BIOMARKERS AND METHODS FOR PREDICTING PREECLAMPSIA

Information

  • Patent Application
  • 20210156870
  • Publication Number
    20210156870
  • Date Filed
    July 02, 2020
    4 years ago
  • Date Published
    May 27, 2021
    3 years ago
Abstract
The disclosure provides biomarker panels, methods and kits for determining the probability for preeclampsia in a pregnant female. The present disclosure is based, in part, on the discovery that certain proteins and peptides in biological samples obtained from a pregnant female are differentially expressed in pregnant females that have an increased risk of developing in the future or presently suffering from preeclampsia relative to matched controls. The present disclosure is further based, in part, on the unexepected discovery that panels combining one or more of these proteins and peptides can be utilized in methods of determining the probability for preeclampsia in a pregnant female with relatively high sensitivity and specificity. These proteins and peptides disclosed herein serve as biomarkers for classifying test samples, predicting a probability of preeclampsia, monitoring of progress of preeclampsia in a pregnant female, either individually or in a panel of biomarkers.
Description
BACKGROUND

Preeclampsia (PE), a pregnancy-specific multi-system disorder characterized by hypertension and excess protein excretion in the urine, is a leading cause of maternal and fetal morbidity and mortality worldwide. Preeclampsia affects at least 5-8% of all pregnancies and accounts for nearly 18% of maternal deaths in the United States. The disorder is probably multifactorial, although most cases of preeclampsia are characterized by abnormal maternal uterine vascular remodeling by fetally derived placental trophoblast cells.


Complications of preeclampsia can include compromised placental blood flow, placental abruption, eclampsia, HELLP syndrome (hemolysis, elevated liver enzymes and low platelet count), acute renal failure, cerebral hemorrhage, hepatic failure or rupture, pulmonary edema, disseminated intravascular coagulation and future cardiovascular disease. Even a slight increase in blood pressure can be a sign of preeclampsia. While symptoms can include swelling, sudden weight gain, headaches and changes in vision, some women remain asymptomatic.


Management of preeclampsia consists of two options: delivery or observation. Management decisions depend on the gestational age at which preeclampsia is diagnosed and the relative state of health of the fetus. The only cure for preeclampsia is delivery of the fetus and placenta. However, the decision to deliver involves balancing the potential benefit to the fetus of further in utero development with fetal and maternal risk of progressive disease, including the development of eclampsia, which is preeclampsia complicated by maternal seizures.


There is a great need to identify women at risk for preeclampsia as most currently available tests fail to predict the majority of women who eventually develop preeclampsia. Women identified as high-risk can be scheduled for more intensive antenatal surveillance and prophylactic interventions. Reliable early detection of preeclampsia would enable planning appropriate monitoring and clinical management, potentially providing the early identification of disease complications. Such monitoring and management might include: more frequent assessment of blood pressure and urinary protein concentration, uterine artery doppler measurement, ultrasound assessment of fetal growth and prophylactic treatment with aspirin. Finally, reliable antenatal identification of preeclampsia also is crucial to cost-effective allocation of monitoring resources.


The present invention addresses this need by providing compositions and methods for determining whether a pregnant woman is at risk for developing preeclampsia. Related advantages are provided as well.


SUMMARY

The present invention provides compositions and methods for predicting the probability of preeclampsia in a pregnant female.


In one aspect, the invention provides a panel of isolated biomarkers comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments, N is a number selected from the group consisting of 2 to 24. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, and VVGGLVALR. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, GFQALGDAADIR. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, VVGGLVALR, LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, and GFQALGDAADIR.


In some embodiments, the invention provides a biomarker panel comprising at least two of the isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4). In additional embodiments, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).


In some embodiments, the invention provides a biomarker panel comprising at least two of the isolated biomarkers selected from the group consisting of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


In other embodiments, the invention provides a biomarker panel comprising alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1 CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN). In another aspect, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1 CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN).


Also provided by the invention is a method of determining probability for preeclampsia in a pregnant female comprising detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22 in a biological sample obtained from the pregnant female, and analyzing the measurable feature to determine the probability for preeclampsia in the pregnant female. In some embodiments, a measurable feature comprises fragments or derivatives of each of the N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments of the disclosed methods detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22, combinations or portions and/or derivatives thereof in a biological sample obtained from the pregnant female. In additional embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female further encompass detecting a measurable feature for one or more risk indicia associated with preeclampsia.


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of N biomarkers, wherein N is selected from the group consisting of 2 to 24. In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, and VVGGLVALR.


In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, GFQALGDAADIR.


In additional embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, VVGGLVALR, LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, and GFQALGDAADIR.


In other embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1 CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN).


In some embodiments of the methods of determining probability for preeclampsia in a pregnant female, the probability for preeclampsia in the pregnant female is calculated based on the quantified amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments, the disclosed methods for determining the probability of preeclampsia encompass detecting and/or quantifying one or more biomarkers using mass sprectrometry, a capture agent or a combination thereof.


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass an initial step of providing a biomarker panel comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In additional embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass an initial step of providing a biological sample from the pregnant female.


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass communicating the probability to a health care provider. In additional embodiments, the communication informs a subsequent treatment decision for the pregnant female. In further embodiments, the treatment decision comprises one or more selected from the group of consisting of more frequent assessment of blood pressure and urinary protein concentration, uterine artery doppler measurement, ultrasound assessment of fetal growth and prophylactic treatment with aspirin.


In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass analyzing the measurable feature of one or more isolated biomarkers using a predictive model. In some embodiments of the disclosed methods, a measurable feature of one or more isolated biomarkers is compared with a reference feature.


In additional embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass using one or more analyses selected from a linear discriminant analysis model, a support vector machine classification algorithm, a recursive feature elimination model, a prediction analysis of microarray model, a logistic regression model, a CART algorithm, a flex tree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, a machine learning algorithm, a penalized regression method, and a combination thereof. In one embodiment, the disclosed methods of determining probability for preeclampsia in a pregnant female encompasses logistic regression.


In some embodiments, the invention provides a method of determining probability for preeclampsia in a pregnant female encompasses quantifying in a biological sample obtained from the pregnant female an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22; multiplying the amount by a predetermined coefficient, and determining the probability for preeclampsia in the pregnant female comprising adding the individual products to obtain a total risk score that corresponds to the probability.


Other features and advantages of the invention will be apparent from the detailed description, and from the claims.







DETAILED DESCRIPTION

The present disclosure is based, in part, on the discovery that certain proteins and peptides in biological samples obtained from a pregnant female are differentially expressed in pregnant females that have an increased risk of developing in the future or presently suffering from preeclampsia relative to matched controls. The present disclosure is further based, in part, on the unexepected discovery that panels combining one or more of these proteins and peptides can be utilized in methods of determining the probability for preeclampsia in a pregnant female with relatively high sensitivity and specificity. These proteins and peptides disclosed herein serve as biomarkers for classifying test samples, predicting a probability of preeclampsia, monitoring of progress of preeclampsia in a pregnant female, either individually or in a panel of biomarkers.


The disclosure provides biomarker panels, methods and kits for determining the probability for preeclampsia in a pregnant female. One major advantage of the present disclosure is that risk of developing preeclampsia can be assessed early during pregnancy so that management of the condition can be initiated in a timely fashion. Sibai, Hypertension. In: Gabbe et al., eds. Obstetrics: Normal and Problem Pregnancies. 6th ed. Philadelphia, Pa.: Saunders Elsevier; 2012: chap 35. The present invention is of particular benefit to asymptomatic females who would not otherwise be identified and treated.


By way of example, the present disclosure includes methods for generating a result useful in determining probability for preeclampsia in a pregnant female by obtaining a dataset associated with a sample, where the dataset at least includes quantitative data about biomarkers and panels of biomarkers that have been identified as predictive of preeclampsia, and inputting the dataset into an analytic process that uses the dataset to generate a result useful in determining probability for preeclampsia in a pregnant female. As described further below, this quantitative data can include amino acids, peptides, polypeptides, proteins, nucleotides, nucleic acids, nucleosides, sugars, fatty acids, steroids, metabolites, carbohydrates, lipids, hormones, antibodies, regions of interest that serve as surrogates for biological macromolecules and combinations thereof.


In addition to the specific biomarkers identified in this disclosure, for example, by accession number, sequence, or reference, the invention also contemplates use of biomarker variants that are at least 90% or at least 95% or at least 97% identical to the exemplified sequences and that are now known or later discover and that have utility for the methods of the invention. These variants may represent polymorphisms, splice variants, mutations, and the like. In this regard, the instant specification discloses multiple art-known proteins in the context of the invention and provides exemplary accession numbers associated with one or more public databases as well as exemplary references to published journal articles relating to these art-known proteins. However, those skilled in the art appreciate that additional accession numbers and journal articles can easily be identified that can provide additional characteristics of the disclosed biomarkers and that the exemplified references are in no way limiting with regard to the disclosed biomarkers. As described herein, various techniques and reagents find use in the methods of the present invention. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. In a particular embodiment, the biological sample is serum. As described herein, biomarkers can be detected through a variety of assays and techniques known in the art. As further described herein, such assays include, without limitation, mass spectrometry (MS)-based assays, antibody-based assays as well as assays that combine aspects of the two.


Protein biomarkers associated with the probability for preeclampsia in a pregnant female include, but are not limited to, one or more of the isolated biomarkers listed in Tables 2, 3, 4, 5, and 7 through 22. In addition to the specific biomarkers, the disclosure further includes biomarker variants that are about 90%, about 95%, or about 97% identical to the exemplified sequences. Variants, as used herein, include polymorphisms, splice variants, mutations, and the like.


Additional markers can be selected from one or more risk indicia, including but not limited to, maternal age, race, ethnicity, medical history, past pregnancy history, and obstetrical history. Such additional markers can include, for example, age, prepregnancy weight, ethnicity, race; the presence, absence or severity of diabetes, hypertension, heart disease, kidney disease; the incidence and/or frequency of prior preeclampsia, prior preeclampsia; the presence, absence, frequency or severity of present or past smoking, illicit drug use, alcohol use; the presence, absence or severity of bleeding after the 12th gestational week; cervical cerclage and transvaginal cervical length. Additional risk indicia useful for as markers can be identified using learning algorithms known in the art, such as linear discriminant analysis, support vector machine classification, recursive feature elimination, prediction analysis of microarray, logistic regression, CART, FlexTree, LART, random forest, MART, and/or survival analysis regression, which are known to those of skill in the art and are further described herein.


Provided herein are panels of isolated biomarkers comprising N of the biomarkers selected from the group listed in Tables 2, 3, 4, 5, and 7 through 22. In the disclosed panels of biomarkers N can be a number selected from the group consisting of 2 to 24. In the disclosed methods, the number of biomarkers that are detected and whose levels are determined, can be 1, or more than 1, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more. In certain embodiments, the number of biomarkers that are detected, and whose levels are determined, can be 1, or more than 1, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, or more. The methods of this disclosure are useful for determining the probability for preeclampsia in a pregnant female.


While certain of the biomarkers listed in Tables 2, 3, 4, 5, and 7 through 22 are useful alone for determining the probability for preeclampsia in a pregnant female, methods are also described herein for the grouping of multiple subsets of the biomarkers that are each useful as a panel of three or more biomarkers. In some embodiments, the invention provides panels comprising N biomarkers, wherein N is at least three biomarkers. In other embodiments, N is selected to be any number from 3-23 biomarkers.


In yet other embodiments, N is selected to be any number from 2-5, 2-10, 2-15, 2-20, or 2-23. In other embodiments, N is selected to be any number from 3-5, 3-10, 3-15, 3-20, or 3-23. In other embodiments, N is selected to be any number from 4-5, 4-10, 4-15, 4-20, or 4-23. In other embodiments, N is selected to be any number from 5-10, 5-15, 5-20, or 5-23. In other embodiments, N is selected to be any number from 6-10, 6-15, 6-20, or 6-23. In other embodiments, N is selected to be any number from 7-10, 7-15, 7-20, or 7-23. In other embodiments, N is selected to be any number from 8-10, 8-15, 8-20, or 8-23. In other embodiments, N is selected to be any number from 9-10, 9-15, 9-20, or 9-23. In other embodiments, N is selected to be any number from 10-15, 10-20, or 10-23. It will be appreciated that N can be selected to encompass similar, but higher order, ranges.


In certain embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, or five isolated biomarkers comprising an amino acid sequence selected from SPELQAEAK, SSNNPHSPIVEEFQVPYN, VNHVTLSQPK, VVGGLVALR, and FSVVYAK. In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, five of the isolated biomarkers consisting of an amino acid sequence selected from SPELQAEAK, SSNNPHSPIVEEFQVPYN, VNHVTLSQPK, VVGGLVALR, and FSVVYAK.


In certain embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, or five isolated biomarkers comprising an amino acid sequence selected from LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, GFQALGDAADIR. In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, five of the isolated biomarkers consisting of an amino acid sequence selected from LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, GFQALGDAADIR.


In certain embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, or five isolated biomarkers comprising an amino acid sequence selected from FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, VVGGLVALR, LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, and GFQALGDAADIR. In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, five of the isolated biomarkers consisting of an amino acid sequence selected from FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, VVGGLVALR, LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, and GFQALGDAADIR.


In some embodiments, the panel of isolated biomarkers comprises one or more peptides comprising a fragment from alpha-1-microglobulin (AMBP) Traboni and Cortese, Nucleic Acids Res. 14 (15), 6340 (1986); ADP/ATP translocase 3 (ANT3) Cozens et al., J. Mol. Biol. 206 (2), 261-280 (1989) (NCBI Reference Sequence: NP_001627.2); apolipoprotein A-II (APOA2) Fullerton et al., Hum. Genet. 111 (1), 75-87 (2002) GenBank: AY100524.1); apolipoprotein B (APOB) Knott et al., Nature 323, 734-738 (1986) (GenBank: EAX00803.1); apolipoprotein C-III (APOC3), Fullerton et al., Hum. Genet. 115 (1), 36-56 (2004)(GenBank: AAS68230.1); beta-2-microglobulin (B2MG) Cunningham et al., Biochemistry 12 (24), 4811-4822 (1973) (GenBank: AI686916.1); complement component 1, s subcomponent (C1S) Mackinnon et al., Eur. J. Biochem. 169 (3), 547-553 (1987), and retinol binding protein 4 (RBP4 or RET4) Rask et al., Ann. N. Y. Acad. Sci. 359, 79-90 (1981) (UniProtKB/Swiss-Prot: P02753.3).


In some embodiments, the panel of isolated biomarkers comprises one or more peptides comprising a fragment from cell adhesion molecule with homology to L1CAM (close homolog of L1) (CHL1) (GenBank: AAI43497.1), complement component C5 (C5 or CO5) Haviland, J. Immunol. 146 (1), 362-368 (1991)(GenBank: AAA51925.1); Complement component C8 beta chain (C8B or CO8B) Howard et al., Biochemistry 26 (12), 3565-3570 (1987) (NCBI Reference Sequence: NP_000057.1), endothelin-converting enzyme 1 (ECE1) Xu et al., Cell 78 (3), 473-485 (1994) (NCBI Reference Sequence: NM_001397.2; NP_001388.1); coagulation factor XIII, B polypeptide (F13B) Grundmann et al., Nucleic Acids Res. 18 (9), 2817-2818 (1990) (NCBI Reference Sequence: NP_001985.2); Interleukin 5 (IL5), Murata et al., J. Exp. Med. 175 (2), 341-351 (1992) (NCBI Reference Sequence: NP_000870.1), Peptidase D (PEPD) Endo et al., J. Biol. Chem. 264 (8), 4476-4481 (1989) (UniProtKB/Swiss-Prot: P12955.3); Plasminogen (PLMN) Petersen et al., J. Biol. Chem. 265 (11), 6104-6111 (1990), (NCBI Reference Sequences: NP_000292.1 NP_001161810.1).


In additional embodiments, the invention provides a panel of isolated biomarkers comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments, N is a number selected from the group consisting of 2 to 24. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, and VVGGLVALR.


In further embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4). In another embodiment, the invention provides a biomarker panel comprising at least three isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).


In further embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG). In another embodiment, the invention provides a biomarker panel comprising at least three isolated biomarkers selected from the group consisting of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


In some embodiments, the invention provides a biomarker panel comprising alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1 CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN). In another aspect, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1 CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN).


In some embodiments, the invention provides a biomarker panel comprising Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG). In another aspect, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


As used in this application, including the appended claims, the singular forms “a,” “an,” and “the” include plural references, unless the content clearly dictates otherwise, and are used interchangeably with “at least one” and “one or more.”


The term “about,” particularly in reference to a given quantity, is meant to encompass deviations of plus or minus five percent.


As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “contains,” “containing,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, product-by-process, or composition of matter that comprises, includes, or contains an element or list of elements does not include only those elements but can include other elements not expressly listed or inherent to such process, method, product-by-process, or composition of matter.


As used herein, the term “panel” refers to a composition, such as an array or a collection, comprising one or more biomarkers. The term can also refer to a profile or index of expression patterns of one or more biomarkers described herein. The number of biomarkers useful for a biomarker panel is based on the sensitivity and specificity value for the particular combination of biomarker values.


As used herein, and unless otherwise specified, the terms “isolated” and “purified” generally describes a composition of matter that has been removed from its native environment (e.g., the natural environment if it is naturally occurring), and thus is altered by the hand of man from its natural state. An isolated protein or nucleic acid is distinct from the way it exists in nature.


The term “biomarker” refers to a biological molecule, or a fragment of a biological molecule, the change and/or the detection of which can be correlated with a particular physical condition or state. The terms “marker” and “biomarker” are used interchangeably throughout the disclosure. For example, the biomarkers of the present invention are correlated with an increased likelihood of preeclampsia. Such biomarkers include, but are not limited to, biological molecules comprising nucleotides, nucleic acids, nucleosides, amino acids, sugars, fatty acids, steroids, metabolites, peptides, polypeptides, proteins, carbohydrates, lipids, hormones, antibodies, regions of interest that serve as surrogates for biological macromolecules and combinations thereof (e.g., glycoproteins, ribonucleoproteins, lipoproteins). The term also encompasses portions or fragments of a biological molecule, for example, peptide fragment of a protein or polypeptide that comprises at least 5 consecutive amino acid residues, at least 6 consecutive amino acid residues, at least 7 consecutive amino acid residues, at least 8 consecutive amino acid residues, at least 9 consecutive amino acid residues, at least 10 consecutive amino acid residues, at least 11 consecutive amino acid residues, at least 12 consecutive amino acid residues, at least 13 consecutive amino acid residues, at least 14 consecutive amino acid residues, at least 15 consecutive amino acid residues, at least 5 consecutive amino acid residues, at least 16 consecutive amino acid residues, at least 17 consecutive amino acid residues, at least 18 consecutive amino acid residues, at least 19 consecutive amino acid residues, at least 20 consecutive amino acid residues, at least 21 consecutive amino acid residues, at least 22 consecutive amino acid residues, at least 23 consecutive amino acid residues, at least 24 consecutive amino acid residues, at least 25 consecutive amino acid residues, or more consecutive amino acid residues.


The invention also provides a method of determining probability for preeclampsia in a pregnant female, the method comprising detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22 in a biological sample obtained from the pregnant female, and analyzing the measurable feature to determine the probability for preeclampsia in the pregnant female. As disclosed herein, a measurable feature comprises fragments or derivatives of each of said N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments of the disclosed methods detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22, combinations or portions and/or derivatives thereof in a biological sample obtained from said pregnant female.


In some embodiments, the present invention describes a method for predicting the time to onset of preeclamspsia in a pregnant female, the method comprising: (a) obtaining a biological sample from said pregnant female; (b) quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22 in said biological sample; (c) multiplying or thresholding said amount by a predetermined coefficient, (d) determining predicted onset of said preeclampsia in said pregnant female comprising adding said individual products to obtain a total risk score that corresponds to said predicted onset of said preeclampsia in said pregnant female. Although described and exemplified with reference to methods of determining probability for preeclampsia in a pregnant female, the present disclosure is similarly applicable to the method of predicting time to onset of in a pregnant female. It will be apparent to one skilled in the art that each of the aforementioned methods has specific and substantial utilities and benefits with regard maternal-fetal health considerations.


In some embodiments, the method of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of N biomarkers, wherein N is selected from the group consisting of 2 to 24. In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, and VVGGLVALR.


In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, GFQALGDAADIR.


In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, VVGGLVALR, LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, and GFQALGDAADIR


In additional embodiments, the method of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).


In additional embodiments, the method of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


In further embodiments, the disclosed method of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1 CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), plasminogen (PLMN), of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


In additional embodiments, the methods of determining probability for preeclampsia in a pregnant female further encompass detecting a measurable feature for one or more risk indicia associated with preeclampsia. In additional embodiments the risk indicia are selected form the group consisting of history of preeclampsia, first pregnancy, age, obesity, diabetes, gestational diabetes, hypertension, kidney disease, multiple pregnancy, interval between pregnancies, migraine headaches, rheumatoid arthritis, and lupus.


A “measurable feature” is any property, characteristic or aspect that can be determined and correlated with the probability for preeclampsia in a subject. For a biomarker, such a measurable feature can include, for example, the presence, absence, or concentration of the biomarker, or a fragment thereof, in the biological sample, an altered structure, such as, for example, the presence or amount of a post-translational modification, such as oxidation at one or more positions on the amino acid sequence of the biomarker or, for example, the presence of an altered conformation in comparison to the conformation of the biomarker in normal control subjects, and/or the presence, amount, or altered structure of the biomarker as a part of a profile of more than one biomarker. In addition to biomarkers, measurable features can further include risk indicia including, for example, maternal age, race, ethnicity, medical history, past pregnancy history, obstetrical history. For a risk indicium, a measurable feature can include, for example, age, prepregnancy weight, ethnicity, race; the presence, absence or severity of diabetes, hypertension, heart disease, kidney disease; the incidence and/or frequency of prior preeclampsia, prior preeclampsia; the presence, absence, frequency or severity of present or past smoking, illicit drug use, alcohol use; the presence, absence or severity of bleeding after the 12th gestational week; cervical cerclage and transvaginal cervical length.


In some embodiments of the disclosed methods of determining probability for preeclampsia in a pregnant female, the probability for preeclampsia in the pregnant female is calculated based on the quantified amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments, the disclosed methods for determining the probability of preeclampsia encompass detecting and/or quantifying one or more biomarkers using mass sprectrometry, a capture agent or a combination thereof.


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass an initial step of providing a biomarker panel comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In additional embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass an initial step of providing a biological sample from the pregnant female.


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass communicating the probability to a health care provider. In additional embodiments, the communication informs a subsequent treatment decision for the pregnant female.


In some embodiments, the method of determining probability for preeclampsia in a pregnant female encompasses the additional feature of expressing the probability as a risk score.


As used herein, the term “risk score” refers to a score that can be assigned based on comparing the amount of one or more biomarkers in a biological sample obtained from a pregnant female to a standard or reference score that represents an average amount of the one or more biomarkers calculated from biological samples obtained from a random pool of pregnant females. Because the level of a biomarker may not be static throughout pregnancy, a standard or reference score has to have been obtained for the gestational time point that corresponds to that of the pregnant female at the time the sample was taken. The standard or reference score can be predetermined and built into a predictor model such that the comparison is indirect rather than actually performed every time the probability is determined for a subject. A risk score can be a standard (e.g., a number) or a threshold (e.g., a line on a graph). The value of the risk score correlates to the deviation, upwards or downwards, from the average amount of the one or more biomarkers calculated from biological samples obtained from a random pool of pregnant females. In certain embodiments, if a risk score is greater than a standard or reference risk score, the pregnant female can have an increased likelihood of preeclampsia. In some embodiments, the magnitude of a pregnant female's risk score, or the amount by which it exceeds a reference risk score, can be indicative of or correlated to that pregnant female's level of risk.


In the context of the present invention, the term “biological sample,” encompasses any sample that is taken from pregnant female and contains one or more of the biomarkers listed in Table 1. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. As will be appreciated by those skilled in the art, a biological sample can include any fraction or component of blood, without limitation, T cells, monocytes, neutrophils, erythrocytes, platelets and microvesicles such as exosomes and exosome-like vesicles. In a particular embodiment, the biological sample is serum.


Preeclampsia refers to a condition characterized by high blood pressure and excess protein in the urine (proteinuria) after 20 weeks of pregnancy in a woman who previously had normal blood pressure. Preeclampsia encompasses Eclampsia, a more severe form of preeclampsia that is further characterized by seizures. Preeclampsia can be further classified as mild or severe depending upon the severity of the clinical symptoms. While preeclampsia usually develops during the second half of pregnancy (after 20 weeks), it also can develop shortly after birth or before 20 weeks of pregnancy.


Preeclampsia has been characterized by some investigators as 2 different disease entities: early-onset preeclampsia and late-onset preeclampsia, both of which are intended to be encompassed by reference to preeclampsia herein. Early-onset preeclampsia is usually defined as preeclampsia that develops before 34 weeks of gestation, whereas late-onset preeclampsia develops at or after 34 weeks of gestation. Preclampsia also includes postpartum preeclampsia is a less common condition that occurs when a woman has high blood pressure and excess protein in her urine soon after childbirth. Most cases of postpartum preeclampsia develop within 48 hours of childbirth. However, postpartum preeclampsia sometimes develops up to four to six weeks after childbirth. This is known as late postpartum preeclampsia.


Clinical criteria for diagnosis of preeclampsia are well established, for example, blood pressure of at least 140/90 mm Hg and urinary excretion of at least 0.3 grams of protein in a 24-hour urinary protein excretion (or at least +1 or greater on dipstick testing), each on two occasions 4-6 hours apart. Severe preeclampsia generally refers to a blood pressure of at least 160/110 mm Hg on at least 2 occasions 6 hours apart and greater than 5 grams of protein in a 24-hour urinary protein excretion or persistent +3 proteinuria on dipstick testing. Preeclampsia can include HELLP syndrome (hemolysis, elevated liver enzymes, low platelet count). Other elements of preeclampsia can include in-utero growth restriction (IUGR) in less than the 10% percentile according to the US demographics, persistent neurologic symptoms (headache, visual disturbances), epigastric pain, oliguria (less than 500 mL/24 h), serum creatinine greater than 1.0 mg/dL, elevated liver enzymes (greater than two times normal), thrombocytopenia (<100,000 cells/μL).


In some embodiments, the pregnant female was between 17 and 28 weeks of gestation at the time the biological sample was collected. In other embodiments, the pregnant female was between 16 and 29 weeks, between 17 and 28 weeks, between 18 and 27 weeks, between 19 and 26 weeks, between 20 and 25 weeks, between 21 and 24 weeks, or between 22 and 23 weeks of gestation at the time the biological sample was collected. In further embodiments, the pregnant female was between about 17 and 22 weeks, between about 16 and 22 weeks between about 22 and 25 weeks, between about 13 and 25 weeks, between about 26 and 28, or between about 26 and 29 weeks of gestation at the time the biological sample was collected. Accordingly, the gestational age of a pregnant female at the time the biological sample is collected can be 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 weeks.


In some embodiments of the claimed methods the measurable feature comprises fragments or derivatives of each of the N biomarkers selected from the biomarkers listed in Table 1. In additional embodiments of the claimed methods, detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Table 1, combinations or portions and/or derivatives thereof in a biological sample obtained from said pregnant female.


The term “amount” or “level” as used herein refers to a quantity of a biomarker that is detectable or measurable in a biological sample and/or control. The quantity of a biomarker can be, for example, a quantity of polypeptide, the quantity of nucleic acid, or the quantity of a fragment or surrogate. The term can alternatively include combinations thereof. The term “amount” or “level” of a biomarker is a measurable feature of that biomarker.


In some embodiments, calculating the probability for preeclampsia in a pregnant female is based on the quantified amount of each of N biomarkers selected from the biomarkers listed in Table 1. Any existing, available or conventional separation, detection and quantification methods can be used herein to measure the presence or absence (e.g., readout being present vs. absent; or detectable amount vs. undetectable amount) and/or quantity (e.g., readout being an absolute or relative quantity, such as, for example, absolute or relative concentration) of biomarkers, peptides, polypeptides, proteins and/or fragments thereof and optionally of the one or more other biomarkers or fragments thereof in samples. In some embodiments, detection and/or quantification of one or more biomarkers comprises an assay that utilizes a capture agent. In further embodiments, the capture agent is an antibody, antibody fragment, nucleic acid-based protein binding reagent, small molecule or variant thereof. In additional embodiments, the assay is an enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA). In some embodiments, detection and/or quantification of one or more biomarkers further comprises mass spectrometry (MS). In yet further embodiments, the mass spectrometry is co-immunoprecitipation-mass spectrometry (co-IP MS), where coimmunoprecipitation, a technique suitable for the isolation of whole protein complexes is followed by mass spectrometric analysis.


As used herein, the term “mass spectrometer” refers to a device able to volatilize/ionize analytes to form gas-phase ions and determine their absolute or relative molecular masses. Suitable methods of volatilization/ionization are matrix-assisted laser desorption ionization (MALDI), electrospray, laser/light, thermal, electrical, atomized/sprayed and the like, or combinations thereof. Suitable forms of mass spectrometry include, but are not limited to, ion trap instruments, quadrupole instruments, electrostatic and magnetic sector instruments, time of flight instruments, time of flight tandem mass spectrometer (TOF MS/MS), Fourier-transform mass spectrometers, Orbitraps and hybrid instruments composed of various combinations of these types of mass analyzers. These instruments can, in turn, be interfaced with a variety of other instruments that fractionate the samples (for example, liquid chromatography or solid-phase adsorption techniques based on chemical, or biological properties) and that ionize the samples for introduction into the mass spectrometer, including matrix-assisted laser desorption (MALDI), electrospray, or nanospray ionization (ESI) or combinations thereof.


Generally, any mass spectrometric (MS) technique that can provide precise information on the mass of peptides, and preferably also on fragmentation and/or (partial) amino acid sequence of selected peptides (e.g., in tandem mass spectrometry, MS/MS; or in post source decay, TOF MS), can be used in the methods disclosed herein. Suitable peptide MS and MS/MS techniques and systems are well-known per se (see, e.g., Methods in Molecular Biology, vol. 146: “Mass Spectrometry of Proteins and Peptides”, by Chapman, ed., Humana Press 2000; Biemann 1990. Methods Enzymol 193: 455-79; or Methods in Enzymology, vol. 402: “Biological Mass Spectrometry”, by Burlingame, ed., Academic Press 2005) and can be used in practicing the methods disclosed herein. Accordingly, in some embodiments, the disclosed methods comprise performing quantitative MS to measure one or more biomarkers. Such quantitiative methods can be performed in an automated (Villanueva, et al., Nature Protocols (2006) 1(2):880-891) or semi-automated format. In particular embodiments, MS can be operably linked to a liquid chromatography device (LC-MS/MS or LC-MS) or gas chromatography device (GC-MS or GC-MS/MS). Other methods useful in this context include isotope-coded affinity tag (ICAT) followed by chromatography and MS/MS.


As used herein, the terms “multiple reaction monitoring (MRM)” or “selected reaction monitoring (SRM)” refer to an MS-based quantification method that is particularly useful for quantifying analytes that are in low abundance. In an SRM experiment, a predefined precursor ion and one or more of its fragments are selected by the two mass filters of a triple quadrupole instrument and monitored over time for precise quantification. Multiple SRM precursor and fragment ion pairs can be measured within she same experiment on she chromatographic time scale by rapidly toggling between the different precursor/fragment pairs to perform an MRM experiment. A series of transitions (precursor/fragment ion pairs) in combination with the retention time of the targeted analyte (e.g., peptide or small molecule such as chemical entity, steroid, hormone) can constitute a definitive assay. A large number of analytes can be quantified during a single LC-MS experiment. The term “scheduled,” or “dynamic” in reference to MRM or SRM, refers to a variation of the assay wherein the transitions for a particular analyte are only acquired in a time window around the expected retention time, significantly increasing the number of analytes that can be detected and quantified in a single LC-MS experiment and contributing to the selectivity of the test, as retention time is a property dependent on the physical nature of the analyte. A single analyte can also be monitored with more than one transition. Finally, included in the assay can be standards that correspond to the analytes of interest (e.g., same amino acid sequence), but differ by the inclusion of stable isotopes. Stable isotopic standards (SIS) can be incorporated into the assay at precise levels and used to quantify the corresponding unknown analyte. An additional level of specificity is contributed by the co-elution of the unknown analyte and its corresponding SIS and properties of their transitions (e.g., the similarity in the ratio of the level of two transitions of the unknown and the ratio of the two transitions of its corresponding SIS).


Mass spectrometry assays, instruments and systems suitable for biomarker peptide analysis can include, without limitation, matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) MS; MALDI-TOF post-source-decay (PSD); MALDI-TOF/TOF; surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF) MS; electrospray ionization mass spectrometry (ESI-MS); ESI-MS/MS; ESI-MS/(MS), (n is an integer greater than zero); ESI 3D or linear (2D) ion trap MS; ESI triple quadrupole MS; ESI quadrupole orthogonal TOF (Q-TOF); ESI Fourier transform MS systems; desorption/ionization on silicon (DIOS); secondary ion mass spectrometry (SIMS); atmospheric pressure chemical ionization mass spectrometry (APCI-MS); APCI-MS/MS; APCI-(MS)n; atmospheric pressure photoionization mass spectrometry (APPI-MS); APPI-MS/MS; and APPI-(MS)n. Peptide ion fragmentation in tandem MS (MS/MS) arrangements can be achieved using manners established in the art, such as, e.g., collision induced dissociation (CID). As described herein, detection and quantification of biomarkers by mass spectrometry can involve multiple reaction monitoring (MRM), such as described among others by Kuhn et al. Proteomics 4: 1175-86 (2004). Scheduled multiple-reaction-monitoring (Scheduled MRM) mode acquisition during LC-MS/MS analysis enhances the sensitivity and accuracy of peptide quantitation. Anderson and Hunter, Molecular and Cellular Proteomics 5(4):573 (2006). As described herein, mass spectrometry-based assays can be advantageously combined with upstream peptide or protein separation or fractionation methods, such as for example with the chromatographic and other methods described herein below.


A person skilled in the art will appreciate that a number of methods can be used to determine the amount of a biomarker, including mass spectrometry approaches, such as MS/MS, LC-MS/MS, multiple reaction monitoring (MRM) or SRM and product-ion monitoring (PIM) and also including antibody based methods such as immunoassays such as Western blots, enzyme-linked immunosorbant assay (ELISA), immunopercipitation, immunohistochemistry, immunofluorescence, radioimmunoassay, dot blotting, and fluorescence-activated cell sorting (FACS). Accordingly, in some embodiments, determining the level of the at least one biomarker comprises using an immunoassay and/or mass spectrometric methods. In additional embodiments, the mass spectrometric methods are selected from MS, MS/MS, LC-MS/MS, SRM, PIM, and other such methods that are known in the art. In other embodiments, LC-MS/MS further comprises 1D LC-MS/MS, 2D LC-MS/MS or 3D LC-MS/MS. Immunoassay techniques and protocols are generally known to those skilled in the art (Price and Newman, Principles and Practice of Immunoassay, 2nd Edition, Grove's Dictionaries, 1997; and Gosling, Immunoassays: A Practical Approach, Oxford University Press, 2000.) A variety of immunoassay techniques, including competitive and non-competitive immunoassays, can be used (Self et al., Curr. Opin. Biotechnol., 7:60-65 (1996).


In further embodiments, the immunoassay is selected from Western blot, ELISA, immunopercipitation, immunohistochemistry, immunofluorescence, radioimmunoassay (MA), dot blotting, and FACS. In certain embodiments, the immunoassay is an ELISA. In yet a further embodiment, the ELISA is direct ELISA (enzyme-linked immunosorbent assay), indirect ELISA, sandwich ELISA, competitive ELISA, multiplex ELISA, ELISPOT technologies, and other similar techniques known in the art. Principles of these immunoassay methods are known in the art, for example John R. Crowther, The ELISA Guidebook, 1st ed., Humana Press 2000, ISBN 0896037282. Typically ELISAs are performed with antibodies but they can be performed with any capture agents that bind specifically to one or more biomarkers of the invention and that can be detected. Multiplex ELISA allows simultaneous detection of two or more analytes within a single compartment (e.g., microplate well) usually at a plurality of array addresses (Nielsen and Geierstanger 2004. J Immunol Methods 290: 107-20 (2004) and Ling et al. 2007. Expert Rev Mol Diagn 7: 87-98 (2007)).


In some embodiments, Radioimmunoassay (MA) can be used to detect one or more biomarkers in the methods of the invention. MA is a competition-based assay that is well known in the art and involves mixing known quantities of radioactavely-labelled (e.g., 125I or 131I-labelled) target analyte with antibody specific for the analyte, then adding non-labelled analyte from a sample and measuring the amount of labelled analyte that is displaced (see, e.g., An Introduction to Radioimmunoassay and Related Techniques, by Chard T, ed., Elsevier Science 1995, ISBN 0444821198 for guidance).


A detectable label can be used in the assays described herein for direct or indirect detection of the biomarkers in the methods of the invention. A wide variety of detectable labels can be used, with the choice of label depending on the sensitivity required, ease of conjugation with the antibody, stability requirements, and available instrumentation and disposal provisions. Those skilled in the art are familiar with selection of a suitable detectable label based on the assay detection of the biomarkers in the methods of the invention. Suitable detectable labels include, but are not limited to, fluorescent dyes (e.g., fluorescein, fluorescein isothiocyanate (FITC), Oregon Green™, rhodamine, Texas red, tetrarhodimine isothiocynate (TRITC), Cy3, Cy5, etc.), fluorescent markers (e.g., green fluorescent protein (GFP), phycoerythrin, etc.), enzymes (e.g., luciferase, horseradish peroxidase, alkaline phosphatase, etc.), nanoparticles, biotin, digoxigenin, metals, and the like.


For mass-sectrometry based analysis, differential tagging with isotopic reagents, e.g., isotope-coded affinity tags (ICAT) or the more recent variation that uses isobaric tagging reagents, iTRAQ (Applied Biosystems, Foster City, Calif.), or tandem mass tags, TMT, (Thermo Scientific, Rockford, Ill.), followed by multidimensional liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis can provide a further methodology in practicing the methods of the invention.


A chemiluminescence assay using a chemiluminescent antibody can be used for sensitive, non-radioactive detection of protein levels. An antibody labeled with fluorochrome also can be suitable. Examples of fluorochromes include, without limitation, DAPI, fluorescein, Hoechst 33258, R-phycocyanin, B-phycoerythrin, R-phycoerythrin, rhodamine, Texas red, and lissamine. Indirect labels include various enzymes well known in the art, such as horseradish peroxidase (HRP), alkaline phosphatase (AP), beta-galactosidase, urease, and the like. Detection systems using suitable substrates for horseradish-peroxidase, alkaline phosphatase, beta-galactosidase are well known in the art.


A signal from the direct or indirect label can be analyzed, for example, using a spectrophotometer to detect color from a chromogenic substrate; a radiation counter to detect radiation such as a gamma counter for detection of 125I; or a fluorometer to detect fluorescence in the presence of light of a certain wavelength. For detection of enzyme-linked antibodies, a quantitative analysis can be made using a spectrophotometer such as an EMAX Microplate Reader (Molecular Devices; Menlo Park, Calif.) in accordance with the manufacturer's instructions. If desired, assays used to practice the invention can be automated or performed robotically, and the signal from multiple samples can be detected simultaneously.


In some embodiments, the methods described herein encompass quantification of the biomarkers using mass spectrometry (MS). In further embodiments, the mass spectrometry can be liquid chromatography-mass spectrometry (LC-MS), multiple reaction monitoring (MRM) or selected reaction monitoring (SRM). In additional embodiments, the MRM or SRM can further encompass scheduled MRM or scheduled SRM.


As described above, chromatography can also be used in practicing the methods of the invention. Chromatography encompasses methods for separating chemical substances and generally involves a process in which a mixture of analytes is carried by a moving stream of liquid or gas (“mobile phase”) and separated into components as a result of differential distribution of the analytes as they flow around or over a stationary liquid or solid phase (“stationary phase”), between the mobile phase and said stationary phase. The stationary phase can be usually a finely divided solid, a sheet of filter material, or a thin film of a liquid on the surface of a solid, or the like. Chromatography is well understood by those skilled in the art as a technique applicable for the separation of chemical compounds of biological origin, such as, e.g., amino acids, proteins, fragments of proteins or peptides, etc.


Chromatography can be columnar (i.e., wherein the stationary phase is deposited or packed in a column), preferably liquid chromatography, and yet more preferably high-performance liquid chromatography (HPLC) or ultra high performance/pressure liquid chromatography (UHPLC). Particulars of chromatography are well known in the art (Bidlingmeyer, Practical HPLC Methodology and Applications, John Wiley & Sons Inc., 1993). Exemplary types of chromatography include, without limitation, high-performance liquid chromatography (HPLC), UHPLC, normal phase HPLC (NP-HPLC), reversed phase HPLC (RP-HPLC), ion exchange chromatography (IEC), such as cation or anion exchange chromatography, hydrophilic interaction chromatography (HILIC), hydrophobic interaction chromatography (HIC), size exclusion chromatography (SEC) including gel filtration chromatography or gel permeation chromatography, chromatofocusing, affinity chromatography such as immuno-affinity, immobilised metal affinity chromatography, and the like. Chromatography, including single-, two- or more-dimensional chromatography, can be used as a peptide fractionation method in conjunction with a further peptide analysis method, such as for example, with a downstream mass spectrometry analysis as described elsewhere in this specification.


Further peptide or polypeptide separation, identification or quantification methods can be used, optionally in conjunction with any of the above described analysis methods, for measuring biomarkers in the present disclosure. Such methods include, without limitation, chemical extraction partitioning, isoelectric focusing (IEF) including capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITP), capillary electrochromatography (CEC), and the like, one-dimensional polyacrylamide gel electrophoresis (PAGE), two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), capillary gel electrophoresis (CGE), capillary zone electrophoresis (CZE), micellar electrokinetic chromatography (MEKC), free flow electrophoresis (FFE), etc.


In the context of the invention, the term “capture agent” refers to a compound that can specifically bind to a target, in particular a biomarker. The term includes antibodies, antibody fragments, nucleic acid-based protein binding reagents (e.g. aptamers, Slow Off-rate Modified Aptamers (SOMAmer™)), protein-capture agents, natural ligands (i.e. a hormone for its receptor or vice versa), small molecules or variants thereof.


Capture agents can be configured to specifically bind to a target, in particular a biomarker. Capture agents can include but are not limited to organic molecules, such as polypeptides, polynucleotides and other non polymeric molecules that are identifiable to a skilled person. In the embodiments disclosed herein, capture agents include any agent that can be used to detect, purify, isolate, or enrich a target, in particular a biomarker. Any art-known affinity capture technologies can be used to selectively isolate and enrich/concentrate biomarkers that are components of complex mixtures of biological media for use in the disclosed methods.


Antibody capture agents that specifically bind to a biomarker can be prepared using any suitable methods known in the art. See, e.g., Coligan, Current Protocols in Immunology (1991); Harlow & Lane, Antibodies: A Laboratory Manual (1988); Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986). Antibody capture agents can be any immunoglobulin or derivative thereof, whether natural or wholly or partially synthetically produced. All derivatives thereof which maintain specific binding ability are also included in the term. Antibody capture agents have a binding domain that is homologous or largely homologous to an immunoglobulin binding domain and can be derived from natural sources, or partly or wholly synthetically produced. Antibody capture agents can be monoclonal or polyclonal antibodies. In some embodiments, an antibody is a single chain antibody. Those of ordinary skill in the art will appreciate that antibodies can be provided in any of a variety of forms including, for example, humanized, partially humanized, chimeric, chimeric humanized, etc. Antibody capture agents can be antibody fragments including, but not limited to, Fab, Fab′, F(ab′)2, scFv, Fv, dsFv diabody, and Fd fragments. An antibody capture agent can be produced by any means. For example, an antibody capture agent can be enzymatically or chemically produced by fragmentation of an intact antibody and/or it can be recombinantly produced from a gene encoding the partial antibody sequence. An antibody capture agent can comprise a single chain antibody fragment. Alternatively or additionally, antibody capture agent can comprise multiple chains which are linked together, for example, by disulfide linkages; and, any functional fragments obtained from such molecules, wherein such fragments retain specific-binding properties of the parent antibody molecule. Because of their smaller size as functional components of the whole molecule, antibody fragments can offer advantages over intact antibodies for use in certain immunochemical techniques and experimental applications.


Suitable capture agents useful for practicing the invention also include aptamers. Aptamers are oligonucleotide sequences that can bind to their targets specifically via unique three dimensional (3-D) structures. An aptamer can include any suitable number of nucleotides and different aptamers can have either the same or different numbers of nucleotides. Aptamers can be DNA or RNA or chemically modified nucleic acids and can be single stranded, double stranded, or contain double stranded regions, and can include higher ordered structures. An aptamer can also be a photoaptamer, where a photoreactive or chemically reactive functional group is included in the aptamer to allow it to be covalently linked to its corresponding target. Use of an aptamer capture agent can include the use of two or more aptamers that specifically bind the same biomarker. An aptamer can include a tag. An aptamer can be identified using any known method, including the SELEX (systematic evolution of ligands by exponential enrichment), process. Once identified, an aptamer can be prepared or synthesized in accordance with any known method, including chemical synthetic methods and enzymatic synthetic methods and used in a variety of applications for biomarker detection. Liu et al., Curr Med Chem. 18(27):4117-25 (2011). Capture agents useful in practicing the methods of the invention also include SOMAmers (Slow Off-Rate Modified Aptamers) known in the art to have improved off-rate characteristics. Brody et al., J Mol Biol. 422(5):595-606 (2012). SOMAmers can be generated using any known method, including the SELEX method.


It is understood by those skilled in the art that biomarkers can be modified prior to analysis to improve their resolution or to determine their identity. For example, the biomarkers can be subject to proteolytic digestion before analysis. Any protease can be used. Proteases, such as trypsin, that are likely to cleave the biomarkers into a discrete number of fragments are particularly useful. The fragments that result from digestion function as a fingerprint for the biomarkers, thereby enabling their detection indirectly. This is particularly useful where there are biomarkers with similar molecular masses that might be confused for the biomarker in question. Also, proteolytic fragmentation is useful for high molecular weight biomarkers because smaller biomarkers are more easily resolved by mass spectrometry. In another example, biomarkers can be modified to improve detection resolution. For instance, neuraminidase can be used to remove terminal sialic acid residues from glycoproteins to improve binding to an anionic adsorbent and to improve detection resolution. In another example, the biomarkers can be modified by the attachment of a tag of particular molecular weight that specifically binds to molecular biomarkers, further distinguishing them. Optionally, after detecting such modified biomarkers, the identity of the biomarkers can be further determined by matching the physical and chemical characteristics of the modified biomarkers in a protein database (e.g., SwissProt).


It is further appreciated in the art that biomarkers in a sample can be captured on a substrate for detection. Traditional substrates include antibody-coated 96-well plates or nitrocellulose membranes that are subsequently probed for the presence of the proteins. Alternatively, protein-binding molecules attached to microspheres, microparticles, microbeads, beads, or other particles can be used for capture and detection of biomarkers. The protein-binding molecules can be antibodies, peptides, peptoids, aptamers, small molecule ligands or other protein-binding capture agents attached to the surface of particles. Each protein-binding molecule can include unique detectable label that is coded such that it can be distinguished from other detectable labels attached to other protein-binding molecules to allow detection of biomarkers in multiplex assays. Examples include, but are not limited to, color-coded microspheres with known fluorescent light intensities (see e.g., microspheres with xMAP technology produced by Luminex (Austin, Tex.); microspheres containing quantum dot nanocrystals, for example, having different ratios and combinations of quantum dot colors (e.g., Qdot nanocrystals produced by Life Technologies (Carlsbad, Calif.); glass coated metal nanoparticles (see e.g., SERS nanotags produced by Nanoplex Technologies, Inc. (Mountain View, Calif.); barcode materials (see e.g., sub-micron sized striped metallic rods such as Nanobarcodes produced by Nanoplex Technologies, Inc.), encoded microparticles with colored bar codes (see e.g., CellCard produced by Vitra Bioscience, vitrabio.com), glass microparticles with digital holographic code images (see e.g., CyVera microbeads produced by Illumina (San Diego, Calif.); chemiluminescent dyes, combinations of dye compounds; and beads of detectably different sizes.


In another aspect, biochips can be used for capture and detection of the biomarkers of the invention. Many protein biochips are known in the art. These include, for example, protein biochips produced by Packard BioScience Company (Meriden Conn.), Zyomyx (Hayward, Calif.) and Phylos (Lexington, Mass.). In general, protein biochips comprise a substrate having a surface. A capture reagent or adsorbent is attached to the surface of the substrate. Frequently, the surface comprises a plurality of addressable locations, each of which location has the capture agent bound there. The capture agent can be a biological molecule, such as a polypeptide or a nucleic acid, which captures other biomarkers in a specific manner. Alternatively, the capture agent can be a chromatographic material, such as an anion exchange material or a hydrophilic material. Examples of protein biochips are well known in the art.


Measuring mRNA in a biological sample can be used as a surrogate for detection of the level of the corresponding protein biomarker in a biological sample. Thus, any of the biomarkers or biomarker panels described herein can also be detected by detecting the appropriate RNA. Levels of mRNA can measured by reverse transcription quantitative polymerase chain reaction (RT-PCR followed with qPCR). RT-PCR is used to create a cDNA from the mRNA. The cDNA can be used in a qPCR assay to produce fluorescence as the DNA amplification process progresses. By comparison to a standard curve, qPCR can produce an absolute measurement such as number of copies of mRNA per cell. Northern blots, microarrays, Invader assays, and RT-PCR combined with capillary electrophoresis have all been used to measure expression levels of mRNA in a sample. See Gene Expression Profiling: Methods and Protocols, Richard A. Shimkets, editor, Humana Press, 2004.


Some embodiments disclosed herein relate to diagnostic and prognostic methods of determining the probability for preeclampsia in a pregnant female. The detection of the level of expression of one or more biomarkers and/or the determination of a ratio of biomarkers can be used to determine the probability for preeclampsia in a pregnant female. Such detection methods can be used, for example, for early diagnosis of the condition, to determine whether a subject is predisposed to preeclampsia, to monitor the progress of preeclampsia or the progress of treatment protocols, to assess the severity of preeclampsia, to forecast the outcome of preeclampsia and/or prospects of recovery or birth at full term, or to aid in the determination of a suitable treatment for preeclampsia.


The quantitation of biomarkers in a biological sample can be determined, without limitation, by the methods described above as well as any other method known in the art. The quantitative data thus obtained is then subjected to an analytic classification process. In such a process, the raw data is manipulated according to an algorithm, where the algorithm has been pre-defined by a training set of data, for example as described in the examples provided herein. An algorithm can utilize the training set of data provided herein, or can utilize the guidelines provided herein to generate an algorithm with a different set of data.


In some embodiments, analyzing a measurable feature to determine the probability for preeclampsia in a pregnant female encompasses the use of a predictive model. In further embodiments, analyzing a measurable feature to determine the probability for preeclampsia in a pregnant female encompasses comparing said measurable feature with a reference feature. As those skilled in the art can appreciate, such comparison can be a direct comparison to the reference feature or an indirect comparison where the reference feature has been incorporated into the predictive model. In further embodiments, analyzing a measurable feature to determine the probability for preeclampsia in a pregnant female encompasses one or more of a linear discriminant analysis model, a support vector machine classification algorithm, a recursive feature elimination model, a prediction analysis of microarray model, a logistic regression model, a CART algorithm, a flex tree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, a machine learning algorithm, a penalized regression method, or a combination thereof. In particular embodiments, the analysis comprises logistic regression.


An analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, machine learning algorithms; etc.


Classification can be made according to predictive modeling methods that set a threshold for determining the probability that a sample belongs to a given class. The probability preferably is at least 50%, or at least 60%, or at least 70%, or at least 80% or higher. Classifications also can be made by determining whether a comparison between an obtained dataset and a reference dataset yields a statistically significant difference. If so, then the sample from which the dataset was obtained is classified as not belonging to the reference dataset class. Conversely, if such a comparison is not statistically significantly different from the reference dataset, then the sample from which the dataset was obtained is classified as belonging to the reference dataset class.


The predictive ability of a model can be evaluated according to its ability to provide a quality metric, e.g. AUC (area under the curve) or accuracy, of a particular value, or range of values. Area under the curve measures are useful for comparing the accuracy of a classifier across the complete data range. Classifiers with a greater AUC have a greater capacity to classify unknowns correctly between two groups of interest. In some embodiments, a desired quality threshold is a predictive model that will classify a sample with an accuracy of at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, at least about 0.95, or higher. As an alternative measure, a desired quality threshold can refer to a predictive model that will classify a sample with an AUC of at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.


As is known in the art, the relative sensitivity and specificity of a predictive model can be adjusted to favor either the selectivity metric or the sensitivity metric, where the two metrics have an inverse relationship. The limits in a model as described above can be adjusted to provide a selected sensitivity or specificity level, depending on the particular requirements of the test being performed. One or both of sensitivity and specificity can be at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.


The raw data can be initially analyzed by measuring the values for each biomarker, usually in triplicate or in multiple triplicates. The data can be manipulated, for example, raw data can be transformed using standard curves, and the average of triplicate measurements used to calculate the average and standard deviation for each patient. These values can be transformed before being used in the models, e.g. log-transformed, Box-Cox transformed (Box and Cox, Royal Stat. Soc., Series B, 26:211-246(1964). The data are then input into a predictive model, which will classify the sample according to the state. The resulting information can be communicated to a patient or health care provider.


To generate a predictive model for preeclampsia, a robust data set, comprising known control samples and samples corresponding to the preeclampsia classification of interest is used in a training set. A sample size can be selected using generally accepted criteria. As discussed above, different statistical methods can be used to obtain a highly accurate predictive model. Examples of such analysis are provided in Example 2.


In one embodiment, hierarchical clustering is performed in the derivation of a predictive model, where the Pearson correlation is employed as the clustering metric. One approach is to consider a preeclampsia dataset as a “learning sample” in a problem of “supervised learning.” CART is a standard in applications to medicine (Singer, Recursive Partitioning in the Health Sciences, Springer (1999)) and can be modified by transforming any qualitative features to quantitative features; sorting them by attained significance levels, evaluated by sample reuse methods for Hotelling's T2 statistic; and suitable application of the lasso method. Problems in prediction are turned into problems in regression without losing sight of prediction, indeed by making suitable use of the Gini criterion for classification in evaluating the quality of regressions.


This approach led to what is termed FlexTree (Huang, Proc. Nat. Acad. Sci. U.S.A 101:10529-10534(2004)). FlexTree performs very well in simulations and when applied to multiple forms of data and is useful for practicing the claimed methods. Software automating FlexTree has been developed. Alternatively, LARTree or LART can be used (Turnbull (2005) Classification Trees with Subset Analysis Selection by the Lasso, Stanford University). The name reflects binary trees, as in CART and FlexTree; the lasso, as has been noted; and the implementation of the lasso through what is termed LARS by Efron et al. (2004) Annals of Statistics 32:407-451 (2004). See, also, Huang et al., Proc. Natl. Acad. Sci. USA. 101(29):10529-34 (2004). Other methods of analysis that can be used include logic regression. One method of logic regression Ruczinski, Journal of Computational and Graphical Statistics 12:475-512 (2003). Logic regression resembles CART in that its classifier can be displayed as a binary tree. It is different in that each node has Boolean statements about features that are more general than the simple “and” statements produced by CART.


Another approach is that of nearest shrunken centroids (Tibshirani, Proc. Natl. Acad. Sci. U.S.A 99:6567-72(2002)). The technology is k-means-like, but has the advantage that by shrinking cluster centers, one automatically selects features, as is the case in the lasso, to focus attention on small numbers of those that are informative. The approach is available as PAM software and is widely used. Two further sets of algorithms that can be used are random forests (Breiman, Machine Learning 45:5-32 (2001)) and MART (Hastie, The Elements of Statistical Learning, Springer (2001)). These two methods are known in the art as “committee methods,” that involve predictors that “vote” on outcome.


To provide significance ordering, the false discovery rate (FDR) can be determined. First, a set of null distributions of dissimilarity values is generated. In one embodiment, the values of observed profiles are permuted to create a sequence of distributions of correlation coefficients obtained out of chance, thereby creating an appropriate set of null distributions of correlation coefficients (Tusher et al., Proc. Natl. Acad. Sci. U.S.A 98, 5116-21 (2001)). The set of null distribution is obtained by: permuting the values of each profile for all available profiles; calculating the pair-wise correlation coefficients for all profile; calculating the probability density function of the correlation coefficients for this permutation; and repeating the procedure for N times, where N is a large number, usually 300. Using the N distributions, one calculates an appropriate measure (mean, median, etc.) of the count of correlation coefficient values that their values exceed the value (of similarity) that is obtained from the distribution of experimentally observed similarity values at given significance level.


The FDR is the ratio of the number of the expected falsely significant correlations (estimated from the correlations greater than this selected Pearson correlation in the set of randomized data) to the number of correlations greater than this selected Pearson correlation in the empirical data (significant correlations). This cut-off correlation value can be applied to the correlations between experimental profiles. Using the aforementioned distribution, a level of confidence is chosen for significance. This is used to determine the lowest value of the correlation coefficient that exceeds the result that would have obtained by chance. Using this method, one obtains thresholds for positive correlation, negative correlation or both. Using this threshold(s), the user can filter the observed values of the pair wise correlation coefficients and eliminate those that do not exceed the threshold(s). Furthermore, an estimate of the false positive rate can be obtained for a given threshold. For each of the individual “random correlation” distributions, one can find how many observations fall outside the threshold range. This procedure provides a sequence of counts. The mean and the standard deviation of the sequence provide the average number of potential false positives and its standard deviation.


In an alternative analytical approach, variables chosen in the cross-sectional analysis are separately employed as predictors in a time-to-event analysis (survival analysis), where the event is the occurrence of preeclampsia, and subjects with no event are considered censored at the time of giving birth. Given the specific pregnancy outcome (preeclampsia event or no event), the random lengths of time each patient will be observed, and selection of proteomic and other features, a parametric approach to analyzing survival can be better than the widely applied semi-parametric Cox model. A Weibull parametric fit of survival permits the hazard rate to be monotonically increasing, decreasing, or constant, and also has a proportional hazards representation (as does the Cox model) and an accelerated failure-time representation. All the standard tools available in obtaining approximate maximum likelihood estimators of regression coefficients and corresponding functions are available with this model.


In addition the Cox models can be used, especially since reductions of numbers of covariates to manageable size with the lasso will significantly simplify the analysis, allowing the possibility of a nonparametric or semi-parametric approach to prediction of time to preeclampsia. These statistical tools are known in the art and applicable to all manner of proteomic data. A set of biomarker, clinical and genetic data that can be easily determined, and that is highly informative regarding the probability for preeclampsia and predicted time to a preeclampsia event in said pregnant female is provided. Also, algorithms provide information regarding the probability for preeclampsia in the pregnant female.


In the development of a predictive model, it can be desirable to select a subset of markers, i.e. at least 3, at least 4, at least 5, at least 6, up to the complete set of markers. Usually a subset of markers will be chosen that provides for the needs of the quantitative sample analysis, e.g. availability of reagents, convenience of quantitation, etc., while maintaining a highly accurate predictive model. The selection of a number of informative markers for building classification models requires the definition of a performance metric and a user-defined threshold for producing a model with useful predictive ability based on this metric. For example, the performance metric can be the AUROC, the sensitivity and/or specificity of the prediction as well as the overall accuracy of the prediction model.


As will be understood by those skilled in the art, an analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include, without limitation, linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, and machine learning algorithms.


As described in Example 2, various methods are used in a training model. The selection of a subset of markers can be for a forward selection or a backward selection of a marker subset. The number of markers can be selected that will optimize the performance of a model without the use of all the markers. One way to define the optimum number of terms is to choose the number of terms that produce a model with desired predictive ability (e.g. an AUC>0.75, or equivalent measures of sensitivity/specificity) that lies no more than one standard error from the maximum value obtained for this metric using any combination and number of terms used for the given algorithm.









TABLE 1





Transitions with p-values less than 0.05 in univariate Cox Proportional


Hazards to predict Gestational Age of time to event (preeclampsia).

















TSDQIHFFFA_K_447.56_512.3
0.00
ANT3_HUMAN


DPNGLPPEAQK_583.3_669.4
0.00
RET4_HUMAN


SVSLPSLDPASAK_636.35_885.5
0.00
APOB_HUMAN


SSNNPHSPIVEEFQVPYNK_729.36_261.2
0.00
C1S_HUMAN


IEGNLIFDPNNYLPK_873.96_414.2
0.00
APOB_HUMAN


YWGVASFLQK_599.82_849.5
0.00
RET4_HUMAN


ITENDIQIALDDAK_779.9_632.3
0.00
APOB_HUMAN


IEGNLIFDPNNYLPK_873.96_845.5
0.00
APOB_HUMAN


GWVTDGFSSLK_598.8_953.5
0.00
APOC3_HUMAN


TGISPLALIK_506.82_741.5
0.00
APOB_HUMAN


SVSLPSLDPASAK_636.35_473.3
0.00
APOB_HUMAN


IIGGSDADIK_494.77_762.4
0.00
C1S_HUMAN


TGISPLALIK_506.82_654.5
0.00
APOB_HUMAN


TLLIANETLR_572.34_703.4
0.00
IL5_HUMAN


YWGVASFLQK_599.82_350.2
0.00
RET4_HUMAN


VSALLTPAEQTGTWK_801.43_371.2
0.00
APOB_HUMAN


DPNGLPPEAQK_583.3_497.2
0.00
RET4_HUMAN


VNHVTLSQPK_561.82_673.4
0.00
B2MG_HUMAN


DALSSVQESQVAQQAR_572.96_502.3
0.00
APOC3_HUMAN


IAQYYYTFK_598.8_884.4
0.00
F13B_HUMAN


IEEIAAK_387.22_531.3
0.00
CO5_HUMAN


GWVTDGFSSLK_598.8_854.4
0.00
APOC3_HUMAN


VNHVTLSQPK_561.82_351.2
0.00
B2MG_HUMAN


ITENDIQIALDDAK_779.9_873.5
0.00
APOB_HUMAN


VSALLTPAEQTGTWK_801.43_585.4
0.00
APOB_HUMAN


VILGAHQEVNLEPHVQEIEVSR_832.78_860.4
0.00
PLMN_HUMAN


SPELQAEAK_486.75_788.4
0.00
APOA2_HUMAN


SPELQAEAK_486.75_659.4
0.00
APOA2_HUMAN


DYWSTVK_449.72_620.3
0.00
APOC3_HUMAN


VPLALFALNR_557.34_620.4
0.00
PEPD_HUMAN


TSDQIHFFFAK_447.56_659.4
0.00
ANT3_HUMAN


DALSSVQESQVAQQAR_572.96_672.4
0.00
APOC3_HUMAN


VIAVNEVGR_478.78_284.2
0.00
CHL1_HUMAN


LLEVPEGR_456.76_686.3
0.00
C1S_HUMAN


VEPLYELVTATDFAYSSTVR_754.38_549.3
0.00
CO8B_HUMAN


HHGPTITAK_321.18_275.1
0.01
AMBP_HUMAN


ALNFGGIGVVVGHELTHAFDDQGR_837.09_299.2
0.01
ECE1_HUMAN


ETLLQDFR_511.27_565.3
0.01
AMBP_HUMAN


HHGPTITAK_321.18_432.3
0.01
AMBP_HUMAN


IIGGSDADIK_494.77_260.2
0.01
C1S_HUMAN
















TABLE 2







Top 40 transitions with p-values less than 0.05 in univariate Cox Proportional Hazards


to predict Gestational Age of time to event (preeclampsia), sorted byprotein ID.









Transition
cox pvalues
protein





HHGPTITAK_321.1_275.1
0.01
AMBP_HUMAN


ETLLQDFR_511.27_565.3
0.01
AMBP_HUMAN


HHGPTITAK_321.18_432.3
0.01
AMBP_HUMAN


TSDQIHFFFAK_447.56_512.3
0.00
ANT3_HUMAN


TSDQIHFFFAK_447.56_659.4
0.00
ANT3_HUMAN


SPELQAEAK_486.75_788.4
0.00
APOA2_HUMAN


SPELQAEAK_486.75_659.4
0.00
APOA2_HUMAN


SVSLPSLDPASAK_636.35_885.5
0.00
APOB_HUMAN


IEGNLIFDPNNYLPK_873.96_414.2
0.00
APOB_HUMAN


ITENDIQIALDDAK_779.9_632.3
0.00
APOB_HUMAN


IEGNLIFDPNNYLPK_873.96_845.5
0.00
APOB_HUMAN


TGISPLALIK_506.82_741.5
0.00
APOB_HUMAN


SVSLPSLDPASAK_636.35_73.3
0.00
APOB_HUMAN


TGISPLALIK_506.82_654.5
0.00
APOB_HUMAN


VSALLTPAEQTGTWK_801.43_371.2
0.00
APOB_HUMAN


ITENDIQIALDDAK_779.9_873.5
0.00
APOB_HUMAN


VSALLTPAEQTGTWK_801.43_585.4
0.00
APOB_HUMAN


GWVTDGFSSLK_598.8_953.5
0.00
APOC3_HUMAN


DALSSVQESQVAQQAR_572.96_502.3
0.00
APOC3_HUMAN


GWVTDGFSSLK_598.8_854.4
0.00
APOC3_HUMAN


DYWSTVK_449.72_620.3
0.00
APOC3_HUMAN


DALSSVQESQVAQQAR_572.96_672.4
0.00
APOC3_HUMAN


VNHVTLSQPK_561.82_673.4
0.00
B2MG_HUMAN


VNHVTLSQPK_561.82_351.2
0.00
B2MG_HUMAN


SSNNPHSPIVEEFQVPYNK_729.36_261.2
0.00
C1S_HUMAN


IIGGSDADIK_494.77_762.4
0.00
C1S_HUMAN


LLEVPEGR_456.76_686.3
0.00
C1S_HUMAN


IIGGSDADIK_494.77_260.2
0.01
C1S_HUMAN


VIAVNEVGR_478.78_284.2
0.00
CHL1_HUMAN


IEEIAAK_387.22_531.3
0.00
CO5_HUMAN


VEPLYELVTATDFAYSSTVR_754.38_549.3
0.00
CO8B_HUMAN


ALNFGGIGVVVGHELTHAFDDQGR_837.09_299.2
0.01
ECE1_HUMAN


IAQYYYTFK_598.8_884.4
0.00
F13B_HUMAN


TLLIANETLR_572.34_703.4
0.00
IL5_HUMAN


VPLALFALNR_557.34_620.4
0.00
PEPD_HUMAN


VILGAHQEVNLEPHVQEIEVSR_832.78_860.4
0.00
PLMN_HUMAN


DPNGLPPEAQK_583.3_669.4
0.00
RET4_HUMAN


YWGVASFLQK_599.82_849.5
0.00
RET4_HUMAN


YWGVASFLQK_599.82_350.2
0.00
RET4_HUMAN


DPNGLPPEAQK_583.3_497.2
0.00
RET4_HUMAN
















TABLE 3







Transitions selected by Cox stepwise AIC analysis












Transition
coef
exp(coef)
se(coef)
z
Pr(<|z|)















Collection.Window.GA.in.Days
0.43
1.54E+00
0.19
2.22
0.03


IIGGSDADIK_494.77_762.4
44.40
1.91E+19
18.20
2.44
0.01


GGEGTGYFVDFSVR_745.85_869.5
6.91
1.00E+03
2.76
2.51
0.01


SPEQQETVLDGNLIIR_906.48_685.4
17.28
3.21E+07
7.49
2.31
0.02


EPGLCTWQSLR_673.83_790.4
−2.08
1.25E−01
1.02
−2.05
0.04
















TABLE 4







Transitions selected by Cox lasso analysis












Transition
coef
exp(coef)
se(coef)
z
Pr(<|z|)















Collection.Window.GA.in.Days
0.05069
1.052
0.02348
2.159
0.0309


SPELQAEAK_486.75_788.4
0.68781
1.98936
0.4278
1.608
0.1079


SSNNPHSPIVEEFQVPYNK_72_9.36261.2
2.63659
13.96553
1.69924
1.552
0.1208
















TABLE 5







Area under the ROC curve for individual analytes to discriminate


preeclampsia subjects from non-preeclampsia subjects. The 196


transitions withthe highest ROC area are shown.








Transition
ROC area











SPELQAEAK_486.75_788.4
0.92


SSNNPHSPIVEEFQVPYNK_729.36_261.2
0.88


VNHVTLSQPK_561.82_673.4
0.85


TLLIANETLR_572.34_703.4
0.84


SSNNPHSPIVEEFQVPYNK_729.36_521.3
0.83


IIGGSDADIK_494.77_762.4
0.82


VVGGLVALR_442.29_784.5
0.82


ALNFGGIGVVVGHELTHAFDDQGR_837.09_299.2
0.81


DYWSTVK_449.72_620.3
0.81


FSVVYAK_407.23_579.4
0.81


GWVTDGFSSLK_598.8_953.5
0.81


IIGGSDADIK_494.77_260.2
0.81


LLEVPEGR_456.76_356.2
0.81


DALSSVQESQVAQQAR_572.96_672.4
0.80


DPNGLPPEAQK_583.3_497.2
0.80


FSVVYAK_407.23_381.2
0.80


LLEVPEGR_456.76_686.3
0.80


SPELQAEAK_486.75_659.4
0.80


VVLSSGSGPGLDLPLVLGLPLQLK_791.48_598.4
0.79


ETLLQDFR_511.27_565.3
0.79


VNHVTLSQPK_561.82_351.2
0.79


VVGGLVALR_442.29_685.4
0.79


YTTEIIK_434.25_603.4
0.79


DPNGLPPEAQK_583.3_669.4
0.78


EDTPNSVWEPAK_686.82_315.2
0.78


GWVTDGFSSLK_598.8_854.4
0.78


HHGPTITAK_321.18_432.3
0.78


LHEAFSPVSYQHDLALLR_699.37_251.2
0.78


GA.ofTime.to.Event.in.Days
0.77


DALSSVQESQVAQQAR_572.96_502.3
0.77


DYWSTVK_449.72_347.2
0.77


IAQYYYTFK_598.8_395.2
0.77


YWGVASFLQK_599.82_849.5
0.77


AHYDLR_387.7_288.2
0.76


EDTPNSVWEPAK_686.82_630.3
0.76


GDTYPAELYITGSILR_884.96_922.5
0.76


SVSLPSLDPASAK_636.35_885.5
0.76


TSESGELHGLTTEEEFVEGIYK_819.06_310.2
0.76


ALEQDLPVNIK_620.35_570.4
0.75


HHGPTITAK_321.18_275.1
0.75


IAQYYYTFK_598.8_884.4
0.75


ITENDIQIALDDAK_779.9_632.3
0.75


LPNNVLQEK_527.8_844.5
0.75


YWGVASFLQK_599.82_350.2
0.75


FQLPGQK_409.23_276.1
0.75


HTLNQIDEVK_598.82_958.5
0.75


VVLSSGSGPGLDLPLVLGLPLQLK_791.48_768.5
0.75


DADPDTFFAK_563.76_302.1
0.74


DADPDTFFAK_563.76_825.4
0.74


FQLPGQK_409.23_429.2
0.74


HFQNLGK_422.23_527.2
0.74


VIAVNEVGR_478.78_284.2
0.74


VPLALFALNR_557.34_620.4
0.74


ETLLQDFR_511.27_322.2
0.73


FNAVLTNPQGDYDTSTGK_964.46_262.1
0.73


SVSLPSLDPASAK_636.35_473.3
0.73


AHYDLR_387.7_566.3
0.72


ALNHLPLEYNSALYSR_620.99_538.3
0.72


AWVAWR_394.71_258.1
0.72


AWVAWR_394.71_531.3
0.72


ETAASLLQAGYK_626.33_879.5
0.72


IALGGLLFPASNLR_481.29_657.4
0.72


IAPQLSTEELVSLGEK_857.47_533.3
0.72


ITENDIQIALDDAK_779.9_873.5
0.72


VAPEEHPVLLTEAPLNPK_652.03_869.5
0.71


EPGLCTWQSLR_673.83_375.2
0.71


IAPQLSTEELVSLGEK_857.47_333.2
0.71


SPEQQETVLDGNLIIR_906.48_699.3
0.71


VSALLTPAEQTGTWK_801.43_371.2
0.71


VSALLTPAEQTGTWK_801.43_585.4
0.71


VSEADSSNADWVTK_754.85_347.2
0.71


GDTYPAELYITGSILR_884.96_274.1
0.70


IPGIFELGISSQSDR_809.93_849.4
0.70


IQTHSTTYR_369.52_540.3
0.70


LLDSLPSDTR_558.8_890.4
0.70


QLGLPGPPDVPDHAAYHPF_676.67_299.2
0.70


SYELPDGQVITIGNER_895.95_251.1
0.70


VILGAHQEVNLEPHVQEIEVSR_832.78_860.4
0.70


WGAAPYR_410.71_577.3
0.69


DFHINLFQVLPWLK_885.49_543.3
0.69


LLDSLPSDTR_558.8_76.2
0.69


VEPLYELVTATDFAYSSTVR_754.38_549.3
0.69


VPTADLEDVLPLAEDITNILSK_789.43_841.4
0.69


GGEGTGYFVDFSVR_745.85_869.5
0.69


HTLNQIDEVK_598.82_951.5
0.69


LIENGYFHPVK_439.57_627.4
0.69


LPNNVLQEK_527.8_730.4
0.69


NKPGVYTDVAYYLAWIR_677.02_545.3
0.69


NTVISVNPSTK_580.32_845.5
0.69


QLGLPGPPDVPDHAAYHPF_676.67_263.1
0.69


YTTEIIK_434.25_704.4
0.69


LPDATPK_371.21-628.3
0.68


IEGNLIFDPNNYLPK_873.96_845.5
0.68


LEQGENVFLQATDK_796.4_822.4
0.68


TLYSSSPR_455.74_533.3
0.68


TLYSSSPR_455.74_696.3
0.68


VSEADSSNADWVTK_754.85_533.3
0.68


DGSPDVTTADIGANTPDATK_973.45_844.4
0.67


EWVAIESDSVQPVPR_856.44_486.2
0.67


IALGGLLFPASNLR_481.29_412.3
0.67


IEEIAAK_387.22_531.3
0.67


IEGNLIFDPNNYLPK_873.96_414.2
0.67


LYYGDDEK_501.72_726.3
0.67


TGISPLALIK_506.82_741.5
0.67


VPTADLEDVLPLAEDITNILSK_89.43_940.5
0.67


ADSQAQLLLSTVVGVFTAPGLHLK_822.46_983.6
0.66


AYSDLSR_406.2_577.3
0.66


DFHINLFQVLPWLK_885.49_400.2
0.66


DLHLSDVFLK_396.22_260.2
0.66


EWVAIESDSVQPVPR_856.44_468.3
0.66


FNAVLTNPQGDYDTSTGK_964.46_333.2
0.66


LSSPAVITDK_515.79_743.4
0.66


LYYGDDEK_501.72_563.2
0.66


SGFSFGFK_438.72_732.4
0.66


IIEVEEEQEDPYLNDR_995.97_777.4
0.66


AVYEAVLR_460.76_750.4
0.66


WGAAPYR_410.71_34.3
0.66


FTFTLHLETPKPSISSSNLNPR_829.44_874.4
0.65


DAQYAPGYDK_564.25_315.1
0.65


YGLVTYATYPK_638.33_334.2
0.65


DGSPDVTTADIGANTPDATK_973.45_531.3
0.65


ETAASLLQAGYK_626.33_679.4
0.65


ALNHLPLEYNSALYSR_620.99_696.4
0.65


DISEVVTPR_508.27_787.4
0.65


IS.2_662.3_313.1
0.65


IVLGQEQDSYGGK_697.35_261.2
0.65


IVLGQEQDSYGGK_697.35_754.3
0.65


TLEAQLTPR_514.79_685.4
0.65


VPVAVQGEDTVQSLTQGDGVAK_733.38_775.4
0.65


VAPEEHPVLLTEAPLNPK_652.03_568.3
0.64


ADSQAQLLLSTVVGVFTAPGLHLK_822.46_664.4
0.64


AEAQAQYSAAVAK_654.33_908.5
0.64


DISEVVTPR_508.27_472.3
0.64


ELLESYIDGR_597.8_710.3
0.64


TGISPLALIK_506.82_654.5
0.64


TNLESILSYPK_632.84_807.5
0.64


DAQYAPGYDK_564.25_813.4
0.63


LPTAVVPLR_483.31_755.5
0.63


DSPVLIDFFEDTER_841.9_512.3
0.63


FAFNLYR_465.75_712.4
0.63


FVFGTTPEDILR_697.87_843.5
0.63


GDSGGAFAVQDPNDK_739.33_473.2
0.63


SLDFTELDVAAEK_719.36_316.2
0.63


SLLQPNK_400.24_599.4
0.63


TLLIANETLR_572.34_816.5
0.63


VILGAHQEVNLEPHVQEIEVSR_832.78_603.3
0.63


VQEAHLTEDQIFYFPK_655.66_701.4
0.63


FTFTLHLETPKPSISSSNLNPR_829.44_787.4
0.63


AYSDLSR_406.2_375.2
0.62


DDLYVSDAFHK_655.31_344.1
0.62


DDLYVSDAFHK_655.31_704.3
0.62


DPDQTDGLGLSYLSSHIANVER_796.39_456.2
0.62


ESDTSYVSLK_564.77_347.2
0.62


ESDTSYVSLK_564.77_696.4
0.62


FVFGTTPEDILR_697.87_742.4
0.62


ILDDLSPR_464.76_587.3
0.62


LEQGENVFLQATDK_796.4_675.4
0.62


LHEAFSPVSYQHDLALLR_699.37_380.2
0.62


LIENGYFHPVK_439.57_343.2
0.62


SLPVSDSVLSGFEQR_810.92_836.4
0.62


TWDPEGVIFYGDTNPK_919.93_403.2
0.62


VGEYSLYIGR_578.8_708.4
0.62


VIAVNEVGR_478.78_744.4
0.62


VPGTSTSATLTGLTR_731.4_761.5
0.62


YEVQGEVFTKPQLWP_910.96_293.1
0.62


AFTECCVVASQLR_770.87_673.4
0.61


APLTKPLK_289.86_357.3
0.61


DSPVLIDFFEDTER_841.9_399.2
0.61


ELLESYIDGR_597.8_839.4
0.61


FLQEQGHR_338.84_369.2
0.61


IQTHSTTYR_369.52_627.3
0.61


IS.3_432.6_397.3
0.61


IS.4_706.3_780.3
0.61


IS.4_706.3_927.4
0.61


IS.5_726.3_876.3
0.61


ISLLLIESWLEPVR_834.49_500.3
0.61


LQGTLPVEAR_542.31_842.5
0.61


NKPGVYTDVAYYLAWIR_677.02_821.5
0.61


SLDFTELDVAAEK_719.36_874.5
0.61


SYTITGLQPGTDYK_772.39_352.2
0.61


TASDFITK_441.73_710.4
0.61


VLSALQAVQGLLVAQGR_862.02_941.6
0.61


VTGWGNLK_437.74_617.3
0.61


YEVQGEVFTKPQLWP_910.96_392.2
0.61


AFIQLWAFDAVK_704.89_650.4
0.60


APLTKPLK_289.86_260.2
0.60


GYVIIKPLVWV_643.9_304.2
0.60


IITGLLEFEVYLEYLQNR_738.4_822.4
0.60


ILDDLSPR_464.76_702.3
0.60


LSSPAVITDK_515.79_830.5
0.60


TDAPDLPEENQAR_728.34_843.4
0.60


TFTLLDPK_467.77_359.2
0.60


TFTLLDPK_467.77_686.4
0.60


VLEPTLK_400.25_587.3
0.60


YEFLNGR_449.72_606.3
0.60


YGLVTYATYPK_638.3_843.4
0.60
















TABLE 6







AUROCs for random forest, boosting, lasso, and logistic regression


models for a specific number of transitions permitted in the model,


as estimated by 100 rounds of bootstrap resampling.











Number of






transitions
rf
boosting
logit
lasso














1
0.81
0.75
0.48
0.92


2
0.95
0.85
0.61
0.86


3
0.95
0.83
0.56
0.93


4
0.94
0.82
0.52
0.92


5
0.95
0.81
0.51
0.94


6
0.95
0.81
0.49
0.93


7
0.95
0.83
0.46
0.93


8
0.96
0.79
0.49
0.91


9
0.95
0.82
0.46
0.88


10
0.94
0.80
0.50
0.85


11
0.93
0.78
0.49
0.84


12
0.94
0.79
0.47
0.82


13
0.92
0.80
0.48
0.84


14
0.95
0.73
0.47
0.83


15
0.93
0.73
0.49
0.83
















TABLE 7







Top 15 transitions selected by each multivariate method, ranked by


importance for that method.










rf
boosting












1
FSVVYAK_
DPNGLPPEAQK_



407.23_579.4
583.3_497.2


2
SPELQAEAK_
ALNFGGIGVVVGHELTHAFDDQGR_



486.75_788.4
_837.09_299.2


3
VNHVTLSQPK_
ALEQDLPVNIK_



561.82_673.4
620.35_570.4


4
SSNNPHSPIVEEFQVPYNK_
DALSSVQESQVAQQAR_



729.36_261.2
572.96_502.3


5
SSNNPHSPIVEEFQVPYNK_
AHYDLR_



729.36_521.3
387.7_288.2


6
VVGGLVALR_
FQLPGQK_



442.29_784.5
409.23_276.1


7
FQLPGQK_
AFTECCVVASQLR_



409.23_276.1
770.87_673.4


8
TLLIANETLR_
ALNHLPLEYNSALYSR_



572.34_703.4
620.99_538.3


9
DYWSTVK_
ADSQAQLLLSTVVGVFTAPGLHLK_



449.72_620.3
822.46_664.4


10
VVGGLVALR_
AEAQAQYSAAVAK_



442.29_685.4
654.33_908.5


11
DPNGLPPEAQK_
ADSQAQLLLSTVVGVFTAPGLHLK_



583.3_497.2
822.46_983.6


12
LLEVPEGR_
AITPPHPASQANIIFDITEGNLR_



456.76_356.2
825.77_459.3


13
GWVTDGFSSLK_
Collection.Window.



598.8_953.5
GA.in.Days


14
VILGAHQEVNLEPHVQEIEVSR_
AEAQAQYSAAVAK_



832.78_860.4
654.33_709.4


15
FQLPGQK_
AFIQLWAFDAVK_



409.23_429.2
704.89_650.4






lasso
logit





1
SPELQAEAK_
AFIQLWAFDAVK_



486.75_788.4
704.89_650.4


2
VILGAHQEVNLEPHVQEIEVSR_
AFIQLWAFDAVK_



832.78_860.4
704.89_836.4


3
VVGGLVALR_
AEAQAQYSAAVAK_



442.29_784.5
654.33_709.4


4
TSESGELHGLTTEEEFVEGIYK_
AFTECCVVASQLR_



819.06_310.2
770.87_574.3


5
SSNNPHSPIVEEFQVPYNK_
ADSQAQLLLSTVVGVFTAPGLHLK_



729.36_261.2
822.46_664.4


6
VVLSSGSGPGLDLPLVLGLPLQLK_
AEAQAQYSAAVAK_



_791.48_598.4
654.33908.5


7
ALEQDLPVNIK_
ADSQAQLLLSTVVGVFTAPGLHLK_



620.35_570.4
822.46_983.6


8
IQTHSTTYR_
AFTECCVVASQLR_



369.52_540.3
770.87_673.4


9
SSNNPHSPIVEEFQVPYNK_
Collection.Window.GA.



729.36_521.3
in.Days


10
FSVVYAK_
AHYDLR_



407.23_579.4
387.7_288.2


11
IAQYYYTFK_
AHYDLR_



598.8_884.4
387.7_566.3


12
IAQYYYTFK_
AITPPHPASQANIIFDITEGNLR_



598.8_395.2
825.77_459.3


13
GDTYPAELYITGSILR_
AITPPHPASQANIIFDITEGNLR_



884.96_922.5
825.77_917.5


14
SPEQQETVLDGNLIIR_
ALEQDLPVNIK_



906.48_699.3
620.35_570.4


15
IAPQLSTEELVSLGEK_
ALEQDLPVNIK_



857.47_533.3
620.35_798.5









In yet another aspect, the invention provides kits for determining probability of preeclampsia, wherein the kits can be used to detect N of the isolated biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. For example, the kits can be used to detect one or more, two or more, three or more, four or more, or five of the isolated biomarkers selected from the group consisting of SPELQAEAK, SSNNPHSPIVEEFQVPYN, VNHVTLSQPK, VVGGLVALR, and FSVVYAK, LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, and GFQALGDAADIR. In another aspect, the kits can be used to detect one or more, two or more, three or more, four or more, five or more, six or more, seven or more, or eight of the isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4), Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


The kit can include one or more agents for detection of biomarkers, a container for holding a biological sample isolated from a pregnant female; and printed instructions for reacting agents with the biological sample or a portion of the biological sample to detect the presence or amount of the isolated biomarkers in the biological sample. The agents can be packaged in separate containers. The kit can further comprise one or more control reference samples and reagents for performing an immunoassay.


In one embodiment, the kit comprises agents for measuring the levels of at least N of the isolated biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. The kit can include antibodies that specifically bind to these biomarkers, for example, the kit can contain at least one of an antibody that specifically binds to alpha-1-microglobulin (AMBP), an antibody that specifically binds to ADP/ATP translocase 3 (ANT3), an antibody that specifically binds to apolipoprotein A-II (APOA2), an antibody that specifically binds to apolipoprotein C-III (APOC3), an antibody that specifically binds to apolipoprotein B (APOB), an antibody that specifically binds to beta-2-microglobulin (B2MG), an antibody that specifically binds to retinol binding protein 4 (RBP4 or RET4), an antibody that specifically binds to Inhibin beta C chain (INHBC), an antibody that specifically binds to Pigment epithelium-derived factor (PEDF), an antibody that specifically binds to Prostaglandin-H2 D-isomerase (PTGDS), an antibody that specifically binds to alpha-1-microglobulin (AMBP), an antibody that specifically binds to Beta-2-glycoprotein 1 (APOH), an antibody that specifically binds to Metalloproteinase inhibitor 1 (TIMP1), an antibody that specifically binds to Coagulation factor XIII B chain (F13B), an antibody that specifically binds to Alpha-2-HS-glycoprotein (FETUA), and an antibody that specifically binds to Sex hormone-binding globulin (SHBG).


The kit can comprise one or more containers for compositions contained in the kit. Compositions can be in liquid form or can be lyophilized. Suitable containers for the compositions include, for example, bottles, vials, syringes, and test tubes. Containers can be formed from a variety of materials, including glass or plastic. The kit can also comprise a package insert containing written instructions for methods of determining probability of preeclampsia.


From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.


The following examples are provided by way of illustration, not limitation.


EXAMPLES
Example 1. Development of Sample Set for Discovery and Validation of Biomarkers for Preeclampsia

A standard protocol was developed governing conduct of the Proteomic Assessment of Preterm Risk (PAPR) clinical study. This protocol also provided the option that the samples and clinical information could be used to study other pregnancy complications. Specimens were obtained from women at 11 Internal Review Board (IRB) approved sites across the United States. After providing informed consent, serum and plasma samples were obtained, as well as pertinent information regarding the patient's demographic characteristics, past medical and pregnancy history, current pregnancy history and concurrent medications. Following delivery, data were collected relating to maternal and infant conditions and complications. Serum and plasma samples were processed according to a protocol that requires standardized refrigerated centrifugation, aliquoting of the samples into 0.5 ml 2-D bar-coded cryovials and subsequent freezing at −80° C.


Following delivery, preeclampsia cases were individually reviewed. Only preterm preeclampsia cases were used for this analysis. For discovery of biomarkers of preeclampsia, 20 samples collected between 17-28 weeks of gestation were analyzed. Samples included 9 cases, 9 term controls matched within one week of sample collection and 2 random term controls. The samples were processed in batches of 24 that included 20 clinical samples and 4 identical human gold standards (HGS). HGS samples are identical aliquots from a pool of human blood and were used for quality control. HGS samples were placed in position 1, 8, 15 and 24 of a batch with patient samples processed in the remaining 20 positions. Matched cases and controls were always processed adjacently.


The samples were subsequently depleted of high abundance proteins using the Human 14 Multiple Affinity Removal System (MARS 14), which removes 14 of the most abundant proteins that are essentially uninformative with regard to the identification for disease-relevant changes in the serum proteome. To this end, equal volumes of each clinical or HGS sample were diluted with column buffer and filtered to remove precipitates. Filtered samples were depleted using a MARS-14 column (4.6×100 mm, Cat. #5188-6558, Agilent Technologies). Samples were chilled to 4° C. in the autosampler, the depletion column was run at room temperature, and collected fractions were kept at 4° C. until further analysis. The unbound fractions were collected for further analysis.


A second aliquot of each clinical serum sample and of each HGS was diluted into ammonium bicarbonate buffer and depleted of the 14 high and approximately 60 additional moderately abundant proteins using an IgY14-SuperMix (Sigma) hand-packed column, comprised of 10 mL of bulk material (50% slurry, Sigma). Shi et al., Methods, 56(2):246-53 (2012). Samples were chilled to 4° C. in the autosampler, the depletion column was run at room temperature, and collected fractions were kept at 4° C. until further analysis. The unbound fractions were collected for further analysis.


Depleted serum samples were denatured with trifluorethanol, reduced with dithiotreitol, alkylated using iodoacetamide, and then digested with trypsin at a 1:10 trypsin: protein ratio. Following trypsin digestion, samples were desalted on a C18 column, and the eluate lyophilized to dryness. The desalted samples were resolubilized in a reconstitution solution containing five internal standard peptides.


Depleted and trypsin digested samples were analyzed using a scheduled Multiple Reaction Monitoring method (sMRM). The peptides were separated on a 150 mm×0.32 mm Bio-Basic C18 column (ThermoFisher) at a flow rate of 5 μl/min using a Waters Nano Acquity UPLC and eluted using an acetonitrile gradient into a AB SCIEX QTRAP 5500 with a Turbo V source (AB SCIEX, Framingham, Mass.). The sMRM assay measured 1708 transitions that correspond to 854 peptides and 236 proteins. Chromatographic peaks were integrated using Rosetta Elucidator software (Ceiba Solutions).


Transitions were excluded from analysis, if their intensity area counts were less than 10000 and if they were missing in more than three samples per batch. Intensity area counts were log transformed and Mass Spectrometry run order trends and depletion batch effects were minimized using a regression analysis.


Example 2. Analysis of Transitions to Identify PE Biomarkers

The objective of these analyses was to examine the data collected in Example 1 to identify transitions and proteins that predict preeclampsia. The specific analyses employed were (i) Cox time-to-event analyses and (ii) models with preeclampsia as a binary categorical dependent variable. The dependent variable for all the Cox analyses was Gestational Age of time to event (where event is preeclampsia). For the purpose of the Cox analyses, preeclampsia subjects have the event on the day of birth. Non-preeclampsia subjects are censored on the day of birth. Gestational age on the day of specimen collection is a covariate in all Cox analyses.


The assay data obtained in Example 1 were previously adjusted for run order and log transformed. The data was not further adjusted. There were 9 matched non-preeclampsia subjects, and two unmatched non-preeclampsia subjects, where matching was done according to center, gestational age and ethnicity.


Univariate Cox Proportional Hazards Analyses


Univariate Cox Proportional Hazards analyses was performed to predict Gestational Age of time to event (preeclampsia), including Gestational age on the day of specimen collection as a covariate. Table 1 shows the 40 transitions with p-values less than 0.05. Table 2 shows the same transitions sorted by protein ID. There are 8 proteins that have multiple transitions with p-values less than 0.05: AMBP, ANT3, APOA2, APOB, APOC3, B2MG, C1S, and RET4.


Multivariate Cox Proportional Hazards Analyses: Stepwise AIC Selection


Cox Proportional Hazards analyses was performed to predict Gestational Age of time to event (preeclampsia), including Gestational age on the day of specimen collection as a covariate, using stepwise and lasso models for variable selection. The stepwise variable selection analysis used the Akaike Information Criterion (AIC) as the stopping criterion. Table 3 shows the transitions selected by the stepwise AIC analysis. The coefficient of determination (le) for the stepwise AIC model is 0.87 of a maximum possible 0.9.


Multivariate Cox Proportional Hazards Analyses: Lasso Selection


Lasso variable selection was utilized as the second method of multivariate Cox Proportional Hazards analyses to predict Gestational Age of time to event (preeclampsia), including Gestational age on the day of specimen collection as a covariate. Lasso regression models estimate regression coefficients using penalized optimization methods, where the penalty discourages the model from considering large regression coefficients since we usually believe such large values are not very likely. As a result, some regression coefficients are forced to be zero (i.e., excluded from the model). Here, the resulting model included analytes with non-zero regression coefficients only. The number of these analytes (with non-zero regression coefficients) depends on the severity of the penalty. Cross-validation was used to choose an optimum penalty level. Table 4 shows the results. The coefficient of determination (le) for the lasso model is 0.53 of a maximum possible 0.9.


Univariate ROC Analysis of Preeclampsia as a Binary Categorical Dependent Variable


Univariate analyses was used to discriminate preeclampsia subjects from non-preeclampsia subjects (preeclampsia as a binary categorical variable) as estimated by area under the receiver operating characteristic (ROC) curve. Table 5 shows the area under the ROC curve for the 196 transitions with the highest ROC area of 0.6 or greater.


Multivariate Analysis of Preeclampsia as a Binary Categorical Dependent Variable


Multivariate analyses was performed to predict preeclampsia as a binary categorical dependent variable, using random forest, boosting, lasso, and logistic regression models. Random forest and boosting models grow many classification trees. The trees vote on the assignment of each subject to one of the possible classes. The forest chooses the class with the most votes over all the trees.


For each of the four methods (random forest, boosting, lasso, and logistic regression) each method was allowed to select and rank its own best 15 transitions. We then built models with 1 to 15 transitions. Each method sequentially reduces the number of nodes from 15 to 1 independently. A recursive option was used to reduce the number nodes at each step: To determine which node to be removed, the nodes were ranked at each step based on their importance from a nested cross-validation procedure. The least important node was eliminated. The importance measures for lasso and logistic regression are z-values. For random forest and boosting, the variable importance was calculated from permuting out-of-bag data: for each tree, the classification error rate on the out-of-bag portion of the data was recorded; the error rate was then recalculated after permuting the values of each variable (i.e., transition); if the transition was in fact important, there would have been be a big difference between the two error rates; the difference between the two error rates were then averaged over all trees, and normalized by the standard deviation of the differences. The AUCs for these models are shown in Table 6, as estimated by 100 rounds of bootstrap resampling. Table 7 shows the top 15 transitions selected by each multivariate method, ranked by importance for that method. These multivariate analyses suggest that models that combine 2 or more transitions give AUC greater than 0.9, as estimated by bootstrap.


In multivariate models, random forest (rf) and lasso models gave the best area under the ROC curve as estimated by bootstrap. The following transitions were selected by these two models for having high univariate ROC's:


FSVVYAK_407.23_579.4


SPELQAEAK_486.75_788.4


VNHVTLSQPK_561.82_673.4


SSNNPHSPIVEEFQVPYNK_729.36_261.2


SSNNPHSPIVEEFQVPYNK_729.36_521.3


VVGGLVALR_442.29_784.5


In summary, univariate and multivariate Cox analyses were performed using transitions collected in Example 1 to predict Gestational Age at Birth, including Gestational age on the day of specimen collection as a covariate. In the univariate Cox analyses, 8 proteins were identified with multiple transitions with p-value less than 0.05. In multivariate Cox analyses, stepwise AIC variable analysis selected 4 transitions, while the lasso model selected 2 transitions. Univariate (ROC) and multivariate (random forest, boosting, lasso, and logistic regression) analyses were performed to predict preeclampsia as a binary categorical variable. Univariate analyses identify 78 analytes with AUROC of 0.7 or greater and 196 analytes with AUROC of 0.6 or greater. Multivariate analyses suggest that models that combine 2 or more transitions give AUC greater than 0.9, as estimated by bootstrap.


From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.


Example 3. Study II Shotgun Identification of Preeclampsia Biomarkers

A further study used a hypothesis-independent shotgun approach to identify and quantify additional biomarkers not present on our multiplexed hypothesis dependent MRM assay. Samples were processed as described in the preceding Examples unless noted below.


Serum samples were depleted of the 14 most abundant serum samples by MARS14 as described in Example 1. Depleted serum was then reduced with dithiothreitol, alkylated with iodacetamide, and then digested with trypsin at a 1:20 trypsin to protein ratio overnight at 37° C. Following trypsin digestion, the samples were desalted on an Empore C18 96-well Solid Phase Extraction Plate (3M Company) and lyophilized to dryness. The desalted samples were resolubilized in a reconstitution solution containing five internal standard peptides.


Tryptic digests of MARS depleted patient (preeclampsia cases and normal pregnancycontrols) samples were fractionated by two-dimensional liquid chromatography and analyzed by tandem mass spectrometry. Aliquots of the samples, equivalent to 3-4 μl of serum, were injected onto a 6 cm×75 μm self-packed strong cation exchange (Luna SCX, Phenomenex) column. Peptides were eluded from the SCX column with salt (15, 30, 50, 70, and 100% B, where B=250 mM ammonium acetate, 2% acetonitrile, 0.1% formic acid in water) and consecutively for each salt elution, were bound to a 0.5 μl C18 packed stem trap (Optimize Technologies, Inc.) and further fractionated on a 10 cm×75 μm reversed phase ProteoPep II PicoFrit column (New Objective). Peptides were eluted from the reversed phase column with an acetonitrile gradient containing 0.1% formic acid and directly ionized on an LTQ-Orbitrap (ThermoFisher). For each scan, peptide parent ion masses were obtained in the Orbitrap at 60K resolution and the top seven most abundant ions were fragmented in the LTQ to obtain peptide sequence information.


Parent and fragment ion data were used to search the Human RefSeq database using the Sequest (Eng et al., J. Am. Soc. Mass Spectrom 1994; 5:976-989) and X!Tandem (Craig and Beavis, Bioinformatics 2004; 20:1466-1467) algorithms. For Sequest, data was searched with a 20 ppm tolerance for the parent ion and 1 AMU for the fragment ion. Two missed trypsin cleavages were allowed, and modifications included static cysteine carboxyamidomethylation and methionine oxidation. After searching the data was filtered by charge state vs. Xcorr scores (charge +1≥1.5 Xcorr, charge +2≥2.0, charge +3≥2.5). Similar search parameters were used for X!tandem, except the mass tolerance for the fragment ion was 0.8 AMU and there is no Xcorr filtering. Instead, the PeptideProphet algorithm (Keller et al., Anal. Chem 2002; 74:5383-5392) was used to validate each X!Tandem peptide-spectrum assignment and protein assignments were validated using ProteinProphet algorithm (Nesvizhskii et al., Anal. Chem 2002; 74:5383-5392). Data was filtered to include only the peptide-spectrum matches that had PeptideProphet probability of 0.9 or more. After compiling peptide and protein identifications, spectral count data for each peptide were imported into DAnTE software (Polpitiya et al., Bioinformatics. 2008; 24:1556-1558). Log transformed data was mean centered and missing values were filtered, by requiring that a peptide had to be identified in at least 2 cases and 2 controls. To determine the significance of an analyte, Receiver Operating Characteristic (ROC) curves for each analyte were created where the true positive rate (Sensitivity) is plotted as a function of the false positive rate (1-Specificity) for different thresholds that separate the SPTB and Term groups. The area under the ROC curve (AUC) is equal to the probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one. Peptides with AUC greater than or equal to 0.6 identified by both approaches are found in Table 8 and those found uniquely by Sequest or Xtandem are found in Tables 9 and 10, respectively.


The differentially expressed proteins identified by the hypothesis-independent strategy above, not already present in our MRM-MS assay, were candidates for incorporation into the MRM-MS assay. Candidates were prioritized by AUC and biological function, with preference given for new pathways. Sequences for each protein of interest, were imported into Skyline software which generated a list of tryptic peptides, m/z values for the parent ions and fragment ions, and an instrument-specific collision energy (McLean et al. Bioinformatics (2010) 26 (7): 966-968. McLean et al. Anal. Chem (2010) 82 (24): 10116-10124).


The list was refined by eliminating peptides containing cysteines and methionines, where possible, and by using the shotgun data to select the charge state(s) and a subset of potential fragment ions for each peptide that had already been observed on a mass spectrometer.


After prioritizing parent and fragment ions, a list of transitions was exported with a single predicted collision energy. Approximately 100 transitions were added to a single MRM run. For development, MRM data was collected on either a QTRAP 5500 (AB Sciex) or a 6490 QQQ (Agilent). Commercially available human female serum (from pregnant and non-pregnant donors), was depleted and processed to tryptic peptides, as described above, and used to “scan” for peptides of interest. For development, peptides from the digested serum were separated with a 15 min acetonitrile.e gradient at 100 ul/min on a 2.1×50 mM Poroshell 120 EC-C18 column (Agilent) at 40° C.


The MS/MS data was imported back into Skyline, where all chromatograms for each peptide were overlayed and used to identify a concensus peak corresponding to the peptide of interest and the transitions with the highest intensities and the least noise. Table 11, contains a list of the most intensely observed candidate transitions and peptides for transfer to the MRM assay.


Next, the top 2-10 transitions per peptide and up to 7 peptides per protein were selected for collision energy (CE) optimization on the Agilent 6490. Using Skyline or MassHunter Qual software, the optimized CE value for each transition was determined based on the peak area or signal to noise. The two transitions with the largest peak areas per peptide and at least two peptides per protein were chosen for the final MRM method. Substitutions of transitions with lower peak areas were made when a transition with a larger peak area had a high background level or had a low m/z value that has more potential for interference.


Lastly, the retention times of selected peptides were mapped using the same column and gradient as our established sMRM assay. The newly discovered analytes were subsequently added to the sMRM method and used in a further hypothesis-dependent discovery study described in Example 4 below.


The above method was typical for most proteins. However, in some cases, the differentially expressed peptide identified in the shotgun method did not uniquely identify a protein, for example, in protein families with high sequence identity. In these cases, a MRM method was developed for each family member. Also, let it be noted that, for any given protein, peptides in addition to those found to be significant and fragment ions not observed on the Orbitrap may have been included in MRM optimization and added to the final sMRM method if those yielded the best signal intensities. In some cases, transition selection and CEs were re-optimized using purified, synthetic peptides.









TABLE 8







Preeclampsia: Peptides significant with AUC > 0.6 by X!Tandem and


Sequest











Protein


XT_
S_


description
Uniprot ID (name)
Peptide
AUC
AUC





afamin
P43652
R.IVQIYKDLLR.N
0.67
0.63



(AFAM_HUMAN)





afamin
P43652
K.VMNHICSK.Q
0.73
0.74



(AFAM_HUMAN)





afamin
P43652
R.RHPDLSIPELLR.I
0.86
0.83



(AFAM_HUMAN)





afamin
P43652
K.HFQNLGK.D
0.71
0.75



(AFAM_HUMAN)





alpha-1-
P01011
K.ITLLSALVETR.T
0.68
0.70


antichymotrypsin
(AACT_HUMAN)





alpha-1-
P01011
R.LYGSEAFATDFQDSAAAK.K
0.70
0.78


antichymotrypsin
(AACT_HUMAN)





alpha-1-
P01011
R.NLAVSQVVHK.A
0.81
0.79


antichymotrypsin
(AACT_HUMAN)





alpha-1B-
P04217
R.CEGPIPDVTFELLR.E
0.78
0.60


glycoprotein
(A1BG_HUMAN)





alpha-1B-
P04217
R.LHDNQNGWSGDSAPVELILSDETLPAPEFSPEPESGR.
0.72
0.66


glycoprotein
(A1BG_HUMAN)
A




alpha-1B-
P04217
R.CEGPIPDVTFELLR.E
0.64
0.60


glycoprotein
(A1BG_HUMAN)





alpha-1B-
P04217
R.TP GAAANLELIFVGPQHAGNYR.C
0.71
0.67


glycoprotein
(A1BG_HUMAN)





alpha-1B-
P04217
K.LLELTGPK.S
0.70
0.66


glycoprotein
(A1BG_HUMAN)





alpha-1B-
P04217
R.ATW SGAVLAGR.D
0.84
0.74


glycoprotein
(A1BG_HUMAN)





alpha-2-
P08697
K.HQM*DLVATLSQLGLQELFQAPDLR.G
0.67
0.67


antiplasmin
(A2AP_HUMAN)





alpha-2-
P08697
K.LGNQEPGGQTALK.S
0.83
0.83


antiplasmin
(A2AP_HUMAN)





alpha-2-
P08697
K.GFPIKEDFLEQSEQLFGAKPVSLTGK.Q
0.68
0.65


antiplasmin
(A2AP_HUMAN)





alpha-2-HS-
P02765
R.QPNCDDPETEEAALVAIDYINQNLPWGYK.H
0.61
0.61


glycoprotein
(FETUA_HUMAN)





preproprotein






alpha-2-HS-
P02765
K.VWPQQPSGELFEIEIDTLETTCHVLDPTPVAR.C
0.79
0.67


glycoprotein
(FETUA_HUMAN)





preproprotein






alpha-2-HS-
P02765
K.EHAVEGDCDFQLLK.L
0.90
0.77


glycoprotein
(FETUA_HUMAN)





preproprotein






alpha-2-HS-
P02765
R.QPNCDDPETEEAALVAIDYINQNLPWGYK.H
0.63
0.61


glycoprotein
(FETUA_HUMAN)





preproprotein






alpha-2-HS-
P02765
K.HTLNQIDEVK.V
0.70
0.68


glycoprotein
(FETUA_HUMAN)





preproprotein






alpha-2-HS-
P02765
R.TVVQPSVGAAAGPVVPPCPGR.I
0.83
0.83


glycoprotein
(FETUA_HUMAN)





preproprotein






angiotensinogen
P01019
K.TGCSLMGASVDSTLAFNTYVHFQGK.M
0.75
0.67


preproprotein
(ANGT_HUMAN)





angiotensinogen
P01019
R.AAM*VGMLANFLGFR.I
0.65
0.63


preproprotein
(ANGT_HUMAN)





angiotensinogen
P01019
R.AAMVGMLANFLGFR.I
0.65
0.64


preproprotein
(ANGT_HUMAN)





angiotensinogen
P01019
R.AAM*VGM*LANFLGFR.I
0.65
0.65


preproprotein
(ANGT_HUMAN)





angiotensinogen
P01019
R.AAMVGM*LANFLGFR.I
0.65
0.74


preproprotein
(ANGT_HUMAN)





angiotensinogen
P01019
K.QPFVQGLALYTPVVLPR.S
0.60
0.74


preproprotein
(ANGT_HUMAN)





angiotensinogen
P01019
R.AAM*VGMLANFLGFR.I
0.64
0.63


preproprotein
(ANGT_HUMAN)





angiotensinogen
P01019
R.AAMVGMLANFLGFR.I
0.64
0.64


preproprotein
(ANGT_HUMAN)





angiotensinogen
P01019
R.AAM*VGM*LANFLGFR.I
0.64
0.65


preproprotein
(ANGT_HUMAN)





angiotensinogen
P01019
R.AAMVGM*LANFLGFR.I
0.64
0.74


preproprotein
(ANGT_HUMAN)





angiotensinogen
P01019
K.VLSALQAVQGLLVAQGR.A
0.74
0.77


preproprotein
(ANGT_HUMAN)





angiotensinogen
P01019
K.QPFVQGLALYTPVVLPR.S
0.75
0.74


preproprotein
(ANGT_HUMAN)





angiotensinogen
P01019
R.ADSQAQLLLSTVVGVFTAPGLHLK.Q
0.78
0.77


preproprotein
(ANGT_HUMAN)





antithrombin-III
P01008
R.ITDVIPSEAINELTVLVLVNTIYFK.G
0.78
0.78



(ANT3_HUMAN)





antithrombin-III
P01008
K.NDNDNIFLSPLSISTAFAMTK.L
0.87
0.83



(ANT3_HUMAN)





antithrombin-III
P01008
R.EVPLNTIIFMGR.V
0.69
0.62



(ANT3_HUMAN)





antithrombin-III
P01008
R.EVPLNTIIFM*GR.V
0.69
0.69



(ANT3_HUMAN)





antithrombin-III
P01008
R.VAEGTQVLELPFKGDDITM*VLILPKPEK.S
0.83
0.92



(ANT3_HUMAN)





antithrombin-III
P01008
R.VAEGTQVLELPFKGDDITMVLILPKPEK.S
0.83
0.96



(ANT3_HUMAN)





antithrombin-III
P01008
K.EQLQDMGLVDLFSPEK.S
0.85
0.86



(ANT3_HUMAN)





antithrombin-III
P01008
R.VAEGTQVLELPFKGDDITM*VLILPKPEK.S
0.94
0.92



(ANT3_HUMAN)





antithrombin-III
P01008
R.VAEGTQVLELPFKGDDITMVLILPKPEK.S
0.94
0.96



(ANT3_HUMAN)





antithrombin-III
P01008
R.EVPLNTIIFMGR.V
0.63
0.62



(ANT3_HUMAN)





antithrombin-III
P01008
R.EVPLNTIIFM*GR.V
0.63
0.69



(ANT3_HUMAN)





antithrombin-III
P01008
R.DIPMNPMCIYR.S
0.71
0.70



(ANT3_HUMAN)





apolipoprotein
P02652
K.EPCVESLVSQYFQTVTDYGK.D
0.83
0.83


A-IT
(APOA2_HUMAN)





preproprotein






apolipoprotein
P06727
K.SLAELGGHLDQQVEEFR.R
0.67
0.67


A-IV
(APOA4_HUMAN)





apolipoprotein
P06727
R.LAPLAEDVR.G
0.67
0.90


A-IV
(APOA4_HUMAN)





apolipoprotein
P06727
R.VLRENADSLQASLRPHADELK.A
0.79
0.63


A-IV
(APOA4_HUMAN)





apolipoprotein
P06727
R.SLAPYAQDTQEKLNHQLEGLTFQMK.K
0.90
0.65


A-IV
(APOA4_HUMAN)





apolipoprotein
P06727
R.SLAPYAQDTQEKLNHQLEGLTFQM*K.K
0.90
0.69


A-IV
(APOA4_HUMAN)





apolipoprotein
P06727
K.LGPHAGDVEGHLSFLEK.D
0.63
0.73


A-IV
(APOA4_HUMAN)





apolipoprotein
P06727
K.SELTQQLNALFQDKLGEVNTYAGDLQK.K
0.68
0.68


A-IV
(APOA4_HUMAN)





apolipoprotein
P06727
R.SLAPYAQDTQEKLNHQLEGLTFQMK.K
0.71
0.65


A-IV
(APOA4_HUMAN)





apolipoprotein
P06727
R.SLAPYAQDTQEKLNHQLEGLTFQM*K.K
0.71
0.69


A-IV
(APOA4_HUMAN)





apolipoprotein
P06727
R.LLPHANEVSQK.I
0.62
0.79


A-IV
(APOA4_HUMAN)





apolipoprotein
P06727
K.SLAELGGHLDQQVEEFRR.R
0.67
0.69


A-IV
(APOA4_HUMAN)





apolipoprotein
P06727
K.SELTQQLNALFQDK.L
0.68
0.62


A-IV
(APOA4_HUMAN)





apolipoprotein
P04114
K.GFEPTLEALFGK.Q
0.73
0.76


B-100
(APOB_HUMAN)





apolipoprotein
P04114
K.ALYWVNGQVPDGVSK.V
0.78
0.67


B-100
(APOB_HUMAN)





apolipoprotein
P04114
K.FIIPSPK.R
0.90
0.90


B-100
(APOB_HUMAN)





apolipoprotein
P04114
R.TPALHFK.S
0.68
0.81


B-100
(APOB_HUMAN)





apolipoprotein
P04114
K.TEVIPPLIENR.Q
0.62
0.64


B-100
(APOB_HUMAN)





apolipoprotein
P04114
R.NLQNNAEWVYQGAIR.Q
0.65
0.60


B-100
(APOB_HUMAN)





apolipoprotein
P04114
K.LPQQANDYLNSFNWER.Q
0.65
0.62


B-100
(APOB_HUMAN)





apolipoprotein
P04114
R.LAAYLMLMR.S
0.60
0.73


B-100
(APOB_HUMAN)





apolipoprotein
P04114
R.VIGNMGQTMEQLTPELK.S
0.68
0.67


B-100
(APOB_HUMAN)





apolipoprotein
P04114
K.LIVAMSSWLQK.A
0.74
0.86


B-100
(APOB_HUMAN)





apolipoprotein
P04114
R.TSSFALNLPTLPEVK.F
0.79
0.70


B-100
(APOB_HUMAN)





apolipoprotein
P04114
K.IADFELPTIIVPEQTIEIPSIK.F
0.62
0.61


B-100
(APOB_HUMAN)





apolipoprotein
P04114
K.IEGNLIFDPNNYLPK.E
0.63
0.62


B-100
(APOB_HUMAN)





apolipoprotein
P04114
R.TSSFALNLPTLPEVKFPEVDVLTK.Y
0.66
0.72


B-100
(APOB_HUMAN)





apolipoprotein
P04114
R.LELELRPTGEIEQYSVSATYELQR.E
0.78
0.78


B-100
(APOB_HUMAN)





apolipoprotein
P02655
K.STAAMSTYTGIFTDQVLSVLK.G
0.73
0.73


C-II
(APOC2_HUMAN)





apolipoprotein
P02656
R.GWVTDGFSSLKDYWSTVKDK.F
1.00
1.00


C-III
(APOC3_HUMAN)





apolipoprotein E
P02649
R.WELALGR.F
0.60
0.63



(APOE_HUMAN)





apolipoprotein E
P02649
R.LAVYQAGAR.E
0.61
0.64



(APOE_HUMAN)





apolipoprotein E
P02649
K.SWFEPLVEDMQR.Q
0.83
0.73



(APOE_HUMAN)





apolipoprotein E
P02649
R.AATVGSLAGQPLQER.A
0.67
0.67



(APOE_HUMAN)





apolipoprotein(a)
P08519
R.TPEYYPNAGLIMNYCR.N
0.72
0.61



(APOA_HUMAN)





beta-2-
P02749
K.TFYEPGEEITYSCKPGYVSR.G
0.66
0.76


glycoprotein 1
(APOH_HUMAN)





beta-2-
P02749
K.FICPLTGLWPINTLK.C
0.72
0.70


glycoprotein 1
(APOH_HUMAN)





bone marrow
P13727
R.SLQTFSQAWFTCR.R
0.82
0.72


proteoglycan
(PRG2_HUMAN)





ceruloplasmin
P00450
K.HYYIGIIETTWDYASDHGEKK.L
0.78
0.89



(CERU_HUMAN)





ceruloplasmin
P00450
R.EYTDASFTNRK.E
0.63
0.63



(CERU_HUMAN)





ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPMK.I
0.66
0.68



(CERU_HUMAN)





ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPM*K.I
0.66
0.76



(CERU_HUMAN)





ceruloplasmin
P00450
R.SGAGTEDSACIPWAYYSTVDQVKDLYSGLIGPLIVCR.
0.95
0.95



(CERU_HUMAN)
R




ceruloplasmin
P00450
R.KAEEEHLGILGPQLHADVGDKVK.I
0.85
0.77



(CERU_HUMAN)





ceruloplasmin
P00450
K.EVGPTNADPVCLAK.M
0.62
0.77



(CERU_HUMAN)





ceruloplasmin
P00450
R.MYSVNGYTFGSLPGLSMCAEDR.V
0.63
0.71



(CERU_HUMAN)





ceruloplasmin
P00450
K.DIASGLIGPLIICK.K
0.63
0.66



(CERU_HUMAN)





ceruloplasmin
P00450
R.QKDVDKEFYLFPTVFDENESLLLEDNIR.M
0.64
0.66



(CERU_HUMAN)





ceruloplasmin
P00450
R.GPEEEHLGILGPVIWAEVGDTIR.V
0.65
0.61



(CERU_HUMAN)





ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPMK.I
0.67
0.68



(CERU_HUMAN)





ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPM*K.I
0.67
0.76



(CERU_HUMAN)





ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPMK.I
0.67
0.68



(CERU_HUMAN)





ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPM*K.I
0.67
0.76



(CERU_HUMAN)





ceruloplasmin
P00450
K.GAYPLSIEPIGVR.F
0.67
0.63



(CERU_HUMAN)





ceruloplasmin
P00450
R.GVYS SDVFDIFPGTYQTLEM*FPR.T
0.67
0.67



(CERU_HUMAN)





ceruloplasmin
P00450
K.DIASGLIGPLIICKK.D
0.67
0.73



(CERU_HUMAN)





ceruloplasmin
P00450
R.SGAGTEDSACIPWAYYSTVDQVK.D
0.70
0.70



(CERU_HUMAN)





ceruloplasmin
P00450
R.IYHSHIDAPK.D
0.77
0.76



(CERU_HUMAN)





ceruloplasmin
P00450
R.ADDKVYPGEQYTYMLLATEEQSPGEGDGNCVTR.I
0.77
0.80



(CERU_HUMAN)





ceruloplasmin
P00450
K.DLYSGLIGPLIVCR.R
0.78
0.82



(CERU_HUMAN)





ceruloplasmin
P00450
R.TTIEKPVWLGFLGPIIK.A
0.88
0.85



(CERU_HUMAN)





cholinesterase
P06276
K.IFFPGVSEFGK.E
0.87
0.76



(CHLE_HUMAN)





cholinesterase
P06276
R.AILQSGSFNAPWAVTSLYEAR.N
1.00
0.83



(CHLE_HUMAN)





coagulation
P00748
R.LHEAFSPVSYQHDLALLR.L
0.72
0.76


factor XII
(FA12_HUMAN)





coagulation
P05160
R.GDTYPAELYITGSILR.M
0.67
0.83


factor XIII B
(F13B_HUMAN)





chain






coagulation
P05160
K.VLHGDLIDFVCK.Q
0.69
0.60


factor XIII B
(F13B_HUMAN)





chain






complement C1r
P00736
K.LVFQQFDLEPSEGCFYDYVK.I
0.69
0.66


subcomponent
(C1R_HUMAN)





complement C1s
P09871
R.VKNYVDWIMK.T
0.69
0.60


subcomponent
(C1S_HUMAN)





complement C1s
P09871
K.SNALDIIFQTDLTGQK.K
0.75
0.70


subcomponent
(C1S_HUMAN)





complement C2
P06681
R.DFHINLFR.M
0.75
0.72



(CO2_HUMAN)





complement C2
P06681
R.GALISDQWVLTAAHCFR.
0.60
0.75



(CO2_HUMAN)
D




complement C2
P06681
K.KNQGILEFYGDDIALLK.
0.62
0.67



(CO2_HUMAN)
L




complement C3
P01024
R.IHWESASLLR.S
0.80
0.77



(CO3_HUMAN)





complement C4-
P0C0L5
R.VHYTVCIWR.N
0.67
0.65


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
K.AEMADQAAAWLTR.Q
0.78
0.89


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
K.M*RPSTDTITVMVENSHGLR.V
0.65
0.65


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
K.MRPSTDTITVMVENSHGLR.V
0.65
0.72


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
R.VQQPDCREPFLSCCQFAESLRK.K
0.67
0.60


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
K.LVNGQSHISLSK.A
0.73
0.73


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
R.GQIVFMNREPK.R
0.80
0.62


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
K.VGLSGM*AIADVTLLSGFHALR.A
0.80
0.80


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
K.VGLSGMAIADVTLLSGFHALR.A
0.80
0.83


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
R.GHLFLQTDQPIYNPGQR.V
0.70
0.68


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
K.M*RPSTDTITVMVENSHGLR.V
0.75
0.65


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
K.MRPSTDTITVMVENSHGLR.V
0.75
0.72


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
K.SHALQLNNR.Q
0.76
0.70


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
R.YVSHFETEGPHVLLYFDSVPTSR.E
0.88
0.89


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
R.GSSTWLTAFVLK.V
0.61
0.72


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
R.YIYGKPVQGVAYVR.F
0.63
0.73


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
K.SCGLHQLLR.G
0.65
0.65


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
R.GPEVQLVAHSPWLK.D
0.69
0.73


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
R.KKEVYM*PSSIFQDDFVIPDISEPGTWK.I
0.70
0.67


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
R.KKEVYMPSSIFQDDFVIPDISEPGTWK.I
0.70
0.69


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
R.VQQPDCREPFLSCCQFAESLR.K
0.76
0.74


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
K.VGLSGM*AIADVTLLSGFHALR.A
0.80
0.80


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
K.VGLSGMAIADVTLLSGFHALR.A
0.80
0.83


B-like
(CO4B_HUMAN)





preproprotein






complement C4-
P0C0L5
K.ASAGLLGAHAAAITAYALTLTK.A
0.85
0.83


B-like
(CO4B_HUMAN)





preproprotein






complement C5
P01031
K.ITHYNYLILSK.G
0.73
0.73


preproprotein
(CO5_HUMAN)





complement C5
P01031
R.KAFDICPLVK.I
0.83
0.87


preproprotein
(CO5_HUMAN)





complement C5
P01031
R.IPLDLVPK.T
0.90
0.63


preproprotein
(CO5_HUMAN)





complement C5
P01031
R.MVETTAYALLTSLNLKDINYVNPVIK.W
0.92
0.75


preproprotein
(CO5_HUMAN)





complement C5
P01031
K.ALLVGEHLNIIVTPK.S
1.00
0.87


preproprotein
(CO5_HUMAN)





complement C5
P01031
K.LKEGMLSIMSYR.N
0.62
0.75


preproprotein
(CO5_HUMAN)





complement C5
P01031
R.YIYPLDSLTWIEYWPR.D
0.70
0.69


preproprotein
(CO5_HUMAN)





complement C5
P01031
K.GGSASTWLTAFALR.V
0.63
0.83


preproprotein
(CO5_HUMAN)





complement C5
P01031
R.YGGGFYSTQDTINAIEGLTEYSLLVK.Q
0.73
0.74


preproprotein
(CO5_HUMAN)





complement
P13671
K.AKDLHLSDVFLK.A
0.63
0.62


component C6
(CO6_HUMAN)





complement
P13671
K.ALNHLPLEYNSALYSR.I
0.60
0.62


component C6
(CO6_HUMAN)





complement
P10643
R.LSGNVLSYTFQVK.I
0.71
0.63


component C7
(CO7_HUMAN)





complement
P07357
R.KDDIMLDEGMLQSLMELPDQYNYGMYAK.F
0.78
0.89


component C8
(CO8A_HUMAN)





alpha chain






complement
P07358
R.DFGTHYITEAVLGGIYEYTLVMNK.E
0.80
0.73


component C8
(CO8B_HUMAN)





beta chain






preproprotein






complement
P07358
R.DTMVEDLVVLVR.G
0.88
0.76


component C8
(CO8B_HUMAN)





beta chain






preproprotein






complement
P07358
R.YYAGGCSPHYILNTR.F
0.70
0.71


component C8
(CO8B_HUMAN)





beta chain






preproprotein






complement
P07360
R.SLPVSDSVLSGFEQR.V
0.79
0.81


component C8
(CO8G_HUMAN)





gamma chain






complement
P07360
R.VQEAHLTEDQIFYFPK.Y
0.98
0.84


component C8
(CO8G_HUMAN)





gamma chain






complement
P02748
R.TAGYGINILGMDPLSTPFDNEFYNGLCNR.D
0.62
0.64


component C9
(CO9_HUMAN)





complement
P02748
R.RPWNVASLIYETK.G
0.60
0.74


component C9
(CO9_HUMAN)





complement
P02748
R.AIEDYINEFSVRK.C
0.67
0.67


component C9
(CO9_HUMAN)





complement
P02748
R.AIEDYINEFSVR.K
0.77
0.79


component C9
(CO9_HUMAN)





complement
P00751
R.LEDSVTYHCSR.G
0.60
0.60


factor B
(CFAB_HUMAN)





preproprotein






complement
P00751
R.FIQVGVISWGVVDVCK.N
0.67
0.79


factor B
(CFAB_HUMAN)





preproprotein






complement
P00751
R.DFHINLFQVLPWLK.E
0.78
0.76


factor B
(CFAB_HUMAN)





preproprotein






complement
P00751
K.YGQTIRPICLPCTEGTTR.
0.60
0.70


factor B
(CFAB_HUMAN)
A




preproprotein






complement
P00751
R.LLQEGQALEYVCPSGFYPYPVQTR.T
0.74
0.74


factor B
(CFAB_HUMAN)





preproprotein






complement
P08603
R.RPYFPVAVGK.Y
0.67
0.70


factor H
(CFAH_HUMAN)





complement
P08603
K.CTSTGWIPAPR.C
0.70
0.66


factor H
(CFAH_HUMAN)





complement
P08603
K.CLHPCVISR.E
0.94
0.64


factor H
(CFAH_HUMAN)





complement
P08603
R.EIMENYNIALR.W
0.67
0.71


factor H
(CFAH_HUMAN)





complement
P08603
K.CLHPCVISR.E
0.75
0.64


factor H
(CFAH_HUMAN)





complement
P08603
K.AVYTCNEGYQLLGEINYR.E
0.73
0.62


factor H
(CFAH_HUMAN)





complement
P08603
R.SITCIFIGVWTQLPQCVAIDK.L
0.61
0.61


factor H
(CFAH_HUMAN)





complement
P08603
R.WQSIPLCVEK.I
0.65
0.65


factor H
(CFAH_HUMAN)





complement
P08603
K.TDCLSLPSFENAIPMGEK.K
0.74
0.77


factor H
(CFAH_HUMAN)





complement
P08603
K.CFEGFGIDGPAIAK.C
0.76
0.69


factor H
(CFAH_HUMAN)





complement
P08603
K.CFEGFGIDGPAIAK.C
0.83
0.69


factor H
(CFAH_HUMAN)





complement
P08603
K.IDVHLVPDR.K
0.61
0.67


factor H
(CFAH_HUMAN)





complement
P08603
K.SSNLIILEEHLK.N
0.77
0.69


factor H
(CFAH_HUMAN)





complement
P05156
R.AQLGDLPWQVAIK.D
0.66
0.69


factor I
(CFAI_HUMAN)





preproprotein






complement
P05156
R.VFSLQWGEVK.L
0.69
0.77


factor I
(CFAI_HUMAN)





preproprotein






corticosteroid-
P08185
R.WSAGLTSSQVDLYIPK.V
0.63
0.61


binding globulin
(CBG_HUMAN)





fibrinogen alpha
P02671
K.TFPGFFSPMLGEFVSETESR.G
0.80
0.78


chain
(FIBA_HUMAN)





gelsolin
P06396
R.IEGSNKVPVDPATYGQFYGGDSYIILYNYR.H
0.78
0.78



(GELS_HUMAN)





gelsolin
P06396
R.AQPVQVAEGSEPDGFWEALGGK.A
0.62
0.65



(GELS_HUMAN)





gelsolin
P06396
K.TPSAAYLWVGTGASEAEKTGAQELLR.V
0.78
0.78



(GELS_HUMAN)





gelsolin
P06396
R.VEKFDLVPVPTNLYGDFFTGDAYVILK.T
0.61
0.63



(GELS_HUMAN)





gelsolin
P06396
R.EVQGFESATFLGYFK.S
0.87
0.88



(GELS_HUMAN)





gelsolin
P06396
K.NWRDPDQTDGLGLSYLSSHIANVER.V
0.89
0.89



(GELS_HUMAN)





gelsolin
P06396
K.TPSAAYLWVGTGASEAEK.T
0.87
0.77



(GELS_HUMAN)





glutathione
P22352
K.FLVGPDGIPIIVIR.W
0.85
0.77


peroxidase 3
(GPX3_HUMAN)





hemopexin
P02790
R.LEKEVGTPHGIILDSVDAAFICPGSSR.L
0.93
0.74



(HEMO_HUMAN)





hemopexin
P02790
R.WKNFPSPVDAAFR.Q
0.64
0.82



(HEMO_HUMAN)





hemopexin
P02790
R.GECQAEGVLFFQGDREWFWDLATGTMK.E
0.60
0.64



(HEMO_HUMAN)





hemopexin
P02790
R.GECQAEGVLFFQGDREWFWDLATGTM*K.E
0.60
0.83



(HEMO_HUMAN)





hemopexin
P02790
R.GECQAEGVLFFQGDREWFWDLATGTMK.E
0.93
0.64



(HEMO_HUMAN)





hemopexin
P02790
R.GECQAEGVLFFQGDREWFWDLATGTM*K.E
0.93
0.83



(HEMO_HUMAN)





hemopexin
P02790
K.EVGTPHGIILDSVDAAFICPGSSR.L
0.62
0.69



(HEMO_HUMAN)





hemopexin
P02790
R.LWWLDLK.S
0.64
0.64



(HEMO_HUMAN)





hemopexin
P02790
K.NFPSPVDAAFR.Q
0.65
0.72



(HEMO_HUMAN)





hemopexin
P02790
R.EWFWDLATGTMK.E
0.68
0.65



(HEMO_HUMAN)





hemopexin
P02790
K.GGYTLVSGYPK.R
0.69
0.65



(HEMO_HUMAN)





hemopexin
P02790
K.LYLVQGTQVYVFLTK.G
0.69
0.76



(HEMO_HUMAN)





heparin cofactor
P05546
R.EYYFAEAQIADFSDPAFISK.T
0.80
0.78


2
(HEP2_HUMAN)





heparin cofactor
P05546
K.QFPILLDFK.T
0.62
1.00


2
(HEP2 HUMAN)





heparin cofactor
P05546
K.QFPILLDFK.T
0.64
1.00


2
(HEP2 HUMAN)





heparin cofactor
P05546
K.FAFNLYR.V
0.70
0.60


2
(HEP2 HUMAN)





histidine-rich
P04196
R.DGYLFQLLR.I
0.65
0.65


glycoprotein
(HRG HUMAN)





insulin-like
P35858
R.SFEGLGQLEVLTLDHNQLQEVK.A
0.75
0.83


growth factor-
(ALS_HUMAN)





binding protein






complex acid






labile subunit






insulin-like
P35858
R.TFTPQPPGLER.L
0.75
0.60


growth factor-
(ALS_HUMAN)





binding protein






complex acid






labile subunit






insulin-like
P35858
R.AFWLDVSHNR.L
0.77
0.75


growth factor-
(ALS_HUMAN)





binding protein






complex acid






labile subunit






insulin-like
P35858
R.LAELPADALGPLQR.A
0.66
0.64


growth factor-
(ALS_HUMAN)





binding protein






complex acid






labile subunit






insulin-like
P35858
R.LEALPNSLLAPLGR.L
0.70
0.67


growth factor-
(ALS_HUMAN)





binding protein






complex acid






labile subunit






insulin-like
P35858
R.NLIAAVAPGAFLGLK.A
0.70
0.68


growth factor-
(ALS_HUMAN)





binding protein






complex acid






labile subunit






inter-alpha-
P19827
R.QAVDTAVDGVFIR.S
0.60
0.64


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1






inter-alpha-
P19827
K.TAFISDFAVTADGNAFIGDIK.D
0.81
0.86


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1






inter-alpha-
P19827
R.GHMLENHVER.L
0.63
0.61


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1






inter-alpha-
P19827
R.GHM*LENHVER.L
0.63
0.70


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1






inter-alpha-
P19827
K.TAFISDFAVTADGNAFIG
0.75
0.60


trypsin inhibitor
DIKDKVTAWK.Q





heavy chain H1
(ITIH1_HUMAN)





inter-alpha-
P19827
R.GIEILNQVQESLPELSNHASILIMLTDGDPTEGVTDR.
0.80
0.80


trypsin inhibitor
(ITIH1_HUMAN)
S




heavy chain H1






inter-alpha-
P19827
K.ILGDM*QPGDYFDLVLFGTR.V
0.85
0.79


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1






inter-alpha-
P19827
K.LDAQASFLPK.E
0.88
0.75


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1






inter-alpha-
P19827
R.GFSLDEATNLNGGLLR.G
0.80
0.80


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1






inter-alpha-
P19827
K.TAFISDFAVTADGNAFIGDIKDK.V
0.93
0.96


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1






inter-alpha-
P19827
K.GSLVQASEANLQAAQDFVR.G
0.60
0.65


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1






inter-alpha-
P19827
R.GHMLENHVER.L
0.64
0.61


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1






inter-alpha-
P19827
R.GHM*LENHVER.L
0.64
0.70


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1






inter-alpha-
P19827
R.LWAYLTIQELLAK.R
0.72
0.74


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1






inter-alpha-
P19827
R.EVAFDLEIPK.T
0.78
0.62


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1






inter-alpha-
P19823
R.SILQMSLDHHIVTPLTSLVIENEAGDER.M
0.76
0.76


trypsin inhibitor
(ITIH2_HUMAN)





heavy chain H2






inter-alpha-
P19823
R.SILQM*SLDHHIVTPLTSLVIENEAGDER.M
0.76
0.80


trypsin inhibitor
(ITIH2_HUMAN)





heavy chain H2






inter-alpha-
P19823
R.SILQMSLDHHIVTPLTSLVIENEAGDER.M
0.77
0.76


trypsin inhibitor
(ITIH2_HUMAN)





heavy chain H2






inter-alpha-
P19823
R.SILQM*SLDHHIVTPLTSLVIENEAGDER.M
0.77
0.80


trypsin inhibitor
(ITIH2_HUMAN)





heavy chain H2






inter-alpha-
P19823
K.AGELEVFNGYFVHFFAPDNLDPIPK.N
0.79
0.76


trypsin inhibitor
(ITIH2_HUMAN)





heavy chain H2






inter-alpha-
P19823
R.ETAVDGELVVLYDVK.R
0.94
0.97


trypsin inhibitor
(ITIH2_HUMAN)





heavy chain H2






inter-alpha-
P19823
R.NVQFNYPHTSVTDVTQNNFHNYFGGSEIVVAGK.F
0.74
0.83


trypsin inhibitor
(ITIH2_HUMAN)





heavy chain H2






inter-alpha-
P19823
R.FLHVPDTFEGHFDGVPVISK.G
0.81
0.81


trypsin inhibitor
(ITIH2_HUMAN)





heavy chain H2






inter-alpha-
Q14624
K.YIFHNFM*ER.L
0.70
0.73


trypsin inhibitor
(ITIH4_HUMAN)





heavy chain H4






inter-alpha-
Q14624
R.SFAAGIQALGGTNINDAMLMAVQLLDSSNQEER.L
0.75
0.75


trypsin inhibitor
(ITIH4_HUMAN)





heavy chain H4






inter-alpha-
Q14624
R.NMEQFQVSVSVAPNAK.I
1.00
1.00


trypsin inhibitor
(ITIH4_HUMAN)





heavy chain H4






inter-alpha-
Q14624
R.VQGNDHSATR.E
0.85
0.86


trypsin inhibitor
(ITIH4_HUMAN)





heavy chain H4






inter-alpha-
Q14624
K.WKETLFSVMPGLK.M
0.66
0.69


trypsin inhibitor
(ITIH4_HUMAN)





heavy chain H4






inter-alpha-
Q14624
K.AGFSWIEVTFK.N
0.78
0.82


trypsin inhibitor
(ITIH4_HUMAN)





heavy chain H4






inter-alpha-
Q14624
R.DQFNLIVFSTEATQWRPSLVPASAENVNK.A
0.61
0.60


trypsin inhibitor
(ITIH4_HUMAN)





heavy chain H4






inter-alpha-
Q14624
R.LWAYLTIQQLLEQTVSASDADQQALR.N
0.66
0.66


trypsin inhibitor
(ITIH4_HUMAN)





heavy chain H4






kallistatin
P29622
K.FSISGSYVLDQILPR.L
0.79
0.72



(KAIN_HUMAN)





kininogen-1
P01042
K.AATGECTATVGKR.S
0.76
0.60



(KNG1_HUMAN)





kininogen-1
P01042
K.ENFLFLTPDCK.S
0.71
0.68



(KNG1_HUMAN)





kininogen-1
P01042
R.DIPTNSPELEETLTHTITK.L
0.65
0.64



(KNG1_HUMAN)





kininogen-1
P01042
K.IYPTVNCQPLGM*ISLMK.R
0.66
0.60



(KNG1_HUMAN)





kininogen-1
P01042
K.IYPTVNCQPLGMISLMK.R
0.66
0.62



(KNG1_HUMAN)





kininogen-1
P01042
K.IYPTVNCQPLGMISLM*K.R
0.66
0.63



(KNG1_HUMAN)





kininogen-1
P01042
R.IGEIKEETTSHLR.S
0.67
0.70



(KNG1_HUMAN)





kininogen-1
P01042
K.YNSQNQSNNQFVLYR.I
0.76
0.65



(KNG1_HUMAN)





kininogen-1
P01042
K.TVGSDTFYSFK.Y
0.78
0.77



(KNG1_HUMAN)





leucine-rich
P02750
R.DGFDISGNPWICDQNLSDLYR.W
0.73
0.73


alpha-2-
(A2GL_HUMAN)





glycoprotein






leucine-rich
P02750
R.NALTGLPPGLFQASATLDTLVLK.E
0.79
0.79


alpha-2-
(A2GL_HUMAN)





glycoprotein






leucine-rich
P02750
K.ALGHLDLSGNR.L
0.71
0.71


alpha-2-
(A2GL_HUMAN)





glycoprotein






leucine-rich
P02750
R.VAAGAFQGLR.Q
0.71
0.77


alpha-2-
(A2GL_HUMAN)





glycoprotein






lipopolysaccharide-
P18428
R.SPVTLLAAVMSLPEEHNK.M
0.65
0.61


binding
(LBP_HUMAN)





protein






lumican
P51884
K.SLEYLDLSFNQIAR.L
0.93
0.96



(LUM_HUMAN)





monocyte
P08571
R.LTVGAAQVPAQLLVGALR.V
0.68
0.63


differentiation
(CD14_HUMAN)





antigen CD14






N-
Q96PD5
R.EGKEYGVVLAPDGSTVAVEPLLAGLEAGLQGR.R
0.64
0.64


acetylmuramoyl-
(PGRP2_HUMAN)





L-alanine






amidase






N-
Q96PD5
K.EFTEAFLGCPAIHPR.C
0.63
0.62


acetylmuramoyl-
(PGRP2_HUMAN)





L-alanine






amidase






N-
Q96PD5
R.TDCPGDALFDLLR.T
0.88
0.86


acetylmuramoyl-
(PGRP2_HUMAN)





L-alanine






amidase






phosphatidylinos itol-
P80108
K.VAFLTVTLHQGGATR.M
0.63
0.65


glycan-
(PHLD_HUMAN)





specific






phospholipase D






pigment
P36955
R.ALYYDLISSPDIHGTYKELLDTVTAPQK.N
0.69
0.65


epithelium-
(PEDF_HUMAN)





derived factor






pigment
P36955
K.TVQAVLTVPK.L
0.72
0.62


epithelium-
(PEDF_HUMAN)





derived factor






pigment
P36955
R.LDLQEINNWVQAQMK.G
0.67
0.68


epithelium-
(PEDF_HUMAN)





derived factor






plasma kallikrein
P03952
R.LVGITSWGEGCAR.R
1.00
0.67


preproprotein
(KLKB1_HUMAN)





plasma protease
P05155
K.TNLESILSYPKDFTCVHQALK.G
0.83
0.83


C1 inhibitor
(IC1_HUMAN)





plasma protease
P05155
R.LVLLNAIYLSAK.W
0.64
0.61


C1 inhibitor
(IC1_HUMAN)





plasma protease
P05155
K.FQPTLLTLPR.I
0.86
0.77


C1 inhibitor
(IC1_HUMAN)





plasminogen
P00747
R.HSIFTPETNPR.A
0.66
0.64



(PLMN_HUMAN)





plasminogen
P00747
R.FVTWIEGVMR.N
0.65
0.74



(PLMN_HUMAN)





PREDICTED:
P0C0L4
R.GQIVFMNR.E
0.75
0.61


complement C4-
(CO4A_HUMAN)





A






PREDICTED:
P0C0L4
R.DSSTWLTAFVLK.V
0.65
0.67


complement C4-
(CO4A_HUMAN)





A






PREDICTED:
P0C0L4
R.YLDKTEQWSTLPPETK.D
0.70
0.60


complement C4-
(CO4A_HUMAN)





A






PREDICTED:
P0C0L4
R.DFALLSLQVPLK.D
0.78
0.62


complement C4-
(CO4A_HUMAN)





A






PREDICTED:
P0C0L4
R.TLEIPGNSDPNMIPDGDFNSYVR.V
0.74
0.78


complement C4-
(CO4A_HUMAN)





A






PREDICTED:
P0C0L4
R.EMSGSPASGIPVK.V
0.88
0.88


complement C4-
(CO4A_HUMAN)





A






PREDICTED:
P0C0L4
K.LHLETDSLALVALGALDTALYAAGSK.S
0.68
0.64


complement C4-
(CO4A_HUMAN)





A






PREDICTED:
P0C0L4
R.GCGEQTMIYLAPTLAASR.Y
0.71
0.67


complement C4-
(CO4A_HUMAN)





A






pregnancy zone
P20742
R.NELIPLIYLENPR.R
1.00
0.67


protein
(PZP_HUMAN)





pregnancy zone
P20742
K.LEAGINQLSFPLSSEPIQGSYR.V
1.00
0.73


protein
(PZP_HUMAN)





pregnancy zone
P20742
R.NQGNTWLTAFVLK.T
0.73
0.78


protein
(PZP_HUMAN)





pregnancy zone
P20742
R.AFQPFFVELTMPYSVIR.G
0.83
0.88


protein
(PZP_HUMAN)





pregnancy zone
P20742
R.IQHPFTVEEFVLPK.F
0.65
0.79


protein
(PZP_HUMAN)





pregnancy zone
P20742
K.ALLAYAFSLLGK.Q
0.69
0.74


protein
(PZP_HUMAN)





pregnancy-
P11464
R.TLFLLGVTK.Y
0.74
0.83


specific beta-1-
(PSG1_HUMAN)/





glycoprotein 1/
Q9UQ74





8/4
(PSG8_HUMAN)/






Q00888






(PSG4_HUMAN)





protein AMBP
P02760
R.TVAACNLPIVR.G
0.78
0.77


preproprotein
(AMBP_HUMAN)





protein AMBP
P02760
K.WYNLAIGSTCPWLK.K
0.80
0.80


preproprotein
(AMBP_HUMAN)





protein Z-
Q9UK55
K.LILVDYILFK.G
0.69
0.62


dependent
(ZPI_HUMAN)





protease inhibitor






prothrombin
P00734
R.KSPQELLCGASLISDR.W
0.63
0.65


preproprotein
(THRB_HUMAN)





prothrombin
P00734
R.TATSEYQTFFNPR.T
0.79
0.61


preproprotein
(THRB_HUMAN)





prothrombin
P00734
R.VTGWGNLKETWTANVGK.G
1.00
0.71


preproprotein
(THRB_HUMAN)





prothrombin
P00734
R.IVEGSDAEIGMSPWQVMLFR.K
0.65
0.61


preproprotein
(THRB_HUMAN)





prothrombin
P00734
K.HQDFNSAVQLVENFCR.N
0.65
0.64


preproprotein
(THRB_HUMAN)





prothrombin
P00734
R.IVEGSDAEIGM*SPWQVMLFR.K
0.65
0.80


preproprotein
(THRB_HUMAN)





prothrombin
P00734
R.IVEGSDAEIGMSPWQVM*LFR.K
0.65
1.00


preproprotein
(THRB_HUMAN)





prothrombin
P00734
R.RQECSIPVCGQDQVTVAMTPR.S
0.74
0.73


preproprotein
(THRB_HUMAN)





prothrombin
P00734
R.LAVTTHGLPCLAWASAQAK.A
0.76
0.80


preproprotein
(THRB_HUMAN)





prothrombin
P00734
K.GQPSVLQVVNLPIVERPVCK.D
0.76
0.67


preproprotein
(THRB_HUMAN)





retinol-binding
P02753
R.LLNLDGTCADSYSFVFSR.D
0.70
0.66


protein 4
(RET4_HUMAN)





sex hormone-
P04278
R.LFLGALPGEDSSTSFCLNGLWAQGQR.L
0.72
0.72


binding globulin
(SHBG_HUMAN)





sex hormone-
P04278
R.TWDPEGVIFYGDTNPKDDWFMLGLR.D
0.75
0.76


binding globulin
(SHBG_HUMAN)





sex hormone-
P04278
R.IALGGLLFPASNLR.L
0.62
0.72


binding globulin
(SHBG_HUMAN)





sex hormone-
P04278
K.VVLSSGSGPGLDLPLVLGLPLQLK.L
0.65
0.68


binding globulin
(SHBG_HUMAN)





thyroxine-
P05543
K.AVLHIGEK.G
0.64
0.75


binding globulin
(THBG_HUMAN)





thyroxine-
P05543
K.GWVDLFVPK.F
0.60
0.61


binding globulin
(THBG_HUMAN)





thyroxine-
P05543
K.FSISATYDLGATLLK.M
0.62
0.64


binding globulin
(THBG_HUMAN)





thyroxine-
P05543
R.SILFLGK.V
0.66
0.63


binding globulin
(THBG_HUMAN)





transforming
Q15582
R.LTLLAPLNSVFK.D
0.78
0.65


growth factor-
(BGH3_HUMAN)





beta-induced






protein ig-h3






vitamin D-
P02774
K.EYANQFMWEYSTNYGQAPLSLLVSYTK.S
0.67
0.64


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
K.EYANQFM*WEYSTNYGQAPLSLLVSYTK.S
0.67
0.67


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
K.ELPEHTVK.L
0.79
0.74


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
R.RTHLPEVFLSK.V
0.63
0.76


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
K.TAMDVFVCTYFMPAAQLPELPDVELPTNK.D
0.66
0.63


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
K.LPDATPTELAK.L
0.67
0.73


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
K.EYANQFMWEYSTNYGQAPLSLLVSYTK.S
0.65
0.64


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
K.EYANQFM*WEYSTNYGQAPLSLLVSYTK.S
0.65
0.67


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
K.ELSSFIDKGQELCADYSENTFTEYKK.K
0.71
0.73


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
K.EDFTSLSLVLYSR.K
0.71
0.75


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
K.HQPQEFPTYVEPTNDEICEAFRK.D
0.77
0.75


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
K.HQPQEFPTYVEPTNDEICEAFR.K
0.60
0.67


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
R.KFPSGTFEQVSQLVK.E
0.62
0.61


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
K.ELSSFIDKGQELCADYSENTFTEYK.K
0.64
0.64


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
K.EFSHLGKEDFTSLSLVLYSR.K
0.66
0.64


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
K.SYLSMVGSCCTSASPTVCFLK.E
0.68
0.77


binding protein
(VTDB_HUMAN)





vitronectin
P04004
R.IYISGMAPRPSLAK.K
0.63
0.66



(VTNC_HUMAN)





vitronectin
P04004
R.IYISGMAPRPSLAK.K
0.64
0.66



(VTNC_HUMAN)





vitronectin
P04004
K.LIRDVWGIEGPIDAAFTR.I
0.81
0.75



(VTNC_HUMAN)





von Willebrand
P04275
R.IGWPNAPILIQDFETLPR.E
0.67
0.67


factor
(VWF_HUMAN)





preproprotein





*= Oxidation of Methionine













TABLE 9







Preeclampsia: Additional peptides significant with AUC > 0.6 by Sequest


only










Protein description
Uniprot ID (name)
Peptide
S_AUC





afamin
P43652
R.LCFFYNKK.S
0.67



(AFAM_HUMAN)




afamin
P43652
R.RP CFE SLK.A
0.81



(AFAM_HUMAN)




afamin
P43652
R.IVQIYK.D
0.61



(AFAM_HUMAN)




afamin
P43652
R.FLVNLVK.L
0.60



(AFAM_HUMAN)




afamin
P43652
K.LPNNVLQEK.I
0.67



(AFAM_HUMAN)




alpha-1-
P01011
R.LYGSEAFATDFQDSAAAKK.
0.61


antichymotrypsin
(AACT_HUMAN)
L



alpha-1-
P01011
K.EQLSLLDRFTEDAKR.L
0.71


antichymotrypsin
(AACT_HUMAN)




alpha-1-
P01011
R.EIGELYLPK.F
0.68


antichymotrypsin
(AACT_HUMAN)




alpha-1-
P01011
R.WRDSLEFR.E
0.71


antichymotrypsin
(AACT_HUMAN)




alpha-1-
P01011
K.RLYGSEAFATDFQDSAAAK.
0.89


antichymotrypsin
(AACT_HUMAN)
K



alpha-1B-
P04217
R.FALVR.E
1.00


glycoprotein
(A1BG_HUMAN)




alpha-1B-
P04217
R.GVTFLLRR.E
0.67


glycoprotein
(A1BG_HUMAN)




alpha-1B-
P04217
R.RGEKELLVPR.S
0.71


glycoprotein
(A1BG_HUMAN)




alpha-1B-
P04217
K.ELLVPR.S
0.61


glycoprotein
(A1BG_HUMAN)




alpha-1B-
P04217
K.NGVAQEPVHLDSPAIK.H
0.64


glycoprotein
(A1BG_HUMAN)




alpha-2-antiplasmin
P08697
R.NKFDPSLTQR.D
0.60



(A2AP_HUMAN)




alpha-2-antiplasmin
P08697
R.QLTSGPNQEQVSPLTLLK.
0.67



(A2AP_HUMAN)
L



alpha-2-antiplasmin
P08697
K.HQM*DLVATLSQLGLQELFQAPDLR.G
0.67



(A2AP_HUMAN)




angiotensinogen
P01019
R.FM*QAVTGWK.T
0.60


preproprotein
(ANGT_HUMAN)




angiotensinogen
P01019
K.PKDPTFIPAPIQAK.T
0.83


preproprotein
(ANGT_HUMAN)




angiotensinogen
P01019
R.SLDFTELDVAAEK.I
0.60


preproprotein
(ANGT_HUMAN)




ankyrin repeat and
Q8NFD2
R.KNLVPR.D
1.00


protein kinase
(ANKK1_HUMAN)




domain-containing





protein 1





antithrombin-III
P01008
R.RVWELSK.A
0.68



(ANT3_HUMAN)




apolipoprotein A-IV
P06727
K.VKIDQTVEELRR.S
0.62



(APOA4_HUMAN)




apolipoprotein A-IV
P06727
K.DLRDKVNSFFSTFK.E
0.92



(APOA4_HUMAN)




apolipoprotein A-IV
P06727
K.LVPFATELHER.L
0.71



(APOA4_HUMAN)




apolipoprotein A-IV
P06727
R.RVEPYGENFNK.A
0.86



(APOA4_HUMAN)




apolipoprotein A-IV
P06727
K.VNSFFSTFK.E
0.87



(APOA4_HUMAN)




apolipoprotein B-
P04114
K.AVSM*PSFSILGSDVR.V
0.70


100
(APOB_HUMAN)




apolipoprotein B-
P04114
K.AVSNIPSFSILGSDVR.V
0.66


100
(APOB_HUMAN)




apolipoprotein B-
P04114
K.AVSNIPSFSILGSDVR.V
0.66


100
(APOB_HUMAN)




apolipoprotein B-
P04114
K.AVSM*PSFSILGSDVR.V
0.70


100
(APOB_HUMAN)




apolipoprotein B-
P04114
K.VNWEEEAASGLLTSLKDNVPK.A
0.60


100
(APOB_HUMAN)




apolipoprotein B-
P04114
R.DLKVEDIPLAR.I
0.70


100
(APOB_HUMAN)




apolipoprotein C-I
P02654
K.MREWFSETFQK.V
0.73



(APOC1_HUMAN)




apolipoprotein C-II
P02655
K.STAAMSTYTGIFTDQVLSVLKGEE.-
0.68



(APOC2_HUMAN)




apolipoprotein E
P02649
R.AKLEEQAQQIR.L
0.67



(APOE_HUMAN)




apolipoprotein E
P02649
R.FWDYLR.W
0.67



(APOE_HUMAN)




apolipoprotein E
P02649
R.LKSWFEPLVEDMQR.Q
0.65



(APOE_HUMAN)




beta-2-glycoprotein
P02749
K.VSFFCK.N
0.67


1
(APOH_HUMAN)




beta-2-glycoprotein
P02749
R.VCPFAGILENGAVR.Y
0.63


1
(APOH_HUMAN)




beta-2-
P61769
K.SNFLNCYVSGFHPSDIEVDLLK.N
0.60


microglobulin
(B2MG_HUMAN)




biotinidase
P43251
R.LSSGLVTAALYGR.L
1.00



(BTD_HUMAN)




carboxypeptidase
Q96IY4
K.IAWHVIR.N
0.90


B2 preproprotein
(CBPB2_HUMAN)




carboxypeptidase N
P22792
K.LSNNALSGLPQGVFGK.L
0.62


subunit 2
(CPN2_HUMAN)




carboxypeptidase N
P15169
R.DHLGFQVTWPDESK.A
0.93


subunit 2
(CBPN_HUMAN)




ceruloplasmin
P00450
K.VYVHLK.N
0.67



(CERU_HUMAN)




ceruloplasmin
P00450
K.LISVDTEHSNIYLQNGPDR.I
0.62



(CERU_HUMAN)




ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPM*K.I
0.76



(CERU_HUMAN)




ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPMK.I
0.68



(CERU_HUMAN)




ceruloplasmin
P00450
R.QKDVDKEFYLFPTVFDENESLLLEDNIR.M
0.66



(CERU_HUMAN)




ceruloplasmin
P00450
K.DVDKEFYLFPTVFDENESLLLEDNIR.M
0.60



(CERU_HUMAN)




ceruloplasmin
P00450
K.DIFTGLIGPMK.I
0.62



(CERU_HUMAN)




ceruloplasmin
P00450
R.SVPPSASHVAPTETFTYEWTVPK.E
0.66



(CERU_HUMAN)




ceruloplasmin
P00450
R.GVYSSDVFDIFPGTYQTLEM*FPR.T
0.67



(CERU_HUMAN)




ceruloplasmin
P00450
K.DIFTGLIGPMK.I
0.62



(CERU_HUMAN)




ceruloplasmin
P00450
K.VNKDDEEFIESNK.M
0.78



(CERU_HUMAN)




clusterin
P10909
R.KYNELLK.S
0.75


preproprotein
(CLUS_HUMAN)




coagulation factor
P00748
R.TTLSGAPCQPWASEATYR.N
0.64


XII
(FA12_HUMAN)




complement C1q
P02745
K.GHIYQGSEADSVFSGFLIFPSA.-
0.64


subcomponent
(C1QA_HUMAN)




subunit A





complement C1q
P02747
K.FQSVFTVTR.Q
0.65


subcomponent
(C1QC_HUMAN)




subunit C





complement C1r
P00736
R.WILTAAHTLYPK.E
0.68


subcomponent
(C1R_HUMAN)




complement C1r
P00736
K.VLNYVDWIKK.E
0.81


subcomponent
(C1R_HUMAN)




complement C1s
P09871
R.LPVAPLRK.C
0.63


subcomponent
(CIS_HUMAN)




complement C2
P06681
R.PICLPCTMEANLALR.R
0.78



(CO2_HUMAN)




complement C2
P06681
R.QHLGDVLNFLPL.-
0.70



(CO2_HUMAN)




complement C4-B-
P0C0L5
K.LGQYASPTAKR.C
0.89


like preproprotein
(CO4B_HUMAN)




complement C4-B-
P0C0L5
K.M*RPSTDTITVMVENSHGLR.V
0.65


like preproprotein
(CO4B_HUMAN)




complement C4-B-
P0C0L5
K.MRPSTDTITVMVENSHGLR.V
0.72


like preproprotein
(CO4B_HUMAN)




complement C5
P01031
K.EFPYRIPLDLVPK.T
0.67


preproprotein
(CO5_HUMAN)




complement C5
P01031
R.VFQFLEK.S
0.60


preproprotein
(CO5_HUMAN)




complement C5
P01031
R.MVETTAYALLTSLNLK.D
0.61


preproprotein
(CO5_HUMAN)




complement C5
P01031
R.ENSLYLTAFTVIGIR.K
0.81


preproprotein
(CO5_HUMAN)




complement
P07357
K.YNPVVIDFEMQPIHEVLR.H
0.62


component C8
(CO8A_HUMAN)




alpha chain





complement
P07358
K.IPGIFELGISSQSDR.G
0.61


component C8 beta
(CO8B_HUMAN)




chain preproprotein





complement
P07360
R.RPASPISTIQPK.A
0.71


component C8
(CO8G_HUMAN)




gamma chain





complement
P07360
R.FLQEQGHR.A
0.87


component C8
(CO8G_HUMAN)




gamma chain





complement factor
P00751
K.VSVGGEKR.D
0.60


B preproprotein
(CFAB_HUMAN)




complement factor
P00751
K.CLVNLIEK.V
0.69


B preproprotein
(CFAB_HUMAN)




complement factor
P00751
K.KDNEQHVFK.V
0.68


B preproprotein
(CFAB_HUMAN)




complement factor
P00751
K.ISVIRPSK.G
0.63


B preproprotein
(CFAB_HUMAN)




complement factor
P00751
K.KCLVNLIEK.V
0.63


B preproprotein
(CFAB_HUMAN)




complement factor
P00751
R.LPPTTTCQQQKEELLPAQDIK.A
0.64


B preproprotein
(CFAB_HUMAN)




complement factor
P00751
K.LQDEDLGFL.-
0.66


B preproprotein
(CFAB_HUMAN)




complement factor
P08603
K.SCDIPVFMNAR.T
0.60


H
(CFAH_HUMAN)




complement factor
P08603
K.HGGLYHENMR.R
0.75


H
(CFAH_HUMAN)




complement factor
P08603
K.IIYKENER.F
0.69


H
(CFAH_HUMAN)




complement factor I
P05156
K.RAQLGDLPWQVAIK.D
0.68


preproprotein
(CFAI_HUMAN)




conserved
Q9Y2V7
K.ISNLLK.F
0.71


oligomeric Golgi
(COG6_HUMAN)




complex subunit 6





isoform





cornulin
Q9UBG3
R.RYARTEGNCTALTR.G
0.81



(CRNN_HUMAN)




FERM domain-
Q9BZ67
R.VQLGPYQPGRPAACDLR.E
0.63


containing protein 8
(FRMD8_HUMAN)




gelsolin
P06396
R.VPEARPNSMVVEHPEFLK.A
0.61



(GELS_HUMAN)




gelsolin
P06396
K.AGKEPGLQIWR.V
0.70



(GELS_HUMAN)




glucose-induced
Q9NWU2
K.VWSEVNQAVLDYENRESTPK.L
0.83


degradation protein
(GID8_HUMAN)




8 homolog





hemK
Q9Y5R4
R.M*LWALLSGPGRRGSTR.G
0.61


methyltransferase
(HEMK1 HUMAN)




family member 1





hemopexin
P02790
R.ELISER.W
0.82



(HEMO_HUMAN)




hemopexin
P02790
R.DVRDYFM*PCPGR.G
0.70



(HEMO_HUMAN)




hemopexin
P02790
K.GDKVWVYPPEKK.E
0.71



(HEMO_HUMAN)




hemopexin
P02790
R.DVRDYFMPCPGR.G
0.60



(HEMO_HUMAN)




hemopexin
P02790
R.EWFWDLATGTMK.E
0.65



(HEMO_HUMAN)




hemopexin
P02790
R.YYCFQGNQFLR.F
0.68



(HEMO_HUMAN)




hemopexin
P02790
R.RLWWLDLK.S
0.65



(HEMO_HUMAN)




heparin cofactor 2
P05546
R.LNILNAK.F
0.75



(HEP2 HUMAN)




heparin cofactor 2
P05546
R.NFGYTLR.S
0.66



(HEP2 HUMAN)




histone deacetylase
Q8TEE9
K.LLPPPPIM*SARVLPR.P
0.63


complex subunit
(SAP25_HUMAN)




SAP25





hyaluronan-binding
Q14520
K.RPGVYTQVTK.F
0.68


protein 2
(HABP2_HUMAN)




hyaluronan-binding
Q14520
K.FLNWIK.A
0.62


protein 2
(HABP2_HUMAN)




immediate early
Q5T953
-.MECALDAQSLISISLRKIHSSR.T
0.93


response gene 5-like
(IER5L_HUMAN)




protein





inactive caspase-12
Q6UXS9
K.AGADTHGRLLQGNICNDAVTK.A
0.60



(CASPC_HUMAN)




insulin-like growth
P35858
K.ANVFVQLPR.L
0.62


factor-binding
(ALS_HUMAN)




protein complex





acid labile subunit





inter-alpha-trypsin
P19827
K.ELAAQTIKK.S
0.71


inhibitor heavy
(ITIH1_HUMAN)




chain H1





inter-alpha-trypsin
P19827
K.ILGDM*QPGDYFDLVLFGTR.V
0.79


inhibitor heavy
(ITIH1_HUMAN)




chain H1





inter-alpha-trypsin
P19827
K.VTFQLTYEEVLKR.N
0.70


inhibitor heavy
(ITIH1_HUMAN)




chain H1





inter-alpha-trypsin
P19827
R.TMEQFTIHLTVNPQSK.V
0.61


inhibitor heavy
(ITIH1_HUMAN)




chain H1





inter-alpha-trypsin
P19827
R.FAHYVVTSQVVNTANEAR.E
0.63


inhibitor heavy
(ITIH1_HUMAN)




chain H1





inter-alpha-trypsin
P19823
R.SSALDMENFRTEVNVLPGAK.V
0.89


inhibitor heavy
(ITIH2_HUMAN)




chain H2





inter-alpha-trypsin
P19823
K.MKQTVEAMK.T
0.93


inhibitor heavy
(ITIH2_HUMAN)




chain H2





inter-alpha-trypsin
P19823
R.IYLQPGR.L
0.66


inhibitor heavy
(ITIH2_HUMAN)




chain H2





inter-alpha-trypsin
P19823
K.HLEVDVWVIEPQGLR.F
0.61


inhibitor heavy
(ITIH2_HUMAN)




chain H2





inter-alpha-trypsin
P19823
K.FYNQVSTPLLR.N
0.89


inhibitor heavy
(ITIH2_HUMAN)




chain H2





inter-alpha-trypsin
P19823
R.KLGSYEHR.I
0.69


inhibitor heavy
(ITIH2_HUMAN)




chain H2





inter-alpha-trypsin
Q14624
K.GSEMVVAGK.L
1.00


inhibitor heavy
(ITIH4_HUMAN)




chain H4





inter-alpha-trypsin
Q14624
R.MNFRPGVLSSR.Q
0.72


inhibitor heavy
(ITIH4_HUMAN)




chain H4





inter-alpha-trypsin
Q14624
K.YIFHNFM*ER.L
0.73


inhibitor heavy
(ITIH4_HUMAN)




chain H4





inter-alpha-trypsin
Q14624
K.ETLFSVMPGLK.M
0.60


inhibitor heavy
(ITIH4_HUMAN)




chain H4





inter-alpha-trypsin
Q14624
R.FKPTLSQQQK.S
0.64


inhibitor heavy
(ITIH4_HUMAN)




chain H4





inter-alpha-trypsin
Q14624
K.WKETLFSVMPGLK.M
0.69


inhibitor heavy
(ITIH4_HUMAN)




chain H4





inter-alpha-trypsin
Q14624
R.RLGVYELLLK.V
0.65


inhibitor heavy
(ITIH4_HUMAN)




chain H4





inter-alpha-trypsin
Q14624
R.DTDRFSSHVGGTLGQFYQEVLWGSPAASDDGRR.T
0.69


inhibitor heavy
(ITIH4_HUMAN)




chain H4





inter-alpha-trypsin
Q14624
K.VRPQQLVK.H
0.62


inhibitor heavy
(ITIH4_HUMAN)




chain H4





inter-alpha-trypsin
Q14624
R.NVHSAGAAGSR.M
0.69


inhibitor heavy
(ITIH4_HUMAN)




chain H4





kallistatin
P29622
R.LGFTDLFSK.W
0.63



(KAIN_HUMAN)




kallistatin
P29622
R.VGSALFLSHNLK.F
0.62



(KAIN_HUMAN)




kininogen-1
P01042
R.VQVVAGKK.Y
0.68



(KNG1_HUMAN)




leucine-rich alpha-
P02750
R.LHLEGNKLQVLGK.D
0.75


2-glycoprotein
(A2GL_HUMAN)




lumican
P51884
R.FNALQYLR.L
0.77



(LUM_HUMAN)




m7GpppX
Q96C86
R.IVFENPDPSDGFVLIPDLK.W
0.94


diphosphatase
(DCPS_HUMAN)




MAGUK p55
Q8N3R9
K.ILEIEDLFSSLK.H
0.69


subfamily member
(NIPP5_HUMAN)




5





MBT domain-
Q05BQ5
K.WFDYLR.E
0.63


containing protein 1
(MBTD1_HUMAN)




obscurin
Q5VST9
R.CELQIRGLAVEDTGEYLCVCGQERTSATLTVR.A
0.73



(OBSCN_HUMAN)




olfactory receptor
Q8NH94
K.DMKQGLAKLM*HR.M
0.89


1L1
(OR1L1_HUMAN)




phosphatidylinositol-
P80108
K.GIVAAFYSGPSLSDKEK.L
0.79


glycan-specific
(PHLD_HUMAN)




phospholipase D





phosphatidylinositol-
P80108
R.TLLLVGSPTWK.N
0.65


glycan-specific
(PHLD_HUMAN)




phospholipase D





phosphatidylinositol-
P80108
R.WYVPVKDLLGIYEK.L
0.92


glycan-specific
(PHLD_HUMAN)




phospholipase D





pigment epithelium-
P36955
R.SSTSPTTNVLLSPLSVATALSALSLGAEQR.T
0.63


derived factor
(PEDF_HUMAN)




plasma protease C1
P05155
K.GVTSVSQIFHSPDLAIR.D
0.60


inhibitor
(IC1_HUMAN)




PREDICTED:
P0C0L4
R.DKGQAGLQR.A
0.67


complement C4-A
(CO4A_HUMAN)




PREDICTED:
P0C0L4
K.SHKPLNIVIGK.V
0.87


complement C4-A
(C04A_HUMAN)




PREDICTED:
P0C0L4
R.KKEVYM*PSSIFQDDFVIPDISEPGTWK.I
0.67


complement C4-A
(CO4A_HUMAN)




PREDICTED:
P0C0L4
R.FGLLDEDGKK.T
0.64


complement C4-A
(CO4A_HUMAN)




PREDICTED:
P0C0L4
R.KKEVYMPSSIFQDDFVIPDISEPGTWK.I
0.69


complement C4-A
(CO4A_HUMAN)




PREDICTED:
P0C0L4
K.GLCVATPVQLR.V
0.78


complement C4-A
(CO4A_HUMAN)




PREDICTED:
P0C0L4
R.YRVFALDQK.M
0.63


complement C4-A
(CO4A_HUMAN)




PREDICTED:
P0C0L4
K.AEFQDALEKLNMGITDLQGLR.L
0.60


complement C4-A
(CO4A_HUMAN)




PREDICTED:
P0C0L4
R.ECVGFEAVQEVPVGLVQPASATLYDYYNPERR.C
0.60


complement C4-A
(CO4A_HUMAN)




PREDICTED:
P0C0L4
K.AEFQDALEKLNMGITDLQGLR.L
0.60


complement C4-A
(CO4A_HUMAN)




PREDICTED:
P0C0L4
R.VTASDPLDTLGSEGALSPGGVASLLR.L
0.61


complement C4-A
(CO4A_HUMAN)




pregnancy zone
P20742
R.NELIPLIYLENPRR.N
0.60


protein
(PZP_HUMAN)




pregnancy zone
P20742
K.AVGYLITGYQR.Q
0.67


protein
(PZP_HUMAN)




protein AMBP
P02760
R.AFIQLWAFDAVK.G
0.70


preproprotein
(AMBP_HUMAN)




protein CBFA2T2
043439
R.LTEREWADEWKHLDHAL
0.61


(MTG8R_HUMAN)
NCIMEMVEK.T




protein NLRC3
Q7RTR2
K.ALM*DLLAGKGSQGSQA
0.83


(NLRC3_HUMAN)
PQALDR.T




prothrombin
P00734
R.TFGSGEADCGLRPLFEK.K
0.69


preproprotein
(THRB_HUMAN)




ras-related GTP-
Q7L523
K.ISNIIK.Q
0.68


binding protein A
(RRAGA_HUMAN)




retinol-binding
P02753
R.FSGTWYAMAK.K
0.64


protein 4
(RET4_HUMAN)




retinol-binding
P02753
R.LLNNWDVCADMVGTFTDTEDPAKFK.M
0.61


protein 4
(RET4_HUMAN)




retinol-binding
P02753
K.YWGVASFLQK.G
0.63


protein 4
(RET4_HUMAN)




serum amyloid P-
P02743
R.GYVIIKPLVWV.-
0.60


component
(SAMP_HUMAN)




sex hormone-
P04278
R.LPLVPALDGCLR.R
0.63


binding globulin
(SHBG_HUMAN)




spectrin beta chain,
Q13813
R.NELIRQEKLEQLAR.R
0.88


non-erythrocytic 1
(SPTN1_HUMAN)




TATA element
P82094
K.EELATRLNSSETADLLK.E
0.71


modulatory factor
(TMF1_HUMAN)




testicular haploid
P0DJG4
R.QCLLNRPFSDNSAR.D
0.67


expressed gene
(THEGL_HUMAN)




protein-like





thyroxine-binding
P05543
K.NALALFVLPK.E
0.61


globulin
(THBG_HUMAN)




thyroxine-binding
P05543
R.SFMLLILER.S
0.64


globulin
(THBG_HUMAN)




titin
Q8WZ42
K.TEPKAPEPISSK.P
0.89



(TITIN_HUMAN)




transthyretin
P02766
R.GSPAINVAVHVFR.K
0.61



(TTHY_HUMAN)




tripartite motif-
Q9C035
R.ELISDLEHRLQGSVM*ELLQGVDGVIK.R
0.92


containing protein 5
(TRIM5_HUMAN)




vitamin D-binding
P02774
K.TAMDVFVCTYFMPAAQLPELPDVELPTNKDVCDPGNTK.V
0.88


protein
(VTDB_HUMAN)




vitamin D-binding
P02774
K.VM*DKYTFELSR.R
0.70


protein
(VTDB_HUMAN)




vitamin D-binding
P02774
K.LAQKVPTADLEDVLPLAEDITNILSK.C
0.61


protein
(VTDB_HUMAN)




vitamin D-binding
P02774
K.SCESNSPFPVHPGTAECCTK.E
0.68


protein
(VTDB_HUMAN)




vitamin D-binding
P02774
R.KLCMAALK.H
0.71


protein
(VTDB_HUMAN)




vitamin D-binding
P02774
K.LCDNLSTK.N
0.60


protein
(VTDB_HUMAN)




vitamin D-binding
P02774
K.VM*DKYTFELSR.R
0.70


protein
(VTDB HUMAN)




vitronectin
P04004
R.IYISGM*APR.P
0.75



(VTNC_HUMAN)




vitronectin
P04004
R.ERVYFFK.G
0.67



(VTNC_HUMAN)




vitronectin
P04004
R.IYISGMAPR.P
0.81



(VTNC_HUMAN)




vitronectin
P04004
K.AVRPGYPK.L
0.63



(VTNC_HUMAN)




zinc finger protein
P52746
K.TRFLLR.T
0.67


142
(ZN142_HUMAN)





*= Oxidation of methionine













TABLE 10







Preeclampsia: Additional peptides significant with AUC > 0.6 by X!Tandem only










Protein description
Uniprot ID (name)
Peptide
XT_AUC





afamin
P43652
K.TYVPPPFSQDLFTFHADMCQSQNEELQR.K
0.76



(AFAM_HUMAN)


afamin
P43652
K.KSDVGFLPPFPTLDPEEK.C
0.62



(AFAM_HUMAN)


alpha-1-
P01011
R.GTHVDLGLASANVDFAFSLYK.Q
0.69


antichymotrypsin
(AACT_HUMAN)


alpha-1B-
P04217
K.SLPAPWLSM*APVSWITPGLK.T
0.67


glycoprotein
(A1BG_HUMAN)


alpha-1B-
P04217
K.SLPAPWLSM*APVSWITPGLK.T
0.67


glycoprotein
(A1BG_HUMAN)


alpha-1B-
P04217
R.C{circumflex over ( )}LAPLEGAR.F
0.62


glycoprotein
(A1BG_HUMAN)


alpha-2-antiplasmin
P08697
R.WFLLEQPEIQVAHFPFK.N
0.60



(A2AP_HUMAN)


alpha-2-antiplasmin
P08697
R.LCQDLGPGAFR.L
0.92



(A2AP_HUMAN)


alpha-2-antiplasmin
P08697
K.HQMDLVATLSQLGLQELFQAPDLR.G
0.67



(A2AP_HUMAN)


alpha-2-HS-
P02765
R.QLKEHAVEGDCDFQLLK.L
0.63


glycoprotein
(FETUA_HUMAN)


preproprotein


alpha-2-HS-
P02765
R.Q{circumflex over ( )}LKEHAVEGDCDFQLLK.L
0.65


glycoprotein
(FETUA_HUMAN)


preproprotein


alpha-2-HS-
P02765
K.C{circumflex over ( )}NLLAEK.Q
0.61


glycoprotein
(FETUA_HUMAN)


preproprotein


angiotensinogen
P01019
R.SLDFTELDVAAEKIDR F
0.62


preproprotein
(ANGT_HUMAN)


angiotensinogen
P01019
K.DPTFIPAPIQAK.T
0.78


preproprotein
(ANGT_HUMAN)


apolipoprotein A-II
P02652
K.EPCVESLVSQYFQTVTDYGKDLMEK.V
0.67


preproprotein
(APOA2_HUMAN)


apolipoprotein B-
P04114
K.FSVPAGIVIPSFQALTAR.F
0.66


100
(APOB_HUMAN)


apolipoprotein B-
P04114
K.EQHLFLPFSYK.N
0.90


100
(APOB_HUMAN)


apolipoprotein B-
P04114
R.GIISALLVPPETEEAK.Q
0.70


100
(APOB_HUMAN)


beta-2-glycoprotein
P02749
K.C{circumflex over ( )}FKEHSSLAFWK.T
0.70


1
(APOH_HUMAN)


beta-2-glycoprotein
P02749
K.EHSSLAFWK.T
0.62


1
(APOH_HUMAN)


ceruloplasmin
P00450
R.FNKNNEGTYYSPNYNPQSR.S
0.64



(CERU_HUMAN)


ceruloplasmin
P00450
K.HYYIGIIETTWDYASDHGEK.K
0.63



(CERU_HUMAN)


ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPM*K.I
0.66



(CERU_HUMAN)


ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPM*K.I
0.66



(CERU_HUMAN)


ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPMK.I
0.67



(CERU_HUMAN)


ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPMK.I
0.67



(CERU_HUMAN)


ceruloplasmin
P00450
K.MYYSAVDPTKDIFTGLIGPM*K.I
0.67



(CERU_HUMAN)


ceruloplasmin
P00450
K.MYYSAVDPTKDIFTGLIGPM*K.I
0.67



(CERU_HUMAN)


ceruloplasmin
P00450
R.GVYSSDVFDIFPGTYQTLEM*FPR.T
0.67



(CERU_HUMAN)


coagulation factor
P00748
R.VVGGLVALR.G
0.64


XII
(FA12_HUMAN)


complement C1q
P02745
K.KGHIYQGSEADSVFSGFLIFPSA.—
0.81


subcomponent
(C1QA_HUMAN)


subunit A


complement C1q
P02747
R.Q{circumflex over ( )}THQPPAPNSLIR.F
0.64


subcomponent
(C1QC_HUMAN)


subunit C


complement C1s
P09871
R.Q{circumflex over ( )}FGPYCGHGFPGPLNIETK.S
0.71


subcomponent
(C1S_HUMAN)


complement C2
P06681
R.QPYSYDFPEDVAPALGTSFSHMLGATNPTQK.T
0.63



(CO2_HUMAN)


complement C2
P06681
R.LLGMETMAWQEIR.H
0.70



(CO2_HUMAN)


complement C4-B-
P0C0L5
R.AVGSGATFSHYYYM*ILSR.G
0.67


like preproprotein
(CO4B_HUMAN)


complement C4-B-
P0C0L5
R.FGLLDEDGKKTFFR.G
0.61


like preproprotein
(CO4B_HUMAN)


complement C4-B-
P0C0L5
K.ITQVLHFTK.D
0.67


like preproprotein
(CO4B_HUMAN)


complement C4-B-
P0C0L5
K.M*RPSTDTITVM*VENSHGLR.V
0.65


like preproprotein
(CO4B_HUMAN)


complement C4-B-
P0C0L5
K.M*RPSTDTITVM*VENSHGLR.V
0.75


like preproprotein
(CO4B_HUMAN)


complement C5
P01031
R.IVACASYKPSR.E
0.67


preproprotein
(CO5_HUMAN)


complement C5
P01031
R.SYFPESWLWEVHLVPR.R
0.60


preproprotein
(CO5_HUMAN)


complement C5
P01031
K.Q{circumflex over ( )}LPGGQNPVSYVYLEVVSK.H
0.74


preproprotein
(CO5_HUMAN)


complement C5
P01031
K.TLLPVSKPEIR.S
0.78


preproprotein
(CO5_HUMAN)


complement
P07358
R.GGASEHITTLAYQELPTADLMQEWGDAVQYNPAIIK.V
0.60


component C8 beta
(CO8B_HUMAN)


chain preproprotein


complement factor
P00751
K.GTDYHKQPWQAK.I
0.89


B preproprotein
(CFAB_HUMAN)


complement factor
P00751
K.VKDISEVVTPR.F
0.64


B preproprotein
(CFAB_HUMAN)


complement factor
P00751
K.QVPAHAR.D
0.63


B preproprotein
(CFAB_HUMAN)


complement factor
P00751
R.GDSGGPLIVHKR.S
0.79


B preproprotein
(CFAB_HUMAN)


complement factor
P00751
R.FLCTGGVSPYADPNTCR.G
0.71


B preproprotein
(CFAB_HUMAN)


complement factor
P00751
K.KEAGIPEFYDYDVALIK.L
0.74


B preproprotein
(CFAB_HUMAN)


complement factor
P00751
R.YGLVTYATYPK.I
0.88


B preproprotein
(CFAB_HUMAN)


complement factor
P08603
K.EFDHNSNIR.Y
1.00


H
(CFAH_HUMAN)


complement factor
P08603
K.WSSPPQCEGLPCK.S
0.71


H
(CFAH_HUMAN)


complement factor
P08603
R.KGEWVALNPLR.K
0.67


H
(CFAH_HUMAN)


complement factor I
P05156
K.SLECLHPGTK.F
0.60


preproprotein
(CFAI_HUMAN)


corticosteroid-
P08185
R.GLASANVDFAFSLYK.H
0.62


binding globulin
(CBG_HUMAN)


fetuin-B
Q9UGM5
K.LVVLPFPK.E
0.74



(FETUB_HUMAN)


fetuin-B
Q9UGM5
R.ASSQWVVGPSYFVEYLIK.E
0.61



(FETUB_HUMAN)


ficolin-3
O75636
R.LLGEVDHYQLALGK.F
0.61



(FCN3_HUMAN)


gelsolin
P06396
K.QTQVSVLPEGGETPLFK.Q
0.69



(GELS_HUMAN)


hemopexin
P02790
K.VDGALCMEK.S
0.60



(HEMO_HUMAN)


hemopexin
P02790
K.SGAQATWTELPWPHEKVDGALCM*EK.S
0.66



(HEMO_HUMAN)


hemopexin
P02790
K.SGAQATWTELPWPHEKVDGALCM*EK.S
0.66



(HEMO_HUMAN)


hemopexin
P02790
R.EWFWDLATGTMK.E
0.68



(HEMO_HUMAN)


hemopexin
P02790
R.Q{circumflex over ( )}GHNSVFLIK.G
0.67



(HEMO_HUMAN)


heparin cofactor 2
P05546
K.TLEAQLTPR.V
0.67



(HEP2_HUMAN)


histidine-rich
P04196
K.DSPVLIDFFEDTER.Y
0.60


glycoprotein
(HRG_HUMAN)


insulin-like growth
P35858
K.ALRDFALQNPSAVPR.F
0.89


factor-binding
(ALS_HUMAN)


protein complex


acid labile subunit


insulin-like growth
P35858
R.LWLEGNPWDCGCPLK.A
0.60


factor-binding
(ALS_HUMAN)


protein complex


acid labile subunit


inter-alpha-trypsin
P19827
K.ILGDM*QPGDYFDLVLFGTR.V
0.85


inhibitor heavy
(ITIH1_HUMAN)


chain H1


inter-alpha-trypsin
P19823
R.SSALDMENFR.T
0.63


inhibitor heavy
(ITIH2_HUMAN)


chain H2


inter-alpha-trypsin
P19823
R.SLAPTAAAK.R
0.83


inhibitor heavy
(ITIH2_HUMAN)


chain H2


inter-alpha-trypsin
P19823
R.LSNENHGIAQR.I
0.76


inhibitor heavy
(ITIH2_HUMAN)


chain H2


inter-alpha-trypsin
P19823
R.IYGNQDTSSQLKK.F
0.63


inhibitor heavy
(ITIH2_HUMAN)


chain H2


inter-alpha-trypsin
Q14624
K.TGLLLLSDPDKVTIGLLFWDGR.G
0.60


inhibitor heavy
(ITIH4_HUMAN)


chain H4


inter-alpha-trypsin
Q14624
K.YIFHNFM*ER.L
0.70


inhibitor heavy
(ITIH4_HUMAN)


chain H4


inter-alpha-trypsin
Q14624
K.IPKPEASFSPR.R
0.65


inhibitor heavy
(ITIH4_HUMAN)


chain H4


inter-alpha-trypsin
Q14624
R.QGPVNLLSDPEQGVEVTGQYER.E
0.64


inhibitor heavy
(ITIH4_HUMAN)


chain H4


inter-alpha-trypsin
Q14624
R.ANTVQEATFQMELPK.K
0.61


inhibitor heavy
(ITIH4_HUMAN)


chain H4


inter-alpha-trypsin
Q14624
K.WKETLFSVMPGLK.M
0.66


inhibitor heavy
(ITIH4_HUMAN)


chain H4


inter-alpha-trypsin
Q14624
R.RLDYQEGPPGVEISCWSVEL.—
0.69


inhibitor heavy
(ITIH4_HUMAN)


chain H4


inter-alpha-trypsin
Q14624
K.SPEQQETVLDGNLIIR.Y
0.66


inhibitor heavy
(ITIH4_HUMAN)


chain H4


kallistatin
P29622
K.ALWEKPFISSR.T
0.65



(KAIN_HUMAN)


kininogen-1
P01042
R.Q{circumflex over ( )}VVAGLNFR.I
0.67



(KNG1_HUMAN)


kininogen-1
P01042
R.QVVAGLNFR.I
0.71



(KNG1_HUMAN)


kininogen-1
P01042
K.LGQSLDCNAEVYVVPWEK.K
0.62



(KNG1_HUMAN)


kininogen-1
P01042
R.IASFSQNCDIYPGKDFVQPPTK.I
0.64



(KNG1_HUMAN)


leucine-rich alpha-
P02750
R.C{circumflex over ( )}AGPEAVKGQTLLAVAK.S
0.70


2-glycoprotein
(A2GL_HUMAN)


leucine-rich alpha-
P02750
K.GQTLLAVAK.S
0.67


2-glycoprotein
(A2GL_HUMAN)


leucine-rich alpha-
P02750
K.DLLLPQPDLR.Y
0.71


2-glycoprotein
(A2GL_HUMAN)


lumican
P51884
K.ILGPLSYSK.I
0.83



(LUM_HUMAN)


PREDICTED:
P0C0L4
R.QGSFQGGFR.S
0.83


complement C4-A
(CO4A_HUMAN)


PREDICTED:
P0C0L4
K.YVLPNFEVK.I
0.69


complement C4-A
(CO4A_HUMAN)


PREDICTED:
P0C0L4
R.LLATLCSAEVCQCAEGK.C
0.60


complement C4-A
(CO4A_HUMAN)


PREDICTED:
P0C0L4
R.VGDTLNLNLR.A
0.66


complement C4-A
(CO4A_HUMAN)


PREDICTED:
P0C0L4
R.EPFLSCCQFAESLR.K
0.62


complement C4-A
(CO4A_HUMAN)


PREDICTED:
P0C0L4
R.EELVYELNPLDHR.G
0.60


complement C4-A
(CO4A_HUMAN)


PREDICTED:
P0C0L4
R.GSFEFPVGDAVSK.V
0.62


complement C4-A
(CO4A_HUMAN)


PREDICTED:
P0C0L4
R.GCGEQTMIYLAPTLAASR.Y
0.71


complement C4-A
(CO4A_HUMAN)


pregnancy zone
P20742
K.GSFALSFPVESDVAPIAR.M
0.63


protein
(PZP_HUMAN)


protein AMBP
P02760
R.VVAQGVGIPEDSIFTMADRGECVPGEQEPEPILIPR.V
0.62


preproprotein
(AMBP_HUMAN)


prothrombin
P00734
R.SGIECQLWR.S
0.65


preproprotein
(THRB_HUMAN)


thyroxine-binding
P05543
K.MSSINADFAFNLYR.R
0.63


globulin
(THBG_HUMAN)


vitronectin
P04004
R.MDWLVPATCEPIQSVFFFSGDKYYR.V
1.00



(VTNC_HUMAN)


vitronectin
P04004
R.IYISGM*APRPSLAK.K
0.64



(VTNC_HUMAN)


vitronectin
P04004
R.IYISGMAPRPSLAK.K
0.63



(VTNC_HUMAN)


vitronectin
P04004
R.DVWGIEGPIDAAFTR.I
0.61



(VTNC_HUMAN)


zinc finger CCHC
Q8N567
R.SCPDNPK.G
0.68


domain-containing
(ZCHC9_HUMAN)


protein 9





*= Oxidation of Methionine,


{circumflex over ( )}= cyclic pyrolidone derivative by the loss of NH3 (−17 Da)













TABLE 11







Candidate peptides and transitions for transferring to the MRM assay













m/z,
fragment ion, m/z, charge,



Protein
Peptide
charge
rank
area














inter-alpha-trypsin
K.AAISGENAGLVR.A
579.3173++
S [y9] - 902.4690 + [1]
518001


inhibitor heavy chain H1


G [y8] - 815.4370 + [2]
326256


ITIH1_HUMAN


N [y6] - 629.3729 + [3]
296670





S [b4] - 343.1976 + [4]
258172


inter-alpha-trypsin
K.GSLVQASEANLQAAQDFVR.G
668.6763+++
A [y7] - 806.4155 + [1]
304374


inhibitor heavy chain H1


V [b4] - 357.2132 + [3]
294094


ITIH1_HUMAN


A [b13] - 635.3253 ++ [7]
249287





A [y6] - 735.3784 + [2]
193844





F [y3] - 421.2558 + [4]
167816





L [b11] - 535.7775 ++ [6]
156882





A [b6] - 556.3089 + [5]
149216





A [y14] - 760.3786 ++ [8]
123723


inter-alpha-trypsin
K.TAFISDFAVTADGNAFIGDIK.D
1087.0442++
G [y4] - 432.2453 + [1]
22362


inhibitor heavy chain H1


V [b9] - 952.4775 + [2]
9508


ITIH1_HUMAN


I [y5] - 545.3293 + [3]
8319





A [b8] - 853.4090 + [4]
7006





G [y9] - 934.4993 + [5]
6755





F [y6] - 692.3978 + [6]
6193


inter-alpha-trypsin
K.VTYDVSR.D
420.2165++
T [b2] - 201.1234 + [1]
792556


inhibitor heavy chain H1


Y [y5] - 639.3097 + [2]
609348


ITIH1_HUMAN


V [y3] - 361.2194 + [3]
256946





D [y4] - 476.2463 + [4]
169546





Y [y5] - 320.1585 ++ [5]
110608





S [y2] - 262.1510 + [6]
50268





D [b4] - 479.2136 + [7]
13662





Y [b3] - 182.5970 ++ [8]
10947


inter-alpha-trypsin
R.EVAFDLEIPK.T
580.8135++
P [y2] - 244.1656 + [1]
2032509


inhibitor heavy chain H1


D [y6] - 714.4032 + [2]
672749


ITIH1_HUMAN


A [y8] - 932.5088 + [3]
390837





F [y7] - 861.4716 + [4]
305087





L [y5] - 599.3763 + [5]
255527


inter-alpha-trypsin
R.LWAYLTIQELLAK.R
781.4531++
W [b2] - 300.1707 + [1]
602601


inhibitor heavy chain H1


A [b3] - 371.2078 + [2]
356967


ITIH1_HUMAN


T [y8] - 915.5510 + [3]
150419





Y [b4] - 534.2711 + [4]
103449





L [b5] - 647.3552 + [5]
99820





I [y7] - 814.5033 + [6]
72044





Q [y6] - 701.4192 + [7]
66989





E [y5] - 573.3606 + [8]
44843


inter-alpha-trypsin
K.FYNQVSTPLLR.N
669.3642++
S [y6] - 686.4196 + [1]
367330


inhibitor heavy chain H2


V [y7] - 785.4880 + [2]
182396


ITIH2_HUMAN


P [y4] - 498.3398 + [3]
103638





Q [b4] - 553.2405 + [4]
54270





Y [b2] - 311.1390 + [5]
52172





N [b3] - 425.1819 + [6]
34567


inter-alpha-trypsin
K.HLEVDVWVIEPQGLR.F
597.3247+++
P [y5] - 570.3358 + [1]
303693


inhibitor heavy chain H2


I [y7] - 812.4625 + [2]
206996


ITIH2_HUMAN


E [y6] - 699.3784 + [3]
126752





P [y5] - 285.6715 ++ [4]
79841


inter-alpha-trypsin
K.TAGLVR.S
308.6925++
G [y4] - 444.2929 + [1]
789068


inhibitor heavy chain H2


A [b2] - 173.0921 + [2]
460019


ITIH2_HUMAN


V [y2] - 274.1874 + [3]
34333





L [y3] - 387.2714 + [4]
29020





G [b3] - 230.1135 + [5]
15169


inter-alpha-trypsin
R.IYLQPGR.L
423.7452++
L [y5] - 570.3358 + [1]
638209


inhibitor heavy chain H2


Y [b2] - 277.1547 + [2]
266889


ITIH2_HUMAN


P [y3] - 329.1932 + [3]
235194





Q [y4] - 457.2518 + [4]
171389


inter-alpha-trypsin
R.LSNENHGIAQR.I
413.5461+++
N [y9] - 519.7574 ++ [1]
325409


inhibitor heavy chain H2


G [y5] - 544.3202 + [2]
139598


ITIH2_HUMAN


S [b2] - 201.1234 + [3]
54786





N [y7] - 398.2146 ++ [4]
39521





E [y8] - 462.7359 ++ [5]
30623


inter-alpha-trypsin
R.SLAPTAAAKR.R
415.2425++
A [y7] - 629.3617 + [1]
582421


inhibitor heavy chain H2


P [y6] - 558.3246 + [2]
463815


ITIH2_HUMAN


L [b2] - 201.1234 + [3]
430584





A [b3] - 272.1605 + [4]
204183





T [y5] - 461.2718 + [5]
47301


pregnancy-specific beta-
K.FQLPGQK.L
409.2320++
L [y5] - 542.3297 + [3]
192218


1-glycoprotein 1


P [y4] - 429.2456 + [2]
252933


PSG1_HUMAN


Q [y2] - 275.1714 + [6]
15366





Q [b2] - 276.1343 + [1]
305361





L [b3] - 389.2183 + [4]
27279





G [b5] - 543.2926 + [5]
18416


pregnancy-specific beta-
R.DLYHYITSYVVDGEIIIYGPAYSGR.E
955.4762+++
G [y7] - 707.3471 + [1]
66891


1-glycoprotein 1


V [y8] - 870.4104 + [2]
45076


PSG1_HUMAN


P [y6] - 650.3257 + [3]
28437





I [y9] - 983.4945 + [4]
20423





V [b10] - 628.3033 ++ [5]
17864





E [b14] - 828.3830 ++ [6]
13690





V [b11] - 677.8375 ++ [7]
12354





I [b6] - 805.3879 + [8]
11186





V [y15] - 805.4147 ++ [9]
10573





G [b13] - 763.8617 ++ [10]
10407


pregnancy-specific beta-
TLFIFGVTK
513.3051++
F [y7] - 811.4713 + [1]
102139


1-glycoprotein 4


L [b2] - 215.1390 + [2]
86272


PSG4_HUMAN


F [y5] - 551.3188 + [3]
49520





I [y6] - 664.4028 + [4]
26863





T [y2] - 248.1605 + [5]
18671





F [b3] - 362.2074 + [6]
17343





G [y4] - 404.2504 + [7]
17122


pregnancy-specific beta-
NYTYIWWLNGQSLPVSPR
1097.5576++
W [b6] - 841.3879 + [1]
25756


1-glycoprotein 4


G [y9] - 940.5211 + [2]
25018


PSG4_HUMAN


Y [b4] - 542.2245 + [3]
19778


PSG8_HUMAN
LQLSETNR
480.7591++
T [y3] - 390.2096 + [1]
185568


pregnancy-specific


Q [b2] - 242.1499 + [2]
120644


beta-1-glycoprotein 8


N [y2] - 289.1619 + [3]
95164





S [y5] - 606.2842 + [4]
84314





L [b3] - 355.2340 + [5]
38587





E [y4] - 519.2522 + [6]
34807





L [y6] - 719.3682 + [7]
17482





E [b5] - 571.3086 + [8]
8855





S [b4] - 442.2660 + [9]
7070


Pan-PSG
ILILPSVTR
506.3317++
P [y5] - 559.3198 + [1]
484395





L [b2] - 227.1754 + [2]
102774





L [b4] - 227.1754 ++ [3]
102774





I [y7] - 785.4880 + [4]
90153





I [b3] - 340.2595 + [5]
45515





L [y6] - 672.4039 + [6]
40368


thyroxine-binding
K.ELELQIGNALFIGK.H
515.6276+++
E [b3] - 186.5919 ++ [1]
48549


globulin


E [b3] - 372.1765 + [2]
28849


THBG_HUMAN


G [y2] - 204.1343 + [3]
27487





F [b11] - 614.8322 ++ [4]
14892





L [b4] - 485.2606 + [5]
14552





L [b2] - 243.1339 + [6]
10169





L [b4] - 243.1339 ++ [7]
10169


thyroxine-binding
K.AQWANPFDPSK.T
630.8040++
A [b4] - 457.2194 + [1]
48405


globulin


S [y2] - 234.1448 + [2]
43781


THBG_HUMAN


D [y4] - 446.2245 + [3]
26549





D [y4] - 446.2245 + [4]
25148


thyroxine-binding
K.TEDSSSFLIDK.T
621.2984++
E [b2] - 231.0975 + [1]
37113


globulin


D [y2] - 262.1397 + [2]
14495


THBG_HUMAN


thyroxine-binding
K.AVLHIGEK.G
433.7584++
V [b2] - 171.1128 + [1]
151828


globulin


L [y6] - 696.4039 + [2]
102903


THBG_HUMAN


H [y5] - 583.3198 + [3]
73288





I [y4] - 446.2609 + [4]
54128





G [y3] - 333.1769 + [5]
32717





H [b4] - 421.2558 + [6]
22662


thyroxine-binding
K.AVLHIGEK.G
289.5080+++
L [y6] - 348.7056 ++ [1]
2496283


globulin


V [b2] - 171.1128 + [2]
551283


THBG_HUMAN


I [y4] - 446.2609 + [3]
229168





H [y5] - 292.1636 ++ [4]
212709





H [y5] - 583.3198 + [5]
160132





G [y3] - 333.1769 + [6]
117961





H [b4] - 421.2558 + [7]
56579





I [y4] - 223.6341 ++ [8]
36569





H [b4] - 211.1315 ++ [9]
19460





L [b3] - 284.1969 + [10]
15758


thyroxine-binding
K.FLNDVK.T
368.2054++
N [y4] - 475.2511 + [1]
298227


globulin


V [y2] - 246.1812 + [2]
252002


THBG_HUMAN


L [b2] - 261.1598 + [3]
98700





D [y3] - 361.2082 + [4]
29215





D [b4] - 490.2296 + [5]
27258





N [b3] - 375.2027 + [6]
10971


thyroxine-binding
K.FSISATYDLGATLLK.M
800.4351++
S [b2] - 235.1077 + [1]
50075


globulin


G [y6] - 602.3872 + [2]
46373


THBG_HUMAN


D [y8] - 830.4982 + [3]
43372





Y [y9] - 993.5615 + [4]
40970





T [y4] - 474.3286 + [5]
22161





L [y7] - 715.4713 + [6]
19710





S [b4] - 435.2238 + [7]
19310





L [y3] - 373.2809 + [8]
14157





I [b3] - 348.1918 + [9]
13207


thyroxine-binding
K.LSNAAHK.A
370.7061++
H [y2] - 284.1717 + [4]
19319


globulin


S [b2] - 201.1234 + [1]
60611


THBG_HUMAN


N [b3] - 315.1663 + [2]
42142





A [b4] - 386.2034 + [3]
31081


thyroxine-binding
K.GWVDLFVPK.F
530.7949++
V [y7] - 817.4818 + [2]
297536


globulin


D [y6] - 718.4134 + [4]
226951


THBG_HUMAN


L [y5] - 603.3865 + [8]
60712





F [y4] - 490.3024 + [9]
45586





V [y3] - 343.2340 + [6]
134588





P [y2] - 244.1656 + [1]
1619888





V [b3] - 343.1765 + [7]
126675





D [b4] - 458.2034 + [10]
14705





F [b6] - 718.3559 + [5]
208674





V [b7] - 817.4243 + [3]
270156


thyroxine-binding
K.NALALFVLPK.E
543.3395++
L [b3] - 299.1714 + [1]
365040


globulin


P [y2] - 244.1656 + [2]
274988


THBG_HUMAN


A [y7] - 787.5076 + [3]
237035





L [y6] - 716.4705 + [4]
107838





L [y3] - 357.2496 + [5]
103847





L [y8] - 900.5917 + [6]
97265





F [y5] - 603.3865 + [7]
88231





A [b4] - 370.2085 + [8]
82559





V [y4] - 456.3180 + [9]
32352





L [b5] - 483.2926 + [10]
11974


thyroxine-binding
R.SILFLGK.V
389.2471++
L [y5] - 577.3708 + [1]
564222


globulin


I [b2] - 201.1234 + [2]
384240


THBG_HUMAN


G [y2] - 204.1343 + [3]
302557





L [y3] - 317.2183 + [4]
282436





F [y4] - 464.2867 + [5]
194047





L [b3] - 314.2074 + [6]
27878


leucine-rich alpha-2-
R.VLDLTR.N
358.7187++
D [y4] - 504.2776 + [1]
629222


glycoprotein


L [y5] - 617.3617 + [2]
236165


A2GL_HUMAN


L [b2] - 213.1598 + [3]
171391





L [y3] - 389.2507 + [4]
167609





R [y1] - 175.1190 + [5]
41213





T [y2] - 276.1666 + [6]
37194





D [b3] - 328.1867 + [7]
27029


leucine-rich alpha-2-
K.ALGHLDLSGNR.L
576.8096++
G [y9] - 484.7490 ++ [1]
46334


glycoprotein


L [y7] - 774.4104 + [2]
44285


A2GL_HUMAN


D [y6] - 661.3264 + [3]
40188





H [y8] - 456.2383 ++ [4]
29392





H [b4] - 379.2088 + [5]
26871





L [y5] - 546.2994 + [6]
17178





L [b5] - 492.2929 + [7]
14578


leucine-rich alpha-2-
K.LPPGLLANFTLLR.T
712.9348++
R [y1] - 175.1190 + [1]
34435


glycoprotein


A [b7] - 662.4236 + [2]
25768


A2GL_HUMAN


G [y10] - 1117.6728 + [3]
11662


leucine-rich alpha-2-
R.TLDLGENQLETLPPDLLR.G
1019.0468++
P [y6] - 710.4196 + [1]
232459


glycoprotein


L [y7] - 823.5036 + [2]
16075


A2GL_HUMAN


E [y9] - 1053.5939 + [3]
15839





D [b3] - 330.1660 + [4]
15524


leucine-rich alpha-2-
R.GPLQLER.L
406.7349++
P [b2] - 155.0815 + [1]
144054


glycoprotein


Q [y4] - 545.3042 + [2]
103146


A2GL_HUMAN


L [y5] - 658.3883 + [3]
77125





L [y3] - 417.2456 + [4]
65928





R [y1] - 175.1190 + [5]
27585





E [y2] - 304.1615 + [6]
22956


leucine-rich alpha-2-
R.LHLEGNK.L
405.7271++
H [b2] - 251.1503 + [1]
79532


glycoprotein


L [y5] - 560.3039 + [2]
54272


A2GL_HUMAN


G [b5] - 550.2984 + [3]
49019





G [y3] - 318.1772 + [4]
18570





L [b3] - 364.2343 + [5]
14068





E [y4] - 447.2198 + [6]
13318


leucine-rich alpha-2-
K.LQVLGK.D
329.2183++
V [y4] - 416.2867 + [1]
141056


glycoprotein


G [y2] - 204.1343 + [2]
102478


A2GL_HUMAN


Q [b2] - 242.1499 + [3]
98414





L [y3] - 317.2183 + [4]
60587





Q [y5] - 544.3453 + [5]
50833


leucine-rich alpha-2-
K.DLLLPQPDLR.Y
590.3402++
P [y6] - 725.3941 + [1]
592715


glycoprotein


L [b3] - 342.2023 + [2]
570948


A2GL_HUMAN


L [b2] - 229.1183 + [3]
403755





P [y6] - 363.2007 ++ [4]
120157





L [y2] - 288.2030 + [5]
89508





L [y7] - 838.4781 + [6]
76185





L [b4] - 455.2864 + [7]
60422





L [y7] - 419.7427 ++ [8]
45849





P [y4] - 500.2827 + [9]
45223





L [y8] - 951.5622 + [10]
22393





Q [y5] - 628.3413 + [11]
15450


leucine-rich alpha-2-
R.VAAGAFQGLR.Q
495.2800++
A [y8] - 819.4472 + [1]
183637


glycoprotein


G [y7] - 748.4100 + [2]
110920


A2GL_HUMAN


F [y5] - 620.3515 + [3]
85535





A [y9] - 890.4843 + [4]
45894





G [y3] - 345.2245 + [5]
45644





Q [y4] - 473.2831 + [6]
40579





A [y8] - 410.2272 ++ [7]
39266





A [b3] - 242.1499 + [8]
35890





A [y6] - 691.3886 + [9]
29637





G [b4] - 299.1714 + [10]
19195





A [b5] - 370.2085 + [11]
14944





A [y9] - 445.7458 ++ [12]
11567


leucine-rich alpha-2-
R.WLQAQK.D
387.2189++
L [y5] - 587.3511 + [1]
80533


glycoprotein


Q [y4] - 474.2671 + [2]
57336


A2GL_HUMAN


A [y3] - 346.2085 + [3]
35952





L [b2] - 300.1707 + [4]
22509


leucine-rich alpha-2-
K.GQTLLAVAK.S
450.7793++
Q [b2] - 186.0873 + [1]
110213


glycoprotein


T [y7] - 715.4713 + [2]
81127


A2GL_HUMAN


L [y5] - 501.3395 + [3]
52292





L [y6] - 614.4236 + [4]
46349





A [y4] - 388.2554 + [5]
41283





A [y2] - 218.1499 + [6]
38843





V [y3] - 317.2183 + [7]
28961





T [b3] - 287.1350 + [8]
23831


leucine-rich alpha-2-
R.YLFLNGNK.L
484.7636++
F [y6] - 692.3726 + [1]
61861


glycoprotein


L [b2] - 277.1547 + [2]
39468


A2GL_HUMAN


F [b3] - 424.2231 + [3]
21454





L [y5] - 545.3042 + [4]
20016





N [y4] - 432.2201 + [5]
18077


leucine-rich alpha-2-
R.NALTGLPPGLFQASATLDTLVLK.E
780.7773+++
T [y8] - 902.5557 + [1]
44285


glycoprotein


P [y17] - 886.0036 ++ [2]
39557


A2GL_HUMAN


D [y6] - 688.4240 + [3]
19464


alpha-1B-glycoprotein
K.NGVAQEPVHLDSPAIK.H
837.9441++
P [y10] - 1076.6099 + [1]
130137


A1BG_HUMAN


V [b3] - 271.1401 + [2]
110650





A [y13] - 702.8777 ++ [3]
75803





S [y5] - 515.3188 + [4]
63197





G [b2] - 172.0717 + [5]
57307





E [b6] - 599.2784 + [6]
49765





A [b4] - 342.1772 + [7]
36058





E [y11] - 1205.6525 + [8]
34131





P [y4] - 428.2867 + [9]
31158





H [y8] - 880.4887 + [10]
28296





D [y6] - 630.3457 + [11]
20534





L [y7] - 743.4298 + [12]
17946


alpha-1B-glycoprotein
K.HQFLLTGDTQGR.Y
686.8520++
Q [b2] - 266.1248 + [1]
1144372


A1BG_HUMAN


F [y10] - 1107.5793 + [2]
725830





T [y7] - 734.3428 + [3]
341528





L [y8] - 847.4268 + [4]
297048





F [b3] - 413.1932 + [5]
230163





G [y6] - 633.2951 + [6]
226694





T [y4] - 461.2467 + [7]
217446





L [y9] - 960.5109 + [8]
215574





L [b4] - 526.2772 + [9]
184306





L [b5] - 639.3613 + [10]
157607





Q [y11] - 1235.6379 + [11]
117366





Q [y11] - 618.3226 ++ [12]
109274





D [b8] - 912.4574 + [13]
53233





T [b6] - 740.4090 + [14]
49104





D [y5] - 576.2736 + [15]
35232


alpha-1B-glycoprotein
R.SGLSTGWTQLSK.L
632.8302++
G [y7] - 819.4359 + [1]
1138845


A1BG_HUMAN


L [b3] - 258.1448 + [2]
1128060





S [y9] - 1007.5156 + [3]
877313





S [y2] - 234.1448 + [4]
653032





T [y8] - 920.4836 + [5]
651216





T [y5] - 576.3352 + [6]
538856





W [y6] - 762.4145 + [7]
406137





L [y3] - 347.2289 + [8]
313255





Q [y4] - 475.2875 + [9]
209919





L [y10] - 560.8035 ++ [10]
103666





W [b7] - 689.3253 + [11]
48587





Q [b9] - 918.4316 + [12]
27677





T [b8] - 790.3730 + [13]
26742





L [b10] - 1031.5156 + [14]
23936


alpha-1B-glycoprotein
K.LLELTGPK.S
435.7684++
E [y6] - 644.3614 + [1]
6043967


A1BG_HUMAN


L [b2] - 227.1754 + [2]
2185138





L [y7] - 757.4454 + [3]
1878211





L [y5] - 515.3188 + [4]
923148





T [y4] - 402.2347 + [5]
699198





G [y3] - 301.1870 + [6]
666018





P [y2] - 244.1656 + [7]
430183





E [b3] - 356.2180 + [8]
244199


alpha-1B-glycoprotein
R.GVTFLLR.R
403.2502++
T [y5] - 649.4032 + [1]
4135468


A1BG_HUMAN


L [y3] - 401.2871 + [2]
2868709





V [b2] - 157.0972 + [3]
2109754





F [y4] - 548.3555 + [4]
1895653





R [y1] - 175.1190 + [5]
918856





L [y2] - 288.2030 + [6]
780084





T [b3] - 258.1448 + [7]
478494





T [y5] - 325.2052 ++ [8]
415711





F [y4] - 274.6814 ++ [9]
140533





L [b6] - 631.3814 + [10]
129473


alpha-1B-glycoprotein
K.ELLVPR.S
363.7291++
P [y2] - 272.1717 + [1]
9969478


A1BG_HUMAN


L [y4] - 484.3242 + [2]
3676023





V [y3] - 371.2401 + [3]
2971809





L [b2] - 243.1339 + [4]
809753





L [y5] - 597.4083 + [5]
159684


alpha-1B-glycoprotein
R.SSTSPDR.I
375.1748++
S [b2] - 175.0713 + [1]
89016


A1BG_HUMAN


R [y1] - 175.1190 + [2]
82740





P [y3] - 387.1987 + [3]
76299





T [y5] - 575.2784 + [4]
75253





D [b6] - 575.2307 + [5]
71180





S [y4] - 474.2307 + [6]
53784


alpha-1B-glycoprotein
R.LELHVDGPPPRPQLR.A
862.4837++
D [b6] - 707.3723 + [1]
49322


A1BG_HUMAN


G [y9] - 1017.5952 + [2]
32049





G [y9] - 509.3012 ++ [3]
27715


alpha-1B-glycoprotein
R.LELHVDGPPPRPQLR.A
575.3249+++
V [y11] - 616.3489 ++ [1]
841163


A1BG_HUMAN


D [y10] - 566.8147 ++ [2]
621546





E [b2] - 243.1339 + [3]
581025





H [y12] - 684.8784 ++ [4]
485731





R [y5] - 669.4155 + [5]
477653





L [y13] - 741.4204 ++ [6]
369224





H [b4] - 493.2769 + [7]
219485





D [b6] - 707.3723 + [8]
195842





V [b5] - 592.3453 + [9]
170689





R [y1] - 175.1190 + [10]
160049





L [b3] - 356.2180 + [11]
63902





G [b7] - 764.3937 + [12]
62128





P [y4] - 513.3144 + [13]
33888


alpha-1B-glycoprotein
R.ATWSGAVLAGR.D
544.7960++
S [y8] - 730.4206 + [1]
1933290


A1BG_HUMAN


G [y7] - 643.3886 + [2]
1828931





L [y4] - 416.2616 + [3]
869412





V [y5] - 515.3300 + [4]
615117





A [y3] - 303.1775 + [5]
584118





A [y6] - 586.3671 + [6]
471353





W [y9] - 458.7536 ++ [7]
466690





W [y9] - 916.4999 + [8]
454934





G [y2] - 232.1404 + [9]
338886





S [b4] - 446.2034 + [10]
165831





W [b3] - 359.1714 + [11]
139166





R [y1] - 175.1190 + [12]
83145





A [b6] - 574.2620 + [13]
65281





G [b5] - 503.2249 + [14]
30473





V [b7] - 673.3304 + [15]
30408


alpha-1B-glycoprotein
R.TPGAAANLELIFVGPQHAGNYR.C
1148.5953++
G [y9] - 999.4755 + [1]
39339


A1BG_HUMAN


F [y11] - 1245.6123 + [2]
22329





V [y10] - 1098.5439 + [3]
14054





I [b11] - 1051.5782 + [4]
12281





P [y8] - 942.4540 + [5]
10574


alpha-1B-glycoprotein
R.TPGAAANLELIFVGPQHAGNYR.C
766.0659+++
G [y9] - 999.4755 + [1]
426098


A1BG_HUMAN


P [y8] - 942.4540 + [2]
191245





V [y10] - 1098.5439 + [3]
183889





F [y11] - 1245.6123 + [4]
172790





G [b3] - 256.1292 + [5]
172068





A [y5] - 580.2838 + [6]
170557





A [b4] - 327.1663 + [7]
146455





H [y6] - 717.3427 + [8]
127934





E [b9] - 825.4101 + [9]
119922





G [y4] - 509.2467 + [10]
107378





L [b10] - 938.4942 + [11]
102387





A [b5] - 398.2034 + [12]
86428





L [b10] - 469.7507 ++ [13]
68959





E [y14] - 800.9152 ++ [14]
67711





I [y12] - 679.8518 ++ [15]
65740





N [b7] - 583.2835 + [16]
58648





A [y17] - 949.9972 ++ [17]
55561





G [y20] - 1049.5451 ++ [18]
51555





I [b11] - 1051.5782 + [19]
51489





L [y13] - 736.3939 ++ [20]
49190





L [y15] - 857.4572 ++ [21]
48534





A [y18] - 985.5158 ++ [22]
48337





L [b8] - 696.3675 + [23]
47352





N [y16] - 914.4787 ++ [24]
43280





A [b6] - 469.2405 + [25]
38091





Q [y7] - 845.4013 + [26]
32443


insulin-like growth factor-
R.SLALGTFAHTPALASLGLSNNR.L
737.7342+++
G [y6] - 660.3424 + [1]
37287


binding protein complex


A [b3] - 272.1605 + [2]
21210


acid labile subunit


S [y8] - 860.4585 + [3]
15266


ALS_HUMAN


S [y4] - 490.2368 + [4]
12497





L [y5] - 603.3209 + [5]
9592


insulin-like growth factor-
R.ELVLAGNR.L
436.2534++
A [y4] - 417.2205 + [1]
74710


binding protein complex


L [y5] - 530.3045 + [2]
71602


acid labile subunit


G [y3] - 346.1833 + [3]
39449


ALS_HUMAN


V [y6] - 629.3729 + [4]
30127


insulin-like growth factor-
R.LAYLQPALFSGLAELR.E
881.4985++
P [y11] - 1173.6626 + [1]
47285


binding protein complex


Y [b3] - 348.1918 + [2]
27425


acid labile subunit


Q [b5] - 589.3344 + [3]
18779


ALS_HUMAN


L [b4] - 461.2758 + [4]
13442


insulin-like growth factor-

588.0014+++
S [y7] - 745.4203 + [1]
29519


binding protein complex


A [y4] - 488.2827 + [2]
23305


acid labile subunit


G [y6] - 658.3883 + [3]
22089


ALS_HUMAN


F [y8] - 892.4887 + [4]
16888





Q [b5] - 589.3344 + [5]
15807





L [y2] - 288.2030 + [6]
15266





Y [b3] - 348.1918 + [7]
12835





L [y5] - 601.3668 + [8]
12024


insulin-like growth factor-
R.ELDLSR.N
366.6980++
S [y2] - 262.1510 + [1]
91447


binding protein complex


D [b3] - 358.1609 + [2]
85115


acid labile subunit


D [y4] - 490.2620 + [3]
75618


ALS_HUMAN


L [y3] - 375.2350 + [4]
37835


insulin-like growth factor-
K.ANVFVQLPR.L
522.3035++
N [b2] - 186.0873 + [1]
90097


binding protein complex


F [y6] - 759.4512 + [2]
61085


acid labile subunit


P [y2] - 272.1717 + [3]
46657


ALS_HUMAN


V [y5] - 612.3828 + [4]
43595





V [b3] - 285.1557 + [5]
31451





Q [y4] - 513.3144 + [6]
28908





V [y7] - 858.5196 + [7]
15725





L [y3] - 385.2558 + [8]
14324





Q [y4] - 257.1608 ++ [9]
13753


insulin-like growth factor-
R.NLIAAVAPGAFLGLK.A
727.9401++
L [b2] - 228.1343 + [1]
26729


binding protein complex


I [b3] - 341.2183 + [2]
25535


acid labile subunit


P [y8] - 802.4822 + [3]
25120


ALS_HUMAN


A [y9] - 873.5193 + [4]
17542





A [y12] - 1114.6619 + [5]
14895


insulin-like growth factor-
R.VAGLLEDTFPGLLGLR.V
835.9774++
P [y7] - 725.4668 + [1]
22005


binding protein complex


L [b4] - 341.2183 + [2]
13753


acid labile subunit


E [y11] - 1217.6525 + [3]
12611


ALS_HUMAN


D [y10] - 1088.6099 + [4]
11003


insulin-like growth factor-
R.SFEGLGQLEVLTLDHNQLQEVK.A
833.1026+++
Q [y4] - 503.2824 + [1]
328959


binding protein complex


T [y11] - 662.8464 ++ [2]
54479


acid labile subunit


G [b4] - 421.1718 + [3]
24263


ALS_HUMAN


insulin-like growth factor-
R.NLPEQVFR.G
501.7720++
P [y6] - 775.4097 + [1]
88417


binding protein complex


E [y5] - 678.3570 + [2]
13620


acid labile subunit


ALS_HUMAN


insulin-like growth factor-
R.IRPHTFTGLSGLR.R
485.6124+++
S [y4] - 432.2565 + [1]
82619


binding protein complex


L [y5] - 545.3406 + [2]
70929


acid labile subunit


T [b5] - 303.1795 ++ [3]
56677


ALS_HUMAN


insulin-like growth factor-
K.LEYLLLSR.N
503.8002++
Y [y6] - 764.4665 + [1]
67619


binding protein complex


E [b2] - 243.1339 + [2]
56261


acid labile subunit


L [y4] - 488.3191 + [3]
32890


ALS_HUMAN


L [y5] - 601.4032 + [4]
24224





L [y3] - 375.2350 + [5]
21139


insulin-like growth factor-
R.LAELPADALGPLQR.A
732.4145++
E [b3] - 314.1710 + [1]
57859


binding protein complex


P [y10] - 1037.5738 + [2]
45907


acid labile subunit


P [y10] - 519.2905 ++ [3]
22723


ALS_HUMAN


L [b4] - 427.2551 + [4]
14054


insulin-like growth factor-
R.LEALPNSLLAPLGR.L
732.4327++
A [b3] - 314.1710 + [1]
52485


binding protein complex


P [y10] - 1037.6102 + [2]
37028


acid labile subunit


E [b2] - 243.1339 + [3]
24846


ALS_HUMAN


P [y10] - 519.3087 ++ [4]
15601





P [y4] - 442.2772 + [5]
12327


insulin-like growth factor-
R.TFTPQPPGLER.L
621.8275++
P [y6] - 668.3726 + [1]
57877


binding protein complex


P [y8] - 447.2456 ++ [2]
50606


acid labile subunit


P [b4] - 447.2238 + [3]
50606


ALS_HUMAN


F [b2] - 249.1234 + [4]
42083





P [y8] - 893.4839 + [5]
34716





T [y9] - 497.7694 ++ [6]
24220





T [b3] - 350.1710 + [7]
22053


insulin-like growth factor-
R.DFALQNPSAVPR.F
657.8437++
A [b3] - 334.1397 + [1]
28905


binding protein complex


P [y6] - 626.3620 + [2]
23750


acid labile subunit


P [y2] - 272.1717 + [3]
20860


ALS_HUMAN


F [b2] - 263.1026 + [4]
17536





N [y7] - 740.4050 + [5]
15320





Q [y8] - 868.4635 + [6]
12525


beta-2-glycoprotein 1
K.FICPLTGLWPINTLK.C
886.9920++
C [b3] - 421.1904 + [1]
546451


APOH_HUMAN


C [y13] - 756.9158 ++ [2]
438858





P [y6] - 685.4243 + [3]
229375





I [b2] - 261.1598 + [4]
188092





W [y7] - 871.5036 + [5]
143885





G [y9] - 1041.6091 + [6]
143458





T [b13] - 757.3972 ++ [7]
127058





T [y10] - 1142.6568 + [8]
89126





T [b6] - 732.3749 + [9]
51907





L [b5] - 631.3272 + [10]
43351





L [b8] - 902.4804 + [11]
38788





N [y4] - 475.2875 + [12]
38574





W [b9] - 1088.5597 + [13]
37148





T [y3] - 361.2445 + [14]
34153





G [b7] - 789.3964 + [15]
22460





P [b4] - 518.2432 + [16]
19893





L [y8] - 984.5877 + [17]
19180


beta-2-glycoprotein 1
K.FICPLTGLWPINTLK.C
591.6638+++
P [y6] - 685.4243 + [1]
541745


APOH_HUMAN


P [y6] - 343.2158 ++ [2]
234580





G [b7] - 789.3964 + [3]
99108





W [y7] - 871.5036 + [4]
89126





L [b8] - 902.4804 + [5]
68306





C [b3] - 421.1904 + [6]
58396





N [y4] - 475.2875 + [7]
54474





I [y5] - 588.3715 + [8]
54403





W [y7] - 436.2554 ++ [9]
44706





I [b2] - 261.1598 + [10]
40214





T [y3] - 361.2445 + [11]
20535


beta-2-glycoprotein 1
R.VCPFAGILENGAVR.Y
751.8928++
P [y12] - 622.3433 ++ [1]
431648


APOH_HUMAN


C [b2] - 260.1063 + [2]
223667





P [y12] - 1243.6793 + [3]
134827





G [y9] - 928.5211 + [4]
89980





L [y7] - 758.4155 + [5]
85773





A [y10] - 999.5582 + [6]
69303





A [b5] - 575.2646 + [7]
47913





E [y6] - 645.3315 + [8]
44705





N [y5] - 516.2889 + [9]
23244





I [y8] - 871.4996 + [10]
20320





G [y4] - 402.2459 + [11]
19180





I [b7] - 745.3702 + [12]
18966





F [b4] - 504.2275 + [13]
16399


beta-2-glycoprotein 1
R.VCPFAGILENGAVR.Y
501.5977+++
E [y6] - 645.3315 + [1]
131191


APOH_HUMAN


N [y5] - 516.2889 + [2]
130264





I [b7] - 745.3702 + [3]
112154





G [b6] - 632.2861 + [4]
102743





G [y4] - 402.2459 + [5]
82779





C [b2] - 260.1063 + [6]
65453





L [y7] - 758.4155 + [7]
54330





I [b7] - 373.1887 ++ [8]
39143





L [y7] - 379.7114 ++ [9]
29661





V [y2] - 274.1874 + [10]
28377





P [y12] - 622.3433 ++ [11]
28163


beta-2-glycoprotein 1
K.CTEEGK.W
362.1525++
E [y3] - 333.1769 + [1]
59464


APOH _HUMAN


E [b3] - 391.1282 + [2]
21675


beta-2-glycoprotein 1
K.WSPELPVCAPIICPPPSIPTFATLR.V
940.4923+++
P [y12] - 648.8692 ++ [1]
294510


APOH_HUMAN


P [y11] - 600.3428 ++ [2]
206026





P [y7] - 805.4567 + [3]
122891





P [y10] - 1102.6255 + [4]
75113





L [b5] - 613.2980 + [5]
74578





P [y11] - 1199.6783 + [6]
72855





A [b9] - 1040.4870 + [7]
28643





T [y3] - 195.1290 ++ [8]
28524





S [b2] - 274.1186 + [9]
23770





P [y10] - 551.8164 ++ [10]
22284





C [y13] - 728.8845 ++ [11]
20918





E [b4] - 500.2140 + [12]
17114


beta-2-glycoprotein 1
K.ATFGCHDGYSLDGPEEIECTK.L
796.0036+++
P [y8] - 503.2315 ++ [1]
67031


APOH_HUMAN


E [y4] - 537.2337 + [2]
59841





C [b5] - 537.2126 + [3]
56454





I [y5] - 650.3178 + [4]
55384





C [y3] - 408.1911 + [5]
46946





E [y6] - 779.3604 + [6]
45282





T [b2] - 173.0921 + [7]
37675





G [y9] - 1062.4772 + [8]
36843





C [y17] - 1005.4144 ++ [9]
35774





P [y8] - 1005.4557 + [10]
33991





D [y10] - 1177.5041 + [11]
30366





E [y7] - 908.4030 + [12]
26503





T [y2] - 248.1605 + [13]
24840





Y [b9] - 1009.3832 + [14]
19491





G [y9] - 531.7422 ++ [15]
17946





S [b10] - 1096.4153 + [16]
17352


beta-2-glycoprotein 1
K.ATWYQGER.V
511.7669++
Y [y5] - 652.3049 + [1]
762897


APOH_HUMAN


V [y6] - 751.3733 + [2]
548908





T [b2] - 173.0921 + [3]
252556





V [y7] - 850.4417 + [4]
231995





V [b3] - 272.1605 + [5]
223140





Q [y4] - 489.2416 + [6]
165023





G [y3] - 361.1830 + [7]
135013





V [b4] - 371.2289 + [8]
86760





V [y7] - 425.7245 ++ [9]
54314


beta-2-glycoprotein 1
K.VSFFCK.N
394.1940++
S [y5] - 688.3123 + [1]
384559


APOH_HUMAN


F [y4] - 601.2803 + [2]
321951





C [y2] - 307.1435 + [3]
265521





S [b2] - 187.1077 + [4]
237662





F [y3] - 454.2119 + [5]
168104


beta-2-glycoprotein 1
K.CSYTEDAQCIDGTIEVPK.C
1043.4588++
P [y2] - 244.1656 + [1]
34574


APOH_HUMAN


V [y3] - 343.2340 + [2]
9173





E [y4] - 472.2766 + [3]
7291





Y [b3] - 411.1333 + [4]
6233


beta-2-glycoprotein 1
K.CSYTEDAQCIDGTIEVPK.C
695.9750+++
D [b11] - 672.2476 ++ [1]
37044


APOH_HUMAN


D [y8] - 858.4567 + [2]
18816





D [b6] - 756.2505 + [3]
12289





V [y3] - 343.2340 + [4]
11348





A [b7] - 414.1474 ++ [5]
9761





G [y7] - 743.4298 + [6]
8644


beta-2-glycoprotein 1
K.EHSSLAFWK.T
552.7773++
H [b2] - 267.1088 + [1]
237907


APOH_HUMAN


S [y7] - 838.4458 + [2]
200568





W [y2] - 333.1921 + [3]
101078





S [y6] - 751.4137 + [4]
54920





A [y4] - 551.2976 + [5]
52920





F [y3] - 480.2605 + [6]
40102





L [y5] - 664.3817 + [7]
30341





F [b7] - 772.3624 + [8]
27871





S [b3] - 354.1408 + [9]
27754





A [b6] - 625.2940 + [10]
25931


beta-2-glycoprotein 1
K.TDASDVKPC.—
496.7213++
D [b2] - 217.0819 + [1]
323810


APOH_HUMAN


P [y2] - 276.1013 + [2]
119128





A [y7] - 776.3607 + [3]
86083





S [y6] - 705.3236 + [4]
79262





A [b3] - 288.1190 + [5]
77498





D [y5] - 618.2916 + [6]
70501





K [y3] - 404.1962 + [7]
55801





V [y4] - 503.2646 + [8]
46217


transforming growth
K.SPYQLVLQHSR.L
443.2421+++
Y [y9] - 572.3171 ++ [1]
560916


factor-beta-induced


P [b2] - 185.0921 + [2]
413241


protein ig-h3


H [y3] - 399.2099 + [3]
320572


BGH3_HUMAN


L [y5] - 640.3525 + [4]
313309





Q [y4] - 527.2685 + [5]
244398





L [y7] - 426.7561 ++ [6]
215854





V [y6] - 739.4209 + [7]
172897





L [y7] - 852.5050 + [8]
164959





Q [y8] - 490.7854 ++ [9]
149814





L [y5] - 320.6799 ++ [10]
127463





L [b5] - 589.2980 + [11]
118061





S [y2] - 262.1510 + [12]
110123





V [y6] - 370.2141 ++ [13]
97399





P [y10] - 620.8435 ++ [14]
94640





V [b6] - 688.3665 + [15]
87772





Q [b4] - 476.2140 + [16]
74203





Y [b3] - 348.1554 + [17]
65984





H [y3] - 200.1086 ++ [18]
55624





Q [y4] - 264.1379 ++ [19]
41606





L [b7] - 801.4505 + [20]
18241





V [b6] - 344.6869 ++ [21]
17678





L [b7] - 401.2289 ++ [22]
14976


transforming growth
R.VLTDELK.H
409.2369++
T [y5] - 605.3141 + [1]
937957


factor-beta-induced


L [b2] - 213.1598 + [2]
298671


protein ig-h3


L [y6] - 718.3981 + [3]
244116


BGH3_HUMAN


L [y2] - 260.1969 + [4]
135739





D [y4] - 504.2664 + [5]
52472





E [y3] - 389.2395 + [6]
50839


transforming growth
K.VISTITNNIQQIIEIEDTFETLR.A
897.4798+++
E [y8] - 1010.4789 + [1]
282865


factor-beta-induced


D [y7] - 881.4363 + [2]
237234


protein ig-h3


I [y9] - 1123.5630 + [3]
195581


BGH3_HUMAN


T [y6] - 766.4094 + [4]
186875





I [b2] - 213.1598 + [5]
174492





T [y3] - 389.2507 + [6]
145598





F [y5] - 665.3617 + [7]
143872





E [y4] - 518.2933 + [8]
108148





Q [b11] - 606.8328 ++ [9]
106647





I [b5] - 514.3235 + [10]
82030





N [b8] - 843.4571 + [11]
75125





T [b4] - 401.2395 + [12]
71448





I [b12] - 663.3748 ++ [13]
58314





N [b7] - 365.2107 ++ [14]
54862





I [b9] - 956.5411 + [15]
51034





L [y2] - 288.2030 + [16]
50734





S [b3] - 300.1918 + [17]
48708





Q [b10] - 542.8035 ++ [18]
43754





Q [b11] - 1212.6583 + [19]
37375





T [b6] - 615.3712 + [20]
33322





I [b9] - 478.7742 ++ [21]
29570





Q [b10] - 1084.5997 + [22]
25817





T [y6] - 383.7083 ++ [23]
17187





N [b8] - 422.2322 ++ [24]
17111





I [b13] - 719.9168 ++ [25]
16661


transforming growth
K.IPSETLNR.I
465.2562++
S [y6] - 719.3682 + [1]
326570


factor-beta-induced


P [y7] - 816.4210 + [2]
168951


protein ig-h3


E [y5] - 632.3362 + [3]
102452


BGH3_HUMAN


P [b2] - 211.1441 + [4]
85885





T [y4] - 503.2936 + [5]
67650





L [y3] - 402.2459 + [6]
20939





N [y2] - 289.1619 + [7]
13979


transforming growth
R.ILGDPEALR.D
492.2796++
P [y5] - 585.3355 + [1]
1431619


factor-beta-induced


G [y7] - 757.3839 + [2]
1066060


protein ig-h3


L [b2] - 227.1754 + [3]
742225


BGH3_HUMAN


L [y8] - 870.4680 + [4]
254257





D [b4] - 399.2238 + [5]
159932





G [b3] - 284.1969 + [6]
66816





D [y6] - 700.3624 + [7]
65780





A [y3] - 359.2401 + [8]
62730





E [y4] - 488.2827 + [9]
23711





L [y2] - 288.2030 + [10]
16344


transforming growth
R.DLLNNHILK.S
360.5451+++
L [y7] - 426.2585 ++ [1]
1488651


factor-beta-induced


L [b2] - 229.1183 + [2]
591961


protein ig-h3


N [y6] - 369.7165 ++ [3]
366710


BGH3_HUMAN


N [y5] - 624.3828 + [4]
103993





L [y2] - 260.1969 + [5]
75103





N [b4] - 228.6263 ++ [6]
66125





N [y6] - 738.4257 + [7]
49493





H [y4] - 510.3398 + [8]
43681





N [y5] - 312.6950 ++ [9]
41551





I [y3] - 373.2809 + [10]
40285





L [b3] - 342.2023 + [11]
33494





L [y8] - 482.8006 ++ [12]
33034


transforming growth
K.AIISNK.D
323.2001++
I [y4] - 461.2718 + [1]
99850


factor-beta-induced


I [b2] - 185.1285 + [2]
43105


protein ig-h3


S [y3] - 348.1878 + [3]
39192


BGH3_HUMAN


N [y2] - 261.1557 + [4]
24516


transforming growth
K.DILATNGVIHYIDELLIPDSAK.T
804.1003+++
P [y5] - 517.2617 + [1]
400251


factor-beta-induced


I [b2] - 229.1183 + [2]
306709


protein ig-h3


L [b3] - 342.2023 + [3]
147923


BGH3_HUMAN


I [y6] - 630.3457 + [4]
91265





S [y3] - 305.1819 + [5]
61472





L [y7] - 743.4298 + [6]
57894





A [b4] - 413.2395 + [7]
52430





H [y13] - 757.3985 ++ [8]
30183





G [y16] - 891.9855 ++ [9]
27711





D [y10] - 1100.5834 + [10]
24979





A [y19] - 1035.0493 ++ [11]
23223





L [y8] - 856.5138 + [12]
22507





L [y20] - 1091.5913 ++ [13]
16783


transforming growth
K.TLFELAAESDVSTAIDLFR.Q
1049.5388++
D [y4] - 550.2984 + [1]
64464


factor-beta-induced


S [y8] - 922.4993 + [2]
47291


protein ig-h3


S [y11] - 1223.6266 + [3]
44234


BGH3_HUMAN


A [b6] - 675.3712 + [4]
35972





L [b5] - 604.3341 + [5]
34997





A [b7] - 746.4083 + [6]
33045





E [b4] - 491.2500 + [7]
31744





D [y10] - 1136.5946 + [8]
30183





E [b8] - 875.4509 + [9]
26475





F [y2] - 322.1874 + [10]
25044





T [y7] - 835.4672 + [11]
21596





I [y5] - 663.3824 + [12]
21011





L [y3] - 435.2714 + [13]
20295





L [b2] - 215.1390 + [14]
20295





V [y9] - 1021.5677 + [15]
18929





A [y6] - 734.4196 + [16]
17694





F [b3] - 362.2074 + [17]
14441


transforming growth
R.QAGLGNHLSGSER.L
442.5567+++
G [y9] - 478.7309 ++ [1]
180677


factor-beta-induced


L [y10] - 535.2729 ++ [2]
147807


protein ig-h3


S [y5] - 535.2471 + [3]
129825


BGH3_HUMAN


G [y11] - 563.7836 ++ [4]
84584





L [y6] - 648.3311 + [5]
51642





A [b2] - 200.1030 + [6]
26469





G [y4] - 448.2150 + [7]
26397





H [y7] - 393.1987 ++ [8]
25390





A [y12] - 599.3022 ++ [9]
21434





N [y8] - 450.2201 ++ [10]
19276


transforming growth
R.LTLLAPLNSVFK.D
658.4028++
P [y7] - 804.4614 + [1]
1635673


factor-beta-induced


A [y8] - 875.4985 + [2]
869779


protein ig-h3


L [b3] - 328.2231 + [3]
516429


BGH3_HUMAN


T [b2] - 215.1390 + [4]
415472





L [y9] - 988.5826 + [5]
334225





L [b4] - 441.3071 + [6]
209200





L [y10] - 1101.6667 + [7]
174268





A [b5] - 512.3443 + [8]
160217





A [y8] - 438.2529 ++ [9]
83264





N [y5] - 594.3246 + [10]
54512





F [y2] - 294.1812 + [11]
51649





L [y9] - 494.7949 ++ [12]
34541





L [y6] - 707.4087 + [13]
34086





S [y4] - 480.2817 + [14]
30053





T [y11] - 1202.7143 + [15]
16653


transforming growth
K.DGTPPIDAHTR.N
393.8633+++
P [y8] - 453.7432 ++ [1]
355240


factor-beta-induced


P [y7] - 405.2169 ++ [2]
88181


protein ig-h3


T [b3] - 274.1034 + [3]
81204


BGH3_HUMAN


G [b2] - 173.0557 + [4]
40062





D [y5] - 599.2896 + [5]
37689





A [y4] - 242.6350 ++ [6]
29633





P [y7] - 809.4264 + [7]
22153





I [y6] - 712.3737 + [8]
16327


transforming growth
K.YLYHGQTLETLGGK.K
527.2753+++
E [y6] - 604.3301 + [1]
483222


factor-beta-induced


Y [y12] - 652.3357 ++ [2]
264640


protein ig-h3


T [y5] - 475.2875 + [3]
239600


BGH3_HUMAN


G [y3] - 261.1557 + [4]
206272





L [b2] - 277.1547 + [5]
134992





L [y13] - 708.8777 ++ [6]
119379





T [b7] - 863.4046 + [7]
104307





L [y4] - 374.2398 + [8]
100344





H [y11] - 570.8040 ++ [9]
93318





L [y7] - 717.4141 + [10]
91276





G [b13] - 717.3566 ++ [11]
80707





T [y8] - 818.4618 + [12]
57888





Q [b6] - 762.3570 + [13]
54766





G [y10] - 1003.5419 + [14]
51523





T [b7] - 432.2060 ++ [15]
49121





G [y2] - 204.1343 + [16]
45518





T [y8] - 409.7345 ++ [17]
44437





L [y7] - 359.2107 ++ [18]
33028





T [b10] - 603.7931 ++ [19]
26902





G [b5] - 634.2984 + [20]
21858





Q [b6] - 381.6821 ++ [21]
17595





H [b4] - 577.2769 + [22]
16093





L [b8] - 488.7480 ++ [23]
15133





T [y5] - 238.1474 ++ [24]
15013





E [b9] - 553.2693 ++ [25]
12370


transforming growth
R.EGVYTVFAPTNEAFR.A
850.9176++
P [y7] - 834.4104 + [1]
364143


factor-beta-induced


F [y9] - 1052.5160 + [2]
269144


protein ig-h3


A [y8] - 905.4476 + [3]
176007


BGH3_HUMAN


V [b3] - 286.1397 + [4]
107490





V [y10] - 1151.5844 + [5]
74822





T [b5] - 550.2508 + [6]
47560





V [b6] - 649.3192 + [7]
45398





G [b2] - 187.0713 + [8]
43056





Y [b4] - 449.2031 + [9]
33148





F [b7] - 796.3876 + [10]
24440





A [b8] - 867.4247 + [11]
24020





E [y4] - 522.2671 + [12]
17174





A [y3] - 393.2245 + [13]
14712





F [y2] - 322.1874 + [14]
12611


transforming growth
R.LLGDAK.E
308.6869++
A [y2] - 218.1499 + [1]
206606


factor-beta-induced


G [y4] - 390.1983 + [2]
204445


protein ig-h3


L [y5] - 503.2824 + [3]
117829


BGH3_HUMAN


L [b2] - 227.1754 + [4]
43998


transforming growth
K.ELANILK.Y
400.7475++
A [y5] - 558.3610 + [1]
963502


factor-beta-induced


L [y2] - 260.1969 + [2]
583986


protein ig-h3


N [y4] - 487.3239 + [3]
326252


BGH3_HUMAN


I [y3] - 373.2809 + [4]
302352





I [b5] - 541.2980 + [5]
179670





L [b2] - 243.1339 + [6]
74642





L [y6] - 671.4450 + [7]
38792





N [b4] - 428.2140 + [8]
14952


transforming growth
K.YHIGDEILVSGGIGALVR.L
935.0151++
H [b2] - 301.1295 + [1]
24601


factor-beta-induced


S [y9] - 829.4890 + [2]
15456


protein ig-h3


BGH3_HUMAN


transforming growth
K.YHIGDEILVSGGIGALVR.L
623.6791+++
S [y9] - 829.4890 + [1]
917445


factor-beta-induced


G [y5] - 515.3300 + [2]
654048


protein ig-h3


I [b7] - 828.3886 + [3]
553713


BGH3_HUMAN


G [y8] - 742.4570 + [4]
467481





L [b8] - 941.4727 + [5]
322194





G [y7] - 685.4355 + [6]
228428





E [b6] - 715.3046 + [7]
199383





V [y10] - 928.5574 + [8]
141616





G [b4] - 471.2350 + [9]
126224





L [b8] - 471.2400 ++ [10]
117080





H [b2] - 301.1295 + [11]
107162





I [y6] - 628.4141 + [12]
105488





A [y4] - 458.3085 + [13]
103491





L [y3] - 387.2714 + [14]
73094





I [b3] - 414.2136 + [15]
72515





S [y9] - 415.2482 ++ [16]
65044





V [b9] - 1040.5411 + [17]
61760





V [y2] - 274.1874 + [19]
56093





I [b7] - 414.6980 ++ [18]
56093





V [b9] - 520.7742 ++ [20]
39413





L [y11] - 1041.6415 + [21]
38962





D [b5] - 586.2620 + [22]
36257





S [b10] - 564.2902 ++ [23]
32329





I [y6] - 314.7107 ++ [24]
30526





A [b15] - 741.8830 ++ [25]
27692





V [y10] - 464.7824 ++ [26]
26340





L [y11] - 521.3244 ++ [27]
20415





G [b12] - 621.3117 ++ [28]
18612





G [b12] - 1241.6161 + [29]
13073


transforming growth
K.LEVSLK.N
344.7156++
V [y4] - 446.2973 + [1]
120860


factor-beta-induced


E [y5] - 575.3399 + [2]
82786


protein ig-h3


E [b2] - 243.1339 + [3]
76794


BGH3_HUMAN


S [y3] - 347.2289 + [4]
36335





L [y2] - 260.1969 + [5]
24932


transforming growth
K.NNVVSVNK.E
437.2431++
V [y5] - 546.3246 + [1]
17073


factor-beta-induced


N [b2] - 229.0931 + [2]
14045


protein ig-h3


BGH3_HUMAN


transforming growth
R.GDELADSALEIFK.Q
704.3537++
E [b3] - 302.0983 + [1]
687754


factor-beta-induced


A [y9] - 993.5251 + [2]
431716


protein ig-h3


D [y8] - 922.4880 + [3]
368670


BGH3_HUMAN


D [b2] - 173.0557 + [4]
358545





F [y2] - 294.1812 + [5]
200930





L [b4] - 415.1823 + [6]
197364





S [y7] - 807.4611 + [7]
187412





I [y3] - 407.2653 + [8]
129601





A [b5] - 486.2195 + [9]
121605





E [y4] - 536.3079 + [10]
108432





A [y6] - 720.4291 + [11]
107627





L [y5] - 649.3919 + [12]
95662





L [y10] - 1106.6092 + [13]
79325





D [b6] - 601.2464 + [14]
42625





A [b8] - 759.3155 + [15]
28647





S [b7] - 688.2784 + [16]
20709


transforming growth
K.QASAFSR.A
383.6958++
F [y3] - 409.2194 + [1]
64604


factor-beta-induced


S [y5] - 567.2885 + [2]
60496


protein ig-h3


S [y2] - 262.1510 + [3]
42825


BGH3_HUMAN


A [y4] - 480.2565 + [4]
25211


transforming growth
R.LAPVYQK.L
409.7422++
P [y5] - 634.3559 + [1]
416225


factor-beta-induced


Y [y3] - 438.2347 + [2]
171715


protein ig-h3


V [y4] - 537.3031 + [3]
98187


BGH3_HUMAN


Q [y2] - 275.1714 + [4]
42056





A [y6] - 705.3930 + [5]
32429


ceruloplasmin
K.LISVDTEHSNIYLQNGPDR.I
724.3624+++
I [b2] - 227.1754 + [1]
168111


CERU_HUMAN


N [y5] - 558.2630 + [2]
87133





G [y4] - 444.2201 + [3]
86682





L [y7] - 799.4057 + [4]
84956





Q [y6] - 686.3216 + [5]
79928





Y [y8] - 962.4690 + [6]
64167





S [b3] - 314.2074 + [7]
39476





N [y10] - 1189.5960 + [8]
24691





P [y3] - 387.1987 + [9]
22065





I [y18] - 1029.4980 ++ [10]
20714





N [b10] - 1096.5269 + [11]
18087





I [y9] - 1075.5531 + [12]
15460


ceruloplasmin
K.ALYLQYTDETFR.T
760.3750++
Y [b3] - 348.1918 + [1]
681082


CERU_HUMAN


Y [y7] - 931.4156 + [2]
405797





Q [y8] - 1059.4742 + [3]
343430





T [y6] - 768.3523 + [4]
279638





L [b2] - 185.1285 + [5]
229654





L [y9] - 1172.5582 + [6]
164660





L [b4] - 461.2758 + [7]
142145





D [y5] - 667.3046 + [8]
107547





Y [y10] - 668.3144 ++ [9]
91862





E [y4] - 552.2776 + [10]
76852





Q [b5] - 589.3344 + [11]
75200





T [y3] - 423.2350 + [12]
64168





F [y2] - 322.1874 + [13]
47807





Y [b6] - 752.3978 + [14]
40377





L [y9] - 586.7828 ++ [15]
40227


ceruloplasmin
R.TTIEKPVWLGFLGPIIK.A
956.5690++
E [b4] - 445.2293 + [1]
92012


CERU_HUMAN


K [b5] - 573.3243 + [2]
45856





L [y9] - 957.6132 + [3]
32272





G [y8] - 844.5291 + [4]
29044





K [y13] - 734.4579 ++ [5]
26118





G [y5] - 527.3552 + [6]
24917





L [y6] - 640.4392 + [7]
19738





I [b3] - 316.1867 + [8]
18838





P [y4] - 470.3337 + [9]
18012





W [y10] - 1143.6925 + [10]
17412





I [y15] - 855.5213 ++ [11]
14785





V [b7] - 769.4454 + [12]
14710


ceruloplasmin
R.TTIEKPVWLGFLGPIIK.A
638.0484+++
G [y8] - 844.5291 + [1]
1645779


CERU_HUMAN


G [y5] - 527.3552 + [2]
1180842





L [y6] - 640.4392 + [3]
920117





T [b2] - 203.1026 + [4]
775570





F [y7] - 787.5076 + [5]
416229





P [y4] - 470.3337 + [6]
285341





W [b8] - 955.5247 + [7]
275960





I [y2] - 260.1969 + [8]
256597





V [b7] - 769.4454 + [9]
230104





E [b4] - 445.2293 + [10]
117754





W [b8] - 478.2660 ++ [11]
105521





P [y12] - 670.4105 ++ [13]
104020





P [b6] - 670.3770 + [12]
104020





G [b10] - 1125.6303 + [14]
93363





F [y7] - 394.2575 ++ [15]
76176





K [b5] - 573.3243 + [16]
63718





I [b3] - 316.1867 + [17]
52986





L [b9] - 1068.6088 + [18]
33548





I [y3] - 373.2809 + [19]
20864


ceruloplasmin
K.VYVHLK.N
379.7316++
V [y4] - 496.3242 + [1]
228979


CERU_HUMAN


Y [y5] - 659.3875 + [2]
196857





H [y3] - 397.2558 + [3]
89610





Y [b2] - 263.1390 + [4]
88034





L [y2] - 260.1969 + [5]
85482





Y [y5] - 330.1974 ++ [6]
31821


ceruloplasmin
R.IYHSHIDAPK.D
590.8091++
H [y8] - 452.7354 ++ [1]
167209


CERU_HUMAN


P [y2] - 244.1656 + [2]
84831





A [y3] - 315.2027 + [3]
78036





S [y7] - 767.4046 + [4]
75864





H [b3] - 414.2136 + [5]
67808





Y [y9] - 534.2671 ++ [6]
50296





H [y8] - 904.4635 + [7]
42801





D [b7] - 866.4155 + [8]
28721





H [y6] - 680.3726 + [9]
23817





A [b8] - 937.4526 + [10]
19964





D [y4] - 430.2296 + [11]
17653





Y [b2] - 277.1547 + [12]
16742


ceruloplasmin
R.IYHSHIDAPK.D
394.2085+++
H [y8] - 452.7354 ++ [1]
402227


CERU_HUMAN


Y [y9] - 534.2671 ++ [2]
305348





P [y2] - 244.1656 + [5]
101993





A [y3] - 315.2027 + [3]
97580





Y [b2] - 277.1547 + [4]
93377





D [y4] - 430.2296 + [6]
89734





S [y7] - 767.4046 + [7]
88263





S [y7] - 384.2060 ++ [8]
60663





I [y5] - 543.3137 + [9]
44692





H [y6] - 680.3726 + [11]
38528





A [b8] - 469.2300 ++ [10]
37547





H [b5] - 638.3045 + [12]
36146





H [b3] - 414.2136 + [13]
23467


ceruloplasmin
R.HYYIAAEEIIWNYAPSGIDIFTK.E
905.4549+++
P [y9] - 977.5302 + [1]
253794


CERU_HUMAN


E [b8] - 977.4363 + [2]
233479





Y [b2] - 301.1295 + [3]
128823





I [b9] - 1090.5204 + [4]
103955





A [y10] - 1048.5673 + [5]
78247





P [y9] - 489.2687 ++ [6]
76005





E [b8] - 489.2218 ++ [7]
76005





I [b10] - 1203.6045 + [8]
56671





F [y3] - 395.2289 + [9]
49456





Y [b3] - 464.1928 + [10]
46864





E [b7] - 848.3937 + [11]
44622





A [b5] - 648.3140 + [12]
42451





A [b6] - 719.3511 + [13]
40629





I [b4] - 577.2769 + [14]
39999





D [y5] - 623.3399 + [15]
29631





I [y4] - 508.3130 + [16]
28581





T [y2] - 248.1605 + [17]
27040





I [b10] - 602.3059 ++ [18]
24448





Y [y11] - 1211.6307 + [19]
24238





G [y7] - 793.4454 + [20]
21926





W [b11] - 695.3455 ++ [21]
18704





S [y8] - 880.4775 + [22]
18633


ceruloplasmin
R.IGGSYK.K
312.6712++
G [y5] - 511.2511 + [1]
592392


CERU_HUMAN


G [y4] - 454.2296 + [2]
89266





G [b2] - 171.1128 + [3]
71261





Y [y2] - 310.1761 + [4]
52498





S [y3] - 397.2082 + [5]
22364


ceruloplasmin
R.EYTDASFTNR.K
602.2675++
S [y5] - 624.3100 + [1]
163623


CERU_HUMAN


F [y4] - 537.2780 + [2]
83580





T [y8] - 911.4217 + [3]
83391





A [y6] - 695.3471 + [4]
82886





D [y7] - 810.3741 + [5]
76315





T [y3] - 390.2096 + [6]
66018





Y [b2] - 293.1132 + [7]
50224





N [y2] - 289.1619 + [8]
29376


ceruloplasmin
R.GPEEEHLGILGPVIWAEVGDTIR.V
829.7675+++
A [y8] - 860.4472 + [1]
259776


CERU_HUMAN


W [y9] - 1046.5265 + [2]
210032





E [y7] - 789.4101 + [3]
201448





G [y5] - 561.2991 + [4]
189809





V [y6] - 660.3675 + [5]
121142





T [y3] - 389.2507 + [6]
80306





P [b2] - 155.0815 + [7]
65806





V [b13] - 664.8459 ++ [8]
65676





G [b11] - 1132.5633 + [9]
64765





I [y10] - 1159.6106 + [10]
58783





L [b10] - 1075.5419 + [11]
56702





I [b9] - 962.4578 + [12]
54101





L [b7] - 792.3523 + [13]
48509





P [b12] - 615.3117 ++ [14]
37715





D [y4] - 504.2776 + [15]
34528





G [b8] - 849.3737 + [16]
34008





I [b14] - 721.3879 ++ [17]
23669





H [b6] - 679.2682 + [18]
22174





W [b15] - 814.4276 ++ [19]
21979





E [b3] - 284.1241 + [20]
18272





G [b11] - 566.7853 ++ [21]
17882





A [b16] - 849.9461 ++ [22]
15476


ceruloplasmin
R.VTFHNK.G
373.2032++
T [y5] - 646.3307 + [1]
178952


CERU_HUMAN


F [y4] - 545.2831 + [2]
175829





T [b2] - 201.1234 + [3]
127758





N [y2] - 261.1557 + [4]
107852





H [y3] - 398.2146 + [5]
103754


ceruloplasmin
K.GAYPLSIEPIGVR.F
686.3852++
S [y8] - 870.5043 + [1]
970541


CERU_HUMAN


P [y5] - 541.3457 + [2]
966508





P [y10] - 1080.6412 + [3]
590391





E [y6] - 670.3883 + [4]
493076





I [y7] - 783.4723 + [5]
391013





Y [b3] - 292.1292 + [6]
265598





L [y9] - 983.5884 + [7]
217591





P [b4] - 389.1819 + [8]
188839





S [b6] - 589.2980 + [9]
95623





G [y3] - 331.2088 + [10]
85605





L [b5] - 502.2660 + [11]
76628





V [y2] - 274.1874 + [12]
52365





I [b7] - 702.3821 + [13]
39225





E [b8] - 831.4247 + [14]
26866


ceruloplasmin
K.NNEGTYYSPNYNPQSR.S
952.4139++
P [y4] - 487.2623 + [1]
37339


CERU_HUMAN


S [y9] - 1062.4963 + [2]
33696





P [y8] - 975.4643 + [3]
29467





N [y5] - 601.3052 + [4]
24068





N [b2] - 229.0931 + [5]
19060





Y [y10] - 1225.5596 + [6]
16718





E [b3] - 358.1357 + [7]
16523


ceruloplasmin
R.SVPPSASHVAPTETFTYEWTVPK.E
844.4199+++
P [y2] - 244.1656 + [1]
579331


CERU_HUMAN


T [y8] - 1023.5146 + [2]
126817





W [y5] - 630.3610 + [3]
101524





V [y3] - 343.2340 + [4]
99970





Y [y7] - 922.4669 + [5]
95448





E [y6] - 759.4036 + [6]
88030





T [y4] - 444.2817 + [7]
55884





F [y9] - 1170.5830 + [8]
55743





V [b2] - 187.1077 + [9]
46982





P [y20] - 1124.5497 ++ [10]
37303





P [b3] - 284.1605 + [11]
21690





E [b18] - 951.4494 ++ [12]
18652





P [b4] - 381.2132 + [13]
16956





T [b14] - 681.3384 ++ [14]
15543


ceruloplasmin
K.GSLHANGR.Q
271.1438+++
L [y6] - 334.1854 ++ [1]
154779


CERU_HUMAN


A [y4] - 417.2205 + [2]
41628





S [y7] - 377.7014 ++ [3]
35762





H [y5] - 277.6433 ++ [4]
29542


ceruloplasmin
R.QSEDSTFYLGER.T
716.3230++
G [y3] - 361.1830 + [1]
157040


CERU_HUMAN


Y [y5] - 637.3304 + [2]
126155





F [y6] - 784.3988 + [3]
97814





L [y4] - 474.2671 + [4]
80146





T [y7] - 443.2269 ++ [5]
70746





T [y7] - 885.4465 + [6]
54844





S [y8] - 972.4785 + [7]
44101





S [b2] - 216.0979 + [8]
42193





D [y9] - 1087.5055 + [9]
36186





E [y10] - 1216.5481 + [10]
35055





E [b3] - 345.1405 + [11]
20778





E [y2] - 304.1615 + [12]
19153


ceruloplasmin
R.TYYIAAVEVEWDYSPQR.E
1045.4969++
P [y3] - 400.2303 + [1]
64887


CERU_HUMAN


Y [b3] - 428.1816 + [2]
49716





S [y4] - 487.2623 + [3]
37369





Y [b2] - 265.1183 + [4]
35596





E [y8] - 1080.4745 + [5]
28569





W [y7] - 951.4319 + [6]
26204





V [b7] - 782.4083 + [7]
23577





A [b6] - 683.3399 + [8]
23512





V [y9] - 1179.5429 + [10]
22526





D [y6] - 765.3526 + [9]
22526





V [y5] - 650.3257 + [11]
19965





A [b5] - 612.3028 + [12]
18520


ceruloplasmin
K.ELHHLQEQNVSNAFLDK.G
674.6728+++
N [y6] - 707.3723 + [1]
22715


CERU_HUMAN


L [y3] - 188.1155 ++ [2]
21336





S [y7] - 794.4043 + [3]
10176


ceruloplasmin
K.GEFYIGSK.Y
450.7267++
E [b2] - 187.0713 + [1]
53262


CERU_HUMAN


F [y6] - 714.3821 + [2]
50438





I [y4] - 404.2504 + [3]
39602





Y [y5] - 567.3137 + [4]
34020





G [y3] - 291.1663 + [5]
33100


ceruloplasmin
R.QYTDSTFR.V
509.2354++
T [y6] - 726.3417 + [1]
164056


CERU_HUMAN


S [y4] - 510.2671 + [2]
155584





D [y5] - 625.2940 + [3]
136472





T [y3] - 423.2350 + [4]
54313





F [y2] - 322.1874 + [5]
47220





Y [b2] - 292.1292 + [6]
27846





Y [y7] - 889.4050 + [7]
16550


ceruloplasmin
K.AEEEHLGILGPQLHADVGDK.V
710.0272+++
E [b2] - 201.0870 + [1]
60743


CERU_HUMAN


V [y4] - 418.2296 + [2]
23296





E [y17] - 899.9759 ++ [3]
14619


ceruloplasmin
K.LEFALLFLVFDENESWYLDDNIK.T
945.1372+++
L [y6] - 359.1925 ++ [1]
19544


CERU_HUMAN


L [b5] - 574.3235 + [2]
17902


ceruloplasmin
K.TYSDHPEK.V
488.7222++
S [y6] - 712.3260 + [1]
93810


CERU_HUMAN


P [y3] - 373.2082 + [2]
43778





Y [b2] - 265.1183 + [3]
35960





H [y4] - 510.2671 + [4]
16651


ceruloplasmin
K.TYSDHPEK.V
326.1505+++
S [y6] - 356.6667 ++ [1]
539251


CERU_HUMAN


Y [y7] - 438.1983 ++ [2]
180506





Y [b2] - 265.1183 + [3]
109445





P [y3] - 373.2082 + [4]
84742





H [y4] - 255.6372 ++ [5]
27596





P [y3] - 187.1077 ++ [6]
25016





D [y5] - 625.2940 + [7]
24000





H [y4] - 510.2671 + [8]
20795


hepatocyte growth factor
R.YEYLEGGDR.W
551.2460++
E [b2] - 293.1132 + [1]
229354


activator


Y [y7] - 809.3788 + [2]
204587


HGFA_HUMAN


L [y6] - 646.3155 + [3]
96740





Y [b3] - 456.1765 + [4]
54186





E [y8] - 938.4214 + [5]
22065


hepatocyte growth factor
R.VQLSPDLLATLPEPASPGR.Q
981.0387++
P [y8] - 810.4104 + [1]
51109


activator


Q [b2] - 228.1343 + [2]
19063


HGFA_HUMAN


hepatocyte growth factor
R.TTDVTQTFGIEK.Y
670.3406++
D [b3] - 318.1296 + [1]
104844


activator


T [y8] - 923.4833 + [2]
93287


HGFA_HUMAN


T [b2] - 203.1026 + [3]
72498





D [y10] - 1137.5786 + [4]
53886





I [y3] - 389.2395 + [5]
53811





Q [y7] - 822.4356 + [6]
42253





V [b4] - 417.1980 + [7]
38726





T [y6] - 694.3770 + [8]
36474





F [y5] - 593.3293 + [9]
26793





E [y2] - 276.1554 + [10]
24616





G [y4] - 446.2609 + [11]
22215





V [y9] - 1022.5517 + [12]
20564


hepatocyte growth factor
R.EALVPLVADHK.C
596.3402++
P [y7] - 779.4410 + [1]
57992


activator


L [b3] - 314.1710 + [2]
42740


HGFA_HUMAN


hepatocyte growth factor
R.EALVPLVADHK.C
397.8959+++
P [y7] - 390.2241 ++ [1]
502380


activator


V [y5] - 569.3042 + [2]
108586


HGFA_HUMAN


V [y8] - 439.7584 ++ [3]
100001





H [y2] - 284.1717 + [4]
71234





L [y9] - 496.3004 ++ [5]
65572





A [y4] - 470.2358 + [6]
62284


hepatocyte growth factor
R.LHKPGVYTR.V
357.5417+++
P [y6] - 692.3726 + [1]
104812


activator


H [y8] - 479.2669 ++ [2]
49302


HGFA_HUMAN


K [y7] - 410.7374 ++ [3]
30859





Y [y3] - 439.2300 + [4]
23829


hepatocyte growth factor
R.VANYVDWINDR.I
682.8333++
D [y6] - 818.3791 + [1]
132314


activator


V [y7] - 917.4476 + [2]
81805


HGFA_HUMAN


N [b3] - 285.1557 + [3]
70622





W [y5] - 703.3522 + [4]
53586





N [y3] - 404.1888 + [5]
37675





A [b2] - 171.1128 + [6]
36474


alpha-1-antichymotrypsin
R.GTHVDLGLASANVDFAFSLYK.Q
1113.0655++
L [b6] - 623.3148 + [1]
244118


AACT_HUMAN


L [b8] - 793.4203 + [2]
211429





H [b3] - 296.1353 + [3]
204581





D [b5] - 510.2307 + [4]
200032





S [y4] - 510.2922 + [5]
195904





V [b4] - 395.2037 + [6]
187415





A [b9] - 864.4574 + [7]
167905





G [b7] - 680.3362 + [8]
87564





Y [y2] - 310.1761 + [9]
74385





F [y7] - 875.4662 + [10]
50794





F [y5] - 657.3606 + [11]
44462





S [b10] - 951.4894 + [12]
43899





D [y8] - 990.4931 + [13]
39866





A [y6] - 728.3978 + [14]
33300





A [b11] - 1022.5265 + [15]
32502





L [y3] - 423.2602 + [16]
29829





V [y9] - 1089.5615 + [17]
22043





N [b12] - 1136.5695 + [18]
17353


alpha-1-antichymotrypsin
R.GTHVDLGLASANVDFAFSLYK.Q
742.3794+++
D [y8] - 990.4931 + [1]
830612


AACT_HUMAN


L [b8] - 793.4203 + [2]
635646





G [b7] - 680.3362 + [3]
582273





S [y4] - 510.2922 + [4]
548645





D [b5] - 510.2307 + [5]
471071





F [y7] - 875.4662 + [6]
420278





A [b9] - 864.4574 + [7]
411366





A [y6] - 728.3978 + [8]
391668





Y [y2] - 310.1761 + [9]
390214





F [y5] - 657.3606 + [10]
358134





T [b2] - 159.0764 + [11]
288721





H [b3] - 296.1353 + [12]
251998





L [b6] - 623.3148 + [13]
240742





V [y9] - 1089.5615 + [14]
197218





V [b4] - 395.2037 + [15]
186055





L [y3] - 423.2602 + [16]
173673





S [b10] - 951.4894 + [17]
103651





N [b12] - 1136.5695 + [18]
97976





A [b11] - 1022.5265 + [19]
76448


alpha-1-antichymotrypsin
K.FNLTETSEAEIHQSFQHLLR.T
800.7363+++
A [b9] - 993.4524 + [1]
75792


AACT_HUMAN


L [b3] - 375.2027 + [2]
59001





H [y9] - 1165.6225 + [3]
57829





L [y2] - 288.2030 + [4]
55343





T [b4] - 476.2504 + [5]
19323


alpha-1-antichymotrypsin
K.EQLSLLDR.F
487.2693++
S [y5] - 603.3461 + [1]
4247034


AACT_HUMAN


L [y3] - 403.2300 + [2]
2094711





L [y6] - 716.4301 + [3]
1465135





L [y4] - 516.3140 + [4]
1365427





Q [b2] - 258.1084 + [5]
1222196





D [y2] - 290.1459 + [6]
957403





L [b3] - 371.1925 + [7]
114810


alpha-1-antichymotrypsin
K.EQLSLLDR.F
325.1819+++
L [y3] - 403.2300 + [1]
57123


AACT_HUMAN


D [y2] - 290.1459 + [2]
52105


alpha-1-antichymotrypsin
K.YTGNASALFILPDQDK.M
876.9438++
L [y9] - 1088.5986 + [1]
39933


AACT_HUMAN


A [b5] - 507.2198 + [2]
20117





D [y4] - 505.2253 + [3]
19937


alpha-1-antichymotrypsin
R.EIGELYLPK.F
531.2975++
P [y2] - 244.1656 + [1]
8170395


AACT_HUMAN


G [y7] - 819.4611 + [2]
3338199





L [y5] - 633.3970 + [3]
2616703





L [y3] - 357.2496 + [4]
1922561





Y [y4] - 520.3130 + [5]
1527792





G [b3] - 300.1554 + [6]
1417240





I [b2] - 243.1339 + [7]
1097654





E [y6] - 762.4396 + [8]
302412





E [b4] - 429.1980 + [9]
81633





Y [b6] - 705.3454 + [10]
36795





L [b5] - 542.2821 + [11]
31993


alpha-1-antichymotrypsin
R.EIGELYLPK.F
354.5341+++
P [y2] - 244.1656 + [1]
189758


AACT_HUMAN


L [y3] - 357.2496 + [2]
86952





G [b3] - 300.1554 + [3]
49661





Y [y4] - 520.3130 + [4]
45518





E [b4] - 429.1980 + [5]
19576





I [b2] - 243.1339 + [6]
18375





L [b5] - 542.2821 + [7]
13091


alpha-1-antichymotrypsin
R.DYNLNDILLQLGIEEAFTSK.A
1148.5890++
G [y9] - 981.4888 + [1]
378153


AACT_HUMAN


F [b17] - 981.4964 ++ [2]
378153





N [b3] - 393.1405 + [3]
338897





L [y10] - 1094.5728 + [4]
283255





E [y7] - 811.3832 + [5]
180253





I [b7] - 848.3785 + [6]
172510





T [y3] - 335.1925 + [7]
162966





D [b6] - 735.2944 + [8]
135235





L [b4] - 506.2245 + [9]
131573





A [y5] - 553.2980 + [10]
129232





F [y4] - 482.2609 + [11]
124490





Y [b2] - 279.0975 + [12]
115367





L [b9] - 1074.5466 + [13]
106363





L [b8] - 961.4625 + [14]
101621





E [y6] - 682.3406 + [15]
98740





S [y2] - 234.1448 + [16]
75991





N [b5] - 620.2675 + [17]
66387





I [y8] - 924.4673 + [18]
61465


alpha-1-antichymotrypsin
R.DYNLNDILLQLGIEEAFTSK.A
766.0618+++
G [y9] - 981.4888 + [1]
309485


AACT_HUMAN


F [b17] - 981.4964 ++ [2]
309485





E [y7] - 811.3832 + [3]
262306





N [b3] - 393.1405 + [4]
212306





T [y3] - 335.1925 + [5]
199100





F [y4] - 482.2609 + [6]
164346





A [y5] - 553.2980 + [7]
161405





Y [b2] - 279.0975 + [8]
149220





E [y6] - 682.3406 + [9]
138836





L [y10] - 1094.5728 + [10]
137336





S [y2] - 234.1448 + [11]
134094





I [b7] - 848.3785 + [12]
80072





I [y8] - 924.4673 + [13]
77791





L [b4] - 506.2245 + [14]
70889





D [b6] - 735.2944 + [15]
64706





L [b8] - 961.4625 + [16]
51201





N [b5] - 620.2675 + [17]
42677





L [b9] - 1074.5466 + [18]
21609


alpha-1-antichymotrypsin
K.ADLSGITGAR.N
480.7591++
S [y7] - 661.3628 + [1]
4360743


AACT_HUMAN


G [y6] - 574.3307 + [2]
3966462





T [y4] - 404.2252 + [3]
1937824





D [b2] - 187.0713 + [4]
799907





G [y3] - 303.1775 + [5]
647883





I [y5] - 517.3093 + [6]
612145





L [b3] - 300.1554 + [7]
606995





S [b4] - 387.1874 + [8]
544408





L [y8] - 774.4468 + [9]
348247





G [b5] - 444.2089 + [10]
232083





I [b6] - 557.2930 + [11]
132531





A [y2] - 246.1561 + [12]
113896


alpha-1-antichymotrypsin
K.ADLSGITGAR.N
320.8418+++
T [y4] - 404.2252 + [1]
218597


AACT_HUMAN


G [y3] - 303.1775 + [2]
159381





G [b5] - 444.2089 + [3]
46527





A [y2] - 246.1561 + [4]
26911





D [b2] - 187.0713 + [5]
22497





S [b4] - 387.1874 + [6]
14589


alpha-1-antichymotrypsin
R.NLAVSQVVHK.A
547.8195++
L [b2] - 228.1343 + [1]
1872233


AACT_HUMAN


A [y8] - 867.5047 + [2]
1133381





A [b3] - 299.1714 + [3]
1126331





V [y7] - 796.4676 + [4]
672341





S [y6] - 697.3991 + [5]
650028





H [y2] - 284.1717 + [6]
582720





V [y3] - 383.2401 + [7]
211547





V [b4] - 398.2398 + [8]
163917





Q [y5] - 610.3671 + [9]
100778





V [y4] - 482.3085 + [10]
88456





S [b5] - 485.2718 + [11]
64488





V [b7] - 712.3988 + [12]
36045


alpha-1-antichymotrypsin
R.NLAVSQVVHK.A
365.5487+++
L [b2] - 228.1343 + [1]
1175923


AACT_HUMAN


V [y3] - 383.2401 + [2]
593693





S [y6] - 697.3991 + [3]
587502





H [y2] - 284.1717 + [4]
440259





V [y4] - 482.3085 + [5]
375955





Q [y5] - 610.3671 + [6]
349044





A [b3] - 299.1714 + [7]
339236





V [b4] - 398.2398 + [8]
172805





S [b5] - 485.2718 + [9]
84594


alpha-1-antichymotrypsin
K.AVLDVFEEGTEASAATAVK.I
954.4835++
D [b4] - 399.2238 + [1]
1225699


AACT_HUMAN


G [y11] - 1005.5211 + [2]
812780





V [b5] - 498.2922 + [3]
741243





E [y12] - 1134.5637 + [4]
651070





V [b2] - 171.1128 + [5]
634335





A [y8] - 718.4094 + [6]
416106





S [y7] - 647.3723 + [7]
360507





F [b6] - 645.3606 + [8]
293935





T [y4] - 418.2660 + [9]
281736





E [y9] - 847.4520 + [10]
247592





A [y3] - 317.2183 + [11]
246550





E [b7] - 774.4032 + [12]
234044





T [y10] - 948.4997 + [13]
221478





A [y6] - 560.3402 + [14]
212344





A [y5] - 489.3031 + [15]
195364





E [b8] - 903.4458 + [16]
183901





L [b3] - 284.1969 + [17]
176116





V [y2] - 246.1812 + [18]
157419





T [b10] - 1061.5150 + [19]
52841





E [b11] - 1190.5576 + [20]
34757





G [b9] - 960.4673 + [21]
25807


alpha-1-antichymotrypsin
K.AVLDVFEEGTEASAATAVK.I
636.6581+++
V [b2] - 171.1128 + [1]
659591


AACT_HUMAN


S [y7] - 647.3723 + [2]
630596





A [y8] - 718.4094 + [3]
509467





D [b4] - 399.2238 + [4]
353335





A [y6] - 560.3402 + [5]
306747





A [y5] - 489.3031 + [6]
280878





E [y9] - 847.4520 + [7]
247347





T [y4] - 418.2660 + [8]
197203





A [y3] - 317.2183 + [9]
128853





V [b5] - 498.2922 + [10]
120271





V [y2] - 246.1812 + [11]
115428





L [b3] - 284.1969 + [12]
102984





G [y11] - 1005.5211 + [13]
91215





F [b6] - 645.3606 + [14]
79016





E [y 12] - 1134.5637 + [15]
72947





E [b7] - 774.4032 + [16]
58358





T [y10] - 948.4997 + [17]
41071





E [b8] - 903.4458 + [18]
32918





G [b9] - 960.4673 + [19]
24275


alpha-1-antichymotrypsin
K.ITLLSALVETR.T
608.3690++
S [y7] - 775.4308 + [1]
7387615


AACT_HUMAN


T [b2] - 215.1390 + [2]
3498457





L [yS] - 888.5149 + [3]
2684639





L [b3] - 328.2231 + [4]
2164246





A [y6] - 688.3988 + [5]
2045853





L [y5] - 617.3617 + [6]
2027311





L [y9] - 1001.5990 + [7]
1949318





V [y4] - 504.2776 + [8]
1598519





T [y2] - 276.1666 + [9]
1416847





E [y3] - 405.2092 + [10]
967259





A [b6] - 599.3763 + [11]
579420





L [b4] - 441.3071 + [12]
431556





S [b5] - 528.3392 + [13]
107634





L [b7] - 712.4604 + [14]
71104





V [b8] - 811.5288 + [15]
24197


alpha-1-antichymotrypsin
K.ITLLSALVETR.T
405.9151+++
E [y3] - 405.2092 + [1]
738128


AACT_HUMAN


T [y2] - 276.1666 + [2]
368830





V [y4] - 504.2776 + [3]
328133





A [b6] - 599.3763 + [4]
132469





T [b2] - 215.1390 + [5]
126898





L [y5] - 617.3617 + [6]
124559





S [y7] - 775.4308 + [7]
54263





L [b3] - 328.2231 + [8]
37891





A [y6] - 688.3988 + [9]
29853





L [b4] - 441.3071 + [10]
25558





L [b7] - 712.4604 + [11]
13353





S [b5] - 528.3392 + [12]
12290


Pigment epithelium-
K.LAAAVSNFGYDLYR.V
780.3963++
D [b11] - 1109.5262 + [1]
136227


derived factor


F [b8] - 774.4145 + [2]
61248


PEDF_HUMAN*


N [b7] - 314.1767 ++ [3]
55532





A [y12] - 1375.6641 + [4]
53268





V [b5] - 213.6392 ++ [5]
35818





L [b12] - 1222.6103 + [6]
34918





G [b9] - 831.4359 + [7]
33934





Y [b10] - 994.4993 + [8]
32923





G [b9] - 416.2216 ++ [9]
32650





V [b5] - 426.2711 + [10]
15646





A [b2] - 185.1285 + [11]
14964





D [b11] - 555.2667 ++ [12]
13922





L [y3] - 226.1368 ++ [13]
13027





A [b4] - 327.2027 + [14]
12782





A [y12] - 688.3357 ++ [15]
12446





V [y10] - 1233.5899 + [16]
12400





A [y11] - 652.8171 ++ [17]
10793


Pigment epithelium-
K.LAAAVSNFGYDLYR.V
520.5999+++
G [y6] - 786.3781 + [1]
42885


derived factor


D [y4] - 566.2933 + [2]
32080


PEDF_HUMAN*


Y [y5] - 729.3566 + [3]
17494





L [y3] - 451.2663 + [5]
12304





Y [y2] - 338.1823 + [6]
7780


Pigment epithelium-
R.ALYYDLISSPDIHGTYK.E
652.6632+++
Y [y15] - 886.4305 ++ [1]
12278


derived factor


L [b2] - 185.1285 + [2]
7601


PEDF_HUMAN*


S [y10] - 1104.5320 + [3]
7345





Y [y14] - 804.8988 ++ [4]
5976


Pigment epithelium-
K.ELLDTVTAPQK.N
607.8350++
T [y5] - 272.6581 ++ [1]
59670


derived factor


Q [y2] - 275.1714 + [2]
11954


PEDF_HUMAN*


Pigment epithelium-
K.ELLDTVTAPQK.N
405.5591+++
L [b2] - 243.1339 + [1]
16428


derived factor


T [b7] - 386.7080 ++ [2]
7918


PEDF_HUMAN*


Q [y2] - 275.1714 + [3]
7043





T [y5] - 272.6581 ++ [4]
5237


Pigment epithelium-
K.SSFVAPLEK.S
489.2687++
A [y5] - 557.3293 + [1]
20068


derived factor


A [y5] - 279.1683 ++ [2]
5059


PEDF_HUMAN*


S [b2] - 175.0713 + [3]
4883


Pigment epithelium-
K.SSFVAPLEK.S
326.5149+++
A [y5] - 279.1683 ++ [1]
70240


derived factor


A [y5] - 557.3293 + [2]
63329


PEDF_HUMAN*


S [b2] - 175.0713 + [3]
39662





L [b7] - 351.6947 ++ [4]
5393


Pigment epithelium-
K.EIPDEISILLLGVAHFK.G
632.0277+++
P [y15] - 826.4745 ++ [1]
37871


derived factor


G [y6] - 658.3671 + [2]
20077


PEDF_HUMAN*


L [y7] - 771.4512 + [3]
8952


Pigment epithelium-
K.TSLEDFYLDEER.T
758.8437++
R [y1] - 175.1190 + [1]
8206


derived factor


D [b9] - 1084.4833 + [2]
4591


PEDF_HUMAN*


F [b6] - 693.3090 + [3]
4498


Pigment epithelium-
K.TSLEDFYLDEER.T
506.2316+++
F [b6] - 693.3090 + [1]
3526


derived factor


D [y4] - 548.2311 + [2]
3208


PEDF_HUMAN*


Pigment epithelium-
K.VTQNLTLIEESLTSEFIHDIDR.E
858.4413+++
T [b13] - 721.8905 ++ [1]
11072


derived factor


T [y17] - 1009.5075 ++ [2]
8442


PEDF_HUMAN*


D [y4] - 518.2569 + [3]
6522


Pigment epithelium-
K.TVQAVLTVPK.L
528.3266++
Q [y8] - 855.5298 + [1]
83536


derived factor


V [b2] - 201.1234 + [2]
64729


PEDF_HUMAN*


A [b4] - 200.6132 ++ [3]
58198





P [y2] - 244.1656 + [4]
43347





Q [y8] - 428.2686 ++ [5]
38398





A [y7] - 727.4713 + [6]
33770





Q [b3] - 329.1819 + [7]
17809





L [y5] - 557.3657 + [8]
17518





V [y6] - 656.4341 + [9]
17029





V [y6] - 328.7207 ++ [10]
15839





T [y4] - 444.2817 + [11]
13859





V [y3] - 343.2340 + [12]
10717





A [b4] - 400.2191 + [13]
9695


Pigment epithelium-
K.TVQAVLTVPK.L
352.5535+++
P [y2] - 244.1656 + [1]
8295


derived factor


T [y4] - 444.2817 + [2]
2986


PEDF_HUMAN*


A [b4] - 400.2191 + [3]
2848


Pigment epithelium-
K.LSYEGEVTK.S
513.2611++
V [b7] - 389.6845 ++ [1]
60831


derived factor


E [b6] - 679.2933 + [2]
34857


PEDF_HUMAN*


V [y7] - 413.2031 ++ [3]
10075





V [b7] - 778.3618 + [4]
8920





Y [b3] - 364.1867 + [5]
8008


Pigment epithelium-
K.LQSLFDSPDFSK.I
692.3432++
S [y2] - 234.1448 + [1]
49594


derived factor


L [y9] - 1055.5044 + [2]
48160


PEDF_HUMAN*


P [b8] - 888.4462 + [3]
23566





S [b7] - 791.3934 + [4]
13766





P [y5] - 297.1501 ++ [5]
12305





P [y5] - 593.2930 + [6]
10702





F [b5] - 589.3344 + [7]
8929





D [b9] - 1003.4731 + [8]
8742


Pigment epithelium-
K.LQSLFDSPDFSK.I
461.8979+++
P [y5] - 593.2930 + [1]
9154


derived factor


P [y5] - 297.1501 ++ [2]
5479


PEDF_HUMAN*


Pigment epithelium-
R.DTDTGALLFIGK.I
625.8350++
G [y2] - 204.1343 + [1]
32092


derived factor


G [y8] - 818.5135 + [2]
29707


PEDF_HUMAN*


T [b2] - 217.0819 + [4]
28172





T [b4] - 217.0819 ++ [3]
28172





F [y4] - 464.2867 + [5]
22160





D [y10] - 1034.5881 + [6]
20267





T [y9] - 919.5611 + [7]
17083





L [y6] - 690.4549 + [8]
14854





L [y5] - 577.3708 + [9]
12349





T [b4] - 433.1565 + [10]
11773





I [y3] - 317.2183 + [11]
11575





D [b3] - 332.1088 + [12]
8968





A [y7] - 761.4920 + [13]
8598





*Transition scan on Agilent 6490






Example 4. Study III to Identify and Confirm Preeclampsia Biomarkers

A further hypothesis-dependent study was performed using essentially the same methods described in the preceding Examples unless noted below. The scheduled MRM assay used in Examples 1 and 2 but now augmented with newly discovered analytes from the Example 3 and related studies was used. Less robust transitions (from the original 1708 described in Example 1) were removed to improve analytical performance and make room for the newly discovered analytes.


Thirty subjects with preeclampsia who delivered preterm (<37 weeks 0 days) were selected for analyses. Twenty-three subjects were available with isolated preeclampsia; thus, eight subjects were selected with additional findings as follows: 5 subjects with gestational diabetes, one subject with pre-existing type 2 diabetes, and one subject with chronic hypertension. Subjects were classified as having severe preeclampsia if it was indicated in the Case Report Form as severe or if the pregnancy was complicated by HELLP syndrome. All other cases were classified as mild preeclampsia. Cases were matched to term controls (>1=37 weeks 0 days) without preeclampsia at a 2:1 control-to-case ratio.


The samples were processed in 4 batches with each containing 3 HGS controls. All serum samples were depleted of the 14 most abundant serum proteins using MARS14 (Agilent), digested with trypsin, desalted, and resolubilized with reconstitution solution containing 5 internal standard peptides as described in previous examples.


The LC-MS/MS analysis was performed with an Agilent Poroshell 120 EC-C18 column (2.1×50 mm, 2.7 μm) at a flow rate of 400 μl/min and eluted with an acetonitrile gradient into an AB Sciex QTRAP5500 mass spectrometer. The sMRM assay measured 750 transitions that correspond to 349 peptides and 164 proteins. Chromatographic peaks were integrated using MultiQuant™ software (AB Sciex).


Transitions were excluded from analysis if they were missing in more than 20% of the samples. Log transformed peak areas for each transition were corrected for run order and batch effects by regression. The ability of each analyte to separate cases and controls was determined by calculating univariate AUC values from ROC curves. Ranked univariate AUC values (0.6 or greater) are reported for individual gestational age window sample sets or various combinations (Tables 12-15). Multivariate classifiers were built by Lasso and Random Forest methods. 1000 rounds of bootstrap resampling were performed and the nonzero Lasso coefficients or Random Forest Gini importance values were summed for each analyte amongst panels with AUCs of 0.85 or greater. For summed Random Forest Gini Importance values an Empirical Cumulative Distribution Function was fitted and probabilities (P) were calculated. The nonzero Lasso summed coefficients calculated from the different window combinations are shown in Tables 16-19. Summed Random Forest Gini values, with P>0.9 are found in Tables 20-22.











TABLE 12





Transition
Protein
AUC







LDFHFSSDR_375.2_611.3
INHBC_HUMAN
0.785


TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
0.763


TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
0.762


ETLLQDFR_511.3_565.3
AMBP_HUMAN
0.756


DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
0.756


DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
0.756


IQTHSTTYR_369.5_627.3
F13B_HUMAN
0.755


IQTHSTTYR_369.5_540.3
F13B_HUMAN
0.753


ETLLQDFR_511.3_322.2
AMBP_HUMAN
0.751


LDFHFSSDR_375.2_464.2
INHBC_HUMAN
0.745


HHGPTITAK_321.2_275.1
AMBP_HUMAN
0.743


VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
0.733


VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
0.732


ALALPPLGLAPLLNLWAK-
SHBG_HUMAN
0.728


PQGR_770.5_256.2




HHGPTITAK_321.2_432.3
AMBP_HUMAN
0.728


FLYHK_354.2_447.2
AMBP_HUMAN
0.722


FLYHK_354.2_284.2
AMBP_HUMAN
0.721


IALGGLLFPASNLR_481.3
SHBG_HUMAN
0.719


657.4




GDTYPAELYITGSILR_
F13B_HUMAN
0.716


885.0_274.1




VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.714


GPGEDFR_389.2_623.3
PTGDS_HUMAN
0.714


IALGGLLFPASNLR_481.3_
SHBG_HUMAN
0.712


412.3




EVFSKPISWEELLQ_852.9_
FA40A_HUMAN
0.708


260.2




FICPLTGLWPINTLK_887.0_
APOH_HUMAN
0.707


685.4




GFQALGDAADIR_617.3_717.4
TINIP1_HUMAN
0.707


DVLLLVHNLPQNLTGHIWYK_
PSG7_HUMAN
0.704


791.8_310.2




VVLSSGSGPGLDLPLVLGLPL-
SHBG_HUMAN
0.704


QLK_791.5_598.4




ATVVYQGER_511.8_652.3
APOH_HUMAN
0.702


ALALPPLGLAPLLNLWAKPQ-
SHBG_HUMAN
0.702


GR_770.5_457.3




VVLSSGSGPGLDLPLVLGLPL-
SHBG_HUMAN
0.702


QLK_791.5_768.5




DVLLLVHNLPQNLTGHIWYK_
PSG7_HUMAN
0.702


791.8_883.0




AHYDLR_387.7_566.3
FETUA_HUMAN
0.701


GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.701


FSVVYAK_407.2_579.4
FETUA_HUMAN
0.701


TLAFVR_353.7_274.2
FA7_HUMAN
0.699


IAPQLSTEELVSLGEK_857.5_
AFAM_HUMAN
0.698


533.3




HFQNLGK_422.2_527.2
AFAM_HUMAN
0.696


GDTYPAELYITGSILR_885.0_
F13B_HUMAN
0.694


922.5




FICPLTGLWPINTLK_887.0_756.9
APOH_HUMAN
0.694


EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.692


ATVVYQGER_511.8_751.4
APOH_HUMAN
0.690


ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
0.690


VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
0.687


IAQYYYTFK_598.8_395.2
F13B_HUMAN
0.685


IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
0.685


LIENGYFHPVK_439.6_627.4
F13B_HUMAN
0.684


FSVVYAK_407.2_381.2
FETUA_HUMAN
0.684


HFQNLGK_422.2_285.1
AFAM_HUMAN
0.684


AHYDLR_387.7_288.2
FETUA_HUMAN
0.684


ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.683


DADPDTFFAK_563.8_825.4
AFAM_HUMAN
0.679


DADPDTFFAK_563.8_302.1
AFAM_HUMAN
0.676


IAQYYYTFK_598.8_884.4
F13B_HUMAN
0.673


VVESLAK_373.2_646.4
IBP1_HUMAN
0.673


YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.673


GFQALGDAADIR_617.3_288.2
TINIP1_HUMAN
0.673


YTTEIIK_434.2_704.4
C1R_HUMAN
0.671


LPDTPQGLLGEAR_683.87427.2
EGLN_HUMAN
0.666


TLAFVR_353.7_492.3
FA7_HUMAN
0.666


LIENGYFHPVK_439.6_343.2
F13B_HUMAN
0.665


ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
0.665


DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
0.664


TNTNEFLIDVDK_704.85_849.5
TF_HUMAN
0.663


NTVISVNPSTK_580.3_845.5
VCAM1_HUMAN
0.662


YEFLNGR_449.7_293.1
PLMN_HUMAN
0.662


AIGLPEELIQK_605.86_856.5
FABPL_HUMAN
0.662


YTTEIIK_434.2_603.4
C1R_HUMAN
0.661


AEHPTWGDEQLFQTTR_639.3_
PGH1_HUMAN
0.658


765.4




HTLNQIDEVK_598.8_951.5
FETUA_HUMAN
0.658


HTLNQIDEVK_598.8_958.5
FETUA_HUMAN
0.656


LPNNVLQEK_527.8_730.4
AFAM_HUMAN
0.655


DPNGLPPEAQK_583.3_497.2
RET4_HUMAN
0.655


TFLTVYWTPER_706.9_401.2
ICAM1_HUMAN
0.653


TFLTVYWTPER_706.9_502.3
ICAM1_HUMAN
0.653


SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.652


FTFTLHLETPKPSISSSNLNPR_
PSG1_HUMAN
0.652


829.4_787.4




DAQYAPGYDK_564.3_813.4
CFAB_HUMAN
0.651


ALDLSLK_380.2_185.1
ITIH3_HUMAN
0.651


NCSFSIIYPVVIK_770.4_555.4
CRHBP_HUMAN
0.650


NTVISVNPSTK_580.3_732.4
VCAM1_HUMAN
0.649


IPSNPSHR_303.2_610.3
FBLN3_HUMAN
0.649


DAQYAPGYDK_564.3_315.1
CFAB_HUMAN
0.647


TLPFSR_360.7_506.3
LYAM1_HUMAN
0.647


LPNNVLQEK_527.8_844.5
AFAM_HUMAN
0.644


AALAAFNAQNNGSNFQLEEI-
FETUA_HUMAN
0.644


SR_789.1_746.4




AEHPTWGDEQLFQTTR_639.3_
PGH1_HUMAN
0.644


569.3




NNQLVAGYLQGPNVNLEEK_
LIRA_HUMAN
0.642


700.7_999.5




EHSSLAFWK_552.8_267.1
APOH_HUMAN
0.642


ALNHLPLEYNSALYSR_621.0_
CO6_HUMAN
0.641


696.4




VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
0.641


NFPSPVDAAFR_610.8_959.5
HEMO_HUMAN
0.641


WNFAYWAAHQPWSR_607.3_545.3
PRG2_HUMAN
0.638


WNFAYWAAHQPWSR_607.3_673.3
PRG2_HUMAN
0.638


TAVTANLDIR_537.3_802.4
CHL1_HUMAN
0.638


IPSNPSHR_303.2_496.3
FBLN3_HUMAN
0.637


YWGVASFLQK_599.8_849.5
RET4_HUMAN
0.637


ALDLSLK_380.2_575.3
ITIH3_HUMAN
0.636


YNSQLLSFVR_613.8_508.3
TFR1_HUMAN
0.636


EHSSLAFWK_552.8_838.4
APOH_HUMAN
0.635


YWGVASFLQK_599.8_350.2
RET4_HUMAN
0.635


ALNHLPLEYNSALYSR_621.0_
CO6_HUMAN
0.633


538.3




DLYHYITSYVVDGEIIIYGPAY-
PSG1_HUMAN
0.633


SGR_955.5_707.3




FTFTLHLETPKPSISSSNLNPR_
PSG1_HUMAN
0.633


829.4_874.4




YQISVNK_426.2_560.3
FIBB_HUMAN
0.632


YEFLNGR_449.7_606.3
PLMN_HUMAN
0.632


LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
0.631


LLEVPEGR_456.8_356.2
C1S_HUMAN
0.630


ENPAVIDFELAPIVDLVR_
CO6_HUMAN
0.630


670.7_811.5




YYLQGAK_421.7_516.3
ITIH4_HUMAN
0.630


ITGFLKPGK_320.9_301.2
LBP_HUMAN
0.629


DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.629


HELTDEELQSLFTNFANVVDK_
AFAM_HUMAN
0.629


817.1_854.4




YYLQGAK_421.7_327.1
ITIH4_HUMAN
0.628


NCSFSIIYPVVIK_770.4_831.5
CRHBP_HUMAN
0.627


FLNWIK_410.7_560.3
HABP2_HUMAN
0.627


ITGFLKPGK_320.9_429.3
LBP_HUMAN
0.627


VVESLAK_373.2_547.3
IBP1_HUMAN
0.627


NFPSPVDAAFR_610.8_775.4
HEMO_HUMAN
0.627


AEIEYLEK_497.8_552.3
LYAM1_HUMAN
0.627


ENPAVIDFELAPIVDLVR_670.7_
CO6_HUMAN
0.627


601.4




VQEVLLK_414.8_373.3
HYOU1_HUMAN
0.626


TQIDSPLSGK_523.3_703.4
VCAM1_HUMAN
0.626


VSEADSSNADWVTK_754.9_533.3
CFAB_HUMAN
0.625


DFNQFSSGEK_386.8_189.1
FETA_HUMAN
0.624


LPDTPQGLLGEAR_683.87_940.5
EGLN_HUMAN
0.623


DLYHYITSYVVDGEIIIYGPAY-
PSG1_HUMAN
0.623


SGR_955.5_650.3




FAFNLYR_465.8_712.4
HEP2_HUMAN
0.623


LLELTGPK_435.8_644.4
A1BG_HUMAN
0.623


NEIVFPAGILQAPFYTR_968.5_
ECE1_HUMAN
0.623


357.2




EFDDDTYDNDIALLQLK_
TPA_HUMAN
0.621


1014.48_501.3




FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
0.621


LLELTGPK_435.8_227.2
A1BG_HUMAN
0.621


LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
0.621


972.0_640.4




QGHNSVFLIK_381.6_520.4
HEMO_HUMAN
0.620


ILPSVPK_377.2_244.2
PGH1_HUMAN
0.620


STLFVPR_410.2_272.2
PEPD_HUMAN
0.620


TLEAQLTPR_514.8_685.4
HEP2_HUMAN
0.619


QGHNSVFLIK_381.6_260.2
HEMO_HUMAN
0.619


LSSPAVITDK_515.8_743.4
PLMN_HUMAN
0.618


LLEVPEGR_456.8_686.4
C1S_HUMAN
0.617


GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
0.617


EALVPLVADHK_397.9_390.2
HGFA_HUMAN
0.616


SFRPFVPR_335.9_272.2
LBP_HUMAN
0.616


DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.616


GSLVQASEANLQAAQDFVR_
ITIH1_HUMAN
0.616


668.7_735.4




ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
0.615


LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
0.615


972.0_798.4




ILPSVPK_377.2_227.2
PGH1_HUMAN
0.614


DIIKPDPPK_511.8_342.2
IL12B_HUMAN
0.613


QGFGNVATNTDGK_654.81_319.2
FIBB_HUMAN
0.613


AVLHIGEK_289.5_348.7
THBG_HUMAN
0.613


YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
0.613


LSSPAVITDK_515.8_830.5
PLMN_HUMAN
0.613


SFRPFVPR_335.9_635.3
LBP_HUMAN
0.613


GLQYAAQEGLLALQSELLR_
LBP_HUMAN
0.612


1037.1_858.5




VELAPLPSWQPVGK_760.9_400.3
ICAM1_HUMAN
0.612


CRPINATLAVEK_457.9_559.3
CGB1_HUMAN
0.610


GIVEECCFR_585.3_771.3
IGF2_HUMAN
0.610


AVLHIGEK_289.5_292.2
THBG_HUMAN
0.610


TLEAQLTPR_514.8_814.4
HEP2_HUMAN
0.610


SILFLGK_389.2_577.4
THBG_HUMAN
0.609


HVVQLR_376.2_614.4
IL6RA_HUMAN
0.609


TQILEWAAER_608.8_761.4
EGLN_HUMAN
0.609


NSDQEIDFK_548.3_409.2
S10A5_HUMAN
0.609


SGAQATWTELPWPHEK_
HEMO_HUMAN
0.607


613.3_510.3




EDTPNSVWEPAK_686.8_630.3
C1S_HUMAN
0.607


ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
0.607


TLPFSR_360.7_409.2
LYAM1_HUMAN
0.607


GIVEECCFR_585.3_900.3
IGF2_HUMAN
0.606


SGAQATWTELPWPHEK_
HEMO_HUMAN
0.606


613.3_793.4




VRPQQLVK_484.3_609.4
ITIH4_HUMAN
0.605


SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.605


LEEHYELR_363.5_288.2
PAI2_HUMAN
0.605


FQLPGQK_409.2_275.1
PSG1_HUMAN
0.605


IHWESASLLR_606.3_437.2
CO3_HUMAN
0.604


NAVVQGLEQPHGLVVHPLR_
LRP1_HUMAN
0.604


688.4_890.6




VTGLDFIPGLHPILTLSK_
LEP_HUMAN
0.603


641.04_771.5




YNSQLLSFVR_613.8_734.5
TFR1_HUMAN
0.603


ALVLELAK_428.8_672.4
INHBE_HUMAN
0.603


FAFNLYR_465.8_565.3
HEP2_HUMAN
0.603


VRPQQLVK_484.3_722.4
ITIH4_HUMAN
0.602


SLQAFVAVAAR_566.8_487.3
IL23A_HUMAN
0.602


AGFAGDDAPR_488.7_701.3
ACTB_HUMAN
0.601


EDTPNSVWEPAK_686.8_315.2
C1S_HUMAN
0.601


VQEVLLK_414.8_601.4
HYOU1_HUMAN
0.601


SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.601


TLFIFGVTK_513.3_215.1
PSG4_HUMAN
0.601


YNQLLR_403.7_288.2
ENOA_HUMAN
0.600


TQIDSPLSGK_523.3_816.5
VCAM1_HUMAN
0.600


















TABLE 13





Transition
Protein
AUC







LDFHFSSDR_375.2_611.3
INHBC_HUMAN
0.858


LDFHFSSDR_375.2_464.2
INHBC_HUMAN
0.838


ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.815


VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
0.789


GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
0.778


VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.778


TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
0.775


TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
0.775


DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
0.772


ETLLQDFR_511.3_565.3
AMBP_HUMAN
0.772


DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
0.769


VVESLAK_373.2_646.4
IBP1_HUMAN
0.766


FSVVYAK_407.2_381.2
FETUA_HUMAN
0.764


HHGPTITAK_321.2_275.1
AMBP_HUMAN
0.764


ETLLQDFR_511.3_322.2
AMBP_HUMAN
0.761


FLYHK_354.2_447.2
AMBP_HUMAN
0.758


GPGEDFR_389.2_623.3
PTGDS_HUMAN
0.755


HHGPTITAK_321.2_432.3
AMBP_HUMAN
0.755


VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
0.752


FLYHK_354.2_284.2
AMBP_HUMAN
0.749


FSVVYAK_407.2_579.4
FETUA_HUMAN
0.749


VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
0.749


IPSNPSHR_303.2_610.3
FBLN3_HUMAN
0.746


VVESLAK_373.2_547.3
IBP1_HUMAN
0.746


IPSNPSHR_303.2_496.3
FBLN3_HUMAN
0.746


NCSFSIIYPVVIK_770.4_555.4
CRHBP_HUMAN
0.746


GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
0.744


IQTHSTTYR_369.5_627.3
F13B_HUMAN
0.744


AALAAFNAQNNGSNFQLEE-
FETUA_HUMAN
0.738


ISR_789.1_746.4




AHYDLR_387.7_566.3
FETUA_HUMAN
0.738


IQTHSTTYR_369.5_540.3
F13B_HUMAN
0.738


AIGLPEELIQK_605.86_856.5
FABPL_HUMAN
0.735


ATVVYQGER_511.8_751.4
APOH_HUMAN
0.735


FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
0.735


FICPLTGLWPINTLK_887.0_756.9
APOH_HUMAN
0.735


HTLNQIDEVK_598.8_958.5
FETUA_HUMAN
0.735


AQETSGEEISK_589.8_979.5
IBM_HUMAN
0.732


DSPSVWAAVPGK_607.31_301.2
PROF1_HUMAN
0.732


GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.732


ATVVYQGER_511.8_652.3
APOH_HUMAN
0.729


NFPSPVDAAFR_610.8_959.5
HEMO_HUMAN
0.729


LIENGYFHPVK_439.6_627.4
F13B_HUMAN
0.726


AHYDLR_387.7_288.2
FETUA_HUMAN
0.726


ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
0.724


ETPEGAEAKPWYEPIYLGGVFQ-
TNFA_HUMAN
0.724


LEK_951.14_877.5




ALDLSLK_380.2_185.1
ITIH3_HUMAN
0.721


IHWESASLLR_606.3_437.2
CO3_HUMAN
0.721


DAQYAPGYDK_564.3_813.4
CFAB_HUMAN
0.718


NFPSPVDAAFR_610.8_775.4
HEMO_HUMAN
0.718


AVGYLITGYQR_620.8_523.3
PZP_HUMAN
0.715


AVGYLITGYQR_620.8_737.4
PZP_HUMAN
0.712


DIPHWLNPTR_416.9_600.3
PAPP1_HUMAN
0.712


ALDLSLK_380.2_575.3
ITIH3_HUMAN
0.709


IEGNLIFDPNNYLPK_874.0_845.5
APOB_HUMAN
0.709


LIENGYFHPVK_439.6_343.2
F13B_HUMAN
0.709


QTLSWTVTPK_580.8_818.4
PZP_HUMAN
0.709


DAQYAPGYDK_564.3_315.1
CFAB_HUMAN
0.707


GLQYAAQEGLLALQSELLR_
LBP_HUMAN
0.707


1037.1_858.5




IEGNLIFDPNNYLPK_874.0_414.2
APOB_HUMAN
0.707


IQHPFTVEEFVLPK_562.0_861.5
PZP_HUMAN
0.707


QTLSWTVTPK_580.8_545.3
PZP_HUMAN
0.707


VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
0.707


ILPSVPK_377.2_244.2
PGH1_HUMAN
0.704


IQHPFTVEEFVLPK_562.0_603.4
PZP_HUMAN
0.704


NCSFSIIYPVVIK_770.4_831.5
CRHBP_HUMAN
0.704


YNSQLLSFVR_613.8_508.3
TFR1_HUMAN
0.704


HTLNQIDEVK_598.8_951.5
FETUA_HUMAN
0.701


NEIWYR_440.7_637.4
FA12_HUMAN
0.701


QGHNSVFLIK_381.6_260.2
HEMO_HUMAN
0.701


YTTEIIK_434.2_603.4
C1R_HUMAN
0.701


STLFVPR_410.2_272.2
PEPD_HUMAN
0.699


EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
0.698


TGISPLALIK_506.8_741.5
APOB_HUMAN
0.698


TSESGELHGLTTEEEFVEGI-
TTHY_HUMAN
0.698


YK_819.06_310.2




AEHPTWGDEQLFQTTR_639.3_
PGH1_HUMAN
0.695


569.3




AEHPTWGDEQLFQTTR_639.3_
PGH1_HUMAN
0.695


765.4




HFQNLGK_422.2_527.2
AFAM_HUMAN
0.695


SVSLPSLDPASAK_636.4_473.3
APOB_HUMAN
0.695


ILPSVPK_377.2_227.2
PGH1_HUMAN
0.692


LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
0.692


972.0_640.4




QGHNSVFLIK_381.6_520.4
HEMO_HUMAN
0.692


TGISPLALIK_506.8_654.5
APOB_HUMAN
0.692


Transition
Protein
AUC


YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.692


ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
0.689


IHWESASLLR_606.3_251.2
CO3_HUMAN
0.689


LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
0.689


972.0_798.4




ALALPPLGLAPLLNLWAKP-
SHBG_HUMAN
0.687


QGR_770.5_256.2




ALNFGGIGVVVGHELTHAFDD-
ECE1_HUMAN
0.687


QGR_837.1_299.2




AQETSGEEISK_589.8_850.4
IBM_HUMAN
0.687


GVTGYFTFNLYLK_508.3_683.9
PSG5_HUMAN
0.687


ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
0.687


LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
0.687


SVSLPSLDPASAK_636.4_885.5
APOB_HUMAN
0.687


TLAFVR_353.7_274.2
FA7_HUMAN
0.687


YTTEIIK_434.2_704.4
C1R_HUMAN
0.687


EFDDDTYDNDIALLQLK_
TPA_HUMAN
0.684


1014.4_388.3




IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
0.684


DFNQFSSGEK_386.8_189.1
FETA_HUMAN
0.681


EHSSLAFWK_552.8_838.4
APOH_HUMAN
0.681


ELPQSIVYK_538.8_409.2
FBLN3_HUMAN
0.681


ITGFLKPGK_320.9_301.2
LBP_HUMAN
0.681


ITGFLKPGK_320.9_429.3
LBP_HUMAN
0.681


AFQVWSDVTPLR_709.88_385.3
MMP2_HUMAN
0.678


GLQYAAQEGLLALQSELLR_
LBP_HUMAN
0.678


1037.1_929.5




HYINLITR_515.3_301.1
NPY_HUMAN
0.678


NAVVQGLEQPHGLVVHPLR_
LRP1_HUMAN
0.675


688.4_890.6




WWGGQPLWITATK_772.4_
ENPP2_HUMAN
0.675


929.5




YNQLLR_403.7_288.2
ENOA_HUMAN
0.675


LDGSTHLNIFFAK_488.3_852.5
PAPP1_HUMAN
0.672


VVGGLVALR_442.3_784.5
FA12_HUMAN
0.672


WNFAYWAAHQPWSR_607.3_
PRG2_HUMAN
0.672


673.3




NHYTESISVAK_624.8_252.1
NEUR1_HUMAN
0.670


NSDQEIDFK_548.3_409.2
S10A5_HUMAN
0.670


SGAQATWTELPWPHEK_613.3_
HEMO_HUMAN
0.670


510.3




WNFAYWAAHQPWSR_607.3_
PRG2_HUMAN
0.670


545.3




SFRPFVPR_335.9_272.2
LBP_HUMAN
0.670


AFQVWSDVTPLR_709.88_347.2
MMP2_HUMAN
0.667


DADPDTFFAK_563.8_825.4
AFAM_HUMAN
0.667


EHSSLAFWK_552.8_267.1
APOH_HUMAN
0.667


ITENDIQIALDDAK_779.9_632.3
APOB_HUMAN
0.667


ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
0.667


VQEVLLK_414.8_373.3
HYOU1_HUMAN
0.667


VSFSSPLVAISGVALR_802.0_715.4
PAPP1_HUMAN
0.667


HFQNLGK_422.2_285.1
AFAM_HUMAN
0.664


ITENDIQIALDDAK_779.9_873.5
APOB_HUMAN
0.664


ALQDQLVLVAAK_634.9_289.2
ANGT_HUMAN
0.661


Transition
Protein
AUC


DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.661


DLHLSDVFLK_396.2_366.2
CO6_HUMAN
0.661


TAVTANLDIR_537.3_802.4
CHL1_HUMAN
0.661


DADPDTFFAK_563.8_302.1
AFAM_HUMAN
0.658


DPTFIPAPIQAK433.2_461.2
ANGT_HUMAN
0.658


FAFNLYR_465.8_712.4
HEP2_HUMAN
0.658


IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
0.658


IAQYYYTFK_598.8_395.2
F13B_HUMAN
0.658


LPNNVLQEK_527.8_730.4
AFAM_HUMAN
0.658


SLDFTELDVAAEK_719.4_874.5
ANGT_HUMAN
0.658


VELAPLPSWQPVGK_760.9_400.3
ICAM1_HUMAN
0.658


DIIKPDPPK_511.8_342.2
IL12B_HUMAN
0.655


EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.655


LSETNR_360.2_330.2
PSG1_HUMAN
0.655


NEIWYR_440.7_357.2
FA12_HUMAN
0.655


SFRPFVPR_335.9_635.3
LBP_HUMAN
0.655


SGAQATWTELPWPHEK_613.3_
HEMO_HUMAN
0.655


793.4




TGAQELLR_444.3_530.3
GELS_HUMAN
0.655


VSEADSSNADWVTK_754.9_
CFAB_HUMAN
0.655


533.3




VVGGLVALR_442.3_685.4
FA12_HUMAN
0.655


DISEVVTPR_508.3_787.4
CFAB_HUMAN
0.652


IHPSYTNYR_575.8_598.3
PSG2_HUMAN
0.652


VSFSSPLVAISGVALR_802.0_
PAPP1_HUMAN
0.652


602.4




YNQLLR_403.7_529.3
ENOA_HUMAN
0.652


ALQDQLVLVAAK_634.9_956.6
ANGT_HUMAN
0.650


IHPSYTNYR_575.8_813.4
PSG2_HUMAN
0.650


TFLTVYWTPER_706.9_401.2
ICAM1_HUMAN
0.650


VQEVLLK_414.8_601.4
HYOU1_HUMAN
0.650


GDTYPAELYITGSILR_885.0_274.1
F13B_HUMAN
0.647


GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
0.647


SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
0.647


VVLSSGSGPGLDLPLVLGLPL-
SHBG_HUMAN
0.647


QLK_791.5_598.4




YEFLNGR_449.7_293.1
PLMN_HUMAN
0.647


AQPVQVAEGSEPDGFWEALGG-
GELS_HUMAN
0.644


K_758.0_623.4




FLNWIK_410.7_561.3
HABP2_HUMAN
0.644


IAPQLSTEELVSLGEK_857.5_
AFAM_HUMAN
0.644


533.3




NTVISVNPSTK_580.3_732.4
VCAM1_HUMAN
0.644


SFEGLGQLEVLTLDHNQLQEV-
ALS_HUMAN
0.644


K_833.1_503.3




TFLTVYWTPER_706.9_502.3
ICAM1_HUMAN
0.644


AGFAGDDAPR_488.7_701.3
ACTB_HUMAN
0.641


AIGLPEELIQK_605.86_355.2
FABPL_HUMAN
0.641


DISEVVTPR_508.3_472.3
CFAB_HUMAN
0.641


DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
0.641


ENPAVIDFELAPIVDLVR_670.7_
CO6_HUMAN
0.641


811.5




FAFNLYR_465.8_565.3
HEP2_HUMAN
0.641


IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
0.641


TNTNEFLIDVDK_704.85_849.5
TF_HUMAN
0.639


DVLLLVHNLPQNLTGHIWYK_
PSG7_HUMAN
0.638


791.8_883.0




LDGSTHLNIFFAK_488.3_739.4
PAPP1_HUMAN
0.638


LPDTPQGLLGEAR_683.87_940.5
EGLN_HUMAN
0.638


VVLSSGSGPGLDLPLVLGLPL-
SHBG_HUMAN
0.638


QLK_791.5_768.5




ALALPPLGLAPLLNLWAKPQ-
SHBG_HUMAN
0.635


GR_770.5_457.3




LPNNVLQEK_527.8_844.5
AFAM_HUMAN
0.635


QINSYVK_426.2_496.3
CBG_HUMAN
0.635


QINSYVK_426.2_610.3
CBG_HUMAN
0.635


TGAQELLR_444.3_658.4
GELS_HUMAN
0.635


TLEAQLTPR_514.8_685.4
HEP2_HUMAN
0.635


WILTAAHTLYPK_471.9_621.4
C1R_HUMAN
0.635


SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.632


AGFAGDDAPR_488.7_630.3
ACTB_HUMAN
0.632


DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.632


DVLLLVHNLPQNLTGHIWYK_
PSG7_HUMAN
0.632


791.8_310.2




NKPGVYTDVAYYLAWIR_
FA12_HUMAN
0.632


677.0_545.3




SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.632


YNSQLLSFVR_613.8_734.5
TFR1_HUMAN
0.632


ALVLELAK_428.8_672.4
INHBE_HUMAN
0.630


ENPAVIDFELAPIVDLVR_
CO6_HUMAN
0.630


670.7_601.4




NNQLVAGYLQGPNVNLEE-
IL1RA_HUMAN
0.630


K_700.7_999.5




WGAAPYR_410.7_577.3
PGRP2_HUMAN
0.630


HELTDEELQSLFTNFANV-
AFAM_HUMAN
0.627


VDK_817.1_854.4




AKPALEDLR_506.8_288.2
AP0A1_HUMAN
0.624


AVLHIGEK_289.5_348.7
THBG_HUMAN
0.624


EDTPNSVWEPAK_686.8_630.3
C1S_HUMAN
0.624


SPELQAEAK_486.8_788.4
APOA2_HUMAN
0.624


YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
0.624


NEIVFPAGILQAPFYTR_968.5_
ECE1_HUMAN
0.621


456.2




TAVTANLDIR_537.3_288.2
CHL1_HUMAN
0.621


WWGGQPLWITATK_772.4_373.2
ENPP2_HUMAN
0.621


AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
0.618


ALNFGGIGVVVGHELTHAFDD-
ECE1_HUMAN
0.618


QGR_837.1_360.2




ALNHLPLEYNSALYSR_621.0_
CO6_HUMAN
0.618


696.4




FNAVLTNPQGDYDTSTGK_
C1QC_HUMAN
0.618


964.5_262.1




GDTYPAELYITGSILR_885.0_922.5
F13B_HUMAN
0.618


IAQYYYTFK_598.8_884.4
F13B_HUMAN
0.618


LEQGENVFLQATDK_796.4_822.4
C1QB_HUMAN
0.618


LSITGTYDLK_555.8_696.4
A1AT_HUMAN
0.618


NTVISVNPSTK_580.3_845.5
VCAM1_HUMAN
0.618


TLAFVR_353.7_492.3
FA7_HUMAN
0.618


TLEAQLTPR_514.8_814.4
HEP2_HUMAN
0.618


TQIDSPLSGK_523.3_703.4
VCAM1_HUMAN
0.618


AVLHIGEK_289.5_292.2
THBG_HUMAN
0.615


FLIPNASQAESK_652.8_931.4
1433Z_HUMAN
0.615


FNAVLTNPQGDYDTSTGK_964.5_
C1QC_HUMAN
0.615


333.2




FQSVFTVTR_542.8_722.4
C1QC_HUMAN
0.615


INPASLDK_429.2_630.4
C163A_HUMAN
0.615


IPKPEASFSPR_410.2_506.3
ITIH4_HUMAN
0.615


ITQDAQLK_458.8_803.4
CBG_HUMAN
0.615


TSYQVYSK_488.2_397.2
C163A_HUMAN
0.615


WGAAPYR_410.7_634.3
PGRP2_HUMAN
0.615


AVDIPGLEAATPYR_736.9_286.1
TENA_HUMAN
0.613


DVLLLVHNLPQNLPGYFWYK_
PSG9_HUMAN
0.613


810.4_328.2




SFEGLGQLEVLTLDHNQLQE-
ALS_HUMAN
0.613


VK_833.1_662.8




TASDFITK_441.7_710.4
GELS_HUMAN
0.613


AGPLQAR_356.7_584.4
DEF4_HUMAN
0.610


DYWSTVK_449.7_347.2
APOC3_HUMAN
0.610


FQSVFTVTR_542.79_623.4
C1QC_HUMAN
0.610


FQSVFTVTR_542.79_722.4
C1QC_HUMAN
0.610


SYTITGLQPGTDYK_772.4_352.2
FINC_HUMAN
0.610


FQLSETNR_497.8_476.3
PSG2_HUMAN
0.607


IPKPEASFSPR_410.2_359.2
ITIH4_HUMAN
0.607


LIEIANHVDK_384.6_498.3
ADA12_HUMAN
0.607


SILFLGK_389.2_201.1
THBG_HUMAN
0.607


SLLQPNK_400.2_358.2
CO8A_HUMAN
0.607


VFQFLEK_455.8_811.4
COS_HUMAN
0.607


VPGLYYFTYHASSR_554.3_720.3
C1QB_HUMAN
0.607


VSAPSGTGHLPGLNPL_506.3_860.5
PSG3_HUMAN
0.607


AGITIPR_364.2_486.3
IL17_HUMAN
0.604


FLIPNASQAESK_652.8_261.2
1433Z_HUMAN
0.604


FQSVFTVTR_542.8_623.4
C1QC_HUMAN
0.604


IRPFFPQQ_516.79_661.4
FIBB_HUMAN
0.604


LLELTGPK_435.8_644.4
A1BG_HUMAN
0.604


SETEIHQGFQHLHQLFAK_717.4_
CBG_HUMAN
0.604


318.1




SILFLGK_389.2_577.4
THBG_HUMAN
0.604


STLFVPR_410.2_518.3
PEPD_HUMAN
0.604


TEQAAVAR_423.2_487.3
FA12_HUMAN
0.604


EDTPNSVWEPAK_686.8_315.2
C1S_HUMAN
0.601


FLNWIK_410.7_560.3
HABP2_HUMAN
0.601


ITQDAQLK_458.8_702.4
CBG_HUMAN
0.601


SPELQAEAK_486.8_659.4
APOA2_HUMAN
0.601


TLLPVSKPEIR_418.3_288.2
COS_HUMAN
0.601


VFQFLEK_455.8_276.2
COS_HUMAN
0.601


YGLVTYATYPK_638.3_843.4
CFAB_HUMAN
0.601
















TABLE 14







Univariate AUC values early-middle combined windows









Transition
Protein
AUC





LDFHFSSDR_375.2_611.3
INHBC_HUMAN
0.809


ETLLQDFR_511.3_565.3
AMBP_HUMAN
0.802


HHGPTITAK_321.2_275.1
AMBP_HUMAN
0.801


ATVVYQGER_511.8_652.3
APOH_HUMAN
0.799


ETLLQDFR_511.3_322.2
AMBP_HUMAN
0.796


ATVVYQGER_511.8_751.4
APOH_HUMAN
0.795


HHGPTITAK_321.2_432.3
AMBP_HUMAN
0.794


TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
0.791


AHYDLR_387.7_566.3
FETUA_HUMAN
0.789


TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
0.787


FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
0.785


VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
0.783


AHYDLR_387.7_288.2
FETUA_HUMAN
0.781


ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
0.780


FSVVYAK_407.2_381.2
FETUA_HUMAN
0.777


IQTHSTTYR_369.5_627.3
F13B_HUMAN
0.777


DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
0.774


FICPLTGLWPINTLK_887.0_756.9
APOH_HUMAN
0.773


DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
0.771


FSVVYAK_407.2_579.4
FETUA_HUMAN
0.770


IQTHSTTYR_369.5_540.3
F13B_HUMAN
0.769


LDFHFSSDR_375.2_464.2
INHBC_HUMAN
0.769


TLAFVR_353.7_274.2
FA7_HUMAN
0.769


FLYHK_354.2_447.2
AMBP_HUMAN
0.766


VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
0.762


AIGLPEELIQK_605.86_856.5
FABPL_HUMAN
0.752


FLYHK_354.2_284.2
AMBP_HUMAN
0.752


ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
0.751


ETPEGAEAKPWYEPIYLGGVFQ-
TNFA_HUMAN
0.751


LEK_951.14_877.5




HFQNLGK_422.2_527.2
AFAM_HUMAN
0.749


LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
0.749


972.0_640.4




LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
0.747


972.0_798.4




IAPQLSTEELVSLGEK_857.5_
AFAM_HUMAN
0.745


533.3




HFQNLGK_422.2_285.1
AFAM_HUMAN
0.740


NNQLVAGYLQGPNVNLEEK_
IL1RA_HUMAN
0.738


700.7_999.5




VVESLAK_373.2_646.4
IBM_HUMAN
0.738


IAPQLSTEELVSLGEK_857.5_
AFAM_HUMAN
0.737


333.2




IALGGLLFPASNLR_481.3_
SHBG_HUMAN
0.734


657.4




ALALPPLGLAPLLNLWAKPQGR_
SHBG_HUMAN
0.731


770.5_256.2




ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.724


TFLTVYWTPER_706.9_401.2
ICAM1_HUMAN
0.723


GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
0.717


DVLLLVHNLPQNLTGHIWYK_
PSG7_HUMAN
0.716


791.8_310.2




WNFAYWAAHQPWSR_607.3_545.3
PRG2_HUMAN
0.716


YTTEIIK_434.2_603.4
C1R_HUMAN
0.716


YTTEIIK_434.2_704.4
C1R_HUMAN
0.716


DIPHWLNPTR_416.9_600.3
PAPP1_HUMAN
0.715


WNFAYWAAHQPWSR_607.3_673.3
PRG2_HUMAN
0.715


IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
0.713


VVLSSGSGPGLDLPLVLGLPLQ-
SHBG_HUMAN
0.713


LK_791.5_598.4




GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
0.711


VVLSSGSGPGLDLPLVLGLPL-
SHBG_HUMAN
0.711


QLK_791.5_768.5




DVLLLVHNLPQNLTGHIWYK_
PSG7_HUMAN
0.708


791.8_883.0




YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.706


AEHPTWGDEQLFQTTR_639.3_765.4
PGH1_HUMAN
0.705


VVESLAK_373.2_547.3
IBM_HUMAN
0.705


DADPDTFFAK_563.8_825.4
AFAM_HUMAN
0.704


DAQYAPGYDK_564.3_813.4
CFAB_HUMAN
0.704


GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
0.704


AEHPTWGDEQLFQTTR_639.3_569.3
PGH1_HUMAN
0.702


NFPSPVDAAFR_610.8_959.5
HEMO_HUMAN
0.702


ALALPPLGLAPLLNLWAKPQ-
SHBG_HUMAN
0.701


GR_770.5_457.3




GVTGYFTFNLYLK_508.3_683.9
PSG5_HUMAN
0.701


DFNQFSSGEK_386.8_189.1
FETA_HUMAN
0.699


GDTYPAELYITGSILR_885.0_274.1
F13B_HUMAN
0.699


TLEAQLTPR_514.8_685.4
HEP2_HUMAN
0.699


VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
0.699


DAQYAPGYDK_564.3_315.1
CFAB_HUMAN
0.698


VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
0.698


ILPSVPK_377.2_244.2
PGH1_HUMAN
0.695


DADPDTFFAK_563.8_302.1
AFAM_HUMAN
0.694


EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
0.694


HTLNQIDEVK_598.8_958.5
FETUA_HUMAN
0.694


NFPSPVDAAFR_610.8_775.4
HEMO_HUMAN
0.694


VSFSSPLVAISGVALR_802.0_715.4
PAPP1_HUMAN
0.694


TLAFVR_353.7_492.3
FA7_HUMAN
0.693


ILPSVPK_377.2_227.2
PGH1_HUMAN
0.691


LLEVPEGR_456.8_356.2
C1S_HUMAN
0.691


TLEAQLTPR_514.8_814.4
HEP2_HUMAN
0.691


IPSNPSHR_303.2_610.3
FBLN3_HUMAN
0.690


LPNNVLQEK_527.8_730.4
AFAM_HUMAN
0.690


NCSFSIIYPVVIK_770.4_555.4
CRHBP_HUMAN
0.690


NCSFSIIYPVVIK_770.4_831.5
CRHBP_HUMAN
0.690


VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.690


ALDLSLK_380.2_185.1
ITIH3_HUMAN
0.688


IHWESASLLR_606.3_437.2
CO3_HUMAN
0.688


IPSNPSHR_303.2_496.3
FBLN3_HUMAN
0.688


LDGSTHLNIFFAK_488.3_852.5
PAPP1_HUMAN
0.687


QGHNSVFLIK_381.6_260.2
HEMO_HUMAN
0.687


AVLHIGEK_289.5_348.7
THBG_HUMAN
0.686


VSEADSSNADWVTK_754.9_533.3
CFAB_HUMAN
0.686


TNTNEFLIDVDK_704.85_849.5
TF_HUMAN
0.685


AVLHIGEK_289.5_292.2
THBG_HUMAN
0.683


HTLNQIDEVK_598.8_951.5
FETUA_HUMAN
0.683


VSFSSPLVAISGVALR_802.0_602.4
PAPP1_HUMAN
0.683


IAQYYYTFK_598.8_395.2
F13B_HUMAN
0.681


ALDLSLK_380.2_575.3
ITIH3_HUMAN
0.680


LLEVPEGR_456.8_686.4
C1S_HUMAN
0.680


QGHNSVFLIK_381.6_520.4
HEMO_HUMAN
0.680


SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.680


SFRPFVPR_335.9_272.2
LBP_HUMAN
0.680


AFQVWSDVTPLR_709.88_385.3
MMP2_HUMAN
0.679


FAFNLYR_465.8_712.4
HEP2_HUMAN
0.679


IAQYYYTFK_598.8_884.4
F13B_HUMAN
0.679


ITGFLKPGK_320.9_429.3
LBP_HUMAN
0.679


EHSSLAFWK_552.8_838.4
APOH_HUMAN
0.677


GLQYAAQEGLLALQSELLR_
LBP_HUMAN
0.676


1037.1_858.5




YYLQGAK_421.7_327.1
ITIH4_HUMAN
0.676


LIENGYFHPVK_439.6_627.4
F13B_HUMAN
0.675


SFRPFVPR_335.9_635.3
LBP_HUMAN
0.675


AALAAFNAQNNGSNFQLEEISR_
FETUA_HUMAN
0.674


789.1_746.4




ITGFLKPGK_320.9_301.2
LBP_HUMAN
0.673


VQEVLLK_414.8_373.3
HYOU1_HUMAN
0.673


YNSQLLSFVR_613.8_508.3
TFR1_HUMAN
0.673


EHSSLAFWK_552.8_267.1
APOH_HUMAN
0.672


FAFNLYR_465.8_565.3
HEP2_HUMAN
0.672


GDTYPAELYITGSILR_885.0_922.5
F13B_HUMAN
0.672


ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
0.672


NSDQEIDFK_548.3_409.2
S10A5_HUMAN
0.672


TAVTANLDIR_537.3_802.4
CHL1_HUMAN
0.672


YYLQGAK_421.7_516.3
ITIH4_HUMAN
0.672


ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
0.670


AIGLPEELIQK_605.86_355.2
FABPL_HUMAN
0.669


ALNFGGIGVVVGHELTHAFDD-
ECE1_HUMAN
0.668


QGR_837.1_299.2




AQETSGEEISK_589.8_979.5
IBP1_HUMAN
0.668


LPNNVLQEK_527.8_844.5
AFAM_HUMAN
0.668


TGISPLALIK_506.8_654.5
APOB_HUMAN
0.666


DFHINLFQVLPWLK_885.5_543.3
CFAB_HUMAN
0.665


VQEVLLK_414.8_601.4
HYOU1_HUMAN
0.665


YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
0.665


CRPINATLAVEK_457.9_559.3
CGB1_HUMAN
0.663


LDGSTHLNIFFAK_488.3_739.4
PAPP1_HUMAN
0.663


TGISPLALIK_506.8_741.5
APOB_HUMAN
0.663


EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.662


SLDFTELDVAAEK_719.4_874.5
ANGT_HUMAN
0.662


TFLTVYWTPER_706.9_502.3
ICAM1_HUMAN
0.662


VRPQQLVK_484.3_609.4
ITIH4_HUMAN
0.662


GLQYAAQEGLLALQSELLR_
LBP_HUMAN
0.661


1037.1_929.5




NAVVQGLEQPHGLVVHPLR_
LRP1_HUMAN
0.661


688.4_890.6




SILFLGK_389.2_201.1
THBG_HUMAN
0.661


DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.659


IHWESASLLR_606.3_251.2
CO3_HUMAN
0.659


SILFLGK_389.2_577.4
THBG_HUMAN
0.658


SVSLPSLDPASAK_636.4_473.3
APOB_HUMAN
0.658


WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.658


LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
0.657


DFHINLFQVLPWLK_885.5_400.2
CFAB_HUMAN
0.657


YSHYNER_323.48_418.2
HABP2_HUMAN
0.657


STLFVPR_410.2_272.2
PEPD_HUMAN
0.656


AFQVWSDVTPLR_709.88_347.2
MMP2_HUMAN
0.655


FQSVFTVTR_542.8_722.4
C1QC_HUMAN
0.655


GPGEDFR_389.2_623.3
PTGDS_HUMAN
0.655


LEEHYELR_363.5_288.2
PAI2_HUMAN
0.655


LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
0.655


FQSVFTVTR_542.79_722.4
C1QC_HUMAN
0.654


FTFTLHLETPKPSISSSNLNPR_
PSG1_HUMAN
0.654


829.4_787.4




NHYTESISVAK_624.8_252.1
NEUR1_HUMAN
0.654


YSHYNER_323.48_581.3
HABP2_HUMAN
0.654


FQSVFTVTR_542.79_623.4
C1QC_HUMAN
0.652


IEGNLIFDPNNYLPK_874.0_845.5
APOB_HUMAN
0.652


VRPQQLVK_484.3_722.4
ITIH4_HUMAN
0.652


WILTAAHTLYPK_471.9_621.4
C1R_HUMAN
0.652


ITQDAQLK_458.8_803.4
CBG_HUMAN
0.651


SVSLPSLDPASAK_636.4_885.5
APOB_HUMAN
0.651


ESDTSYVSLK_564.8_347.2
CRP_HUMAN
0.650


ESDTSYVSLK_564.8_696.4
CRP_HUMAN
0.650


FQSVFTVTR_542.8_623.4
C1QC_HUMAN
0.650


HELTDEELQSLFTNFANVVDK_
AFAM_HUMAN
0.650


817.1_854.4




IEGNLIFDPNNYLPK_874.0_414.2
APOB_HUMAN
0.650


DIIKPDPPK_511.8_342.2
IL12B_HUMAN
0.648


SPELQAEAK_486.8_788.4
APOA2_HUMAN
0.648


VELAPLPSWQPVGK_760.9_400.3
ICAM1_HUMAN
0.648


AQETSGEEISK_589.8_850.4
IBM_HUMAN
0.647


QTLSWTVTPK_580.8_545.3
PZP_HUMAN
0.647


DISEVVTPR_508.3_787.4
CFAB_HUMAN
0.645


DVLLLVHNLPQNLPGYFWYK_
PSG9_HUMAN
0.645


810.4_328.2




QTLSWTVTPK_580.8_818.4
PZP_HUMAN
0.645


SGAQATWTELPWPHEK_613.3_510.3
HEMO_HUMAN
0.645


SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
0.645


AVGYLITGYQR_620.8_523.3
PZP_HUMAN
0.644


DISEVVTPR_508.3_472.3
CFAB_HUMAN
0.644


FLNWIK_410.7_560.3
HABP2_HUMAN
0.644


IQHPFTVEEFVLPK_562.0_861.5
PZP_HUMAN
0.644


ALQDQLVLVAAK_634.9_289.2
ANGT_HUMAN
0.643


AVGYLITGYQR_620.8_737.4
PZP_HUMAN
0.643


FLNWIK_410.7_561.3
HABP2_HUMAN
0.643


LEQGENVFLQATDK_796.4_822.4
C1QB_HUMAN
0.643


LSITGTYDLK_555.8_797.4
A1AT_HUMAN
0.641


SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.641


VPGLYYFTYHASSR_554.3_720.3
C1QB_HUMAN
0.641


APLTKPLK_289.9_357.2
CRP_HUMAN
0.639


FNAVLTNPQGDYDTSTGK_
C1QC_HUMAN
0.639


964.5_333.2




IQHPFTVEEFVLPK_562.0_603.4
PZP_HUMAN
0.639


LSSPAVITDK_515.8_743.4
PLMN_HUMAN
0.639


ALNFGGIGVVVGHELTHAFDD-
ECE1_HUMAN
0.637


QGR_837.1_360.2




FNAVLTNPQGDYDTSTGK_
C1QC_HUMAN
0.637


964.5_262.1




LLELTGPK_435.8_227.2
A1BG_HUMAN
0.637


YNSQLLSFVR_613.8_734.5
TFR1_HUMAN
0.636


DLYHYITSYVVDGEIIIYGPAYSGR_
PSG1_HUMAN
0.634


955.5_707.3




GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.634


IHPSYTNYR_575.8_813.4
PSG2_HUMAN
0.634


SGAQATWTELPWPHEK_613.3_793.4
HEMO_HUMAN
0.634


SPELQAEAK_486.8_659.4
APOA2_HUMAN
0.634


ALQDQLVLVAAK_634.9_956.6
ANGT_HUMAN
0.633


ITENDIQIALDDAK_779.9_632.3
APOB_HUMAN
0.632


ITQDAQLK_458.8_702.4
CBG_HUMAN
0.632


LSSPAVITDK_515.8_830.5
PLMN_HUMAN
0.632


SLLQPNK_400.2_358.2
CO8A_HUMAN
0.632


VPGLYYFTYHASSR_554.3_420.2
C1QB_HUMAN
0.632


YGLVTYATYPK_638.3_843.4
CFAB_HUMAN
0.632


AGITIPR_364.2_486.3
IL17_HUMAN
0.630


IHPSYTNYR_575.8_598.3
PSG2_HUMAN
0.630


QINSYVK_426.2_610.3
CBG_HUMAN
0.630


SSNNPHSPIVEEFQVPYNK_
C1S_HUMAN
0.630


729.4_261.2




ANDQYLTAAALHNLDEAVK_
IL1A_HUMAN
0.629


686.3_317.2




ATWSGAVLAGR_544.8_730.4
A1BG_HUMAN
0.629


TLPFSR_360.7_506.3
LYAM1_HUMAN
0.629


TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.629


EFDDDTYDNDIALLQLK_
TPA_HUMAN
0.627


1014.48_388.3




EFDDDTYDNDIALLQLK_
TPA_HUMAN
0.627


1014.48_501.3




VTGLDFIPGLHPILTLSK_641.04_771.5
LEP_HUMAN
0.627


HVVQLR_376.2_614.4
IL6RA_HUMAN
0.626


LIENGYFHPVK_439.6_343.2
F13B_HUMAN
0.626


LLELTGPK_435.8_644.4
A1BG_HUMAN
0.626


YEVQGEVFTKPQLWP_911.0_392.2
CRP_HUMAN
0.626


DPNGLPPEAQK_583.3_497.2
RET4_HUMAN
0.625


FTFTLHLETPKPSISSSNLNPR_
PSG1_HUMAN
0.625


829.4_874.4




YGLVTYATYPK_638.3_334.2
CFAB_HUMAN
0.625


APLTKPLK_289.9_398.8
CRP_HUMAN
0.623


DSPSVWAAVPGK_607.31_301.2
PROF1_HUMAN
0.623


ENPAVIDFELAPIVDLVR_670.7_811.5
CO6_HUMAN
0.623


ILILPSVTR_506.3_559.3
PSGx_HUMAN
0.623


SFEGLGQLEVLTLDHNQLQEVK_
ALS_HUMAN
0.623


833.1_503.3




TSESGELHGLTTEEEFVEGIYK_
TTHY_HUMAN
0.623


819.06_310.2




AGITIPR_364.2_272.2
IL17_HUMAN
0.622


DPDQTDGLGLSYLSSHIANVER_
GELS_HUMAN
0.622


796.4_328.1




ATWSGAVLAGR_544.8_643.4
A1BG_HUMAN
0.620


HVVQLR_376.2_515.3
IL6RA_HUMAN
0.620


QINSYVK_426.2_496.3
CBG_HUMAN
0.620


TLFIFGVTK_513.3_215.1
PSG4_HUMAN
0.620


YEVQGEVFTKPQLWP_911.0_293.1
CRP_HUMAN
0.620


YYGYTGAFR_549.3_771.4
TRFL_HUMAN
0.620


AALAAFNAQNNGSNFQLEEISR_
FETUA_HUMAN
0.619


789.1_633.3




ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.619


EDTPNSVWEPAK_686.8_630.3
C1S_HUMAN
0.619


NNQLVAGYLQGPNVNLEEK_
LIRA_HUMAN
0.619


700.7_357.2




ELANTIK_394.7_475.3
S10AC_HUMAN
0.618


ENPAVIDFELAPIVDLVR_670.7_601.4
CO6_HUMAN
0.618


GEVTYTTSQVSK_650.3_913.5
EGLN_HUMAN
0.616


NEIWYR_440.7_637.4
FA12_HUMAN
0.616


TLFIFGVTK_513.3_811.5
PSG4_HUMAN
0.616


DLYHYITSYVVDGEIIIYGPAYS-
PSG1_HUMAN
0.615


GR_955.5_650.3




DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
0.615


VELAPLPSWQPVGK_760.9_342.2
ICAM1_HUMAN
0.615


DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
0.614


GIVEECCFR_585.3_900.3
IGF2_HUMAN
0.614


ITENDIQIALDDAK_779.9_873.5
APOB_HUMAN
0.614


LSETNR_360.2_330.2
PSG1_HUMAN
0.614


LSNENHGIAQR_413.5_519.8
ITIH2_HUMAN
0.614


Transition
Protein
AUC


YEFLNGR_449.7_293.1
PLMN_HUMAN
0.614


AEIEYLEK_497.8_552.3
LYAM1_HUMAN
0.612


GIVEECCFR_585.3_771.3
IGF2_HUMAN
0.612


ILDDLSPR_464.8_587.3
ITIH4_HUMAN
0.611


IRPHTFTGLSGLR_485.6_545.3
ALS_HUMAN
0.611


VVGGLVALR_442.3_784.5
FA12_HUMAN
0.609


LEEHYELR_363.5_417.2
PAI2_HUMAN
0.609


LSNENHGIAQR_413.5_544.3
ITIH2_HUMAN
0.609


TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
0.609


VLEPTLK_400.3_587.3
VTDB_HUMAN
0.609


ILILPSVTR_506.3_785.5
PSGx_HUMAN
0.608


TAVTANLDIR_537.3_288.2
CHL1_HUMAN
0.608


WWGGQPLWITATK_772.4_373.2
ENPP2_HUMAN
0.607


ALVLELAK_428.8_672.4
INHBE_HUMAN
0.605


EAQLPVIENK_570.8_329.2
PLMN_HUMAN
0.605


QRPPDLDTSSNAVDLLFFTDES-
C1R_HUMAN
0.605


GDSR_961.5_866.3




TDAPDLPEENQAR_728.3_613.3
COS_HUMAN
0.605


TLPFSR_360.7_409.2
LYAM1_HUMAN
0.605


VQTAHFK_277.5_502.3
CO8A_HUMAN
0.605


ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
0.604


FQLPGQK_409.2_275.1
PSG1_HUMAN
0.604


NTVISVNPSTK_580.3_845.5
VCAM1_HUMAN
0.604


VLEPTLK_400.3_458.3
VTDB_HUMAN
0.604


YWGVASFLQK_599.8_849.5
RET4_HUMAN
0.604


AGPLQAR_356.7_584.4
DEF4_HUMAN
0.602


AHQLAIDTYQEFEETYIPK_
CSH_HUMAN
0.602


766.0_521.3




DLHLSDVFLK_396.2_366.2
CO6_HUMAN
0.602


SSNNPHSPIVEEFQVPYNK_
C1S_HUMAN
0.602


729.4_521.3




YWGVASFLQK_599.8_350.2
RET4_HUMAN
0.602


AGPLQAR_356.7_487.3
DEF4_HUMAN
0.601


ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.601


EAQLPVIENK_570.8_699.4
PLMN_HUMAN
0.601


EDTPNSVWEPAK_686.8_315.2
C1S_HUMAN
0.601


NTVISVNPSTK_580.3_732.4
VCAM1_HUMAN
0.601
















TABLE 15







Univariate AUC values middle-late combined windows









Transition
Protein
AUC





GDTYPAELYITGSILR_885.0_
F13B_HUMAN
0.7750


274.1




TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
0.7667


IQTHSTTYR_369.5_627.3
F13B_HUMAN
0.7667


DVLLLVHNLPQNLTGHIWYK_
PSG7_HUMAN
0.7667


791.8_310.2




IQTHSTTYR_369.5_540.3
F13B_HUMAN
0.7646


ALALPPLGLAPLLNLWAKPQGR_
SHBG_HUMAN
0.7646


770.5_256.2




VVLSSGSGPGLDLPLVLGLPLQLK_
SHBG_HUMAN
0.7625


791.5_768.5




VVLSSGSGPGLDLPLVLGLPLQLK_
SHBG_HUMAN
0.7625


791.5_598.4




TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
0.7604


GDTYPAELYITGSILR_885.0_922.5
F13B_HUMAN
0.7604


DVLLLVHNLPQNLTGHIWYK_
PSG7_HUMAN
0.7604


791.8_883.0




TLPFSR_360.7_506.3
LYAM1_HUMAN
0.7563


ALALPPLGLAPLLNLWAKPQGR_
SHBG_HUMAN
0.7563


770.5_457.3




IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
0.7542


IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
0.7542


DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
0.7500


QGFGNVATNTDGK_654.81_
FIBB_HUMAN
0.7438


706.3




ETLLQDFR_511.3_565.3
AMBP_HUMAN
0.7438


ETLLQDFR_511.3_322.2
AMBP_HUMAN
0.7417


IAQYYYTFK_598.8_884.4
F13B_HUMAN
0.7396


DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
0.7396


AEIEYLEK_497.8_552.3
LYAM1_HUMAN
0.7396


LDFHFSSDR_375.2_611.3
INHBC_HUMAN
0.7354


YQISVNK_426.2_560.3
FIBB_HUMAN
0.7333


IAPQLSTEELVSLGEK_857.5_
AFAM_HUMAN
0.7313


533.3




EVFSKPISWEELLQ_852.9_
FA40A_HUMAN
0.7292


376.2




TLAFVR_353.7_274.2
FA7_HUMAN
0.7229


HHGPTITAK_321.2_275.1
AMBP_HUMAN
0.7229


SLQAFVAVAAR_566.8_487.3
IL23A_HUMAN
0.7208


IAQYYYTFK_598.8_395.2
F13B_HUMAN
0.7208


EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
0.7208


DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
0.7208


DPNGLPPEAQK_583.3_497.2
RET4_HUMAN
0.7167


VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
0.7146


YQISVNK_426.2_292.1
FIBB_HUMAN
0.7125


TLAFVR_353.7_492.3
FA7_HUMAN
0.7125


IAPQLSTEELVSLGEK_857.5_
AFAM_HUMAN
0.7125


333.2




AEIEYLEK_497.8_389.2
LYAM1_HUMAN
0.7125


YWGVASFLQK_599.8_849.5
RET4_HUMAN
0.7104


TLPFSR_360.7_409.2
LYAM1_HUMAN
0.7104


HFQNLGK_422.2_527.2
AFAM_HUMAN
0.7104


TQILEWAAER_608.8_761.4
EGLN_HUMAN
0.7083


HFQNLGK_422.2_285.1
AFAM_HUMAN
0.7063


FTFTLHLETPKPSISSSNLNPR_
PSG1_HUMAN
0.7063


829.4_787.4




DPDQTDGLGLSYLSSHIANVER_
GELS_HUMAN
0.7063


796.4_456.2




DADPDTFFAK_563.8_825.4
AFAM_HUMAN
0.7042


YWGVASFLQK_599.8_350.2
RET4_HUMAN
0.7021


DADPDTFFAK_563.8_302.1
AFAM_HUMAN
0.7021


HHGPTITAK_321.2_432.3
AMBP_HUMAN
0.6979


NTVISVNPSTK_580.3_845.5
VCAM1_HUMAN
0.6958


FLYHK_354.2_447.2
AMBP_HUMAN
0.6958


FICPLTGLWPINTLK_887.0_
APOH_HUMAN
0.6958


685.4




FTFTLHLETPKPSISSSNLNPR_
PSG1_HUMAN
0.6938


829.4_874.4




FLYHK_354.2_284.2
AMBP_HUMAN
0.6938


EALVPLVADHK_397.9_390.2
HGFA_HUMAN
0.6938


LNIGYIEDLK_589.3_837.4
PAI2_HUMAN
0.6917


QGFGNVATNTDGK_654.81_319.2
FIBB_HUMAN
0.6896


EALVPLVADHK_397.9_439.8
HGFA_HUMAN
0.6896


TNTNEFLIDVDK_704.85_849.5
TF_HUMAN
0.6875


DTYVSSFPR_357.8_272.2
TCEA1_HUMAN
0.6813


VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
0.6771


GPGEDFR_389.2_623.3
PTGDS_HUMAN
0.6771


GEVTYTTSQVSK_650.3_913.5
EGLN_HUMAN
0.6771


GEVTYTTSQVSK_650.3_750.4
EGLN_HUMAN
0.6771


FICPLTGLWPINTLK_887.0_756.9
APOH_HUMAN
0.6771


YEFLNGR_449.7_606.3
PLMN_HUMAN
0.6750


YEFLNGR_449.7_293.1
PLMN_HUMAN
0.6750


TLFIFGVTK_513.3_215.1
PSG4_HUMAN
0.6750


LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
0.6750


LLELTGPK_435.8_227.2
A1BG_HUMAN
0.6750


TPSAAYLWVGTGASEAEK_
GELS_HUMAN
0.6729


919.5_849.4




FQLPGQK_409.2_275.1
PSG1_HUMAN
0.6729


ELIEELVNITQNQK_557.6_
IL13_HUMAN
0.6729


618.3




DLYHYITSYVVDGEIIIYGPA-
PSG1_HUMAN
0.6729


YSGR_955.5_707.3




AHYDLR_387.7_566.3
FETUA_HUMAN
0.6729


LLEVPEGR_456.8_356.2
C1S_HUMAN
0.6708


TLFIFGVTK_513.3_811.5
PSG4_HUMAN
0.6688


FQLPGQK_409.2_429.2
PSG1_HUMAN
0.6667


DLYHYITSYVVDGEIIIYGPA-
PSG1_HUMAN
0.6667


YSGR_955.5_650.3




YYLQGAK_421.7_516.3
ITIH4_HUMAN
0.6646


FSVVYAK_407.2_579.4
FETUA_HUMAN
0.6646


EQLGEFYEALDCLR_871.9_
A1AG1_HUMAN
0.6646


747.4




LDFHFSSDR_375.2_464.2
INHBC_HUMAN
0.6625


ALNHLPLEYNSALYSR_621.0_
CO6_HUMAN
0.6625


696.4




YYLQGAK_421.7_327.1
ITIH4_HUMAN
0.6604


YTTEIIK_434.2_704.4
C1R_HUMAN
0.6604


VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.6604


SNPVTLNVLYGPDLPR_585.7_
PSG6_HUMAN
0.6604


654.4




LWAYLTIQELLAK_781.5_300.2
ITIH1_HUMAN
0.6604


FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
0.6604


ATVVYQGER_511.8_652.3
APOH_HUMAN
0.6604


TPSAAYLWVGTGASEAEK_919.5_
GELS_HUMAN
0.6583


428.2




SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.6583


LSSPAVITDK_515.8_830.5
PLMN_HUMAN
0.6583


GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.6583


EFDDDTYDNDIALLQLK_1014.48_
TPA_HUMAN
0.6583


501.3




TFLTVYWTPER_706.9_502.3
ICAM1_HUMAN
0.6563


NTVISVNPSTK_580.3_732.4
VCAM1_HUMAN
0.6563


LPNNVLQEK_527.8_730.4
AFAM_HUMAN
0.6563


LPDTPQGLLGEAR_683.8_7427.2
EGLN_HUMAN
0.6563


VANYVDWINDR_682.8_818.4
HGFA_HUMAN
0.6542


LSSPAVITDK_515.8_743.4
PLMN_HUMAN
0.6542


LPNNVLQEK_527.8_844.5
AFAM_HUMAN
0.6542


IPGIFELGISSQSDR_809.9_849.4
CO8B_HUMAN
0.6542


GAVHVVVAETDYQSFAVLYLER_
CO8G_HUMAN
0.6542


822.8_580.3




FLNWIK_410.7_560.3
HABP2_HUMAN
0.6542


TFLTVYWTPER_706.9_401.2
ICAM1_HUMAN
0.6521


NKPGVYTDVAYYLAWIR_677.0_
FA12_HUMAN
0.6521


821.5




AHYDLR_387.7_288.2
FETUA_HUMAN
0.6521


LLEVPEGR_456.8_686.4
C1S_HUMAN
0.6500


LIENGYFHPVK_439.6_627.4
F13B_HUMAN
0.6500


GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
0.6500


ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
0.6500


EAQLPVIENK_570.8_329.2
PLMN_HUMAN
0.6479


CRPINATLAVEK_457.9_559.3
CGB1_HUMAN
0.6479


ATVVYQGER_511.8_751.4
APOH_HUMAN
0.6479


ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.6479


AHQLAIDTYQEFEETYIPK_766.0_
CSH_HUMAN
0.6479


634.4




VTGLDFIPGLHPILTLSK_641.04_
LEP_HUMAN
0.6458


771.5




VANYVDWINDR_682.8_917.4
HGFA_HUMAN
0.6458


SSNNPHSPIVEEFQVPYNK_
C1S_HUMAN
0.6458


729.4_261.2




NKPGVYTDVAYYLAWIR_677.0_
FA12_HUMAN
0.6458


545.3




GSLVQASEANLQAAQDFVR_
ITIH1_HUMAN
0.6458


668.7_735.4




YTTEIIK_434.2_603.4
C1R_HUMAN
0.6438


NEIVFPAGILQAPFYTR_968.5_357.2
ECE1_HUMAN
0.6438


IPGIFELGISSQSDR_809.9_679.3
CO8B_HUMAN
0.6438


SNPVTLNVLYGPDLPR_585.7_817.4
PSG6_HUMAN
0.6417


LLELTGPK_435.8_644.4
A1BG_HUMAN
0.6417


EAQLPVIENK_570.8_699.4
PLMN_HUMAN
0.6417


AEHPTWGDEQLFQTTR_639.3_
PGH1_HUMAN
0.6417


765.4




YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.6396


TQIDSPLSGK_523.3_703.4
VCAM1_HUMAN
0.6396


YHFEALADTGISSEFYDNANDL-
CO8A_HUMAN
0.6375


LSK_940.8_301.1




SCDLALLETYCATPAK_906.9_
IGF2_HUMAN
0.6375


315.2




NAVVQGLEQPHGLVVHPLR_
LRP1_HUMAN
0.6375


688.4_285.2




HVVQLR_376.2_614.4
IL6RA_HUMAN
0.6375


NNQLVAGYLQGPNVNLEEK_
IL1RA_HUMAN
0.6354


700.7_999.5




GIVEECCFR_585.3_771.3
IGF2_HUMAN
0.6354


DGSPDVTTADIGANTPDATK_
PGRP2_HUMAN
0.6354


973.5_531.3




AEHPTWGDEQLFQTTR_639.3_
PGH1_HUMAN
0.6354


569.3




YVVISQGLDKPR_458.9_400.3
LRP1_HUMAN
0.6333


WGAAPYR_410.7_577.3
PGRP2_HUMAN
0.6333


VRPQQLVK_484.3_609.4
ITIH4_HUMAN
0.6333


AVYEAVLR_460.8_750.4
PEPD_HUMAN
0.6333


TQIDSPLSGK_523.3_816.5
VCAM1_HUMAN
0.6313


IPKPEASFSPR_410.2_359.2
ITIH4_HUMAN
0.6313


HELTDEELQSLFTNFANVVDK_
AFAM_HUMAN
0.6313


817.1_854.4




GSLVQASEANLQAAQDFVR_
ITIH1_HUMAN
0.6313


668.7_806.4




GAVHVVVAETDYQSFAVLYLER_
CO8G_HUMAN
0.6313


822.8_863.5




ENPAVIDFELAPIVDLVR_
CO6_HUMAN
0.6313


670.7_811.5




VRPQQLVK_484.3_722.4
ITIH4_HUMAN
0.6292


IRPFFPQQ_516.79_372.2
FIBB_HUMAN
0.6292


LWAYLTIQELLAK_781.5_371.2
ITIH1_HUMAN
0.6271


EQLGEFYEALDCLR_871.9_563.3
A1AG1_HUMAN
0.6271


LLDFEFSSGR_585.8_553.3
G6PE_HUMAN
0.6250


LIENGYFHPVK_439.6_343.2
F13B_HUMAN
0.6250


ENPAVIDFELAPIVDLVR_
CO6_HUMAN
0.6250


670.7_601.4




WNFAYWAAHQPWSR_
PRG2_HUMAN
0.6229


607.3_545.3




TAVTANLDIR_537.3_802.4
CHL1_HUMAN
0.6229


WNFAYWAAHQPWSR_607.3_
PRG2_HUMAN
0.6208


673.3




HTLNQIDEVK_598.8_951.5
FETUA_HUMAN
0.6208


DPDQTDGLGLSYLSSHIANV-
GELS_HUMAN
0.6208


ER_796.4_328.1




WGAAPYR_410.7_634.3
PGRP2_HUMAN
0.6188


TEQAAVAR_423.2_487.3
FA12_HUMAN
0.6188


LEEHYELR_363.5_288.2
PAI2_HUMAN
0.6188


GIVEECCFR_585.3_900.3
IGF2_HUMAN
0.6188


YHFEALADTGISSEFYDNAND-
CO8A_HUMAN
0.6167


LLSK_940.8_874.5




TQILEWAAER_608.8_632.3
EGLN_HUMAN
0.6167


DSPSVWAAVPGK_607.31_301.2
PROF1_HUMAN
0.6167


DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.6167


AQPVQVAEGSEPDGFWEALGGK_
GELS_HUMAN
0.6167


758.0_574.3




YSHYNER_323.48_581.3
HABP2_HUMAN
0.6146


YSHYNER_323.48_418.2
HABP2_HUMAN
0.6146


VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
0.6146


EHSSLAFWK_552.8_267.1
APOH_HUMAN
0.6146


TATSEYQTFFNPR_781.4_386.2
THRB_HUMAN
0.6104


SGFSFGFK_438.7_732.4
CO8B_HUMAN
0.6104


GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
0.6104


FSVVYAK_407.2_381.2
FETUA_HUMAN
0.6104


QTLSWTVTPK_580.8545.3
PZP_HUMAN
0.6083


QLGLPGPPDVPDHAAYHPF_
ITIH4_HUMAN
0.6083


676.7_263.1




LSITGTYDLK_555.8_797.4
A1AT_HUMAN
0.6083


LPDTPQGLLGEAR_683.87_
EGLN_HUMAN
0.6083


940.5




VVESLAK_373.2_646.4
IBP1_HUMAN
0.6063


VSEADSSNADWVTK_754.9_
CFAB_HUMAN
0.6063


347.2




TEQAAVAR_423.2_615.4
FA12_HUMAN
0.6063


SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.6063


QTLSWTVTPK_580.8_818.4
PZP_HUMAN
0.6063


HYINLITR_515.3_301.1
NPY_HUMAN
0.6063


DPTFIPAPIQAK_433.2_461.2
ANGT_HUMAN
0.6063


VSEADSSNADWVTK_754.9_
CFAB_HUMAN
0.6042


533.3




VQEVLLK_414.8_373.3
HYOU1_HUMAN
0.6042


SILFLGK_389.2_577.4
THBG_HUMAN
0.6042


IQHPFTVEEFVLPK_562.0_603.4
PZP_HUMAN
0.6042


ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.6042


AVGYLITGYQR_620.8_737.4
PZP_HUMAN
0.6042


ATWSGAVLAGR_544.8_643.4
A1BG_HUMAN
0.6042


AKPALEDLR_506.8_288.2
APOA1_HUMAN
0.6042


SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.6021


NVNQSLLELHK_432.2_656.3
FRIH_HUMAN
0.6021


IQHPFTVEEFVLPK_562.0_861.5
PZP_HUMAN
0.6021


IPKPEASFSPR_410.2_506.3
ITIH4_HUMAN
0.6021


GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
0.6021


DGSPDVTTADIGANTPDATK_
PGRP2_HUMAN
0.6021


973.5_844.4




AVGYLITGYQR_620.8_523.3
PZP_HUMAN
0.6021


ANDQYLTAAALHNLDEAVK_
IL1A_HUMAN
0.6021


686.3_317.2




TLYSSSPR_455.7_696.3
IC1_HUMAN
0.6000


LHKPGVYTR_357.5_479.3
HGFA_HUMAN
0.6000


IIGGSDADIK_494.8_260.2
C1S_HUMAN
0.6000


HELTDEELQSLFTNFANVVDK_
AFAM_HUMAN
0.6000


817.1_906.5




GGEGTGYFVDFSVR_745.9_869.5
HRG_HUMAN
0.6000


AVLHIGEK_289.5_348.7
THBG_HUMAN
0.6000


ALVLELAK_428.8_672.4
INHBE_HUMAN
0.6000
















TABLE 16







Lasso Summed Coefficients All Windows











SumBest-


Transition
Protein
Coefs_All





TQILEWAAER_608.8_761.4
EGLN_HUMAN
26.4563


GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
17.6447


AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
16.2270


TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
15.1166


LDFHFSSDR_375.2_611.3
INHBC_HUMAN
15.0029


ATVVYQGER_511.8_652.3
APOH_HUMAN
13.2314


ETLLQDFR_511.3_565.3
AMBP_HUMAN
13.1219


GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
12.1693


IQTHSTTYR_369.5_627.3
F13B_HUMAN
 9.4737


GDTYPAELYITGSILR_885.0_274.1
F13B_HUMAN
 6.1820


ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
 6.1607


NEIVFPAGILQAPFYTR_968.5_357.2
ECE1_HUMAN
 5.5493


AHYDLR_387.7_566.3
FETUA_HUMAN
 5.4415


HHGPTITAK_321.2_275.1
AMBP_HUMAN
 5.0751


SERPPIFEIR_415.2_564.3
LRP1_HUMAN
 4.5620


ALDLSLK_380.2_185.1
ITIH3_HUMAN
 4.4275


DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
 4.3562


ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
 3.9022


ETLLQDFR_511.3_322.2
AMBP_HUMAN
 3.3017


YGIEEHGK_311.5_599.3
CXA1_HUMAN
 2.8410


IHWESASLLR_606.3_437.2
CO3_HUMAN
 2.6618


GEVTYTTSQVSK_650.3_750.4
EGLN_HUMAN
 2.5328


ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
 2.5088


DLHLSDVFLK_396.2_260.2
CO6_HUMAN
 2.4010


SYTITGLQPGTDYK_772.4_352.2
FINC_HUMAN
 2.3304


SPELQAEAK_486.8_788.4
APOA2_HUMAN
 2.2657


VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
 2.1480


DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
 2.0051


LLDFEFSSGR_585.8_944.4
G6PE_HUMAN
 1.7763


GPGEDFR_389.2_623.3
PTGDS_HUMAN
 1.6782


DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
 1.6581


IQTHSTTYR_369.5_540.3
F13B_HUMAN
 1.6107


VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
 1.4779


STLFVPR_410.2_518.3
PEPD_HUMAN
 1.3961


GEVTYTTSQVSK_650.3_913.5
EGLN_HUMAN
 1.3306


ALVLELAK_428.8_672.4
INHBE_HUMAN
 1.2973


ANDQYLTAAALHNLDEAVK_
IL1A_HUMAN
 1.1850


686.3_317.2




STLFVPR_410.2_272.2
PEPD_HUMAN
 1.1842


GPGEDFR_389.2_322.2
PTGDS_HUMAN
 1.1742


IPSNPSHR_303.2_610.3
FBLN3_HUMAN
 1.0868


HHGPTITAK_321.2_432.3
AMBP_HUMAN
 1.0813


TLAFVR_353.7_274.2
FA7_HUMAN
 1.0674


DLHLSDVFLK_396.2_366.2
CO6_HUMAN
 0.9887


EFDDDTYDNDIALLQLK_
TPA_HUMAN
 0.9468


1014.48_501.3




AIGLPEELIQK_605.86_856.5
FABPL_HUMAN
 0.7740


LIENGYFHPVK_439.6_343.2
F13B_HUMAN
 0.7740


LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
 0.6748


EHSSLAFWK_552.8_267.1
APOH_HUMAN
 0.6035


NCSFSIIYPVVIK_770.4_831.5
CRHBP_HUMAN
 0.6014


ALNSIIDVYHK_424.9_661.3
S10A8_HUMAN
 0.5987


WGAAPYR_410.7_577.3
PGRP2_HUMAN
 0.5699


TQILEWAAER_608.8_632.3
EGLN_HUMAN
 0.5395


IPSNPSHR_303.2_496.3
FBLN3_HUMAN
 0.4845


VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
 0.4398


VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
 0.3883


FLYHK_354.2_284.2
AMBP_HUMAN
 0.3410


LPDTPQGLLGEAR_683.87_940.5
EGLN_HUMAN
 0.3282


EALVPLVADHK_397.9_390.2
HGFA_HUMAN
 0.3091


IEGNLIFDPNNYLPK_874.0_845.5
APOB_HUMAN
 0.2933


LIENGYFHPVK_439.6_627.4
F13B_HUMAN
 0.2896


VPLALFALNR_557.3_620.4
PEPD_HUMAN
 0.2875


FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
 0.2823


NAVVQGLEQPHGLVVHPLR_
LRP1_HUMAN
 0.2763


688.4_890.6




ALNFGGIGVVVGHELTHAFDD-
ECE1_HUMAN
 0.2385


QGR_837.1_299.2




SPELQAEAK_486.8_659.4
APOA2_HUMAN
 0.2232


EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
 0.1608


VANYVDWINDR_682.8_917.4
HGFA_HUMAN
 0.1507


EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
 0.1487


HVVQLR_376.2_614.4
IL6RA_HUMAN
 0.1256


TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
 0.1170


ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
 0.1159


EALVPLVADHK_397.9_439.8
HGFA_HUMAN
 0.0979


AITPPHPASQANIIFDITEGNL-
FBLN1_HUMAN
 0.0797


R_825.8_917.5




FLYHK_354.2_447.2
AMBP_HUMAN
 0.0778


SLLQPNK_400.2_358.2
CO8A_HUMAN
 0.0698


TGISPLALIK_506.8_654.5
APOB_HUMAN
 0.0687


ALNFGGIGVVVGHELTHAFDDQGR_
ECE1_HUMAN
 0.0571


837.1_360.2




DYWSTVK_449.7_347.2
APOC3_HUMAN
 0.0357


AITPPHPASQANIIFDITEGNLR_
FBLN1_HUMAN
 0.0313


825.8_459.3




AALAAFNAQNNGSNFQLEEISR_
FETUA_HUMAN
 0.0279


789.1_633.3




DPNGLPPEAQK_583.3_497.2
RET4_HUMAN
 0.0189


TLAFVR_353.7_492.3
FA7_HUMAN
 0.0087
















TABLE 17







Lasso Summed Coefficients Early Window











SumBest-


Transition
Protein
Coefs_Early












LDFHFSSDR_375.2_611.3
INHBC_HUMAN
40.2030


ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
22.6926


GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
17.4169


GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
3.4083


VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
3.2559


EFDDDTYDNDIALLQLK_
TPA_HUMAN
2.4073


1014.48_388.3




STLFVPR_410.2_272.2
PEPD_HUMAN
2.3984


WGAAPYR_410.7_634.3
PGRP2_HUMAN
2.3564


LDFHFSSDR_375.2_464.2
INHBC_HUMAN
1.9038


VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
1.7999


DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
1.5802


GPGEDFR_389.2_623.3
PTGDS_HUMAN
1.4223


IHWESASLLR_606.3_437.2
CO3_HUMAN
1.2735


ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
1.2652


AQPVQVAEGSEPDGFWEALGGK_
GELS_HUMAN
1.2361


758.0_623.4




FAFNLYR_465.8_565.3
HEP2_HUMAN
1.0876


SGFSFGFK_438.7_732.4
CO8B_HUMAN
1.0459


VVGGLVALR_442.3_784.5
FA12_HUMAN
0.9572


IEGNLIFDPNNYLPK_874.0_845.5
APOB_HUMAN
0.9571


ETLLQDFR_511.3_565.3
AMBP_HUMAN
0.7851


LSIPQITTK_500.8_687.4
PSG5_HUMAN
0.7508


TASDFITK_441.7_710.4
GELS_HUMAN
0.6549


YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.6179


AFQVWSDVTPLR_709.88_347.2
MMP2_HUMAN
0.6077


TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
0.5889


LSITGTYDLK_555.8_696.4
A1AT_HUMAN
0.5857


ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
0.5334


LIENGYFHPVK_439.6_627.4
F13B_HUMAN
0.5257


NEIVFPAGILQAPFYTR_968.5_357.2
ECE1_HUMAN
0.4601


SLLQPNK_400.2_358.2
CO8A_HUMAN
0.4347


LSIPQITTK_500.8_800.5
PSG5_HUMAN
0.4329


GVTGYFTFNLYLK_508.3_683.9
PSG5_HUMAN
0.4302


IQTHSTTYR_369.5_627.3
F13B_HUMAN
0.4001


ATVVYQGER_511.8_652.3
APOH_HUMAN
0.3909


LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
0.3275


NNQLVAGYLQGPNVNLEEK_
IL1RA_HUMAN
0.3178


700.7_999.5




SERPPIFEIR_415.2_564.3
LRP1_HUMAN
0.3112


AHYDLR_387.7_566.3
FETUA_HUMAN
0.2900


NEIWYR_440.7_637.4
FA12_HUMAN
0.2881


ALDLSLK_380.2_575.3
ITIH3_HUMAN
0.2631


NKPGVYTDVAYYLAWIR_
FA12_HUMAN
0.2568


677.0_545.3




SYTITGLQPGTDYK_772.4_352.2
FINC_HUMAN
0.2277


LFIPQITPK_528.8_683.4
PSG11_HUMAN
0.2202


IIGGSDADIK_494.8_260.2
C1S_HUMAN
0.2182


AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
0.2113


DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
0.2071


AEIEYLEK_497.8_389.2
LYAM1_HUMAN
0.1925


EHSSLAFWK_552.8_838.4
APOH_HUMAN
0.1899


LPDTPQGLLGEAR_683.87_940.5
EGLN_HUMAN
0.1826


WGAAPYR_410.7_577.3
PGRP2_HUMAN
0.1669


LFIPQITPK_528.8_261.2
PSG11_HUMAN
0.1509


WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.1446


DSPSVWAAVPGK_607.31_301.2
PROF1_HUMAN
0.1425


LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
0.1356


972.0_798.4




ALDLSLK_380.2_185.1
ITIH3_HUMAN
0.1305


TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
0.1249


NAVVQGLEQPHGLVVHPLR_
LRP1_HUMAN
0.1092


688.4_890.6




NSDQEIDFK_548.3_409.2
S10A5_HUMAN
0.0937


YNSQLLSFVR_613.8_508.3
TFR1_HUMAN
0.0905


LLDFEFSSGR_585.8_553.3
G6PE_HUMAN
0.0904


ALNFGGIGVVVGHELTHAFDDQGR_
ECE1_HUMAN
0.0766


837.1_299.2




STLFVPR_410.2_518.3
PEPD_HUMAN
0.0659


DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.0506


EHSSLAFWK_552.8_267.1
APOH_HUMAN
0.0452


TQIDSPLSGK_523.3_703.4
VCAM1_HUMAN
0.0447


HHGPTITAK_321.2_432.3
AMBP_HUMAN
0.0421


AFQVWSDVTPLR_709.88_385.3
MMP2_HUMAN
0.0417


TGISPLALIK_506.8_741.5
APOB_HUMAN
0.0361


DLHLSDVFLK_396.2_366.2
CO6_HUMAN
0.0336


NTVISVNPSTK_580.3_845.5
VCAM1_HUMAN
0.0293


DIIKPDPPK_511.8_342.2
IL12B_HUMAN
0.0219


TGISPLALIK_506.8_654.5
APOB_HUMAN
0.0170


GAVHVVVAETDYQSFAVLYLER_
CO8G_HUMAN
0.0151


822.8_580.3




LNIGYIEDLK_589.3_837.4
PAI2_HUMAN
0.0048


GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.0008
















TABLE 18







Lasso Summed Coefficients Early Middle Combined Windows











SumBest-


Transition
Protein
Coefs_EM












ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
24.8794


AHYDLR_387.7_566.3
FETUA_HUMAN
20.8397


LDFHFSSDR_375.2_611.3
INHBC_HUMAN
18.6630


GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
14.7270


HHGPTITAK_321.2_432.3
AMBP_HUMAN
11.1473


VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
10.9421


NNQLVAGYLQGPNVNLEEK_
IL1RA_HUMAN
10.4646


700.7_999.5




HHGPTITAK_321.2_275.1
AMBP_HUMAN
7.7034


ETLLQDFR_511.3_565.3
AMBP_HUMAN
6.7435


TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
5.7356


SLQAFVAVAAR_566.8_487.3
IL23A_HUMAN
4.8684


YGIEEHGK_311.5_599.3
CXA1_HUMAN
4.4936


ATVVYQGER_511.8_652.3
APOH_HUMAN
3.9524


VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
3.8937


ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
3.8022


ALNFGGIGVVVGHELTHAFDDQGR_
ECE1_HUMAN
3.7603


837.1_299.2




ETLLQDFR_511.3_322.2
AMBP_HUMAN
3.1792


TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
3.1046


AALAAFNAQNNGSNFQLEEISR_
FETUA_HUMAN
3.0021


789.1_633.3




AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
2.6899


DLHLSDVFLK_396.2_366.2
CO6_HUMAN
2.5525


DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
2.4794


SYTITGLQPGTDYK_772.4_352.2
FINC_HUMAN
2.4535


IQTHSTTYR_369.5_627.3
F13B_HUMAN
2.3395


AHYDLR_387.7_288.2
FETUA_HUMAN
2.1058


NCSFSIIYPVVIK_770.4_831.5
CRHBP_HUMAN
2.0427


AIGLPEELIQK_605.86_856.5
FABPL_HUMAN
1.5354


GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
1.4175


TGISPLALIK_506.8_654.5
APOB_HUMAN
1.3562


YTTEIIK_434.2_603.4
C1R_HUMAN
1.2855


ETPEGAEAKPWYEPIYLGGVFQLEK_
TNFA_HUMAN
1.1198


951.14_877.5




ANDQYLTAAALHNLDEAVK_
IL1A_HUMAN
1.0574


686.3_317.2




ILPSVPK_377.2_244.2
PGH1_HUMAN
1.0282


ALDLSLK_380.2_185.1
ITIH3_HUMAN
1.0057


NAVVQGLEQPHGLVVHPLR_
LRP1_HUMAN
0.9884


688.4_890.6




IEGNLIFDPNNYLPK_874.0_845.5
APOB_HUMAN
0.9846


ALDLSLK_380.2_575.3
ITIH3_HUMAN
0.9327


LDFHFSSDR_375.2_464.2
INHBC_HUMAN
0.8852


LSIPQITTK_500.8_800.5
PSG5_HUMAN
0.7740


SERPPIFEIR_415.2_564.3
LRP1_HUMAN
0.7013


AEAQAQYSAAVAK_654.3_709.4
ITIH4_HUMAN
0.6752


IHWESASLLR_606.3_437.2
CO3_HUMAN
0.6176


LFIPQITPK_528.8_261.2
PSG11_HUMAN
0.5345


FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
0.5022


DFNQFSSGEK_386.8_189.1
FETA_HUMAN
0.4932


TATSEYQTFFNPR_781.4_272.2
THRB_HUMAN
0.4725


SPELQAEAK_486.8_788.4
APOA2_HUMAN
0.4153


FIVGFTR_420.2_261.2
CCL20_HUMAN
0.4111


TLLPVSKPEIR_418.3_288.2
CO5_HUMAN
0.3409


DIIKPDPPK_511.8_342.2
IL12B_HUMAN
0.3403


DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
0.3073


YTTEIIK_434.2_704.4
C1R_HUMAN
0.3050


SPELQAEAK_486.8_659.4
APOA2_HUMAN
0.3047


TGISPLALIK_506.8_741.5
APOB_HUMAN
0.3031


VVGGLVALR_442.3_784.5
FA12_HUMAN
0.2960


WWGGQPLWITATK_772.4_373.2
ENPP2_HUMAN
0.2498


TQILEWAAER_608.8_632.3
EGLN_HUMAN
0.2342


STLFVPR_410.2_272.2
PEPD_HUMAN
0.2035


DYWSTVK_449.7_347.2
APOC3_HUMAN
0.2018


WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.1614


SILFLGK_389.2_201.1
THBG_HUMAN
0.1593


AFQVWSDVTPLR_709.88_385.3
MIVIP2_HUMAN
0.1551


IQTHSTTYR_369.5_540.3
F13B_HUMAN
0.1434


AFQVWSDVTPLR_709.88_347.2
MIVIP2_HUMAN
0.1420


LSITGTYDLK_555.8_797.4
A1AT_HUMAN
0.1395


LSITGTYDLK_555.8_696.4
A1AT_HUMAN
0.1294


WGAAPYR_410.7_634.3
PGRP2_HUMAN
0.1259


IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
0.1222


FICPLTGLWPINTLK_887.0_756.9
APOH_HUMAN
0.1153


QINSYVK_426.2_496.3
CBG_HUMAN
0.1055


TATSEYQTFFNPR_781.4_386.2
THRB_HUMAN
0.0921


AFLEVNEEGSEAAASTAVVIAGR_
ANT3_HUMAN
0.0800


764.4_685.4




AKPALEDLR_506.8_288.2
APOA1_HUMAN
0.0734


GPGEDFR_389.2_623.3
PTGDS_HUMAN
0.0616


SLLQPNK_400.2_358.2
CO8A_HUMAN
0.0565


ESDTSYVSLK_564.8_347.2
CRP_HUMAN
0.0497


FFQYDTWK_567.8_712.3
IGF2_HUMAN
0.0475


FSVVYAK_407.2_579.4
FETUA_HUMAN
0.0437


TQIDSPLSGK_523.3_703.4
VCAM1_HUMAN
0.0401


LNIGYIEDLK_589.3_837.4
PAI2_HUMAN
0.0307


IPSNPSHR_303.2_496.3
FBLN3_HUMAN
0.0281


NEIVFPAGILQAPFYTR_968.5_456.2
ECE1_HUMAN
0.0276


TLAFVR_353.7_274.2
FA7_HUMAN
0.0220


AEAQAQYSAAVAK_654.3_908.5
ITIH4_HUMAN
0.0105


AQPVQVAEGSEPDGFWEALGGK_
GELS_HUMAN
0.0103


758.0_623.4




QINSYVK_426.2_610.3
CBG_HUMAN
0.0080


NSDQEIDFK_548.3_409.2
S10A5_HUMAN
0.0017
















TABLE 19







Lasso Summed Coefficients Middle-Late Combined Windows











SumBest-


Transition
Protein
Coefs_ML












TQILEWAAER_608.8_761.4
EGLN_HUMAN
45.0403


GDTYPAELYITGSILR_885.0_274.1
F13B_HUMAN
31.4888


GEVTYTTSQVSK_650.3_750.4
EGLN_HUMAN
22.3322


GEVTYTTSQVSK_650.3_913.5
EGLN_HUMAN
17.0298


AVDIPGLEAATPYR_736.9_286.1
TENA_HUMAN
8.6029


AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
7.9874


NEIVFPAGILQAPFYTR_968.5_357.2
ECE1_HUMAN
7.8773


ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
6.8534


DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
5.0045


GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
4.6191


ATVVYQGER_511.8_652.3
APOH_HUMAN
4.2522


IAQYYYTFK_598.8_395.2
F13B_HUMAN
3.5721


NAVVQGLEQPHGLVVHPLR_
LRP1_HUMAN
3.2886


688.4_285.2




IAQYYYTFK_598.8_884.4
F13B_HUMAN
2.9205


SERPPIFEIR_415.2_564.3
LRP1_HUMAN
2.4237


TLAFVR_353.7_274.2
FA7_HUMAN
2.1925


EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
2.1591


EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
2.1586


EFDDDTYDNDIALLQLK_
TPA_HUMAN
2.0892


1014.48_501.3




TLAFVR_353.7_492.3
FA7_HUMAN
2.0399


EALVPLVADHK_397.9_439.8
HGFA_HUMAN
1.8856


ETLLQDFR_511.3_565.3
AMBP_HUMAN
1.7809


ALNSIIDVYHK_424.9_661.3
S10A8_HUMAN
1.6114


AITPPHPASQANIIFDITEGNLR_
FBLN1_HUMAN
1.3423


825.8_917.5




EQLGEFYEALDCLR_871.9_747.4
A1AG1_HUMAN
1.2473


TFLTVYWTPER_706.9_502.3
ICAM1_HUMAN
0.9851


NTVISVNPSTK_580.3_845.5
VCAM1_HUMAN
0.9845


FLNWIK_410.7_560.3
HABP2_HUMAN
0.9798


ETPEGAEAKPWYEPIYLGGVFQLEK_
TNFA_HUMAN
0.9679


951.14_990.6




NVNQSLLELHK_432.2_656.3
FRIH_HUMAN
0.8280


VPLALFALNR_557.3_620.4
PEPD_HUMAN
0.7851


IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
0.7731


AVYEAVLR_460.8_750.4
PEPD_HUMAN
0.7452


LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
0.7145


TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
0.6584


YSHYNER_323.48_418.2
HABP2_HUMAN
0.5244


LLELTGPK_435.8_644.4
A1BG_HUMAN
0.5072


DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
0.5010


DPNGLPPEAQK_583.3_497.2
RET4_HUMAN
0.4803


AHYDLR_387.7_566.3
FETUA_HUMAN
0.4693


LPNNVLQEK_527.8_844.5
AFAM_HUMAN
0.4640


VTGLDFIPGLHPILTLSK_
LEP_HUMAN
0.4584


641.04_771.5




LLELTGPK_435.8_227.2
A1BG_HUMAN
0.4515


YTTEIIK_434.2_704.4
C1R_HUMAN
0.4194


SSNNPHSPIVEEFQVPYNK_
C1S_HUMAN
0.3886


729.4_261.2




ALNHLPLEYNSALYSR_
CO6_HUMAN
0.3405


621.0_538.3




HFQNLGK_422.2_527.2
AFAM_HUMAN
0.3368


EQLGEFYEALDCLR_871.9_563.3
A1AG1_HUMAN
0.3348


TQILEWAAER_608.8_632.3
EGLN_HUMAN
0.2943


ALVLELAK_428.8_672.4
INHBE_HUMAN
0.2895


LSNENHGIAQR_413.5_519.8
ITIH2_HUMAN
0.2835


LPNNVLQEK_527.8_730.4
AFAM_HUMAN
0.2764


DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
0.2694


GDTYPAELYITGSILR_885.0_922.5
F13B_HUMAN
0.2594


GPITSAAELNDPQSILLR_632.3_601.4
EGLN_HUMAN
0.2388


ANLINNIFELAGLGK_793.9_834.5
LCAP_HUMAN
0.2158


SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.1921


EQSLNVSQDLDTIR_539.9_557.8
SYNE2_HUMAN
0.1836


FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
0.1806


ALNFGGIGVVVGHELTHAFDDQGR_
ECE1_HUMAN
0.1608


837.1_360.2




ANDQYLTAAALHNLDEAVK_
ILIA_HUMAN
0.1607


686.3_317.2




AQETSGEEISK_589.8_979.5
IBP1_HUMAN
0.1598


QINSYVK_426.2_610.3
CBG_HUMAN
0.1592


SILFLGK_389.2_577.4
THBG_HUMAN
0.1412


DAVVYPILVEFTR_761.4_286.1
HYOU1_HUMAN
0.1298


LIEIANHVDK_384.6_683.3
ADA12_HUMAN
0.1297


LSSPAVITDK_515.8_830.5
PLMN_HUMAN
0.1272


LIENGYFHPVK_439.6_343.2
F13B_HUMAN
0.1176


AALAAFNAQNNGSNFQLEEISR_
FETUA_HUMAN
0.1160


789.1_633.3




IQTHSTTYR_369.5_540.3
F13B_HUMAN
0.1146


IPKPEASFSPR_410.2_506.3
ITIH4_HUMAN
0.1001


LLDFEFSSGR_585.8_944.4
G6PE_HUMAN
0.0800


YYLQGAK_421.7_516.3
ITIH4_HUMAN
0.0793


VRPQQLVK_484.3_722.4
ITIH4_HUMAN
0.0744


GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.0610


ITQDAQLK_458.8_803.4
CBG_HUMAN
0.0541


TATSEYQTFFNPR_781.4_272.2
THRB_HUMAN
0.0511


ETLLQDFR_511.3_322.2
AMBP_HUMAN
0.0472


YEFLNGR_449.7_293.1
PLMN_HUMAN
0.0345


TLYSSSPR_455.7_696.3
IC1_HUMAN
0.0316


SLLQPNK_400.2_599.4
CO8A_HUMAN
0.0242


LLEVPEGR_456.8_686.4
C1S_HUMAN
0.0168


GGEGTGYFVDFSVR_745.9_722.4
HRG_HUMAN
0.0110


IQTHSTTYR_369._627.3
F13B_HUMAN
0.0046
















TABLE 20







Random Forest SummedGini All Windows










Transition
Protein
SumBestGini
Probability





TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
12.6521
1.0000


DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
11.9585
0.9985


ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
SHBG_HUMAN
10.5229
0.9971


DVLLLVHNLPQNLTGHIWYK_
PSG7_HUMAN
10.2666
0.9956


791.8_883.0





ETLLQDFR_511.3_565.3
AMBP_HUMAN
 8.9862
0.9941


ALALPPLGLAPLLNLWAKPQGR_
SHBG_HUMAN
 8.6349
0.9927


770.5_457.3





IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
 8.5838
0.9912


DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
 8.2463
0.9897


IQTHSTTYR_369.5_627.3
F13B_HUMAN
 8.1199
0.9883


DVLLLVHNLPQNLTGHIWYK_
PSG7_HUMAN
 7.7393
0.9868


791.8_310.2





IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
 7.5601
0.9853


HHGPTITAK_321.2_432.3
AMBP_HUMAN
 7.5181
0.9838


ETLLQDFR_511.3_322.2
AMBP_HUMAN
 7.4043
0.9824


FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
 7.2072
0.9809


GPGEDFR_389.2_623.3
PTGDS_HUMAN
 7.1422
0.9794


IQTHSTTYR_369.5_540.3
F13B_HUMAN
 6.9809
0.9780


TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
 6.6191
0.9765


ATVVYQGER_511.8_652.3
APOH_HUMAN
 6.5813
0.9750


VVLSSGSGPGLDLPLVLGL-
SHBG_HUMAN
 6.3244
0.9736


PLQLK_791.5_598.4





HHGPTITAK_321.2_275.1
AMBP_HUMAN
 6.3081
0.9721


VVLSSGSGPGLDLPLVLGL-
SHBG_HUMAN
 6.0654
0.9706


PLQLK_791.5_768.5





GDTYPAELYITGSILR_
F13B_HUMAN
 5.9580
0.9692


885.0_274.1





ATVVYQGER_511.8_751.4
APOH_HUMAN
 5.9313
0.9677


LDFHFSSDR_375.2_611.3
INHBC_HUMAN
 5.8533
0.9662


LDFHFSSDR_375.2_464.2
INHBC_HUMAN
 5.8010
0.9648


EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
 5.6648
0.9633


DTYVSSFPR_357.8_272.2
TCEA1_HUMAN
 5.6549
0.9618


LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
 5.3806
0.9604


FLYHK_354.2_447.2
AMBP_HUMAN
 5.3764
0.9589


SPELQAEAK_486.8_659.4
APOA2_HUMAN
 5.1896
0.9574


GPGEDFR_389.2_322.2
PTGDS_HUMAN
 5.1876
0.9559


SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
 5.1159
0.9545


TNTNEFLIDVDK_704.85_849.5
TF_HUMAN
 4.7216
0.9530


FICPLTGLWPINTLK_887.0_756.9
APOH_HUMAN
 4.6421
0.9515


LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
 4.6250
0.9501


EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
 4.4215
0.9486


SYTITGLQPGTDYK_772.4_680.3
FINC_HUMAN
 4.4103
0.9471


TLPFSR_360.7_409.2
LYAM1_HUMAN
 4.2148
0.9457


SPELQAEAK_486.8_788.4
APOA2_HUMAN
 4.2081
0.9442


GDTYPAELYITGSILR_
F13B_HUMAN
 4.0672
0.9427


885.0_922.5





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
 3.9248
0.9413


FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
 3.9034
0.9398


FLYHK_354.2_284.2
AMBP_HUMAN
 3.8982
0.9383


SGVDLADSNQK_567.3_591.3
VGFR3_HUMAN
 3.8820
0.9369


LDGSTHLNIFFAK_488.3_739.4
PAPP1_HUMAN
 3.8770
0.9354


HFQNLGK_422.2_527.2
AFAM_HUMAN
 3.7628
0.9339


IAQYYYTFK_598.8_884.4
F13B_HUMAN
 3.7040
0.9325


GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
 3.6538
0.9310


ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
 3.6148
0.9295


IAQYYYTFK_598.8_395.2
F13B_HUMAN
 3.5820
0.9280


GSLVQASEANLQAAQDFVR_
ITIH1_HUMAN
 3.5283
0.9266


668.7_735.4





TLPFSR_360.7_506.3
LYAM1_HUMAN
 3.5064
0.9251


VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
 3.5045
0.9236


IAPQLSTEELVSLGEK_
AFAM_HUMAN
 3.4990
0.9222


857.5_533.3





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
 3.4514
0.9207


TQILEWAAER_608.8_761.4
EGLN_HUMAN
 3.4250
0.9192


AHQLAIDTYQEFEETYIPK_
CSH_HUMAN
 3.3634
0.9178


766.0_521.3





TEFLSNYLTNVDDITLVP-
ENPP2_HUMAN
 3.3512
0.9163


GTLGR_846.8_600.3





HFQNLGK_422.2_285.1
AFAM_HUMAN
 3.3375
0.9148


VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
 3.3371
0.9134


TELRPGETLNVNFLLR_624.68_
CO3_HUMAN
 3.1889
0.9119


875.5





YQISVNK_426.2_292.1
FIBB_HUMAN
 3.1668
0.9104


YGFYTHVFR_397.2_659.4
THRB_HUMAN
 3.1188
0.9075


SEPRPGVLLR_375.2_454.3
FA7_HUMAN
 3.1068
0.9060


IAPQLSTEELVSLGEK_857.5_
AFAM_HUMAN
 3.0917
0.9046


333.2





ILILPSVTR_506.3_785.5
PSGx_HUMAN
 3.0346
0.9031


TLAFVR_353.7_492.3
FA7_HUMAN
 3.0237
0.9016


AKPALEDLR_506.8_288.2
APOA1_HUMAN
 3.0189
0.9001
















TABLE 21







Random Forest SummedGini Early Window










Transition
Protein
SumBestGini
Probability





LSETNR_360.2_330.2
PSG1_HUMAN
26.3610
1.0000


ALNFGGIGVVVGHELTHAFDDQGR_837.1_
ECE1_HUMAN
24.8946
0.9985


299.2





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
24.8817
0.9971


LDFHFSSDR_375.2_464.2
INHBC_HUMAN
24.3229
0.9956


LDFHFSSDR_375.2_611.3
INHBC_HUMAN
22.2162
0.9941


FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
19.6528
0.9927


TSESGELHGLTTEEEFVEGIYK_
TTHY_HUMAN
19.2430
0.9912


819.06_310.2





ATVVYQGER_511.8_751.4
APOH_HUMAN
19.1321
0.9897


IQTHSTTYR_369.5_627.3
F13B_HUMAN
17.1528
0.9883


ATVVYQGER_511.8_652.3
APOH_HUMAN
17.0214
0.9868


HYINLITR_515.3_301.1
NPY_HUMAN
16.6713
0.9853


FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
15.0826
0.9838


AFLEVNEEGSEAAASTAVVIAGR_
ANT3_HUMAN
14.6110
0.9824


764.4_614.4





IQTHSTTYR_369.5_540.3
F13B_HUMAN
14.5473
0.9809


AHQLAIDTYQEFEETYIPK_
CSH_HUMAN
14.0287
0.9794


766.0_521.3





TGAQELLR_444.3_530.3
GELS_HUMAN
13.1389
0.9780


DSPSVWAAVPGK_607.31_301.2
PROF1_HUMAN
12.9571
0.9765


NCSFSIIYPVVIK_770.4_555.4
CRHBP_HUMAN
12.5867
0.9750


ALALPPLGLAPLLNLWAKPQGR_
SHBG_HUMAN
12.1138
0.9721


770.5_256.2





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
11.7054
0.9706


TSDQIHFFFAK_447.6_512.3
ANT3_HUMAN
11.4261
0.9692


IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
11.0968
0.9677


DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
10.9040
0.9662


EQSLNVSQDLDTIR_539.9_758.4
SYNE2_HUMAN
10.6572
0.9648


IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
10.0629
0.9633


FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
10.0449
0.9618


ETPEGAEAKPWYEPIYLGGVFQLEK_
TNFA_HUMAN
10.0286
0.9604


951.14_877.5





LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
 9.8980
0.9589


FSVVYAK_407.2_381.2
FETUA_HUMAN
 9.7971
0.9574


YGIEEHGK_311.5_599.3
CXA1_HUMAN
 9.7850
0.9559


GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
 9.7587
0.9545


VVLSSGSGPGLDLPLVLGLPLQLK_
SHBG_HUMAN
 9.3421
0.9530


791.5_598.4





HHGPTITAK_321.2_275.1
AMBP_HUMAN
 9.2728
0.9515


ALALPPLGLAPLLNLWAKPQGR_
SHBG_HUMAN
 9.2431
0.9501


770.54_57.3





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
 9.1368
0.9486


AFQVWSDVTPLR_709.88_347.2
MMP2_HUMAN
 8.6789
0.9471


AFQVWSDVTPLR_709.88_385.3
MMP2_HUMAN
 8.6339
0.9457


ETLLQDFR_511.3_322.2
AMBP_HUMAN
 8.6252
0.9442


ETLLQDFR_511.3_565.3
AMBP_HUMAN
 8.3957
0.9427


VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
 8.3179
0.9413


HHGPTITAK_321.2_432.3
AMBP_HUMAN
 8.2567
0.9398


DTYVSSFPR_357.8_272.2
TCEA1_HUMAN
 8.2028
0.9383


GGEGTGYFVDFSVR_745.9_722.4
HRG_HUMAN
 8.0751
0.9369


DFNQFSSGEK_386.8_189.1
FETA_HUMAN
 8.0401
0.9354


DVLLLVHNLPQNLTGHIWYK_
PSG7_HUMAN
 7.9924
0.9339


791.8_883.0





VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
 7.8630
0.9325


QGHNSVFLIK_381.6_260.2
HEMO_HUMAN
 7.8588
0.9310


AQETSGEEISK_589.8_979.5
IBP1_HUMAN
 7.7787
0.9295


DIPHWLNPTR_416.9_600.3
PAPP1_HUMAN
 7.6393
0.9280


SPELQAEAK_486.8_788.4
APOA2_HUMAN
 7.6248
0.9266


QGHNSVFLIK_381.6_520.4
HEMO_HUMAN
 7.6042
0.9251


LIENGYFHPVK_439.6_343.2
F13B_HUMAN
 7.5771
0.9236


DIIKPDPPK_511.8_342.2
IL12B_HUMAN
 7.5523
0.9222


VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
 7.5296
0.9207


TELRPGETLNVNFLLR_624.68_
CO3_HUMAN
 7.4484
0.9178


875.5





QINSYVK_426.2_496.3
CBG_HUMAN
 7.3266
0.9163


YNSQLLSFVR_613.8_734.5
TFR1_HUMAN
 7.3262
0.9148


TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
 7.1408
0.9134


QTLSWTVTPK_580.8_818.4
PZP_HUMAN
 6.9764
0.9119


DVLLLVHNLPQNLPGYFWYK_
PSG9_HUMAN
 6.9663
0.9104


810.4_328.2





FICPLTGLWPINTLK_887.0_756.9
APOH_HUMAN
 6.8924
0.9090


TSYQVYSK_488.2_397.2
C163A_HUMAN
 6.5617
0.9075


VVLSSGSGPGLDLPLVLGLPLQLK_
SHBG_HUMAN
 6.4615
0.9060


791.5_768.5





QINSYVK_426.2_610.3
CBG_HUMAN
 6.4595
0.9046


LHKPGVYTR_357.5_479.3
HGFA_HUMAN
 6.4062
0.9031


ALVLELAK_428.8_672.4
INHBE_HUMAN
 6.3684
0.9016


YNSQLLSFVR_613.8_508.3
TFR1_HUMAN
 6.3628
0.9001
















TABLE 22







Random Forest SummedGini Early-Middle Combined Windows










Transition
Protein
SumBestGini
Probability





ATVVYQGER_511.8_652.3
APOH_HUMAN
120.6132
1.0000


ATVVYQGER_511.8_751.4
APOH_HUMAN
 99.7548
0.9985


IQTHSTTYR_369.5_627.3
F13B_HUMAN
 57.5339
0.9971


IQTHSTTYR_369.5_540.3
F13B_HUMAN
 55.0267
0.9956


FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
 49.9116
0.9941


AHQLAIDTYQEFEETYIPK_766.0_521.3
CSH_HUMAN
 48.9796
0.9927


HHGPTITAK_321.2_432.3
AMBP_HUMAN
 45.7432
0.9912


SPELQAEAK_486.8_659.4
APOA2_HUMAN
 42.1848
0.9897


AHYDLR_387.7_566.3
FETUA_HUMAN
 41.4591
0.9883


ETLLQDFR_511.3_565.3
AMBP_HUMAN
 39.7301
0.9868


HHGPTITAK_321.2_275.1
AMBP_HUMAN
 39.2096
0.9853


ETLLQDFR_511.3_322.2
AMBP_HUMAN
 36.8033
0.9838


FICPLTGLWPINTLK_
APOH_HUMAN
 31.8246
0.9824


887.0_756.9





TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
 31.1356
0.9809


IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
 30.5805
0.9794


DVLLLVHNLPQNLTGHIWYK_
PSG7_HUMAN
 29.5729
0.9780


791.8_883.0





AHYDLR_387.7_288.2
FETUA_HUMAN
 29.0239
0.9765


SPELQAEAK_486.8_788.4
APOA2_HUMAN
 28.6741
0.9750


ETPEGAEAKPWYEPIYLGGVF-
TNFA_HUMAN
 26.8117
0.9736


QLEK_951.14_877.5





LDFHFSSDR_375.2_611.3
INHBC_HUMAN
 26.0001
0.9721


DFNQFSSGEK_386.8_189.1
FETA_HUMAN
 25.9113
0.9706


HFQNLGK_422.2_527.2
AFAM_HUMAN
 25.7497
0.9692


DPDQTDGLGLSYLSSHIANVER_
GELS_HUMAN
 25.7418
0.9677


796.4_328.1





VVLSSGSGPGLDLPLVLGLPLQLK_7
SHBG_HUMAN
 25.6425
0.9662


91.5_598.4





IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
 25.1737
0.9648


LDFHFSSDR_375.2_464.2
INHBC_HUMAN
 25.0674
0.9633


LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
 24.5613
0.9618


972.0_640.4





VVLSSGSGPGLDLPLVLGLPLQLK_
SHBG_HUMAN
 23.2995
0.9604


791.5_768.5





DIPHWLNPTR_416.9_600.3
PAPP1_HUMAN
 22.9504
0.9589


VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
 22.2821
0.9574


QINSYVK_426.2_496.3
CBG_HUMAN
 22.2233
0.9559


ALALPPLGLAPLLNLWAKPQGR_
SHBG_HUMAN
 22.1160
0.9545


770.5_256.2





TELRPGETLNVNFLLR_624.68_875.5
CO3_HUMAN
 21.9043
0.9530


ITQDAQLK_458.8_803.4
CBG_HUMAN
 21.8933
0.9515


IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
 21.4577
0.9501


QINSYVK_426.2_610.3
CBG_HUMAN
 21.3414
0.9486


LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
 21.2843
0.9471


972.0_798.4





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
 21.2631
0.9457


DVLLLVHNLPQNLPGYFWYK_
PSG9_HUMAN
 21.2547
0.9442


810.4_328.2





HFQNLGK_422.2_285.1
AFAM_HUMAN
 20.8051
0.9427


DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
 20.2572
0.9413


FLYHK_354.2_447.2
AMBP_HUMAN
 19.6822
0.9398


NNQLVAGYLQGPNVNLEEK_
IL1RA_HUMAN
 19.2156
0.9383


700.7_999.5





VSFSSPLVAISGVALR_802.0_715.4
PAPP1_HUMAN
 18.9721
0.9369


TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
 18.9392
0.9354


TFVNITPAEVGVLVGK_822.47_968.6
PROF1_HUMAN
 18.9351
0.9339


LQVLGK_329.2_416.3
A2GL_HUMAN
 18.6613
0.9325


TLAFVR_353.7_274.2
FA7_HUMAN
 18.5095
0.9310


ITQDAQLK_458.8_702.4
CBG_HUMAN
 18.5046
0.9295


DVLLLVHNLPQNLTGHIWYK_
PSG7_HUMAN
 18.4015
0.9280


791.8_310.2





VSFSSPLVAISGVALR_802.0_602.4
PAPP1_HUMAN
 17.5397
0.9266


IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
 17.5338
0.9251


TLFIFGVTK_513.3_215.1
PSG4_HUMAN
 17.5245
0.9236


ALNFGGIGVVVGHELTHAFDDQGR_
ECE1_HUMAN
 17.1108
0.9222


837.1_299.2





FLYHK_354.2_284.2
AMBP_HUMAN
 16.9237
0.9207


LDGSTHLNIFFAK_488.3_739.4
PAPP1_HUMAN
 16.8260
0.9192


ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
 16.5607
0.9178


YNSQLLSFVR_613.8_734.5
TFR1_HUMAN
 16.5425
0.9163


AFQVWSDVTPLR_709.88_385.3
MMP2_HUMAN
 16.3293
0.9148


LDGSTHLNIFFAK_488.3_852.5
PAPP1_HUMAN
 15.9820
0.9134


TPSAAYLWVGTGASEAEK_
GELS_HUMAN
 15.9084
0.9119


919.5_428.2





YTTEIIK_434.2_603.4
C1R_HUMAN
 15.7998
0.9104


FSVVYAK_407.2_381.2
FETUA_HUMAN
 15.4991
0.9090


VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
 15.2938
0.9075


SYTITGLQPGTDYK_772.4_680.3
FINC_HUMAN
 14.9898
0.9060


DIPHWLNPTR_416.9_373.2
PAPP1_HUMAN
 14.6923
0.9046


AFQVWSDVTPLR_709.88_347.2
MMP2_HUMAN
 14.4361
0.9031


IAQYYYTFK_598.8_884.4
F13B_HUMAN
 14.4245
0.9016


FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
 14.3848
0.9001









From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.

Claims
  • 1. A panel of isolated biomarkers comprising two or more biomarkers, wherein said two or more biomarkers comprise sex hormone-binding globulin (SHBG) and one or more biomarkers selected from the group consisting of afamin (AFAM), apolipoprotein C III (APOC3), complement C5 preproprotein (CO5) and chorionic somatomammotropin hormone (CSH), or fragments or derivatives thereof.
  • 2.-6. (canceled)
  • 7. A method of determining probability for preeclampsia in a pregnant female, the method comprising detecting a measurable feature of two or more biomarkers in a biological sample obtained from said pregnant female, and analyzing said measurable feature to determine the probability for preeclampsia in said pregnant female, wherein said two or more biomarkers comprise sex hormone-binding globulin (SHBG) and one or more biomarkers selected from the group consisting of afamin (AFAM), apolipoprotein C III (APOC3), complement C5 preproprotein (CO5) and chorionic somatomammotropin hormone (CSH).
  • 8. The method of claim 7, wherein said measurable feature comprises fragments or derivatives of said two or more biomarkers.
  • 9. The method of claim 7, wherein said detecting a measurable feature comprises quantifying an amount of said two or more biomarkers, or fragments or derivatives thereof in said biological sample.
  • 10. The method of claim 9, further comprising calculating the probability for preeclampsia in said pregnant female based on said quantified amount of said two or more biomarkers, and wherein said probability is expressed as a risk score.
  • 11. (canceled)
  • 12. The method of claim 7, further comprising an initial step of providing a biological sample from the pregnant female, wherein the biological sample is selected from the group consisting of whole blood, plasma, and serum.
  • 13. The method of claim 7, further comprising communicating said probability to a health care provider, wherein said communication informs a subsequent treatment decision for said pregnant female.
  • 14.-16. (canceled)
  • 17. The method of claim 7, wherein said analysis comprises use of a predictive model or comparing said two or more biomarkers with a reference biomarker.
  • 18. (canceled)
  • 19. The method of claim 17, wherein said analysis comprises using one or more analyses selected from the group consisting of a linear discriminant analysis model, a support vector machine classification algorithm, a recursive feature elimination model, a prediction analysis of microarray model, a logistic regression model, a CART algorithm, a flex tree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, a machine learning algorithm, a penalized regression method, and a combination thereof.
  • 20.-23. (canceled)
  • 24. The method of claim 7, wherein said quantifying comprises mass spectrometry (MS).
  • 25.-27. (canceled)
  • 28. The method of claim 7, wherein said quantifying comprises an assay that utilizes a capture agent, wherein said capture agent is selected from the group consisting of an antibody, antibody fragment, nucleic acid-based protein binding reagent, or small molecule.
  • 29. (canceled)
  • 30. The method of claim 28, wherein said assay is selected from the group consisting of enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA).
  • 31. (canceled)
  • 32. The method of claim 24, wherein said MS comprises co-immunoprecipitation mass spectrometry (co-IP MS).
  • 33. The method of claim 7, further comprising detecting a measurable feature for one or more risk indicia, wherein the one or more risk indicia are selected from the group consisting of history of preeclampsia, first pregnancy, age, obesity, diabetes, gestational diabetes, hypertension, kidney disease, multiple pregnancy, interval between pregnancies, new paternity, migraine headaches, rheumatoid arthritis, and lupus.
  • 34. (canceled)
  • 35. A method of detecting two or more biomarkers, the method comprising: (a) obtaining a biological sample from a pregnant female; and (b) detecting whether said two or more biomarkers are present in said biological sample, wherein said two or more biomarkers comprises sex hormone-binding globulin (SHBG) and one or more features selected from the group consisting of afamin (AFAM), apolipoprotein C III (APOC3), complement C5 preproprotein (CO5) and chorionic somatomammotropin hormone (CSH).
  • 36-44. (canceled)
  • 45. The method of claim 35, wherein said detecting comprises mass spectrometry (MS).
  • 46. The method of claim 45, wherein said MS comprises co-immunoprecipitation mass spectrometry (co-IP MS).
  • 47. The method of claim 35, wherein said detecting comprises an assay that utilizes a capture agent, wherein said capture agent is selected from the group consisting of an antibody, antibody fragment, nucleic acid-based protein binding reagent, or small molecule.
  • 48. The method of claim 47, wherein said assay is selected from the group consisting of enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA).
  • 49. The panel of claim 1, wherein said two or more biomarkers comprise: i. SHBG and AFAM;ii. SHBG, AFAM and CSH;iii. SHBG and APOC3;iv. SHBG, APOC3 and CSH; oriv. SHBG and CO5.
  • 50. The method of claim 7, wherein said two or more biomarkers comprise: i. SHBG and AFAM;ii. SHBG, AFAM and CSH;iii. SHBG and APOC3;iv. SHBG, APOC3 and CSH; oriv. SHBG and CO5.
  • 51. The method of claim 35, wherein said two or more biomarkers comprise: i. SHBG and AFAM;ii. SHBG, AFAM and CSH;iii. SHBG and APOC3;iv. SHBG, APOC3 and CSH; oriv. SHBG and CO5.
  • 52. The panel of claim 1, wherein said panel comprises fragments or derivatives of said two or more biomarkers.
  • 53. The panel of claim 52, wherein said fragments consist of the amino acid sequence: i. IALGGLLFPASNLR for the biomarker SHBG;ii. HFQNLGK for the biomarker AFAM;iii. ISLLLIESWLEPVR for the biomarker CSH;iv. GWVTDGFSSLK for the biomarker APOC3; orv. IEEIAAK for the biomarker CO5.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 16/107,248, filed Aug. 21, 2018, which is a continuation of U.S. application Ser. No. 14/213,947, filed Mar. 14, 2014, which claims the benefit of U.S. provisional patent application No. 61/798,413, filed Mar. 15, 2013, each of which is herein incorporated by reference in its entirety. This application incorporates by reference a Sequence Listing with this application as an ASCII text file entitled “13271-047-999_SL.txt” created on Jun. 29, 2020, and having a size of 191,117 bytes. The invention relates generally to the field of personalized medicine and, more specifically to compositions and methods for determining the probability for preeclampsia in a pregnant female.

Provisional Applications (1)
Number Date Country
61798413 Mar 2013 US
Continuations (2)
Number Date Country
Parent 16107248 Aug 2018 US
Child 16919947 US
Parent 14213947 Mar 2014 US
Child 16107248 US