IALGGLLFPASNLR
 52 & 18
0.043
0.602





BGH3_LTLLAPLNSVFK_vs_TENX_LNWEAPPGAFDSFLLR
 52 & 141
0.024
0.613





C1QB_VPGLYYFTYHASSR_vs_ALS_IRPHTFTGLSGLR
 55 & 40
0.033
0.607





C1QB_VPGLYYFTYHASSR_vs_C163A_INPASLDK
 55 & 54
0.014
0.623





C1QB_VPGLYYFTYHASSR_vs_CHL1_VIAVNEVGR
 55 & 66
0.005
0.641





C1QB_VPGLYYFTYHASSR_vs_CRIS3_AVSPPAR
 55 & 78
0.004
0.644





C1QB_VPGLYYFTYHASSR_vs_CRIS3_YEDLYSNCK
 55 & 79
0.004
0.646





C1QB_VPGLYYFTYHASSR_vs_CSH_AHQLAIDTYQEFEETYIPK
 55 & 80
0.007
0.636





C1QB_VPGLYYFTYHASSR_vs_CSH_ISLLLIESWLEPVR
 55 & 81
0.012
0.627





C1QB_VPGLYYFTYHASSR_vs_FBLN1_TGYYFDGISR
 55 & 86
0.008
0.634





C1QB_VPGLYYFTYHASSR_vs_IBP2_LIQGAPTIR
 55 & 98
0.031
0.608





C1QB_VPGLYYFTYHASSR_vs_IBP3_FLNVLSPR
 55 & 99
0.010
0.629





C1QB_VPGLYYFTYHASSR_vs_IBP3_YGQPLPGYTTK
 55 & 100
0.012
0.626





C1QB_VPGLYYFTYHASSR_vs_IGF2_GIVEECCFR
 55 & 103
0.004
0.645





C1QB_VPGLYYFTYHASSR_vs_ITIH4_ILDDLSPR
 55 & 112
0.013
0.625





C1QB_VPGLYYFTYHASSR_vs_LYAM1_SYYWIGIR
 55 & 120
0.003
0.651





C1QB_VPGLYYFTYHASSR_vs_NCAM1_GLGEISAASEFK
 55 & 121
0.008
0.633





C1QB_VPGLYYFTYHASSR_vs_PGRP2_AGLLRPDYALLGHR
 55 & 126
0.002
0.652





C1QB_VPGLYYFTYHASSR_vs_PRG2_WNFAYWAAHQPWSR
 55 & 129
0.020
0.617





C1QB_VPGLYYFTYHASSR_vs_PSG1_FQLPGQK
 55 & 131
0.024
0.613





C1QB_VPGLYYFTYHASSR_vs_PSG3_VSAPSGTGHLPGLNPL
 55 & 134
0.001
0.671





C1QB_VPGLYYFTYHASSR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 55 & 135
0.002
0.658





C1QB_VPGLYYFTYHASSR_vs_PSG9_LFIPQITR
 55 & 136
0.004
0.643





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.001
0.668





C1QB_VPGLYYFTYHASSR_vs_SOM2.CSH_NYGLLYCFR
 55 & 18
0.014
0.624





C1QB_VPGLYYFTYHASSR_vs_SOM2.CSH_SVEGSCGF
 55 & 139
0.009
0.631





C1QB_VPGLYYFTYHASSR_vs_SPRL1_VLTHSELAPLR
 55 & 140
0.003
0.648





C1QB_VPGLYYFTYHASSR_vs_TENX_LNWEAPPGAFDSFLLR
 55 & 141
0.002
0.654





C1QB_VPGLYYFTYHASSR_vs_TENX_LSQLSVTDVTTSSLR
 55 & 142
0.002
0.657





C1QB_VPGLYYFTYHASSR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 55 & 144
0.006
0.638





C1QB_VPGLYYFTYHASSR_vs_VTDB_ELPEHTVK
 55 & 147
0.013
0.625





CBPN_EALIQFLEQVHQGIK_vs_LYAM1_SYYWIGIR
 59 & 120
0.025
0.613





CBPN_EALIQFLEQVHQGIK_vs_PSG3_VSAPSGTGHLPGLNPL
 59 & 134
0.038
0.604





CBPN_EALIQFLEQVHQGIK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 59 & 135
0.025
0.612





CBPN_EALIQFLEQVHQGIK_vs_TENX_LNWEAPPGAFDSFLLR
 59 & 141
0.037
0.605





CBPN_NNANGVDLNR_vs_LYAM1_SYYWIGIR
 60 & 120
0.039
0.603





CBPN_NNANGVDLNR_vs_PSG3_VSAPSGTGHLPGLNPL
 60 & 134
0.026
0.611





CBPN_NNANGVDLNR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 60 & 135
0.025
0.613





CBPN_NNANGVDLNR_vs_TENX_LNWEAPPGAFDSFLLR
 60 & 141
0.043
0.601





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_AVSPPAR
 61 & 78
0.043
0.601





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_YEDLYSNCK
 61 & 79
0.020
0.617





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.012
0.627





CD14_LTVGAAQVPAQLLVGALR_vs_PSG3_VSAPSGTGHLPGLNPL
 61 & 134
0.008
0.632





CD14_LTVGAAQVPAQLLVGALR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 61 & 135
0.025
0.612





CD14_LTVGAAQVPAQLLVGALR_vs_SPRL1_VLTHSELAPLR
 61 & 140
0.028
0.610





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LNWEAPPGAFDSFLLR
 61 & 141
0.008
0.634





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LSQLSVTDVTTSSLR
 61 & 142
0.009
0.632





CD14_LTVGAAQVPAQLLVGALR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 61 & 144
0.024
0.613





CD14_SWLAELQQWLKPGLK_vs_CRIS3_YEDLYSNCK
 62 & 79
0.041
0.603





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.022
0.614





CD14_SWLAELQQWLKPGLK_vs_PSG3_VSAPSGTGHLPGLNPL
 62 & 134
0.015
0.622





CD14_SWLAELQQWLKPGLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 62 & 135
0.027
0.611





CD14_SWLAELQQWLKPGLK_vs_SPRL1_VLTHSELAPLR
 62 & 140
0.038
0.604





CD14_SWLAELQQWLKPGLK_vs_TENX_LNWEAPPGAFDSFLLR
 62 & 141
0.013
0.625





CD14_SWLAELQQWLKPGLK_vs_TENX_LSQLSVTDVTTSSLR
 62 & 142
0.016
0.621





CD14_SWLAELQQWLKPGLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 62 & 144
0.033
0.607





CFAB_YGLVTYATYPK_vs_CHL1_VIAVNEVGR
 64 & 66
0.033
0.607





CFAB_YGLVTYATYPK_vs_CRIS3_AVSPPAR
 64 & 78
0.039
0.603





CFAB_YGLVTYATYPK_vs_CRIS3_YEDLYSNCK
 64 & 79
0.023
0.614





CFAB_YGLVTYATYPK_vs_LYAM1_SYYWIGIR
 64 & 120
0.031
0.608





CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGLNPL
 64 & 134
0.003
0.648





CFAB_YGLVTYATYPK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 64 & 135
0.020
0.616





CFAB_YGLVTYATYPK_vs_PSG9_LFIPQITR
 64 & 136
0.039
0.603





CFAB_YGLVTYATYPK_vs_SHBG_IALGGLLFPASNLR
 64 & 18
0.045
0.601





CFAB_YGLVTYATYPK_vs_TENX_LNWEAPPGAFDSFLLR
 64 & 141
0.019
0.617





CFAB_YGLVTYATYPK_vs_TENX_LSQLSVTDVTTSSLR
 64 & 142
0.036
0.605





CFAB_YGLVTYATYPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 64 & 144
0.008
0.632





CLUS_ASSIIDELFQDR_vs_CRIS3_YEDLYSNCK
 67 & 79
0.026
0.612





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.028
0.610





CLUS_ASSIIDELFQDR_vs_PSG3_VSAPSGTGHLPGLNPL
 67 & 134
0.023
0.614





CLUS_ASSIIDELFQDR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 67 & 135
0.012
0.626





CLUS_ASSIIDELFQDR_vs_TENX_LNWEAPPGAFDSFLLR
 67 & 141
0.028
0.610





CLUS_ASSIIDELFQDR_vs_TENX_LSQLSVTDVTTSSLR
 67 & 142
0.036
0.605





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_YEDLYSNCK
 68 & 79
0.035
0.606





CLUS_LFDSDPITVTVPVEVSR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 68 & 135
0.019
0.617





CO5_TLLPVSKPEIR_vs_CRIS3_AVSPPAR
 70 & 78
0.023
0.614





CO5_TLLPVSKPEIR_vs_CRIS3_YEDLYSNCK
 70 & 79
0.015
0.622





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.014
0.623





CO5_TLLPVSKPEIR_vs_PSG3_VSAPSGTGHLPGLNPL
 70 & 134
0.003
0.650





CO5_TLLPVSKPEIR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 70 & 135
0.022
0.615





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.025
0.613





CO5_TLLPVSKPEIR_vs_SPRL1_VLTHSELAPLR
 70 & 140
0.041
0.602





CO5_TLLPVSKPEIR_vs_TENX_LNWEAPPGAFDSFLLR
 70 & 141
0.014
0.623





CO5_TLLPVSKPEIR_vs_TENX_LSQLSVTDVTTSSLR
 70 & 142
0.020
0.617





CO5_VFQFLEK_vs_CRIS3_AVSPPAR
 71 & 78
0.029
0.610





CO5_VFQFLEK_vs_CRIS3_YEDLYSNCK
 71 & 79
0.019
0.618





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.017
0.620





CO5_VFQFLEK_vs_PSG3_VSAPSGTGHLPGLNPL
 71 & 134
0.009
0.630





CO5_VFQFLEK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 71 & 135
0.021
0.615





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
 71 & 18
0.030
0.609





CO5_VFQFLEK_vs_TENX_LNWEAPPGAFDSFLLR
 71 & 141
0.013
0.624





CO5_VFQFLEK_vs_TENX_LSQLSVTDVTTSSLR
 71 & 142
0.028
0.610





CO5_VFQFLEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 71 & 144
0.035
0.606





CO6_ALNHLPLEYNSALYSR_vs_CHL1_VIAVNEVGR
 72 & 66
0.045
0.601





CO6_ALNHLPLEYNSALYSR_vs_PSG3_VSAPSGTGHLPGLNPL
 72 & 134
0.026
0.611





CO6_ALNHLPLEYNSALYSR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 72 & 135
0.028
0.611





CO6_ALNHLPLEYNSALYSR_vs_TENX_LNWEAPPGAFDSFLLR
 72 & 141
0.024
0.613





CO6_ALNHLPLEYNSALYSR_vs_TENX_LSQLSVTDVTTSSLR
 72 & 142
0.034
0.606





CO8A_SLLQPNK_vs_CHL1_VIAVNEVGR
 74 & 66
0.016
0.621





CO8A_SLLQPNK_vs_CRIS3_AVSPPAR
 74 & 78
0.035
0.606





CO8A_SLLQPNK_vs_CRIS3_YEDLYSNCK
 74 & 79
0.014
0.623





CO8A_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.019
0.618





CO8A_SLLQPNK_vs_PSG3_VSAPSGTGHLPGLNPL
 74 & 134
0.003
0.649





CO8A_SLLQPNK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 74 & 135
0.017
0.620





CO8A_SLLQPNK_vs_PSG9_LFIPQITR
 74 & 136
0.038
0.604





CO8A_SLLQPNK_vs_SHBG_IALGGLLFPASNLR
 74 & 18
0.032
0.607





CO8A_SLLQPNK_vs_SPRL1_VLTHSELAPLR
 74 & 140
0.013
0.624





CO8A_SLLQPNK_vs_TENX_LNWEAPPGAFDSFLLR
 74 & 141
0.004
0.646





CO8A_SLLQPNK_vs_TENX_LSQLSVTDVTTSSLR
 74 & 142
0.007
0.635





CO8A_SLLQPNK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 74 & 144
0.012
0.626





CO8B_QALEEFQK_vs_CHL1_VIAVNEVGR
 76 & 66
0.016
0.621





CO8B_QALEEFQK_vs_CRIS3_AVSPPAR
 76 & 78
0.040
0.603





CO8B_QALEEFQK_vs_CRIS3_YEDLYSNCK
 76 & 79
0.015
0.622





CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
 76 & 103
0.034
0.606





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
 76 & 120
0.035
0.606





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
 76 & 134
0.003
0.648





CO8B_QALEEFQK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 76 & 135
0.016
0.620





CO8B_QALEEFQK_vs_PSG9_LFIPQITR
 76 & 136
0.032
0.607





CO8B_QALEEFQK_vs_SHBG_IALGGLLFPASNLR
 76 & 18
0.030
0.609





CO8B_QALEEFQK_vs_SPRL1_VLTHSELAPLR
 76 & 140
0.009
0.631





CO8B_QALEEFQK_vs_TENX_LNWEAPPGAFDSFLLR
 76 & 141
0.002
0.659





CO8B_QALEEFQK_vs_TENX_LSQLSVTDVTTSSLR
 76 & 142
0.003
0.651





CO8B_QALEEFQK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 76 & 144
0.006
0.639





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_VS_LYAM1_SYYWIGIR
 82 & 120
0.041
0.602





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_IALGGLLFPASNLR
 82 & 18
0.038
0.604





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
 84 & 79
0.021
0.615





F13B_GDTYPAELYITGSILR_vs_PSG3_VSAPSGTGHLPGLNPL
 84 & 134
0.019
0.617





F13B_GDTYPAELYITGSILR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 84 & 135
0.037
0.604





F13B_GDTYPAELYITGSILR_vs_TENX_LNWEAPPGAFDSFLLR
 84 & 141
0.041
0.602





F13B_GDTYPAELYITGSILR_vs_TENX_LSQLSVTDVTTSSLR
 84 & 142
0.039
0.603





FBLN3_IPSNPSHR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 87 & 135
0.022
0.615





FBLN3_IPSNPSHR_vs_SHBG_IALGGLLFPASNLR
 87 & 18
0.038
0.604





FETUA_FSVVYAK_vs_PSG3_VSAPSGTGHLPGLNPL
 88 & 134
0.029
0.609





FETUA_HTLNQIDEVK_vs_PSG3_VSAPSGTGHLPGLNPL
 89 & 134
0.023
0.614





FETUA_HTLNQIDEVK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 89 & 135
0.038
0.604





FETUA_HTLNQIDEVK_vs_TENX_LNWEAPPGAFDSFLLR
 89 & 141
0.024
0.613





HABP2_FLNWIK_vs_CHL1_VIAVNEVGR
 92 & 66
0.015
0.622





HABP2_FLNWIK_vs_CRIS3_AVSPPAR
 92 & 78
0.028
0.610





HABP2_FLNWIK_vs_CRIS3_YEDLYSNCK
 92 & 79
0.019
0.618





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.014
0.623





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.010
0.629





HABP2_FLNWIK_vs_NCAM1_GLGEISAASEFK
 92 & 121
0.026
0.612





HABP2_FLNWIK_vs_PGRP2_AGLLRPDYALLGHR
 92 & 126
0.044
0.601





HABP2_FLNWIK_vs_PSG3_VSAPSGTGHLPGLNPL
 92 & 134
0.003
0.648





HABP2_FLNWIK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 92 & 135
0.015
0.622





HABP2_FLNWIK_vs_PSG9_LFIPQITR
 92 & 136
0.033
0.607





HABP2_FLNWIK_vs_SHBG_IALGGLLFPASNLR
 92 & 18
0.022
0.615





HABP2_FLNWIK_vs_SPRL1_VLTHSELAPLR
 92 & 140
0.015
0.622





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.007
0.636





HABP2_FLNWIK_vs_TENX_LSQLSVTDVTTSSLR
 92 & 142
0.008
0.632





HABP2_FLNWIK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 92 & 144
0.016
0.620





HABP2_FLNWIK_vs_VTDB_ELPEHTVK
 92 & 147
0.019
0.618





HEMO_NFPSPVDAAFR_vs_CRIS3_YEDLYSNCK
 93 & 79
0.036
0.605





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
 93 & 120
0.041
0.603





HEMO_NFPSPVDAAFR_vs_PSG3_VSAPSGTGHLPGLNPL
 93 & 134
0.036
0.605





HEMO_NFPSPVDAAFR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 93 & 135
0.030
0.609





HEMO_NFPSPVDAAFR_vs_TENX_LNWEAPPGAFDSFLLR
 93 & 141
0.013
0.624





HEMO_NFPSPVDAAFR_vs_TENX_LSQLSVTDVTTSSLR
 93 & 142
0.037
0.604





HLACI_WAAVVVPSGEEQR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 95 & 135
0.043
0.602





IBP4_QCHPALDGQR_vs_CHL1_VIAVNEVGR
  2 & 66
0.014
0.624





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.006
0.639





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.002
0.652





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.018
0.619





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.003
0.648





IBP4_QCHPALDGQR_vs_NCAM1_GLGEISAASEFK
  2 & 121
0.041
0.602





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
  2 & 126
0.010
0.630





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.000
0.675





IBP4_QCHPALDGQR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
  2 & 135
0.010
0.630





IBP4_QCHPALDGQR_vs_PSG9_LFIPQITR
  2 & 136
0.023
0.614





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.004
0.643





IBP4_QCHPALDGQR_vs_SPRL1_VLTHSELAPLR
  2 & 140
0.007
0.635





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFDSFLLR
  2 & 141
0.003
0.648





IBP4_QCHPALDGQR_vs_TENX_LSQLSVTDVTTSSLR
  2 & 142
0.008
0.633





IBP4_QCHPALDGQR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
  2 & 144
0.006
0.638





IBP4_QCHPALDGQR_vs_VTDB_ELPEHTVK
  2 & 147
0.026
0.611





INHBC_LDFHFSSDR_vs_ALS_IRPHTFTGLSGLR
107 & 40
0.023
0.614





INHBC_LDFHFSSDR_vs_C163A_INPASLDK
107 & 54
0.030
0.609





INHBC_LDFHFSSDR_vs_CHL1_VIAVNEVGR
107 & 66
0.008
0.633





INHBC_LDFHFSSDR_vs_CRIS3_AVSPPAR
107 & 78
0.019
0.618





INHBC_LDFHFSSDR_vs_CRIS3_YEDLYSNCK
107 & 79
0.010
0.629





INHBC_LDFHFSSDR_vs_FBLN1_TGYYFDGISR
107 & 86
0.029
0.610





INHBC_LDFHFSSDR_vs_IBP3_FLNVLSPR
107 & 99
0.007
0.636





INHBC_LDFHFSSDR_vs_IBP3_YGQPLPGYTTK
107 & 100
0.007
0.635





INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 & 103
0.003
0.648





INHBC_LDFHFSSDR_vs_ITIH4_ILDDLSPR
107 & 112
0.024
0.613





INHBC_LDFHFSSDR_vs_LYAM1_SYYWIGIR
107 & 120
0.016
0.621





INHBC_LDFHFSSDR_vs_NCAM1_GLGEISAASEFK
107 & 121
0.018
0.618





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.011
0.628





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.000
0.681





INHBC_LDFHFSSDR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
107 & 135
0.012
0.626





INHBC_LDFHFSSDR_vs_PSG9_LFIPQITR
107 & 136
0.015
0.622





INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNLR
107 & 18
0.007
0.634





INHBC_LDFHFSSDR_VS_SPRL1_VLTHSELAPLR
107 & 140
0.003
0.647





INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDSFLLR
107 & 141
0.000
0.675





INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSSLR
107 & 142
0.001
0.664





INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
107 & 144
0.006
0.639





INHBC_LDFHFSSDR_vs_VTDB_ELPEHTVK
107 & 147
0.005
0.639





ITIH3_ALDLSLK_vs_CRIS3_AVSPPAR
111 & 78
0.040
0.603





ITIH3_ALDLSLK_vs_CRIS3_YEDLYSNCK
111 & 79
0.023
0.614





ITIH3_ALDLSLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
111 & 135
0.037
0.605





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.036
0.605





ITIH4_NPLVWVHASPEHVVVTR_vs_CRIS3_AVSPPAR
113 & 78
0.016
0.621





ITIH4_NPLVWVHASPEHVVVTR_vs_CRIS3_YEDLYSNCK
113 & 79
0.011
0.628





ITIH4_NPLVWVHASPEHVVVTR_vs_LYAM1_SYYWIGIR
113 & 120
0.009
0.631





ITIH4_NPLVWVHASPEHVVVTR_vs_PSG3_VSAPSGTGHLPGLNPL
113 & 134
0.020
0.617





ITIH4_NPLVWVHASPEHVVVTR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
113 & 135
0.010
0.630





ITIH4_NPLVWVHASPEHVVVTR_vs_PSG9_LFIPQITR
113 & 136
0.031
0.608





ITIH4_NPLVWVHASPEHVVVTR_vs_SHBG_IALGGLLFPASNLR
113 & 18
0.033
0.607





ITIH4_NPLVWVHASPEHVVVTR_vs_TENX_LNWEAPPGAFDSFLLR
113 & 141
0.018
0.619





ITIH4_NPLVWVHASPEHVVVTR_vs_TENX_LSQLSVTDVTTSSLR
113 & 142
0.021
0.615





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_CRIS3_YEDLYSNCK
114 & 79
0.042
0.602





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_PSG3_VSAPSGTGHLPGLNPL
114 & 134
0.035
0.606





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
114 & 135
0.035
0.606





KNG1_DIPTNSPELEETLTHTITK_vs_CHL1_VIAVNEVGR
116 & 66
0.045
0.601





KNG1_DIPTNSPELEETLTHTITK_vs_CRIS3_AVSPPAR
116 & 78
0.036
0.605





KNG1_DIPTNSPELEETLTHTITK_vs_CRIS3_YEDLYSNCK
116 & 79
0.019
0.617





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.014
0.623





KNG1_DIPTNSPELEETLTHTITK_vs_PSG3_VSAPSGTGHLPGLNPL
116 & 134
0.012
0.626





KNG1_DIPTNSPELEETLTHTITK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
116 & 135
0.035
0.606





KNG1_DIPTNSPELEETLTHTITK_vs_TENX_LNWEAPPGAFDSFLLR
116 & 141
0.028
0.610





KNG1_DIPTNSPELEETLTHTITK_vs_TENX_LSQLSVTDVTTSSLR
116 & 142
0.034
0.606





KNG1_QVVAGLNFR_vs_CHL1_VIAVNEVGR
117 & 66
0.040
0.603





KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.027
0.611





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.015
0.622





KNG1_QVVAGLNFR_vs_PSG3_VSAPSGTGHLPGLNPL
117 & 134
0.016
0.621





KNG1_QVVAGLNFR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
117 & 135
0.028
0.610





LBP_ITGFLKPGK_vs_CHL1_VIAVNEVGR
118 & 66
0.046
0.600





LBP_ITGFLKPGK_vs_CRIS3_AVSPPAR
118 & 78
0.025
0.613





LBP_ITGFLKPGK_vs_CRIS3_YEDLYSNCK
118 & 79
0.013
0.624





LBP_ITGFLKPGK_vs_LYAM1_SYYWIGIR
118 & 120
0.019
0.618





LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNPL
118 & 134
0.004
0.646





LBP_ITGFLKPGK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
118 & 135
0.033
0.607





LBP_ITGFLKPGK_vs_SHBG_IALGGLLFPASNLR
118 & 18
0.029
0.610





LBP_ITLPDFTGDLR_vs_C163A_INPASLDK
119 & 54
0.021
0.616





LBP_ITLPDFTGDLR_vs_CHL1_VIAVNEVGR
119 & 66
0.014
0.623





LBP_ITLPDFTGDLR_vs_CRIS3_AVSPPAR
119 & 78
0.006
0.638





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.004
0.644





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.005
0.642





LBP_ITLPDFTGDLR_vs_NCAM1_GLGEISAASEFK
119 & 121
0.025
0.613





LBP_ITLPDFTGDLR_vs_PGRP2_AGLLRPDYALLGHR
119 & 126
0.028
0.610





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGLNPL
119 & 134
0.001
0.665





LBP_ITLPDFTGDLR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
119 & 135
0.012
0.626





LBP_ITLPDFTGDLR_vs_PSG9_LFIPQITR
119 & 136
0.033
0.607





LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.007
0.636





LBP_ITLPDFTGDLR_vs_SOM2.CSH_SVEGSCGF
119 & 139
0.022
0.616





LBP_ITLPDFTGDLR_vs_SPRL1_VLTHSELAPLR
119 & 140
0.034
0.606





LBP_ITLPDFTGDLR_vs_TENX_LNWEAPPGAFDSFLLR
119 & 141
0.027
0.611





LBP_ITLPDFTGDLR_vs_TENX_LSQLSVTDVTTSSLR
119 & 142
0.024
0.613





LBP_ITLPDFTGDLR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
119 & 144
0.027
0.611





LBP_ITLPDFTGDLR_vs_VTDB_ELPEHTVK
119 & 147
0.023
0.614





PEDF_LQSLFDSPDFSK_vs_CHL1_VIAVNEVGR
124 & 66
0.038
0.604





PEDF_LQSLFDSPDFSK_vs_CRIS3_AVSPPAR
124 & 78
0.012
0.626





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.008
0.633





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.015
0.622





PEDF_LQSLFDSPDFSK_vs_PSG3_VSAPSGTGHLPGLNPL
124 & 134
0.006
0.637





PEDF_LQSLFDSPDFSK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
124 & 135
0.024
0.613





PEDF_LQSLFDSPDFSK_vs_SHBG_IALGGLLFPASNLR
124 & 18
0.043
0.601





PEDF_LQSLFDSPDFSK_vs_TENX_LNWEAPPGAFDSFLLR
124 & 141
0.009
0.631





PEDF_LQSLFDSPDFSK_vs_TENX_LSQLSVTDVTTSSLR
124 & 142
0.010
0.630





PEDF_TVQAVLTVPK_vs_CHL1_VIAVNEVGR
125 & 66
0.018
0.619





PEDF_TVQAVLTVPK_vs_CRIS3_AVSPPAR
125 & 78
0.017
0.619





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.011
0.628





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.010
0.629





PEDF_TVQAVLTVPK_vs_PSG3_VSAPSGTGHLPGLNPL
125 & 134
0.002
0.654





PEDF_TVQAVLTVPK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
125 & 135
0.021
0.616





PEDF_TVQAVLTVPK_vs_PSG9_LFIPQITR
125 & 136
0.040
0.603





PEDF_TVQAVLTVPK_vs_SHBG_IALGGLLFPASNLR
125 & 18
0.043
0.602





PEDF_TVQAVLTVPK_vs_SPRL1_VLTHSELAPLR
125 & 140
0.031
0.608





PEDF_TVQAVLTVPK_vs_TENX_LNWEAPPGAFDSFLLR
125 & 141
0.006
0.637





PEDF_TVQAVLTVPK_vs_TENX_LSQLSVTDVTTSSLR
125 & 142
0.009
0.632





PEDF_TVQAVLTVPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
125 & 144
0.038
0.604





PRDX2_GLFIIDGK_vs_CRIS3_AVSPPAR
128 & 78
0.029
0.609





PRDX2_GLFIIDGK_vs_CRIS3_YEDLYSNCK
128 & 79
0.016
0.621





PRDX2_GLFIIDGK_vs_PSG3_VSAPSGTGHLPGLNPL
128 & 134
0.014
0.623





PRDX2_GLFIIDGK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
128 & 135
0.029
0.609





PRDX2_GLFIIDGK_vs_PSG9_LFIPQITR
128 & 136
0.041
0.602





PRDX2_GLFIIDGK_vs_SHBG_IALGGLLFPASNLR
128 & 18
0.044
0.601





PRDX2_GLFIIDGK_vs_TENX_LNWEAPPGAFDSFLLR
128 & 141
0.044
0.601





PSG2_IHPSYTNYR_vs_CHL1_VIAVNEVGR
133 & 66
0.037
0.605





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.028
0.610





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.021
0.616





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.024
0.613





PSG2_IHPSYTNYR_VS_LYAM1_SYYWIGIR
133 & 120
0.026
0.612





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.011
0.628





PSG2_IHPSYTNYR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
133 & 135
0.003
0.647





PSG2_IHPSYTNYR_vs_PSG9_LFIPQITR
133 & 136
0.012
0.626





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.044
0.601





PSG2_IHPSYTNYR_vs_TENX_LNWEAPPGAFDSFLLR
133 & 141
0.028
0.610





PSG2_IHPSYTNYR_vs_TENX_LSQLSVTDVTTSSLR
133 & 142
0.020
0.617





PTGDS_GPGEDFR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
137 & 135
0.026
0.611





PTGDS_GPGEDFR_vs_TENX_LNWEAPPGAFDSFLLR
137 & 141
0.034
0.607





THBG_AVLHIGEK_vs_LYAM1_SYYWIGIR
143 & 120
0.034
0.606





THBG_AVLHIGEK_vs_PSG3_VSAPSGTGHLPGLNPL
143 & 134
0.045
0.601





THBG_AVLHIGEK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
143 & 135
0.020
0.617





VTNC_GQYCYELDEK_vs_C163A_INPASLDK
149 & 54
0.024
0.613





VTNC_GQYCYELDEK_vs_CHL1_VIAVNEVGR
149 & 66
0.007
0.635





VTNC_GQYCYELDEK_vs_CRIS3_AVSPPAR
149 & 78
0.006
0.638





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.004
0.645





VTNC_GQYCYELDEK_vs_FBLN1_TGYYFDGISR
149 & 86
0.040
0.603





VTNC_GQYCYELDEK_vs_IBP3_FLNVLSPR
149 & 99
0.032
0.608





VTNC_GQYCYELDEK_vs_IBP3_YGQPLPGYTTK
149 & 100
0.013
0.624





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.011
0.627





VTNC_GQYCYELDEK_vs_ITIH4_ILDDLSPR
149 & 112
0.034
0.606





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.001
0.664





VTNC_GQYCYELDEK_vs_NCAM1_GLGEISAASEFK
149 & 121
0.014
0.623





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.007
0.635





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.000
0.681





VTNC_GQYCYELDEK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
149 & 135
0.005
0.639





VTNC_GQYCYELDEK_vs_PSG9_LFIPQITR
149 & 136
0.016
0.621





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.002
0.654





VTNC_GQYCYELDEK_vs_SPRL1_VLTHSELAPLR
149 & 140
0.006
0.637





VTNC_GQYCYELDEK_vs_TENX_LNWEAPPGAFDSFLLR
149 & 141
0.004
0.644





VTNC_GQYCYELDEK_vs_TENX_LSQLSVTDVTTSSLR
149 & 142
0.005
0.639





VTNC_GQYCYELDEK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
149 & 144
0.003
0.650





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.003
0.647





VTNC_VDTVDPPYPR_vs_C163A_INPASLDK
150 & 54
0.037
0.604





VTNC_VDTVDPPYPR_vs_CHL1_VIAVNEVGR
150 & 66
0.013
0.625





VTNC_VDTVDPPYPR_vs_CRIS3_AVSPPAR
150 & 78
0.006
0.637





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.004
0.645





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.032
0.608





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.001
0.663





VTNC_VDTVDPPYPR_vs_NCAM1_GLGEISAASEFK
150 & 121
0.015
0.622





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126
0.018
0.619





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.000
0.676





VTNC_VDTVDPPYPR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
150 & 135
0.006
0.637





VTNC_VDTVDPPYPR_vs_PSG9_LFIPQITR
150 & 136
0.020
0.617





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.004
0.643





VTNC_VDTVDPPYPR_vs_SPRL1_VLTHSELAPLR
150 & 140
0.009
0.630





VTNC_VDTVDPPYPR_vs_TENX_LNWEAPPGAFDSFLLR
150 & 141
0.009
0.631





VTNC_VDTVDPPYPR_vs_TENX_LSQLSVTDVTTSSLR
150 & 142
0.010
0.629





VTNC_VDTVDPPYPR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
150 & 144
0.008
0.634





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.002
0.652
















TABLE 53







Reversal Classification Performance, weeks 18, 19 and 20.


Reversal AUROC for gestational weeks 18 0/7 through 20 6/7 using 


a case vs control cut-off of <35 0/7 vs >=35 0/7 weeks, without


BMI stratification.











SEQ 




Reversal
ID NO:
pval
ROC_AUC













AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.037
0.636





AFAM_DADPDTFFAK_vs_LYAM1_SYYWIGIR
 37 & 120
0.021
0.651





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.034
0.639





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
 38 & 120
0.026
0.645





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.018
0.654





APOC3_GWVTDGFSSLK_vs_ALS_IRPHTFTGLSGLR
 47 & 40
0.030
0.642





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.016
0.658





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.013
0.662





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.010
0.669





APOC3_GWVTDGFSSLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 47 & 80
0.020
0.652





APOC3_GWVTDGFSSLK_vs_CSH_ISLLLIESWLEPVR
 47 & 81
0.037
0.636





APOC3_GWVTDGFSSLK_vs_FBLN1_TGYYFDGISR
 47 & 86
0.034
0.639





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.023
0.649





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
 47 & 100
0.024
0.648





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.025
0.646





APOC3_GWVTDGFSSLK_vs_ITIH4_ILDDLSPR
 47 & 112
0.037
0.636





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.003
0.692





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.034
0.639





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.042
0.633





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.025
0.647





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_NYGLLYCFR
 47 & 138
0.034
0.638





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_SVEGSCGF
 47 & 139
0.025
0.647





APOC3_GWVTDGFSSLK_vs_SPRL1_VLTHSELAPLR
 47 & 140
0.033
0.640





APOC3_GWVTDGFSSLK_vs_TENX_LNWEAPPGAFDSFLLR
 47 & 141
0.043
0.632





APOC3_GWVTDGFSSLK_vs_TENX_LSQLSVTDVTTSSLR
 47 & 142
0.038
0.636





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.023
0.648





APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
 47 & 147
0.024
0.648





APOH_ATVVYQGER_vs_CRIS3_AVSPPAR
 48 & 78
0.025
0.646





APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
 48 & 79
0.014
0.660





APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
 48 & 103
0.040
0.634





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.003
0.691





APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLNPL
 48 & 134
0.030
0.642





APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
 48 & 18
0.045
0.631





APOH_ATVVYQGER_vs_VTDB_ELPEHTVK
 48 & 147
0.011
0.666





B2MG_VEHSDLSFSK_vs_LYAM1_SYYWIGIR
 50 & 120
0.025
0.646





B2MG_VNHVTLSQPK_vs_C163A_INPASLDK
 51 & 54
0.033
0.639





B2MG_VNHVTLSQPK_vs_CRIS3_AVSPPAR
 51 & 78
0.039
0.635





B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
 51 & 79
0.024
0.647





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.003
0.692





BGH3_LTLLAPLNSVFK_vs_LYAM1_SYYWIGIR
 52 & 120
0.018
0.655





CATD_VGFAEAAR_vs_C163A_INPASLDK
 57 & 54
0.008
0.674





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
 57 & 78
0.046
0.631





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
 57 & 79
0.030
0.642





CATD_VGFAEAAR_vs_CSH_AHQLAIDTYQEFEETYIPK
 57 & 80
0.042
0.633





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
 57 & 120
0.009
0.670





CATD_VGFAEAAR_vs_SOM2.CSH_SVEGSCGF
 57 & 139
0.047
0.630





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.028
0.643





CATD_VGFAEAAR_vs_TENX_LSQLSVTDVTTSSLR
 57 & 142
0.046
0.630





CATD_VSTLPAITLK_vs_C163A_INPASLDK
 58 & 54
0.035
0.638





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
 58 & 78
0.047
0.630





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
 58 & 79
0.032
0.640





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
 58 & 120
0.013
0.663





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
 58 & 134
0.046
0.630





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.035
0.638





CBPN_EALIQFLEQVHQGIK_vs_LYAM1_SYYWIGIR
 59 & 120
0.047
0.630





CBPN_NNANGVDLNR_vs_LYAM1_SYYWIGIR
 60 & 120
0.013
0.662





CBPN_NNANGVDLNR_vs_SPRL1_VLTHSELAPLR
 60 & 140
0.043
0.632





CD14_LTVGAAQVPAQLLVGALR_vs_C163A_INPASLDK
 61 & 54
0.041
0.633





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_AVSPPAR
 61 & 78
0.044
0.632





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_YEDLYSNCK
 61 & 79
0.021
0.651





CD14_LTVGAAQVPAQLLVGALR_vs_CSH_AHQLAIDTYQEFEETYIPK
 61 & 80
0.013
0.662





CD14_LTVGAAQVPAQLLVGALR_vs_CSH_ISLLLIESWLEPVR
 61 & 81
0.038
0.636





CD14_LTVGAAQVPAQLLVGALR_vs_FBLN1_TGYYFDGISR
 61 & 86
0.024
0.647





CD14_LTVGAAQVPAQLLVGALR_vs_IBP1_VVESLAK
 61 & 97
0.043
0.633





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
 61 & 103
0.022
0.650





CD14_LTVGAAQVPAQLLVGALR_vs_ITIH4_ILDDLSPR
 61 & 112
0.037
0.637





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.001
0.717





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.017
0.655





CD14_LTVGAAQVPAQLLVGALR_vs_PSG3_VSAPSGTGHLPGLNPL
 61 & 134
0.008
0.673





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.015
0.659





CD14_LTVGAAQVPAQLLVGALR_vs_SOM2.CSH_SVEGSCGF
 61 & 139
0.020
0.652





CD14_LTVGAAQVPAQLLVGALR_vs_SPRL1_VLTHSELAPLR
 61 & 140
0.026
0.646





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LNWEAPPGAFDSFLLR
 61 & 141
0.024
0.647





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LSQLSVTDVTTSSLR
 61 & 142
0.020
0.652





CD14_LTVGAAQVPAQLLVGALR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 61 & 144
0.008
0.673





CD14_LTVGAAQVPAQLLVGALR_vs_VTDB_ELPEHTVK
 61 & 147
0.002
0.700





CD14_SWLAELQQWLKPGLK_vs_C163A_INPASLDK
 62 & 54
0.041
0.634





CD14_SWLAELQQWLKPGLK_vs_CRIS3_AVSPPAR
 62 & 78
0.047
0.630





CD14_SWLAELQQWLKPGLK_vs_CRIS3_YEDLYSNCK
 62 & 79
0.028
0.643





CD14_SWLAELQQWLKPGLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 62 & 80
0.027
0.645





CD14_SWLAELQQWLKPGLK_vs_FBLN1_TGYYFDGISR
 62 & 86
0.035
0.638





CD14_SWLAELQQWLKPGLK_vs_IGF2_GIVEECCFR
 62 & 103
0.039
0.635





CD14_SWLAELQQWLKPGLK_vs_ITIH4_ILDDLSPR
 62 & 112
0.036
0.637





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.002
0.701





CD14_SWLAELQQWLKPGLK_vs_PGRP2_AGLLRPDYALLGHR
 62 & 126
0.027
0.644





CD14_SWLAELQQWLKPGLK_vs_PSG3_VSAPSGTGHLPGLNPL
 62 & 134
0.014
0.660





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
 62 & 18
0.021
0.650





CD14_SWLAELQQWLKPGLK_vs_SOM2.CSH_SVEGSCGF
 62 & 139
0.024
0.647





CD14_SWLAELQQWLKPGLK_vs_SPRL1_VLTHSELAPLR
 62 & 140
0.036
0.637





CD14_SWLAELQQWLKPGLK_vs_TENX_LNWEAPPGAFDSFLLR
 62 & 141
0.041
0.634





CD14_SWLAELQQWLKPGLK_vs_TENX_LSQLSVTDVTTSSLR
 62 & 142
0.033
0.639





CD14_SWLAELQQWLKPGLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 62 & 144
0.013
0.662





CD14_SWLAELQQWLKPGLK_vs_VTDB_ELPEHTVK
 62 & 147
0.004
0.686





CFAB_YGLVTYATYPK_vs_LYAM1_SYYWIGIR
 64 & 120
0.049
0.629





CLUS_ASSIIDELFQDR_vs_CRIS3_AVSPPAR
 67 & 78
0.026
0.646





CLUS_ASSIIDELFQDR_vs_CRIS3_YEDLYSNCK
 67 & 79
0.018
0.654





CLUS_ASSIIDELFQDR_vs_CSH_AHQLAIDTYQEFEETYIPK
 67 & 80
0.042
0.633





CLUS_ASSIIDELFQDR_vs_FBLN1_TGYYFDGISR
 67 & 86
0.029
0.643





CLUS_ASSIIDELFQDR_vs_IGF2_GIVEECCFR
 67 & 103
0.013
0.663





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.001
0.712





CLUS_ASSIIDELFQDR_vs_PSG3_VSAPSGTGHLPGLNPL
 67 & 134
0.015
0.660





CLUS_ASSIIDELFQDR_vs_SHBG_IALGGLLFPASNLR
 67 & 18
0.022
0.650





CLUS_ASSIIDELFQDR_vs_TENX_LNWEAPPGAFDSFLLR
 67 & 141
0.048
0.629





CLUS_ASSIIDELFQDR_vs_VTDB_ELPEHTVK
 67 & 147
0.005
0.682





CLUS_LFDSDPITVTVPVEVSR_vs_C163A_INPASLDK
 68 & 54
0.046
0.631





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_AVSPPAR
 68 & 78
0.013
0.662





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_YEDLYSNCK
 68 & 79
0.008
0.674





CLUS_LFDSDPITVTVPVEVSR_vs_CSH_AHQLAIDTYQEFEETYIPK
 68 & 80
0.029
0.643





CLUS_LFDSDPITVTVPVEVSR_vs_FBLN1_TGYYFDGISR
 68 & 86
0.041
0.634





CLUS_LFDSDPITVTVPVEVSR_vs_IBP3_FLNVLSPR
 68 & 99
0.043
0.632





CLUS_LFDSDPITVTVPVEVSR_vs_IBP3_YGQPLPGYTTK
 68 & 100
0.028
0.644





CLUS_LFDSDPITVTVPVEVSR_vs_IGF2_GIVEECCFR
 68 & 103
0.007
0.675





CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGIR
 68 & 120
0.001
0.717





CLUS_LFDSDPITVTVPVEVSR_vs_PSG3_VSAPSGTGHLPGLNPL
 68 & 134
0.019
0.653





CLUS_LFDSDPITVTVPVEVSR_vs_SHBG_IALGGLLFPASNLR
 68 & 18
0.015
0.658





CLUS_LFDSDPITVTVPVEVSR_vs_SPRL1_VLTHSELAPLR
 68 & 140
0.048
0.629





CLUS_LFDSDPITVTVPVEVSR_vs_TENX_LNWEAPPGAFDSFLLR
 68 & 141
0.026
0.646





CLUS_LFDSDPITVTVPVEVSR_vs_TENX_LSQLSVTDVTTSSLR
 68 & 142
0.044
0.632





CLUS_LFDSDPITVTVPVEVSR_vs_VTDB_ELPEHTVK
 68 & 147
0.002
0.705





CO5_TLLPVSKPEIR_vs_CRIS3_AVSPPAR
 70 & 78
0.038
0.635





CO5_TLLPVSKPEIR_vs_CRIS3_YEDLYSNCK
 70 & 79
0.027
0.644





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.005
0.683





CO5_VFQFLEK_vs_CRIS3_YEDLYSNCK
 71 & 79
0.047
0.630





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.008
0.674





CO6_ALNHLPLEYNSALYSR_vs_CRIS3_YEDLYSNCK
 72 & 79
0.042
0.633





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGIR
 72 & 120
0.005
0.684





CO6_ALNHLPLEYNSALYSR_vs_TENX_LNWEAPPGAFDSFLLR
 72 & 141
0.048
0.629





CO6_ALNHLPLEYNSALYSR_vs_VTDB_ELPEHTVK
 72 & 147
0.042
0.633





CO8A_SLLQPNK_vs_CRIS3_YEDLYSNCK
 74 & 79
0.032
0.640





CO8A_SLLQPNK_vs_IGF2_GIVEECCFR
 74 & 103
0.046
0.630





CO8A_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.003
0.693





CO8A_SLLQPNK_vs_PSG3_VSAPSGTGHLPGLNPL
 74 & 134
0.019
0.653





CO8A_SLLQPNK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 74 & 144
0.028
0.644





CO8A_SLLQPNK_vs_VTDB_ELPEHTVK
 74 & 147
0.047
0.630





CO8B_QALEEFQK_vs_CRIS3_YEDLYSNCK
 76 & 79
0.031
0.641





CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
 76 & 103
0.044
0.631





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
 76 & 120
0.012
0.664





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
 76 & 134
0.023
0.649





CO8B_QALEEFQK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 76 & 144
0.033
0.640





F13B_GDTYPAELYITGSILR_vs_CRIS3_AVSPPAR
 84 & 78
0.022
0.649





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
 84 & 79
0.014
0.661





F13B_GDTYPAELYITGSILR_vs_FBLN1_TGYYFDGISR
 84 & 86
0.048
0.629





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
 84 & 103
0.040
0.634





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.001
0.711





F13B_GDTYPAELYITGSILR_vs_PSG3_VSAPSGTGHLPGLNPL
 84 & 134
0.034
0.638





F13B_GDTYPAELYITGSILR_vs_SHBG_IALGGLLFPASNLR
 84 & 18
0.045
0.631





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
 88 & 120
0.041
0.633





HABP2_FLNWIK_vs_C163A_INPASLDK
 92 & 54
0.025
0.647





HABP2_FLNWIK_vs_CRIS3_AVSPPAR
 92 & 78
0.036
0.637





HABP2_FLNWIK_vs_CRIS3_YEDLYSNCK
 92 & 79
0.023
0.649





HABP2_FLNWIK_vs_CSH_AHQLAIDTYQEFEETYIPK
 92 & 80
0.033
0.639





HABP2_FLNWIK_vs_FBLN1_TGYYFDGISR
 92 & 86
0.021
0.651





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.018
0.655





HABP2_FLNWIK_vs_ITIH4_ILDDLSPR
 92 & 112
0.028
0.644





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.002
0.699





HABP2_FLNWIK_vs_PGRP2_AGLLRPDYALLGHR
 92 & 126
0.023
0.649





HABP2_FLNWIK_vs_PSG3_VSAPSGTGHLPGLNPL
 92 & 134
0.009
0.670





HABP2_FLNWIK_vs_SHBG_IALGGLLFPASNLR
 92 & 18
0.015
0.659





HABP2_FLNWIK_vs_SOM2.CSH_NYGLLYCFR
 92 & 138
0.037
0.637





HABP2_FLNWIK_vs_SOM2.CSH_SVEGSCGF
 92 & 139
0.025
0.647





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.017
0.656





HABP2_FLNWIK_vs_TENX_LSQLSVTDVTTSSLR
 92 & 142
0.021
0.651





HABP2_FLNWIK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 92 & 144
0.011
0.665





HABP2_FLNWIK_vs_VTDB_ELPEHTVK
 92 & 147
0.002
0.704





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
 93 & 120
0.019
0.653





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.012
0.665





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.008
0.674





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.002
0.705





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.020
0.652





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.039
0.635





IBP4_QCHPALDGQR_vs_SPRL1_VLTHSELAPLR
  2 & 140
0.048
0.629





IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIGIR
102 & 120
0.031
0.641





KNG1_DIPTNSPELEETLTHTITK_vs_CRIS3_YEDLYSNCK
116 & 79
0.042
0.633





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.007
0.678





KNG1_QVVAGLNFR_vs_CRIS3_AVSPPAR
117 & 78
0.040
0.634





KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.020
0.652





KNG1_QVVAGLNFR_vs_CSH_AHQLAIDTYQEFEETYIPK
117 & 80
0.025
0.647





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.040
0.634





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.002
0.703





KNG1_QVVAGLNFR_vs_PSG3_VSAPSGTGHLPGLNPL
117 & 134
0.039
0.635





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.029
0.642





LBP_ITGFLKPGK_vs_LYAM1_SYYWIGIR
118 & 120
0.050
0.628





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.048
0.629





PEDF_LQSLFDSPDFSK_vs_CRIS3_AVSPPAR
124 & 78
0.031
0.641





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.024
0.647





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.007
0.677





PEDF_TVQAVLTVPK_vs_CRIS3_AVSPPAR
125 & 78
0.023
0.648





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.017
0.656





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.003
0.692





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.015
0.659





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.011
0.666





PSG2_IHPSYTNYR_vs_CSH_AHQLAIDTYQEFEETYIPK
133 & 80
0.036
0.637





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.006
0.680





PSG2_IHPSYTNYR_vs_IBP1_VVESLAK
133 & 97
0.050
0.628





PSG2_IHPSYTNYR_vs_IGF2_GIVEECCFR
133 & 103
0.047
0.630





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.008
0.674





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.011
0.665





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.021
0.651





PSG2_IHPSYTNYR_vs_SPRL1_VLTHSELAPLR
133 & 140
0.037
0.637





PTGDS_GPGEDFR_vs_CRIS3_AVSPPAR
137 & 78
0.039
0.635





PTGDS_GPGEDFR_vs_CRIS3_YEDLYSNCK
137 & 79
0.029
0.642





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 & 120
0.013
0.662





THBG_AVLHIGEK_vs_LYAM1_SYYWIGIR
143 & 120
0.011
0.665





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.039
0.635





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.003
0.697





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.021
0.651





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.047
0.630





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.045
0.631





VTNC_VDTVDPPYPR_vs_CRIS3_AVSPPAR
150 & 78
0.042
0.633





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.035
0.638





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.004
0.687





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.036
0.637
















TABLE 54







Reversal Classification Performance, weeks 18, 19 and 20.


Reversal AUROC for gestational weeks 18 0/7 through 20 6/7 using 


a case vs control cut-off of <35 0/7 vs > 35 0/7 weeks, with


BMI stratification (>22 <=37).











SEQ ID




Reversal
NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.017
0.699





AFAM_DADPDTFFAK_vs_CRIS3_YEDLYSNCK
 37 & 79
0.031
0.679





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.036
0.674





AFAM_DADPDTFFAK_vs_LYAM1_SYYWIGIR
 37 & 120
0.012
0.708





AFAM_DADPDTFFAK_vs_PGRP2_AGLLRPDYALLGHR
 37 & 126
0.039
0.672





AFAM_DADPDTFFAK_vs_SOM2.CSH_SVEGSCGF
 37 & 139
0.044
0.668





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
 38 & 120
0.018
0.697





AFAM_HFQNLGK_vs_SOM2.CSH_SVEGSCGF
 38 & 139
0.046
0.666





ANGT_DPTFIPAPIQAK_vs_CRIS3_YEDLYSNCK
 42 & 79
0.044
0.667





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.007
0.722





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.044
0.667





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.043
0.668





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.019
0.694





APOH_ATVVYQGER_vs_CRIS3_AVSPPAR
 48 & 78
0.022
0.690





APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
 48 & 79
0.013
0.706





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.005
0.735





APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGHR
 48 & 126
0.014
0.704





APOH_ATVVYQGER_vs_VTDB_ELPEHTVK
 48 & 147
0.011
0.712





B2MG_VEHSDLSFSK_vs_LYAM1_SYYWIGIR
 50 & 120
0.040
0.671





B2MG_VNHVTLSQPK_vs_CRIS3_AVSPPAR
 51 & 78
0.035
0.675





B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
 51 & 79
0.027
0.684





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.004
0.741





BGH3_LTLLAPLNSVFK_vs_LYAM1_SYYWIGIR
 52 & 120
0.033
0.677





CATD_VGFAEAAR_vs_C163A_INPASLDK
 57 & 54
0.020
0.693





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
 57 & 120
0.015
0.701





CATD_VSTLPAITLK_vs_C163A_INPASLDK
 58 & 54
0.039
0.672





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
 58 & 78
0.048
0.664





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
 58 & 79
0.030
0.681





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
 58 & 120
0.011
0.711





CBPN_NNANGVDLNR_vs_LYAM1_SYYWIGIR
 60 & 120
0.017
0.698





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_AVSPPAR
 61 & 78
0.028
0.683





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_YEDLYSNCK
 61 & 79
0.016
0.699





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.001
0.777





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.013
0.707





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.043
0.668





CD14_LTVGAAQVPAQLLVGALR_vs_SOM2.CSH_SVEGSCGF
 61 & 139
0.019
0.695





CD14_LTVGAAQVPAQLLVGALR_vs_VTDB_ELPEHTVK
 61 & 147
0.009
0.718





CD14_SWLAELQQWLKPGLK_vs_CRIS3_AVSPPAR
 62 & 78
0.049
0.663





CD14_SWLAELQQWLKPGLK_vs_CRIS3_YEDLYSNCK
 62 & 79
0.041
0.669





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.005
0.732





CD14_SWLAELQQWLKPGLK_vs_PGRP2_AGLLRPDYALLGHR
 62 & 126
0.027
0.683





CD14_SWLAELQQWLKPGLK_vs_SOM2.CSH_SVEGSCGF
 62 & 139
0.040
0.671





CD14_SWLAELQQWLKPGLK_vs_VTDB_ELPEHTVK
 62 & 147
0.040
0.671





CLUS_ASSIIDELFQDR_vs_CRIS3_AVSPPAR
 67 & 78
0.024
0.688





CLUS_ASSIIDELFQDR_vs_CRIS3_YEDLYSNCK
 67 & 79
0.020
0.693





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.004
0.736





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_AVSPPAR
 68 & 78
0.026
0.684





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_YEDLYSNCK
 68 & 79
0.019
0.694





CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGIR
 68 & 120
0.010
0.714





CO5_TLLPVSKPEIR_vs_CRIS3_AVSPPAR
 70 & 78
0.048
0.664





CO5_TLLPVSKPEIR_vs_CRIS3_YEDLYSNCK
 70 & 79
0.039
0.671





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.008
0.720





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.015
0.701





CO6_ALNHLPLEYNSALYSR_vs_CRIS3_YEDLYSNCK
 72 & 79
0.043
0.668





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGIR
 72 & 120
0.005
0.731





CO8A_SLLQPNK_vs_CRIS3_YEDLYSNCK
 74 & 79
0.033
0.677





CO8A_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.005
0.735





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
 76 & 120
0.025
0.686





F13B_GDTYPAELYITGSILR_vs_CRIS3_AVSPPAR
 84 & 78
0.014
0.705





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
 84 & 79
0.010
0.713





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.001
0.768





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.012
0.710





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
 93 & 120
0.027
0.683





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.015
0.702





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.011
0.710





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.001
0.774





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.045
0.666





IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIGIR
102 & 120
0.017
0.698





KNG1_DIPTNSPELEETLTHTITK_vs_CRIS3_AVSPPAR
116 & 78
0.047
0.665





KNG1_DIPTNSPELEETLTHTITK_vs_CRIS3_YEDLYSNCK
116 & 79
0.045
0.667





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.005
0.735





KNG1_QVVAGLNFR_vs_CRIS3_AVSPPAR
117 & 78
0.026
0.685





KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.018
0.696





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.048
0.665





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.002
0.761





PAPP1_DIPHWLNPTR_vs_LYAM1_SYYWIGIR
122 & 120
0.031
0.679





PAPP1_DIPHWLNPTR_vs_PRG2_WNFAYWAAHQPWSR
122 & 129
0.033
0.677





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.010
0.714





PEDF_TVQAVLTVPK_vs_CRIS3_AVSPPAR
125 & 78
0.033
0.677





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.029
0.681





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.004
0.739





PSG2_IHPSYTNYR_vs_ALS_IRPHTFTGLSGLR
133 & 40
0.016
0.700





PSG2_IHPSYTNYR_vs_C163A_INPASLDK
133 & 54
0.020
0.693





PSG2_IHPSYTNYR_vs_CHL1_VIAVNEVGR
133 & 66
0.014
0.704





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.001
0.764





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.002
0.759





PSG2_IHPSYTNYR_vs_CSH_AHQLAIDTYQEFEETYIPK
133 & 80
0.008
0.721





PSG2_IHPSYTNYR_vs_CSH_ISLLLIESWLEPVR
133 & 81
0.015
0.703





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.007
0.725





PSG2_IHPSYTNYR_vs_IBP2_LIQGAPTIR
133 & 98
0.013
0.705





PSG2_IHPSYTNYR_vs_IBP3_FLNVLSPR
133 & 99
0.013
0.707





PSG2_IHPSYTNYR_vs_IBP3_YGQPLPGYTTK
133 & 100
0.017
0.699





PSG2_IHPSYTNYR_vs_IGF2_GIVEECCFR
133 & 103
0.010
0.713





PSG2_IHPSYTNYR_vs_ITIH4_ILDDLSPR
133 & 112
0.008
0.719





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.000
0.790





PSG2_IHPSYTNYR_vs_NCAM1_GLGEISAASEFK
133 & 121
0.043
0.668





PSG2_IHPSYTNYR_vs_PGRP2_AGLLRPDYALLGHR
133 & 126
0.011
0.712





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.002
0.753





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.003
0.743





PSG2_IHPSYTNYR_vs_SOM2.CSH_NYGLLYCFR
133 & 138
0.013
0.706





PSG2_IHPSYTNYR_vs_SOM2.CSH_SVEGSCGF
133 & 139
0.007
0.726





PSG2_IHPSYTNYR_vs_SPRL1_VLTHSELAPLR
133 & 140
0.018
0.697





PSG2_IHPSYTNYR_vs_TENX_LNWEAPPGAFDSFLLR
133 & 141
0.022
0.690





PSG2_IHPSYTNYR_vs_TENX_LSQLSVTDVTTSSLR
133 & 142
0.019
0.694





PSG2_IHPSYTNYR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
133 & 144
0.026
0.685





PSG2_IHPSYTNYR_vs_VTDB_ELPEHTVK
133 & 147
0.005
0.732





PTGDS_GPGEDFR_vs_C163A_INPASLDK
137 & 54
0.035
0.675





PTGDS_GPGEDFR_vs_CRIS3_AVSPPAR
137 & 78
0.027
0.683





PTGDS_GPGEDFR_vs_CRIS3_YEDLYSNCK
137 & 79
0.022
0.691





PTGDS_GPGEDFR_VS_LYAM1_SYYWIGIR
137 & 120
0.006
0.729





PTGDS_GPGEDFR_vs_SOM2.CSH_SVEGSCGF
137 & 139
0.034
0.677





THBG_AVLHIGEK_vs_LYAM1_SYYWIGIR
143 & 120
0.019
0.695





VTNC_GQYCYELDEK_vs_CRIS3_AVSPPAR
149 & 78
0.031
0.679





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.027
0.684





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.002
0.760





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.049
0.663





VTNC_VDTVDPPYPR_vs_CRIS3_AVSPPAR
150 & 78
0.041
0.669





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.034
0.676





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120 
0.006
0.728
















TABLE 55







Reversal Classification Performance, weeks 19, 20 and 21


Reversal AUROC for gestational weeks 19 0/7 through 21 6/7 using a 


case vs control cut-off of <37 0/7 vs >=37 0/7 weeks, without


BMI stratification.











SEQ ID




Reversal
NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_IBP3_FLNVLSPR
 34 & 99
0.021
0.602





A2GL_DLLLPQPDLR_vs_IBP3_YGQPLPGYTTK
 34 & 100
0.013
0.610





A2GL_DLLLPQPDLR_vs_IGF2_GIVEECCFR
 34 & 103
0.002
0.639





A2GL_DLLLPQPDLR_vs_PRG2_WNFAYWAAHQPWSR
 34 & 129
0.019
0.604





A2GL_DLLLPQPDLR_vs_PSG3_VSAPSGTGHLPGLNPL
 34 & 134
0.022
0.602





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.003
0.630





A2GL_DLLLPQPDLR_vs_TENX_LNWEAPPGAFDSFLLR
 34 & 141
0.011
0.612





AFAM_DADPDTFFAK_vs_IBP3_YGQPLPGYTTK
 37 & 100
0.022
0.602





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.009
0.616





AFAM_HFQNLGK_vs_IBP3_FLNVLSPR
 38 & 99
0.018
0.605





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.003
0.631





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.001
0.642





APOC3_GWVTDGFSSLK_vs_ALS_IRPHTFTGLSGLR
 47 & 40
0.001
0.648





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.002
0.634





APOC3_GWVTDGFSSLK_vs_CHL1_VIAVNEVGR
 47 & 66
0.009
0.617





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.003
0.631





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.002
0.635





APOC3_GWVTDGFSSLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 47 & 80
0.003
0.634





APOC3_GWVTDGFSSLK_vs_CSH_ISLLLIESWLEPVR
 47 & 81
0.005
0.624





APOC3_GWVTDGFSSLK_vs_FBLN1_TGYYFDGISR
 47 & 86
0.003
0.631





APOC3_GWVTDGFSSLK_vs_IBP1_VVESLAK
 47 & 97
0.023
0.601





APOC3_GWVTDGFSSLK_vs_IBP2_LIQGAPTIR
 47 & 98
0.012
0.611





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.000
0.666





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
 47 & 100
0.000
0.662





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.000
0.675





APOC3_GWVTDGFSSLK_vs_ITIH4_ILDDLSPR
 47 & 112
0.001
0.646





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.000
0.658





APOC3_GWVTDGFSSLK_vs_NCAM1_GLGEISAASEFK
 47 & 121
0.003
0.630





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.001
0.652





APOC3_GWVTDGFSSLK_vs_PRG2_WNFAYWAAHQPWSR
 47 & 129
0.003
0.632





APOC3_GWVTDGFSSLK_vs_PSG1_FQLPGQK
 47 & 131
0.016
0.607





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.001
0.646





APOC3_GWVTDGFSSLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 47 & 135
0.016
0.607





APOC3_GWVTDGFSSLK_vs_PSG9_LFIPQITR
 47 & 136
0.020
0.603





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.001
0.652





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_NYGLLYCFR
 47 & 138
0.009
0.617





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_SVEGSCGF
 47 & 139
0.003
0.631





APOC3_GWVTDGFSSLK_vs_SPRL1_VLTHSELAPLR
 47 & 140
0.002
0.637





APOC3_GWVTDGFSSLK_vs_TENX_LNWEAPPGAFDSFLLR
 47 & 141
0.001
0.653





APOC3_GWVTDGFSSLK_vs_TENX_LSQLSVTDVTTSSLR
 47 & 142
0.001
0.651





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.001
0.642





APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
 47 & 147
0.001
0.646





APOH_ATVVYQGER_vs_IBP3_FLNVLSPR
 48 & 99
0.010
0.614





APOH_ATVVYQGER_vs_IBP3_YGQPLPGYTTK
 48 & 100
0.003
0.631





APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
 48 & 103
0.000
0.657





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.019
0.604





APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGHR
 48 & 126
0.018
0.605





APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLNPL
 48 & 134
0.024
0.600





APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
 48 & 18
0.007
0.620





APOH_ATVVYQGER_vs_TENX_LNWEAPPGAFDSFLLR
 48 & 141
0.004
0.627





APOH_ATVVYQGER_vs_TENX_LSQLSVTDVTTSSLR
 48 & 142
0.006
0.623





B2MG_VEHSDLSFSK_vs_IGF2_GIVEECCFR
 50 & 103
0.003
0.630





B2MG_VEHSDLSFSK_vs_LYAM1_SYYWIGIR
 50 & 120
0.012
0.611





B2MG_VEHSDLSFSK_vs_SHBG_IALGGLLFPASNLR
 50 & 18
0.008
0.617





B2MG_VEHSDLSFSK_vs_TENX_LNWEAPPGAFDSFLLR
 50 & 141
0.013
0.610





B2MG_VEHSDLSFSK_vs_TENX_LSQLSVTDVTTSSLR
 50 & 142
0.014
0.609





B2MG_VNHVTLSQPK_vs_IBP3_FLNVLSPR
 51 & 99
0.013
0.610





B2MG_VNHVTLSQPK_vs_IBP3_YGQPLPGYTTK
 51 & 100
0.010
0.614





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
 51 & 103
0.000
0.658





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.006
0.622





B2MG_VNHVTLSQPK_vs_PGRP2_AGLLRPDYALLGHR
 51 & 126
0.009
0.615





B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
 51 & 18
0.003
0.634





B2MG_VNHVTLSQPK_vs_TENX_LNWEAPPGAFDSFLLR
 51 & 141
0.006
0.621





B2MG_VNHVTLSQPK_vs_TENX_LSQLSVTDVTTSSLR
 51 & 142
0.008
0.618





C1QB_VPGLYYFTYHASSR_vs_IGF2_GIVEECCFR
 55 & 103
0.004
0.627





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.011
0.613





C1QB_VPGLYYFTYHASSR_vs_TENX_LNWEAPPGAFDSFLLR
 55 & 141
0.012
0.612





C1QB_VPGLYYFTYHASSR_vs_TENX_LSQLSVTDVTTSSLR
 55 & 142
0.020
0.603





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
 57 & 79
0.018
0.605





CATD_VGFAEAAR_vs_IBP3_FLNVLSPR
 57 & 99
0.011
0.613





CATD_VGFAEAAR_vs_IBP3_YGQPLPGYTTK
 57 & 100
0.012
0.611





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
 57 & 103
0.001
0.645





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
 57 & 120
0.011
0.613





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
 57 & 126
0.011
0.613





CATD_VGFAEAAR_vs_PRG2_WNFAYWAAHQPWSR
 57 & 129
0.007
0.619





CATD_VGFAEAAR_vs_PSG3_VSAPSGTGHLPGLNPL
 57 & 134
0.010
0.614





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.006
0.621





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.002
0.636





CATD_VGFAEAAR_vs_TENX_LSQLSVTDVTTSSLR
 57 & 142
0.003
0.631





CATD_VSTLPAITLK_vs_IBP3_FLNVLSPR
 58 & 99
0.014
0.609





CATD_VSTLPAITLK_vs_IBP3_YGQPLPGYTTK
 58 & 100
0.015
0.608





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
 58 & 103
0.002
0.640





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
 58 & 126
0.016
0.607





CATD_VSTLPAITLK_vs_PRG2_WNFAYWAAHQPWSR
 58 & 129
0.023
0.601





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
 58 & 134
0.022
0.602





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
 58 & 18
0.008
0.618





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.004
0.628





CATD_VSTLPAITLK_vs_TENX_LSQLSVTDVTTSSLR
 58 & 142
0.007
0.620





CD14_LTVGAAQVPAQLLVGALR_vs_IBP3_FLNVLSPR
 61 & 99
0.009
0.615





CD14_LTVGAAQVPAQLLVGALR_vs_IBP3_YGQPLPGYTTK
 61 & 100
0.011
0.612





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
 61 & 103
0.001
0.649





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.015
0.608





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.024
0.600





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.007
0.619





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LNWEAPPGAFDSFLLR
 61 & 141
0.005
0.623





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LSQLSVTDVTTSSLR
 61 & 142
0.012
0.611





CD14_SWLAELQQWLKPGLK_vs_IGF2_GIVEECCFR
 62 & 103
0.003
0.630





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.022
0.602





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
 62 & 18
0.011
0.613





CD14_SWLAELQQWLKPGLK_vs_TENX_LNWEAPPGAFDSFLLR
 62 & 141
0.009
0.615





CD14_SWLAELQQWLKPGLK_vs_TENX_LSQLSVTDVTTSSLR
 62 & 142
0.024
0.600





CFAB_YGLVTYATYPK_vs_IBP3_YGQPLPGYTTK
 64 & 100
0.017
0.606





CFAB_YGLVTYATYPK_vs_IGF2_GIVEECCFR
 64 & 103
0.003
0.634





CFAB_YGLVTYATYPK_vs_SHBG_IALGGLLFPASNLR
 64 & 18
0.015
0.608





CO5_TLLPVSKPEIR_vs_IGF2_GIVEECCFR
 70 & 103
0.006
0.622





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.016
0.607





CO5_TLLPVSKPEIR_vs_TENX_LNWEAPPGAFDSFLLR
 70 & 141
0.016
0.607





CO5_VFQFLEK_vs_IGF2_GIVEECCFR
 71 & 103
0.010
0.614





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
 71 & 18
0.017
0.606





CO5_VFQFLEK_vs_TENX_LNWEAPPGAFDSFLLR
 71 & 141
0.015
0.608





CO6_ALNHLPLEYNSALYSR_vs_IGF2_GIVEECCFR
 72 & 103
0.020
0.603





CO8A_SLLQPNK_vs_ALS_IRPHTFTGLSGLR
 74 & 40
0.023
0.601





CO8A_SLLQPNK_vs_IBP3_FLNVLSPR
 74 & 99
0.012
0.611





CO8A_SLLQPNK_vs_IBP3_YGQPLPGYTTK
 74 & 100
0.006
0.623





CO8A_SLLQPNK_vs_IGF2_GIVEECCFR
 74 & 103
0.000
0.656





CO8A_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.021
0.602





CO8A_SLLQPNK_vs_PGRP2_AGLLRPDYALLGHR
 74 & 126
0.018
0.605





CO8A_SLLQPNK_vs_SHBG_IALGGLLFPASNLR
 74 & 18
0.010
0.615





CO8A_SLLQPNK_vs_TENX_LNWEAPPGAFDSFLLR
 74 & 141
0.005
0.624





CO8A_SLLQPNK_vs_TENX_LSQLSVTDVTTSSLR
 74 & 142
0.005
0.624





CO8B_QALEEFQK_vs_ALS_IRPHTFTGLSGLR
 76 & 40
0.012
0.612





CO8B_QALEEFQK_vs_IBP3_FLNVLSPR
 76 & 99
0.009
0.617





CO8B_QALEEFQK_vs_IBP3_YGQPLPGYTTK
 76 & 100
0.005
0.624





CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
 76 & 103
0.000
0.663





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
 76 & 120
0.015
0.608





CO8B_QALEEFQK_vs_PGRP2_AGLLRPDYALLGHR
 76 & 126
0.019
0.604





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
 76 & 134
0.020
0.603





CO8B_QALEEFQK_vs_SHBG_IALGGLLFPASNLR
 76 & 18
0.011
0.613





CO8B_QALEEFQK_vs_TENX_LNWEAPPGAFDSFLLR
 76 & 141
0.003
0.632





CO8B_QALEEFQK_vs_TENX_LSQLSVTDVTTSSLR
 76 & 142
0.002
0.637





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IBP3_FLNVLSPR
 82 & 99
0.016
0.607





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IBP3_YGQPLPGYTTK
 82 & 100
0.013
0.610





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IGF2_GIVEECCFR
 82 & 103
0.004
0.629





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_VS_LYAM1_SYYWIGIR
 82 & 120
0.011
0.613





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PGRP2_AGLLRPDYALLGHR
 82 & 126
0.017
0.606





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PRG2_WNFAYWAAHQPWSR
 82 & 129
0.024
0.600





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_IALGGLLFPASNLR
 82 & 18
0.003
0.633





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_TENX_LNWEAPPGAFDSFLLR
 82 & 141
0.014
0.609





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_TENX_LSQLSVTDVTTSSLR
 82 & 142
0.019
0.604





ENPP2_TYLHTYESEI_vs_IBP3_FLNVLSPR
 83 & 99
0.012
0.611





ENPP2_TYLHTYESEI_vs_IBP3_YGQPLPGYTTK
 83 & 100
0.012
0.611





ENPP2_TYLHTYESEI_vs_IGF2_GIVEECCFR
 83 & 103
0.003
0.631





ENPP2_TYLHTYESEI_vs_LYAM1_SYYWIGIR
 83 & 120
0.008
0.618





ENPP2_TYLHTYESEI_vs_PGRP2_AGLLRPDYALLGHR
 83 & 126
0.013
0.610





ENPP2_TYLHTYESEI_vs_SHBG_IALGGLLFPASNLR
 83 & 18
0.004
0.627





ENPP2_TYLHTYESEI_vs_TENX_LNWEAPPGAFDSFLLR
 83 & 141
0.008
0.617





ENPP2_TYLHTYESEI_vs_TENX_LSQLSVTDVTTSSLR
 83 & 142
0.014
0.610





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
 84 & 103
0.022
0.602





FBLN3_IPSNPSHR_vs_SHBG_IALGGLLFPASNLR
 87 & 18
0.017
0.606





FETUA_FSVVYAK_vs_IBP3_FLNVLSPR
 88 & 99
0.012
0.611





FETUA_FSVVYAK_vs_IBP3_YGQPLPGYTTK
 88 & 100
0.006
0.622





FETUA_FSVVYAK_vs_IGF2_GIVEECCFR
 88 & 103
0.001
0.654





FETUA_FSVVYAK_vs_SHBG_IALGGLLFPASNLR
 88 & 18
0.011
0.613





FETUA_FSVVYAK_vs_TENX_LNWEAPPGAFDSFLLR
 88 & 141
0.007
0.620





FETUA_FSVVYAK_vs_TENX_LSQLSVTDVTTSSLR
 88 & 142
0.013
0.610





FETUA_HTLNQIDEVK_vs_IBP3_YGQPLPGYTTK
 89 & 100
0.017
0.606





FETUA_HTLNQIDEVK_vs_IGF2_GIVEECCFR
 89 & 103
0.002
0.636





FETUA_HTLNQIDEVK_vs_SHBG_IALGGLLFPASNLR
 89 & 18
0.007
0.619





FETUA_HTLNQIDEVK_vs_TENX_LNWEAPPGAFDSFLLR
 89 & 141
0.005
0.625





FETUA_HTLNQIDEVK_vs_TENX_LSQLSVTDVTTSSLR
 89 & 142
0.010
0.615





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.010
0.614





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.022
0.602





HEMO_NFPSPVDAAFR_vs_IBP3_YGQPLPGYTTK
 93 & 100
0.018
0.605





HEMO_NFPSPVDAAFR_vs_IGF2_GIVEECCFR
 93 & 103
0.003
0.632





HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPASNLR
 93 & 18
0.005
0.625





HEMO_NFPSPVDAAFR_vs_TENX_LNWEAPPGAFDSFLLR
 93 & 141
0.012
0.611





IBP4_QCHPALDGQR_vs_ALS_IRPHTFTGLSGLR
  2 & 40
0.007
0.619





IBP4_QCHPALDGQR_vs_CHL1_VIAVNEVGR
  2 & 66
0.023
0.601





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.004
0.628





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.002
0.637





IBP4_QCHPALDGQR_vs_IBP3_FLNVLSPR
  2 & 99
0.002
0.635





IBP4_QCHPALDGQR_vs_IBP3_YGQPLPGYTTK
  2 & 100
0.001
0.648





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.000
0.684





IBP4_QCHPALDGQR_vs_ITIH4_ILDDLSPR
  2 & 112
0.001
0.641





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.001
0.650





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
  2 & 126
0.000
0.655





IBP4_QCHPALDGQR_vs_PRG2_WNFAYWAAHQPWSR
  2 & 129
0.006
0.622





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.001
0.651





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.000
0.670





IBP4_QCHPALDGQR_vs_SPRL1_VLTHSELAPLR
  2 & 140
0.006
0.622





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFDSFLLR
  2 & 141
0.000
0.661





IBP4_QCHPALDGQR_vs_TENX_LSQLSVTDVTTSSLR
  2 & 142
0.001
0.642





IBP4_QCHPALDGQR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
  2 & 144
0.003
0.634





IBP4_QCHPALDGQR_vs_VTDB_ELPEHTVK
  2 & 147
0.003
0.632





IBP6_GAQTLYVPNCDHR_vs_IGF2_GIVEECCFR
101 & 103
0.008
0.617





IBP6_GAQTLYVPNCDHR_vs_SHBG_IALGGLLFPASNLR
101 & 18
0.020
0.604





IBP6_HLDSVLQQLQTEVYR_vs_IGF2_GIVEECCFR
102 & 103
0.010
0.615





IBP6_HLDSVLQQLQTEVYR_vs_SHBG_IALGGLLFPASNLR
102 & 18
0.013
0.610





INHBC_LDFHFSSDR_vs_ALS_IRPHTFTGLSGLR
107 & 40
0.015
0.608





INHBC_LDFHFSSDR_vs_CRIS3_YEDLYSNCK
107 & 79
0.023
0.601





INHBC_LDFHFSSDR_vs_IBP3_FLNVLSPR
107 & 99
0.003
0.631





INHBC_LDFHFSSDR_vs_IBP3_YGQPLPGYTTK
107 & 100
0.002
0.638





INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 & 103
0.000
0.664





INHBC_LDFHFSSDR_vs_ITIH4_ILDDLSPR
107 & 112
0.013
0.610





INHBC_LDFHFSSDR_vs_LYAM1_SYYWIGIR
107 & 120
0.007
0.620





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.004
0.628





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.007
0.619





INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNLR
107 & 18
0.002
0.635





INHBC_LDFHFSSDR_vs_SPRL1_VLTHSELAPLR
107 & 140
0.019
0.604





INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDSFLLR
107 & 141
0.001
0.643





INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSSLR
107 & 142
0.002
0.636





INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
107 & 144
0.013
0.611





INHBC_LDFHFSSDR_vs_VTDB_ELPEHTVK
107 & 147
0.010
0.614





ITIH3_ALDLSLK_vs_IGF2_GIVEECCFR
111 & 103
0.015
0.608





ITIH3_ALDLSLK_vs_LYAM1_SYYWIGIR
111 & 120
0.022
0.602





ITIH3_ALDLSLK_vs_PGRP2_AGLLRPDYALLGHR
111 & 126
0.012
0.611





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.002
0.636





ITIH3_ALDLSLK_vs_TENX_LNWEAPPGAFDSFLLR
111 & 141
0.014
0.609





KNG1_DIPTNSPELEETLTHTITK_vs_IGF2_GIVEECCFR
116 & 103
0.002
0.637





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.010
0.615





KNG1_DIPTNSPELEETLTHTITK_vs_SHBG_IALGGLLFPASNLR
116 & 18
0.015
0.608





KNG1_DIPTNSPELEETLTHTITK_vs_TENX_LNWEAPPGAFDSFLLR
116 & 141
0.007
0.619





KNG1_DIPTNSPELEETLTHTITK_vs_TENX_LSQLSVTDVTTSSLR
116 & 142
0.013
0.611





KNG1_QVVAGLNFR_vs_IBP3_YGQPLPGYTTK
117 & 100
0.020
0.603





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.003
0.630





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.010
0.615





KNG1_QVVAGLNFR_vs_PGRP2_AGLLRPDYALLGHR
117 & 126
0.020
0.603





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.007
0.619





KNG1_QVVAGLNFR_vs_TENX_LNWEAPPGAFDSFLLR
117 & 141
0.012
0.612





KNG1_QVVAGLNFR_vs_TENX_LSQLSVTDVTTSSLR
117 & 142
0.023
0.601





LBP_ITGFLKPGK_vs_CRIS3_AVSPPAR
118 & 78
0.016
0.606





LBP_ITGFLKPGK_vs_CRIS3_YEDLYSNCK
118 & 79
0.010
0.615





LBP_ITGFLKPGK_vs_IBP3_FLNVLSPR
118 & 99
0.015
0.608





LBP_ITGFLKPGK_vs_IBP3_YGQPLPGYTTK
118 & 100
0.010
0.614





LBP_ITGFLKPGK_vs_IGF2_GIVEECCFR
118 & 103
0.002
0.638





LBP_ITGFLKPGK_vs_LYAM1_SYYWIGIR
118 & 120
0.012
0.612





LBP_ITGFLKPGK_vs_PGRP2_AGLLRPDYALLGHR
118 & 126
0.012
0.611





LBP_ITGFLKPGK_vs_PRG2_WNFAYWAAHQPWSR
118 & 129
0.022
0.601





LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNPL
118 & 134
0.004
0.627





LBP_ITGFLKPGK_vs_SHBG_IALGGLLFPASNLR
118 & 18
0.004
0.628





LBP_ITGFLKPGK_vs_SPRL1_VLTHSELAPLR
118 & 140
0.024
0.600





LBP_ITGFLKPGK_vs_TENX_LNWEAPPGAFDSFLLR
118 & 141
0.010
0.614





LBP_ITGFLKPGK_vs_TENX_LSQLSVTDVTTSSLR
118 & 142
0.018
0.605





LBP_ITLPDFTGDLR_vs_ALS_IRPHTFTGLSGLR
119 & 40
0.013
0.611





LBP_ITLPDFTGDLR_vs_C163A_INPASLDK
119 & 54
0.017
0.606





LBP_ITLPDFTGDLR_vs_CHL1_VIAVNEVGR
119 & 66
0.024
0.600





LBP_ITLPDFTGDLR_vs_CRIS3_AVSPPAR
119 & 78
0.005
0.624





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.003
0.633





LBP_ITLPDFTGDLR_vs_IBP2_LIQGAPTIR
119 & 98
0.024
0.600





LBP_ITLPDFTGDLR_vs_IBP3_FLNVLSPR
119 & 99
0.003
0.630





LBP_ITLPDFTGDLR_vs_IBP3_YGQPLPGYTTK
119 & 100
0.002
0.638





LBP_ITLPDFTGDLR_vs_IGF2_GIVEECCFR
119 & 103
0.000
0.655





LBP_ITLPDFTGDLR_vs_ITIH4_ILDDLSPR
119 & 112
0.006
0.621





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.003
0.632





LBP_ITLPDFTGDLR_vs_PGRP2_AGLLRPDYALLGHR
119 & 126
0.003
0.630





LBP_ITLPDFTGDLR_vs_PRG2_WNFAYWAAHQPWSR
119 & 129
0.009
0.615





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGLNPL
119 & 134
0.002
0.640





LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.001
0.645





LBP_ITLPDFTGDLR_vs_SOM2.CSH_SVEGSCGF
119 & 139
0.023
0.601





LBP_ITLPDFTGDLR_vs_SPRL1_VLTHSELAPLR
119 & 140
0.009
0.616





LBP_ITLPDFTGDLR_vs_TENX_LNWEAPPGAFDSFLLR
119 & 141
0.002
0.634





LBP_ITLPDFTGDLR_vs_TENX_LSQLSVTDVTTSSLR
119 & 142
0.005
0.625





LBP_ITLPDFTGDLR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
119 & 144
0.011
0.613





LBP_ITLPDFTGDLR_vs_VTDB_ELPEHTVK
119 & 147
0.007
0.621





PEDF_LQSLFDSPDFSK_vs_IGF2_GIVEECCFR
124 & 103
0.008
0.617





PEDF_LQSLFDSPDFSK_vs_TENX_LNWEAPPGAFDSFLLR
124 & 141
0.012
0.612





PEDF_LQSLFDSPDFSK_vs_TENX_LSQLSVTDVTTSSLR
124 & 142
0.013
0.610





PEDF_TVQAVLTVPK_vs_IGF2_GIVEECCFR
125 & 103
0.003
0.630





PEDF_TVQAVLTVPK_vs_TENX_LNWEAPPGAFDSFLLR
125 & 141
0.014
0.609





PEDF_TVQAVLTVPK_vs_TENX_LSQLSVTDVTTSSLR
125 & 142
0.018
0.604





PTGDS_GPGEDFR_vs_IGF2_GIVEECCFR
137 & 103
0.008
0.618





PTGDS_GPGEDFR_vs_SHBG_IALGGLLFPASNLR
137 & 18
0.016
0.607





PTGDS_GPGEDFR_vs_TENX_LNWEAPPGAFDSFLLR
137 & 141
0.013
0.610





PTGDS_GPGEDFR_vs_TENX_LSQLSVTDVTTSSLR
137 & 142
0.016
0.607





THBG_AVLHIGEK_vs_IGF2_GIVEECCFR
143 & 103
0.011
0.612





THBG_AVLHIGEK_vs_SHBG_IALGGLLFPASNLR
143 & 18
0.013
0.610





VTNC_GQYCYELDEK_vs_IBP3_FLNVLSPR
149 & 99
0.016
0.607





VTNC_GQYCYELDEK_vs_IBP3_YGQPLPGYTTK
149 & 100
0.006
0.621





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.001
0.641





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.015
0.608





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.002
0.639





VTNC_GQYCYELDEK_vs_TENX_LNWEAPPGAFDSFLLR
149 & 141
0.012
0.612





VTNC_GQYCYELDEK_vs_TENX_LSQLSVTDVTTSSLR
149 & 142
0.018
0.605





VTNC_VDTVDPPYPR_vs_IBP3_FLNVLSPR
150 & 99
0.007
0.619





VTNC_VDTVDPPYPR_vs_IBP3_YGQPLPGYTTK
150 & 100
0.004
0.628





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.001
0.649





VTNC_VDTVDPPYPR_vs_ITIH4_ILDDLSPR
150 & 112
0.016
0.606





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.005
0.625





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126
0.009
0.616





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.021
0.602





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.001
0.644





VTNC_VDTVDPPYPR_vs_TENX_LNWEAPPGAFDSFLLR
150 & 141
0.005
0.624





VTNC_VDTVDPPYPR_vs_TENX_LSQLSVTDVTTSSLR
150 & 142
0.009
0.615





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.008
0.618
















TABLE 56







Reversal Classification Performance, weeks 19, 20 and 21


Reversal AUROC for gestational weeks 19 0/7 through 21 6/7   


using a case vs control cut-off of <37 0/7 vs


 >=37 0/7 weeks, with BMI stratification (>22 <=37).










Reversal
SEQ ID NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_CRIS3_AVSPPAR
 34 & 78
0.023
0.622





A2GL_DLLLPQPDLR_vs_CRIS3_YEDLYSNCK
 34 & 79
0.011
0.636





A2GL_DLLLPQPDLR_vs_IBP3_FLNVLSPR
 34 & 99
0.023
0.622





A2GL_DLLLPQPDLR_vs_IBP3_YGQPLPGYTTK
 34 & 100
0.015
0.631





A2GL_DLLLPQPDLR_vs_IGF2_GIVEECCFR
 34 & 103
0.003
0.660





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.003
0.658





A2GL_DLLLPQPDLR_vs_PGRP2_AGLLRPDYALLGHR
 34 & 126
0.021
0.624





A2GL_DLLLPQPDLR_vs_PSG3_VSAPSGTGHLPGLNPL
 34 & 134
0.044
0.608





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.012
0.636





A2GL_DLLLPQPDLR_vs_TENX_LNWEAPPGAFDSFLLR
 34 & 141
0.024
0.622





AFAM_DADPDTFFAK_vs_IBP3_FLNVLSPR
 37 & 99
0.033
0.614





AFAM_DADPDTFFAK_vs_IBP3_YGQPLPGYTTK
 37 & 100
0.004
0.653





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.004
0.656





AFAM_DADPDTFFAK_vs_TENX_LNWEAPPGAFDSFLLR
 37 & 141
0.046
0.607





AFAM_HFQNLGK_vs_ALS_IRPHTFTGLSGLR
 38 & 40
0.035
0.614





AFAM_HFQNLGK_vs_CRIS3_YEDLYSNCK
 38 & 79
0.035
0.613





AFAM_HFQNLGK_vs_IBP3_FLNVLSPR
 38 & 99
0.004
0.653





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.001
0.683





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.001
0.685





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
 38 & 120
0.034
0.614





AFAM_HFQNLGK_vs_PGRP2_AGLLRPDYALLGHR
 38 & 126
0.036
0.613





AFAM_HFQNLGK_vs_PSG3_VSAPSGTGHLPGLNPL
 38 & 134
0.045
0.608





AFAM_HFQNLGK_vs_TENX_LNWEAPPGAFDSFLLR
 38 & 141
0.028
0.618





AFAM_HFQNLGK_vs_TENX_LSQLSVTDVTTSSLR
 38 & 142
0.043
0.609





ANGT_DPTFIPAPIQAK_vs_CRIS3_AVSPPAR
 42 & 78
0.026
0.620





ANGT_DPTFIPAPIQAK_vs_CRIS3_YEDLYSNCK
 42 & 79
0.017
0.629





ANGT_DPTFIPAPIQAK_vs_IBP3_YGQPLPGYTTK
 42 & 100
0.040
0.611





ANGT_DPTFIPAPIQAK_vs_IGF2_GIVEECCFR
 42 & 103
0.017
0.628





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.022
0.623





ANGT_DPTFIPAPIQAK_vs_TENX_LNWEAPPGAFDSFLLR
 42 & 141
0.037
0.612





APOC3_GWVTDGFSSLK_vs_ALS_IRPHTFTGLSGLR
 47 & 40
0.026
0.620





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.018
0.627





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.009
0.641





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.006
0.649





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.010
0.639





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
 47 & 100
0.009
0.641





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.005
0.653





APOC3_GWVTDGFSSLK_vs_ITIH4_ILDDLSPR
 47 & 112
0.020
0.625





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.006
0.649





APOC3_GWVTDGFSSLK_vs_NCAM1_GLGEISAASEFK
 47 & 121
0.045
0.608





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.011
0.637





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.020
0.625





APOC3_GWVTDGFSSLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 47 & 135
0.027
0.619





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.011
0.636





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_SVEGSCGF
 47 & 139
0.018
0.627





APOC3_GWVTDGFSSLK_vs_SPRL1_VLTHSELAPLR
 47 & 140
0.035
0.613





APOC3_GWVTDGFSSLK_vs_TENX_LNWEAPPGAFDSFLLR
 47 & 141
0.016
0.630





APOC3_GWVTDGFSSLK_vs_TENX_LSQLSVTDVTTSSLR
 47 & 142
0.030
0.617





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.030
0.616





APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
 47 & 147
0.026
0.619





APOH_ATVVYQGER_vs_CRIS3_AVSPPAR
 48 & 78
0.031
0.616





APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
 48 & 79
0.015
0.631





APOH_ATVVYQGER_vs_IBP3_FLNVLSPR
 48 & 99
0.035
0.613





APOH_ATVVYQGER_vs_IBP3_YGQPLPGYTTK
 48 & 100
0.007
0.645





APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
 48 & 103
0.005
0.652





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.022
0.623





APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGHR
 48 & 126
0.030
0.616





APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
 48 & 18
0.033
0.615





APOH_ATVVYQGER_vs_TENX_LNWEAPPGAFDSFLLR
 48 & 141
0.033
0.615





B2MG_VEHSDLSFSK_vs_CRIS3_AVSPPAR
 50 & 78
0.036
0.613





B2MG_VEHSDLSFSK_vs_CRIS3_YEDLYSNCK
 50 & 79
0.015
0.631





B2MG_VEHSDLSFSK_vs_IBP3_YGQPLPGYTTK
 50 & 100
0.022
0.623





B2MG_VEHSDLSFSK_vs_IGF2_GIVEECCFR
 50 & 103
0.007
0.644





B2MG_VEHSDLSFSK_vs_LYAM1_SYYWIGIR
 50 & 120
0.007
0.645





B2MG_VEHSDLSFSK_vs_SHBG_IALGGLLFPASNLR
 50 & 18
0.036
0.613





B2MG_VEHSDLSFSK_vs_TENX_LNWEAPPGAFDSFLLR
 50 & 141
0.035
0.613





B2MG_VNHVTLSQPK_vs_CRIS3_AVSPPAR
 51 & 78
0.019
0.627





B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
 51 & 79
0.009
0.641





B2MG_VNHVTLSQPK_vs_IBP3_FLNVLSPR
 51 & 99
0.019
0.626





B2MG_VNHVTLSQPK_vs_IBP3_YGQPLPGYTTK
 51 & 100
0.011
0.637





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
 51 & 103
0.002
0.669





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.005
0.651





B2MG_VNHVTLSQPK_vs_PGRP2_AGLLRPDYALLGHR
 51 & 126
0.015
0.630





B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
 51 & 18
0.013
0.634





B2MG_VNHVTLSQPK_vs_TENX_LNWEAPPGAFDSFLLR
 51 & 141
0.031
0.616





B2MG_VNHVTLSQPK_vs_TENX_LSQLSVTDVTTSSLR
 51 & 142
0.042
0.609





BGH3_LTLLAPLNSVFK_vs_CRIS3_AVSPPAR
 52 & 78
0.038
0.611





BGH3_LTLLAPLNSVFK_vs_CRIS3_YEDLYSNCK
 52 & 79
0.012
0.635





BGH3_LTLLAPLNSVFK_vs_IBP3_YGQPLPGYTTK
 52 & 100
0.042
0.609





BGH3_LTLLAPLNSVFK_vs_IGF2_GIVEECCFR
 52 & 103
0.025
0.620





BGH3_LTLLAPLNSVFK_vs_LYAM1_SYYWIGIR
 52 & 120
0.023
0.622





BGH3_LTLLAPLNSVFK_vs_TENX_LNWEAPPGAFDSFLLR
 52 & 141
0.030
0.617





C1QB_VPGLYYFTYHASSR_vs_IGF2_GIVEECCFR
 55 & 103
0.017
0.628





C1QB_VPGLYYFTYHASSR_vs_TENX_LNWEAPPGAFDSFLLR
 55 & 141
0.049
0.606





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
 57 & 78
0.024
0.622





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
 57 & 79
0.013
0.634





CATD_VGFAEAAR_vs_IBP3_FLNVLSPR
 57 & 99
0.032
0.616





CATD_VGFAEAAR_vs_IBP3_YGQPLPGYTTK
 57 & 100
0.022
0.623





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
 57 & 103
0.010
0.639





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
 57 & 120
0.022
0.623





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
 57 & 126
0.042
0.609





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.041
0.610





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.011
0.637





CATD_VGFAEAAR_vs_TENX_LSQLSVTDVTTSSLR
 57 & 142
0.022
0.623





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
 58 & 78
0.020
0.625





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
 58 & 79
0.009
0.639





CATD_VSTLPAITLK_vs_IBP3_FLNVLSPR
 58 & 99
0.015
0.631





CATD_VSTLPAITLK_vs_IBP3_YGQPLPGYTTK
 58 & 100
0.010
0.638





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
 58 & 103
0.005
0.652





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
 58 & 120
0.026
0.620





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
 58 & 126
0.021
0.624





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
 58 & 18
0.023
0.622





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.007
0.646





CATD_VSTLPAITLK_vs_TENX_LSQLSVTDVTTSSLR
 58 & 142
0.017
0.628





CBPN_EALIQFLEQVHQGIK_vs_CRIS3_YEDLYSNCK
 59 & 79
0.035
0.614





CBPN_EALIQFLEQVHQGIK_vs_IBP3_YGQPLPGYTTK
 59 & 100
0.035
0.613





CBPN_EALIQFLEQVHQGIK_vs_IGF2_GIVEECCFR
 59 & 103
0.029
0.617





CBPN_EALIQFLEQVHQGIK_vs_LYAM1_SYYWIGIR
 59 & 120
0.021
0.624





CBPN_EALIQFLEQVHQGIK_vs_SHBG_IALGGLLFPASNLR
 59 & 18
0.032
0.615





CBPN_EALIQFLEQVHQGIK_vs_TENX_LNWEAPPGAFDSFLLR
 59 & 141
0.049
0.606





CBPN_NNANGVDLNR_vs_CRIS3_YEDLYSNCK
 60 & 79
0.027
0.619





CBPN_NNANGVDLNR_vs_IBP3_YGQPLPGYTTK
 60 & 100
0.021
0.624





CBPN_NNANGVDLNR_vs_IGF2_GIVEECCFR
 60 & 103
0.008
0.642





CBPN_NNANGVDLNR_vs_LYAM1_SYYWIGIR
 60 & 120
0.019
0.626





CBPN_NNANGVDLNR_vs_SHBG_IALGGLLFPASNLR
 60 & 18
0.033
0.615





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_YEDLYSNCK
 61 & 79
0.028
0.618





CD14_LTVGAAQVPAQLLVGALR_vs_IBP3_FLNVLSPR
 61 & 99
0.037
0.612





CD14_LTVGAAQVPAQLLVGALR_vs_IBP3_YGQPLPGYTTK
 61 & 100
0.028
0.618





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
 61 & 103
0.007
0.644





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.018
0.627





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.050
0.606





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.047
0.607





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LNWEAPPGAFDSFLLR
 61 & 141
0.032
0.615





CD14_SWLAELQQWLKPGLK_vs_IGF2_GIVEECCFR
 62 & 103
0.027
0.619





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.030
0.617





CFAB_YGLVTYATYPK_vs_CRIS3_YEDLYSNCK
 64 & 79
0.033
0.615





CFAB_YGLVTYATYPK_vs_IBP3_FLNVLSPR
 64 & 99
0.043
0.609





CFAB_YGLVTYATYPK_vs_IBP3_YGQPLPGYTTK
 64 & 100
0.013
0.633





CFAB_YGLVTYATYPK_vs_IGF2_GIVEECCFR
 64 & 103
0.005
0.650





CFAB_YGLVTYATYPK_vs_LYAM1_SYYWIGIR
 64 & 120
0.020
0.625





CFAB_YGLVTYATYPK_vs_SHBG_IALGGLLFPASNLR
 64 & 18
0.041
0.610





CLUS_ASSIIDELFQDR_vs_CRIS3_YEDLYSNCK
 67 & 79
0.030
0.617





CLUS_ASSIIDELFQDR_vs_IBP3_YGQPLPGYTTK
 67 & 100
0.039
0.611





CLUS_ASSIIDELFQDR_vs_IGF2_GIVEECCFR
 67 & 103
0.017
0.629





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_YEDLYSNCK
 68 & 79
0.044
0.608





CLUS_LFDSDPITVTVPVEVSR_vs_IGF2_GIVEECCFR
 68 & 103
0.046
0.607





CO5_TLLPVSKPEIR_vs_CRIS3_AVSPPAR
 70 & 78
0.047
0.607





CO5_TLLPVSKPEIR_vs_CRIS3_YEDLYSNCK
 70 & 79
0.023
0.622





CO5_TLLPVSKPEIR_vs_IBP3_YGQPLPGYTTK
 70 & 100
0.043
0.609





CO5_TLLPVSKPEIR_vs_IGF2_GIVEECCFR
 70 & 103
0.014
0.632





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.019
0.626





CO5_TLLPVSKPEIR_vs_PGRP2_AGLLRPDYALLGHR
 70 & 126
0.042
0.609





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.032
0.615





CO5_TLLPVSKPEIR_vs_TENX_LNWEAPPGAFDSFLLR
 70 & 141
0.046
0.607





CO5_VFQFLEK_vs_CRIS3_YEDLYSNCK
 71 & 79
0.036
0.613





CO5_VFQFLEK_vs_IGF2_GIVEECCFR
 71 & 103
0.030
0.617





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.022
0.623





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
 71 & 18
0.047
0.607





CO6_ALNHLPLEYNSALYSR_vs_IGF2_GIVEECCFR
 72 & 103
0.037
0.612





CO8A_SLLQPNK_vs_ALS_IRPHTFTGLSGLR
 74 & 40
0.043
0.609





CO8A_SLLQPNK_vs_CRIS3_YEDLYSNCK
 74 & 79
0.015
0.631





CO8A_SLLQPNK_vs_IBP3_FLNVLSPR
 74 & 99
0.024
0.622





CO8A_SLLQPNK_vs_IBP3_YGQPLPGYTTK
 74 & 100
0.009
0.640





CO8A_SLLQPNK_vs_IGF2_GIVEECCFR
 74 & 103
0.002
0.663





CO8A_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.021
0.624





CO8A_SLLQPNK_vs_PGRP2_AGLLRPDYALLGHR
 74 & 126
0.036
0.613





CO8A_SLLQPNK_vs_SHBG_IALGGLLFPASNLR
 74 & 18
0.028
0.618





CO8A_SLLQPNK_vs_TENX_LNWEAPPGAFDSFLLR
 74 & 141
0.015
0.630





CO8A_SLLQPNK_vs_TENX_LSQLSVTDVTTSSLR
 74 & 142
0.020
0.625





CO8B_QALEEFQK_vs_ALS_IRPHTFTGLSGLR
 76 & 40
0.014
0.633





CO8B_QALEEFQK_vs_CRIS3_AVSPPAR
 76 & 78
0.028
0.618





CO8B_QALEEFQK_vs_CRIS3_YEDLYSNCK
 76 & 79
0.013
0.634





CO8B_QALEEFQK_vs_IBP3_FLNVLSPR
 76 & 99
0.012
0.635





CO8B_QALEEFQK_vs_IBP3_YGQPLPGYTTK
 76 & 100
0.007
0.645





CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
 76 & 103
0.001
0.676





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
 76 & 120
0.012
0.635





CO8B_QALEEFQK_vs_PGRP2_AGLLRPDYALLGHR
 76 & 126
0.025
0.620





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
 76 & 134
0.027
0.619





CO8B_QALEEFQK_vs_SHBG_IALGGLLFPASNLR
 76 & 18
0.027
0.619





CO8B_QALEEFQK_vs_SPRL1_VLTHSELAPLR
 76 & 140
0.041
0.610





CO8B_QALEEFQK_vs_TENX_LNWEAPPGAFDSFLLR
 76 & 141
0.008
0.643





CO8B_QALEEFQK_vs_TENX_LSQLSVTDVTTSSLR
 76 & 142
0.007
0.645





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_ALS_IRPHTFTGLSGLR
 82 & 40
0.037
0.612





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_C163A_INPASLDK
 82 & 54
0.043
0.609





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_CRIS3_AVSPPAR
 82 & 78
0.031
0.616





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_CRIS3_YEDLYSNCK
 82 & 79
0.021
0.624





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IBP3_FLNVLSPR
 82 & 99
0.021
0.624





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IBP3_YGQPLPGYTTK
 82 & 100
0.013
0.634





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IGF2_GIVEECCFR
 82 & 103
0.007
0.644





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_ITIH4_ILDDLSPR
 82 & 112
0.028
0.618





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_LYAM1_SYYWIGIR
 82 & 120
0.006
0.648





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PGRP2_AGLLRPDYALLGHR
 82 & 126
0.017
0.628





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 82 & 135
0.030
0.617





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_IALGGLLFPASNLR
 82 & 18
0.005
0.652





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SOM2.CSH_SVEGSCGF
 82 & 139
0.029
0.617





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_TENX_LNWEAPPGAFDSFLLR
 82 & 141
0.030
0.617





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_TENX_LSQLSVTDVTTSSLR
 82 & 142
0.048
0.606





ENPP2_TYLHTYESEI_vs_C163A_INPASLDK
 83 & 54
0.047
0.607





ENPP2_TYLHTYESEI_vs_CRIS3_AVSPPAR
 83 & 78
0.050
0.606





ENPP2_TYLHTYESEI_vs_CRIS3_YEDLYSNCK
 83 & 79
0.029
0.618





ENPP2_TYLHTYESEI_vs_IBP3_FLNVLSPR
 83 & 99
0.032
0.615





ENPP2_TYLHTYESEI_vs_IBP3_YGQPLPGYTTK
 83 & 100
0.022
0.623





ENPP2_TYLHTYESEI_vs_IGF2_GIVEECCFR
 83 & 103
0.014
0.632





ENPP2_TYLHTYESEI_vs_LYAM1_SYYWIGIR
 83 & 120
0.011
0.637





ENPP2_TYLHTYESEI_vs_PGRP2_AGLLRPDYALLGHR
 83 & 126
0.036
0.613





ENPP2_TYLHTYESEI_vs_SHBG_IALGGLLFPASNLR
 83 & 18
0.010
0.638





ENPP2_TYLHTYESEI_vs_SOM2.CSH_SVEGSCGF
 83 & 139
0.042
0.610





ENPP2_TYLHTYESEI_vs_TENX_LNWEAPPGAFDSFLLR
 83 & 141
0.038
0.612





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
 84 & 79
0.029
0.617





F13B_GDTYPAELYITGSILR_vs_IBP3_YGQPLPGYTTK
 84 & 100
0.040
0.610





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
 84 & 103
0.018
0.628





FETUA_FSVVYAK_vs_CRIS3_AVSPPAR
 88 & 78
0.039
0.611





FETUA_FSVVYAK_vs_CRIS3_YEDLYSNCK
 88 & 79
0.015
0.631





FETUA_FSVVYAK_vs_IBP3_FLNVLSPR
 88 & 99
0.033
0.615





FETUA_FSVVYAK_vs_IBP3_YGQPLPGYTTK
 88 & 100
0.013
0.633





FETUA_FSVVYAK_vs_IGF2_GIVEECCFR
 88 & 103
0.002
0.664





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
 88 & 120
0.038
0.612





FETUA_FSVVYAK_vs_TENX_LNWEAPPGAFDSFLLR
 88 & 141
0.049
0.606





FETUA_HTLNQIDEVK_vs_CRIS3_YEDLYSNCK
 89 & 79
0.027
0.619





FETUA_HTLNQIDEVK_vs_IBP3_YGQPLPGYTTK
 89 & 100
0.024
0.621





FETUA_HTLNQIDEVK_vs_IGF2_GIVEECCFR
 89 & 103
0.005
0.652





FETUA_HTLNQIDEVK_vs_LYAM1_SYYWIGIR
 89 & 120
0.048
0.606





FETUA_HTLNQIDEVK_vs_SHBG_IALGGLLFPASNLR
 89 & 18
0.042
0.610





FETUA_HTLNQIDEVK_vs_TENX_LNWEAPPGAFDSFLLR
 89 & 141
0.035
0.613





HABP2_FLNWIK_vs_IBP3_YGQPLPGYTTK
 92 & 100
0.041
0.610





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.022
0.623





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.046
0.607





HEMO_NFPSPVDAAFR_vs_CRIS3_AVSPPAR
 93 & 78
0.044
0.608





HEMO_NFPSPVDAAFR_vs_CRIS3_YEDLYSNCK
 93 & 79
0.024
0.621





HEMO_NFPSPVDAAFR_vs_IBP3_YGQPLPGYTTK
 93 & 100
0.041
0.610





HEMO_NFPSPVDAAFR_vs_IGF2_GIVEECCFR
 93 & 103
0.013
0.633





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
 93 & 120
0.032
0.615





HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPASNLR
 93 & 18
0.028
0.618





HLACI_WAAVVVPSGEEQR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 95 & 135
0.037
0.612





IBP4_QCHPALDGQR_vs_ALS_IRPHTFTGLSGLR
  2 & 40
0.009
0.641





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.001
0.682





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.000
0.695





IBP4_QCHPALDGQR_vs_CSH_AHQLAIDTYQEFEETYIPK
  2 & 80
0.031
0.616





IBP4_QCHPALDGQR_vs_IBP2_LIQGAPTIR
  2 & 98
0.046
0.607





IBP4_QCHPALDGQR_vs_IBP3_FLNVLSPR
  2 & 99
0.002
0.663





IBP4_QCHPALDGQR_vs_IBP3_YGQPLPGYTTK
  2 & 100
0.001
0.684





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.000
0.708





IBP4_QCHPALDGQR_vs_ITIH4_ILDDLSPR
  2 & 112
0.004
0.657





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.000
0.707





IBP4_QCHPALDGQR_vs_NCAM1_GLGEISAASEFK
  2 & 121
0.025
0.620





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
  2 & 126
0.001
0.687





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.002
0.663





IBP4_QCHPALDGQR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
  2 & 135
0.040
0.610





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.001
0.680





IBP4_QCHPALDGQR_vs_SOM2.CSH_SVEGSCGF
  2 & 139
0.014
0.632





IBP4_QCHPALDGQR_vs_SPRL1_VLTHSELAPLR
  2 & 140
0.007
0.644





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFDSFLLR
  2 & 141
0.001
0.675





IBP4_QCHPALDGQR_vs_TENX_LSQLSVTDVTTSSLR
  2 & 142
0.009
0.641





IBP4_QCHPALDGQR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
  2 & 144
0.002
0.663





IBP4_QCHPALDGQR_vs_VTDB_ELPEHTVK
  2 & 147
0.003
0.660





INHBC_LDFHFSSDR_vs_ALS_IRPHTFTGLSGLR
107 & 40
0.004
0.654





INHBC_LDFHFSSDR_vs_CRIS3_AVSPPAR
107 & 78
0.012
0.635





INHBC_LDFHFSSDR_vs_CRIS3_YEDLYSNCK
107 & 79
0.006
0.649





INHBC_LDFHFSSDR_vs_CSH_AHQLAIDTYQEFEETYIPK
107 & 80
0.048
0.606





INHBC_LDFHFSSDR_vs_IBP3_FLNVLSPR
107 & 99
0.001
0.673





INHBC_LDFHFSSDR_vs_IBP3_YGQPLPGYTTK
107 & 100
0.001
0.685





INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 & 103
0.000
0.704





INHBC_LDFHFSSDR_vs_ITIH4_ILDDLSPR
107 & 112
0.014
0.633





INHBC_LDFHFSSDR_vs_LYAM1_SYYWIGIR
107 & 120
0.005
0.649





INHBC_LDFHFSSDR_vs_NCAM1_GLGEISAASEFK
107 & 121
0.033
0.614





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.005
0.650





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.005
0.651





INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNLR
107 & 18
0.003
0.657





INHBC_LDFHFSSDR_vs_SOM2.CSH_SVEGSCGF
107 & 139
0.020
0.625





INHBC_LDFHFSSDR_vs_SPRL1_VLTHSELAPLR
107 & 140
0.013
0.633





INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDSFLLR
107 & 141
0.001
0.681





INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSSLR
107 & 142
0.002
0.665





INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
107 & 144
0.018
0.627





INHBC_LDFHFSSDR_vs_VTDB_ELPEHTVK
107 & 147
0.004
0.653





ITIH3_ALDLSLK_vs_CRIS3_AVSPPAR
111 & 78
0.019
0.626





ITIH3_ALDLSLK_vs_CRIS3_YEDLYSNCK
111 & 79
0.012
0.634





ITIH3_ALDLSLK_vs_IGF2_GIVEECCFR
111 & 103
0.041
0.610





ITIH3_ALDLSLK_vs_LYAM1_SYYWIGIR
111 & 120
0.013
0.633





ITIH3_ALDLSLK_vs_PGRP2_AGLLRPDYALLGHR
111 & 126
0.027
0.619





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.015
0.631





KNG1_DIPTNSPELEETLTHTITK_vs_CRIS3_AVSPPAR
116 & 78
0.043
0.609





KNG1_DIPTNSPELEETLTHTITK_vs_CRIS3_YEDLYSNCK
116 & 79
0.017
0.628





KNG1_DIPTNSPELEETLTHTITK_vs_IGF2_GIVEECCFR
116 & 103
0.013
0.634





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.015
0.631





KNG1_QVVAGLNFR_vs_CRIS3_AVSPPAR
117 & 78
0.032
0.615





KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.016
0.630





KNG1_QVVAGLNFR_vs_IBP3_YGQPLPGYTTK
117 & 100
0.019
0.626





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.007
0.645





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.008
0.642





KNG1_QVVAGLNFR_vs_PGRP2_AGLLRPDYALLGHR
117 & 126
0.045
0.608





LBP_ITGFLKPGK_vs_CRIS3_AVSPPAR
118 & 78
0.022
0.623





LBP_ITGFLKPGK_vs_CRIS3_YEDLYSNCK
118 & 79
0.011
0.637





LBP_ITGFLKPGK_vs_IBP3_YGQPLPGYTTK
118 & 100
0.032
0.615





LBP_ITGFLKPGK_vs_IGF2_GIVEECCFR
118 & 103
0.010
0.639





LBP_ITGFLKPGK_vs_LYAM1_SYYWIGIR
118 & 120
0.016
0.630





LBP_ITGFLKPGK_vs_PGRP2_AGLLRPDYALLGHR
118 & 126
0.025
0.620





LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNPL
118 & 134
0.036
0.613





LBP_ITGFLKPGK_vs_SHBG_IALGGLLFPASNLR
118 & 18
0.012
0.635





LBP_ITGFLKPGK_vs_SOM2.CSH_SVEGSCGF
118 & 139
0.026
0.619





LBP_ITGFLKPGK_vs_TENX_LNWEAPPGAFDSFLLR
118 & 141
0.047
0.607





LBP_ITLPDFTGDLR_vs_ALS_IRPHTFTGLSGLR
119 & 40
0.047
0.607





LBP_ITLPDFTGDLR_vs_C163A_INPASLDK
119 & 54
0.031
0.616





LBP_ITLPDFTGDLR_vs_CRIS3_AVSPPAR
119 & 78
0.006
0.648





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.003
0.660





LBP_ITLPDFTGDLR_vs_IBP2_LIQGAPTIR
119 & 98
0.048
0.606





LBP_ITLPDFTGDLR_vs_IBP3_FLNVLSPR
119 & 99
0.018
0.628





LBP_ITLPDFTGDLR_vs_IBP3_YGQPLPGYTTK
119 & 100
0.007
0.645





LBP_ITLPDFTGDLR_vs_IGF2_GIVEECCFR
119 & 103
0.003
0.658





LBP_ITLPDFTGDLR_vs_ITIH4_ILDDLSPR
119 & 112
0.022
0.623





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.003
0.657





LBP_ITLPDFTGDLR_vs_NCAM1_GLGEISAASEFK
119 & 121
0.049
0.606





LBP_ITLPDFTGDLR_vs_PGRP2_AGLLRPDYALLGHR
119 & 126
0.005
0.651





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGLNPL
119 & 134
0.015
0.631





LBP_ITLPDFTGDLR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
119 & 135
0.039
0.611





LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.004
0.654





LBP_ITLPDFTGDLR_vs_SOM2.CSH_SVEGSCGF
119 & 139
0.010
0.639





LBP_ITLPDFTGDLR_vs_SPRL1_VLTHSELAPLR
119 & 140
0.030
0.617





LBP_ITLPDFTGDLR_vs_TENX_LNWEAPPGAFDSFLLR
119 & 141
0.011
0.637





LBP_ITLPDFTGDLR_vs_TENX_LSQLSVTDVTTSSLR
119 & 142
0.021
0.624





LBP_ITLPDFTGDLR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
119 & 144
0.049
0.606





LBP_ITLPDFTGDLR_vs_VTDB_ELPEHTVK
119 & 147
0.022
0.623





PEDF_LQSLFDSPDFSK_vs_CRIS3_AVSPPAR
124 & 78
0.037
0.612





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.019
0.626





PEDF_LQSLFDSPDFSK_vs_IGF2_GIVEECCFR
124 & 103
0.037
0.612





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.025
0.620





PEDF_LQSLFDSPDFSK_vs_TENX_LNWEAPPGAFDSFLLR
124 & 141
0.033
0.615





PEDF_TVQAVLTVPK_vs_CRIS3_AVSPPAR
125 & 78
0.048
0.606





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.021
0.624





PEDF_TVQAVLTVPK_vs_IBP3_YGQPLPGYTTK
125 & 100
0.049
0.606





PEDF_TVQAVLTVPK_vs_IGF2_GIVEECCFR
125 & 103
0.025
0.620





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.038
0.611





PEDF_TVQAVLTVPK_vs_TENX_LNWEAPPGAFDSFLLR
125 & 141
0.049
0.606





PRDX2_GLFIIDGK_vs_CRIS3_YEDLYSNCK
128 & 79
0.049
0.606





PTGDS_GPGEDFR_vs_CRIS3_AVSPPAR
137 & 78
0.015
0.631





PTGDS_GPGEDFR_vs_CRIS3_YEDLYSNCK
137 & 79
0.007
0.646





PTGDS_GPGEDFR_vs_IBP3_FLNVLSPR
137 & 99
0.042
0.609





PTGDS_GPGEDFR_vs_IBP3_YGQPLPGYTTK
137 & 100
0.015
0.631





PTGDS_GPGEDFR_vs_IGF2_GIVEECCFR
137 & 103
0.004
0.655





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 & 120
0.019
0.626





PTGDS_GPGEDFR_vs_PGRP2_AGLLRPDYALLGHR
137 & 126
0.033
0.615





PTGDS_GPGEDFR_vs_SHBG_IALGGLLFPASNLR
137 & 18
0.021
0.624





PTGDS_GPGEDFR_vs_TENX_LNWEAPPGAFDSFLLR
137 & 141
0.012
0.636





PTGDS_GPGEDFR_vs_TENX_LSQLSVTDVTTSSLR
137 & 142
0.021
0.624





THBG_AVLHIGEK_vs_CRIS3_YEDLYSNCK
143 & 79
0.028
0.618





THBG_AVLHIGEK_vs_IGF2_GIVEECCFR
143 & 103
0.026
0.620





THBG_AVLHIGEK_vs_LYAM1_SYYWIGIR
143 & 120
0.025
0.620





THBG_AVLHIGEK_vs_SHBG_IALGGLLFPASNLR
143 & 18
0.047
0.607





VTNC_GQYCYELDEK_vs_CRIS3_AVSPPAR
149 & 78
0.032
0.616





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.016
0.630





VTNC_GQYCYELDEK_vs_IBP3_FLNVLSPR
149 & 99
0.032
0.616





VTNC_GQYCYELDEK_vs_IBP3_YGQPLPGYTTK
149 & 100
0.006
0.647





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.004
0.656





VTNC_GQYCYELDEK_vs_ITIH4_ILDDLSPR
149 & 112
0.030
0.616





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.008
0.643





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.033
0.614





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.036
0.613





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.007
0.645





VTNC_GQYCYELDEK_vs_TENX_LNWEAPPGAFDSFLLR
149 & 141
0.032
0.615





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.043
0.609





VTNC_VDTVDPPYPR_vs_CRIS3_AVSPPAR
150 & 78
0.015
0.630





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.009
0.640





VTNC_VDTVDPPYPR_vs_IBP3_FLNVLSPR
150 & 99
0.019
0.626





VTNC_VDTVDPPYPR_vs_IBP3_YGQPLPGYTTK
150 & 100
0.005
0.652





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.004
0.655





VTNC_VDTVDPPYPR_vs_ITIH4_ILDDLSPR
150 & 112
0.037
0.612





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.005
0.651





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126
0.022
0.623





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.039
0.611





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.005
0.650





VTNC_VDTVDPPYPR_vs_TENX_LNWEAPPGAFDSFLLR
150 & 141
0.026
0.620





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.030
0.616
















TABLE 57







Reversal Classification Performance, weeks 19, 20 and 21


Reversal AUROC for gestational weeks 19 0/7 through 21 6/7 using a case vs 


control cut-off of <35 0/7 vs >=35 0/7 weeks, without BMI stratification.










Reversal
SEQ ID NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.043
0.639





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.021
0.659





AFAM_DADPDTFFAK_vs_LYAM1_SYYWIGIR
 37 & 120
0.018
0.662





AFAM_DADPDTFFAK_vs_PGRP2_AGLLRPDYALLGHR
 37 & 126
0.018
0.663





AFAM_DADPDTFFAK_vs_SHBG_IALGGLLFPASNLR
 37 & 18
0.018
0.663





AFAM_HFQNLGK_vs_IBP1_VVESLAK
 38 & 97
0.036
0.648





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
 38 & 120
0.010
0.677





AFAM_HFQNLGK_vs_PGRP2_AGLLRPDYALLGHR
 38 & 126
0.017
0.664





AFAM_HFQNLGK_vs_SHBG_IALGGLLFPASNLR
 38 & 18
0.014
0.670





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.030
0.649





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.013
0.671





APOC3_GWVTDGFSSLK_vs_ALS_IRPHTFTGLSGLR
 47 & 40
0.040
0.641





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.038
0.643





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.038
0.643





APOC3_GWVTDGFSSLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 47 & 80
0.040
0.641





APOC3_GWVTDGFSSLK_vs_IBP1_VVESLAK
 47 & 97
0.023
0.656





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
 47 & 100
0.037
0.644





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.048
0.636





APOC3_GWVTDGFSSLK_vs_ITIH4_ILDDLSPR
 47 & 112
0.032
0.647





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.005
0.693





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.011
0.675





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.011
0.674





APOC3_GWVTDGFSSLK_vs_SOM2.CSH_SVEGSCGF
 47 & 139
0.038
0.643





APOC3_GWVTDGFSSLK_vs_SPRL1_VLTHSELAPLR
 47 & 140
0.027
0.653





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.027
0.652





APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
 47 & 147
0.026
0.653





APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
 48 & 79
0.035
0.645





APOH_ATVVYQGER_vs_IBP1_VVESLAK
 48 & 97
0.021
0.659





APOH_ATVVYQGER_vs_ITIH4_ILDDLSPR
 48 & 112
0.025
0.655





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.002
0.712





APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGHR
 48 & 126
0.002
0.717





APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLNPL
 48 & 134
0.020
0.661





APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
 48 & 18
0.003
0.704





APOH_ATVVYQGER_vs_SPRL1_VLTHSELAPLR
 48 & 140
0.011
0.674





APOH_ATVVYQGER_vs_VTDB_ELPEHTVK
 48 & 147
0.007
0.684





B2MG_VEHSDLSFSK_vs_LYAM1_SYYWIGIR
 50 & 120
0.007
0.687





B2MG_VEHSDLSFSK_vs_PGRP2_AGLLRPDYALLGHR
 50 & 126
0.044
0.639





B2MG_VEHSDLSFSK_vs_SHBG_IALGGLLFPASNLR
 50 & 18
0.012
0.673





B2MG_VNHVTLSQPK_vs_IBP1_VVESLAK
 51 & 97
0.046
0.638





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.002
0.717





B2MG_VNHVTLSQPK_vs_PGRP2_AGLLRPDYALLGHR
 51 & 126
0.009
0.681





B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
 51 & 18
0.005
0.692





B2MG_VNHVTLSQPK_vs_SPRL1_VLTHSELAPLR
 51 & 140
0.023
0.656





BGH3_LTLLAPLNSVFK_vs_LYAM1_SYYWIGIR
 52 & 120
0.039
0.642





BGH3_LTLLAPLNSVFK_vs_SHBG_IALGGLLFPASNLR
 52 & 18
0.049
0.635





CAH1_GGPFSDSYR_vs_IBP1_VVESLAK
 56 & 97
0.033
0.647





CAH1_GGPFSDSYR_vs_LYAM1_SYYWIGIR
 56 & 120
0.015
0.668





CAH1_GGPFSDSYR_vs_PGRP2_AGLLRPDYALLGHR
 56 & 126
0.020
0.661





CAH1_GGPFSDSYR_vs_SHBG_IALGGLLFPASNLR
 56 & 18
0.008
0.682





CATD_VGFAEAAR_vs_ALS_IRPHTFTGLSGLR
 57 & 40
0.001
0.720





CATD_VGFAEAAR_vs_C163A_INPASLDK
 57 & 54
0.000
0.772





CATD_VGFAEAAR_vs_CHL1_VIAVNEVGR
 57 & 66
0.045
0.638





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
 57 & 78
0.004
0.700





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
 57 & 79
0.004
0.700





CATD_VGFAEAAR_vs_CSH_AHQLAIDTYQEFEETYIPK
 57 & 80
0.001
0.739





CATD_VGFAEAAR_vs_CSH_ISLLLIESWLEPVR
 57 & 81
0.001
0.733





CATD_VGFAEAAR_vs_FBLN1_TGYYFDGISR
 57 & 86
0.001
0.728





CATD_VGFAEAAR_vs_IBP1_VVESLAK
 57 & 97
0.003
0.702





CATD_VGFAEAAR_vs_IBP2_LIQGAPTIR
 57 & 98
0.010
0.678





CATD_VGFAEAAR_vs_IBP3_FLNVLSPR
 57 & 99
0.005
0.694





CATD_VGFAEAAR_vs_IBP3_YGQPLPGYTTK
 57 & 100
0.002
0.708





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
 57 & 103
0.001
0.721





CATD_VGFAEAAR_vs_ITIH4_ILDDLSPR
 57 & 112
0.001
0.739





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
 57 & 120
0.000
0.778





CATD_VGFAEAAR_vs_NCAM1_GLGEISAASEFK
 57 & 121
0.004
0.701





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
 57 & 126
0.000
0.773





CATD_VGFAEAAR_vs_PRG2_WNFAYWAAHQPWSR
 57 & 129
0.010
0.677





CATD_VGFAEAAR_vs_PSG1_FQLPGQK
 57 & 131
0.001
0.719





CATD_VGFAEAAR_vs_PSG3_VSAPSGTGHLPGLNPL
 57 & 134
0.001
0.729





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.000
0.749





CATD_VGFAEAAR_vs_SOM2.CSH_NYGLLYCFR
 57 & 138
0.001
0.723





CATD_VGFAEAAR_vs_SOM2.CSH_SVEGSCGF
 57 & 139
0.001
0.722





CATD_VGFAEAAR_vs_SPRL1_VLTHSELAPLR
 57 & 140
0.000
0.762





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.000
0.757





CATD_VGFAEAAR_vs_TENX_LSQLSVTDVTTSSLR
 57 & 142
0.000
0.744





CATD_VGFAEAAR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 57 & 144
0.000
0.743





CATD_VGFAEAAR_vs_VTDB_ELPEHTVK
 57 & 147
0.001
0.739





CATD_VSTLPAITLK_vs_ALS_IRPHTFTGLSGLR
 58 & 40
0.001
0.728





CATD_VSTLPAITLK_vs_C163A_INPASLDK
 58 & 54
0.001
0.725





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
 58 & 78
0.004
0.698





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
 58 & 79
0.004
0.700





CATD_VSTLPAITLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 58 & 80
0.001
0.724





CATD_VSTLPAITLK_vs_CSH_ISLLLIESWLEPVR
 58 & 81
0.002
0.716





CATD_VSTLPAITLK_vs_FBLN1_TGYYFDGISR
 58 & 86
0.001
0.728





CATD_VSTLPAITLK_vs_IBP1_VVESLAK
 58 & 97
0.004
0.700





CATD_VSTLPAITLK_vs_IBP2_LIQGAPTIR
 58 & 98
0.009
0.680





CATD_VSTLPAITLK_vs_IBP3_FLNVLSPR
 58 & 99
0.003
0.707





CATD_VSTLPAITLK_vs_IBP3_YGQPLPGYTTK
 58 & 100
0.001
0.719





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
 58 & 103
0.001
0.732





CATD_VSTLPAITLK_vs_ITIH4_ILDDLSPR
 58 & 112
0.001
0.724





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
 58 & 120
0.000
0.771





CATD_VSTLPAITLK_vs_NCAM1_GLGEISAASEFK
 58 & 121
0.003
0.704





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
 58 & 126
0.000
0.775





CATD_VSTLPAITLK_vs_PRG2_WNFAYWAAHQPWSR
 58 & 129
0.028
0.652





CATD_VSTLPAITLK_vs_PSG1_FQLPGQK
 58 & 131
0.005
0.693





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
 58 & 134
0.001
0.737





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
 58 & 18
0.000
0.755





CATD_VSTLPAITLK_vs_SOM2.CSH_NYGLLYCFR
 58 & 138
0.003
0.707





CATD_VSTLPAITLK_vs_SOM2.CSH_SVEGSCGF
 58 & 139
0.004
0.696





CATD_VSTLPAITLK_vs_SPRL1_VLTHSELAPLR
 58 & 140
0.000
0.753





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.000
0.765





CATD_VSTLPAITLK_vs_TENX_LSQLSVTDVTTSSLR
 58 & 142
0.000
0.742





CATD_VSTLPAITLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 58 & 144
0.001
0.729





CATD_VSTLPAITLK_vs_VTDB_ELPEHTVK
 58 & 147
0.000
0.745





CBPN_EALIQFLEQVHQGIK_vs_LYAM1_SYYWIGIR
 59 & 120
0.042
0.640





CBPN_EALIQFLEQVHQGIK_vs_SHBG_IALGGLLFPASNLR
 59 & 18
0.011
0.674





CBPN_NNANGVDLNR_vs_LYAM1_SYYWIGIR
 60 & 120
0.020
0.660





CBPN_NNANGVDLNR_vs_SHBG_IALGGLLFPASNLR
 60 & 18
0.019
0.661





CBPN_NNANGVDLNR_vs_SPRL1_VLTHSELAPLR
 60 & 140
0.016
0.665





CD14_LTVGAAQVPAQLLVGALR_vs_IBP1_VVESLAK
 61 & 97
0.028
0.651





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.002
0.717





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.004
0.699





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.003
0.703





CD14_LTVGAAQVPAQLLVGALR_vs_SOM2.CSH_SVEGSCGF
 61 & 139
0.049
0.635





CD14_LTVGAAQVPAQLLVGALR_vs_SPRL1_VLTHSELAPLR
 61 & 140
0.020
0.660





CD14_LTVGAAQVPAQLLVGALR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 61 & 144
0.031
0.648





CD14_LTVGAAQVPAQLLVGALR_vs_VTDB_ELPEHTVK
 61 & 147
0.009
0.680





CD14_SWLAELQQWLKPGLK_vs_IBP1_VVESLAK
 62 & 97
0.029
0.650





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.002
0.709





CD14_SWLAELQQWLKPGLK_vs_PGRP2_AGLLRPDYALLGHR
 62 & 126
0.005
0.692





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
 62 & 18
0.005
0.695





CD14_SWLAELQQWLKPGLK_vs_SPRL1_VLTHSELAPLR
 62 & 140
0.025
0.654





CD14_SWLAELQQWLKPGLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 62 & 144
0.028
0.652





CD14_SWLAELQQWLKPGLK_vs_VTDB_ELPEHTVK
 62 & 147
0.007
0.684





CLUS_ASSIIDELFQDR_vs_IBP1_VVESLAK
 67 & 97
0.048
0.636





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.007
0.686





CLUS_ASSIIDELFQDR_vs_PGRP2_AGLLRPDYALLGHR
 67 & 126
0.016
0.665





CLUS_ASSIIDELFQDR_vs_SHBG_IALGGLLFPASNLR
 67 & 18
0.006
0.691





CLUS_ASSIIDELFQDR_vs_VTDB_ELPEHTVK
 67 & 147
0.036
0.644





CLUS_LFDSDPITVTVPVEVSR_vs_IBP1_VVESLAK
 68 & 97
0.047
0.637





CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGIR
 68 & 120
0.006
0.688





CLUS_LFDSDPITVTVPVEVSR_vs_PGRP2_AGLLRPDYALLGHR
 68 & 126
0.023
0.656





CLUS_LFDSDPITVTVPVEVSR_vs_SHBG_IALGGLLFPASNLR
 68 & 18
0.007
0.687





CLUS_LFDSDPITVTVPVEVSR_vs_VTDB_ELPEHTVK
 68 & 147
0.020
0.660





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.012
0.674





CO5_TLLPVSKPEIR_vs_PGRP2_AGLLRPDYALLGHR
 70 & 126
0.043
0.639





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.016
0.666





CO5_TLLPVSKPEIR_vs_SPRL1_VLTHSELAPLR
 70 & 140
0.042
0.640





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.025
0.654





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
 71 & 18
0.023
0.656





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGIR
 72 & 120
0.043
0.639





CO6_ALNHLPLEYNSALYSR_vs_SHBG_IALGGLLFPASNLR
 72 & 18
0.027
0.653





CO8A_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.013
0.670





CO8A_SLLQPNK_vs_PGRP2_AGLLRPDYALLGHR
 74 & 126
0.026
0.653





CO8A_SLLQPNK_vs_SHBG_IALGGLLFPASNLR
 74 & 18
0.022
0.658





CO8B_QALEEFQK_vs_IBP1_VVESLAK
 76 & 97
0.044
0.639





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
 76 & 120
0.012
0.673





CO8B_QALEEFQK_vs_PGRP2_AGLLRPDYALLGHR
 76 & 126
0.030
0.649





CO8B_QALEEFQK_vs_SHBG_IALGGLLFPASNLR
 76 & 18
0.024
0.655





CO8B_QALEEFQK_vs_SPRL1_VLTHSELAPLR
 76 & 140
0.040
0.641





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_LYAM1_SYYWIGIR
 82 & 120
0.036
0.644





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_PGRP2_AGLLRPDYALLGHR
 82 & 126
0.037
0.643





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_IALGGLLFPASNLR
 82 & 18
0.029
0.650





ENPP2_TYLHTYESEI_vs_LYAM1_SYYWIGIR
 83 & 120
0.021
0.659





ENPP2_TYLHTYESEI_vs_PGRP2_AGLLRPDYALLGHR
 83 & 126
0.025
0.655





ENPP2_TYLHTYESEI_vs_SHBG_IALGGLLFPASNLR
 83 & 18
0.026
0.653





F13B_GDTYPAELYITGSILR_vs_CRIS3_AVSPPAR
 84 & 78
0.044
0.639





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
 84 & 79
0.039
0.643





F13B_GDTYPAELYITGSILR_vs_IBP1_VVESLAK
 84 & 97
0.033
0.647





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.001
0.732





F13B_GDTYPAELYITGSILR_vs_PGRP2_AGLLRPDYALLGHR
 84 & 126
0.005
0.694





F13B_GDTYPAELYITGSILR_vs_SHBG_IALGGLLFPASNLR
 84 & 18
0.003
0.708





F13B_GDTYPAELYITGSILR_vs_SPRL1_VLTHSELAPLR
 84 & 140
0.007
0.685





F13B_GDTYPAELYITGSILR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 84 & 144
0.046
0.638





F13B_GDTYPAELYITGSILR_vs_VTDB_ELPEHTVK
 84 & 147
0.037
0.644





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
 88 & 120
0.012
0.674





FETUA_FSVVYAK_vs_SHBG_IALGGLLFPASNLR
 88 & 18
0.017
0.664





FETUA_HTLNQIDEVK_vs_LYAM1_SYYWIGIR
 89 & 120
0.023
0.657





FETUA_HTLNQIDEVK_vs_SHBG_IALGGLLFPASNLR
 89 & 18
0.019
0.662





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
 93 & 120
0.014
0.668





HEMO_NFPSPVDAAFR_vs_PGRP2_AGLLRPDYALLGHR
 93 & 126
0.046
0.637





HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPASNLR
 93 & 18
0.008
0.683





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.024
0.655





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.024
0.656





IBP4_QCHPALDGQR_vs_IBP1_VVESLAK
  2 & 97
0.026
0.653





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.002
0.713





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
  2 & 126
0.008
0.683





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.002
0.709





IBP4_QCHPALDGQR_vs_SPRL1_VLTHSELAPLR
  2 & 140
0.015
0.667





IBP6_GAQTLYVPNCDHR_vs_PGRP2_AGLLRPDYALLGHR
101 & 126
0.030
0.650





IBP6_GAQTLYVPNCDHR_vs_SHBG_IALGGLLFPASNLR
101 & 18
0.013
0.671





IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIGIR
102 & 120
0.020
0.660





IBP6_HLDSVLQQLQTEVYR_vs_SHBG_IALGGLLFPASNLR
102 & 18
0.010
0.677





INHBC_LDFHFSSDR_vs_LYAM1_SYYWIGIR
107 & 120
0.046
0.637





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.028
0.652





INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNLR
107 & 18
0.033
0.647





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.026
0.653





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.017
0.665





KNG1_DIPTNSPELEETLTHTITK_vs_SHBG_IALGGLLFPASNLR
116 & 18
0.027
0.653





KNG1_QVVAGLNFR_vs_IBP1_VVESLAK
117 & 97
0.032
0.648





KNG1_QVVAGLNFR_vs_ITIH4_ILDDLSPR
117 & 112
0.028
0.651





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.002
0.711





KNG1_QVVAGLNFR_vs_PGRP2_AGLLRPDYALLGHR
117 & 126
0.010
0.677





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.003
0.703





KNG1_QVVAGLNFR_vs_SPRL1_VLTHSELAPLR
117 & 140
0.019
0.662





PEDF_LQSLFDSPDFSK_vs_IBP1_VVESLAK
124 & 97
0.044
0.639





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.004
0.697





PEDF_LQSLFDSPDFSK_vs_PGRP2_AGLLRPDYALLGHR
124 & 126
0.043
0.640





PEDF_LQSLFDSPDFSK_vs_SHBG_IALGGLLFPASNLR
124 & 18
0.017
0.665





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.003
0.702





PEDF_TVQAVLTVPK_vs_PGRP2_AGLLRPDYALLGHR
125 & 126
0.025
0.654





PEDF_TVQAVLTVPK_vs_SHBG_IALGGLLFPASNLR
125 & 18
0.012
0.673





PEDF_TVQAVLTVPK_vs_SPRL1_VLTHSELAPLR
125 & 140
0.036
0.645





PRDX2_GLFIIDGK_vs_CRIS3_AVSPPAR
128 & 78
0.028
0.651





PRDX2_GLFIIDGK_vs_CRIS3_YEDLYSNCK
128 & 79
0.026
0.653





PRDX2_GLFIIDGK_vs_IBP1_VVESLAK
128 & 97
0.024
0.655





PRDX2_GLFIIDGK_vs_IBP2_LIQGAPTIR
128 & 98
0.040
0.641





PRDX2_GLFIIDGK_vs_LYAM1_SYYWIGIR
128 & 120
0.009
0.681





PRDX2_GLFIIDGK_vs_PGRP2_AGLLRPDYALLGHR
128 & 126
0.009
0.679





PRDX2_GLFIIDGK_vs_SHBG_IALGGLLFPASNLR
128 & 18
0.004
0.697





PRDX2_GLFIIDGK_vs_SPRL1_VLTHSELAPLR
128 & 140
0.042
0.640





PRDX2_GLFIIDGK_vs_TENX_LNWEAPPGAFDSFLLR
128 & 141
0.038
0.643





PRDX2_GLFIIDGK_vs_VTDB_ELPEHTVK
128 & 147
0.041
0.641





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.049
0.635





PTGDS_GPGEDFR_vs_IBP1_VVESLAK
137 & 97
0.039
0.642





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 & 120
0.009
0.681





PTGDS_GPGEDFR_vs_PGRP2_AGLLRPDYALLGHR
137 & 126
0.017
0.665





PTGDS_GPGEDFR_vs_SHBG_IALGGLLFPASNLR
137 & 18
0.010
0.677





PTGDS_GPGEDFR_vs_SOM2.CSH_SVEGSCGF
137 & 139
0.048
0.636





PTGDS_GPGEDFR_vs_SPRL1_VLTHSELAPLR
137 & 140
0.035
0.645





THBG_AVLHIGEK_vs_LYAM1_SYYWIGIR
143 & 120
0.018
0.663





THBG_AVLHIGEK_vs_PGRP2_AGLLRPDYALLGHR
143 & 126
0.025
0.655





THBG_AVLHIGEK_vs_SHBG_IALGGLLFPASNLR
143 & 18
0.023
0.657





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.008
0.684





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.020
0.660





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.012
0.674





VTNC_GQYCYELDEK_vs_SPRL1_VLTHSELAPLR
149 & 140
0.047
0.637





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.008
0.684





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126
0.019
0.661





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.007
0.686





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.030
0.649
















TABLE 58







Reversal Classification Performance, weeks 19, 20 and 21


Reversal AUROC for gestational weeks 19 0/7 through 21 6/7 using   


a case vs control cut-off of <35 0/7 vs >=35 0/7 weeks, with


BMI stratification (>22 <=37).










Reversal
SEQ ID NO:
pval
ROC_AUC





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.025
0.688





A2GL_DLLLPQPDLR_vs_PGRP2_AGLLRPDYALLGHR
 34 & 126
0.029
0.683





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.026
0.687





AFAM_DADPDTFFAK_vs_LYAM1_SYYWIGIR
 37 & 120
0.011
0.714





AFAM_DADPDTFFAK_vs_PGRP2_AGLLRPDYALLGHR
 37 & 126
0.002
0.755





AFAM_DADPDTFFAK_vs_SHBG_IALGGLLFPASNLR
 37 & 18
0.006
0.730





AFAM_DADPDTFFAK_vs_VTDB_ELPEHTVK
 37 & 147
0.024
0.689





AFAM_HFQNLGK_vs_IBP1_VVESLAK
 38 & 97
0.034
0.684





AFAM_HFQNLGK_vs_ITIH4_ILDDLSPR
 38 & 112
0.025
0.688





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
 38 & 120
0.004
0.744





AFAM_HFQNLGK_vs_PGRP2_AGLLRPDYALLGHR
 38 & 126
0.001
0.770





AFAM_HFQNLGK_vs_SHBG_IALGGLLFPASNLR
 38 & 18
0.004
0.738





AFAM_HFQNLGK_vs_SOM2.CSH_SVEGSCGF
 38 & 139
0.023
0.690





AFAM_HFQNLGK_vs_VTDB_ELPEHTVK
 38 & 147
0.009
0.719





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.023
0.690





ANGT_DPTFIPAPIQAK_vs_PGRP2_AGLLRPDYALLGHR
 42 & 126
0.037
0.675





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.006
0.730





APOH_ATVVYQGER_vs_IBP1_VVESLAK
 48 & 97
0.049
0.665





APOH_ATVVYQGER_vs_ITIH4_ILDDLSPR
 48 & 112
0.049
0.665





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.006
0.729





APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGHR
 48 & 126
0.001
0.788





APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
 48 & 18
0.003
0.750





APOH_ATVVYQGER_vs_VTDB_ELPEHTVK
 48 & 147
0.012
0.711





B2MG_VEHSDLSFSK_vs_LYAM1_SYYWIGIR
 50 & 120
0.027
0.686





B2MG_VEHSDLSFSK_vs_SHBG_IALGGLLFPASNLR
 50 & 18
0.027
0.685





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.004
0.740





B2MG_VNHVTLSQPK_vs_PGRP2_AGLLRPDYALLGHR
 51 & 126
0.009
0.718





B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
 51 & 18
0.006
0.731





BGH3_LTLLAPLNSVFK_vs_LYAM1_SYYWIGIR
 52 & 120
0.043
0.670





BGH3_LTLLAPLNSVFK_vs_PGRP2_AGLLRPDYALLGHR
 52 & 126
0.027
0.685





BGH3_LTLLAPLNSVFK_vs_SHBG_IALGGLLFPASNLR
 52 & 18
0.027
0.685





CAH1_GGPFSDSYR_vs_LYAM1_SYYWIGIR
 56 & 120
0.041
0.671





CAH1_GGPFSDSYR_vs_PGRP2_AGLLRPDYALLGHR
 56 & 126
0.041
0.671





CAH1_GGPFSDSYR_vs_SHBG_IALGGLLFPASNLR
 56 & 18
0.013
0.708





CATD_VGFAEAAR_vs_ALS_IRPHTFTGLSGLR
 57 & 40
0.008
0.723





CATD_VGFAEAAR_vs_C163A_INPASLDK
 57 & 54
0.000
0.791





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
 57 & 78
0.010
0.716





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
 57 & 79
0.009
0.717





CATD_VGFAEAAR_vs_CSH_AHQLAIDTYQEFEETYIPK
 57 & 80
0.001
0.773





CATD_VGFAEAAR_vs_CSH_ISLLLIESWLEPVR
 57 & 81
0.001
0.771





CATD_VGFAEAAR_vs_FBLN1_TGYYFDGISR
 57 & 86
0.034
0.677





CATD_VGFAEAAR_vs_IBP1_VVESLAK
 57 & 97
0.012
0.711





CATD_VGFAEAAR_vs_IBP2_LIQGAPTIR
 57 & 98
0.016
0.701





CATD_VGFAEAAR_vs_IBP3_FLNVLSPR
 57 & 99
0.018
0.698





CATD_VGFAEAAR_vs_IBP3_YGQPLPGYTTK
 57 & 100
0.014
0.705





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
 57 & 103
0.012
0.711





CATD_VGFAEAAR_vs_ITIH4_ILDDLSPR
 57 & 112
0.002
0.765





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
 57 & 120
0.000
0.807





CATD_VGFAEAAR_vs_NCAM1_GLGEISAASEFK
 57 & 121
0.014
0.706





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
 57 & 126
0.000
0.811





CATD_VGFAEAAR_vs_PSG1_FQLPGQK
 57 & 131
0.008
0.723





CATD_VGFAEAAR_vs_PSG3_VSAPSGTGHLPGLNPL
 57 & 134
0.014
0.706





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.001
0.787





CATD_VGFAEAAR_vs_SOM2.CSH_NYGLLYCFR
 57 & 138
0.003
0.751





CATD_VGFAEAAR_vs_SOM2.CSH_SVEGSCGF
 57 & 139
0.002
0.753





CATD_VGFAEAAR_vs_SPRL1_VLTHSELAPLR
 57 & 140
0.003
0.746





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.003
0.745





CATD_VGFAEAAR_vs_TENX_LSQLSVTDVTTSSLR
 57 & 142
0.013
0.708





CATD_VGFAEAAR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 57 & 144
0.005
0.735





CATD_VGFAEAAR_vs_VTDB_ELPEHTVK
 57 & 147
0.004
0.743





CATD_VSTLPAITLK_vs_ALS_IRPHTFTGLSGLR
 58 & 40
0.002
0.761





CATD_VSTLPAITLK_vs_C163A_INPASLDK
 58 & 54
0.002
0.758





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
 58 & 78
0.006
0.731





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
 58 & 79
0.004
0.741





CATD_VSTLPAITLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 58 & 80
0.001
0.775





CATD_VSTLPAITLK_vs_CSH_ISLLLIESWLEPVR
 58 & 81
0.001
0.769





CATD_VSTLPAITLK_vs_FBLN1_TGYYFDGISR
 58 & 86
0.022
0.692





CATD_VSTLPAITLK_vs_IBP1_VVESLAK
 58 & 97
0.006
0.730





CATD_VSTLPAITLK_vs_IBP2_LIQGAPTIR
 58 & 98
0.011
0.714





CATD_VSTLPAITLK_vs_IBP3_FLNVLSPR
 58 & 99
0.005
0.733





CATD_VSTLPAITLK_vs_IBP3_YGQPLPGYTTK
 58 & 100
0.006
0.729





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
 58 & 103
0.004
0.744





CATD_VSTLPAITLK_vs_ITIH4_ILDDLSPR
 58 & 112
0.001
0.784





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
 58 & 120
0.000
0.825





CATD_VSTLPAITLK_vs_NCAM1_GLGEISAASEFK
 58 & 121
0.006
0.728





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
 58 & 126
0.000
0.841





CATD_VSTLPAITLK_vs_PSG1_FQLPGQK
 58 & 131
0.016
0.701





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
 58 & 134
0.005
0.734





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
 58 & 18
0.000
0.810





CATD_VSTLPAITLK_vs_SOM2.CSH_NYGLLYCFR
 58 & 138
0.003
0.745





CATD_VSTLPAITLK_vs_SOM2.CSH_SVEGSCGF
 58 & 139
0.004
0.741





CATD_VSTLPAITLK_vs_SPRL1_VLTHSELAPLR
 58 & 140
0.002
0.759





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.001
0.780





CATD_VSTLPAITLK_vs_TENX_LSQLSVTDVTTSSLR
 58 & 142
0.005
0.736





CATD_VSTLPAITLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 58 & 144
0.002
0.753





CATD_VSTLPAITLK_vs_VTDB_ELPEHTVK
 58 & 147
0.001
0.778





CBPN_EALIQFLEQVHQGIK_vs_SHBG_IALGGLLFPASNLR
 59 & 18
0.023
0.690





CBPN_NNANGVDLNR_vs_LYAM1_SYYWIGIR
 60 & 120
0.038
0.674





CBPN_NNANGVDLNR_vs_SHBG_IALGGLLFPASNLR
 60 & 18
0.016
0.702





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.008
0.721





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.005
0.735





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.006
0.731





CD14_LTVGAAQVPAQLLVGALR_vs_VTDB_ELPEHTVK
 61 & 147
0.041
0.671





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.015
0.704





CD14_SWLAELQQWLKPGLK_vs_PGRP2_AGLLRPDYALLGHR
 62 & 126
0.011
0.712





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
 62 & 18
0.010
0.716





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.020
0.695





CLUS_ASSIIDELFQDR_vs_PGRP2_AGLLRPDYALLGHR
 67 & 126
0.014
0.705





CLUS_ASSIIDELFQDR_vs_SHBG_IALGGLLFPASNLR
 67 & 18
0.011
0.712





CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGIR
 68 & 120
0.044
0.668





CLUS_LFDSDPITVTVPVEVSR_vs_PGRP2_AGLLRPDYALLGHR
 68 & 126
0.045
0.668





CLUS_LFDSDPITVTVPVEVSR_vs_SHBG_IALGGLLFPASNLR
 68 & 18
0.020
0.694





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.039
0.672





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.018
0.698





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
 71 & 18
0.039
0.672





CO6_ALNHLPLEYNSALYSR_vs_SHBG_IALGGLLFPASNLR
 72 & 18
0.022
0.692





CO8A_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.044
0.669





CO8A_SLLQPNK_vs_PGRP2_AGLLRPDYALLGHR
 74 & 126
0.032
0.679





CO8A_SLLQPNK_vs_SHBG_IALGGLLFPASNLR
 74 & 18
0.032
0.679





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
 76 & 120
0.041
0.671





CO8B_QALEEFQK_vs_PGRP2_AGLLRPDYALLGHR
 76 & 126
0.037
0.674





CO8B_QALEEFQK_vs_SHBG_IALGGLLFPASNLR
 76 & 18
0.039
0.672





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
 84 & 79
0.050
0.664





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.002
0.765





F13B_GDTYPAELYITGSILR_vs_PGRP2_AGLLRPDYALLGHR
 84 & 126
0.002
0.755





F13B_GDTYPAELYITGSILR_vs_SHBG_IALGGLLFPASNLR
 84 & 18
0.002
0.764





F13B_GDTYPAELYITGSILR_vs_VTDB_ELPEHTVK
 84 & 147
0.041
0.671





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
 88 & 120
0.039
0.673





FETUA_FSVVYAK_vs_SHBG_IALGGLLFPASNLR
 88 & 18
0.019
0.697





FETUA_HTLNQIDEVK_vs_LYAM1_SYYWIGIR
 89 & 120
0.034
0.678





FETUA_HTLNQIDEVK_vs_SHBG_IALGGLLFPASNLR
 89 & 18
0.018
0.699





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
 93 & 120
0.042
0.670





HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPASNLR
 93 & 18
0.015
0.704





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.048
0.666





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.002
0.756





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
  2 & 126
0.004
0.741





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.002
0.760





IBP6_GAQTLYVPNCDHR_vs_PGRP2_AGLLRPDYALLGHR
101 & 126
0.019
0.697





IBP6_GAQTLYVPNCDHR_vs_SHBG_IALGGLLFPASNLR
101 & 18
0.024
0.689





IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIGIR
102 & 120
0.014
0.706





IBP6_HLDSVLQQLQTEVYR_vs_PGRP2_AGLLRPDYALLGHR
102 & 126
0.027
0.686





IBP6_HLDSVLQQLQTEVYR_vs_SHBG_IALGGLLFPASNLR
102 & 18
0.009
0.720





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.037
0.675





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.021
0.693





ITIH4_NPLVWVHASPEHVVVTR_vs_ALS_IRPHTFTGLSGLR
113 & 40
0.034
0.678





ITIH4_NPLVWVHASPEHVVVTR_vs_CHL1_VIAVNEVGR
113 & 66
0.045
0.667





ITIH4_NPLVWVHASPEHVVVTR_vs_CSH_AHQLAIDTYQEFEETYIPK
113 & 80
0.044
0.668





ITIH4_NPLVWVHASPEHVVVTR_vs_FBLN1_TGYYFDGISR
113 & 86
0.016
0.701





ITIH4_NPLVWVHASPEHVVVTR_vs_IBP3_FLNVLSPR
113 & 99
0.025
0.688





ITIH4_NPLVWVHASPEHVVVTR_vs_IBP3_YGQPLPGYTTK
113 & 100
0.030
0.682





ITIH4_NPLVWVHASPEHVVVTR_vs_PSG3_VSAPSGTGHLPGLNPL
113 & 134
0.033
0.678





ITIH4_NPLVWVHASPEHVVVTR_vs_SOM2.CSH_NYGLLYCFR
113 & 138
0.021
0.693





ITIH4_NPLVWVHASPEHVVVTR_vs_SPRL1_VLTHSELAPLR
113 & 140
0.042
0.670





ITIH4_NPLVWVHASPEHVVVTR_vs_TENX_LSQLSVTDVTTSSLR
113 & 142
0.028
0.684





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_TENX_LSQLSVTDVTTSSLR
114 & 142
0.029
0.683





KNG1_DIPTNSPELEETLTHTITK_vs_SHBG_IALGGLLFPASNLR
116 & 18
0.040
0.672





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.009
0.717





KNG1_QVVAGLNFR_vs_PGRP2_AGLLRPDYALLGHR
117 & 126
0.020
0.695





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.012
0.711





PAPP1_DIPHWLNPTR_vs_CRIS3_AVSPPAR
122 & 78
0.039
0.672





PAPP1_DIPHWLNPTR_vs_CRIS3_YEDLYSNCK
122 & 79
0.035
0.676





PAPP1_DIPHWLNPTR_vs_CSH_AHQLAIDTYQEFEETYIPK
122 & 80
0.029
0.683





PAPP1_DIPHWLNPTR_vs_CSH_ISLLLIESWLEPVR
122 & 81
0.019
0.696





PAPP1_DIPHWLNPTR_vs_IBP1_VVESLAK
122 & 97
0.047
0.666





PAPP1_DIPHWLNPTR_vs_IBP2_LIQGAPTIR
122 & 98
0.027
0.686





PAPP1_DIPHWLNPTR_vs_ITIH4_ILDDLSPR
122 & 112
0.046
0.667





PAPP1_DIPHWLNPTR_vs_LYAM1_SYYWIGIR
122 & 120
0.007
0.726





PAPP1_DIPHWLNPTR_vs_PGRP2_AGLLRPDYALLGHR
122 & 126
0.007
0.725





PAPP1_DIPHWLNPTR_vs_PRG2_WNFAYWAAHQPWSR
122 & 129
0.021
0.693





PAPP1_DIPHWLNPTR_vs_PSG1_FQLPGQK
122 & 131
0.043
0.670





PAPP1_DIPHWLNPTR_vs_SHBG_IALGGLLFPASNLR
122 & 18
0.005
0.734





PAPP1_DIPHWLNPTR_vs_SOM2.CSH_NYGLLYCFR
122 & 138
0.028
0.684





PAPP1_DIPHWLNPTR_vs_SOM2.CSH_SVEGSCGF
122 & 139
0.004
0.743





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.008
0.722





PEDF_LQSLFDSPDFSK_vs_PGRP2_AGLLRPDYALLGHR
124 & 126
0.024
0.689





PEDF_LQSLFDSPDFSK_vs_SHBG_IALGGLLFPASNLR
124 & 18
0.008
0.720





PEDF_LQSLFDSPDFSK_vs_VTDB_ELPEHTVK
124 & 147
0.023
0.690





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.008
0.722





PEDF_TVQAVLTVPK_vs_PGRP2_AGLLRPDYALLGHR
125 & 126
0.019
0.697





PEDF_TVQAVLTVPK_vs_SHBG_IALGGLLFPASNLR
125 & 18
0.007
0.726





PRDX2_GLFIIDGK_vs_LYAM1_SYYWIGIR
128 & 120
0.034
0.677





PRDX2_GLFIIDGK_vs_PGRP2_AGLLRPDYALLGHR
128 & 126
0.026
0.687





PRDX2_GLFIIDGK_vs_SHBG_IALGGLLFPASNLR
128 & 18
0.011
0.713





PSG2_IHPSYTNYR_vs_IBP2_LIQGAPTIR
133 & 98
0.038
0.674





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.023
0.690





PSG2_IHPSYTNYR_vs_PGRP2_AGLLRPDYALLGHR
133 & 126
0.031
0.680





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.009
0.717





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 & 120
0.006
0.728





PTGDS_GPGEDFR_vs_PGRP2_AGLLRPDYALLGHR
137 & 126
0.006
0.731





PTGDS_GPGEDFR_vs_SHBG_IALGGLLFPASNLR
137 & 18
0.009
0.719





PTGDS_GPGEDFR_vs_SOM2.CSH_SVEGSCGF
137 & 139
0.027
0.685





THBG_AVLHIGEK_vs_PGRP2_AGLLRPDYALLGHR
143 & 126
0.047
0.666





THBG_AVLHIGEK_vs_SHBG_IALGGLLFPASNLR
143 & 18
0.039
0.673





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.009
0.717





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.012
0.711





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.011
0.714





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.023
0.690





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126
0.024
0.688





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.008
0.722
















TABLE 59







Additional Reversals








Reversal
SEQ ID NO:





AFAM_DADPDTFFAK_vs_ALS_IRPHTFTGLSGLR
 37 & 40





AFAM_DADPDTFFAK_vs_CRIS3_AVSPPAR
 37 & 78





AFAM_DADPDTFFAK_vs_CSH_AHQLAIDTYQEFEETYIPK
 37 & 80





AFAM_DADPDTFFAK_vs_CSH_ISLLLIESWLEPVR
 37 & 81





AFAM_DADPDTFFAK_vs_IBP1_VVESLAK
 37 & 97





AFAM_HFQNLGK_vs_C163A_INPASLDK
 38 & 54





AFAM_HFQNLGK_vs_CSH_AHQLAIDTYQEFEETYIPK
 38 & 80





AFAM_HFQNLGK_vs_CSH_ISLLLIESWLEPVR
 38 & 81





AFAM_HFQNLGK_vs_FBLN1_TGYYFDGISR
 38 & 86





ANGT_DPTFIPAPIQAK_vs_ALS_IRPHTFTGLSGLR
 42 & 40





ANGT_DPTFIPAPIQAK_vs_IBP1_VVESLAK
 42 & 97





ANGT_DPTFIPAPIQAK_vs_ITIH4_ILDDLSPR
 42 & 112





APOH_ATVVYQGER_vs_CSH_ISLLLIESWLEPVR
 48 & 81





APOH_ATVVYQGER_vs_IBP2_LIQGAPTIR
 48 & 98





APOH_ATVVYQGER_vs_SOM2.CSH_SVEGSCGF
 48 & 139





B2MG_VEHSDLSFSK_vs_C163A_INPASLDK
 50 & 54





B2MG_VEHSDLSFSK_vs_IBP1_VVESLAK
 50 & 97





B2MG_VEHSDLSFSK_vs_PSG9_LFIPQITR
 50 & 136





B2MG_VEHSDLSFSK_vs_SPRL1_VLTHSELAPLR
 50 & 140





B2MG_VNHVTLSQPK_vs_CSH_AHQLAIDTYQEFEETYIPK
 51 & 80





B2MG_VNHVTLSQPK_vs_FBLN1_TGYYFDGISR
 51 & 86





B2MG_VNHVTLSQPK_vs_PSG9_LFIPQITR
 51 & 136





B2MG_VNHVTLSQPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 51 & 144





B2MG_VNHVTLSQPK_vs_VTDB_ELPEHTVK
 51 & 147





BGH3_LTLLAPLNSVFK_vs_C163A_INPASLDK
 52 & 54





BGH3_LTLLAPLNSVFK_vs_IBP1_VVESLAK
 52 & 97





BGH3_LTLLAPLNSVFK_vs_SPRL1_VLTHSELAPLR
 52 & 140





BGH3_LTLLAPLNSVFK_vs_VTDB_ELPEHTVK
 52 & 147





CAH1_GGPFSDSYR_vs_ALS_IRPHTFTGLSGLR
 56 & 40





CAH1_GGPFSDSYR_vs_CSH_AHQLAIDTYQEFEETYIPK
 56 & 80





CAH1_GGPFSDSYR_vs_CSH_ISLLLIESWLEPVR
 56 & 81





CAH1_GGPFSDSYR_vs_FBLN1_TGYYFDGISR
 56 & 86





CAH1_GGPFSDSYR_vs_IBP2_LIQGAPTIR
 56 & 98





CAH1_GGPFSDSYR_vs_IBP3_YGQPLPGYTTK
 56 & 100





CAH1_GGPFSDSYR_vs_IGF2_GIVEECCFR
 56 & 103





CAH1_GGPFSDSYR_vs_ITIH4_ILDDLSPR
 56 & 112





CAH1_GGPFSDSYR_vs_PRG2_WNFAYWAAHQPWSR
 56 & 129





CAH1_GGPFSDSYR_vs_SOM2.CSH_SVEGSCGF
 56 & 139





CAH1_GGPFSDSYR_vs_SPRL1_VLTHSELAPLR
 56 & 140





CAH1_GGPFSDSYR_vs_VTDB_ELPEHTVK
 56 & 147





CBPN_EALIQFLEQVHQGIK_vs_CRIS3_AVSPPAR
 59 & 78





CBPN_EALIQFLEQVHQGIK_vs_IBP1_VVESLAK
 59 & 97





CBPN_EALIQFLEQVHQGIK_vs_PGRP2_AGLLRPDYALLGHR
 59 & 126





CBPN_EALIQFLEQVHQGIK_vs_SPRL1_VLTHSELAPLR
 59 & 140





CBPN_NNANGVDLNR_vs_CRIS3_AVSPPAR
 60 & 78





CBPN_NNANGVDLNR_vs_IBP1_VVESLAK
 60 & 97





CBPN_NNANGVDLNR_vs_PSG9_LFIPQITR
 60 & 136





CD14_LTVGAAQVPAQLLVGALR_vs_ALS_IRPHTFTGLSGLR
 61 & 40





CD14_LTVGAAQVPAQLLVGALR_vs_IBP2_LIQGAPTIR
 61 & 98





CD14_LTVGAAQVPAQLLVGALR_vs_SOM2.CSH_NYGLLYCFR
 61 & 138





CD14_SWLAELQQWLKPGLK_vs_ALS_IRPHTFTGLSGLR
 62 & 40





CD14_SWLAELQQWLKPGLK_vs_CSH_ISLLLIESWLEPVR
 62 & 81





CD14_SWLAELQQWLKPGLK_vs_IBP3_FLNVLSPR
 62 & 99





CD14_SWLAELQQWLKPGLK_vs_IBP3_YGQPLPGYTTK
 62 & 100





CD14_SWLAELQQWLKPGLK_vs_NCAM1_GLGEISAASEFK
 62 & 121





CD14_SWLAELQQWLKPGLK_vs_PSG9_LFIPQITR
 62 & 136





CD14_SWLAELQQWLKPGLK_vs_SOM2.CSH_NYGLLYCFR
 62 & 138





CFAB_YGLVTYATYPK_vs_IBP1_VVESLAK
 64 & 97





CLUS_ASSIIDELFQDR_vs_CSH_ISLLLIESWLEPVR
 67 & 81





CLUS_ASSIIDELFQDR_vs_ITIH4_ILDDLSPR
 67 & 112





CLUS_ASSIIDELFQDR_vs_PRG2_WNFAYWAAHQPWSR
 67 & 129





CLUS_ASSIIDELFQDR_vs_PSG9_LFIPQITR
 67 & 136





CLUS_ASSIIDELFQDR_vs_SOM2.CSH_SVEGSCGF
 67 & 139





CLUS_ASSIIDELFQDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 67 & 144





CLUS_LFDSDPITVTVPVEVSR_vs_CSH_ISLLLIESWLEPVR
 68 & 81





CLUS_LFDSDPITVTVPVEVSR_vs_NCAM1_GLGEISAASEFK
 68 & 121





CLUS_LFDSDPITVTVPVEVSR_vs_PSG9_LFIPQITR
 68 & 136





CLUS_LFDSDPITVTVPVEVSR_vs_SOM2.CSH_NYGLLYCFR
 68 & 138





CLUS_LFDSDPITVTVPVEVSR_vs_SOM2.CSH_SVEGSCGF
 68 & 139





CO5_TLLPVSKPEIR_vs_C163A_INPASLDK
 70 & 54





CO5_TLLPVSKPEIR_vs_IBP1_VVESLAK
 70 & 97





CO5_TLLPVSKPEIR_vs_IBP3_FLNVLSPR
 70 & 99





CO5_TLLPVSKPEIR_vs_PSG9_LFIPQITR
 70 & 136





CO5_VFQFLEK_vs_IBP1_VVESLAK
 71 & 97





CO5_VFQFLEK_vs_PSG9_LFIPQITR
 71 & 136





CO5_VFQFLEK_vs_SPRL1_VLTHSELAPLR
 71 & 140





CO6_ALNHLPLEYNSALYSR_vs_CRIS3_AVSPPAR
 72 & 78





CO6_ALNHLPLEYNSALYSR_vs_IBP1_VVESLAK
 72 & 97





CO6_ALNHLPLEYNSALYSR_vs_PSG9_LFIPQITR
 72 & 136





CO6_ALNHLPLEYNSALYSR_vs_SPRL1_VLTHSELAPLR
 72 & 140





CO8A_SLLQPNK_vs_CSH_ISLLLIESWLEPVR
 74 & 81





CO8A_SLLQPNK_vs_ITIH4_ILDDLSPR
 74 & 112





CO8A_SLLQPNK_vs_SOM2.CSH_NYGLLYCFR
 74 & 138





CO8A_SLLQPNK_vs_SOM2.CSH_SVEGSCGF
 74 & 139





CO8B_QALEEFQK_vs_CSH_ISLLLIESWLEPVR
 76 & 81





CO8B_QALEEFQK_vs_ITIH4_ILDDLSPR
 76 & 112





F13B_GDTYPAELYITGSILR_vs_ALS_IRPHTFTGLSGLR
 84 & 40





F13B_GDTYPAELYITGSILR_vs_C163A_INPASLDK
 84 & 54





F13B_GDTYPAELYITGSILR_vs_CSH_ISLLLIESWLEPVR
 84 & 81





F13B_GDTYPAELYITGSILR_vs_ITIH4_ILDDLSPR
 84 & 112





F13B_GDTYPAELYITGSILR_vs_NCAM1_GLGEISAASEFK
 84 & 121





F13B_GDTYPAELYITGSILR_vs_PSG9_LFIPQITR
 84 & 136





F13B_GDTYPAELYITGSILR_vs_SOM2.CSH_NYGLLYCFR
 84 & 138





F13B_GDTYPAELYITGSILR_vs_SOM2.CSH_SVEGSCGF
 84 & 139





FBLN3_IPSNPSHR_vs_ALS_IRPHTFTGLSGLR
 87 & 40





FBLN3_IPSNPSHR_vs_FBLN1_TGYYFDGISR
 87 & 86





FBLN3_IPSNPSHR_vs_IBP3_FLNVLSPR
 87 & 99





FBLN3_IPSNPSHR_vs_ITIH4_ILDDLSPR
 87 & 112





FBLN3_IPSNPSHR_vs_NCAM1_GLGEISAASEFK
 87 & 121





FBLN3_IPSNPSHR_vs_PSG3_VSAPSGTGHLPGLNPL
 87 & 134





FBLN3_IPSNPSHR_vs_PSG9_LFIPQITR
 87 & 136





FBLN3_IPSNPSHR_vs_VTDB_ELPEHTVK
 87 & 147





FETUA_FSVVYAK_vs_NCAM1_GLGEISAASEFK
 88 & 121





FETUA_HTLNQIDEVK_vs_NCAM1_GLGEISAASEFK
 89 & 121





HABP2_FLNWIK_vs_ALS_IRPHTFTGLSGLR
 92 & 40





HABP2_FLNWIK_vs_IBP1_VVESLAK
 92 & 97





HEMO_NFPSPVDAAFR_vs_IBP1_VVESLAK
 93 & 97





HEMO_NFPSPVDAAFR_vs_PSG9_LFIPQITR
 93 & 136





HEMO_NFPSPVDAAFR_vs_SPRL1_VLTHSELAPLR
 93 & 140





HLACI_WAAVVVPSGEEQR_vs_IBP1_VVESLAK
 95 & 97





HLACI_WAAVVVPSGEEQR_vs_LYAM1_SYYWIGIR
 95 & 120





IBP6_GAQTLYVPNCDHR_vs_ALS_IRPHTFTGLSGLR
101 & 40





IBP6_GAQTLYVPNCDHR_vs_CRIS3_AVSPPAR
101 & 78





IBP6_GAQTLYVPNCDHR_vs_IBP1_VVESLAK
101 & 97





IBP6_GAQTLYVPNCDHR_vs_IBP2_LIQGAPTIR
101 & 98





IBP6_GAQTLYVPNCDHR_vs_IBP3_FLNVLSPR
101 & 99





IBP6_GAQTLYVPNCDHR_vs_IBP3_YGQPLPGYTTK
101 & 100





IBP6_GAQTLYVPNCDHR_vs_SPRL1_VLTHSELAPLR
101 & 140





IBP6_GAQTLYVPNCDHR_vs_TENX_LNWEAPPGAFDSFLLR
101 & 141





IBP6_GAQTLYVPNCDHR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
101 & 144





IBP6_HLDSVLQQLQTEVYR_vs_CRIS3_AVSPPAR
102 & 78





IBP6_HLDSVLQQLQTEVYR_vs_IBP1_VVESLAK
102 & 97





IBP6_HLDSVLQQLQTEVYR_vs_IBP2_LIQGAPTIR
102 & 98





IBP6_HLDSVLQQLQTEVYR_vs_IBP3_FLNVLSPR
102 & 99





IBP6_HLDSVLQQLQTEVYR_vs_IBP3_YGQPLPGYTTK
102 & 100





IBP6_HLDSVLQQLQTEVYR_vs_PSG9_LFIPQITR
102 & 136





IBP6_HLDSVLQQLQTEVYR_vs_SOM2.CSH_SVEGSCGF
102 & 139





IBP6_HLDSVLQQLQTEVYR_vs_SPRL1_VLTHSELAPLR
102 & 140





IBP6_HLDSVLQQLQTEVYR_vs_TENX_LNWEAPPGAFDSFLLR
102 & 141





IBP6_HLDSVLQQLQTEVYR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
102 & 144





INHBC_LDFHFSSDR_vs_IBP1_VVESLAK
107 & 97





ITIH3_ALDLSLK_vs_PSG9_LFIPQITR
111 & 136





ITIH4_NPLVWVHASPEHVVVTR_vs_C163A_INPASLDK
113 & 54





ITIH4_NPLVWVHASPEHVVVTR_vs_CSH_ISLLLIESWLEPVR
113 & 81





ITIH4_NPLVWVHASPEHVVVTR_vs_PSG1_FQLPGQK
113 & 131





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_ALS_IRPHTFTGLSGLR
114 & 40





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_C163A_INPASLDK
114 & 54





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_CHL1_VIAVNEVGR
114 & 66





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_CSH_AHQLAIDTYQEFEETYIPK
114 & 80





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_FBLN1_TGYYFDGISR
114 & 86





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_IBP3_FLNVLSPR
114 & 99





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_IBP3_YGQPLPGYTTK
114 & 100





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_IGF2_GIVEECCFR
114 & 103





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_ITIH4_ILDDLSPR
114 & 112





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_NCAM1_GLGEISAASEFK
114 & 121





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_PRG2_WNFAYWAAHQPWSR
114 & 129





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_PSG1_FQLPGQK
114 & 131





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_SOM2.CSH_NYGLLYCFR
114 & 138





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_SPRL1_VLTHSELAPLR
114 & 140





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_TENX_LNWEAPPGAFDSFLLR
114 & 141





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
114 & 144





ITIH4_QLGLPGPPDVPDHAAYHPF_vs_VTDB_ELPEHTVK
114 & 147





KNG1_DIPTNSPELEETLTHTITK_vs_C163A_INPASLDK
116 & 54





KNG1_DIPTNSPELEETLTHTITK_vs_IBP3_FLNVLSPR
116 & 99





KNG1_DIPTNSPELEETLTHTITK_vs_IBP3_YGQPLPGYTTK
116 & 100





KNG1_DIPTNSPELEETLTHTITK_vs_PGRP2_AGLLRPDYALLGHR
116 & 126





KNG1_DIPTNSPELEETLTHTITK_vs_PSG9_LFIPQITR
116 & 136





KNG1_DIPTNSPELEETLTHTITK_vs_SOM2.CSH_SVEGSCGF
116 & 139





KNG1_DIPTNSPELEETLTHTITK_vs_VTDB_ELPEHTVK
116 & 147





KNG1_QVVAGLNFR_vs_ALS_IRPHTFTGLSGLR
117 & 40





KNG1_QVVAGLNFR_vs_CSH_ISLLLIESWLEPVR
117 & 81





KNG1_QVVAGLNFR_vs_PSG9_LFIPQITR
117 & 136





KNG1_QVVAGLNFR_vs_SOM2.CSH_NYGLLYCFR
117 & 138





KNG1_QVVAGLNFR_vs_SOM2.CSH_SVEGSCGF
117 & 139





LBP_ITGFLKPGK_vs_FBLN1_TGYYFDGISR
118 & 86





LBP_ITGFLKPGK_vs_NCAM1_GLGEISAASEFK
118 & 121





PAPP1_DIPHWLNPTR_vs_ALS_IRPHTFTGLSGLR
122 & 40





PAPP1_DIPHWLNPTR_vs_CHL1_VIAVNEVGR
122 & 66





PAPP1_DIPHWLNPTR_vs_FBLN1_TGYYFDGISR
122 & 86





PAPP1_DIPHWLNPTR_vs_IBP3_FLNVLSPR
122 & 99





PAPP1_DIPHWLNPTR_vs_IBP3_YGQPLPGYTTK
122 & 100





PAPP1_DIPHWLNPTR_vs_IGF2_GIVEECCFR
122 & 103





PAPP1_DIPHWLNPTR_vs_NCAM1_GLGEISAASEFK
122 & 121





PAPP1_DIPHWLNPTR_vs_PSG3_VSAPSGTGHLPGLNPL
122 & 134





PAPP1_DIPHWLNPTR_vs_SPRL1_VLTHSELAPLR
122 & 140





PAPP1_DIPHWLNPTR_vs_TENX_LNWEAPPGAFDSFLLR
122 & 141





PAPP1_DIPHWLNPTR_vs_TENX_LSQLSVTDVTTSSLR
122 & 142





PAPP1_DIPHWLNPTR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
122 & 144





PAPP1_DIPHWLNPTR_vs_VTDB_ELPEHTVK
122 & 147





PEDF_LQSLFDSPDFSK_vs_PSG9_LFIPQITR
124 & 136





PEDF_LQSLFDSPDFSK_vs_SPRL1_VLTHSELAPLR
124 & 140





PEDF_TVQAVLTVPK_vs_IBP1_VVESLAK
125 & 97





PEDF_TVQAVLTVPK_vs_IBP2_LIQGAPTIR
125 & 98





PEDF_TVQAVLTVPK_vs_IBP3_FLNVLSPR
125 & 99





PEDF_TVQAVLTVPK_vs_ITIH4_ILDDLSPR
125 & 112





PRDX2_GLFIIDGK_vs_ALS_IRPHTFTGLSGLR
128 & 40





PRDX2_GLFIIDGK_vs_CSH_AHQLAIDTYQEFEETYIPK
128 & 80





PRDX2_GLFIIDGK_vs_CSH_ISLLLIESWLEPVR
128 & 81





PRDX2_GLFIIDGK_vs_FBLN1_TGYYFDGISR
128 & 86





PRDX2_GLFIIDGK_vs_IBP3_FLNVLSPR
128 & 99





PRDX2_GLFIIDGK_vs_IBP3_YGQPLPGYTTK
128 & 100





PRDX2_GLFIIDGK_vs_IGF2_GIVEECCFR
128 & 103





PRDX2_GLFIIDGK_vs_ITIH4_ILDDLSPR
128 & 112





PRDX2_GLFIIDGK_vs_NCAM1_GLGEISAASEFK
128 & 121





PRDX2_GLFIIDGK_vs_PSG1_FQLPGQK
128 & 131





PRDX2_GLFIIDGK_vs_SOM2.CSH_NYGLLYCFR
128 & 138





PRDX2_GLFIIDGK_vs_SOM2.CSH_SVEGSCGF
128 & 139





PSG11_LFIPQITPK_vs_LYAM1_SYYWIGIR
132 & 120





PSG11_LFIPQITPK_vs_SHBG_IALGGLLFPASNLR
132 & 18





PSG2_IHPSYTNYR_vs_PRG2_WNFAYWAAHQPWSR
133 & 129





PTGDS_GPGEDFR_vs_CSH_AHQLAIDTYQEFEETYIPK
137 & 80





PTGDS_GPGEDFR_vs_CSH_ISLLLIESWLEPVR
137 & 81





PTGDS_GPGEDFR_vs_IBP2_LIQGAPTIR
137 & 98





PTGDS_GPGEDFR_vs_PSG9_LFIPQITR
137 & 136





THBG_AVLHIGEK_vs_CRIS3_AVSPPAR
143 & 78





THBG_AVLHIGEK_vs_IBP1_VVESLAK
143 & 97





THBG_AVLHIGEK_vs_IBP3_FLNVLSPR
143 & 99





THBG_AVLHIGEK_vs_PSG9_LFIPQITR
143 & 136





THBG_AVLHIGEK_vs_SPRL1_VLTHSELAPLR
143 & 140





VTNC_VDTVDPPYPR_vs_IBP1_VVESLAK
150 & 97
















TABLE 60







Clock Proteins










ShortName
ProteinName
Analyte
SEQ ID NO:













ADA12
Adam 12
FGFGGSTDSGPIR
151





ADA12
Adam 12
LIEIANHVDK
152





ANGT
Angiotensinogen
DPTFIPAPIQAK
42





CSH
Chorionic somatomammotropin hormone 
AHQLAIDTYQEFEETYIPK
80



1 & 2







CSH
Chorionic somatomammotropin hormone
ISLLLIESWLEPVR
81



1 & 2







FBLN1
Fibulin-1
TGYYFDGISR
86





PAI2
Plasminogen activator inhibitor 2
LNIGYIEDLK
153





PAPP1
Pappalysin-1
DIPHWLNPTR
122





PSG11
Pregnancy-specific beta-1-glycoprotein 11
DLYHYITSYVVDGEIIIYGPAYSGR
130





PSG1
Pregnancy-specific beta-1-glycoprotein 1
FQLPGQK
131





PSG2
Pregnancy-specific beta-1-glycoprotein 2
IHPSYTNYR
133





PSG6
Pregnancy-specific beta-1-glycoprotein 6
SNPVTLNVLYGPDLPR
154





PSG9
Pregnancy-specific beta-1-glycoprotein 9
DVLLLVHNLPQNLPGYFWYK
135





PSG9
Pregnancy-specific beta-1-glycoprotein 9
LFIPQITR
136





SOM2.CSH
Placenta-specific growth hormone &
NYGLLYCFR
138



Chorionic somatomammotropin hormone 





1 & 2







SOM2.CSH
Placenta-specific growth hormone &
SVEGSCGF
139



Chorionic somatomammotropin hormone 





1 & 2







TENX
Tenascin-X
LSQLSVTDVTTSSLR
142





TIE1
Tyrosine-protein kinase receptor
VSWSLPLVPGPLVGDGFLLR
144





VGFR3
Vascular endothelial growth factor receptor
SGVDLADSNQK
155



3







VGFR3
Vascular endothelial growth factor receptor
HATLSLSIPR
156



3
















TABLE 61







Reversal Classification Performance, weeks 17-21.


Reversal AUROC for gestational weeks 17 0/7 through 21 


6/7 using a case vs control cut-off of <37 0/7 vs >=37 


0/7 weeks, without BMI stratification, separately for 


PPROM and PTL.














119_
119_
119_
119_




153_
153_
153_
153_




aBMI_37 
aBMI_37
aBMI_37
aBMI_37



SEQ ID
PTL 
PTL 
PPROM 
PPROM 


Reversal
NO:
ROC_AUC
P-value
ROC_AUC
P-value





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.56
0.18
0.66
0.001





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.58
0.0951
0.65
0.0019





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.56
0.2369
0.66
0.0012





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.57
0.1185
0.67
5.00E-04





APOC3_GWVTDGFSSLK_vs_ALS_IRPHTFTGLSGLR
 47 & 40
0.58
0.0739
0.66
8.00E-04





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.58
0.0834
0.67
7.00E-04





APOC3_GWVTDGFSSLK_vs_CHL1_VIAVNEVGR
 47 & 66
0.58
0.0919
0.66
0.0011





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.56
0.1948
0.68
2.00E-04





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.57
0.1492
0.68
2.00E-04





APOC3_GWVTDGFSSLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 47 & 80
0.59
0.0705
0.66
7.00E-04





APOC3_GWVTDGFSSLK_vs_CSH_ISLLLIESWLEPVR
 47 & 81
0.58
0.1112
0.65
0.0026





APOC3_GWVTDGFSSLK_vs_FBLN1_TGYYFDGISR
 47 & 86
0.56
0.1845
0.68
3.00E-04





APOC3_GWVTDGFSSLK_vs_IBP2_LIQGAPTIR
 47 & 98
0.54
0.3592
0.66
8.00E-04





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.6
0.0431
0.67
3.00E-04





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
 47 & 100
0.59
0.0487
0.67
4.00E-04





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.6
0.0289
0.68
2.00E-04





APOC3_GWVTDGFSSLK_vs_ITIH4_ILDDLSPR
 47 & 112
0.59
0.0664
0.66
8.00E-04





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.57
0.1171
0.69
1.00E-04





APOC3_GWVTDGFSSLK_vs_NCAM1_GLGEISAASEFK
 47 & 121
0.58
0.081
0.65
0.0014





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.58
0.0931
0.68
2.00E-04





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.63
0.0045
0.65
0.0014





APOC3_GWVTDGFSSLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 47 & 135
0.56
0.2234
0.66
0.001





APOC3_GWVTDGFSSLK_vs_PSG9_LFIPQITR
 47 & 136
0.55
0.2511
0.65
0.0018





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.59
0.0618
0.67
4.00E-04





APOC3_GWVTDGFSSLK_vs_SPRL1_VLTHSELAPLR
 47 & 140
0.56
0.2251
0.66
7.00E-04





APOC3_GWVTDGFSSLK_vs_TENX_LNWEAPPGAFDSFLLR
 47 & 141
0.58
0.0834
0.68
2.00E-04





APOC3_GWVTDGFSSLK_vs_TENX_LSQLSVTDVTTSSLR
 47 & 142
0.58
0.0829
0.67
5.00E-04





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.59
0.0703
0.67
4.00E-04





APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
 47 & 147
0.59
0.0703
0.67
4.00E-04





APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLNPL
 48 & 134
0.66
0.001
0.57
0.1723





B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
 51 & 18
0.55
0.2492
0.67
6.00E-04





C1QB_VPGLYYFTYHASSR_vs_PGRP2_AGLLRPDYALLGHR
 55 & 126
0.55
0.2632
0.65
0.0018





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.57
0.1178
0.66
9.00E-04





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.55
0.3208
0.67
6.00E-04





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.55
0.3012
0.66
7.00E-04





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LNWEAPPGAFDSFLLR
 61 & 141
0.54
0.403
0.67
5.00E-04





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
 62 & 18
0.55
0.2536
0.67
6.00E-04





CD14_SWLAELQQWLKPGLK_vs_TENX_LNWEAPPGAFDSFLLR
 62 & 141
0.54
0.3953
0.67
6.00E-04





CFAB_YGLVTYATYPK_vs_PGRP2_AGLLRPDYALLGHR
 64 & 126
0.57
0.1412
0.65
0.0023





CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGLNPL
 64 & 134
0.67
3.00E-04
0.59
0.0542





CFAB_YGLVTYATYPK_vs_SHBG_IALGGLLFPASNLR
 64 & 18
0.6
0.0426
0.65
0.0024





CO5_TLLPVSKPEIR_vs_PSG3_VSAPSGTGHLPGLNPL
 70 & 134
0.66
0.001
0.58
0.1098





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.57
0.1453
0.65
0.0016





CO5_TLLPVSKPEIR_vs_TENX_LNWEAPPGAFDSFLLR
 70 & 141
0.55
0.2704
0.65
0.0015





CO5_VFQFLEK_vs_PSG3_VSAPSGTGHLPGLNPL
 71 & 134
0.65
0.0013
0.57
0.129





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
 71 & 18
0.57
0.1316
0.66
0.0013





CO5_VFQFLEK_vs_TENX_LNWEAPPGAFDSFLLR
 71 & 141
0.56
0.2455
0.65
0.0018





COSA_SLLQPNK_vs_PSG3_VSAPSGTGHLPGLNPL
 74 & 134
0.65
0.002
0.58
0.1094





CO8A_SLLQPNK_vs_SHBG_IALGGLLFPASNLR
 74 & 18
0.57
0.1375
0.65
0.0024





CO8A_SLLQPNK_vs_TENX_LNWEAPPGAFDSFLLR
 74 & 141
0.58
0.1016
0.65
0.0021





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
 76 & 134
0.65
0.002
0.59
0.0605





CO8B_QALEEFQK_vs_SHBG_IALGGLLFPASNLR
 76 & 18
0.56
0.181
0.65
0.0017





CO8B_QALEEFQK_vs_TENX_LNWEAPPGAFDSFLLR
 76 & 141
0.58
0.1026
0.66
0.0012





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_IALGGLLFPASNLR
 82 & 18
0.57
0.1566
0.67
5.00E-04





ENPP2_TYLHTYESEI_vs_LYAM1_SYYWIGIR
 83 & 120
0.55
0.3336
0.66
8.00E-04





ENPP2_TYLHTYESEI_vs_SHBG_IALGGLLFPASNLR
 83 & 18
0.55
0.2717
0.67
3.00E-04





FETUA_FSVVYAK_vs_IGF2_GIVEECCFR
 88 & 103
0.59
0.0659
0.67
4.00E-04





FETUA_FSVVYAK_vs_SHBG_IALGGLLFPASNLR
 88 & 18
0.54
0.4516
0.67
3.00E-04





FETUA_FSVVYAK_vs_TENX_LNWEAPPGAFDSFLLR
 88 & 141
0.54
0.3979
0.68
2.00E-04





FETUA_HTLNQIDEVK_vs_SHBG_IALGGLLFPASNLR
 89 & 18
0.54
0.3878
0.67
5.00E-04





FETUA_HTLNQIDEVK_vs_TENX_LNWEAPPGAFDSFLLR
 89 & 141
0.55
0.3019
0.68
2.00E-04





HABP2_FLNWIK_vs_CHL1_VIAVNEVGR
 92 & 66
0.56
0.2049
0.66
0.0013





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.61
0.0245
0.65
0.0019





HABP2_FLNWIK_vs_SHBG_IALGGLLFPASNLR
 92 & 18
0.55
0.26
0.66
8.00E-04





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.56
0.2393
0.68
2.00E-04





HABP2_FLNWIK_vs_TENX_LSQLSVTDVTTSSLR
 92 & 142
0.54
0.3466
0.66
9.00E-04





HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPASNLR
 93 & 18
0.56
0.2286
0.67
3.00E-04





HEMO_NFPSPVDAAFR_vs_TENX_LNWEAPPGAFDSFLLR
 93 & 141
0.54
0.4212
0.67
5.00E-04





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.55
0.2684
0.65
0.0016





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.55
0.2523
0.66
9.00E-04





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
  2 & 126
0.57
0.1643
0.69
1.00E-04





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.67
3.00E-04
0.61
0.0185





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.6
0.0371
0.67
3.00E-04





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFDSFLLR
  2 & 141
0.57
0.1255
0.67
6.00E-04





INHBC_LDFHFSSDR_vs_CHL1_VIAVNEVGR
107 & 66
0.56
0.188
0.67
6.00E-04





INHBC_LDFHFSSDR_vs_IBP3_FLNVLSPR
107 & 99
0.56
0.243
0.68
3.00E-04





INHBC_LDFHFSSDR_vs_IBP3_YGQPLPGYTTK
107 & 100
0.56
0.188
0.67
3.00E-04





INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 & 103
0.59
0.0635
0.69
1.00E-04





INHBC_LDFHFSSDR_vs_ITIH4_ILDDLSPR
107 & 112
0.54
0.3936
0.66
7.00E-04





INHBC_LDFHFSSDR_vs_LYAM1_SYYWIGIR
107 & 120
0.53
0.549
0.68
2.00E-04





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.54
0.3911
0.71
0





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.6
0.0281
0.67
4.00E-04





INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNLR
107 & 18
0.56
0.1922
0.68
3.00E-04





INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDSFLLR
107 & 141
0.56
0.2054
0.7
0





INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSSLR
107 & 142
0.55
0.2724
0.67
4.00E-04





INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
107 & 144
0.55
0.29
0.66
7.00E-04





INHBC_LDFHFSSDR_vs_VTDB_ELPEHTVK
107 & 147
0.55
0.3313
0.68
1.00E-04





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.56
0.1969
0.69
1.00E-04





KNG1_DIPTNSPELEETLTHTITK_vs_SHBG_IALGGLLFPASNLR
116 & 18
0.55
0.3283
0.66
0.001





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.53
0.4899
0.67
3.00E-04





LBP_ITGFLKPGK_vs_CHL1_VIAVNEVGR
118 & 66
0.56
0.2357
0.65
0.0019





LBP_ITGFLKPGK_vs_CRIS3_YEDLYSNCK
118 & 79
0.54
0.3459
0.67
4.00E-04





LBP_ITGFLKPGK_vs_IGF2_GIVEECCFR
118 & 103
0.58
0.1007
0.65
0.0024





LBP_ITGFLKPGK_vs_LYAM1_SYYWIGIR
118 & 120
0.53
0.487
0.68
1.00E-04





LBP_ITGFLKPGK_vs_PGRP2_AGLLRPDYALLGHR
118 & 126
0.53
0.4842
0.68
2.00E-04





LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNPL
118 & 134
0.63
0.0062
0.65
0.0024





LBP_ITGFLKPGK_vs_SHBG_IALGGLLFPASNLR
118 & 18
0.56
0.2049
0.69
1.00E-04





LBP_ITGFLKPGK_vs_TENX_LNWEAPPGAFDSFLLR
118 & 141
0.54
0.382
0.66
8.00E-04





LBP_ITGFLKPGK_vs_VTDB_ELPEHTVK
118 & 147
0.54
0.3672
0.66
8.00E-04





LBP_ITLPDFTGDLR_vs_C163A_INPASLDK
119 & 54
0.54
0.3746
0.68
3.00E-04





LBP_ITLPDFTGDLR_vs_CHL1_VIAVNEVGR
119 & 66
0.57
0.1308
0.67
5.00E-04





LBP_ITLPDFTGDLR_vs_CRIS3_AVSPPAR
119 & 78
0.55
0.3298
0.69
1.00E-04





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.56
0.2228
0.69
1.00E-04





LBP_ITLPDFTGDLR_vs_CSH_AHQLAIDTYQEFEETYIPK
119 & 80
0.56
0.1911
0.65
0.0025





LBP_ITLPDFTGDLR_vs_IGF2_GIVEECCFR
119 & 103
0.6
0.0373
0.66
9.00E-04





LBP_ITLPDFTGDLR_vs_ITIH4_ILDDLSPR
119 & 112
0.54
0.3482
0.67
3.00E-04





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.55
0.3048
0.71
0





LBP_ITLPDFTGDLR_vs_NCAM1_GLGEISAASEFK
119 & 121
0.57
0.1553
0.65
0.0025





LBP_ITLPDFTGDLR_vs_PGRP2_AGLLRPDYALLGHR
119 & 126
0.55
0.3105
0.7
0





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGLNPL
119 & 134
0.64
0.0028
0.66
9.00E-04





LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.57
0.115
0.7
0





LBP_ITLPDFTGDLR_vs_SOM2.CSH_SVEGSCGF
119 & 139
0.57
0.1245
0.65
0.0027





LBP_ITLPDFTGDLR_vs_TENX_LNWEAPPGAFDSFLLR
119 & 141
0.56
0.2387
0.68
1.00E-04





LBP_ITLPDFTGDLR_vs_TENX_LSQLSVTDVTTSSLR
119 & 142
0.55
0.2921
0.67
6.00E-04





LBP_ITLPDFTGDLR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
119 & 144
0.56
0.1974
0.66
8.00E-04





LBP_ITLPDFTGDLR_vs_VTDB_ELPEHTVK
119 & 147
0.56
0.1703
0.69
1.00E-04





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.53
0.5622
0.68
2.00E-04





PEDF_LQSLFDSPDFSK_vs_SHBG_IALGGLLFPASNLR
124 & 18
0.55
0.2724
0.66
0.0012





PEDF_LQSLFDSPDFSK_vs_TENX_LNWEAPPGAFDSFLLR
124 & 141
0.55
0.2473
0.68
3.00E-04





PEDF_LQSLFDSPDFSK_vs_TENX_LSQLSVTDVTTSSLR
124 & 142
0.56
0.2393
0.65
0.0019





PEDF_TVQAVLTVPK_vs_IGF2_GIVEECCFR
125 & 103
0.56
0.2022
0.66
0.0012





PEDF_TVQAVLTVPK_vs_TENX_LNWEAPPGAFDSFLLR
125 & 141
0.54
0.403
0.68
1.00E-04





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.57
0.1428
0.67
5.00E-04





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.57
0.1518
0.68
3.00E-04





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.68
2.00E-04
0.61
0.0197





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.6
0.0293
0.68
2.00E-04





VTNC_GQYCYELDEK_vs_TENX_LNWEAPPGAFDSFLLR
149 & 141
0.57
0.1513
0.67
3.00E-04





VTNC_GQYCYELDEK_vs_TENX_LSQLSVTDVTTSSLR
149 & 142
0.56
0.1901
0.65
0.0023





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.6
0.029
0.66
0.0011





VTNC_VDTVDPPYPR_vs_CHL1_VIAVNEVGR
150 & 66
0.59
0.0722
0.65
0.0025





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.62
0.0142
0.65
0.0023





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.57
0.1416
0.68
2.00E-04





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126
0.55
0.2479
0.68
2.00E-04





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.67
5.00E-04
0.62
0.0164





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.59
0.0644
0.68
2.00E-04





VTNC_VDTVDPPYPR_vs_TENX_LNWEAPPGAFDSFLLR
150 & 141
0.56
0.1805
0.67
4.00E-04





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.61
0.0248
0.68
2.00E-04
















TABLE 62







Reversal Classification Performance, weeks 17-21.


Reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using 


a case vs control cut-off of <37 0/7 vs >=37 0/7 weeks, with


BMI stratification (>22 <=37), separately for PPROM and PTL.














119_
119_
119_
119_




153_
153_
153_
153_




rBMI_37
rBMI_37
rBMI_37
rBMI_37



SEQ ID
PTL 
PTL 
PPROM 
PPROM 


Reversal
NO:
ROC_AUC
P-value
ROC_AUC
P-value





A2GL_DLLLPQPDLR_vs_IGF2_GIVEECCFR
 34 & 103
0.65
0.0065
0.58
0.195





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.61
0.0376
0.65
0.015





A2GL_DLLLPQPDLR_vs_PGRP2_AGLLRPDYALLGHR
 34 & 126
0.57
0.1794
0.65
0.0119





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.58
0.153
0.65
0.0106





AFAM_DADPDTFFAK_vs_IBP3_FLNVLSPR
 37 & 99
0.57
0.2071
0.65
0.0131





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.61
0.0383
0.66
0.0068





AFAM_HFQNLGK_vs_IBP3_FLNVLSPR
 38 & 99
0.56
0.2409
0.69
0.0019





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.61
0.0525
0.67
0.0047





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.61
0.0559
0.68
0.0034





ANGT_DPTFIPAPIQAK_vs_CRIS3_AVSPPAR
 42 & 78
0.57
0.1892
0.67
0.0053





ANGT_DPTFIPAPIQAK_vs_CRIS3_YEDLYSNCK
 42 & 79
0.58
0.1223
0.66
0.0082





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.54
0.4394
0.7
0.0011





ANGT_DPTFIPAPIQAK_vs_PGRP2_AGLLRPDYALLGHR
 42 & 126
0.53
0.6034
0.7
0.0011





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.55
0.371
0.72
3.00E-04





ANGT_DPTFIPAPIQAK_vs_TENX_LNWEAPPGAFDSFLLR
 42 & 141
0.55
0.4081
0.68
0.0023





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.59
0.1051
0.68
0.0034





APOC3_GWVTDGFSSLK_vs_CRIS3_AVSPPAR
 47 & 78
0.6
0.0815
0.67
0.006





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.61
0.0525
0.66
0.0066





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.61
0.0538
0.65
0.0142





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.6
0.082
0.67
0.004





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.58
0.1338
0.66
0.0079





APOC3_GWVTDGFSSLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 47 & 135
0.57
0.223
0.67
0.0046





APOC3_GWVTDGFSSLK_vs_PSG9_LFIPQITR
 47 & 136
0.55
0.3213
0.66
0.0088





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.59
0.1185
0.65
0.0145





APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
 48 & 103
0.65
0.0057
0.57
0.2705





BGH3_LTLLAPLNSVFK_vs_LYAM1_SYYWIGIR
 52 & 120
0.57
0.1883
0.67
0.0059





BGH3_LTLLAPLNSVFK_vs_SHBG_IALGGLLFPASNLR
 52 & 18
0.54
0.4803
0.68
0.0032





BGH3_LTLLAPLNSVFK_vs_TENX_LNWEAPPGAFDSFLLR
 52 & 141
0.56
0.2834
0.66
0.0062





C1QB_VPGLYYFTYHASSR_vs_PGRP2_AGLLRPDYALLGHR
 55 & 126
0.58
0.1331
0.66
0.0068





C1QB_VPGLYYFTYHASSR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 55 & 135
0.54
0.4346
0.68
0.0027





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.59
0.1159
0.65
0.0102





CFAB_YGLVTYATYPK_vs_CHL1_VIAVNEVGR
 64 & 66
0.65
0.0075
0.56
0.3512





CFAB_YGLVTYATYPK_vs_IBP3_YGQPLPGYTTK
 64 & 100
0.66
0.0032
0.55
0.4332





CFAB_YGLVTYATYPK_vs_IGF2_GIVEECCFR
 64 & 103
0.67
0.0019
0.57
0.2156





CFAB_YGLVTYATYPK_vs_LYAM1_SYYWIGIR
 64 & 120
0.65
0.008
0.6
0.1111





CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGLNPL
 64 & 134
0.7
3.00E-04
0.52
0.7399





CFAB_YGLVTYATYPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 64 & 144
0.67
0.0026
0.56
0.2866





CO5_TLLPVSKPEIR_vs_IGF2_GIVEECCFR
 70 & 103
0.66
0.0034
0.56
0.345





CO5_TLLPVSKPEIR_vs_PSG3_VSAPSGTGHLPGLNPL
 70 & 134
0.69
4.00E-04
0.52
0.7583





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.59
0.1116
0.65
0.0156





CO5_VFQFLEK_vs_IGF2_GIVEECCFR
 71 & 103
0.67
0.0024
0.53
0.6116





CO5_VFQFLEK_vs_PSG3_VSAPSGTGHLPGLNPL
 71 & 134
0.69
6.00E-04
0.5
0.994





CO6_ALNHLPLEYNSALYSR_vs_IGF2_GIVEECCFR
 72 & 103
0.65
0.0073
0.57
0.2475





CO6_ALNHLPLEYNSALYSR_vs_PGRP2_AGLLRPDYALLGHR
 72 & 126
0.55
0.3239
0.66
0.0075





CO8A_SLLQPNK_vs_IGF2_GIVEECCFR
 74 & 103
0.67
0.0017
0.54
0.5019





CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
 76 & 103
0.66
0.0044
0.57
0.2487





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_LYAM1_SYYWIGIR
 82 & 120
0.58
0.1424
0.67
0.0051





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_IALGGLLFPASNLR
 82 & 18
0.58
0.1601
0.68
0.0033





ENPP2_TYLHTYESEI_vs_LYAM1_SYYWIGIR
 83 & 120
0.57
0.2271
0.66
0.0091





ENPP2_TYLHTYESEI_vs_SHBG_IALGGLLFPASNLR
 83 & 18
0.55
0.3581
0.67
0.0044





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.65
0.0059
0.62
0.0489





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.56
0.3019
0.67
0.0045





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.56
0.2726
0.67
0.0059





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.59
0.1197
0.66
0.0063





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.61
0.0378
0.66
0.0073





IBP4_QCHPALDGQR_vs_IBP3_YGQPLPGYTTK
  2 & 100
0.66
0.0034
0.58
0.1711





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.67
0.0015
0.61
0.0651





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.61
0.0451
0.68
0.0032





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
  2 & 126
0.58
0.1417
0.71
6.00E-04





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.68
0.0014
0.56
0.3528





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.6
0.0834
0.68
0.0024





INHBC_LDFHFSSDR_vs_ALS_IRPHTFTGLSGLR
107 & 40
0.56
0.2846
0.68
0.0026





INHBC_LDFHFSSDR_vs_CHL1_VIAVNEVGR
107 & 66
0.58
0.1366
0.66
0.0088





INHBC_LDFHFSSDR_vs_CRIS3_AVSPPAR
107 & 78
0.55
0.3173
0.67
0.006





INHBC_LDFHFSSDR_vs_CRIS3_YEDLYSNCK
107 & 79
0.57
0.2179
0.67
0.0043





INHBC_LDFHFSSDR_vs_IBP3_FLNVLSPR
107 & 99
0.59
0.1086
0.69
0.0015





INHBC_LDFHFSSDR_vs_IBP3_YGQPLPGYTTK
107 & 100
0.61
0.0439
0.67
0.004





INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 & 103
0.63
0.0188
0.67
0.0039





INHBC_LDFHFSSDR_vs_ITIH4_ILDDLSPR
107 & 112
0.54
0.441
0.68
0.0031





INHBC_LDFHFSSDR_VS_LYAM1_SYYWIGIR
107 & 120
0.55
0.3239
0.69
0.0021





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.56
0.3109
0.7
9.00E-04





INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNLR
107 & 18
0.57
0.2071
0.68
0.0029





INHBC_LDFHFSSDR_vs_SPRL1_VLTHSELAPLR
107 & 140
0.57
0.21
0.68
0.0034





INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDSFLLR
107 & 141
0.59
0.1074
0.7
0.001





INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSSLR
107 & 142
0.58
0.1633
0.66
0.0078





INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
107 & 144
0.56
0.2388
0.67
0.0056





INHBC_LDFHFSSDR_vs_VTDB_ELPEHTVK
107 & 147
0.56
0.2531
0.71
6.00E-04





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.58
0.1338
0.67
0.0042





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.56
0.3147
0.67
0.005





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.56
0.2882
0.67
0.0055





LBP_ITGFLKPGK_vs_CRIS3_AVSPPAR
118 & 78
0.56
0.2822
0.65
0.012





LBP_ITGFLKPGK_vs_CRIS3_YEDLYSNCK
118 & 79
0.57
0.1725
0.65
0.0135





LBP_ITGFLKPGK_vs_LYAM1_SYYWIGIR
118 & 120
0.56
0.307
0.67
0.004





LBP_ITGFLKPGK_vs_SHBG_IALGGLLFPASNLR
118 & 18
0.54
0.4442
0.68
0.0027





LBP_ITLPDFTGDLR_vs_C163A_INPASLDK
119 & 54
0.54
0.4604
0.69
0.0013





LBP_ITLPDFTGDLR_vs_CRIS3_AVSPPAR
119 & 78
0.58
0.1395
0.68
0.0035





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.59
0.0853
0.67
0.0039





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.58
0.1601
0.71
6.00E-04





LBP_ITLPDFTGDLR_vs_PGRP2_AGLLRPDYALLGHR
119 & 126
0.56
0.2519
0.69
0.0012





LBP_ITLPDFTGDLR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
119 & 135
0.54
0.4236
0.67
0.0037





LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.56
0.2553
0.7
9.00E-04





LBP_ITLPDFTGDLR_vs_VTDB_ELPEHTVK
119 & 147
0.56
0.3057
0.67
0.0044





PEDF_LQSLFDSPDFSK_vs_CRIS3_AVSPPAR
124 & 78
0.58
0.1461
0.66
0.0074





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.6
0.082
0.66
0.0088





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.57
0.1856
0.68
0.0027





PEDF_LQSLFDSPDFSK_vs_TENX_LNWEAPPGAFDSFLLR
124 & 141
0.57
0.2324
0.66
0.0065





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.57
0.2139
0.66
0.0075





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.55
0.393
0.69
0.0014





PEDF_TVQAVLTVPK_vs_TENX_LNWEAPPGAFDSFLLR
125 & 141
0.55
0.3856
0.67
0.0045





PSG2_IHPSYTNYR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
133 & 135
0.56
0.2919
0.66
0.0065





VTNC_GQYCYELDEK_vs_IBP3_FLNVLSPR
149 & 99
0.66
0.0043
0.6
0.1065





VTNC_GQYCYELDEK_vs_IBP3_YGQPLPGYTTK
149 & 100
0.69
4.00E-04
0.59
0.1378





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.69
4.00E-04
0.6
0.0916





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.65
0.0078
0.65
0.01





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.61
0.0463
0.67
0.0057





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.7
2.00E-04
0.56
0.3077





VTNC_GQYCYELDEK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
149 & 135
0.57
0.1975
0.66
0.0093





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.62
0.0297
0.67
0.0059





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.66
0.0031
0.63
0.0374





VTNC_VDTVDPPYPR_vs_IBP3_YGQPLPGYTTK
150 & 100
0.67
0.0021
0.58
0.1711





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.68
0.0011
0.6
0.1139





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.64
0.0101
0.67
0.0056





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126
0.59
0.0914
0.66
0.0072





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.69
4.00E-04
0.55
0.3901





VTNC_VDTVDPPYPR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
150 & 135
0.57
0.2139
0.66
0.0089





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.6
0.0628
0.67
0.0047





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.65
0.0051
0.64
0.0187
















TABLE 63







Reversal Classification Performance, weeks 17-21.


Reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using 


a case vs control cut-off of <35 0/7 vs >=35 0/7 weeks, without


BMI stratification, separately for PPROM and PTL.















119_
119_
119_




119_
153_
153_
153_




153_
aBMI_35
aBMI_35
aBMI_35 



SEQ ID
aBMI_35 
PTL 
PPROM 
PPROM 


Reversal
NO:
PTL AUC
P-value
AUC
P-value





A2GL_DLLLPQPDLR_vs_IBP1_VVESLAK
 34 & 97
0.52
0.8126
0.67
0.0107





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.52
0.8436
0.68
0.0079





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.59
0.3629
0.67
0.0124





AFAM_DADPDTFFAK_vs_LYAM1_SYYWIGIR
 37 & 120
0.56
0.5765
0.68
0.0077





AFAM_HFQNLGK_vs_ALS_IRPHTFTGLSGLR
 38 & 40
0.54
0.7315
0.66
0.018





AFAM_HFQNLGK_vs_CRIS3_YEDLYSNCK
 38 & 79
0.54
0.6701
0.66
0.0228





AFAM_HFQNLGK_vs_IBP1_VVESLAK
 38 & 97
0.53
0.7973
0.65
0.0251





AFAM_HFQNLGK_vs_IBP3_FLNVLSPR
 38 & 99
0.51
0.959
0.67
0.0126





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.53
0.8024
0.7
0.0037





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.54
0.6798
0.72
0.0014





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
 38 & 120
0.52
0.8411
0.7
0.0029





AFAM_HFQNLGK_vs_PGRP2_AGLLRPDYALLGHR
 38 & 126
0.54
0.7117
0.65
0.025





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.52
0.8101
0.72
0.001





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.53
0.787
0.67
0.0122





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.5
0.9669
0.68
0.0083





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.51
0.9537
0.71
0.0018





APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
 48 & 79
0.58
0.4588
0.65
0.0262





APOH_ATVVYQGER_vs_IBP1_VVESLAK
 48 & 97
0.5
1
0.66
0.0156





APOH_ATVVYQGER_VS_LYAM1_SYYWIGIR
 48 & 120
0.57
0.4771
0.68
0.0079





B2MG_VEHSDLSFSK_vs_LYAM1_SYYWIGIR
 50 & 120
0.58
0.4409
0.75
2.00E-04





B2MG_VNHVTLSQPK_vs_CRIS3_AVSPPAR
 51 & 78
0.53
0.7692
0.68
0.0068





B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
 51 & 79
0.5
0.9802
0.69
0.0059





B2MG_VNHVTLSQPK_vs_IBP1_VVESLAK
 51 & 97
0.55
0.6485
0.68
0.0074





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
 51 & 103
0.51
0.9379
0.68
0.0076





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.53
0.7516
0.77
1.00E-04





B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
 51 & 18
0.51
0.888
0.68
0.01





CATD_VGFAEAAR_vs_ALS_IRPHTFTGLSGLR
 57 & 40
0.51
0.9537
0.69
0.0048





CATD_VGFAEAAR_vs_C163A_INPASLDK
 57 & 54
0.51
0.9379
0.77
1.00E-04





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
 57 & 78
0.52
0.8281
0.71
0.0016





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
 57 & 79
0.51
0.93
0.72
0.0014





CATD_VGFAEAAR_vs_CSH_AHQLAIDTYQEFEETYIPK
 57 & 80
0.57
0.5063
0.7
0.0029





CATD_VGFAEAAR_vs_CSH_ISLLLIESWLEPVR
 57 & 81
0.57
0.5063
0.69
0.0064





CATD_VGFAEAAR_vs_FBLN1_TGYYFDGISR
 57 & 86
0.54
0.6774
0.71
0.0017





CATD_VGFAEAAR_vs_IBP1_VVESLAK
 57 & 97
0.53
0.8024
0.72
0.0012





CATD_VGFAEAAR_vs_IBP2_LIQGAPTIR
 57 & 98
0.56
0.5342
0.69
0.0057





CATD_VGFAEAAR_vs_IBP3_FLNVLSPR
 57 & 99
0.5
0.9907
0.69
0.0062





CATD_VGFAEAAR_vs_IBP3_YGQPLPGYTTK
 57 & 100
0.5
0.9749
0.69
0.0042





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
 57 & 103
0.54
0.6847
0.73
8.00E-04





CATD_VGFAEAAR_vs_ITIH4_ILDDLSPR
 57 & 112
0.57
0.5063
0.72
0.0012





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
 57 & 120
0.52
0.8644
0.78
1.00E-04





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
 57 & 126
0.51
0.9274
0.71
0.0019





CATD_VGFAEAAR_vs_PSG3_VSAPSGTGHLPGLNPL
 57 & 134
0.55
0.597
0.75
2.00E-04





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.5
1
0.71
0.0024





CATD_VGFAEAAR_vs_SOM2.CSH_NYGLLYCFR
 57 & 138
0.57
0.4895
0.68
0.0074





CATD_VGFAEAAR_vs_SOM2.CSH_SVEGSCGF
 57 & 139
0.61
0.2945
0.68
0.0101





CATD_VGFAEAAR_vs_SPRL1_VLTHSELAPLR
 57 & 140
0.51
0.9247
0.72
0.0013





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.52
0.8462
0.73
7.00E-04





CATD_VGFAEAAR_vs_TENX_LSQLSVTDVTTSSLR
 57 & 142
0.53
0.7566
0.72
0.001





CATD_VGFAEAAR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 57 & 144
0.53
0.7845
0.72
0.0014





CATD_VGFAEAAR_vs_VTDB_ELPEHTVK
 57 & 147
0.58
0.4311
0.72
0.0011





CATD_VSTLPAITLK_vs_ALS_IRPHTFTGLSGLR
 58 & 40
0.52
0.8853
0.69
0.006





CATD_VSTLPAITLK_vs_C163A_INPASLDK
 58 & 54
0.5
0.9775
0.73
7.00E-04





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
 58 & 78
0.5
0.9749
0.71
0.002





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
 58 & 79
0.53
0.7491
0.71
0.0017





CATD_VSTLPAITLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 58 & 80
0.57
0.4916
0.68
0.0091





CATD_VSTLPAITLK_vs_CSH_ISLLLIESWLEPVR
 58 & 81
0.56
0.5563
0.66
0.0177





CATD_VSTLPAITLK_vs_FBLN1_TGYYFDGISR
 58 & 86
0.55
0.639
0.72
0.0013





CATD_VSTLPAITLK_vs_IBP1_VVESLAK
 58 & 97
0.52
0.8333
0.72
0.0015





CATD_VSTLPAITLK_vs_IBP3_FLNVLSPR
 58 & 99
0.52
0.8436
0.69
0.0049





CATD_VSTLPAITLK_vs_IBP3_YGQPLPGYTTK
 58 & 100
0.53
0.7794
0.7
0.0041





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
 58 & 103
0.57
0.5277
0.72
0.0012





CATD_VSTLPAITLK_vs_ITIH4_ILDDLSPR
 58 & 112
0.55
0.6438
0.69
0.0063





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
 58 & 120
0.5
0.9907
0.76
1.00E-04





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
 58 & 126
0.52
0.8359
0.7
0.0027





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
 58 & 134
0.53
0.7415
0.75
3.00E-04





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
 58 & 18
0.51
0.8932
0.7
0.003





CATD_VSTLPAITLK_vs_SOM2.CSH_NYGLLYCFR
 58 & 138
0.56
0.5342
0.66
0.0194





CATD_VSTLPAITLK_vs_SOM2.CSH_SVEGSCGF
 58 & 139
0.6
0.3182
0.65
0.0282





CATD_VSTLPAITLK_vs_SPRL1_VLTHSELAPLR
 58 & 140
0.51
0.9116
0.7
0.0038





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.55
0.6605
0.72
0.001





CATD_VSTLPAITLK_vs_TENX_LSQLSVTDVTTSSLR
 58 & 142
0.51
0.9511
0.71
0.0021





CATD_VSTLPAITLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 58 & 144
0.53
0.7415
0.7
0.0031





CATD_VSTLPAITLK_vs_VTDB_ELPEHTVK
 58 & 147
0.55
0.5993
0.7
0.0038





CBPN_EALIQFLEQVHQGIK_vs_LYAM1_SYYWIGIR
 59 & 120
0.57
0.5299
0.66
0.0166





CBPN_NGVDLNR_vs_LYAM1_SYYWIGIR
157 & 120
0.59
0.4063
0.68
0.0067





CBPN_NGVDLNR_vs_SPRL1_VLTHSELAPLR
157 & 140
0.56
0.5787
0.65
0.0235





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_YEDLYSNCK
 61 & 79
0.59
0.3989
0.65
0.0332





CD14_LTVGAAQVPAQLLVGALR_vs_CSH_AHQLAIDTYQEFEETYIPK
 61 & 80
0.66
0.1165
0.6
0.1512





CD14_LTVGAAQVPAQLLVGALR_vs_IBP1_VVESLAK
 61 & 97
0.52
0.8411
0.68
0.0075





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
 61 & 103
0.62
0.2535
0.66
0.0218





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.6
0.3208
0.71
0.0016





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.61
0.2972
0.67
0.0121





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.63
0.2169
0.66
0.0202





CD14_LTVGAAQVPAQLLVGALR_vs_SOM2.CSH_SVEGSCGF
 61 & 139
0.68
0.084
0.6
0.1355





CD14_LTVGAAQVPAQLLVGALR_vs_SPRL1_VLTHSELAPLR
 61 & 140
0.56
0.5585
0.65
0.0309





CD14_LTVGAAQVPAQLLVGALR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 61 & 144
0.6
0.3508
0.65
0.0271





CD14_LTVGAAQVPAQLLVGALR_vs_VTDB_ELPEHTVK
 61 & 147
0.59
0.3734
0.67
0.0112





CD14_SWLAELQQWLKPGLK_vs_CRIS3_YEDLYSNCK
 62 & 79
0.56
0.5563
0.65
0.0272





CD14_SWLAELQQWLKPGLK_vs_IBP1_VVESLAK
 62 & 97
0.51
0.959
0.69
0.0064





CD14_SWLAELQQWLKPGLK_vs_IGF2_GIVEECCFR
 62 & 103
0.57
0.4936
0.66
0.0192





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.56
0.5765
0.72
0.0013





CD14_SWLAELQQWLKPGLK_vs_PGRP2_AGLLRPDYALLGHR
 62 & 126
0.57
0.4916
0.67
0.0113





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
 62 & 18
0.61
0.3049
0.66
0.0204





CD14_SWLAELQQWLKPGLK_vs_SOM2.CSH_SVEGSCGF
 62 & 139
0.65
0.1421
0.61
0.1227





CD14_SWLAELQQWLKPGLK_vs_SPRL1_VLTHSELAPLR
 62 & 140
0.53
0.7819
0.65
0.0299





CD14_SWLAELQQWLKPGLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 62 & 144
0.56
0.5652
0.66
0.0169





CD14_SWLAELQQWLKPGLK_vs_VTDB_ELPEHTVK
 62 & 147
0.52
0.8749
0.7
0.0042





CFAB_YGLVTYATYPK_vs_LYAM1_SYYWIGIR
 64 & 120
0.56
0.5787
0.65
0.0294





CLUS_ASSIIDELFQDR_vs_CRIS3_YEDLYSNCK
 67 & 79
0.6
0.3128
0.65
0.0257





CLUS_ASSIIDELFQDR_vs_IBP1_VVESLAK
 67 & 97
0.52
0.8671
0.66
0.0187





CLUS_ASSIIDELFQDR_vs_IGF2_GIVEECCFR
 67 & 103
0.64
0.1768
0.65
0.0256





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.63
0.1944
0.7
0.0028





CLUS_ASSIIDELFQDR_vs_SHBG_IALGGLLFPASNLR
 67 & 18
0.62
0.236
0.65
0.0322





CLUS_ASSIIDELFQDR_vs_VTDB_ELPEHTVK
 67 & 147
0.65
0.1389
0.64
0.0437





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_AVSPPAR
 68 & 78
0.57
0.4709
0.65
0.0308





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_YEDLYSNCK
 68 & 79
0.6
0.3208
0.66
0.0213





CLUS_LFDSDPITVTVPVEVSR_vs_IBP1_VVESLAK
 68 & 97
0.52
0.8775
0.66
0.0188





CLUS_LFDSDPITVTVPVEVSR_vs_IGF2_GIVEECCFR
 68 & 103
0.65
0.147
0.64
0.0395





CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGIR
 68 & 120
0.62
0.2386
0.69
0.0064





CLUS_LFDSDPITVTVPVEVSR_vs_VTDB_ELPEHTVK
 68 & 147
0.63
0.2145
0.65
0.0299





CO5_TLLPVSKPEIR_vs_CRIS3_YEDLYSNCK
 70 & 79
0.57
0.5234
0.65
0.0313





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.6
0.3473
0.7
0.0041





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.59
0.3989
0.67
0.0137





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGIR
 72 & 120
0.57
0.4853
0.69
0.0042





CO8A_SLLQPNK_vs_IBP1_VVESLAK
 74 & 97
0.5
0.9987
0.66
0.0164





COSA_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.6
0.3525
0.68
0.0076





CO8B_QALEEFQK_vs_IBP1_VVESLAK
 76 & 97
0.5
0.9987
0.67
0.012





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
 76 & 120
0.57
0.5105
0.67
0.0131





F13B_GDTYPAELYITGSILR_vs_CRIS3_AVSPPAR
 84 & 78
0.55
0.6179
0.66
0.0157





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
 84 & 79
0.58
0.4488
0.67
0.0134





F13B_GDTYPAELYITGSILR_vs_IBP1_VVESLAK
 84 & 97
0.51
0.9379
0.67
0.0123





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
 84 & 103
0.6
0.3273
0.67
0.0146





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.58
0.437
0.74
4.00E-04





F13B_GDTYPAELYITGSILR_vs_SHBG_IALGGLLFPASNLR
 84 & 18
0.58
0.4429
0.66
0.0197





F13B_GDTYPAELYITGSILR_vs_SPRL1_VLTHSELAPLR
 84 & 140
0.54
0.6677
0.65
0.0254





FETUA_FSVVYAK_vs_CRIS3_YEDLYSNCK
 88 & 79
0.55
0.6629
0.69
0.0056





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
 88 & 120
0.6
0.3456
0.76
1.00E-04





FETUA_HTLNQIDEVK_vs_LYAM1_SYYWIGIR
 89 & 120
0.57
0.5212
0.73
7.00E-04





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
 92 & 120
0.6
0.3372
0.72
0.0012





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
 93 & 120
0.5
0.996
0.7
0.0041





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.53
0.7769
0.71
0.0025





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.52
0.8566
0.71
0.0022





IBP4_QCHPALDGQR_vs_IBP1_VVESLAK
  2 & 97
0.54
0.6798
0.69
0.0062





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.56
0.5924
0.65
0.0254





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.51
0.9142
0.75
2.00E-04





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.53
0.787
0.67
0.0125





IBP6_HLDSVLQQLQTEVYR_vs_CRIS3_YEDLYSNCK
102 & 79
0.54
0.6994
0.69
0.0063





IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIGIR
102 & 120
0.57
0.5277
0.72
0.0016





KNG1_DIPTNSPELEETLTHTITK_vs_IBP1_VVESLAK
116 & 97
0.53
0.7769
0.67
0.0108





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.52
0.8644
0.7
0.003





KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.6
0.3144
0.65
0.0294





KNG1_QVVAGLNFR_vs_IBP1_VVESLAK
117 & 97
0.51
0.9168
0.68
0.0087





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.65
0.1517
0.63
0.0487





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.61
0.2896
0.71
0.0017





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.6
0.3128
0.66
0.0214





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.55
0.6319
0.71
0.0026





PEDF_LQSLFDSPDFSK_vs_CRIS3_AVSPPAR
124 & 78
0.5
0.9775
0.68
0.0093





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.52
0.8359
0.68
0.01





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.53
0.787
0.73
9.00E-04





PEDF_TVQAVLTVPK_vs_CRIS3_AVSPPAR
125 & 78
0.5
0.9749
0.68
0.0084





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.54
0.729
0.68
0.0071





PEDF_TVQAVLTVPK_vs_IGF2_GIVEECCFR
125 & 103
0.54
0.7216
0.67
0.013





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.53
0.7491
0.74
4.00E-04





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.61
0.2762
0.65
0.0254





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.63
0.2244
0.66
0.0228





PSG2_IHPSYTNYR_vs_IBP1_VVESLAK
133 & 97
0.58
0.4429
0.65
0.0299





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.63
0.1978
0.67
0.0132





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.65
0.1498
0.62
0.0668





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.63
0.2194
0.65
0.0315





PTGDS_GPGEDFR_vs_CRIS3_YEDLYSNCK
137 & 79
0.57
0.5105
0.65
0.0303





PTGDS_GPGEDFR_vs_IBP1_VVESLAK
137 & 97
0.51
0.9037
0.67
0.0143





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 & 120
0.52
0.8152
0.68
0.0071





THBG_AVLHIGEK_vs_LYAM1_SYYWIGIR
143 & 120
0.56
0.5742
0.68
0.01





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.56
0.5697
0.66
0.0213





VTNC_GQYCYELDEK_vs_IBP1_VVESLAK
149 & 97
0.51
0.9168
0.67
0.0124





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.59
0.3664
0.65
0.0232





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.57
0.5212
0.73
8.00E-04





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.57
0.5256
0.67
0.0152





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.58
0.4508
0.66
0.0227





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.52
0.8307
0.67
0.0145





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.52
0.8307
0.67
0.0143





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.5
0.9669
0.74
4.00E-04





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.53
0.7642
0.66
0.0159
















TABLE 64







Reversal Classification Performance, weeks 17-21.


Reversal AUROC for gestational weeks 17 0/7 through 21 6/7 


using a case vs control cut-off of <35 0/7 vs >= 35 0/7 weeks, 


with BMI stratification (>22 <=37), separately for PPROM and PTL.














119_
119_
119_
119_




153_
153_
153_
153_




rBMI_35 
rBMI_35
rBMI_35
rBMI_35



SEQ ID
PTL 
PTL 
PPROM 
PPROM 


Reversal
NO:
ROC_AUC
P-value
ROC_AUC
P-value





A2GL_DLLLPQPDLR_vs_CRIS3_YEDLYSNCK
 34 & 79
0.59
0.4023
0.67
0.0438





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.56
0.6023
0.77
0.0014





AFAM_DADPDTFFAK_vs_CRIS3_YEDLYSNCK
 37 & 79
0.63
0.2599
0.67
0.0425





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.64
0.2206
0.69
0.0268





AFAM_DADPDTFFAK_vs_LYAM1_SYYWIGIR
 37 & 120
0.59
0.4116
0.75
0.0043





AFAM_DADPDTFFAK_vs_PGRP2_AGLLRPDYALLGHR
 37 & 126
0.6
0.3694
0.71
0.0154





AFAM_HFQNLGK_vs_ALS_IRPHTFTGLSGLR
 38 & 40
0.56
0.6023
0.7
0.0193





AFAM_HFQNLGK_vs_CRIS3_AVSPPAR
 38 & 78
0.56
0.5612
0.69
0.0271





AFAM_HFQNLGK_vs_CRIS3_YEDLYSNCK
 38 & 79
0.6
0.3665
0.7
0.0184





AFAM_HFQNLGK_vs_IBP3_FLNVLSPR
 38 & 99
0.52
0.8893
0.73
0.008





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.53
0.7955
0.73
0.0071





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.58
0.4597
0.75
0.0037





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
 38 & 120
0.56
0.5686
0.77
0.0014





AFAM_HFQNLGK_vs_PGRP2_AGLLRPDYALLGHR
 38 & 126
0.56
0.5797
0.74
0.0051





ANGT_DPTFIPAPIQAK_vs_CRIS3_AVSPPAR
 42 & 78
0.52
0.8807
0.73
0.0077





ANGT_DPTFIPAPIQAK_vs_CRIS3_YEDLYSNCK
 42 & 79
0.53
0.7913
0.72
0.0088





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.53
0.7704
0.8
5.00E-04





ANGT_DPTFIPAPIQAK_vs_PGRP2_AGLLRPDYALLGHR
 42 & 126
0.54
0.7455
0.72
0.0091





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.58
0.4664
0.7
0.02





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.61
0.3141
0.71
0.0166





APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGHR
 48 & 126
0.61
0.3115
0.7
0.0216





B2MG_VEHSDLSFSK_vs_LYAM1_SYYWIGIR
 50 & 120
0.53
0.8124
0.79
8.00E-04





B2MG_VNHVTLSQPK_vs_CRIS3_AVSPPAR
 51 & 78
0.53
0.7787
0.71
0.0151





B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
 51 & 79
0.56
0.5723
0.71
0.0151





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.52
0.8336
0.82
2.00E-04





CATD_VGFAEAAR_vs_ALS_IRPHTFTGLSGLR
 57 & 40
0.57
0.5466
0.69
0.024





CATD_VGFAEAAR_vs_C163A_INPASLDK
 57 & 54
0.53
0.8039
0.83
1.00E-04





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
 57 & 78
0.54
0.6924
0.74
0.0061





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
 57 & 79
0.58
0.4697
0.74
0.0055





CATD_VGFAEAAR_vs_CSH_AHQLAIDTYQEFEETYIPK
 57 & 80
0.65
0.1786
0.7
0.0191





CATD_VGFAEAAR_vs_CSH_ISLLLIESWLEPVR
 57 & 81
0.65
0.17
0.69
0.0306





CATD_VGFAEAAR_vs_IBP3_FLNVLSPR
 57 & 99
0.58
0.5004
0.7
0.0188





CATD_VGFAEAAR_vs_IBP3_YGQPLPGYTTK
 57 & 100
0.56
0.5835
0.7
0.0209





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
 57 & 103
0.61
0.3115
0.72
0.0095





CATD_VGFAEAAR_vs_ITIH4_ILDDLSPR
 57 & 112
0.52
0.8336
0.74
0.005





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
 57 & 120
0.55
0.6684
0.82
2.00E-04





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
 57 & 126
0.57
0.5215
0.74
0.0047





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.56
0.6138
0.7
0.0174





CATD_VGFAEAAR_vs_SOM2.CSH_NYGLLYCFR
 57 & 138
0.64
0.2085
0.68
0.0387





CATD_VGFAEAAR_vs_SPRL1_VLTHSELAPLR
 57 & 140
0.56
0.6176
0.69
0.0286





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.53
0.7913
0.73
0.0084





CATD_VSTLPAITLK_vs_ALS_IRPHTFTGLSGLR
 58 & 40
0.59
0.4178
0.71
0.0154





CATD_VSTLPAITLK_vs_C163A_INPASLDK
 58 & 54
0.52
0.855
0.8
4.00E-04





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
 58 & 78
0.56
0.5835
0.75
0.0032





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
 58 & 79
0.61
0.3355
0.76
0.0028





CATD_VSTLPAITLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 58 & 80
0.65
0.1858
0.7
0.0229





CATD_VSTLPAITLK_vs_CSH_ISLLLIESWLEPVR
 58 & 81
0.64
0.2105
0.67
0.0443





CATD_VSTLPAITLK_vs_IBP1_VVESLAK
 58 & 97
0.52
0.8507
0.74
0.0056





CATD_VSTLPAITLK_vs_IBP3_FLNVLSPR
 58 & 99
0.6
0.3932
0.73
0.0085





CATD_VSTLPAITLK_vs_IBP3_YGQPLPGYTTK
 58 & 100
0.59
0.4023
0.71
0.0152





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
 58 & 103
0.64
0.2186
0.73
0.0065





CATD_VSTLPAITLK_vs_ITIH4_ILDDLSPR
 58 & 112
0.5
0.9848
0.73
0.0071





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
 58 & 120
0.56
0.5872
0.83
1.00E-04





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
 58 & 126
0.58
0.463
0.77
0.0017





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
 58 & 134
0.5
0.9674
0.75
0.0042





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
 58 & 18
0.57
0.5393
0.72
0.0103





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.55
0.6487
0.75
0.0043





CBPN_EALIQFLEQVHQGIK_vs_LYAM1_SYYWIGIR
 59 & 120
0.56
0.6099
0.73
0.007





CBPN_NGVDLNR_vs_CRIS3_YEDLYSNCK
157 & 79
0.59
0.4147
0.67
0.0466





CBPN_NGVDLNR_VS_LYAM1_SYYWIGIR
157 & 120
0.59
0.4305
0.75
0.0032





CD14_LTVGAAQVPAQLLVGALR_VS_LYAM1_SYYWIGIR
 61 & 120
0.65
0.1858
0.75
0.0038





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.63
0.2289
0.71
0.0156





CD14_LTVGAAQVPAQLLVGALR_vs_SOM2.CSH_SVEGSCGF
 61 & 139
0.73
0.0354
0.59
0.315





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.6
0.3812
0.73
0.0071





CD14_SWLAELQQWLKPGLK_vs_PGRP2_AGLLRPDYALLGHR
 62 & 126
0.6
0.3782
0.7
0.0226





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.67
0.1206
0.73
0.0083





CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGIR
 68 & 120
0.64
0.2085
0.67
0.0429





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.65
0.1751
0.72
0.0096





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.64
0.2186
0.68
0.0403





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGIR
 72 & 120
0.63
0.2247
0.73
0.0078





CO6_ALNHLPLEYNSALYSR_vs_PGRP2_AGLLRPDYALLGHR
 72 & 126
0.64
0.2227
0.67
0.0466





COSA_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.64
0.2027
0.7
0.0204





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
 76 & 120
0.61
0.341
0.68
0.0412





F13B_GDTYPAELYITGSILR_vs_CRIS3_AVSPPAR
 84 & 78
0.62
0.2716
0.69
0.0248





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
 84 & 79
0.64
0.2027
0.69
0.024





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.62
0.2692
0.79
6.00E-04





F13B_GDTYPAELYITGSILR_vs_PGRP2_AGLLRPDYALLGHR
 84 & 126
0.6
0.3812
0.71
0.0166





F13B_GDTYPAELYITGSILR_vs_SHBG_IALGGLLFPASNLR
 84 & 18
0.61
0.3194
0.67
0.0456





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
 88 & 120
0.58
0.4935
0.82
2.00E-04





FETUA_HTLNQIDEVK_vs_LYAM1_SYYWIGIR
 89 & 120
0.54
0.7127
0.81
3.00E-04





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
 93 & 120
0.53
0.8209
0.73
0.0064





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.53
0.7871
0.72
0.0093





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.57
0.5074
0.73
0.007





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.54
0.7372
0.82
2.00E-04





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.58
0.4901
0.68
0.0326





IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIGIR
102 & 120
0.53
0.7787
0.78
0.001





ITIH3_ALDLSLK_vs_LYAM1_SYYWIGIR
111 & 120
0.61
0.3328
0.69
0.0302





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.57
0.525
0.74
0.0045





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.65
0.17
0.75
0.003





PAPP1_DIPHWLNPTR_vs_CRIS3_AVSPPAR
122 & 78
0.62
0.2861
0.7
0.0224





PAPP1_DIPHWLNPTR_vs_CRIS3_YEDLYSNCK
122 & 79
0.65
0.1913
0.69
0.0234





PAPP1_DIPHWLNPTR_vs_LYAM1_SYYWIGIR
122 & 120
0.61
0.3274
0.74
0.006





PAPP1_DIPHWLNPTR_vs_PRG2_WNFAYWAAHQPWSR
122 & 129
0.77
0.0162
0.63
0.1266





PAPP1_DIPHWLNPTR_vs_SHBG_IALGGLLFPASNLR
122 & 18
0.59
0.4369
0.67
0.0434





PAPP1_DIPHWLNPTR_vs_SOM2.CSH_NYGLLYCFR
122 & 138
0.73
0.0405
0.58
0.3298





PAPP1_DIPHWLNPTR_vs_SOM2.CSH_SVEGSCGF
122 & 139
0.77
0.0155
0.65
0.0869





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.59
0.4336
0.67
0.0466





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.6
0.3522
0.76
0.0029





PEDF_TVQAVLTVPK_vs_CRIS3_AVSPPAR
125 & 78
0.57
0.5109
0.68
0.0319





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.6
0.3636
0.69
0.0265





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.6
0.3551
0.77
0.0016





PEDF_TVQAVLTVPK_vs_PGRP2_AGLLRPDYALLGHR
125 & 126
0.58
0.4498
0.69
0.0302





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.67
0.1232
0.72
0.0099





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.68
0.1011
0.72
0.012





PSG2_IHPSYTNYR_vs_IBP1_VVESLAK
133 & 97
0.59
0.4241
0.67
0.0416





PSG2_IHPSYTNYR_vs_IBP2_LIQGAPTIR
133 & 98
0.67
0.1232
0.69
0.0268





PSG2_IHPSYTNYR_vs_IGF2_GIVEECCFR
133 & 103
0.66
0.1429
0.67
0.0429





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.68
0.0966
0.76
0.0024





PSG2_IHPSYTNYR_vs_PGRP2_AGLLRPDYALLGHR
133 & 126
0.66
0.1414
0.7
0.0204





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.68
0.1081
0.67
0.0456





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.68
0.1057
0.71
0.0134





PSG2_IHPSYTNYR_vs_SOM2.CSH_SVEGSCGF
133 & 139
0.74
0.0336
0.64
0.1069





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 & 120
0.6
0.3812
0.72
0.0088





THBG_AVLHIGEK_vs_LYAM1_SYYWIGIR
143 & 120
0.61
0.341
0.69
0.0265





VTNC_GQYCYELDEK_vs_CRIS3_AVSPPAR
149 & 78
0.6
0.3871
0.68
0.0383





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.62
0.2886
0.69
0.0245





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.62
0.2788
0.79
8.00E-04





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.62
0.2986
0.7
0.0209





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.61
0.3355
0.67
0.0476





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.57
0.5144
0.69
0.0286





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.55
0.6253
0.78
0.0012
















TABLE 65







Reversal Classification Performance, weeks 17-21.


Reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs    


control cut-off of <37 0/7 vs >=37 0/7 weeks, without BMI stratification, 


separately for primigravida and multigravida.














119_153_
119_153_
119_153_
119_153_




aBMI_37
aBMI_37
aBMI_37
aBMI_37 



SEQ ID
multi
multi
primi
primi


Reversal
NO:
ROC_AUC
P-value
ROC_AUC
P-value





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.59
0.0399
0.67
0.0102





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.65
4.00E−04
0.53
0.6818





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.65
5.00E−04
0.56
0.3992





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.65
3.00E−04
0.62
0.0687





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.63
0.0017
0.65
0.0238





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.62
0.0049
0.67
0.0104





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.65
4.00E−04
0.65
0.0277





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.62
0.0049
0.66
0.0148





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.62
0.0036
0.65
0.0218





APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
 48 & 18
0.59
0.0394
0.65
0.0255





B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
 51 & 18
0.57
0.0849
0.7
0.0029





C1QB_VPGLYYFTYHASSR_vs_PGRP2_AGLLRPDYALLGHR
 55 & 126
0.57
0.1204
0.68
0.0058





C1QB_VPGLYYFTYHASSR_vs_PSG3_VSAPSGTGHLPGLNPL
 55 & 134
0.58
0.0476
0.66
0.0171





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.58
0.0754
0.71
0.0017





C1QB_VPGLYYFTYHASSR_vs_TENX_LNWEAPPGAFDSFLLR
 55 & 141
0.58
0.0678
0.68
0.0077





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.57
0.0986
0.68
0.0055





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.58
0.0743
0.69
0.0038





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
 58 & 18
0.57
0.1127
0.69
0.0049





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.57
0.1066
0.69
0.0035





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.58
0.0737
0.68
0.0068





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LNWEAPPGAFDSFLLR
 61 & 141
0.58
0.0622
0.66
0.0135





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
 62 & 18
0.59
0.0371
0.66
0.0148





CD14_SWLAELQQWLKPGLK_vs_TENX_LNWEAPPGAFDSFLLR
 62 & 141
0.59
0.0404
0.65
0.023





CFAB_YGLVTYATYPK_vs_IGF2_GIVEECCFR
 64 & 103
0.66
2.00E−04
0.55
0.493





CFAB_YGLVTYATYPK_vs_PGRP2_AGLLRPDYALLGHR
 64 & 126
0.6
0.0247
0.65
0.0255





CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGLNPL
 64 & 134
0.65
6.00E−04
0.61
0.1087





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.58
0.066
0.69
0.0049





CO5_TLLPVSKPEIR_vs_TENX_LNWEAPPGAFDSFLLR
 70 & 141
0.58
0.0557
0.67
0.0119





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
 71 & 18
0.59
0.0314
0.66
0.013





CO6_ALNHLPLEYNSALYSR_vs_SHBG_IALGGLLFPASNLR
 72 & 18
0.58
0.0515
0.65
0.0234





COSA_SLLQPNK_vs_IGF2_GIVEECCFR
 74 & 103
0.66
2.00E−04
0.52
0.8158





CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
 76 & 103
0.66
2.00E−04
0.53
0.6297





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_IALGGLLFPASNLR
 82 & 18
0.61
0.0121
0.66
0.0171





ENPP2_TYLHTYESEI_vs_PSG3_VSAPSGTGHLPGLNPL
 83 & 134
0.59
0.0287
0.65
0.023





ENPP2_TYLHTYESEI_vs_SHBG_IALGGLLFPASNLR
 83 & 18
0.59
0.0253
0.66
0.0135





FBLN3_IPSNPSHR_vs_SHBG_IALGGLLFPASNLR
 87 & 18
0.55
0.2452
0.73
4.00E−04





FETUA_FSVVYAK_vs_IGF2_GIVEECCFR
 88 & 103
0.68
0
0.51
0.862





FETUA_HTLNQIDEVK_vs_IGF2_GIVEECCFR
 89 & 103
0.66
2.00E−04
0.51
0.9138





HABP2_FLNWIK_vs_SHBG_IALGGLLFPASNLR
 92 & 18
0.59
0.0407
0.66
0.0162





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.59
0.0277
0.67
0.0108





HEMO_NFPSPVDAAFR_vs_SHBG_IALGGLLFPASNLR
 93 & 18
0.59
0.0432
0.67
0.0088





HEMO_NFPSPVDAAFR_vs_TENX_LNWEAPPGAFDSFLLR
 93 & 141
0.58
0.0642
0.66
0.0128





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
  2 & 126
0.57
0.0774
0.73
5.00E−04





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.63
0.0017
0.67
0.0095





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.6
0.0241
0.72
7.00E−04





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFDSFLLR
  2 & 141
0.59
0.0444
0.69
0.0048





INHBC_LDFHFSSDR_vs_IBP3_YGQPLPGYTTK
107 & 100
0.65
6.00E−04
0.54
0.5224





INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 & 103
0.67
1.00E−04
0.55
0.4254





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.61
0.009
0.65
0.0242





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.66
2.00E−04
0.59
0.1755





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.61
0.0073
0.65
0.0207





KNG1_DIPTNSPELEETLTHTITK_vs_PSG3_VSAPSGTGHLPGLNPL
116 & 134
0.59
0.0285
0.66
0.0138





KNG1_DIPTNSPELEETLTHTITK_vs_SHBG_IALGGLLFPASNLR
116 & 18
0.56
0.1468
0.69
0.0045





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.56
0.1453
0.68
0.0062





LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNPL
118 & 134
0.65
3.00E−04
0.61
0.0989





LBP_ITGFLKPGK_vs_SHBG_IALGGLLFPASNLR
118 & 18
0.61
0.0097
0.65
0.0277





LBP_ITLPDFTGDLR_vs_CRIS3_AVSPPAR
119 & 78
0.65
5.00E−04
0.55
0.4254





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.65
3.00E−04
0.57
0.3108





LBP_ITLPDFTGDLR_vs_IGF2_GIVEECCFR
119 & 103
0.65
4.00E−04
0.57
0.3015





LBP_ITLPDFTGDLR_vs_PGRP2_AGLLRPDYALLGHR
119 & 126
0.61
0.0103
0.67
0.0116





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGLNPL
119 & 134
0.66
1.00E−04
0.64
0.0397





LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.62
0.0039
0.66
0.0128





LBP_ITLPDFTGDLR_vs_TENX_LNWEAPPGAFDSFLLR
119 & 141
0.61
0.0132
0.65
0.0218





PEDF_TVQAVLTVPK_vs_TENX_LNWEAPPGAFDSFLLR
125 & 141
0.59
0.0331
0.65
0.0222





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.66
1.00E−04
0.57
0.2689





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.59
0.0262
0.68
0.0069





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.65
6.00E−04
0.65
0.0218





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.62
0.0039
0.68
0.0058





VTNC_GQYCYELDEK_vs_TENX_LNWEAPPGAFDSFLLR
149 & 141
0.6
0.0134
0.65
0.0204





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.62
0.0036
0.65
0.0255





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.66
1.00E−04
0.56
0.3883





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126
0.59
0.0402
0.68
0.0078





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.64
7.00E−04
0.65
0.0215





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.61
0.0068
0.67
0.0114





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.65
4.00E−04
0.63
0.0558
















TABLE 66







Reversal Classification Performance, weeks 17-21.


Reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control cut-off of   


<37 0/7 vs >=37 0/7 weeks, with BMI stratification (>22 <=37), 


separately for primigravida and multigravida.














119_153_
119_153_
119_153_
119_153_




rBMI_37
rBMI_37
rBMI_37
rBMI_37



SEQ ID 
multi 
multi 
primi 
primi 


Reversal
NO:
ROC_AUC
P-value
ROC_AUC
P-value





A2GL_DLLLPQPDLR_vs_CRIS3_AVSPPAR
 34 & 78
0.65
0.0038
0.52
0.8315





A2GL_DLLLPQPDLR_vs_CRIS3_YEDLYSNCK
 34 & 79
0.65
0.0037
0.52
0.8126





A2GL_DLLLPQPDLR_vs_IGF2_GIVEECCFR
 34 & 103
0.65
0.0026
0.51
0.9467





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.62
0.0209
0.65
0.071





A2GL_DLLLPQPDLR_vs_PGRP2_AGLLRPDYALLGHR
 34 & 126
0.57
0.1962
0.72
0.0073





A2GL_DLLLPQPDLR_vs_SHBG_IALGGLLFPASNLR
 34 & 18
0.59
0.0826
0.69
0.0219





AFAM_DADPDTFFAK_vs_IBP3_FLNVLSPR
 37 & 99
0.67
9.00E−04
0.57
0.4118





AFAM_DADPDTFFAK_vs_IBP3_YGQPLPGYTTK
 37 & 100
0.68
3.00E−04
0.55
0.5885





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.71
0
0.57
0.4118





AFAM_HFQNLGK_vs_IBP3_FLNVLSPR
 38 & 99
0.67
9.00E−04
0.51
0.8792





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.68
4.00E−04
0.5
0.9854





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.7
1.00E−04
0.53
0.7565





ANGT_DPTFIPAPIQAK_vs_CRIS3_AVSPPAR
 42 & 78
0.66
0.001
0.54
0.6484





ANGT_DPTFIPAPIQAK_vs_CRIS3_YEDLYSNCK
 42 & 79
0.66
0.0016
0.5
1





ANGT_DPTFIPAPIQAK_vs_IGF2_GIVEECCFR
 42 & 103
0.65
0.003
0.51
0.8696





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.6
0.0486
0.69
0.0212





ANGT_DPTFIPAPIQAK_vs_TENX_LNWEAPPGAFDSFLLR
 42 & 141
0.57
0.1908
0.71
0.0121





APOC3_GWVTDGFSSLK_vs_C163A_INPASLDK
 47 & 54
0.6
0.0479
0.68
0.0291





APOC3_GWVTDGFSSLK_vs_CRIS3_YEDLYSNCK
 47 & 79
0.63
0.0104
0.65
0.0673





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.61
0.0229
0.65
0.0789





APOC3_GWVTDGFSSLK_vs_IBP3_YGQPLPGYTTK
 47 & 100
0.61
0.036
0.65
0.0789





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.6
0.0418
0.71
0.0129





APOC3_GWVTDGFSSLK_vs_PGRP2_AGLLRPDYALLGHR
 47 & 126
0.57
0.1362
0.72
0.0088





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.6
0.0572
0.69
0.0257





APOC3_GWVTDGFSSLK_vs_SHBG_IALGGLLFPASNLR
 47 & 18
0.58
0.1164
0.7
0.0186





APOC3_GWVTDGFSSLK_vs_TENX_LNWEAPPGAFDSFLLR
 47 & 141
0.58
0.1194
0.7
0.0163





APOC3_GWVTDGFSSLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 47 & 144
0.58
0.0932
0.67
0.0393





APOC3_GWVTDGFSSLK_vs_VTDB_ELPEHTVK
 47 & 147
0.58
0.1312
0.69
0.0249





APOH_ATVVYQGER_vs_IBP3_YGQPLPGYTTK
 48 & 100
0.65
0.0021
0.51
0.908





APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
 48 & 103
0.67
5.00E−04
0.58
0.3523





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
 51 & 103
0.65
0.0034
0.5
1





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.57
0.1547
0.68
0.0339





BGH3_LTLLAPLNSVFK_vs_CRIS3_AVSPPAR
 52 & 78
0.65
0.0022
0.52
0.841





BGH3_LTLLAPLNSVFK_vs_CRIS3_YEDLYSNCK
 52 & 79
0.66
0.0015
0.5
0.9854





BGH3_LTLLAPLNSVFK_vs_IGF2_GIVEECCFR
 52 & 103
0.66
0.0014
0.56
0.4998





BGH3_LTLLAPLNSVFK_vs_TENX_LNWEAPPGAFDSFLLR
 52 & 141
0.58
0.112
0.66
0.0496





C1QB_VPGLYYFTYHASSR_vs_PGRP2_AGLLRPDYALLGHR
 55 & 126
0.57
0.1483
0.71
0.0109





C1QB_VPGLYYFTYHASSR_vs_SHBG_IALGGLLFPASNLR
 55 & 18
0.57
0.1962
0.72
0.0073





C1QB_VPGLYYFTYHASSR_vs_TENX_LNWEAPPGAFDSFLLR
 55 & 141
0.55
0.3241
0.72
0.0082





CBPN_NGVDLNR_vs_IGF2_GIVEECCFR
157 & 103
0.66
0.0017
0.55
0.5392





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
 61 & 103
0.65
0.0038
0.51
0.8696





CFAB_YGLVTYATYPK_vs_CRIS3_AVSPPAR
 64 & 78
0.65
0.0037
0.53
0.6838





CFAB_YGLVTYATYPK_vs_CRIS3_YEDLYSNCK
 64 & 79
0.65
0.0033
0.5
0.9951





CFAB_YGLVTYATYPK_vs_IGF2_GIVEECCFR
 64 & 103
0.67
8.00E−04
0.51
0.9273





CFAB_YGLVTYATYPK_vs_PGRP2_AGLLRPDYALLGHR
 64 & 126
0.57
0.1865
0.7
0.0175





CFAB_YGLVTYATYPK_vs_TENX_LNWEAPPGAFDSFLLR
 64 & 141
0.55
0.3241
0.7
0.018





CLUS_ASSIIDELFQDR_vs_IGF2_GIVEECCFR
 67 & 103
0.65
0.0021
0.54
0.6311





CO5_TLLPVSKPEIR_vs_IGF2_GIVEECCFR
 70 & 103
0.65
0.0028
0.51
0.9177





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.6
0.0461
0.68
0.0291





CO5_TLLPVSKPEIR_vs_PGRP2_AGLLRPDYALLGHR
 70 & 126
0.55
0.2997
0.74
0.0035





CO5_TLLPVSKPEIR_vs_PSG3_VSAPSGTGHLPGLNPL
 70 & 134
0.59
0.0814
0.68
0.0309





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.57
0.1519
0.73
0.0066





CO5_TLLPVSKPEIR_vs_TENX_LNWEAPPGAFDSFLLR
 70 & 141
0.54
0.4195
0.75
0.0032





CO5_VFQFLEK_vs_CRIS3_AVSPPAR
 71 & 78
0.65
0.0033
0.55
0.5801





CO5_VFQFLEK_vs_IGF2_GIVEECCFR
 71 & 103
0.65
0.0035
0.54
0.6397





CO5_VFQFLEK_vs_PGRP2_AGLLRPDYALLGHR
 71 & 126
0.55
0.2779
0.73
0.0068





CO5_VFQFLEK_vs_SHBG_IALGGLLFPASNLR
 71 & 18
0.58
0.1217
0.69
0.0199





CO5_VFQFLEK_vs_TENX_LNWEAPPGAFDSFLLR
 71 & 141
0.55
0.3581
0.72
0.0076





CO6_ALNHLPLEYNSALYSR_vs_IGF2_GIVEECCFR
 72 & 103
0.66
0.0016
0.54
0.6311





CO6_ALNHLPLEYNSALYSR_vs_PGRP2_AGLLRPDYALLGHR
 72 & 126
0.56
0.2613
0.7
0.0148





CO8A_SLLQPNK_vs_IGF2_GIVEECCFR
 74 & 103
0.66
0.0015
0.52
0.7751





CO8A_SLLQPNK_vs_TENX_LNWEAPPGAFDSFLLR
 74 & 141
0.55
0.2952
0.72
0.0094





CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
 76 & 103
0.66
0.0018
0.51
0.9273





CO8B_QALEEFQK_vs_TENX_LNWEAPPGAFDSFLLR
 76 & 141
0.55
0.2894
0.72
0.0076





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_SHBG_IALGGLLFPASNLR
 82 & 18
0.6
0.058
0.69
0.0206





ENPP2_TYLHTYESEI_vs_LYAM1_SYYWIGIR
 83 & 120
0.57
0.1612
0.67
0.0429





ENPP2_TYLHTYESEI_vs_SHBG_IALGGLLFPASNLR
 83 & 18
0.56
0.1973
0.7
0.0175





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
 84 & 103
0.65
0.0029
0.52
0.8315





FETUA_FSVVYAK_vs_IGF2_GIVEECCFR
 88 & 103
0.69
1.00E−04
0.57
0.4188





FETUA_HTLNQIDEVK_vs_IGF2_GIVEECCFR
 89 & 103
0.68
4.00E−04
0.57
0.3847





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
 92 & 103
0.65
0.0025
0.58
0.3158





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.54
0.4049
0.74
0.0033





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.65
0.0034
0.54
0.6224





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.65
0.0022
0.57
0.3847





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.68
3.00E−04
0.54
0.6139





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.62
0.022
0.7
0.0163





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
  2 & 126
0.58
0.1353
0.77
0.0013





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.59
0.0656
0.69
0.0199





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.59
0.0724
0.75
0.0027





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFDSFLLR
  2 & 141
0.54
0.3716
0.75
0.0025





IBP4_QCHPALDGQR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
  2 & 144
0.59
0.0826
0.67
0.0455





IBP4_QCHPALDGQR_vs_VTDB_ELPEHTVK
  2 & 147
0.57
0.17
0.7
0.0158





INHBC_LDFHFSSDR_vs_ALS_IRPHTFTGLSGLR
107 & 40
0.65
0.0036
0.53
0.7658





INHBC_LDFHFSSDR_vs_CRIS3_YEDLYSNCK
107 & 79
0.65
0.0033
0.52
0.8601





INHBC_LDFHFSSDR_vs_IBP3_FLNVLSPR
107 & 99
0.66
0.0011
0.52
0.8505





INHBC_LDFHFSSDR_vs_IBP3_YGQPLPGYTTK
107 & 100
0.67
9.00E−04
0.53
0.7381





INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 & 103
0.69
2.00E−04
0.51
0.8984





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.59
0.0661
0.67
0.036





INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNLR
107 & 18
0.6
0.0414
0.65
0.0655





INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDSFLLR
107 & 141
0.6
0.0447
0.73
0.0068





INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSSLR
107 & 142
0.59
0.075
0.68
0.0319





INHBC_LDFHFSSDR_vs_VTDB_ELPEHTVK
107 & 147
0.62
0.0177
0.65
0.081





ITIH3_ALDLSLK_vs_CRIS3_AVSPPAR
111 & 78
0.66
0.002
0.54
0.6572





ITIH3_ALDLSLK_vs_CRIS3_YEDLYSNCK
111 & 79
0.65
0.0031
0.51
0.937





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.61
0.031
0.65
0.0673





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.57
0.1519
0.67
0.0417





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.57
0.1632
0.68
0.0349





LBP_ITLPDFTGDLR_vs_CRIS3_AVSPPAR
119 & 78
0.66
0.0016
0.53
0.7381





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.66
0.002
0.57
0.4188





LBP_ITLPDFTGDLR_vs_IGF2_GIVEECCFR
119 & 103
0.66
0.0018
0.5
0.9854





LBP_ITLPDFTGDLR_vs_PGRP2_AGLLRPDYALLGHR
119 & 126
0.59
0.0661
0.69
0.0219





LBP_ITLPDFTGDLR_vs_SHBG_IALGGLLFPASNLR
119 & 18
0.61
0.0352
0.66
0.0525





LBP_ITLPDFTGDLR_vs_TENX_LNWEAPPGAFDSFLLR
119 & 141
0.56
0.2302
0.68
0.0291





PEDF_LQSLFDSPDFSK_vs_CRIS3_AVSPPAR
124 & 78
0.67
6.00E−04
0.54
0.6749





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.67
0.001
0.5
0.9661





PEDF_LQSLFDSPDFSK_vs_TENX_LNWEAPPGAFDSFLLR
124 & 141
0.56
0.2086
0.71
0.0109





PEDF_TVQAVLTVPK_vs_IGF2_GIVEECCFR
125 & 103
0.66
0.0019
0.55
0.5312





PEDF_TVQAVLTVPK_vs_TENX_LNWEAPPGAFDSFLLR
125 & 141
0.54
0.3854
0.73
0.0055





PSG2_IHPSYTNYR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
133 & 135
0.67
5.00E−04
0.58
0.3399





VTNC_GQYCYELDEK_vs_CRIS3_AVSPPAR
149 & 78
0.66
0.0014
0.51
0.9177





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.66
0.0018
0.55
0.5718





VTNC_GQYCYELDEK_vs_IBP3_FLNVLSPR
149 & 99
0.66
0.002
0.56
0.4845





VTNC_GQYCYELDEK_vs_IBP3_YGQPLPGYTTK
149 & 100
0.68
4.00E−04
0.56
0.4921





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.7
1.00E−04
0.51
0.9273





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.64
0.0058
0.67
0.0442





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.59
0.061
0.72
0.0076





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.62
0.0184
0.68
0.0273





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.62
0.0198
0.71
0.0125





VTNC_GQYCYELDEK_vs_TENX_LNWEAPPGAFDSFLLR
149 & 141
0.58
0.1345
0.72
0.0085





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.63
0.0085
0.68
0.0291





VTNC_VDTVDPPYPR_vs_CRIS3_AVSPPAR
150 & 78
0.66
0.0014
0.5
0.9661





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.66
0.0018
0.54
0.6484





VTNC_VDTVDPPYPR_vs_IBP3_YGQPLPGYTTK
150 & 100
0.66
0.002
0.56
0.4998





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.68
3.00E−04
0.5
0.9854





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.64
0.0066
0.69
0.0249





VTNC_VDTVDPPYPR_vs_PGRP2_AGLLRPDYALLGHR
150 & 126
0.58
0.1345
0.72
0.0079





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.6
0.0516
0.72
0.0098





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.6
0.0375
0.7
0.0175





VTNC_VDTVDPPYPR_vs_TENX_LNWEAPPGAFDSFLLR
150 & 141
0.57
0.1962
0.71
0.0101





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.64
0.0066
0.68
0.0339
















TABLE 67







Reversal Classification Performance, weeks 17-21.


Reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs   


control cut-off of <35 0/7 vs >=35 0/7 weeks, without BMI stratification, 


separately for primigravida and multigravida.














119_153_
119_153_
119_153_
119_153_




aBMI_35
aBMI_35
aBMI_35 
aBMI_35 



SEQ ID
multi
multi
primi
primi


Reversal
NO:
ROC_AUC
P-value
ROC_AUC
P-value





A2GL_DLLLPQPDLR_vs_IBP1_VVESLAK
 34 & 97
0.65
0.0463
0.58
0.4028





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.68
0.0136
0.61
0.2481





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.7
0.0065
0.56
0.5483





AFAM_DADPDTFFAK_vs_PGRP2_AGLLRPDYALLGHR
 37 & 126
0.55
0.5449
0.73
0.0121





AFAM_DADPDTFFAK_vs_SHBG_IALGGLLFPASNLR
 37 & 18
0.54
0.6027
0.71
0.0204





AFAM_HFQNLGK_vs_ALS_IRPHTFTGLSGLR
 38 & 40
0.69
0.0121
0.5
1





AFAM_HFQNLGK_vs_CRIS3_YEDLYSNCK
 38 & 79
0.69
0.0122
0.54
0.6691





AFAM_HFQNLGK_vs_IBP3_FLNVLSPR
 38 & 99
0.69
0.0097
0.51
0.9348





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.74
0.0012
0.52
0.8343





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.73
0.0021
0.55
0.5667





AFAM_HFQNLGK_vs_PGRP2_AGLLRPDYALLGHR
 38 & 126
0.55
0.5034
0.73
0.0137





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.72
0.0028
0.59
0.335





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
 42 & 18
0.58
0.2847
0.71
0.0219





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
 47 & 120
0.61
0.1507
0.75
0.0069





APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
 48 & 79
0.71
0.0043
0.53
0.778





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.66
0.0299
0.68
0.0561





APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGHR
 48 & 126
0.56
0.4083
0.71
0.0241





B2MG_VEHSDLSFSK_vs_LYAM1_SYYWIGIR
 50 & 120
0.7
0.0068
0.61
0.2128





B2MG_VNHVTLSQPK_vs_CRIS3_AVSPPAR
 51 & 78
0.74
0.001
0.51
0.8771





B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
 51 & 79
0.75
7.00E−04
0.51
0.942





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
 51 & 103
0.74
0.0014
0.54
0.6624





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.72
0.0034
0.66
0.0808





B2MG_VNHVTLSQPK_vs_SHBG_IALGGLLFPASNLR
 51 & 18
0.57
0.3602
0.71
0.0241





CATD_VGFAEAAR_vs_ALS_IRPHTFTGLSGLR
 57 & 40
0.68
0.015
0.56
0.5423





CATD_VGFAEAAR_vs_C163A_INPASLDK
 57 & 54
0.69
0.0114
0.74
0.0103





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
 57 & 78
0.72
0.0038
0.57
0.4449





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
 57 & 79
0.73
0.0021
0.57
0.4183





CATD_VGFAEAAR_vs_CSH_AHQLAIDTYQEFEETYIPK
 57 & 80
0.67
0.0256
0.69
0.0425





CATD_VGFAEAAR_vs_CSH_ISLLLIESWLEPVR
 57 & 81
0.65
0.0392
0.68
0.0505





CATD_VGFAEAAR_vs_FBLN1_TGYYFDGISR
 57 & 86
0.65
0.0378
0.65
0.1035





CATD_VGFAEAAR_vs_IBP1_VVESLAK
 57 & 97
0.65
0.0428
0.65
0.096





CATD_VGFAEAAR_vs_IBP2_LIQGAPTIR
 57 & 98
0.57
0.3353
0.7
0.0318





CATD_VGFAEAAR_vs_IBP3_FLNVLSPR
 57 & 99
0.71
0.0057
0.53
0.778





CATD_VGFAEAAR_vs_IBP3_YGQPLPGYTTK
 57 & 100
0.71
0.0044
0.54
0.7025





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
 57 & 103
0.75
9.00E−04
0.57
0.4669





CATD_VGFAEAAR_vs_ITIH4_ILDDLSPR
 57 & 112
0.67
0.0239
0.58
0.3777





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
 57 & 120
0.71
0.0054
0.71
0.0247





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
 57 & 126
0.62
0.0991
0.72
0.0148





CATD_VGFAEAAR_vs_PSG3_VSAPSGTGHLPGLNPL
 57 & 134
0.66
0.0353
0.65
0.1035





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.59
0.2231
0.74
0.0098





CATD_VGFAEAAR_vs_SOM2.CSH_NYGLLYCFR
 57 & 138
0.66
0.0372
0.67
0.0689





CATD_VGFAEAAR_vs_SOM2.CSH_SVEGSCGF
 57 & 139
0.64
0.0634
0.7
0.0293





CATD_VGFAEAAR_vs_SPRL1_VLTHSELAPLR
 57 & 140
0.66
0.0292
0.68
0.0454





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.66
0.0356
0.71
0.0204





CATD_VGFAEAAR_vs_TENX_LSQLSVTDVTTSSLR
 57 & 142
0.65
0.0437
0.67
0.0689





CATD_VGFAEAAR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 57 & 144
0.68
0.0163
0.62
0.1965





CATD_VSTLPAITLK_vs_ALS_IRPHTFTGLSGLR
 58 & 40
0.68
0.018
0.57
0.4669





CATD_VSTLPAITLK_vs_C163A_INPASLDK
 58 & 54
0.66
0.034
0.69
0.039





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
 58 & 78
0.73
0.0024
0.55
0.5667





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
 58 & 79
0.73
0.0016
0.56
0.4894





CATD_VSTLPAITLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 58 & 80
0.66
0.0353
0.65
0.1115





CATD_VSTLPAITLK_vs_FBLN1_TGYYFDGISR
 58 & 86
0.66
0.0292
0.63
0.1431





CATD_VSTLPAITLK_vs_IBP1_VVESLAK
 58 & 97
0.65
0.0463
0.65
0.0925





CATD_VSTLPAITLK_vs_IBP3_FLNVLSPR
 58 & 99
0.71
0.0049
0.55
0.6233





CATD_VSTLPAITLK_vs_IBP3_YGQPLPGYTTK
 58 & 100
0.72
0.0032
0.55
0.6105





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
 58 & 103
0.74
0.0012
0.58
0.3876





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
 58 & 120
0.7
0.0071
0.7
0.0277





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
 58 & 126
0.61
0.1448
0.74
0.0093





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
 58 & 134
0.66
0.0295
0.68
0.055





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
 58 & 18
0.59
0.2532
0.75
0.0073





CATD_VSTLPAITLK_vs_SOM2.CSH_NYGLLYCFR
 58 & 138
0.65
0.0447
0.62
0.2095





CATD_VSTLPAITLK_vs_SPRL1_VLTHSELAPLR
 58 & 140
0.64
0.0557
0.68
0.0484





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.65
0.0444
0.73
0.0115





CATD_VSTLPAITLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 58 & 144
0.66
0.0308
0.62
0.1997





CBPN_EALIQFLEQVHQGIK_vs_LYAM1_SYYWIGIR
 59 & 120
0.71
0.0055
0.56
0.5244





CBPN_NGVDLNR_VS_LYAM1_SYYWIGIR
157 & 120
0.72
0.0034
0.6
0.2791





CBPN_NGVDLNR_vs_SPRL1_VLTHSELAPLR
157 & 140
0.68
0.0137
0.55
0.5544





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_YEDLYSNCK
 61 & 79
0.75
9.00E−04
0.52
0.8485





CD14_LTVGAAQVPAQLLVGALR_vs_CSH_AHQLAIDTYQEFEETYIPK
 61 & 80
0.68
0.0131
0.54
0.6957





CD14_LTVGAAQVPAQLLVGALR_vs_IBP1_VVESLAK
 61 & 97
0.66
0.0301
0.61
0.2371





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
 61 & 103
0.81
0
0.58
0.3876





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.76
4.00E−04
0.62
0.1934





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.66
0.0364
0.68
0.0484





CD14_LTVGAAQVPAQLLVGALR_vs_PSG3_VSAPSGTGHLPGLNPL
 61 & 134
0.67
0.0237
0.56
0.5483





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
 61 & 18
0.62
0.1048
0.69
0.0349





CD14_LTVGAAQVPAQLLVGALR_vs_SOM2.CSH_SVEGSCGF
 61 & 139
0.67
0.0206
0.57
0.4491





CD14_LTVGAAQVPAQLLVGALR_vs_SPRL1_VLTHSELAPLR
 61 & 140
0.72
0.0038
0.55
0.5544





CD14_LTVGAAQVPAQLLVGALR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 61 & 144
0.76
6.00E−04
0.52
0.8272





CD14_LTVGAAQVPAQLLVGALR_vs_VTDB_ELPEHTVK
 61 & 147
0.73
0.0023
0.52
0.8272





CD14_SWLAELQQWLKPGLK_vs_CRIS3_YEDLYSNCK
 62 & 79
0.74
0.0012
0.51
0.9059





CD14_SWLAELQQWLKPGLK_vs_IBP1_VVESLAK
 62 & 97
0.66
0.0301
0.6
0.2791





CD14_SWLAELQQWLKPGLK_vs_IGF2_GIVEECCFR
 62 & 103
0.79
1.00E−04
0.57
0.4235





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.75
8.00E−04
0.62
0.2029





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
 62 & 18
0.61
0.1334
0.68
0.0484





CD14_SWLAELQQWLKPGLK_vs_SOM2.CSH_SVEGSCGF
 62 & 139
0.66
0.0297
0.57
0.4714





CD14_SWLAELQQWLKPGLK_vs_SPRL1_VLTHSELAPLR
 62 & 140
0.7
0.0069
0.55
0.5979





CD14_SWLAELQQWLKPGLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
 62 & 144
0.74
0.0013
0.51
0.942





CD14_SWLAELQQWLKPGLK_vs_VTDB_ELPEHTVK
 62 & 147
0.71
0.0047
0.54
0.6691





CFAB_YGLVTYATYPK_vs_LYAM1_SYYWIGIR
 64 & 120
0.67
0.0215
0.58
0.3826





CLUS_ASSIIDELFQDR_vs_CRIS3_AVSPPAR
 67 & 78
0.71
0.0041
0.53
0.771





CLUS_ASSIIDELFQDR_vs_CRIS3_YEDLYSNCK
 67 & 79
0.73
0.0024
0.53
0.716





CLUS_ASSIIDELFQDR_vs_IBP3_YGQPLPGYTTK
 67 & 100
0.72
0.0026
0.54
0.6757





CLUS_ASSIIDELFQDR_vs_IGF2_GIVEECCFR
 67 & 103
0.74
0.0012
0.52
0.87





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.71
0.0056
0.68
0.0484





CLUS_ASSIIDELFQDR_vs_PGRP2_AGLLRPDYALLGHR
 67 & 126
0.56
0.4152
0.74
0.0098





CLUS_ASSIIDELFQDR_vs_SHBG_IALGGLLFPASNLR
 67 & 18
0.57
0.3539
0.73
0.0115





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_AVSPPAR
 68 & 78
0.7
0.0059
0.53
0.7296





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_YEDLYSNCK
 68 & 79
0.72
0.0035
0.55
0.5544





CLUS_LFDSDPITVTVPVEVSR_vs_IBP3_YGQPLPGYTTK
 68 & 100
0.72
0.0036
0.53
0.7572





CLUS_LFDSDPITVTVPVEVSR_vs_IGF2_GIVEECCFR
 68 & 103
0.73
0.0021
0.52
0.806





CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGIR
 68 & 120
0.67
0.0199
0.68
0.0444





CLUS_LFDSDPITVTVPVEVSR_vs_PGRP2_AGLLRPDYALLGHR
 68 & 126
0.55
0.5309
0.73
0.0137





CLUS_LFDSDPITVTVPVEVSR_vs_SHBG_IALGGLLFPASNLR
 68 & 18
0.55
0.4899
0.73
0.0106





CO5_TLLPVSKPEIR_vs_CRIS3_YEDLYSNCK
 70 & 79
0.73
0.0023
0.5
1





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.69
0.0089
0.68
0.0538





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
 70 & 18
0.54
0.5469
0.72
0.0164





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
 71 & 120
0.69
0.0108
0.62
0.1873





CO6_ALNHLPLEYNSALYSR_VS_LYAM1_SYYWIGIR
 72 & 120
0.7
0.0069
0.65
0.1074





CO6_ALNHLPLEYNSALYSR_vs_SHBG_IALGGLLFPASNLR
 72 & 18
0.55
0.5053
0.72
0.0176





CO8A_SLLQPNK_vs_IGF2_GIVEECCFR
 74 & 103
0.73
0.002
0.55
0.6233





CO8A_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.71
0.0049
0.62
0.1842





CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
 76 & 103
0.72
0.0037
0.52
0.792





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
 76 & 120
0.67
0.0194
0.62
0.1965





F13B_GDTYPAELYITGSILR_vs_CRIS3_AVSPPAR
 84 & 78
0.73
0.0018
0.5
0.9927





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
 84 & 79
0.74
0.0012
0.52
0.792





F13B_GDTYPAELYITGSILR_vs_IBP3_YGQPLPGYTTK
 84 & 100
0.74
0.0015
0.56
0.4952





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
 84 & 103
0.75
7.00E−04
0.51
0.8771





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.72
0.0026
0.68
0.0538





F13B_GDTYPAELYITGSILR_vs_PGRP2_AGLLRPDYALLGHR
 84 & 126
0.59
0.2445
0.69
0.0407





F13B_GDTYPAELYITGSILR_vs_SHBG_IALGGLLFPASNLR
 84 & 18
0.57
0.3445
0.7
0.0265





F13B_GDTYPAELYITGSILR_vs_SPRL1_VLTHSELAPLR
 84 & 140
0.65
0.0392
0.61
0.2335





FETUA_FSVVYAK_vs_CRIS3_YEDLYSNCK
 88 & 79
0.7
0.0069
0.53
0.7572





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
 88 & 120
0.67
0.0258
0.67
0.0689





FETUA_HTLNQIDEVK_vs_LYAM1_SYYWIGIR
 89 & 120
0.67
0.022
0.61
0.2128





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
 93 & 120
0.66
0.0271
0.64
0.1335





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.75
8.00E−04
0.51
0.9348





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.76
4.00E−04
0.51
0.8987





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.71
0.0039
0.52
0.806





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.7
0.0078
0.67
0.0649





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.56
0.4544
0.71
0.023





IBP6_HLDSVLQQLQTEVYR_vs_CRIS3_YEDLYSNCK
102 & 79
0.75
6.00E−04
0.57
0.4235





IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIGIR
102 & 120
0.7
0.0067
0.54
0.6559





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.7
0.008
0.65
0.1135





KNG1_QVVAGLNFR_vs_CRIS3_AVSPPAR
117 & 78
0.72
0.0035
0.51
0.8987





KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.73
0.0023
0.54
0.6691





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.76
4.00E−04
0.53
0.7572





KNG1_QVVAGLNFR_vs_ITIH4_ILDDLSPR
117 & 112
0.69
0.0121
0.54
0.6559





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.73
0.0021
0.65
0.0925





KNG1_QVVAGLNFR_vs_PGRP2_AGLLRPDYALLGHR
117 & 126
0.61
0.1533
0.7
0.0333





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.59
0.2433
0.7
0.0259





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.71
0.0055
0.55
0.5728





PEDF_LQSLFDSPDFSK_vs_CRIS3_AVSPPAR
124 & 78
0.74
0.0011
0.52
0.799





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.75
8.00E−04
0.52
0.8557





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.7
0.0062
0.63
0.156





PEDF_TVQAVLTVPK_vs_CRIS3_AVSPPAR
125 & 78
0.75
9.00E−04
0.52
0.8343





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.76
6.00E−04
0.5
0.9927





PEDF_TVQAVLTVPK_vs_IGF2_GIVEECCFR
125 & 103
0.77
3.00E−04
0.58
0.3876





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.72
0.0033
0.64
0.1156





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.72
0.0036
0.54
0.6757





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.72
0.0033
0.55
0.5728





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.67
0.0189
0.59
0.3215





PSG2_IHPSYTNYR_vs_IBP1_VVESLAK
133 & 97
0.66
0.0372
0.58
0.3583





PSG2_IHPSYTNYR_vs_IGF2_GIVEECCFR
133 & 103
0.69
0.0123
0.52
0.8414





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.7
0.008
0.62
0.1965





PTGDS_GPGEDFR_vs_CRIS3_YEDLYSNCK
137 & 79
0.73
0.0023
0.52
0.8343





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 & 120
0.67
0.0224
0.61
0.2299





THBG_AVLHIGEK_vs_LYAM1_SYYWIGIR
143 & 120
0.69
0.0106
0.59
0.3215





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.7
0.0066
0.54
0.6298





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.7
0.0064
0.54
0.6823





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.68
0.0136
0.7
0.0297





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.54
0.6305
0.75
0.0065





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.59
0.2185
0.7
0.0311





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.55
0.4842
0.73
0.0137





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.69
0.0095
0.55
0.6169





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.68
0.0139
0.53
0.7434





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.66
0.0361
0.72
0.0168





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.54
0.5818
0.73
0.0121
















TABLE 68







Reversal Classification Performance, weeks 17-21.


Reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs  


control cut-off of <35 0/7 vs >=35 0/7 weeks, with BMI stratification (>22 <=37),


 separately for primigravida and multigravida.














119_153_
119_153_
119_153_
119_153_




rBMI_35
rBMI_35
rBMI_35
rBMI_35



SEQ ID
multi 
multi 
primi 
primi 


Reversal
NO:
ROC_AUC
P-value
ROC_AUC
P-value





A2GL_DLLLPQPDLR_vs_CRIS3_YEDLYSNCK
 34 & 79
0.79
0.0013
0.51
0.9432





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
 34 & 120
0.73
0.0091
0.68
0.1013





AFAM_DADPDTFFAK_vs_CRIS3_YEDLYSNCK
 37 & 79
0.74
0.0073
0.56
0.5959





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.79
0.0015
0.51
0.9432





AFAM_DADPDTFFAK_vs_LYAM1_SYYWIGIR
 37 & 120
0.69
0.0371
0.71
0.0525





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
 38 & 120
0.68
0.0404
0.72
0.0388





AFAM_DADPDTFFAK_vs_PGRP2_AGLLRPDYALLGHR
 37 & 126
0.63
0.1361
0.72
0.047





AFAM_HFQNLGK_vs_ALS_IRPHTFTGLSGLR
 38 & 40
0.75
0.0048
0.54
0.7456





AFAM_HFQNLGK_vs_CRIS3_AVSPPAR
 38 & 78
0.72
0.015
0.56
0.585





AFAM_HFQNLGK_vs_CRIS3_YEDLYSNCK
 38 & 79
0.75
0.0062
0.57
0.5215





AFAM_HFQNLGK_vs_IBP3_FLNVLSPR
 38 & 99
0.75
0.0057
0.51
0.9558





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
 38 & 100
0.78
0.0022
0.54
0.7099





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.81
7.00E−04
0.5
0.9811





AFAM_HFQNLGK_vs_PGRP2_AGLLRPDYALLGHR
 38 & 126
0.64
0.115
0.72
0.0436





ANGT_DPTFIPAPIQAK_vs_CRIS3_AVSPPAR
 42 & 78
0.79
0.0012
0.51
0.9684





ANGT_DPTFIPAPIQAK_vs_CRIS3_YEDLYSNCK
 42 & 79
0.8
9.00E−04
0.52
0.893





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
 42 & 120
0.76
0.0037
0.67
0.1152





ANGT_DPTFIPAPIQAK_vs_SOM2.CSH_SVEGSCGF
 42 & 139
0.7
0.0293
0.57
0.5528





APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
 48 & 79
0.73
0.0107
0.59
0.4241





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
 48 & 120
0.65
0.0888
0.73
0.032





APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGHR
 48 & 126
0.6
0.283
0.77
0.0116





B2MG_VNHVTLSQPK_vs_CRIS3_AVSPPAR
 51 & 78
0.76
0.0038
0.54
0.7099





B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
 51 & 79
0.77
0.0028
0.56
0.585





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
 51 & 120
0.71
0.0201
0.75
0.0213





CATD_VGFAEAAR_vs_C163A_INPASLDK
 57 & 54
0.69
0.0387
0.8
0.0057





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
 57 & 78
0.7
0.0256
0.66
0.1431





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
 57 & 79
0.72
0.0126
0.66
0.152





CATD_VGFAEAAR_vs_CSH_AHQLAIDTYQEFEETYIPK
 57 & 80
0.7
0.0292
0.7
0.0629





CATD_VGFAEAAR_vs_CSH_ISLLLIESWLEPVR
 57 & 81
0.68
0.0409
0.7
0.0629





CATD_VGFAEAAR_vs_IBP3_FLNVLSPR
 57 & 99
0.69
0.0346
0.63
0.2259





CATD_VGFAEAAR_vs_IBP3_YGQPLPGYTTK
 57 & 100
0.68
0.0404
0.62
0.2782





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
 57 & 103
0.74
0.0077
0.62
0.2853





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
 57 & 120
0.69
0.0341
0.82
0.0037





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
 57 & 126
0.61
0.2372
0.83
0.0027





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.58
0.3917
0.78
0.0092





CATD_VGFAEAAR_vs_SOM2.CSH_NYGLLYCFR
 57 & 138
0.68
0.0409
0.66
0.1388





CATD_VGFAEAAR_vs_SPRL1_VLTHSELAPLR
 57 & 140
0.62
0.167
0.73
0.0374





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
 57 & 141
0.62
0.1968
0.73
0.0307





CATD_VSTLPAITLK_vs_C163A_INPASLDK
 58 & 54
0.66
0.0685
0.76
0.0165





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
 58 & 78
0.73
0.01
0.66
0.1475





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
 58 & 79
0.75
0.0057
0.67
0.1189





CATD_VSTLPAITLK_vs_CSH_AHQLAIDTYQEFEETYIPK
 58 & 80
0.7
0.0275
0.67
0.1152





CATD_VSTLPAITLK_vs_CSH_ISLLLIESWLEPVR
 58 & 81
0.68
0.0426
0.67
0.1266





CATD_VSTLPAITLK_vs_IBP3_FLNVLSPR
 58 & 99
0.71
0.0217
0.68
0.0949





CATD_VSTLPAITLK_vs_IBP3_YGQPLPGYTTK
 58 & 100
0.7
0.0287
0.65
0.1565





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
 58 & 103
0.73
0.0098
0.66
0.1306





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
 58 & 120
0.69
0.0304
0.83
0.0026





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
 58 & 126
0.61
0.226
0.85
0.0012





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
 58 & 134
0.64
0.1317
0.72
0.0404





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
 58 & 18
0.58
0.3639
0.81
0.0043





CATD_VSTLPAITLK_vs_SOM2.CSH_NYGLLYCFR
 58 & 138
0.69
0.0327
0.62
0.2853





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
 58 & 141
0.63
0.1584
0.77
0.0121





CBPN_EALIQFLEQVHQGIK_vs_LYAM1_SYYWIGIR
 59 & 120
0.71
0.0186
0.63
0.2199





CBPN_NGVDLNR_vs_CRIS3_YEDLYSNCK
157 & 79
0.77
0.0023
0.52
0.8805





CBPN_NGVDLNR_vs_LYAM1_SYYWIGIR
157 & 120
0.73
0.0094
0.68
0.1047





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_AVSPPAR
 61 & 78
0.77
0.0029
0.52
0.893





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_YEDLYSNCK
 61 & 79
0.78
0.0022
0.52
0.8308





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
 61 & 120
0.76
0.0043
0.71
0.0585





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
 61 & 126
0.68
0.0444
0.72
0.0452





CD14_LTVGAAQVPAQLLVGALR_vs_SOM2.CSH_SVEGSCGF
 61 & 139
0.75
0.0057
0.51
0.9055





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
 62 & 120
0.74
0.0082
0.67
0.1116





CFAB_YGLVTYATYPK_vs_LYAM1_SYYWIGIR
 64 & 120
0.68
0.0463
0.64
0.2026





CLUS_ASSIIDELFQDR_vs_CRIS3_AVSPPAR
 67 & 78
0.75
0.0051
0.54
0.6865





CLUS_ASSIIDELFQDR_vs_CRIS3_YEDLYSNCK
 67 & 79
0.76
0.0035
0.57
0.5528





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
 67 & 120
0.7
0.0292
0.74
0.0295





CLUS_ASSIIDELFQDR_vs_PGRP2_AGLLRPDYALLGHR
 67 & 126
0.59
0.3461
0.74
0.0295





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_YEDLYSNCK
 68 & 79
0.74
0.0088
0.57
0.5215





CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGIR
 68 & 120
0.62
0.1871
0.73
0.0374





CO5_TLLPVSKPEIR_vs_CRIS3_YEDLYSNCK
 70 & 79
0.76
0.0042
0.52
0.8805





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
 70 & 120
0.7
0.0252
0.74
0.0283





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGIR
 72 & 120
0.71
0.0207
0.73
0.0307





CO6_ALNHLPLEYNSALYSR_vs_PGRP2_AGLLRPDYALLGHR
 72 & 126
0.61
0.226
0.76
0.0172





CO8A_SLLQPNK_vs_LYAM1_SYYWIGIR
 74 & 120
0.71
0.0173
0.67
0.1116





F13B_GDTYPAELYITGSILR_vs_CRIS3_AVSPPAR
 84 & 78
0.78
0.0021
0.54
0.6981





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
 84 & 79
0.79
0.0015
0.56
0.5741





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
 84 & 103
0.78
0.0017
0.55
0.6405





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
 84 & 120
0.74
0.0081
0.74
0.0295





F13B_GDTYPAELYITGSILR_vs_PGRP2_AGLLRPDYALLGHR
 84 & 126
0.63
0.1346
0.72
0.0404





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
 88 & 120
0.65
0.0989
0.74
0.0283





FETUA_HTLNQIDEVK_vs_LYAM1_SYYWIGIR
 89 & 120
0.66
0.0703
0.72
0.0436





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
 93 & 120
0.62
0.1705
0.74
0.0241





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
  2 & 78
0.74
0.0075
0.57
0.5011





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
  2 & 79
0.77
0.0027
0.59
0.4241





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
  2 & 120
0.7
0.0283
0.78
0.0111





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.56
0.5187
0.73
0.036





IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIGIR
102 & 120
0.73
0.0098
0.6
0.3711





ITIH3_ALDLSLK_vs_LYAM1_SYYWIGIR
111 & 120
0.76
0.0045
0.56
0.585





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.68
0.0475
0.58
0.4911





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.67
0.0557
0.74
0.0251





KNG1_QVVAGLNFR_vs_CRIS3_AVSPPAR
117 & 78
0.73
0.011
0.59
0.4241





KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.74
0.0079
0.61
0.3148





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.78
0.0016
0.52
0.8431





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.71
0.022
0.76
0.0158





KNG1_QVVAGLNFR_vs_PGRP2_AGLLRPDYALLGHR
117 & 126
0.6
0.2655
0.75
0.0204





PAPP1_DIPHWLNPTR_vs_CRIS3_AVSPPAR
122 & 78
0.72
0.0148
0.58
0.4812





PAPP1_DIPHWLNPTR_vs_CRIS3_YEDLYSNCK
122 & 79
0.72
0.0134
0.59
0.3883





PAPP1_DIPHWLNPTR_vs_SOM2.CSH_SVEGSCGF
122 & 139
0.68
0.043
0.68
0.1047





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.78
0.0021
0.51
0.9684





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.75
0.0062
0.66
0.152





PEDF_TVQAVLTVPK_vs_CRIS3_AVSPPAR
125 & 78
0.78
0.0022
0.5
0.9811





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.79
0.0015
0.52
0.8555





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.75
0.0065
0.68
0.0949





PSG2_IHPSYTNYR_vs_ALS_IRPHTFTGLSGLR
133 & 40
0.68
0.0482
0.62
0.2853





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.78
0.0022
0.6
0.3463





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.78
0.0022
0.61
0.2998





PSG2_IHPSYTNYR_vs_CSH_AHQLAIDTYQEFEETYIPK
133 & 80
0.69
0.0393
0.6
0.3382





PSG2_IHPSYTNYR_vs_CSH_ISLLLIESWLEPVR
133 & 81
0.68
0.0438
0.58
0.4714





PSG2_IHPSYTNYR_vs_IBP3_FLNVLSPR
133 & 99
0.7
0.023
0.58
0.4426





PSG2_IHPSYTNYR_vs_IBP3_YGQPLPGYTTK
133 & 100
0.7
0.0237
0.58
0.4812





PSG2_IHPSYTNYR_vs_IGF2_GIVEECCFR
133 & 103
0.73
0.0105
0.57
0.5422





PSG2_IHPSYTNYR_vs_ITIH4_ILDDLSPR
133 & 112
0.69
0.0361
0.64
0.197





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.75
0.0054
0.72
0.0452





PSG2_IHPSYTNYR_vs_PGRP2_AGLLRPDYALLGHR
133 & 126
0.69
0.0356
0.69
0.0776





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.69
0.0361
0.72
0.0452





PSG2_IHPSYTNYR_vs_SOM2.CSH_SVEGSCGF
133 & 139
0.71
0.0202
0.62
0.2853





PTGDS_GPGEDFR_vs_CRIS3_AVSPPAR
137 & 78
0.75
0.0057
0.53
0.8062





PTGDS_GPGEDFR_vs_CRIS3_YEDLYSNCK
137 & 79
0.76
0.0038
0.55
0.6519





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 & 120
0.68
0.0409
0.7
0.0724





VTNC_GQYCYELDEK_vs_CRIS3_AVSPPAR
149 & 78
0.72
0.0157
0.59
0.3971





VTNC_GQYCYELDEK_vs_CRIS3_YEDLYSNCK
149 & 79
0.74
0.0078
0.6
0.3544





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.7
0.0292
0.8
0.0052





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.56
0.486
0.79
0.0066





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.56
0.4824
0.74
0.0272





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.7
0.0241
0.61
0.3225





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.63
0.1518
0.82
0.0032
















TABLE 69







Reversal Classification Performance, weeks 17-21.


Reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs  


control cut-off of <37 0/7 vs >=37 0/7 weeks,


 without BMI stratification, separately by fetal gender.














119_153_
119_153_
119_153_
119_153_




aBMI_37
aBMI_37
aBMI_37
aBMI_37



SEQ ID
Female 
Female 
Male 
Male 


Reversal
NO:
ROC_AUC
P-value
ROC_AUC
P-value





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
 37 & 103
0.56
0.2281
0.66
0.001





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
 38 & 103
0.58
0.1136
0.65
0.0019





AFAM_HFQNLGK_vs_PSG3_VSAPSGTGHLPGLNPL
 38 & 134
0.54
0.5033
0.67
3.00E−04





APOC3_GWVTDGFSSLK_vs_IBP3_FLNVLSPR
 47 & 99
0.61
0.0344
0.65
0.0024





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
 47 & 103
0.61
0.0397
0.66
9.00E−04





APOC3_GWVTDGFSSLK_vs_PSG3_VSAPSGTGHLPGLNPL
 47 & 134
0.62
0.0235
0.66
7.00E−04





APOC3_GWVTDGFSSLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
 47 & 135
0.57
0.1935
0.65
0.0025





APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
 48 & 103
0.54
0.4302
0.67
4.00E−04





APOH_ATVVYQGER_vs_PSG3_VSAPSGTGHLPGLNPL
 48 & 134
0.53
0.6338
0.69
1.00E−04





APOH_ATVVYQGER_vs_SHBG_IALGGLLFPASNLR
 48 & 18
0.53
0.5575
0.67
5.00E−04





C1QB_VPGLYYFTYHASSR_vs_TENX_LNWEAPPGAFDSFLLR
 55 & 141
0.66
0.003
0.56
0.1846





CATD_VGFAEAAR_vs_PSG3_VSAPSGTGHLPGLNPL
 57 & 134
0.56
0.2984
0.66
0.0012





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
 57 & 18
0.54
0.4632
0.65
0.0022





CD14_LTVGAAQVPAQLLVGALR_vs_TENX_LNWEAPPGAFDSFLLR
 61 & 141
0.66
0.0035
0.56
0.199





CD14_SWLAELQQWLKPGLK_vs_TENX_LNWEAPPGAFDSFLLR
 62 & 141
0.66
0.0025
0.56
0.2459





CFAB_YGLVTYATYPK_vs_PGRP2_AGLLRPDYALLGHR
 64 & 126
0.65
0.0043
0.57
0.1591





CFAB_YGLVTYATYPK_vs_PSG3_VSAPSGTGHLPGLNPL
 64 & 134
0.61
0.0329
0.66
9.00E−04





CFAB_YGLVTYATYPK_vs_TENX_LNWEAPPGAFDSFLLR
 64 & 141
0.67
0.0015
0.57
0.1549





CO5_TLLPVSKPEIR_vs_TENX_LNWEAPPGAFDSFLLR
 70 & 141
0.67
0.0016
0.55
0.334





CO5_VFQFLEK_vs_TENX_LNWEAPPGAFDSFLLR
 71 & 141
0.66
0.0037
0.55
0.2611





CO8A_SLLQPNK_vs_TENX_LNWEAPPGAFDSFLLR
 74 & 141
0.66
0.0025
0.58
0.0994





CO8B_QALEEFQK_vs_IGF2_GIVEECCFR
 76 & 103
0.57
0.1956
0.66
8.00E−04





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
 76 & 134
0.59
0.0972
0.65
0.002





FETUA_FSVVYAK_vs_TENX_LNWEAPPGAFDSFLLR
 88 & 141
0.67
0.0019
0.56
0.1782





FETUA_HTLNQIDEVK_vs_PSG3_VSAPSGTGHLPGLNPL
 89 & 134
0.57
0.1999
0.65
0.0014





FETUA_HTLNQIDEVK_vs_TENX_LNWEAPPGAFDSFLLR
 89 & 141
0.65
0.0044
0.58
0.096





HABP2_FLNWIK_vs_TENX_LNWEAPPGAFDSFLLR
 92 & 141
0.67
0.0016
0.58
0.1096





HABP2_FLNWIK_vs_TENX_LSQLSVTDVTTSSLR
 92 & 142
0.66
0.0033
0.55
0.254





HEMO_NFPSPVDAAFR_vs_TENX_LNWEAPPGAFDSFLLR
 93 & 141
0.66
0.0034
0.56
0.2346





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
  2 & 103
0.59
0.0866
0.65
0.0018





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
  2 & 134
0.58
0.1291
0.7
0





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
  2 & 18
0.58
0.1611
0.68
1.00E−04





IBP4_QCHPALDGQR_vs_TENX_LNWEAPPGAFDSFLLR
  2 & 141
0.65
0.0064
0.59
0.049





INHBC_LDFHFSSDR_vs_IBP3_FLNVLSPR
107 & 99
0.55
0.307
0.67
4.00E−04





INHBC_LDFHFSSDR_vs_IBP3_YGQPLPGYTTK
107 & 100
0.57
0.2257
0.67
5.00E−04





INHBC_LDFHFSSDR_vs_IGF2_GIVEECCFR
107 & 103
0.57
0.1988
0.7
0





INHBC_LDFHFSSDR_vs_ITIH4_ILDDLSPR
107 & 112
0.53
0.5951
0.66
9.00E−04





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.56
0.2695
0.7
0





INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNLR
107 & 18
0.54
0.4196
0.68
2.00E−04





INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
107 & 144
0.56
0.2577
0.65
0.0018





INHBC_LDFHFSSDR_vs_VTDB_ELPEHTVK
107 & 147
0.54
0.4632
0.68
2.00E−04





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.59
0.0821
0.65
0.0017





KNG1_DIPTNSPELEETLTHTITK_vs_PSG3_VSAPSGTGHLPGLNPL
116 & 134
0.56
0.2885
0.66
0.001





LBP_ITGFLKPGK_vs_CHL1_VIAVNEVGR
118 & 66
0.65
0.0056
0.56
0.1773





LBP_ITGFLKPGK_vs_IGF2_GIVEECCFR
118 & 103
0.66
0.0037
0.58
0.0905





LBP_ITGFLKPGK_vs_PGRP2_AGLLRPDYALLGHR
118 & 126
0.65
0.004
0.56
0.2517





LBP_ITGFLKPGK_vs_PSG3_VSAPSGTGHLPGLNPL
118 & 134
0.65
0.0046
0.63
0.0063





LBP_ITGFLKPGK_vs_TENX_LNWEAPPGAFDSFLLR
118 & 141
0.66
0.0032
0.55
0.2563





LBP_ITLPDFTGDLR_vs_CHL1_VIAVNEVGR
119 & 66
0.67
0.0019
0.58
0.0905





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.65
0.0049
0.6
0.0403





LBP_ITLPDFTGDLR_vs_IBP3_FLNVLSPR
119 & 99
0.66
0.0037
0.57
0.1693





LBP_ITLPDFTGDLR_vs_IBP3_YGQPLPGYTTK
119 & 100
0.67
0.0017
0.57
0.1667





LBP_ITLPDFTGDLR_vs_IGF2_GIVEECCFR
119 & 103
0.68
0.0011
0.59
0.0503





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.66
0.0024
0.6
0.0414





LBP_ITLPDFTGDLR_vs_PGRP2_AGLLRPDYALLGHR
119 & 126
0.68
6.00E−04
0.57
0.1746





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGLNPL
119 & 134
0.66
0.0025
0.65
0.0021





LBP_ITLPDFTGDLR_vs_TENX_LNWEAPPGAFDSFLLR
119 & 141
0.68
0.001
0.57
0.1241





LBP_ITLPDFTGDLR_vs_TENX_LSQLSVTDVTTSSLR
119 & 142
0.67
0.0013
0.55
0.2757





LBP_ITLPDFTGDLR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
119 & 144
0.66
0.0032
0.57
0.1276





LBP_ITLPDFTGDLR_vs_VTDB_ELPEHTVK
119 & 147
0.67
0.0015
0.59
0.0516





PEDF_LQSLFDSPDFSK_vs_PSG3_VSAPSGTGHLPGLNPL
124 & 134
0.57
0.1704
0.67
3.00E−04





PEDF_LQSLFDSPDFSK_vs_TENX_LNWEAPPGAFDSFLLR
124 & 141
0.65
0.0056
0.59
0.058





PEDF_TVQAVLTVPK_vs_PSG3_VSAPSGTGHLPGLNPL
125 & 134
0.57
0.2234
0.66
7.00E−04





VTNC_GQYCYELDEK_vs_ALS_IRPHTFTGLSGLR
149 & 40
0.55
0.3415
0.65
0.0022





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.6
0.0581
0.67
5.00E−04





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.59
0.0871
0.69
1.00E−04





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.59
0.0774
0.68
2.00E−04





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.59
0.0805
0.66
0.001





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.59
0.0871
0.66
7.00E−04





VTNC_VDTVDPPYPR_vs_NCAM1_GLGEISAASEFK
150 & 121
0.54
0.4502
0.65
0.0017





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.58
0.137
0.7
0





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.59
0.1055
0.67
3.00E−04





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.6
0.0523
0.68
2.00E−04
















TABLE 70







Reversal Classification Performance, weeks 17-21.


Reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control


cut-off of <37 0/7 vs >= 37 0/7 weeks, with BMI stratification (>22 <=37),


separately by fetal gender.














119_153_
119_153_
119_153_
119_153_




rBMI_37
rBMI_37
rBMI_3
rBMI



SEQ ID
Female
Female
7 Male
37 Male


Reversal
NO:
ROC_AUC
P-value
ROC_AUC
P-value





A2GL_DLLLPQPDLR_vs_IGF2_GIVEECCFR
34 & 103
0.65
0.0229
0.6
0.0902





A2GL_DLLLPQPDLR_vs_PGRP2_AGLLRPDYALLGHR
34 & 126
0.66
0.0133
0.56
0.3335





AFAM_DADPDTFFAK_vs_IGF2_GIVEECCFR
37 & 103
0.62
0.069
0.65
0.0081





AFAM_DADPDTFFAK_vs_PSG3_VSAPSGTGHLPGLNPL
37 & 134
0.52
0.7127
0.66
0.0057





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
38 & 100
0.66
0.0169
0.63
0.026





AFAM_HFQNLGK_vs_PSG3_VSAPSGTGHLPGLNPL
38 & 134
0.55
0.4359
0.66
0.0069





ANGT_DPTFIPAPIQAK_vs_CHL1_VIAVNEVGR
42 & 66
0.67
0.0087
0.55
0.382





ANGT_DPTFIPAPIQAK_vs_CRIS3_AVSPPAR
42 & 78
0.68
0.0059
0.57
0.1945





ANGT_DPTFIPAPIQAK_vs_CRIS3_YEDLYSNCK
42 & 79
0.68
0.0048
0.58
0.1677





ANGT_DPTFIPAPIQAK_vs_IGF2_GIVEECCFR
42 & 103
0.65
0.0197
0.59
0.1059





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
42 & 120
0.66
0.0164
0.58
0.1661





ANGT_DPTFIPAPIQAK_VS_PGRP2_AGLLRPDYALLGHR
42 & 126
0.67
0.0074
0.54
0.5241





ANGT_DPTFIPAPIQAK_vs_TENX_LNWEAPPGAFDSFLLR
42 & 141
0.65
0.018
0.57
0.2186





APOC3_GWVTDGFSSLK_vs_IGF2_GIVEECCFR
47 & 103
0.59
0.1479
0.65
0.0087





APOC3_GWVTDGFSSLK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
47 & 135
0.57
0.2718
0.65
0.0081





APOH_ATVVYQGER_vs_IGF2_GIVEECCFR
48 & 103
0.56
0.3934
0.66
0.0056





B2MG_VEHSDLSFSK_vs_IGF2_GIVEECCFR
50 & 103
0.65
0.0222
0.57
0.2386





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
51 & 103
0.66
0.0169
0.58
0.1465





BGH3_LTLLAPLNSVFK_vs_CHL1_VIAVNEVGR
52 & 66
0.65
0.0206
0.57
0.2597





BGH3_LTLLAPLNSVFK_vs_CRIS3_YEDLYSNCK
52 & 79
0.65
0.0262
0.6
0.0892





C1QB_VPGLYYFTYHASSR_vs_IGF2_GIVEECCFR
55 & 103
0.65
0.0226
0.62
0.0321





C1QB_VPGLYYFTYHASSR_vs_PGRP2_AGLLRPDYALLGHR
55 & 126
0.66
0.0164
0.58
0.1629





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
61 & 103
0.65
0.0247
0.57
0.2206





CFAB_YGLVTYATYPK_vs_CHL1_VIAVNEVGR
64 & 66
0.66
0.014
0.57
0.2284





CFAB_YGLVTYATYPK_vs_CRIS3_YEDLYSNCK
64 & 79
0.65
0.0226
0.59
0.1395





CFAB_YGLVTYATYPK_vs_IBP3_YGQPLPGYTTK
64 & 100
0.65
0.0236
0.59
0.1381





CFAB_YGLVTYATYPK_vs_IGF2_GIVEECCFR
64 & 103
0.65
0.0209
0.62
0.0435





CFAB_YGLVTYATYPK_vs_LYAM1_SYYWIGIR
64 & 120
0.65
0.0222
0.61
0.0601





CFAB_YGLVTYATYPK_vs_PGRP2_AGLLRPDYALLGHR
64 & 126
0.67
0.0108
0.56
0.3133





CFAB_YGLVTYATYPK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
64 & 144
0.66
0.0166
0.6
0.0902





CO5_TLLPVSKPEIR_vs_PGRP2_AGLLRPDYALLGHR
70 & 126
0.66
0.0123
0.57
0.2206





CO5_TLLPVSKPEIR_vs_SHBG_IALGGLLFPASNLR
70 & 18
0.56
0.3419
0.65
0.0106





CO5_VFQFLEK_vs_PGRP2_AGLLRPDYALLGHR
71 & 126
0.66
0.0159
0.56
0.3387





CO6_ALNHLPLEYNSALYSR_vs_CHL1_VIAVNEVGR
72 & 66
0.65
0.0209
0.56
0.2753





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_vs_IGF2_GIVEECCFR
82 & 103
0.65
0.0216
0.56
0.3083





FETUA_FSVVYAK_vs_IGF2_GIVEECCFR
88 & 103
0.65
0.0229
0.62
0.0429





HABP2_FLNWIK_vs_CHL1_VIAVNEVGR
92 & 66
0.65
0.02
0.56
0.3011





HABP2_FLNWIK_vs_IBP3_YGQPLPGYTTK
92 & 100
0.65
0.0229
0.59
0.1104





HABP2_FLNWIK_vs_IGF2_GIVEECCFR
92 & 103
0.65
0.0254
0.62
0.0321





IBP4_QCHPALDGQR_vs_CHL1_VIAVNEVGR
2 & 66
0.66
0.014
0.57
0.2597





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
2 & 103
0.66
0.0159
0.64
0.018





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
2 & 120
0.61
0.0895
0.65
0.0073





IBP4_QCHPALDGQR_vs_PGRP2_AGLLRPDYALLGHR
2 & 126
0.66
0.0149
0.6
0.0942





IBP4_QCHPALDGQR_vs_PSG3_VSAPSGTGHLPGLNPL
2 & 134
0.57
0.2572
0.66
0.0058





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
2 & 18
0.58
0.2385
0.67
0.0024





INHBC_LDFHFSSDR_vs_ALS_IRPHTFTGLSGLR
107 & 40
0.51
0.8798
0.72
2.00E−04





INHBC_LDFHFSSDR_vs_CRIS3_AVSPPAR
107 & 78
0.55
0.4808
0.66
0.0068





INHBC_LDFHFSSDR_vs_CRIS3_YEDLYSNCK
107 & 79
0.57
0.2644
0.65
0.0082





INHBC_LDFHFSSDR_vs_IBP3_FLNVLSPR
107 & 99
0.56
0.3903
0.7
6.00E−04





INHBC_LDFHFSSDR_vs_IBP3_YGQPLPGYTTK
107 & 100
0.57
0.2718
0.7
5.00E−04





INHBC_LDFHFSSDR_VS_IGF2_GIVEECCFR
107 & 103
0.57
0.2768
0.71
2.00E−04





INHBC_LDFHFSSDR_vs_ITIH4_ILDDLSPR
107 & 112
0.51
0.9204
0.67
0.0028





INHBC_LDFHFSSDR_vs_LYAM1_SYYWIGIR
107 & 120
0.54
0.5585
0.67
0.004





INHBC_LDFHFSSDR_vs_PGRP2_AGLLRPDYALLGHR
107 & 126
0.57
0.3082
0.65
0.0073





INHBC_LDFHFSSDR_vs_PSG3_VSAPSGTGHLPGLNPL
107 & 134
0.53
0.6459
0.72
1.00E−04





INHBC_LDFHFSSDR_vs_SHBG_IALGGLLFPASNLR
107 & 18
0.51
0.8439
0.7
6.00E−04





INHBC_LDFHFSSDR_VS_SPRL1_VLTHSELAPLR
107 & 140
0.56
0.3419
0.66
0.0062





INHBC_LDFHFSSDR_vs_TENX_LNWEAPPGAFDSFLLR
107 & 141
0.59
0.1479
0.67
0.0027





INHBC_LDFHFSSDR_vs_TENX_LSQLSVTDVTTSSLR
107 & 142
0.56
0.3477
0.66
0.0061





INHBC_LDFHFSSDR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
107 & 144
0.55
0.4632
0.67
0.004





INHBC_LDFHFSSDR_vs_VTDB_ELPEHTVK
107 & 147
0.52
0.7688
0.71
2.00E−04





ITIH3_ALDLSLK_vs_CRIS3_YEDLYSNCK
111 & 79
0.65
0.024
0.59
0.1116





ITIH3_ALDLSLK_vs_SHBG_IALGGLLFPASNLR
111 & 18
0.57
0.3082
0.66
0.0044





LBP_ITGFLKPGK_vs_CRIS3_AVSPPAR
118 & 78
0.65
0.0209
0.56
0.2708





LBP_ITGFLKPGK_vs_CRIS3_YEDLYSNCK
118 & 79
0.67
0.0089
0.57
0.2469





LBP_ITGFLKPGK_vs_LYAM1_SYYWIGIR
118 & 120
0.65
0.0216
0.57
0.1963





LBP_ITLPDFTGDLR_vs_CRIS3_AVSPPAR
119 & 78
0.68
0.005
0.58
0.1523





LBP_ITLPDFTGDLR_vs_CRIS3_YEDLYSNCK
119 & 79
0.7
0.0026
0.59
0.1327





LBP_ITLPDFTGDLR_vs_IBP3_YGQPLPGYTTK
119 & 100
0.69
0.0044
0.56
0.3387





LBP_ITLPDFTGDLR_vs_IGF2_GIVEECCFR
119 & 103
0.7
0.0024
0.57
0.2148





LBP_ITLPDFTGDLR_vs_LYAM1_SYYWIGIR
119 & 120
0.69
0.0038
0.6
0.0882





LBP_ITLPDFTGDLR_vs_PGRP2_AGLLRPDYALLGHR
119 & 126
0.69
0.0029
0.56
0.3133





LBP_ITLPDFTGDLR_vs_PSG3_VSAPSGTGHLPGLNPL
119 & 134
0.65
0.0197
0.6
0.0932





LBP_ITLPDFTGDLR_vs_TENX_LNWEAPPGAFDSFLLR
119 & 141
0.66
0.0121
0.56
0.2986





LBP_ITLPDFTGDLR_vs_VTDB_ELPEHTVK
119 & 147
0.68
0.0059
0.56
0.3059





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.65
0.0229
0.61
0.0497





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.65
0.0229
0.56
0.2708





VTNC_GQYCYELDEK_vs_ALS_IRPHTFTGLSGLR
149 & 40
0.55
0.4844
0.67
0.0035





VTNC_GQYCYELDEK_vs_IBP3_YGQPLPGYTTK
149 & 100
0.65
0.0251
0.66
0.0071





VTNC_GQYCYELDEK_vs_IGF2_GIVEECCFR
149 & 103
0.63
0.0519
0.68
0.0023





VTNC_GQYCYELDEK_vs_ITIH4_ILDDLSPR
149 & 112
0.55
0.4325
0.65
0.0086





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.63
0.0407
0.66
0.0052





VTNC_GQYCYELDEK_vs_NCAM1_GLGEISAASEFK
149 & 121
0.53
0.6174
0.65
0.0082





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.65
0.0247
0.62
0.0369





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.57
0.2596
0.69
0.0012





VTNC_GQYCYELDEK_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
149 & 135
0.55
0.4359
0.66
0.0051





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.58
0.2273
0.69
0.0013





VTNC_GQYCYELDEK_vs_VTDB_ELPEHTVK
149 & 147
0.6
0.1311
0.68
0.0017





VTNC_VDTVDPPYPR_vs_CHL1_VIAVNEVGR
150 & 66
0.65
0.0226
0.59
0.1211





VTNC_VDTVDPPYPR_vs_IGF2_GIVEECCFR
150 & 103
0.62
0.0555
0.66
0.0065





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.63
0.0396
0.66
0.0063





VTNC_VDTVDPPYPR_vs_NCAM1_GLGEISAASEFK
150 & 121
0.54
0.5662
0.66
0.0068





VTNC_VDTVDPPYPR_vs_PSG3_VSAPSGTGHLPGLNPL
150 & 134
0.57
0.3028
0.67
0.0027





VTNC_VDTVDPPYPR_vs_PSG9_DVLLLVHNLPQNLPGYFWYK
150 & 135
0.54
0.5282
0.67
0.0034





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.58
0.204
0.68
0.0023





VTNC_VDTVDPPYPR_vs_VTDB_ELPEHTVK
150 & 147
0.61
0.0832
0.68
0.0015
















TABLE 71







Reversal Classification Performance, weeks 17-21.


Reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control


cut-off of <35 0/7 vs >=35 0/7 weeks, without BMI stratification, separately by 


fetal gender.














119_153_
119_153_
119_153_
119_153_




aBMI_35
aBMI 35
aBMI_3
aBMI



SEQ ID
Female
Female
5 Male
35 Male


Reversal
NO:
ROC_AUC
P-value
ROC_AUC
P-value





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
34 & 120
0.57
0.4262
0.67
0.0243





AFAM_DADPDTFFAK_vs_LYAM1_SYYWIGIR
37 & 120
0.51
0.9381
0.73
0.0018





AFAM_DADPDTFFAK_vs_PGRP2_AGLLRPDYALLGHR
37 & 126
0.51
0.9466
0.69
0.0116





AFAM_DADPDTFFAK_vs_SHBG_IALGGLLFPASNLR
37 & 18
0.53
0.7662
0.66
0.0248





AFAM_HFQNLGK_vs_IBP3_YGQPLPGYTTK
38 & 100
0.7
0.0336
0.62
0.1104





AFAM_HFQNLGK_vs_IGF2_GIVEECCFR
38 & 103
0.71
0.0263
0.63
0.0778





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
38 & 120
0.51
0.921
0.73
0.0018





AFAM_HFQNLGK_vs_PGRP2_AGLLRPDYALLGHR
38 & 126
0.51
0.9594
0.69
0.0098





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
42 & 120
0.54
0.643
0.71
0.0035





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
42 & 18
0.55
0.6315
0.67
0.0217





APOC3_GWVTDGFSSLK_vs_LYAM1_SYYWIGIR
47 & 120
0.57
0.4262
0.68
0.0146





APOH_ATVVYQGER_vs_CRIS3_YEDLYSNCK
48 & 79
0.6
0.2924
0.65
0.0451





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
48 & 120
0.53
0.7377
0.71
0.0037





APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGHR
48 & 126
0.52
0.8198
0.69
0.0097





B2MG_VEHSDLSFSK_vs_LYAM1_SYYWIGIR
50 & 120
0.6
0.285
0.68
0.0166





B2MG_VNHVTLSQPK_vs_IGF2_GIVEECCFR
51 & 103
0.72
0.0217
0.56
0.4027





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
51 & 120
0.62
0.1848
0.71
0.0044





CATD_VGFAEAAR_vs_C163A_INPASLDK
57 & 54
0.63
0.176
0.73
0.0014





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
57 & 78
0.57
0.4387
0.68
0.0125





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
57 & 79
0.59
0.3124
0.68
0.0119





CATD_VGFAEAAR_vs_CSH_AHQLAIDTYQEFEETYIPK
57 & 80
0.63
0.183
0.68
0.0138





CATD_VGFAEAAR_vs_CSH_ISLLLIESWLEPVR
57 & 81
0.59
0.3443
0.69
0.0095





CATD_VGFAEAAR_vs_FBLN1_TGYYFDGISR
57 & 86
0.57
0.4547
0.68
0.0157





CATD_VGFAEAAR_vs_IBP1_VVESLAK
57 & 97
0.61
0.2593
0.67
0.02





CATD_VGFAEAAR_vs_IBP2_LIQGAPTIR
57 & 98
0.52
0.8198
0.67
0.0205





CATD_VGFAEAAR_vs_IGF2_GIVEECCFR
57 & 103
0.66
0.0821
0.67
0.0224





CATD_VGFAEAAR_vs_ITIH4_ILDDLSPR
57 & 112
0.54
0.6623
0.69
0.0111





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
57 & 120
0.57
0.4324
0.76
4.00E−04





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
57 & 126
0.53
0.7621
0.72
0.0029





CATD_VGFAEAAR_vs_PSG3_VSAPSGTGHLPGLNPL
57 & 134
0.57
0.4678
0.7
0.0055





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
57 & 18
0.56
0.5538
0.69
0.0087





CATD_VGFAEAAR_vs_SOM2.CSH_NYGLLYCFR
57 & 138
0.61
0.2593
0.68
0.0139





CATD_VGFAEAAR_vs_SOM2.CSH_SVEGSCGF
57 & 139
0.58
0.381
0.71
0.0051





CATD_VGFAEAAR_vs_SPRL1_VLTHSELAPLR
57 & 140
0.6
0.2826
0.68
0.0125





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
57 & 141
0.59
0.3202
0.71
0.0051





CATD_VGFAEAAR_vs_TENX_LSQLSVTDVTTSSLR
57 & 142
0.59
0.347
0.67
0.0181





CATD_VGFAEAAR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
57 & 144
0.59
0.3124
0.67
0.0207





CATD_VGFAEAAR_vs_VTDB_ELPEHTVK
57 & 147
0.56
0.5395
0.67
0.0187





CATD_VSTLPAITLK_vs_C163A_INPASLDK
58 & 54
0.58
0.3987
0.71
0.004





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
58 & 78
0.56
0.4911
0.7
0.0071





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
58 & 79
0.59
0.3497
0.7
0.0064





CATD_VSTLPAITLK_vs_CSH_AHQLAIDTYQEFEETYIPK
58 & 80
0.59
0.3308
0.66
0.0274





CATD_VSTLPAITLK_vs_CSH_ISLLLIESWLEPVR
58 & 81
0.57
0.458
0.66
0.0259





CATD_VSTLPAITLK_vs_FBLN1_TGYYFDGISR
58 & 86
0.57
0.4645
0.68
0.0131





CATD_VSTLPAITLK_vs_IBP1_VVESLAK
58 & 97
0.58
0.3957
0.67
0.0181





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
58 & 103
0.66
0.0802
0.67
0.0203





CATD_VSTLPAITLK_vs_ITIH4_ILDDLSPR
58 & 112
0.52
0.8575
0.68
0.0152





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
58 & 120
0.55
0.6088
0.77
2.00E−04





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
58 & 126
0.5
0.9679
0.74
0.0013





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
58 & 134
0.58
0.4138
0.71
0.0043





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
58 & 18
0.53
0.7296
0.7
0.0052





CATD_VSTLPAITLK_vs_SOM2.CSH_NYGLLYCFR
58 & 138
0.58
0.4077
0.66
0.0299





CATD_VSTLPAITLK_vs_SOM2.CSH_SVEGSCGF
58 & 139
0.55
0.5755
0.69
0.0116





CATD_VSTLPAITLK_vs_SPRL1_VLTHSELAPLR
58 & 140
0.57
0.4645
0.68
0.0136





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
58 & 141
0.58
0.3927
0.72
0.0032





CATD_VSTLPAITLK_vs_TENX_LSQLSVTDVTTSSLR
58 & 142
0.57
0.458
0.68
0.0141





CATD_VSTLPAITLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
58 & 144
0.56
0.536
0.67
0.0235





CATD_VSTLPAITLK_vs_VTDB_ELPEHTVK
58 & 147
0.54
0.6976
0.67
0.0187





CBPN_EALIQFLEQVHQGIK_vs_LYAM1_SYYWIGIR
59 & 120
0.61
0.2395
0.66
0.0302





CBPN_NGVDLNR_vs_LYAM1_SYYWIGIR
157 & 120
0.63
0.1693
0.68
0.0159





CD14_LTVGAAQVPAQLLVGALR_vs_IGF2_GIVEECCFR
61 & 103
0.72
0.0193
0.6
0.1921





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
61 & 120
0.61
0.2526
0.73
0.0014





CD14_LTVGAAQVPAQLLVGALR_vs_PGRP2_AGLLRPDYALLGHR
61 & 126
0.57
0.4711
0.68
0.0139





CD14_LTVGAAQVPAQLLVGALR_vs_SHBG_IALGGLLFPASNLR
61 & 18
0.58
0.3898
0.68
0.0153





CD14_LTVGAAQVPAQLLVGALR_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
61 & 144
0.69
0.0425
0.6
0.1631





CD14_LTVGAAQVPAQLLVGALR_vs_VTDB_ELPEHTVK
61 & 147
0.64
0.1428
0.67
0.0179





CD14_SWLAELQQWLKPGLK_vs_IGF2_GIVEECCFR
62 & 103
0.72
0.0175
0.57
0.3174





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
62 & 120
0.62
0.1901
0.7
0.0059





CD14_SWLAELQQWLKPGLK_vs_PGRP2_AGLLRPDYALLGHR
62 & 126
0.57
0.4387
0.66
0.0306





CD14_SWLAELQQWLKPGLK_vs_SHBG_IALGGLLFPASNLR
62 & 18
0.58
0.3898
0.65
0.0351





CD14_SWLAELQQWLKPGLK_vs_TIE1_VSWSLPLVPGPLVGDGFLLR
62 & 144
0.71
0.029
0.59
0.204





CD14_SWLAELQQWLKPGLK_vs_VTDB_ELPEHTVK
62 & 147
0.66
0.0961
0.65
0.0442





CFAB_YGLVTYATYPK_vs_LYAM1_SYYWIGIR
64 & 120
0.52
0.866
0.67
0.0187





CLUS_ASSIIDELFQDR_vs_CRIS3_YEDLYSNCK
67 & 79
0.63
0.176
0.65
0.0465





CLUS_ASSIIDELFQDR_vs_IBP3_YGQPLPGYTTK
67 & 100
0.71
0.0267
0.56
0.4076





CLUS_ASSIIDELFQDR_vs_IGF2_GIVEECCFR
67 & 103
0.7
0.031
0.61
0.1288





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
67 & 120
0.59
0.3334
0.73
0.0014





CLUS_ASSIIDELFQDR_vs_PGRP2_AGLLRPDYALLGHR
67 & 126
0.54
0.6937
0.67
0.0189





CLUS_ASSIIDELFQDR_vs_SHBG_IALGGLLFPASNLR
67 & 18
0.58
0.4017
0.67
0.0172





CLUS_ASSIIDELFQDR_vs_VTDB_ELPEHTVK
67 & 147
0.6
0.2779
0.68
0.0148





CLUS_LFDSDPITVTVPVEVSR_vs_CRIS3_YEDLYSNCK
68 & 79
0.63
0.1627
0.65
0.0446





CLUS_LFDSDPITVTVPVEVSR_vs_IBP3_YGQPLPGYTTK
68 & 100
0.7
0.0359
0.56
0.3861





CLUS_LFDSDPITVTVPVEVSR_vs_IGF2_GIVEECCFR
68 & 103
0.71
0.0267
0.6
0.1593





CLUS_LFDSDPITVTVPVEVSR_vs_LYAM1_SYYWIGIR
68 & 120
0.58
0.3898
0.72
0.0027





CLUS_LFDSDPITVTVPVEVSR_vs_PGRP2_AGLLRPDYALLGHR
68 & 126
0.53
0.7867
0.66
0.0326





CLUS_LFDSDPITVTVPVEVSR_vs_SHBG_IALGGLLFPASNLR
68 & 18
0.57
0.4324
0.66
0.0254





CLUS_LFDSDPITVTVPVEVSR_vs_VTDB_ELPEHTVK
68 & 147
0.58
0.3839
0.68
0.0146





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
70 & 120
0.61
0.2593
0.7
0.0056





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
71 & 120
0.53
0.7498
0.71
0.0043





CO6_ALNHLPLEYNSALYSR_vs_LYAM1_SYYWIGIR
72 & 120
0.58
0.4077
0.71
0.0049





CO8A_SLLQPNK_vs_IBP1_VVESLAK
74 & 97
0.57
0.4844
0.65
0.0398





CO8A_SLLQPNK_vs_LYAM1_SYYWIGIR
74 & 120
0.51
0.9551
0.74
0.001





CO8B_QALEEFQK_vs_IBP1_VVESLAK
76 & 97
0.55
0.5939
0.67
0.024





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
76 & 120
0.55
0.5939
0.75
7.00E−04





CO8B_QALEEFQK_vs_PSG3_VSAPSGTGHLPGLNPL
76 & 134
0.51
0.8828
0.68
0.0161





F13B_GDTYPAELYITGSILR_vs_IBP3_YGQPLPGYTTK
84 & 100
0.74
0.0113
0.54
0.5451





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
84 & 103
0.74
0.011
0.59
0.2071





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
84 & 120
0.63
0.1812
0.74
0.0011





F13B_GDTYPAELYITGSILR_vs_PGRP2_AGLLRPDYALLGHR
84 & 126
0.54
0.7016
0.67
0.021





F13B_GDTYPAELYITGSILR_vs_SHBG_IALGGLLFPASNLR
84 & 18
0.59
0.3281
0.66
0.0262





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
88 & 120
0.56
0.5324
0.71
0.0037





FETUA_HTLNQIDEVK_vs_LYAM1_SYYWIGIR
89 & 120
0.51
0.9295
0.72
0.0032





HABP2_FLNWIK_vs_LYAM1_SYYWIGIR
92 & 120
0.54
0.6858
0.68
0.0161





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
93 & 120
0.5
1
0.71
0.0037





IBP4_QCHPALDGQR_vs_CRIS3_AVSPPAR
2 & 78
0.58
0.3898
0.66
0.0248





IBP4_QCHPALDGQR_vs_CRIS3_YEDLYSNCK
2 & 79
0.61
0.229
0.67
0.0219





IBP4_QCHPALDGQR_vs_IGF2_GIVEECCFR
2 & 103
0.68
0.0541
0.57
0.33





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
2 & 120
0.54
0.6353
0.74
0.0013





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
2 & 18
0.53
0.7498
0.67
0.0229





IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIGIR
102 & 120
0.55
0.5755
0.68
0.0122





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.51
0.9423
0.73
0.002





KNG1_QVVAGLNFR_vs_CRIS3_AVSPPAR
117 & 78
0.57
0.4515
0.65
0.042





KNG1_QVVAGLNFR_vs_CRIS3_YEDLYSNCK
117 & 79
0.61
0.229
0.65
0.0428





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.58
0.4169
0.75
7.00E−04





KNG1_QVVAGLNFR_vs_PGRP2_AGLLRPDYALLGHR
117 & 126
0.54
0.6468
0.67
0.0212





KNG1_QVVAGLNFR_vs_SHBG_IALGGLLFPASNLR
117 & 18
0.6
0.285
0.66
0.0248





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.6
0.2899
0.71
0.0044





PEDF_TVQAVLTVPK_vs_IGF2_GIVEECCFR
125 & 103
0.7
0.0294
0.58
0.2682





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.59
0.3361
0.73
0.0015





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.61
0.2395
0.66
0.0326





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.63
0.1611
0.66
0.0316





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.57
0.4645
0.67
0.0189





PSG2_IHPSYTNYR_vs_IBP2_LIQGAPTIR
133 & 98
0.57
0.4483
0.66
0.0316





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.59
0.3415
0.7
0.0072





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.6
0.3099
0.65
0.0363





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.58
0.3723
0.67
0.0189





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 & 120
0.55
0.6051
0.69
0.0094





THBG_AVLHIGEK_vs_LYAM1_SYYWIGIR
143 & 120
0.56
0.5395
0.69
0.0091





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.53
0.7176
0.76
4.00E−04





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.53
0.7826
0.7
0.0069





VTNC_GQYCYELDEK_vs_PSG3_VSAPSGTGHLPGLNPL
149 & 134
0.53
0.7703
0.68
0.0127





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.53
0.7296
0.68
0.0159





VTNC_VDTVDPPYPR_vs_CRIS3_YEDLYSNCK
150 & 79
0.58
0.3752
0.65
0.0451





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.52
0.8407
0.75
6.00E−04





VTNC_VDTVDPPYPR_vs_SHBG_IALGGLLFPASNLR
150 & 18
0.52
0.8744
0.68
0.0134
















TABLE 72







Reversal Classification Performance, weeks 17-21.


Reversal AUROC for gestational weeks 17 0/7 through 21 6/7 using a case vs control


cut-off of <35 0/7 vs >=35 0/7 weeks, with BMI stratification (>22 <= 37),


separately by fetal gender.














119_153_
119_153_
119_153_
119_153_




rBMI_35
rBMI_35
rBMI_3
rBMI



SEQ ID
Female
Female
5 Male
35 Male


Reversal
NO:
ROC_AUC
P-value
ROC_AUC
P-value





A2GL_DLLLPQPDLR_vs_CRIS3_YEDLYSNCK
34 & 79
0.76
0.0345
0.59
0.3046





A2GL_DLLLPQPDLR_vs_LYAM1_SYYWIGIR
34 & 120
0.7
0.0972
0.68
0.0323





AFAM_DADPDTFFAK_vs_LYAM1_SYYWIGIR
37 & 120
0.53
0.828
0.76
0.0018





AFAM_DADPDTFFAK_vs_PGRP2_AGLLRPDYALLGHR
37 & 126
0.51
0.962
0.74
0.0044





AFAM_DADPDTFFAK_vs_SOM2.CSH_SVEGSCGF
37 & 139
0.55
0.6755
0.67
0.0422





AFAM_HFQNLGK_vs_ALS_IRPHTFTGLSGLR
38 & 40
0.61
0.3649
0.67
0.0493





AFAM_HFQNLGK_vs_LYAM1_SYYWIGIR
38 & 120
0.54
0.7626
0.76
0.0019





AFAM_HFQNLGK_vs_PGRP2_AGLLRPDYALLGHR
38 & 126
0.5
0.9789
0.74
0.004





AFAM_HFQNLGK_vs_SOM2.CSH_SVEGSCGF
38 & 139
0.57
0.5494
0.69
0.0278





ANGT_DPTFIPAPIQAK_vs_LYAM1_SYYWIGIR
42 & 120
0.59
0.4361
0.75
0.0034





ANGT_DPTFIPAPIQAK_vs_PGRP2_AGLLRPDYALLGHR
42 & 126
0.54
0.7626
0.69
0.0224





ANGT_DPTFIPAPIQAK_vs_SHBG_IALGGLLFPASNLR
42 & 18
0.55
0.6755
0.69
0.0257





APOH_ATVVYQGER_vs_LYAM1_SYYWIGIR
48 & 120
0.54
0.7226
0.73
0.0071





APOH_ATVVYQGER_vs_PGRP2_AGLLRPDYALLGHR
48 & 126
0.51
0.9535
0.73
0.0072





B2MG_VNHVTLSQPK_vs_CRIS3_AVSPPAR
51 & 78
0.74
0.0446
0.59
0.3046





B2MG_VNHVTLSQPK_vs_CRIS3_YEDLYSNCK
51 & 79
0.78
0.02
0.6
0.251





B2MG_VNHVTLSQPK_vs_LYAM1_SYYWIGIR
51 & 120
0.71
0.091
0.71
0.0134





CATD_VGFAEAAR_vs_C163A_INPASLDK
57 & 54
0.68
0.1393
0.73
0.006





CATD_VGFAEAAR_vs_CRIS3_AVSPPAR
57 & 78
0.64
0.2374
0.67
0.0476





CATD_VGFAEAAR_vs_CRIS3_YEDLYSNCK
57 & 79
0.67
0.1572
0.67
0.0412





CATD_VGFAEAAR_vs_CSH_ISLLLIESWLEPVR
57 & 81
0.64
0.2416
0.68
0.0294





CATD_VGFAEAAR_vs_ITIH4_ILDDLSPR
57 & 112
0.55
0.6833
0.68
0.0362





CATD_VGFAEAAR_vs_LYAM1_SYYWIGIR
57 & 120
0.61
0.3705
0.77
0.0013





CATD_VGFAEAAR_vs_PGRP2_AGLLRPDYALLGHR
57 & 126
0.58
0.5353
0.72
0.011





CATD_VGFAEAAR_vs_SHBG_IALGGLLFPASNLR
57 & 18
0.56
0.6147
0.68
0.0342





CATD_VGFAEAAR_vs_SOM2.CSH_NYGLLYCFR
57 & 138
0.66
0.1835
0.67
0.0493





CATD_VGFAEAAR_vs_SOM2.CSH_SVEGSCGF
57 & 139
0.67
0.1572
0.68
0.0371





CATD_VGFAEAAR_vs_SPRL1_VLTHSELAPLR
57 & 140
0.58
0.4876
0.67
0.0397





CATD_VGFAEAAR_vs_TENX_LNWEAPPGAFDSFLLR
57 & 141
0.53
0.8363
0.72
0.011





CATD_VSTLPAITLK_vs_C163A_INPASLDK
58 & 54
0.64
0.2416
0.72
0.0087





CATD_VSTLPAITLK_vs_CRIS3_AVSPPAR
58 & 78
0.65
0.2092
0.69
0.0233





CATD_VSTLPAITLK_vs_CRIS3_YEDLYSNCK
58 & 79
0.69
0.118
0.7
0.0179





CATD_VSTLPAITLK_vs_IGF2_GIVEECCFR
58 & 103
0.74
0.0469
0.67
0.0484





CATD_VSTLPAITLK_vs_ITIH4_ILDDLSPR
58 & 112
0.53
0.828
0.68
0.0362





CATD_VSTLPAITLK_vs_LYAM1_SYYWIGIR
58 & 120
0.59
0.481
0.79
5.00E−04





CATD_VSTLPAITLK_vs_PGRP2_AGLLRPDYALLGHR
58 & 126
0.57
0.578
0.74
0.0042





CATD_VSTLPAITLK_vs_PSG3_VSAPSGTGHLPGLNPL
58 & 134
0.55
0.7068
0.7
0.0175





CATD_VSTLPAITLK_vs_SHBG_IALGGLLFPASNLR
58 & 18
0.54
0.7226
0.71
0.0149





CATD_VSTLPAITLK_vs_TENX_LNWEAPPGAFDSFLLR
58 & 141
0.52
0.8529
0.74
0.0048





CBPN_EALIQFLEQVHQGIK_vs_LYAM1_SYYWIGIR
59 & 120
0.6
0.4115
0.7
0.0206





CBPN_NGVDLNR_vs_LYAM1_SYYWIGIR
157 & 120
0.63
0.2821
0.72
0.0087





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_AVSPPAR
61 & 78
0.76
0.0319
0.57
0.3774





CD14_LTVGAAQVPAQLLVGALR_vs_CRIS3_YEDLYSNCK
61 & 79
0.77
0.0237
0.6
0.2605





CD14_LTVGAAQVPAQLLVGALR_vs_LYAM1_SYYWIGIR
61 & 120
0.71
0.091
0.73
0.0077





CD14_LTVGAAQVPAQLLVGALR_vs_SOM2.CSH_SVEGSCGF
61 & 139
0.75
0.0393
0.59
0.2954





CD14_SWLAELQQWLKPGLK_vs_LYAM1_SYYWIGIR
62 & 120
0.69
0.1156
0.68
0.0311





CLUS_ASSIIDELFQDR_vs_LYAM1_SYYWIGIR
67 & 120
0.6
0.4115
0.74
0.0038





CLUS_ASSIIDELFQDR_vs_PGRP2_AGLLRPDYALLGHR
67 & 126
0.54
0.7305
0.67
0.0435





CLUS_LFDSDPITVTVPVEVSR_VS_YAM1_SYYWIGIR
68 & 120
0.57
0.5708
0.7
0.0168





CO5_TLLPVSKPEIR_vs_LYAM1_SYYWIGIR
70 & 120
0.63
0.2681
0.72
0.0101





CO5_VFQFLEK_vs_LYAM1_SYYWIGIR
71 & 120
0.54
0.7147
0.71
0.0128





CO6_ALNHLPLEYNSALYSR_Vs_LYAM1_SYYWIGIR
72 & 120
0.68
0.1451
0.7
0.0211





CO8A_SLLQPNK_vs_LYAM1_SYYWIGIR
74 & 120
0.53
0.8363
0.74
0.0042





CO8B_QALEEFQK_vs_LYAM1_SYYWIGIR
76 & 120
0.54
0.7385
0.73
0.0068





F13B_GDTYPAELYITGSILR_vs_CRIS3_AVSPPAR
84 & 78
0.75
0.0364
0.63
0.125





F13B_GDTYPAELYITGSILR_vs_CRIS3_YEDLYSNCK
84 & 79
0.77
0.0264
0.63
0.1307





F13B_GDTYPAELYITGSILR_vs_IGF2_GIVEECCFR
84 & 103
0.77
0.0271
0.59
0.2905





F13B_GDTYPAELYITGSILR_vs_LYAM1_SYYWIGIR
84 & 120
0.68
0.1422
0.76
0.0022





F13B_GDTYPAELYITGSILR_vs_PGRP2_AGLLRPDYALLGHR
84 & 126
0.58
0.5146
0.68
0.0305





F13B_GDTYPAELYITGSILR_vs_SHBG_IALGGLLFPASNLR
84 & 18
0.6
0.4055
0.67
0.0493





FETUA_FSVVYAK_vs_LYAM1_SYYWIGIR
88 & 120
0.59
0.4614
0.71
0.0145





FETUA_HTLNQIDEVK_vs_LYAM1_SYYWIGIR
89 & 120
0.56
0.6448
0.73
0.0077





HEMO_NFPSPVDAAFR_vs_LYAM1_SYYWIGIR
93 & 120
0.51
0.9451
0.72
0.0099





IBP4_QCHPALDGQR_vs_LYAM1_SYYWIGIR
2 & 120
0.58
0.5146
0.76
0.0021





IBP4_QCHPALDGQR_vs_SHBG_IALGGLLFPASNLR
2 & 18
0.52
0.8612
0.67
0.0443





IBP6_HLDSVLQQLQTEVYR_vs_LYAM1_SYYWIGIR
102 & 120
0.61
0.3593
0.7
0.0158





ITIH3_ALDLSLK_vs_LYAM1_SYYWIGIR
111 & 120
0.63
0.2727
0.68
0.0342





KNG1_DIPTNSPELEETLTHTITK_vs_LYAM1_SYYWIGIR
116 & 120
0.55
0.6678
0.73
0.006





KNG1_QVVAGLNFR_vs_IGF2_GIVEECCFR
117 & 103
0.74
0.0435
0.61
0.2099





KNG1_QVVAGLNFR_vs_LYAM1_SYYWIGIR
117 & 120
0.62
0.3375
0.76
0.0023





KNG1_QVVAGLNFR_vs_PGRP2_AGLLRPDYALLGHR
117 & 126
0.54
0.7385
0.69
0.0237





PAPP1_DIPHWLNPTR_vs_CRIS3_AVSPPAR
122 & 78
0.68
0.1338
0.67
0.0443





PAPP1_DIPHWLNPTR_vs_CRIS3_YEDLYSNCK
122 & 79
0.71
0.0795
0.67
0.0467





PAPP1_DIPHWLNPTR_vs_LYAM1_SYYWIGIR
122 & 120
0.64
0.2459
0.72
0.0106





PAPP1_DIPHWLNPTR_vs_PRG2_WNFAYWAAHQPWSR
122 & 129
0.76
0.0319
0.62
0.1714





PAPP1_DIPHWLNPTR_vs_SOM2.CSH_SVEGSCGF
122 & 139
0.72
0.0708
0.69
0.0268





PEDF_LQSLFDSPDFSK_vs_CRIS3_YEDLYSNCK
124 & 79
0.74
0.0493
0.61
0.1762





PEDF_LQSLFDSPDFSK_vs_LYAM1_SYYWIGIR
124 & 120
0.65
0.217
0.72
0.0079





PEDF_TVQAVLTVPK_vs_CRIS3_YEDLYSNCK
125 & 79
0.75
0.0373
0.62
0.1489





PEDF_TVQAVLTVPK_vs_LYAM1_SYYWIGIR
125 & 120
0.63
0.2774
0.76
0.0023





PEDF_TVQAVLTVPK_vs_PGRP2_AGLLRPDYALLGHR
125 & 126
0.57
0.5494
0.67
0.0451





PSG2_IHPSYTNYR_vs_CRIS3_AVSPPAR
133 & 78
0.76
0.0345
0.68
0.0355





PSG2_IHPSYTNYR_vs_CRIS3_YEDLYSNCK
133 & 79
0.77
0.0286
0.68
0.0369





PSG2_IHPSYTNYR_vs_FBLN1_TGYYFDGISR
133 & 86
0.61
0.3649
0.67
0.0476





PSG2_IHPSYTNYR_vs_IBP2_LIQGAPTIR
133 & 98
0.69
0.118
0.68
0.039





PSG2_IHPSYTNYR_vs_IBP3_YGQPLPGYTTK
133 & 100
0.74
0.0446
0.62
0.1599





PSG2_IHPSYTNYR_vs_IGF2_GIVEECCFR
133 & 103
0.76
0.0336
0.63
0.1287





PSG2_IHPSYTNYR_vs_LYAM1_SYYWIGIR
133 & 120
0.72
0.0759
0.74
0.005





PSG2_IHPSYTNYR_vs_PGRP2_AGLLRPDYALLGHR
133 & 126
0.69
0.1156
0.68
0.03





PSG2_IHPSYTNYR_vs_PSG3_VSAPSGTGHLPGLNPL
133 & 134
0.67
0.1541
0.68
0.0362





PSG2_IHPSYTNYR_vs_SHBG_IALGGLLFPASNLR
133 & 18
0.68
0.1283
0.71
0.0149





PSG2_IHPSYTNYR_vs_SOM2.CSH_SVEGSCGF
133 & 139
0.76
0.0345
0.63
0.1122





PTGDS_GPGEDFR_vs_LYAM1_SYYWIGIR
137 & 120
0.59
0.4614
0.72
0.0099





THBG_AVLHIGEK_vs_LYAM1_SYYWIGIR
143 & 120
0.59
0.4361
0.7
0.0211





VTNC_GQYCYELDEK_vs_LYAM1_SYYWIGIR
149 & 120
0.53
0.8363
0.81
3.00E−04





VTNC_GQYCYELDEK_vs_PGRP2_AGLLRPDYALLGHR
149 & 126
0.54
0.7626
0.75
0.0037





VTNC_GQYCYELDEK_vs_SHBG_IALGGLLFPASNLR
149 & 18
0.51
0.9282
0.69
0.0219





VTNC_VDTVDPPYPR_vs_LYAM1_SYYWIGIR
150 & 120
0.51
0.9451
0.76
0.0023
















TABLE 73







SHBG Antibody Pair Screening











Pair






















1
2
3
4
5
6
7
8
9
10
11
12











Capture






















MAB
MAB
MAB



6001-
6001-
6001-
6002-
6002-
6002-




2656
2656
2656
AF2656
AF2656
AF2656
100050
100050
100050
100051
100051
100051











Detection























6001-
6002-
MAB
6001-
6002-
MAB

6002-
MAB

6001-




AF2656
100050
100051
2656
100050
100051
2656
AF2656
100051
2656
AF2656
100050













Conc.




(pg/mL)
Avg. Signal
























200,000
196,199
1,482
40
17,248
77
82
87
493
140
15
357
59



50,000
45,345
230
68
6,424
81
72
77
323
134
74
286
62



12,500
10,250
111
62
1,309
69
85
27
205
74
52
253
3



3,125
2,218
5
31
310
45
66
83
240
137
29
194
60



781
586
58
43
135
57
50
80
253
174
74
212
116



195
285
112
69
85
68
58
73
281
156
95
236
32



48.8
192
78
51
79
80
57
35
241
82
51
239
45



0
134
57
36
65
31
81
70
222
145
61
207
50












Sample
Dil. Factor
Avg. Signal























Sera Ser
100
24,276
759,257
95,554
72,420
540,435
33,723
52,016
1,519,054
124,739
257,126
2,651,568
2,483,374


SHBG















High















Sera Ser
500
11,920
151,855
25,205
53,509
435,835
28,879
39,185
1,310,604
112,980
103,294
1,365,240
1,236,988


SHBG















High















Sera Ser
100
4,968
466,625
60,954
81,666
488,908
30,966
54,664
1,409,717
113,560
211,022
2,093,523
1,854,111


SHBG















Low















Sera Ser
500
2,323
77,558
13,979
51,484
341,422
24,496
39,792
1,092,474
98,450
66,981
741,153
635,079


SHBG















Low















Sera
100
16,046
543,595
67,876
70,299
537,819
32,769
55,762
1,448,544
117,378
211,125
2,290,099
2,161,934


Pregnant















Pool















Sera
200
8,181
265,320
36,282
62,676
484,876
31,089
45,555
1,387,992
117,090
144,146
1,756,643
1,644,496


Pregnant















Pool















Sera
400
3,798
126,947
20,332
50,249
430,699
27,311
35,459
1,240,271
110,478
106,820
1,148,673
1,023,157


Pregnant















Pool















Sera
800
1,854
48,533
8,691
39,042
337,119
14,848
29,455
1,053,286
93,762
61,748
660,872
591,820


Pregnant















Pool
















TABLE 74







Top Performing SHBG Antibody Pairs with Additional Calibrators











Pair














2
3
10
12











Capture






















MAB
MAB
MAB
MAB
MAB
MAB
6001-
6001-
6001-
6001-
6001-
6001-




2656
2656
2656
2656
2656
2656
100051
100051
100051
100051
100051
100051











Detection






















6001-
6001-
6001-
6002-
6002-
6002-
MAB
MAB
MAB
6001-
6001-
6001-




10050
10050
10050
100051
100051
100051
2656
2656
2656
10050
10050
10050











Calibrator





















Conc.
R&D
Bios

R&D
Bios

R&D
Bios

R&D
Bios




(pg/mL)
Systems
Pacific
NIBSC
Systems
Pacific
NIBSC
Systems
Pacific
NIBSC
Systems
Pacific
NIBSC























Std-01
200,000
238,290
249,922
412,613
186,867
196,012
426,503
596,225
293,312
554,954
1,898,159
1,779,244
3,175,127


Std-02
50,000
88,340
76,077
107,001
77,374
88,009
134,934
158,181
150,021
237,546
554,319
882,130
1,538,720


Std-03
12,500
22,003
14,194
18,988
20,160
20,899
33,358
35,226
32,464
54,024
129,885
227,721
452,461


Std-04
3,125
5,261
3,137
3,960
5,215
5,151
8,048
8,701
7,791
12,118
32,771
57,949
117,096


Std-05
781
1,650
813
1,126
1,351
1,211
2,121
2,165
1,781
2,842
9,383
14,943
33,614


Std-06
195
534
247
323
474
371
554
751
482
766
2,869
3,630
8,559


Std-07
48.8
193
107
108
173
151
145
260
198
265
832
1,045
2,337


Std-08
0
87
68
42
83
60
58
93
127
100
171
232
210



Hill
0.96
1.09
1.07
0.99
1.04
1.05
1.00
1.13
1.08
0.96
1.04
0.99



Slope















LLCD
34
96
65
42
51
36
25
51
29
15
12
2.4



(pg/mL)














Sig-
Std-02
100%
86%
121% 
100%
114%
174%
100%
95%
150%
100%
159%
278%


nals
Std-03
100%
65%
86%
100%
104%
165%
100%
92%
153%
100%
175%
348%


Norm.
Std-04
100%
60%
75%
100%
 99%
154%
100%
90%
139%
100%
177%
357%


to
Std-05
100%
49%
68%
100%
 90%
157%
100%
82%
131%
100%
159%
358%


R&D
































Average
100%
65%
88%
100%
101%
163%
100%
90%
144%
100%
138%
335%


(STD02-05)




























TABLE 75







IGFBP-4 Antibody Screen












Pair














1
2
















Capture
Ansh AI039
Ansh AI042




Detection
Ansh AI042
Ansh AI039














Cond. (pg/mL)
Avg. Signal
Ratio














STD01
200,000
425,323
1,804,559
4.2


STD02
50,000
119,806
532,966
4.4


STD03
12,500
24,178
117,219
4.8


STD04
3,125
6,232
37,258
6.0


STD05
781
2,816
17,032
6.0


STD06
195
2,176
13,425
6.2


STD07
48.8
2,019
11,901
5.9


STD08
0
1,710
10,995
6.4



Hill Slope
1.20
1.10




LLOD (pg/mL)
317
129













Sample
Dil. Factor
Avg. Signal
Ratio














Sera Serum
5
80,262
923,638
11.5


IGFBP-4 High






Sera Serum
5
57,033
671,088
11.8


IGFBP-4 Low






Pregnant Pooled
2
177,461
1,608,197
9.1


Serum 1






Pregnant Pooled
4
68,359
771,385
11.3


Serum 2






Pregnant Pooled
8
26,032
335,292
12.9


Serum 3






Pregnant Pooled
16
10,001
143,381
14.3


Serum 4






Pregnant Pooled
32
4,813
60,651
12.6


Serum 5






Pregnant Pooled
64
2,796
21,126
7.6


Serum 6






MSD Serum 1
2
103,259
1,249,741
12.1


MSD Serum 1
4
37,414
571,584
15.3


MSD Serum 1
8
17,946
291,750
16.3


MSD Serum 1
16
7,203
126,275
17.5


MSD Serum 2
2
66,061
767,724
11.6


MSD Serum 2
4
29,099
425,207
14.6





* Pregnant Pooled Serum 6 sample exhibited signals within 2X assay background













TABLE 76







Transition Classification Performance, weeks


19-20. Transition AUROC for gestational weeks


19 1/7 through 20 6/7 using a case vs control


cut-off of <37 0/7 vs >=37 0/7 weeks, without


BMI stratification, for PTL.











134_146_aBMI_37


Transition
SEQ ID NO:
PTL ROC_AUC












PSG3_VSAPSGTGHLPGLNPL
134
0.66





IGF2_GIVEECCFR
103
0.66





IBP4_QCHPALDGQR
2
0.64





IBP3_YGQPLPGYTTK
100
0.64





F13B_GDTYPAELYITGSILR
84
0.61





APOH_ATVVYQGER
48
0.6





IBP3_FLNVLSPR
99
0.6
















TABLE 77







Transition Classification Performance, weeks


19-20. Transition AUROC for gestational weeks


19 1/7 through 20 6/7 using a case vs control


cut-off of <37 0/7 vs >=37 0/7 weeks, without


BMI stratification, for PPROM.










SEQ ID
134_146_aBMI_


Analytes
NO:
37 ROC_AUC












APOC3_GWVTDGFSSLK
47
0.76





PEDF_TVQAVLTVPK
125
0.76





INHBC_LDFHFSSDR
107
0.76





IBP4_QCHPALDGQR
2
0.73





PEDF_LQSLFDSPDFSK
124
0.73





A1AT_LSITGTYDLK
33
0.73





KNG1_QVVAGLNFR
117
0.72





CD14_LTVGAAQVPAQLLVGALR
61
0.72





VTNC_VDTVDPPYPR
150
0.71





KNG1_DIPTNSPELEETLTHTITK
116
0.71





CD14_SWLAELQQWLKPGLK
62
0.71





CO8A_SLLQPNK
74
0.69





CATD_VGFAEAAR
57
0.69





SHBG_IALGGLLFPASNLR
18
0.69





CO5_VFQFLEK
71
0.69





FETUA_FSVVYAK
88
0.68





HABP2_FLNWIK
92
0.68





VTNC_GQYCYELDEK
149
0.68





B2MG_VNHVTLSQPK
51
0.68





ENPP2_TYLHTYESEI
83
0.67





AFAM_HFQNLGK
38
0.67





APOH_ATVVYQGER
48
0.66





ITIH4_NPLVWVHASPEHVVVTR
113
0.66





CFAB_YGLVTYATYPK
64
0.66





CO8B_QALEEFQK
76
0.65





BGH3_LTLLAPLNSVFK
52
0.65





FETUA_HTLNQIDEVK
89
0.65





CO3_IHWESASLLR
69
0.65





ENPP2_TEFLSNYLTNVDDITLVPGTLGR
82
0.65





HEMO_NFPSPVDAAFR
93
0.65





LBP_ITLPDFTGDLR
119
0.65





CO5_TLLPVSKPEIR
70
0.65





FIBA_ESSSHHPGIAEFPSR
90
0.64





AFAM_DADPDTFFAK
37
0.64





ITIH3_ALDLSLK
111
0.64





LBP_ITGFLKPGK
118
0.64





CATD_VSTLPAITLK
58
0.64





PRDX2_GLFIIDGK
128
0.63





CO6_ALNHLPLEYNSALYSR
72
0.63





ANGT_DPTFIPAPIQAK
42
0.62





PRG2_WNFAYWAAHQPWSR
129
0.62





CBPN_NNANGVDLNR
60
0.62





IBP6_HLDSVLQQLQTEVYR
102
0.62





ITIH4_ILDDLSPR
112
0.62





IBP6_GAQTLYVPNCDHR
101
0.62





F13B_GDTYPAELYITGSILR
84
0.61





CLUS_LFDSDPITVTVPVEVSR
68
0.61





FBLN1_TGYYFDGISR
86
0.61





PAPP1_DIPHWLNPTR
122
0.61





TIE1_VSWSLPLVPGPLVGDGFLLR
144
0.6





CAH1_GGPFSDSYR
56
0.6





A2GL_DLLLPQPDLR
34
0.6





B2MG_VEHSDLSFSK
50
0.6





PSG2_IHPSYTNYR
133
0.6








Claims
  • 1. A method for providing prophylactic treatment of preterm birth in a pregnant human patient, the method comprising: (i) measuring in a biological sample obtained from said patient a panel of isolated biomarkers comprising IBP4 and SHBG, wherein measuring comprises subjecting the biological sample to a proteomics work-flow comprised of mass spectrometry (MS);(ii) calculating a risk score using a reversal value for IBP4/SHBG; and(iii) administering to said patient, where said risk score is above a reference risk score, a treatment regimen comprising a progesterone treatment, cervical cerclage, serial cervical length measurements, or an antenatal corticosteroid.
  • 2. The method of claim 1, wherein said treatment regimen further comprises an enhanced monitoring and clinical management regimen compared to a pregnant human patient not at risk for preterm birth comprising one or more of (a) more frequent prenatal care visits, (b) enhanced education regarding signs and symptoms of early preterm labor, or (c) alteration of treatment for diabetes and/or high blood pressure.
  • 3. The method of claim 1, wherein said progesterone treatment comprises administration of progestogen, 17-α hydroxyprogesterone caproate, or vaginal progesterone.
  • 4. The method of claim 3, wherein said 17-α hydroxyprogesterone caproate is administered as an injection.
  • 5. The method of claim 3, wherein said vaginal progesterone is administered in gel form.
  • 6. The method of claim 1, further comprising an initial step of detecting a measurable feature for one or more risk indicia.
  • 7. The method of claim 6, wherein said risk indicia is selected from the group consisting of Body Mass Index (BMI), gravidity and fetal gender.
  • 8. The method of claim 6, wherein said risk indicia is Body Mass Index (BMI).
  • 9. The method of claim 8, wherein said BMI is greater than 22 and less or equal to 37 kg/m2.
  • 10. The method of claim 1, wherein said biological sample is selected from the group consisting of whole blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine.
  • 11. The method of claim 10, wherein said biological sample is whole blood, plasma or serum.
  • 12. The method of claim 1, wherein said biological sample is obtained between 19 and 21 weeks of gestational age.
  • 13. The method of claim 1, wherein said proteomic work-flow comprises quantification of a stable isotope labeled (SIS) surrogate peptide of said biomarkers.
  • 14. The method of claim 1, wherein said MS is selected from the group consisting of a) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS);b) matrix-assisted laser desorption/ionization time-of-flight post-source-decay (MALDI-TOF post-source-decay (PSD));c) matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF);d) surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS);e) electrospray ionization mass spectrometry (ESI-MS);f) electrospray ionization-mass spectrometry/mass spectrometry (ESI-MS/MS);g) electrospray ionization mass spectrometry/mass spectrometry”, wherein is an integer greater than zero (ESI-MS/(MS)n (n is an integer greater than zero));h) electrospray ionization 3D (ESI 3D) or linear 2D ion trap mass spectrometry (ESI linear (2D)) ion trap MS;i) electrospray ionization triple quadrupole mass spectrometry (ESI triple quadrupole MS);j) electrospray ionization quadrupole orthogonal time-of-flight (ESI Q-TOF);k) electrospray ionization Fourier transform mass spectrometry systems (ESI Fourier transform MS systems);l) desorption/ionization on silicon (DIOS);m) secondary ion mass spectrometry (SIMS);n) atmospheric pressure chemical ionization mass spectrometry (APCI-MS);o) atmospheric pressure chemical ionization-mass spectrometry/mass spectrometry (APCI-MS/MS);p) atmospheric pressure chemical ionization-mass spectrometryn (APCI-(MS)n);q) ion mobility spectrometry (IMS);r) inductively coupled plasma mass spectrometry (ICP-MS);s) atmospheric pressure photoionization mass spectrometry (APPI-MS);t) atmospheric pressure photoionization-mass spectrometry/mass spectrometry (APPI-MS/MS); andu) atmospheric pressure photoionization-mass spectrometryn (APPI-(MS)n).
  • 15. The method of claim 1, wherein said MS comprises co-immunoprecipitation-mass spectrometry (co-IP MS).
  • 16. The method of claim 1, wherein said MS comprises liquid chromatography-mass spectrometry (LC-MS).
  • 17. The method of claim 1, wherein said MS comprises multiple reaction monitoring (MRM) or selected reaction monitoring (SRM).
  • 18. The method of claim 1, wherein said treatment regimen further comprises administration of cervical pessaries.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 16/380,938, filed Apr. 10, 2019, which claims the benefit of U.S. Non-Provisional application Ser. No. 15/186,322, now U.S. Pat. No. 10,392,665, filed Jun. 17, 2016, which claims the benefit of U.S. Provisional Application No. 62/290,796, filed Feb. 3, 2016, U.S. Provisional Application No. 62/387,420, filed Dec. 24, 2015, and U.S. Provisional Application No. 62/182,349, filed Jun. 19, 2015, the entire contents of each of which are incorporated herein by reference.

US Referenced Citations (81)
Number Name Date Kind
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
4800159 Mullis et al. Jan 1989 A
4965188 Mullis et al. Oct 1990 A
5130238 Malek et al. Jul 1992 A
5270184 Walker et al. Dec 1993 A
5399491 Kacian et al. Mar 1995 A
5455166 Walker Oct 1995 A
5480784 Kacian et al. Jan 1996 A
7091316 Uchida et al. Aug 2006 B2
7191068 Rosenfeld et al. Mar 2007 B2
7323346 Thadhani et al. Jan 2008 B2
7425419 Poston et al. Sep 2008 B2
7435419 Karumanchi et al. Oct 2008 B2
7790463 Mor et al. Sep 2010 B2
20020137086 Olek et al. Sep 2002 A1
20030105731 Lapointe et al. Jun 2003 A1
20040197930 Rosenfeld et al. Oct 2004 A1
20040203023 Chandrasiri-Herath Oct 2004 A1
20050043640 Chang Feb 2005 A1
20050059013 Kokudo Mar 2005 A1
20050074746 Mor et al. Apr 2005 A1
20050148023 Thadhani et al. Jul 2005 A1
20050148040 Thadhani et al. Jul 2005 A1
20050233400 Weiner et al. Oct 2005 A1
20060046265 Becker et al. Mar 2006 A1
20060094039 Rosenfeld et al. May 2006 A1
20060127962 Buhimschi et al. Jun 2006 A1
20060166242 Pennell et al. Jul 2006 A1
20060166280 Strauss et al. Jul 2006 A1
20070054329 Fung et al. Mar 2007 A1
20070111326 Sogin et al. May 2007 A1
20070141055 Kajander et al. Jun 2007 A1
20070161125 Rosenfeld et al. Jul 2007 A1
20070178605 Mor et al. Aug 2007 A1
20080090759 Kokenyesi et al. Apr 2008 A1
20080187929 Meiri et al. Aug 2008 A1
20080213794 Thadhani et al. Sep 2008 A1
20080233583 Fisher et al. Sep 2008 A1
20080274481 Fung et al. Nov 2008 A1
20090018778 Nation et al. Jan 2009 A1
20100016173 Nagalla et al. Jan 2010 A1
20100017143 Nagalla et al. Jan 2010 A1
20100035284 Buhimschi et al. Feb 2010 A1
20100062471 Kantor Mar 2010 A1
20100113286 Lajoie et al. May 2010 A1
20100143949 Petricoin Jun 2010 A1
20100163721 Graves et al. Jul 2010 A1
20100167267 Schulzknappe et al. Jul 2010 A1
20100173317 Nakamura et al. Jul 2010 A1
20100173786 Brun et al. Jul 2010 A1
20100216250 Lopez et al. Aug 2010 A1
20100291612 Luider et al. Nov 2010 A1
20100297679 Graves et al. Nov 2010 A1
20110008805 Urdea Jan 2011 A1
20110165554 Levin et al. Jul 2011 A1
20110171645 McManus et al. Jul 2011 A1
20110195478 Chen et al. Aug 2011 A1
20110247404 Graves et al. Oct 2011 A1
20110256560 Diamandis Oct 2011 A1
20120046261 Manuck et al. Feb 2012 A1
20120149041 Graves et al. Jun 2012 A1
20120190561 Wildt et al. Jul 2012 A1
20120315630 Gong et al. Dec 2012 A1
20130040844 Wyss-Coray Feb 2013 A1
20130130278 Gruslin et al. May 2013 A1
20130137595 Zangar et al. May 2013 A1
20130296198 Gordon et al. Nov 2013 A1
20140287947 Boniface et al. Sep 2014 A1
20140287948 Boniface et al. Sep 2014 A1
20140287950 Hickok et al. Sep 2014 A1
20140296108 Hickok et al. Oct 2014 A1
20160003837 Murtha et al. Jan 2016 A1
20160154003 Boniface et al. Jun 2016 A1
20170022565 Boniface et al. Jan 2017 A1
20170146548 Hickok et al. May 2017 A1
20180143202 Boniface et al. May 2018 A1
20180172696 Boniface et al. Jun 2018 A1
20180172698 Boniface et al. Jun 2018 A1
20190219588 Boniface et al. Jul 2019 A1
20190317107 Boniface et al. Oct 2019 A1
Foreign Referenced Citations (41)
Number Date Country
2629451 May 2007 CA
002520 Jun 2002 EA
0684315 Jun 2002 EP
1914548 Apr 2008 EP
1914552 Apr 2008 EP
1914553 Apr 2008 EP
2014-505264 Feb 2014 JP
2014-526032 Oct 2014 JP
2486519 Jun 2013 RU
WO 1991016633 Oct 1991 WO
WO 1993009438 May 1993 WO
WO 2002070742 Sep 2002 WO
WO 2004088324 Oct 2004 WO
WO 2005014635 Feb 2005 WO
WO 2005031364 Apr 2005 WO
WO 2006029838 Mar 2006 WO
WO 2006034427 Mar 2006 WO
WO 2006074360 Jul 2006 WO
WO 2007022248 Feb 2007 WO
WO 2007051069 May 2007 WO
WO 2007053161 May 2007 WO
WO 2007092353 Aug 2007 WO
WO 2007110625 Oct 2007 WO
WO 2008046160 Apr 2008 WO
WO 2008054764 May 2008 WO
WO 2008063369 May 2008 WO
WO 2009014987 Jan 2009 WO
WO 2009158423 Dec 2009 WO
WO 2011022526 Feb 2011 WO
WO 2011077129 Jun 2011 WO
WO 2011100792 Aug 2011 WO
WO 2012017071 Feb 2012 WO
WO 2012170711 Dec 2012 WO
WO 2014066568 May 2014 WO
WO 2014089124 Jun 2014 WO
WO 2014143977 Sep 2014 WO
WO 2014144129 Sep 2014 WO
WO 2016205723 Dec 2016 WO
WO 2018027160 Feb 2018 WO
WO 2018027171 Feb 2018 WO
WO 2019036032 Feb 2019 WO
Non-Patent Literature Citations (164)
Entry
Chahrour et al., Journal of Pharmaceutical and Biomedical Analysis 113: 2-20 (Year: 2015).
Alcaraz et al., “Tenascin-X promotes epithelial-to-mesenchymal transition by activating latent TGF-ß,” J. Cell Biol., 205(3):409-428 (2014).
Ananth et al., “Association of Temporal Changes in Gestational Age With Perinatal Mortality in the United States, 2007-2015,” JAMA Pediatr., 172(7):627-634 (2018).
Anderson et al., “Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins,” Mol. Cell. Proteomics, 5(4):573 (2006).
Anderson, “Sex-hormone-binding globulin,” Clin. Endocrinol (Oxf),3(1):69-96 (1974).
Bamber, “The area above the ordinal dominance graph and the area below the receiver operating characteristic graph,” J. Math. Psychol., 12(4):387-415 (1975).
Banaem et al., “Maternal serum C-reactive protein in early pregnancy and occurrence of preterm premature rupture of membranes and preterm birth,” J. Obstet. Gynaecol. Res., 38(5):780-786 (2012).
Behrman et al. eds., “Preterm Birth: Causes, Consequences, and Prevention,” Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy Outcomes, National Academies Press, Washington DC, 791 pages (2007).
Belfiore et al., “Insulin receptor and cancer,” Endocr. Relat. Cancer, 18:R125-R147 (2011).
Berkley et al., “Multiple Marker Screen for Preeclampsia,” Am. J. Obstet. Gynecol., 197(6):S142 (2007).
Beta et al., Prediction of spontaneous preterm delivery from maternal factors, obstetric history and placental perfusion and function at 11-13 weeks, Prenat. Diagn., 31(1):75-83 (2011).
Bezold et al., “The genomics of preterm birth: from animal models to human studies,” Genome Med., 5(4):34 (2013).
Biemann, “Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation,” Methods Enzymol., 193:455-479 (1990).
Blencowe et al., “National, regional and worldwide estimates of preterm birth.” Lancet, 9;379(9832):2162-2172 (2012).
Box et al., “An analysis of transformations,” Royal Stat. Soc. Series B, 26:211-246 (1964).
Breiman, “Random Forests,” Mach. Learn., 45:5-32 (2001).
Brody et al., “Life's simple measures: unlocking the proteome,” J Mol Biol. 422(5):595-606 (2012).
Brown et al., “Interval estimation for a binomial proportion.,” Statistical Science, 16(2):101-133 (2001).
Carty et al., “Novel Biomarkers for Predicting Preeclampsia,” Trends Cardiovasc. Med., 15(5):186-194 (2008).
Catov et al., “Activation of the Fibrinolytic Cascade Early in Pregnancy Among Women with Spontaneous Preterm Birth,” Obstet. Gynecol., 112(5):1116-1122 (2008).
Chen et al., “Lysophosphatidic acid up-regulates expression of growth-regulated oncogene-alpha, interleukin-8, and monocyte chemoattractant protein-1 in human first-trimester trophoblasts: possible roles in angiogenesis and immune regulation,” Endocrinology, 151(1):369-379 (2010).
Chim et al., “Systematic identification of spontaneous preterm birth-associated RNA transcripts in maternal plasma,” PLoS ONE, 7(4):e34328 (2012).
Cozens et al., “DNA sequences of two expressed nuclear genes for human mitochondrial ADP/ATP translocase,” J. Mol. Biol., 206(2):261-280 (1989).
Craig et al., “TANDEM: matching proteins with tandem mass Spectra,” Bioinformatics, 20:1466-1467 (2004).
Crosley et al., “IGFBP-4 and -5 are expressed in first-trimester villi and differentially regulate the migration of HTR-8/SVneo cells,” Reprod. Biol. Endocrinol., 12(1):123 (2014).
Cunningham et al., “The complete amino acid sequence of beta 2-microglobulin,” Biochemistry, 12(24):4811-4822 (1973).
Damsky et al., “Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo,” J. Clin. Invest., 89(1):210-222 (1992).
Dasari et al., “Comprehensive proteomic analysis of human cervical-vaginal fluid,” J. Proteome Res., 6(4):1258-1268 (2007).
De Groot et al., “Specific Peptides Identified by Mass Spectometry in Placental Tissue from Pregnancies Attained by Laser Capture Dissection,” Protemics Clin. Appl., 1(3):325-335 (2007).
Demetriou et al., “Paternally expressed, imprinted insulin-like growth factor-2 in chorionic villi correlates significantly with birth weight,” PLoS One, 9(1):e85454 (2014).
Dmitrienko et al., “Key multiplicity issues in clinical drug development,” Stat Med., 32(7):1079-1111 (2012).
Domanski et al., “MRM-Based Multiplexed Quantification of 67 Putative Cardiovascular Disease Biomarkers in Human Plasma,” Proteomics, 12:1222-1243 (2012).
Eastaugh et al., “Comparison of Neural Networks and Statistical Models to Predict Gestational Age at Birth,” Neural Comput. Applic., 6(3):158-164 (1997).
Efron et al., “Least angle regression,” Annals Statistics, 32:407-451 (2004).
Endo et al., “Primary structure and gene localization of human prolidase,” J. Biol. Chem., 264(8):4476-4481 (1989).
Eng et al., “An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database,” J. Am. Soc. Mass Spectrom, 5:976-989 (1994).
Enquobahrie et al., “Early pregnancy peripheral blood gene expression and risk of preterm delivery: a nested case control study,” BMC Pregnancy Childbirth, 9(1):56 (2009).
Erez et al., “High Tissue Factor Activity and Low Tissue Factor Pathway Inhibitor Concentrations in Patients with Preterm Labor,” J. Matern. Fetal Neonatal Med., 23(1):23-33 (2010).
Esplin et al., “Proteomic identification of serum peptides predicting subsequent spontaneous preterm birth,” Am. J. Obstet. Gynecol., 204(5):391e1-8 (2010).
Flick et al., “Mechanistic insights from serum proteomic biomarkers predictive of spontaneous preterm birth,” Am. J. Obstet. Gynecol., Abstract No. 253, S148-S149 (2016).
Forbes et al., “Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta,” Am. J. Physiol. Cell Physiol., 294(6):C1313-1322 (2008).
Fullerton et al., “Sequence polymorphism at the human apolipoprotein AII gene (APOA2): unexpected deficit of variation in an African-American sample,” Hum. Genet., 111(1):75-87 (2002).
Fullerton et al., “The effects of scale: variation in the APOA1/C3/A4/A5 gene cluster,” Hum. Genet., 115(1):36-56 (2004).
Geisert et al., “Expression of an inter-alpha-trypsin inhibitor heavy chain-like protein in the pig endometrium during the oestrous cycle and early pregnancy,” J. Reprod. Fertility, 114(1):35-43 (1998).
Geman et al., “Classifying gene expression profiles from pair wise mRNA comparisons,” Stat. Appl. Genet. Mol. Biol., 3(1):Article19 (2004).
Gershagen et al., “A cDNA coding for human sex hormone binding globulin,” FEBS Lett., 220(1):129-135 (1987).
Goldenberg et al., “Epidemiology and causes of preterm birth,” Lancet, 371(9606):75-84 (2008).
Goldenberg et al., “The Preterm Prediction Study: Cervical lactoferrin concentration, other markers of lower genital tract infection, and preterm birth,” Am. J. Obstet. Gynecol., 182(3):631-635 (2000).
Goldenberg et al., “The preterm prediction study: the value of new vs standard risk factors in predicting early and all spontaneous preterm births,” Am. J. Public Health, 88(2):233-238 (1998).
Gomez-Lopez et al., “Immune cells in term and preterm labor.,” Cell Mol. Immunol., 11(6):571-581 (2014).
Gravett et al., “Diagnosis of intra-amniotic infection by proteomic profiling and identification of novel biomarkers,” JAMA, 292(4):462-469 (2004).
Gravett et al., “Proteomic analysis of cervical-vaginal fluid: identification of novel biomarkers for detection of intra-amniotic infection,” J. Proteome Res., 6(1):89-96 (2007).
Greene, “Choices in Managing Full-Term Pregnancy,” N. Engl. J. Med., 379(6):580-581 (2018).
Grobman et al., “Labor Induction versus Expectant Management in Low-Risk Nulliparous Women,” N. Engl. J. Med., 379(6):513-523 (2018).
Grobman, “A randomized trial of elective induction of labor at 39 weeks compared with expectant management of low-risk nulliparous women,” Am. J. Obst. Gyn., 218(1):S601 (2018).
Grundmann et al., “Complete cDNA sequence encoding the B subunit of human factor XIII,” Nucleic Acids Res., 18(9):2817-2818 (1990).
Guatelli et al., “Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication,” Proc. Natl. Acad. Sci. USA, 87:1874-1878 (1990).
Haataja et al., “Mapping a new spontaneous preterm birth susceptibility gene, IGFIR, using linkage, haplotype sharing, and association analysis,” PLoS Genet., 7(2):e1001293 (2011).
Haefliger et al., “Structural and Functional Characterization of Complement C8γ, A Member of the Lipocalin Protein Family,” Mol. Immunol., 28(1-2):123-131 (1991).
Hammond, “Diverse roles for sex hormone-binding globulin in reproduction,” Biol. Reprod., 85(3):431-441 (2011).
Hassan et al. “Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: a multicenter, randomized, double-blind, placebo-controlled trial,” Ultrasound Obstet. Gynecol., 38(1):18-31 (2011).
Haviland et al., “Complete cDNA sequence of human complement pro-C5. Evidence of truncated transcripts derived from a single copy gene,” J. Immunol., 146(1):362-368 (1991).
Heitner et al., “Differneitiation of HELLP patients from healthy pregnant women by proteome analysis-On the way towards a clinical marker set,” J. Chromatog. B, 840(1):10-19 (2006).
Hobel et al., “Maternal plasma corticotropin-releasing hormone associated with stress at 20 weeks gestation in pregnancies ending in preterm delivery,” Am. J. Obstet. Gynecol., 180(1):S257-S263 (1999).
Howard et al., “Complementary DNA and derived amino acid sequence of the beta subunit of human complement protein C8: identification of a close structural and ancestral relationship to the alpha subunit and C9,” Biochemistry, 26(12):3565-3570 (1987).
Howson et al. eds., “Born too soon: The Global Action Report on Preterm Birth,” World Health Organization, Geneva, 126 pages (2012).
Huang et al., “Tree-structured supervised learning and the genetics of hypertension,” Proc. Nat. Acad. Sci. U.S.A., 101:10529-10534 (2004).
Huynh et al., “Low pregnancy-associated plasma protein A level in the first trimester,” Can. Fam. Physician, 60(10):899-903 (2014).
Iams et al., “The length of the cervix and the risk of spontaneous premature delivery,” N. Engl. J. Med., 334(9):567-572 (1996).
Katayama et al., “Application of serum proteomics to the Women's Health Initiative conjugated equine estrogens trial reveals a multitude of effects relevant to clinical findings,” Genome Med., 1:47 (2009).
Keller et al., “Empirical Stat istical Model To Estimate the Accuracy of Peptide Identificat ions Made by MS/MS and Database Search,” Anal. Chem, 74:5383-5392 (2002).
Kenny et al., “Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning,” Metabolomics, 1(3):227-234 (2005).
Khan et al., “Delineation and synthesis of the membrane receptor-binding domain of sex hormone-binding globulin,” J. Biolog. Chem., 265(30):18362-18365 (1990).
Kim et al., “ITI-H4, as a biomarker in the serum of recurrent pregnancy loss (RPL) patients,” Mol. Biosyst., 7(5):1430-1440 (2011).
Klee et al., “Strategy for the development of a mass spectrometry assay for measuring sex hormone binding globulin (SHBG) in human serum,” Clinical Chemistry, Poster B-103, 58(S10):A1-A77 (2012).
Knott et al., “Complete protein sequence and identification of structural domains of human apolipoprotein B,” Nature, 323:734-738 (1986).
Kuhn et al., “Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards,” Proteomics, 4:1175-1186 (2004).
Kwoh et al., “Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format,” Proc. Natl. Acad. Sci. USA, 86:1173-1177 (1989).
Larrea et al. “Evidence that human placenta is a site of sex hormone-binding globulin gene expression,” J. Steroid Biochem. Mol. Biol., 46(4):497-505 (1993).
Li et al., “A blood-based proteomic classifier for the molecular characterization of pulmonary nodules,” Sci. Transl. Med., 5(207):ra142 (2013).
Li et al., “An integrated quantification method to increase the precision, robustness, and resolution of protein measurement in human plasma samples,” Clin. Proteomics, 12(1):3 (2015).
Lin et al., “Simple and Rapid Sample Preparation Methods for Whole Blood and Blood Plasma,” Diagnostic Molecular Microbiology, Principles and Applications, Persing et al., eds., Rochester, MN, pp. 605-616 (1993).
Lindström et al. “The role of nuclear factor kappa B in human labour,” Reproduction, 130(5):569-581 (2005).
Ling et al. “Multiplexing molecular diagnostics and immunoassays using emerging microarray technologies” Expert Rev. Mol. Diagn., 7:87-98 (2007).
Liu et al., “Recent developments in protein and cell-targeted aptamer selection and applications,” Curr. Med. Chem., 18(27):4117-4125 (2011).
Lizardi et al., “Exponential amplification of recombinant-RNA hybridization probes,” BioTechnol., 6:1197-1202 (1988).
Lukanova et al., “Body mass index, circulating levels of sex-steroid hormones, IGF-I and IGF-binding protein-3: a cross-sectional study in healthy women,” Eur. J. Endocrinol., 150(2):161-171 (2004).
Macdorman et al., “Fetal and Perinatal Mortality: United States, 2013,” Natl. Vital. Stat. Rep., 64(8):1-24 (2015).
Mackinnon et al., “Molecular cloning of cDNA for human complement component Cls. The complete amino acid sequence,” Eur. J. Biochem., 169(3):547-553 (1987).
Martin et al., “Births: Final Data for 2012,” Natl Vital Stat Rep., 64(1):1-65 (2015).
Martin et al., “Births: Final Data for 2016,” Natl. Vital Stat. Rep., 67(1):1-55 (2018).
Mason et al., “Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation,” QJR Meteorol. Soc., 128(584):2145-2166 (2002).
Mayo Clinic, “Researchers Discover Link Between High Levels of HtrAl Protein and Preeclampsia, a Complication of Pregnancy,” URL: http://www.mayoclinic/org/news2006-rst/3234.html, Publication Date: Feb. 1, 2006.
McElroy et al., “Maternal coding variants in complement receptor 1 and spontaneous idiopathic preterm birth,” Hum. Genet., 132(8):935-942 (2013).
McLean et al., “Effect of Collision Energy Optimization on the Measurement of Peptides by Selected Reaction Monitoring (SRM) Mass Spectrometry,” Anal. Chem., 82(24):10116-10124 (2010).
McLean et al., “Skyline: an open source document editor for creating and analyzing targeted proteomics experiments,” Bioinformatics, 26(7):966-968 (2010).
Mendelson, “Minireview: fetal-maternal hormonal signaling in pregnancy and labor,” Mol Endocrinol., 23(7):947-954 (2009).
Menon et al., “Amniotic fluid metabolomic analysis in spontaneous preterm birth,” Reprod. Sci., 21(6):791-803 (2014).
Menon et al., “Genetic regulation of amniotic fluid TNF-alpha and soluble TNF receptor concentrations affected by race and preterm birth,” Human Genet., 124(3):243-253 (2008).
Middleton et al., “Induction of labour for improving birth outcomes for women at or beyond term,” Cochrane Database Syst. Rev., 5:CD004945 (2018).
Moore et al., “Pregnancy-specific glycoproteins: complex gene families regulating maternal-fetal interactions,” Int. J. Dev. Biol., 58:273-280 (2014).
Morisaki et al., “Risk factors for spontaneous and provider-initiated preterm delivery in high and low Human Development Index countries: a secondary analysis of the World Health Organization Multicountry Survey on Maternal and Newborn Health,” BJOG, 121(Supp. 1):101-109 (2014).
Moutquin, “Classification and heterogeneity of preterm birth,” BJOG, 110 (Suppl 20):30-33 (2003).
Murata et al., “Molecular cloning and expression of the human interleukin 5 receptor,” J. Exp. Med., 175(2):341-351 (1992).
Murphy et al., “Deaths: Final Data for 2012,” Natl. Vital Stat. Rep., 63(9):1-118 (2015).
Nakajima et al., “Elevated vasoinhibin derived from prolactin and cathepsin D activities in sera of patients with preeclampsia,” Hypertens. Res., 38:899-901 (2015).
Nielsen et al., “Multiplexed sandwich assays in microarray format,” J. Immunol. Methods, 290:107-120 (2004).
O'Leary et al., “Longitudinal assessment of changes in reproductive hormones during normal pregnancy,” Clin. Chem., 37(5):667-672 (1991).
Oliveira et al., “Primary Structure of Human C-reactive Protein,” J. Biol. Chem., 254(2):489-502 (1979).
Pal et al., “Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance,” Nature Med., 18(8):1279-1285 (2012).
Pavcnik-Arnol et al., “Lipopolysaccharide-Binding Protein as Marker of Fetal Inflammatory Response Syndrome after Preterm Premature Rupture of Membranes,” Neonatol., 105:121-127 (2014).
Pereira et al., “Identification of novel protein biomarkers of preterm birth in human cervical- vaginal fluid,” J. Proteome Res., 6(4):1269-1276 (2007).
Pereira et al., “Insights into the multifactorial nature of preterm birth: proteomic profiling of the maternal serum glycoproteome and maternal serum peptidome among women in preterm labor,” Am. J. Obstet. Gynecol., 202(6):555.e1-10 (2010).
Petersen et al., “Characterization of the gene for human plasminogen, a key proenzyme in the fibrinolytic system,” J. Biol. Chem., 265(11):6104-6111 (1990).
Petrini et al. “Estimated effect of 17 alpha-hydroxyprogesterone caproate on preterm birth in the United States,” Obstet Gynecol., 105(2):267-272 (2005).
Poirier et al., “Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism,” Circulation, 113:898-918 (2006).
Polpitiya et al., “DAnTE: a statistical tool for quantitative analysis of -omics data,” Bioinformatics, 24:1556-1558 (2008).
Powe et al., “First Trimester Vitamin D, Vitamin D Binding Protein, and Subsequent Preeclampsia,” Hypertension, 56(4):758-763 (2010).
Price et al., “Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas,” Proc. Natl. Acad. Sci. USA, 104(9):3414-3419 (2007).
Qiu et al., “Significance of IGFBP-4 in the development of fetal growth restriction,” J. Clin. Endocrinol. Metab., 97(8):E1429-1439 (2012).
Rasanen et al., “First Trimester Maternal Serum Biomarkers For Prediction of Preeclampsia,” Am. J. Obstet. Gynecol., 197(6):S10 (2007).
Rask et al., “Structural and functional studies of vitamin A-binding proteins,” Ann. N. Y. Acad. Sci., 359:79-90 (1981).
Red-Horse et al., “Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface,” J. Clin. Invest., 114:744-754 (2004).
Reid, “Complete Amino Acid Sequences of the Three Collagen-Like Regions present in Subcomponent Clq of the First Component of Human Complement,” Biochem. J., 179(2):367-371 (1979).
Romero et al., “Identification of fetal and maternal single nucleotide polymorphisms in candidate genes that predispose to spontaneous preterm labor with intact membranes,” Am. J. Obstet. Gynecol., 202(5):431.e1-34 (2010).
Ruczinski et al., “Logic Regression,” J. Comput. Graph. Stat., 12(3):475-511 (2003).
Saade et al., “Development and validation of a spontaneous preterm delivery predictor in asymptomatic women,” Am. J. Obstet. Gynecol., 214(5): 633.e1-633.e24 (2016).
Salier et al., “The inter-alpha-inhibitor family: from structure to regulation,” Biochem. J., 315:1-9 (1996).
Sambrook et al., “Analysis of RNA,” Molecular Cloning, A laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 7.37-7.57 (1989).
Scholl et al., “Anemia, Iron and Pregnancy Outcome,” J. Nutrition, 130(2S):443S-447S (2000).
Schumann et al., “Structure and Function of Lipopolysaccharide Binding Protein,” Science, 249(4975):1429-1431 (1990).
Seegar et al., “Tie1-Tie2 interactions mediate functional differences between angiopoietin ligands,” Mol. Cell., 37(5):643-655 (2010).
Selby et al., “Analysis of a Major Human Chorionic Somatomammotropin Gene,” J. Biol. Chem., 259(21):13131-13138 (1984).
Self et al., “Advances in immunoassay technology” Curr. Opin. Biotechnol., 7:60-65 (1996).
Sera Prognostics, Inc., “Proteomic Assessment of Preterm Birth (PAPR),” ClinicalTrials.gov archive, pp. 1-6 (Apr. 18, 2019). Retrieved from the Internet: https://clinicaltrials.gov/ct2/show/NCT01371019, on Apr. 18, 2019.
Shi et al., “IgY14 and SuperMix immunoaffinity separations coupled with liquid chromatography-mass spectrometry for human plasma proteomics biomarker discovery,” Methods, 56(2):246-253 (2012).
Sibai, “Preeclampsia and Hypertensive Disorders,” Obstetrics: Normal and Problem Pregnancies, 7th ed., Gabbe et al. eds., Elsevier, Philadelphia, PA, pp. 661-705, 2017.
Simóet al. “Novel insights in SHBG regulation and clinical implications,” Trends Endocrinol. Metab., 26(7):376-383 (2015).
Sing et al., “ROCR: visualizing classifier performance in R,” Bioinformatics, 21(20):3940-3941 (2005).
Smets et al., “Novel Biomarkers in Preeclampsia,” Clinica Chimica Acta, 364:22-32 (2006).
Son et al., “Multiple FASI domains and the RGD motif of TGFBI act cooperatively to bind αvß3 integrin, leading to anti-angiogenic and anti-tumor effects,”Biochim. Biophys. Acta, 1833(10) 2378-2388 (2013).
Song et al., “Quantification of fragments of human serum inter-alpha-trypsin inhibitor heavy chain 4 by a surface-enhanced laser desorption/ionization-based immunoassay,” Clin. Chem., 52(6):1045-1053 (2006).
Spencer et al., “First trimester sex hormone-binding globulin and subsequent development of preeclampsia or other adverse pregnancy outcomes,” Hypertens. Pregnancy, 24(3):303-311 (2005).
Stagnaro-Green et al., “Thyroid disorders in pregnancy,” Nat. Rev. Endocrinol., 8(11):650-658 (2012).
Stella et al., “Preterm labor biomarker discovery in serum using 3 proteomic profiling methodologies,” Am. J. Obstet. Gynecol., 387:e1-e13 (2009).
Swaggart et al., “Genomics of preterm birth,” Cold Spring Harb Perspect Med., 5(2):a023127 (2015).
Thompson et al., “Identification and confirmation of a module of coexpressed genes,” Genome Res., 12(10):1517-1522 (2002).
Tibshirani et al., “Diagnosis of multiple cancer types by shrunken centroids of gene expression,” Proc. Natl. Acad. Sci. USA, 99:6567-6572 (2002).
Traboni et al., “Sequence of a full length cDNA coding for human protein HC (alpha 1 microglobulin),” Nucleic Acids Res., 14(15):6340 (1986).
Tusher et al., “Significance analysis of microarrays applied to the ionizing radiation response,” Proc. Natl. Acad. Sci. USA, 98:5116-5121 (2001).
Underwood et al., “The association of the angiotensinogen gene with insulin sensitivity in humans: a tagging single nucleotide polymorphism and haplotype approach,” Metabolism, 60(8):1150-1157 (2011).
UniProt, P02753—RET4_Human, UniProtKB, 2002, 1.
Vascotto et al., “Oxidized Tmasthyretin in Amniotic Fluid as an Early Marker of Preeclampsia,” J. Proteome Res., 6:160-170 (2006).
Villanueva et al., “Automated serum peptide profiling,” Nat. Protoc., 1(2):880-891 (2006).
Walker et al., “Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system,” Proc. Natl. Acad. Sci. USA, 89:392-396 (1992).
Walker et al., “Randomized Trial of Labor Induction in Women 35 Years of Age or Older,” N. Engl. J. Med., 374(9):813-822 (2016).
Walz et al., “Amino acid sequence of human prothrombin fragments 1 and 2,” Proc. Natl. Acad. Sci. U.S.A., 74(5):1969-1972 (1977).
Wang et al., “LRGI promotes angiogenesis by modulating endothelial TGF-ß signaling,” Nature 499:306-311 (2013).
Watanabe et al., “Proteome Analysis Reveals Elevated Serum Levels of Clusterin in Patients with Preeclampsia,” 4:537-543 (2004).
Watt et al., “Amino Acid Sequence of the ß Chain of Human Fibrinogen,” Biochemistry, 18(1):68-76 (1979).
Weiner et al., “Human effector/initiator gene sets that regulate myometrial contractility during term and preterm labor,” Am. J. Obstet. Gynecol., 202(5):474.e1-20 (2010).
Weiss, “Hot prospect for new gene amplifier,” Science, 254:1292-1293 (1991).
Xu et al., “ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1,” Cell, 78(3):473-485 (1994).
Yocum et al., “Current affairs in quantitative targeted proteomics: multiple reaction monitoring-mass spectrometry,” Brief Funct. Genomic Proteomic., 8(2):145-157 (2009).
Related Publications (1)
Number Date Country
20210180135 A1 Jun 2021 US
Provisional Applications (3)
Number Date Country
62290796 Feb 2016 US
62387420 Dec 2015 US
62182349 Jun 2015 US
Continuations (2)
Number Date Country
Parent 16380938 Apr 2019 US
Child 17189048 US
Parent 15186322 Jun 2016 US
Child 16380938 US