BIOMARKERS AND METHODS FOR PREDICTING PREECLAMPSIA

Abstract
The disclosure provides biomarker panels, methods and kits for determining the probability for preeclampsia in a pregnant female. The present disclosure is based, in part, on the discovery that certain proteins and peptides in biological samples obtained from a pregnant female are differentially expressed in pregnant females that have an increased risk of developing in the future or presently suffering from preeclampsia relative to matched controls. The present disclosure is further based, in part, on the unexepected discovery that panels combining one or more of these proteins and peptides can be utilized in methods of determining the probability for preeclampsia in a pregnant female with relatively high sensitivity and specificity. These proteins and peptides disclosed herein serve as biomarkers for classifying test samples, predicting a probability of preeclampsia, monitoring of progress of preeclampsia in a pregnant female, either individually or in a panel of biomarkers.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 6, 2014, is named 13271-012-999_SL.txt and is 191,037 bytes in size.


The invention relates generally to the field of personalized medicine and, more specifically to compositions and methods for determining the probability for preeclampsia in a pregnant female.


BACKGROUND

Preeclampsia (PE), a pregnancy-specific multi-system disorder characterized by hypertension and excess protein excretion in the urine, is a leading cause of maternal and fetal morbidity and mortality worldwide. Preeclampsia affects at least 5-8% of all pregnancies and accounts for nearly 18% of maternal deaths in the United States. The disorder is probably multifactorial, although most cases of preeclampsia are characterized by abnormal maternal uterine vascular remodeling by fetally derived placental trophoblast cells.


Complications of preeclampsia can include compromised placental blood flow, placental abruption, eclampsia, HELLP syndrome (hemolysis, elevated liver enzymes and low platelet count), acute renal failure, cerebral hemorrhage, hepatic failure or rupture, pulmonary edema, disseminated intravascular coagulation and future cardiovascular disease. Even a slight increase in blood pressure can be a sign of preeclampsia. While symptoms can include swelling, sudden weight gain, headaches and changes in vision, some women remain asymptomatic.


Management of preeclampsia consists of two options: delivery or observation. Management decisions depend on the gestational age at which preeclampsia is diagnosed and the relative state of health of the fetus. The only cure for preeclampsia is delivery of the fetus and placenta. However, the decision to deliver involves balancing the potential benefit to the fetus of further in utero development with fetal and maternal risk of progressive disease, including the development of eclampsia, which is preeclampsia complicated by maternal seizures.


There is a great need to identify women at risk for preeclampsia as most currently available tests fail to predict the majority of women who eventually develop preeclampsia. Women identified as high-risk can be scheduled for more intensive antenatal surveillance and prophylactic interventions. Reliable early detection of preeclampsia would enable planning appropriate monitoring and clinical management, potentially providing the early identification of disease complications. Such monitoring and management might include: more frequent assessment of blood pressure and urinary protein concentration, uterine artery doppler measurement, ultrasound assessment of fetal growth and prophylactic treatment with aspirin. Finally, reliable antenatal identification of preeclampsia also is crucial to cost-effective allocation of monitoring resources.


The present invention addresses this need by providing compositions and methods for determining whether a pregnant woman is at risk for developing preeclampsia. Related advantages are provided as well.


SUMMARY

The present invention provides compositions and methods for predicting the probability of preeclampsia in a pregnant female.


In one aspect, the invention provides a panel of isolated biomarkers comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments, N is a number selected from the group consisting of 2 to 24. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of FSVVYAK (SEQ ID NO: 1), SPELQAEAK (SEQ ID NO: 2), VNHVTLSQPK (SEQ ID NO: 3), SSNNPHSPIVEEFQVPYNK (SEQ ID NO: 4), and VVGGLVALR (SEQ ID NO: 5). In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of LDFHFSSDR (SEQ ID NO: 6), TVQAVLTVPK (SEQ ID NO: 7), GPGEDFR (SEQ ID NO: 8), ETLLQDFR (SEQ ID NO: 9), ATVVYQGER (SEQ ID NO: 10), GFQALGDAADIR (SEQ ID NO: 11). In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of FSVVYAK (SEQ ID NO: 1), SPELQAEAK (SEQ ID NO: 2), VNHVTLSQPK (SEQ ID NO: 3), SSNNPHSPIVEEFQVPYNK (SEQ ID NO: 4), VVGGLVALR (SEQ ID NO: 5), LDFHFSSDR (SEQ ID NO: 6), TVQAVLTVPK (SEQ ID NO: 7), GPGEDFR (SEQ ID NO: 8), ETLLQDFR (SEQ ID NO: 9), ATVVYQGER (SEQ ID NO: 10), and GFQALGDAADIR (SEQ ID NO: 11).


In some embodiments, the invention provides a biomarker panel comprising at least two of the isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4). In additional embodiments, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).


In some embodiments, the invention provides a biomarker panel comprising at least two of the isolated biomarkers selected from the group consisting of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


In other embodiments, the invention provides a biomarker panel comprising alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN). In another aspect, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C is), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN).


Also provided by the invention is a method of determining probability for preeclampsia in a pregnant female comprising detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22 in a biological sample obtained from the pregnant female, and analyzing the measurable feature to determine the probability for preeclampsia in the pregnant female. In some embodiments, a measurable feature comprises fragments or derivatives of each of the N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments of the disclosed methods detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22, combinations or portions and/or derivatives thereof in a biological sample obtained from the pregnant female. In additional embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female further encompass detecting a measurable feature for one or more risk indicia associated with preeclampsia.


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of N biomarkers, wherein N is selected from the group consisting of 2 to 24. In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FSVVYAK (SEQ ID NO: 1), SPELQAEAK (SEQ ID NO: 2), VNHVTLSQPK (SEQ ID NO: 3), SSNNPHSPIVEEFQVPYNK (SEQ ID NO: 4), and VVGGLVALR (SEQ ID NO: 5).


In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of LDFHFSSDR (SEQ ID NO: 6), TVQAVLTVPK (SEQ ID NO: 7), GPGEDFR (SEQ ID NO: 8), ETLLQDFR (SEQ ID NO: 9), ATVVYQGER (SEQ ID NO: 10), GFQALGDAADIR (SEQ ID NO: 11).


In additional embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FSVVYAK (SEQ ID NO: 1), SPELQAEAK (SEQ ID NO: 2), VNHVTLSQPK (SEQ ID NO: 3), SSNNPHSPIVEEFQVPYNK (SEQ ID NO: 4), VVGGLVALR (SEQ ID NO: 5), LDFHFSSDR (SEQ ID NO: 6), TVQAVLTVPK (SEQ ID NO: 7), GPGEDFR (SEQ ID NO: 8), ETLLQDFR (SEQ ID NO: 9), ATVVYQGER (SEQ ID NO: 10), and GFQALGDAADIR (SEQ ID NO: 11).


In other embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN).


In some embodiments of the methods of determining probability for preeclampsia in a pregnant female, the probability for preeclampsia in the pregnant female is calculated based on the quantified amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments, the disclosed methods for determining the probability of preeclampsia encompass detecting and/or quantifying one or more biomarkers using mass sprectrometry, a capture agent or a combination thereof.


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass an initial step of providing a biomarker panel comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In additional embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass an initial step of providing a biological sample from the pregnant female.


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass communicating the probability to a health care provider. In additional embodiments, the communication informs a subsequent treatment decision for the pregnant female. In further embodiments, the treatment decision comprises one or more selected from the group of consisting of more frequent assessment of blood pressure and urinary protein concentration, uterine artery doppler measurement, ultrasound assessment of fetal growth and prophylactic treatment with aspirin.


In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass analyzing the measurable feature of one or more isolated biomarkers using a predictive model. In some embodiments of the disclosed methods, a measurable feature of one or more isolated biomarkers is compared with a reference feature.


In additional embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass using one or more analyses selected from a linear discriminant analysis model, a support vector machine classification algorithm, a recursive feature elimination model, a prediction analysis of microarray model, a logistic regression model, a CART algorithm, a flex tree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, a machine learning algorithm, a penalized regression method, and a combination thereof. In one embodiment, the disclosed methods of determining probability for preeclampsia in a pregnant female encompasses logistic regression.


In some embodiments, the invention provides a method of determining probability for preeclampsia in a pregnant female encompasses quantifying in a biological sample obtained from the pregnant female an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22; multiplying the amount by a predetermined coefficient, and determining the probability for preeclampsia in the pregnant female comprising adding the individual products to obtain a total risk score that corresponds to the probability.


Other features and advantages of the invention will be apparent from the detailed description, and from the claims.







DETAILED DESCRIPTION

The present disclosure is based, in part, on the discovery that certain proteins and peptides in biological samples obtained from a pregnant female are differentially expressed in pregnant females that have an increased risk of developing in the future or presently suffering from preeclampsia relative to matched controls. The present disclosure is further based, in part, on the unexepected discovery that panels combining one or more of these proteins and peptides can be utilized in methods of determining the probability for preeclampsia in a pregnant female with relatively high sensitivity and specificity. These proteins and peptides disclosed herein serve as biomarkers for classifying test samples, predicting a probability of preeclampsia, monitoring of progress of preeclampsia in a pregnant female, either individually or in a panel of biomarkers.


The disclosure provides biomarker panels, methods and kits for determining the probability for preeclampsia in a pregnant female. One major advantage of the present disclosure is that risk of developing preeclampsia can be assessed early during pregnancy so that management of the condition can be initiated in a timely fashion. Sibai, Hypertension. In: Gabbe et al., eds. Obstetrics: Normal and Problem Pregnancies. 6th ed. Philadelphia, Pa.: Saunders Elsevier; 2012:chap 35. The present invention is of particular benefit to asymptomatic females who would not otherwise be identified and treated.


By way of example, the present disclosure includes methods for generating a result useful in determining probability for preeclampsia in a pregnant female by obtaining a dataset associated with a sample, where the dataset at least includes quantitative data about biomarkers and panels of biomarkers that have been identified as predictive of preeclampsia, and inputting the dataset into an analytic process that uses the dataset to generate a result useful in determining probability for preeclampsia in a pregnant female. As described further below, this quantitative data can include amino acids, peptides, polypeptides, proteins, nucleotides, nucleic acids, nucleosides, sugars, fatty acids, steroids, metabolites, carbohydrates, lipids, hormones, antibodies, regions of interest that serve as surrogates for biological macromolecules and combinations thereof.


In addition to the specific biomarkers identified in this disclosure, for example, by accession number, sequence, or reference, the invention also contemplates use of biomarker variants that are at least 90% or at least 95% or at least 97% identical to the exemplified sequences and that are now known or later discover and that have utility for the methods of the invention. These variants may represent polymorphisms, splice variants, mutations, and the like. In this regard, the instant specification discloses multiple art-known proteins in the context of the invention and provides exemplary accession numbers associated with one or more public databases as well as exemplary references to published journal articles relating to these art-known proteins. However, those skilled in the art appreciate that additional accession numbers and journal articles can easily be identified that can provide additional characteristics of the disclosed biomarkers and that the exemplified references are in no way limiting with regard to the disclosed biomarkers. As described herein, various techniques and reagents find use in the methods of the present invention. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. In a particular embodiment, the biological sample is serum. As described herein, biomarkers can be detected through a variety of assays and techniques known in the art. As further described herein, such assays include, without limitation, mass spectrometry (MS)-based assays, antibody-based assays as well as assays that combine aspects of the two.


Protein biomarkers associated with the probability for preeclampsia in a pregnant female include, but are not limited to, one or more of the isolated biomarkers listed in Tables 2, 3, 4, 5, and 7 through 22. In addition to the specific biomarkers, the disclosure further includes biomarker variants that are about 90%, about 95%, or about 97% identical to the exemplified sequences. Variants, as used herein, include polymorphisms, splice variants, mutations, and the like.


Additional markers can be selected from one or more risk indicia, including but not limited to, maternal age, race, ethnicity, medical history, past pregnancy history, and obstetrical history. Such additional markers can include, for example, age, prepregnancy weight, ethnicity, race; the presence, absence or severity of diabetes, hypertension, heart disease, kidney disease; the incidence and/or frequency of prior preeclampsia, prior preeclampsia; the presence, absence, frequency or severity of present or past smoking, illicit drug use, alcohol use; the presence, absence or severity of bleeding after the 12th gestational week; cervical cerclage and transvaginal cervical length. Additional risk indicia useful for as markers can be identified using learning algorithms known in the art, such as linear discriminant analysis, support vector machine classification, recursive feature elimination, prediction analysis of microarray, logistic regression, CART, FlexTree, LART, random forest, MART, and/or survival analysis regression, which are known to those of skill in the art and are further described herein.


Provided herein are panels of isolated biomarkers comprising N of the biomarkers selected from the group listed in Tables 2, 3, 4, 5, and 7 through 22. In the disclosed panels of biomarkers N can be a number selected from the group consisting of 2 to 24. In the disclosed methods, the number of biomarkers that are detected and whose levels are determined, can be 1, or more than 1, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more. In certain embodiments, the number of biomarkers that are detected, and whose levels are determined, can be 1, or more than 1, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, or more. The methods of this disclosure are useful for determining the probability for preeclampsia in a pregnant female.


While certain of the biomarkers listed in Tables 2, 3, 4, 5, and 7 through 22 are useful alone for determining the probability for preeclampsia in a pregnant female, methods are also described herein for the grouping of multiple subsets of the biomarkers that are each useful as a panel of three or more biomarkers. In some embodiments, the invention provides panels comprising N biomarkers, wherein N is at least three biomarkers. In other embodiments, N is selected to be any number from 3-23 biomarkers.


In yet other embodiments, N is selected to be any number from 2-5, 2-10, 2-15, 2-20, or 2-23. In other embodiments, N is selected to be any number from 3-5, 3-10, 3-15, 3-20, or 3-23. In other embodiments, N is selected to be any number from 4-5, 4-10, 4-15, 4-20, or 4-23. In other embodiments, N is selected to be any number from 5-10, 5-15, 5-20, or 5-23. In other embodiments, N is selected to be any number from 6-10, 6-15, 6-20, or 6-23. In other embodiments, N is selected to be any number from 7-10, 7-15, 7-20, or 7-23. In other embodiments, N is selected to be any number from 8-10, 8-15, 8-20, or 8-23. In other embodiments, N is selected to be any number from 9-10, 9-15, 9-20, or 9-23. In other embodiments, N is selected to be any number from 10-15, 10-20, or 10-23. It will be appreciated that N can be selected to encompass similar, but higher order, ranges.


In certain embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, or five isolated biomarkers comprising an amino acid sequence selected from SPELQAEAK (SEQ ID NO: 2), SSNNPHSPIVEEFQVPYN (SEQ ID NO: 12), VNHVTLSQPK (SEQ ID NO: 3), VVGGLVALR (SEQ ID NO: 5), and FSVVYAK (SEQ ID NO: 1). In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, five of the isolated biomarkers consisting of an amino acid sequence selected from SPELQAEAK (SEQ ID NO: 2), SSNNPHSPIVEEFQVPYN (SEQ ID NO: 12), VNHVTLSQPK (SEQ ID NO: 3), VVGGLVALR (SEQ ID NO: 5), and FSVVYAK (SEQ ID NO: 1).


In certain embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, or five isolated biomarkers comprising an amino acid sequence selected from LDFHFSSDR (SEQ ID NO: 6), TVQAVLTVPK (SEQ ID NO: 7), GPGEDFR (SEQ ID NO: 8), ETLLQDFR (SEQ ID NO: 9), ATVVYQGER (SEQ ID NO: 10), GFQALGDAADIR (SEQ ID NO: 11). In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, five of the isolated biomarkers consisting of an amino acid sequence selected from LDFHFSSDR (SEQ ID NO: 6), TVQAVLTVPK (SEQ ID NO: 7), GPGEDFR (SEQ ID NO: 8), ETLLQDFR (SEQ ID NO: 9), ATVVYQGER (SEQ ID NO: 10), GFQALGDAADIR (SEQ ID NO: 11).


In certain embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, or five isolated biomarkers comprising an amino acid sequence selected from FSVVYAK (SEQ ID NO: 1), SPELQAEAK (SEQ ID NO: 2), VNHVTLSQPK (SEQ ID NO: 3), SSNNPHSPIVEEFQVPYNK (SEQ ID NO: 4), VVGGLVALR (SEQ ID NO: 5), LDFHFSSDR (SEQ ID NO: 6), TVQAVLTVPK (SEQ ID NO: 7), GPGEDFR (SEQ ID NO: 8), ETLLQDFR (SEQ ID NO: 9), ATVVYQGER (SEQ ID NO: 10), and GFQALGDAADIR (SEQ ID NO: 11). In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, five of the isolated biomarkers consisting of an amino acid sequence selected from FSVVYAK (SEQ ID NO: 1), SPELQAEAK (SEQ ID NO: 2), VNHVTLSQPK (SEQ ID NO: 3), SSNNPHSPIVEEFQVPYNK (SEQ ID NO: 4), VVGGLVALR (SEQ ID NO: 5), LDFHFSSDR (SEQ ID NO: 6), TVQAVLTVPK (SEQ ID NO: 7), GPGEDFR (SEQ ID NO: 8), ETLLQDFR (SEQ ID NO: 9), ATVVYQGER (SEQ ID NO: 10), and GFQALGDAADIR (SEQ ID NO: 11).


In some embodiments, the panel of isolated biomarkers comprises one or more peptides comprising a fragment from alpha-1-microglobulin (AMBP) Traboni and Cortese, Nucleic Acids Res. 14 (15), 6340 (1986); ADP/ATP translocase 3 (ANT3) Cozens et al., J. Mol. Biol. 206 (2), 261-280 (1989) (NCBI Reference Sequence: NP001627.2); apolipoprotein A-II (APOA2) Fullerton et al., Hum. Genet. 111 (1), 75-87 (2002) GenBank: AY100524.1); apolipoprotein B (APOB) Knott et al., Nature 323, 734-738 (1986) (GenBank: EAX00803.1); apolipoprotein C-III (APOC3), Fullerton et al., Hum. Genet. 115 (1), 36-56 (2004)(GenBank: AAS68230.1); beta-2-microglobulin (B2MG) Cunningham et al., Biochemistry 12 (24), 4811-4822 (1973) (GenBank: AI686916.1); complement component 1, s subcomponent (C1S) Mackinnon et al., Eur. J. Biochem. 169 (3), 547-553 (1987), and retinol binding protein 4 (RBP4 or RET4) Rask et al., Ann. N.Y. Acad. Sci. 359, 79-90 (1981) (UniProtKB/Swiss-Prot: P02753.3).


In some embodiments, the panel of isolated biomarkers comprises one or more peptides comprising a fragment from cell adhesion molecule with homology to L1CAM (close homolog of L1) (CHL1) (GenBank: AAI43497.1), complement component C5 (C5 or CO5) Haviland, J. Immunol. 146 (1), 362-368 (1991)(GenBank: AAA51925.1); Complement component C8 beta chain (C8B or CO8B) Howard et al., Biochemistry 26 (12), 3565-3570 (1987) (NCBI Reference Sequence: NP000057.1), endothelin-converting enzyme 1 (ECE1) Xu et al., Cell 78 (3), 473-485 (1994) (NCBI Reference Sequence: NM001397.2; NP001388.1); coagulation factor XIII, B polypeptide (F13B) Grundmann et al., Nucleic Acids Res. 18 (9), 2817-2818 (1990) (NCBI Reference Sequence: NP001985.2); Interleukin 5 (IL5), Murata et al., J. Exp. Med. 175 (2), 341-351 (1992) (NCBI Reference Sequence: NP000870.1), Peptidase D (PEPD) Endo et al., J. Biol. Chem. 264 (8), 4476-4481 (1989) (UniProtKB/Swiss-Prot: P12955.3); Plasminogen (PLMN) Petersen et al., J. Biol. Chem. 265 (11), 6104-6111 (1990), (NCBI Reference Sequences: NP000292.1 NP001161810.1).


In additional embodiments, the invention provides a panel of isolated biomarkers comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments, N is a number selected from the group consisting of 2 to 24. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of FSVVYAK (SEQ ID NO: 1), SPELQAEAK (SEQ ID NO: 2), VNHVTLSQPK (SEQ ID NO: 3), SSNNPHSPIVEEFQVPYNK (SEQ ID NO: 4), and VVGGLVALR (SEQ ID NO: 5).


In further embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4). In another embodiment, the invention provides a biomarker panel comprising at least three isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).


In further embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG). In another embodiment, the invention provides a biomarker panel comprising at least three isolated biomarkers selected from the group consisting of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


In some embodiments, the invention provides a biomarker panel comprising alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN). In another aspect, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN).


In some embodiments, the invention provides a biomarker panel comprising Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG). In another aspect, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


As used in this application, including the appended claims, the singular forms “a,” “an,” and “the” include plural references, unless the content clearly dictates otherwise, and are used interchangeably with “at least one” and “one or more.”


The term “about,” particularly in reference to a given quantity, is meant to encompass deviations of plus or minus five percent.


As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “contains,” “containing,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, product-by-process, or composition of matter that comprises, includes, or contains an element or list of elements does not include only those elements but can include other elements not expressly listed or inherent to such process, method, product-by-process, or composition of matter.


As used herein, the term “panel” refers to a composition, such as an array or a collection, comprising one or more biomarkers. The term can also refer to a profile or index of expression patterns of one or more biomarkers described herein. The number of biomarkers useful for a biomarker panel is based on the sensitivity and specificity value for the particular combination of biomarker values.


As used herein, and unless otherwise specified, the terms “isolated” and “purified” generally describes a composition of matter that has been removed from its native environment (e.g., the natural environment if it is naturally occurring), and thus is altered by the hand of man from its natural state. An isolated protein or nucleic acid is distinct from the way it exists in nature.


The term “biomarker” refers to a biological molecule, or a fragment of a biological molecule, the change and/or the detection of which can be correlated with a particular physical condition or state. The terms “marker” and “biomarker” are used interchangeably throughout the disclosure. For example, the biomarkers of the present invention are correlated with an increased likelihood of preeclampsia. Such biomarkers include, but are not limited to, biological molecules comprising nucleotides, nucleic acids, nucleosides, amino acids, sugars, fatty acids, steroids, metabolites, peptides, polypeptides, proteins, carbohydrates, lipids, hormones, antibodies, regions of interest that serve as surrogates for biological macromolecules and combinations thereof (e.g., glycoproteins, ribonucleoproteins, lipoproteins). The term also encompasses portions or fragments of a biological molecule, for example, peptide fragment of a protein or polypeptide that comprises at least 5 consecutive amino acid residues, at least 6 consecutive amino acid residues, at least 7 consecutive amino acid residues, at least 8 consecutive amino acid residues, at least 9 consecutive amino acid residues, at least 10 consecutive amino acid residues, at least 11 consecutive amino acid residues, at least 12 consecutive amino acid residues, at least 13 consecutive amino acid residues, at least 14 consecutive amino acid residues, at least 15 consecutive amino acid residues, at least 5 consecutive amino acid residues, at least 16 consecutive amino acid residues, at least 17 consecutive amino acid residues, at least 18 consecutive amino acid residues, at least 19 consecutive amino acid residues, at least 20 consecutive amino acid residues, at least 21 consecutive amino acid residues, at least 22 consecutive amino acid residues, at least 23 consecutive amino acid residues, at least 24 consecutive amino acid residues, at least 25 consecutive amino acid residues, or more consecutive amino acid residues.


The invention also provides a method of determining probability for preeclampsia in a pregnant female, the method comprising detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22 in a biological sample obtained from the pregnant female, and analyzing the measurable feature to determine the probability for preeclampsia in the pregnant female. As disclosed herein, a measurable feature comprises fragments or derivatives of each of said N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments of the disclosed methods detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22, combinations or portions and/or derivatives thereof in a biological sample obtained from said pregnant female.


In some embodiments, the present invention describes a method for predicting the time to onset of preeclamspsia in a pregnant female, the method comprising: (a) obtaining a biological sample from said pregnant female; (b) quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22 in said biological sample; (c) multiplying or thresholding said amount by a predetermined coefficient, (d) determining predicted onset of said preeclampsia in said pregnant female comprising adding said individual products to obtain a total risk score that corresponds to said predicted onset of said preeclampsia in said pregnant female. Although described and exemplified with reference to methods of determining probability for preeclampsia in a pregnant female, the present disclosure is similarly applicable to the method of predicting time to onset of in a pregnant female. It will be apparent to one skilled in the art that each of the aforementioned methods has specific and substantial utilities and benefits with regard maternal-fetal health considerations.


In some embodiments, the method of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of N biomarkers, wherein N is selected from the group consisting of 2 to 24. In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FSVVYAK (SEQ ID NO: 1), SPELQAEAK (SEQ ID NO: 2), VNHVTLSQPK (SEQ ID NO: 3), SSNNPHSPIVEEFQVPYNK (SEQ ID NO: 4), and VVGGLVALR (SEQ ID NO: 5).


In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of LDFHFSSDR (SEQ ID NO: 6), TVQAVLTVPK (SEQ ID NO: 7), GPGEDFR (SEQ ID NO: 8), ETLLQDFR (SEQ ID NO: 9), ATVVYQGER (SEQ ID NO: 10), GFQALGDAADIR (SEQ ID NO: 11).


In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FSVVYAK (SEQ ID NO: 1), SPELQAEAK (SEQ ID NO: 2), VNHVTLSQPK (SEQ ID NO: 3), SSNNPHSPIVEEFQVPYNK (SEQ ID NO: 4), VVGGLVALR (SEQ ID NO: 5), LDFHFSSDR (SEQ ID NO: 6), TVQAVLTVPK (SEQ ID NO: 7), GPGEDFR (SEQ ID NO: 8), ETLLQDFR (SEQ ID NO: 9), ATVVYQGER (SEQ ID NO: 10), and GFQALGDAADIR (SEQ ID NO: 11)


In additional embodiments, the method of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).


In additional embodiments, the method of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


In further embodiments, the disclosed method of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), plasminogen (PLMN), of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


In additional embodiments, the methods of determining probability for preeclampsia in a pregnant female further encompass detecting a measurable feature for one or more risk indicia associated with preeclampsia. In additional embodiments the risk indicia are selected form the group consisting of history of preeclampsia, first pregnancy, age, obesity, diabetes, gestational diabetes, hypertension, kidney disease, multiple pregnancy, interval between pregnancies, migraine headaches, rheumatoid arthritis, and lupus.


A “measurable feature” is any property, characteristic or aspect that can be determined and correlated with the probability for preeclampsia in a subject. For a biomarker, such a measurable feature can include, for example, the presence, absence, or concentration of the biomarker, or a fragment thereof, in the biological sample, an altered structure, such as, for example, the presence or amount of a post-translational modification, such as oxidation at one or more positions on the amino acid sequence of the biomarker or, for example, the presence of an altered conformation in comparison to the conformation of the biomarker in normal control subjects, and/or the presence, amount, or altered structure of the biomarker as a part of a profile of more than one biomarker. In addition to biomarkers, measurable features can further include risk indicia including, for example, maternal age, race, ethnicity, medical history, past pregnancy history, obstetrical history. For a risk indicium, a measurable feature can include, for example, age, prepregnancy weight, ethnicity, race; the presence, absence or severity of diabetes, hypertension, heart disease, kidney disease; the incidence and/or frequency of prior preeclampsia, prior preeclampsia; the presence, absence, frequency or severity of present or past smoking, illicit drug use, alcohol use; the presence, absence or severity of bleeding after the 12th gestational week; cervical cerclage and transvaginal cervical length.


In some embodiments of the disclosed methods of determining probability for preeclampsia in a pregnant female, the probability for preeclampsia in the pregnant female is calculated based on the quantified amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments, the disclosed methods for determining the probability of preeclampsia encompass detecting and/or quantifying one or more biomarkers using mass sprectrometry, a capture agent or a combination thereof.


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass an initial step of providing a biomarker panel comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In additional embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass an initial step of providing a biological sample from the pregnant female.


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass communicating the probability to a health care provider. In additional embodiments, the communication informs a subsequent treatment decision for the pregnant female.


In some embodiments, the method of determining probability for preeclampsia in a pregnant female encompasses the additional feature of expressing the probability as a risk score.


As used herein, the term “risk score” refers to a score that can be assigned based on comparing the amount of one or more biomarkers in a biological sample obtained from a pregnant female to a standard or reference score that represents an average amount of the one or more biomarkers calculated from biological samples obtained from a random pool of pregnant females. Because the level of a biomarker may not be static throughout pregnancy, a standard or reference score has to have been obtained for the gestational time point that corresponds to that of the pregnant female at the time the sample was taken. The standard or reference score can be predetermined and built into a predictor model such that the comparison is indirect rather than actually performed every time the probability is determined for a subject. A risk score can be a standard (e.g., a number) or a threshold (e.g., a line on a graph). The value of the risk score correlates to the deviation, upwards or downwards, from the average amount of the one or more biomarkers calculated from biological samples obtained from a random pool of pregnant females. In certain embodiments, if a risk score is greater than a standard or reference risk score, the pregnant female can have an increased likelihood of preeclampsia. In some embodiments, the magnitude of a pregnant female's risk score, or the amount by which it exceeds a reference risk score, can be indicative of or correlated to that pregnant female's level of risk.


In the context of the present invention, the term “biological sample,” encompasses any sample that is taken from pregnant female and contains one or more of the biomarkers listed in Table 1. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. As will be appreciated by those skilled in the art, a biological sample can include any fraction or component of blood, without limitation, T cells, monocytes, neutrophils, erythrocytes, platelets and microvesicles such as exosomes and exosome-like vesicles. In a particular embodiment, the biological sample is serum.


Preeclampsia refers to a condition characterized by high blood pressure and excess protein in the urine (proteinuria) after 20 weeks of pregnancy in a woman who previously had normal blood pressure. Preeclampsia encompasses Eclampsia, a more severe form of preeclampsia that is further characterized by seizures. Preeclampsia can be further classified as mild or severe depending upon the severity of the clinical symptoms. While preeclampsia usually develops during the second half of pregnancy (after 20 weeks), it also can develop shortly after birth or before 20 weeks of pregnancy.


Preeclampsia has been characterized by some investigators as 2 different disease entities: early-onset preeclampsia and late-onset preeclampsia, both of which are intended to be encompassed by reference to preeclampsia herein. Early-onset preeclampsia is usually defined as preeclampsia that develops before 34 weeks of gestation, whereas late-onset preeclampsia develops at or after 34 weeks of gestation. Preclampsia also includes postpartum preeclampsia is a less common condition that occurs when a woman has high blood pressure and excess protein in her urine soon after childbirth. Most cases of postpartum preeclampsia develop within 48 hours of childbirth. However, postpartum preeclampsia sometimes develops up to four to six weeks after childbirth. This is known as late postpartum preeclampsia.


Clinical criteria for diagnosis of preeclampsia are well established, for example, blood pressure of at least 140/90 mm Hg and urinary excretion of at least 0.3 grams of protein in a 24-hour urinary protein excretion (or at least +1 or greater on dipstick testing), each on two occasions 4-6 hours apart. Severe preeclampsia generally refers to a blood pressure of at least 160/110 mm Hg on at least 2 occasions 6 hours apart and greater than 5 grams of protein in a 24-hour urinary protein excretion or persistent +3 proteinuria on dipstick testing. Preeclampsia can include HELLP syndrome (hemolysis, elevated liver enzymes, low platelet count). Other elements of preeclampsia can include in-utero growth restriction (IUGR) in less than the 10% percentile according to the US demographics, persistent neurologic symptoms (headache, visual disturbances), epigastric pain, oliguria (less than 500 mL/24 h), serum creatinine greater than 1.0 mg/dL, elevated liver enzymes (greater than two times normal), thrombocytopenia (<100,000 cells/μL).


In some embodiments, the pregnant female was between 17 and 28 weeks of gestation at the time the biological sample was collected. In other embodiments, the pregnant female was between 16 and 29 weeks, between 17 and 28 weeks, between 18 and 27 weeks, between 19 and 26 weeks, between 20 and 25 weeks, between 21 and 24 weeks, or between 22 and 23 weeks of gestation at the time the biological sample was collected. In further embodiments, the pregnant female was between about 17 and 22 weeks, between about 16 and 22 weeks between about 22 and 25 weeks, between about 13 and 25 weeks, between about 26 and 28, or between about 26 and 29 weeks of gestation at the time the biological sample was collected. Accordingly, the gestational age of a pregnant female at the time the biological sample is collected can be 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 weeks.


In some embodiments of the claimed methods the measurable feature comprises fragments or derivatives of each of the N biomarkers selected from the biomarkers listed in Table 1. In additional embodiments of the claimed methods, detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Table 1, combinations or portions and/or derivatives thereof in a biological sample obtained from said pregnant female.


The term “amount” or “level” as used herein refers to a quantity of a biomarker that is detectable or measurable in a biological sample and/or control. The quantity of a biomarker can be, for example, a quantity of polypeptide, the quantity of nucleic acid, or the quantity of a fragment or surrogate. The term can alternatively include combinations thereof. The term “amount” or “level” of a biomarker is a measurable feature of that biomarker.


In some embodiments, calculating the probability for preeclampsia in a pregnant female is based on the quantified amount of each of N biomarkers selected from the biomarkers listed in Table 1. Any existing, available or conventional separation, detection and quantification methods can be used herein to measure the presence or absence (e.g., readout being present vs. absent; or detectable amount vs. undetectable amount) and/or quantity (e.g., readout being an absolute or relative quantity, such as, for example, absolute or relative concentration) of biomarkers, peptides, polypeptides, proteins and/or fragments thereof and optionally of the one or more other biomarkers or fragments thereof in samples. In some embodiments, detection and/or quantification of one or more biomarkers comprises an assay that utilizes a capture agent. In further embodiments, the capture agent is an antibody, antibody fragment, nucleic acid-based protein binding reagent, small molecule or variant thereof. In additional embodiments, the assay is an enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA). In some embodiments, detection and/or quantification of one or more biomarkers further comprises mass spectrometry (MS). In yet further embodiments, the mass spectrometry is co-immunoprecitipation-mass spectrometry (co-IP MS), where coimmunoprecipitation, a technique suitable for the isolation of whole protein complexes is followed by mass spectrometric analysis.


As used herein, the term “mass spectrometer” refers to a device able to volatilize/ionize analytes to form gas-phase ions and determine their absolute or relative molecular masses. Suitable methods of volatilization/ionization are matrix-assisted laser desorption ionization (MALDI), electrospray, laser/light, thermal, electrical, atomized/sprayed and the like, or combinations thereof. Suitable forms of mass spectrometry include, but are not limited to, ion trap instruments, quadrupole instruments, electrostatic and magnetic sector instruments, time of flight instruments, time of flight tandem mass spectrometer (TOF MS/MS), Fourier-transform mass spectrometers, Orbitraps and hybrid instruments composed of various combinations of these types of mass analyzers. These instruments can, in turn, be interfaced with a variety of other instruments that fractionate the samples (for example, liquid chromatography or solid-phase adsorption techniques based on chemical, or biological properties) and that ionize the samples for introduction into the mass spectrometer, including matrix-assisted laser desorption (MALDI), electrospray, or nanospray ionization (ESI) or combinations thereof.


Generally, any mass spectrometric (MS) technique that can provide precise information on the mass of peptides, and preferably also on fragmentation and/or (partial) amino acid sequence of selected peptides (e.g., in tandem mass spectrometry, MS/MS; or in post source decay, TOF MS), can be used in the methods disclosed herein. Suitable peptide MS and MS/MS techniques and systems are well-known per se (see, e.g., Methods in Molecular Biology, vol. 146: “Mass Spectrometry of Proteins and Peptides”, by Chapman, ed., Humana Press 2000; Biemann 1990. Methods Enzymol 193: 455-79; or Methods in Enzymology, vol. 402: “Biological Mass Spectrometry”, by Burlingame, ed., Academic Press 2005) and can be used in practicing the methods disclosed herein. Accordingly, in some embodiments, the disclosed methods comprise performing quantitative MS to measure one or more biomarkers. Such quantitiative methods can be performed in an automated (Villanueva, et al., Nature Protocols (2006) 1(2):880-891) or semi-automated format. In particular embodiments, MS can be operably linked to a liquid chromatography device (LC-MS/MS or LC-MS) or gas chromatography device (GC-MS or GC-MS/MS). Other methods useful in this context include isotope-coded affinity tag (ICAT) followed by chromatography and MS/MS.


As used herein, the terms “multiple reaction monitoring (MRM)” or “selected reaction monitoring (SRM)” refer to an MS-based quantification method that is particularly useful for quantifying analytes that are in low abundance. In an SRM experiment, a predefined precursor ion and one or more of its fragments are selected by the two mass filters of a triple quadrupole instrument and monitored over time for precise quantification. Multiple SRM precursor and fragment ion pairs can be measured within the same experiment on the chromatographic time scale b rapidly toggling between the different precarsor/fragment pairs to perform an MRM experiment. A series of transitions (precursor/fragment ion pairs) in combination with the retention time of the targeted analyte (e.g., peptide or small molecule such as chemical entity, steroid, hormone) can constitute a definitive assay. A large number of analytes can be quantified during a single LC-MS experiment. The term “scheduled,” or “dynamic” in reference to MRM or SRM, refers to a variation of the assay wherein the transitions for a particular analyte are only acquired in a time window around the expected retention time, significantly increasing the number of analytes that can be detected and quantified in a single LC-MS experiment and contributing to the selectivity of the test, as retention time is a property dependent on the physical nature of the analyte. A single analyte can also be monitored with more than one transition. Finally, included in the assay can be standards that correspond to the analytes of interest (e.g., same amino acid sequence), but differ by the inclusion of stable isotopes. Stable isotopic standards (SIS) can be incorporated into the assay at precise levels and used to quantify the corresponding unknown analyte. An additional level of specificity is contributed by the co-elution of the unknown analyte and its corresponding SIS and properties of their transitions (e.g., the similarity in the ratio of the level of two transitions of the unknown and the ratio of the two transitions of its corresponding SIS).


Mass spectrometry assays, instruments and systems suitable for biomarker peptide analysis can include, without limitation, matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) MS; MALDI-TOF post-source-decay (PSD); MALDI-TOF/TOF; surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF) MS; electrospray ionization mass spectrometry (ESI-MS); ESI-MS/MS; ESI-MS/(MS)n (n is an integer greater than zero); ESI 3D or linear (2D) ion trap MS; ESI triple quadrupole MS; ESI quadrupole orthogonal TOF (Q-TOF); ESI Fourier transform MS systems; desorption/ionization on silicon (DIOS); secondary ion mass spectrometry (SIMS); atmospheric pressure chemical ionization mass spectrometry (APC)-MS); APCI-MS/MS; APCI-(MS)n; atmospheric pressure photoionization mass spectrometry (APPI-MS); APPI-MS/MS; and APPI-(MS)n. Peptide ion fragmentation in tandem MS (MS/MS) arrangements can be achieved using manners established in the art, such as, e.g., collision induced dissociation (CID). As described herein, detection and quantification of biomarkers by mass spectrometry can involve multiple reaction monitoring (MRM), such as described among others by Kuhn et al. Proteomics 4: 1175-86 (2004). Scheduled multiple-reaction-monitoring (Scheduled MRM) mode acquisition during LC-MS/MS analysis enhances the sensitivity and accuracy of peptide quantitation. Anderson and Hunter, Molecular and Cellular Proteomics 5(4):573 (2006). As described herein, mass spectrometry-based assays can be advantageously combined with upstream peptide or protein separation or fractionation methods, such as for example with the chromatographic and other methods described herein below.


A person skilled in the art will appreciate that a number of methods can be used to determine the amount of a biomarker, including mass spectrometry approaches, such as MS/MS, LC-MS/MS, multiple reaction monitoring (MRM) or SRM and product-ion monitoring (PIM) and also including antibody based methods such as immunoassays such as Western blots, enzyme-linked immunosorbant assay (ELISA), immunopercipitation, immunohistochemistry, immunofluorescence, radioimmunoassay, dot blotting, and fluorescence-activated cell sorting (FACS). Accordingly, in some embodiments, determining the level of the at least one biomarker comprises using an immunoassay and/or mass spectrometric methods. In additional embodiments, the mass spectrometric methods are selected from MS, MS/MS, LC-MS/MS, SRM, PIM, and other such methods that are known in the art. In other embodiments, LC-MS/MS further comprises 1D LC-MS/MS, 2D LC-MS/MS or 3D LC-MS/MS. Immunoassay techniques and protocols are generally known to those skilled in the art (Price and Newman, Principles and Practice of Immunoassay, 2nd Edition, Grove's Dictionaries, 1997; and Gosling, Immunoassays: A Practical Approach, Oxford University Press, 2000.) A variety of immunoassay techniques, including competitive and non-competitive immunoassays, can be used (Self et al., Curr. Opin. Biotechnol., 7:60-65 (1996).


In further embodiments, the immunoassay is selected from Western blot, ELISA, immunopercipitation, immunohistochemistry, immunofluorescence, radioimmunoassay (RIA), dot blotting, and FACS. In certain embodiments, the immunoassay is an ELISA. In yet a further embodiment, the ELISA is direct ELISA (enzyme-linked immunosorbent assay), indirect ELISA, sandwich ELISA, competitive ELISA, multiplex ELISA, ELISPOT technologies, and other similar techniques known in the art. Principles of these immunoassay methods are known in the art, for example John R. Crowther, The ELISA Guidebook, 1st ed., Humana Press 2000, ISBN 0896037282. Typically ELISAs are performed with antibodies but they can be performed with any capture agents that bind specifically to one or more biomarkers of the invention and that can be detected. Multiplex ELISA allows simultaneous detection of two or more analytes within a single compartment (e.g., microplate well) usually at a plurality of array addresses (Nielsen and Geierstanger 2004. J Immunol Methods 290: 107-20 (2004) and Ling et al. 2007. Expert Rev Mol Diagn 7: 87-98 (2007)).


In some embodiments, Radioimmunoassay (RIA) can be used to detect one or more biomarkers in the methods of the invention. RIA is a competition-based assay that is well known in the art and involves mixing known quantities of radioactavely-labelled (e.g., 125I or 131I -labelled) target analyte with antibody specific for the analyte, then adding non-labelled analyte from a sample and measuring the amount of labelled analyte that is displaced (see, e.g., An Introduction to Radioimmunoassay and Related Techniques, by Chard T, ed., Elsevier Science 1995, ISBN 0444821198 for guidance).


A detectable label can be used in the assays described herein for direct or indirect detection of the biomarkers in the methods of the invention. A wide variety of detectable labels can be used, with the choice of label depending on the sensitivity required, ease of conjugation with the antibody, stability requirements, and available instrumentation and disposal provisions. Those skilled in the art are familiar with selection of a suitable detectable label based on the assay detection of the biomarkers in the methods of the invention. Suitable detectable labels include, but are not limited to, fluorescent dyes (e.g., fluorescein, fluorescein isothiocyanate (FITC), Oregon Green™, rhodamine, Texas red, tetrarhodimine isothiocynate (TRITC), Cy3, Cy5, etc.), fluorescent markers (e.g., green fluorescent protein (GFP), phycoerythrin, etc.), enzymes (e.g., luciferase, horseradish peroxidase, alkaline phosphatase, etc.), nanoparticles, biotin, digoxigenin, metals, and the like.


For mass-sectrometry based analysis, differential tagging with isotopic reagents, e.g., isotope-coded affinity tags (ICAT) or the more recent variation that uses isobaric tagging reagents, iTRAQ (Applied Biosystems, Foster City, Calif.), or tandem mass tags, TMT, (Thermo Scientific, Rockford, Ill.), followed by multidimensional liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis can provide a further methodology in practicing the methods of the invention.


A chemiluminescence assay using a chemiluminescent antibody can be used for sensitive, non-radioactive detection of protein levels. An antibody labeled with fluorochrome also can be suitable. Examples of fluorochromes include, without limitation, DAPI, fluorescein, Hoechst 33258, R-phycocyanin, B-phycoerythrin, R-phycoerythrin, rhodamine, Texas red, and lissamine. Indirect labels include various enzymes well known in the art, such as horseradish peroxidase (HRP), alkaline phosphatase (AP), beta-galactosidase, urease, and the like. Detection systems using suitable substrates for horseradish-peroxidase, alkaline phosphatase, beta-galactosidase are well known in the art.


A signal from the direct or indirect label can be analyzed, for example, using a spectrophotometer to detect color from a chromogenic substrate; a radiation counter to detect radiation such as a gamma counter for detection of 125I; or a fluorometer to detect fluorescence in the presence of light of a certain wavelength. For detection of enzyme-linked antibodies, a quantitative analysis can be made using a spectrophotometer such as an EMAX Microplate Reader (Molecular Devices; Menlo Park, Calif.) in accordance with the manufacturer's instructions. If desired, assays used to practice the invention can be automated or performed robotically, and the signal from multiple samples can be detected simultaneously.


In some embodiments, the methods described herein encompass quantification of the biomarkers using mass spectrometry (MS). In further embodiments, the mass spectrometry can be liquid chromatography-mass spectrometry (LC-MS), multiple reaction monitoring (MRM) or selected reaction monitoring (SRM). In additional embodiments, the MRM or SRM can further encompass scheduled MRM or scheduled SRM.


As described above, chromatography can also be used in practicing the methods of the invention. Chromatography encompasses methods for separating chemical substances and generally involves a process in which a mixture of analytes is carried by a moving stream of liquid or gas (“mobile phase”) and separated into components as a result of differential distribution of the analytes as they flow around or over a stationary liquid or solid phase (“stationary phase”), between the mobile phase and said stationary phase. The stationary phase can be usually a finely divided solid, a sheet of filter material, or a thin film of a liquid on the surface of a solid, or the like. Chromatography is well understood by those skilled in the art as a technique applicable for the separation of chemical compounds of biological origin, such as, e.g., amino acids, proteins, fragments of proteins or peptides, etc.


Chromatography can be columnar (i.e., wherein the stationary phase is deposited or packed in a column), preferably liquid chromatography, and yet more preferably high-performance liquid chromatography (HPLC) or ultra high performance/pressure liquid chromatography (UHPLC). Particulars of chromatography are well known in the art (Bidlingmeyer, Practical HPLC Methodology and Applications, John Wiley & Sons Inc., 1993). Exemplary types of chromatography include, without limitation, high-performance liquid chromatography (HPLC), UHPLC, normal phase HPLC(NP-HPLC), reversed phase HPLC(RP-HPLC), ion exchange chromatography (IEC), such as cation or anion exchange chromatography, hydrophilic interaction chromatography (HILIC), hydrophobic interaction chromatography (HIC), size exclusion chromatography (SEC) including gel filtration chromatography or gel permeation chromatography, chromatofocusing, affinity chromatography such as immuno-affinity, immobilised metal affinity chromatography, and the like. Chromatography, including single-, two- or more-dimensional chromatography, can be used as a peptide fractionation method in conjunction with a further peptide analysis method, such as for example, with a downstream mass spectrometry analysis as described elsewhere in this specification.


Further peptide or polypeptide separation, identification or quantification methods can be used, optionally in conjunction with any of the above described analysis methods, for measuring biomarkers in the present disclosure. Such methods include, without limitation, chemical extraction partitioning, isoelectric focusing (IEF) including capillary isoelectric focusing (LIEF), capillary isotachophoresis (CITP), capillary electrochromatography (CEC), and the like, one-dimensional polyacrylamide gel electrophoresis (PAGE), two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), capillary gel electrophoresis (CGE), capillary zone electrophoresis (CZE), micellar electrokinetic chromatography (MEKC), free flow electrophoresis (FFE), etc.


In the context of the invention, the term “capture agent” refers to a compound that can specifically bind to a target, in particular a biomarker. The term includes antibodies, antibody fragments, nucleic acid-based protein binding reagents (e.g. aptamers, Slow Off-rate Modified Aptamers (SOMAmer™)), protein-capture agents, natural ligands (i.e. a hormone for its receptor or vice versa), small molecules or variants thereof.


Capture agents can be configured to specifically bind to a target, in particular a biomarker. Capture agents can include but are not limited to organic molecules, such as polypeptides, polynucleotides and other non polymeric molecules that are identifiable to a skilled person. In the embodiments disclosed herein, capture agents include any agent that can be used to detect, purify, isolate, or enrich a target, in particular a biomarker. Any art-known affinity capture technologies can be used to selectively isolate and enrich/concentrate biomarkers that are components of complex mixtures of biological media for use in the disclosed methods.


Antibody capture agents that specifically bind to a biomarker can be prepared using any suitable methods known in the art. See, e.g., Coligan, Current Protocols in Immunology (1991); Harlow & Lane, Antibodies: A Laboratory Manual (1988); Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986). Antibody capture agents can be any immunoglobulin or derivative thereof, whether natural or wholly or partially synthetically produced. All derivatives thereof which maintain specific binding ability are also included in the term. Antibody capture agents have a binding domain that is homologous or largely homologous to an immunoglobulin binding domain and can be derived from natural sources, or partly or wholly synthetically produced. Antibody capture agents can be monoclonal or polyclonal antibodies. In some embodiments, an antibody is a single chain antibody. Those of ordinary skill in the art will appreciate that antibodies can be provided in any of a variety of forms including, for example, humanized, partially humanized, chimeric, chimeric humanized, etc. Antibody capture agents can be antibody fragments including, but not limited to, Fab, Fab′, F(ab′)2, scFv, Fv, dsFv diabody, and Fd fragments. An antibody capture agent can be produced by any means. For example, an antibody capture agent can be enzymatically or chemically produced by fragmentation of an intact antibody and/or it can be recombinantly produced from a gene encoding the partial antibody sequence. An antibody capture agent can comprise a single chain antibody fragment. Alternatively or additionally, antibody capture agent can comprise multiple chains which are linked together, for example, by disulfide linkages; and, any functional fragments obtained from such molecules, wherein such fragments retain specific-binding properties of the parent antibody molecule. Because of their smaller size as functional components of the whole molecule, antibody fragments can offer advantages over intact antibodies for use in certain immunochemical techniques and experimental applications.


Suitable capture agents useful for practicing the invention also include aptamers. Aptamers are oligonucleotide sequences that can bind to their targets specifically via unique three dimensional (3-D) structures. An aptamer can include any suitable number of nucleotides and different aptamers can have either the same or different numbers of nucleotides. Aptamers can be DNA or RNA or chemically modified nucleic acids and can be single stranded, double stranded, or contain double stranded regions, and can include higher ordered structures. An aptamer can also be a photoaptamer, where a photoreactive or chemically reactive functional group is included in the aptamer to allow it to be covalently linked to its corresponding target. Use of an aptamer capture agent can include the use of two or more aptamers that specifically bind the same biomarker. An aptamer can include a tag. An aptamer can be identified using any known method, including the SELEX (systematic evolution of ligands by exponential enrichment), process. Once identified, an aptamer can be prepared or synthesized in accordance with any known method, including chemical synthetic methods and enzymatic synthetic methods and used in a variety of applications for biomarker detection. Liu et al., Curr Med. Chem. 18(27):4117-25 (2011). Capture agents useful in practicing the methods of the invention also include SOMAmers (Slow Off-Rate Modified Aptamers) known in the art to have improved off-rate characteristics. Brody et al., J Mol. Biol. 422(5):595-606 (2012). SOMAmers can be generated using any known method, including the SELEX method.


It is understood by those skilled in the art that biomarkers can be modified prior to analysis to improve their resolution or to determine their identity. For example, the biomarkers can be subject to proteolytic digestion before analysis. Any protease can be used. Proteases, such as trypsin, that are likely to cleave the biomarkers into a discrete number of fragments are particularly useful. The fragments that result from digestion function as a fingerprint for the biomarkers, thereby enabling their detection indirectly. This is particularly useful where there are biomarkers with similar molecular masses that might be confused for the biomarker in question. Also, proteolytic fragmentation is useful for high molecular weight biomarkers because smaller biomarkers are more easily resolved by mass spectrometry. In another example, biomarkers can be modified to improve detection resolution. For instance, neuraminidase can be used to remove terminal sialic acid residues from glycoproteins to improve binding to an anionic adsorbent and to improve detection resolution. In another example, the biomarkers can be modified by the attachment of a tag of particular molecular weight that specifically binds to molecular biomarkers, further distinguishing them. Optionally, after detecting such modified biomarkers, the identity of the biomarkers can be further determined by matching the physical and chemical characteristics of the modified biomarkers in a protein database (e.g., SwissProt).


It is further appreciated in the art that biomarkers in a sample can be captured on a substrate for detection. Traditional substrates include antibody-coated 96-well plates or nitrocellulose membranes that are subsequently probed for the presence of the proteins. Alternatively, protein-binding molecules attached to microspheres, microparticles, microbeads, beads, or other particles can be used for capture and detection of biomarkers. The protein-binding molecules can be antibodies, peptides, peptoids, aptamers, small molecule ligands or other protein-binding capture agents attached to the surface of particles. Each protein-binding molecule can include unique detectable label that is coded such that it can be distinguished from other detectable labels attached to other protein-binding molecules to allow detection of biomarkers in multiplex assays. Examples include, but are not limited to, color-coded microspheres with known fluorescent light intensities (see e.g., microspheres with xMAP technology produced by Luminex (Austin, Tex.); microspheres containing quantum dot nanocrystals, for example, having different ratios and combinations of quantum dot colors (e.g., Qdot nanocrystals produced by Life Technologies (Carlsbad, Calif.); glass coated metal nanoparticles (see e.g., SERS nanotags produced by Nanoplex Technologies, Inc. (Mountain View, Calif.); barcode materials (see e.g., sub-micron sized striped metallic rods such as Nanobarcodes produced by Nanoplex Technologies, Inc.), encoded microparticles with colored bar codes (see e.g., CellCard produced by Vitra Bioscience, vitrabio.com), glass microparticles with digital holographic code images (see e.g., CyVera microbeads produced by Illumina (San Diego, Calif.); chemiluminescent dyes, combinations of dye compounds; and beads of detectably different sizes.


In another aspect, biochips can be used for capture and detection of the biomarkers of the invention. Many protein biochips are known in the art. These include, for example, protein biochips produced by Packard BioScience Company (Meriden Conn.), Zyomyx (Hayward, Calif.) and Phylos (Lexington, Mass.). In general, protein biochips comprise a substrate having a surface. A capture reagent or adsorbent is attached to the surface of the substrate. Frequently, the surface comprises a plurality of addressable locations, each of which location has the capture agent bound there. The capture agent can be a biological molecule, such as a polypeptide or a nucleic acid, which captures other biomarkers in a specific manner. Alternatively, the capture agent can be a chromatographic material, such as an anion exchange material or a hydrophilic material. Examples of protein biochips are well known in the art.


Measuring mRNA in a biological sample can be used as a surrogate for detection of the level of the corresponding protein biomarker in a biological sample. Thus, any of the biomarkers or biomarker panels described herein can also be detected by detecting the appropriate RNA. Levels of mRNA can measured by reverse transcription quantitative polymerase chain reaction (RT-PCR followed with qPCR). RT-PCR is used to create a cDNA from the mRNA. The cDNA can be used in a qPCR assay to produce fluorescence as the DNA amplification process progresses. By comparison to a standard curve, qPCR can produce an absolute measurement such as number of copies of mRNA per cell. Northern blots, microarrays, Invader assays, and RT-PCR combined with capillary electrophoresis have all been used to measure expression levels of mRNA in a sample. See Gene Expression Profiling: Methods and Protocols, Richard A. Shimkets, editor, Humana Press, 2004.


Some embodiments disclosed herein relate to diagnostic and prognostic methods of determining the probability for preeclampsia in a pregnant female. The detection of the level of expression of one or more biomarkers and/or the determination of a ratio of biomarkers can be used to determine the probability for preeclampsia in a pregnant female. Such detection methods can be used, for example, for early diagnosis of the condition, to determine whether a subject is predisposed to preeclampsia, to monitor the progress of preeclampsia or the progress of treatment protocols, to assess the severity of preeclampsia, to forecast the outcome of preeclampsia and/or prospects of recovery or birth at full term, or to aid in the determination of a suitable treatment for preeclampsia.


The quantitation of biomarkers in a biological sample can be determined, without limitation, by the methods described above as well as any other method known in the art. The quantitative data thus obtained is then subjected to an analytic classification process. In such a process, the raw data is manipulated according to an algorithm, where the algorithm has been pre-defined by a training set of data, for example as described in the examples provided herein. An algorithm can utilize the training set of data provided herein, or can utilize the guidelines provided herein to generate an algorithm with a different set of data.


In some embodiments, analyzing a measurable feature to determine the probability for preeclampsia in a pregnant female encompasses the use of a predictive model. In further embodiments, analyzing a measurable feature to determine the probability for preeclampsia in a pregnant female encompasses comparing said measurable feature with a reference feature. As those skilled in the art can appreciate, such comparison can be a direct comparison to the reference feature or an indirect comparison where the reference feature has been incorporated into the predictive model. In further embodiments, analyzing a measurable feature to determine the probability for preeclampsia in a pregnant female encompasses one or more of a linear discriminant analysis model, a support vector machine classification algorithm, a recursive feature elimination model, a prediction analysis of microarray model, a logistic regression model, a CART algorithm, a flex tree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, a machine learning algorithm, a penalized regression method, or a combination thereof. In particular embodiments, the analysis comprises logistic regression.


An analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, machine learning algorithms; etc.


Classification can be made according to predictive modeling methods that set a threshold for determining the probability that a sample belongs to a given class. The probability preferably is at least 50%, or at least 60%, or at least 70%, or at least 80% or higher. Classifications also can be made by determining whether a comparison between an obtained dataset and a reference dataset yields a statistically significant difference. If so, then the sample from which the dataset was obtained is classified as not belonging to the reference dataset class. Conversely, if such a comparison is not statistically significantly different from the reference dataset, then the sample from which the dataset was obtained is classified as belonging to the reference dataset class.


The predictive ability of a model can be evaluated according to its ability to provide a quality metric, e.g. AUC (area under the curve) or accuracy, of a particular value, or range of values. Area under the curve measures are useful for comparing the accuracy of a classifier across the complete data range. Classifiers with a greater AUC have a greater capacity to classify unknowns correctly between two groups of interest. In some embodiments, a desired quality threshold is a predictive model that will classify a sample with an accuracy of at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, at least about 0.95, or higher. As an alternative measure, a desired quality threshold can refer to a predictive model that will classify a sample with an AUC of at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.


As is known in the art, the relative sensitivity and specificity of a predictive model can be adjusted to favor either the selectivity metric or the sensitivity metric, where the two metrics have an inverse relationship. The limits in a model as described above can be adjusted to provide a selected sensitivity or specificity level, depending on the particular requirements of the test being performed. One or both of sensitivity and specificity can be at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.


The raw data can be initially analyzed by measuring the values for each biomarker, usually in triplicate or in multiple triplicates. The data can be manipulated, for example, raw data can be transformed using standard curves, and the average of triplicate measurements used to calculate the average and standard deviation for each patient. These values can be transformed before being used in the models, e.g. log-transformed, Box-Cox transformed (Box and Cox, Royal Stat. Soc., Series B, 26:211-246 (1964). The data are then input into a predictive model, which will classify the sample according to the state. The resulting information can be communicated to a patient or health care provider.


To generate a predictive model for preeclampsia, a robust data set, comprising known control samples and samples corresponding to the preeclampsia classification of interest is used in a training set. A sample size can be selected using generally accepted criteria. As discussed above, different statistical methods can be used to obtain a highly accurate predictive model. Examples of such analysis are provided in Example 2.


In one embodiment, hierarchical clustering is performed in the derivation of a predictive model, where the Pearson correlation is employed as the clustering metric. One approach is to consider a preeclampsia dataset as a “learning sample” in a problem of “supervised learning.” CART is a standard in applications to medicine (Singer™, Recursive Partitioning in the Health Sciences, Springer (1999)) and can be modified by transforming any qualitative features to quantitative features; sorting them by attained significance levels, evaluated by sample reuse methods for Hotelling's T2 statistic; and suitable application of the lasso method. Problems in prediction are turned into problems in regression without losing sight of prediction, indeed by making suitable use of the Gini criterion for classification in evaluating the quality of regressions.


This approach led to what is termed FlexTree (Huang, Proc. Nat. Acad. Sci. U.S.A 101:10529-10534 (2004)). FlexTree performs very well in simulations and when applied to multiple forms of data and is useful for practicing the claimed methods. Software automating FlexTree has been developed. Alternatively, LARTree or LART can be used (Turnbull (2005) Classification Trees with Subset Analysis Selection by the Lasso, Stanford University). The name reflects binary trees, as in CART and FlexTree; the lasso, as has been noted; and the implementation of the lasso through what is termed LARS by Efron et al. (2004) Annals of Statistics 32:407-451 (2004). See, also, Huang et al., Proc. Natl. Acad. Sci. USA. 101(29):10529-34 (2004). Other methods of analysis that can be used include logic regression. One method of logic regression Ruczinski, Journal of Computational and Graphical Statistics 12:475-512 (2003). Logic regression resembles CART in that its classifier can be displayed as a binary tree. It is different in that each node has Boolean statements about features that are more general than the simple “and” statements produced by CART.


Another approach is that of nearest shrunken centroids (Tibshirani, Proc. Natl. Acad. Sci. U.S.A 99:6567-72 (2002)). The technology is k-means-like, but has the advantage that by shrinking cluster centers, one automatically selects features, as is the case in the lasso, to focus attention on small numbers of those that are informative. The approach is available as PAM software and is widely used. Two further sets of algorithms that can be used are random forests (Breiman, Machine Learning 45:5-32 (2001)) and MART (Hastie, The Elements of Statistical Learning, Springer (2001)). These two methods are known in the art as “committee methods,” that involve predictors that “vote” on outcome.


To provide significance ordering, the false discovery rate (FDR) can be determined. First, a set of null distributions of dissimilarity values is generated. In one embodiment, the values of observed profiles are permuted to create a sequence of distributions of correlation coefficients obtained out of chance, thereby creating an appropriate set of null distributions of correlation coefficients (Tusher et al., Proc. Natl. Acad. Sci. U.S.A 98, 5116-21 (2001)). The set of null distribution is obtained by: permuting the values of each profile for all available profiles; calculating the pair-wise correlation coefficients for all profile; calculating the probability density function of the correlation coefficients for this permutation; and repeating the procedure for N times, where N is a large number, usually 300. Using the N distributions, one calculates an appropriate measure (mean, median, etc.) of the count of correlation coefficient values that their values exceed the value (of similarity) that is obtained from the distribution of experimentally observed similarity values at given significance level.


The FDR is the ratio of the number of the expected falsely significant correlations (estimated from the correlations greater than this selected Pearson correlation in the set of randomized data) to the number of correlations greater than this selected Pearson correlation in the empirical data (significant correlations). This cut-off correlation value can be applied to the correlations between experimental profiles. Using the aforementioned distribution, a level of confidence is chosen for significance. This is used to determine the lowest value of the correlation coefficient that exceeds the result that would have obtained by chance. Using this method, one obtains thresholds for positive correlation, negative correlation or both. Using this threshold(s), the user can filter the observed values of the pair wise correlation coefficients and eliminate those that do not exceed the threshold(s). Furthermore, an estimate of the false positive rate can be obtained for a given threshold. For each of the individual “random correlation” distributions, one can find how many observations fall outside the threshold range. This procedure provides a sequence of counts. The mean and the standard deviation of the sequence provide the average number of potential false positives and its standard deviation.


In an alternative analytical approach, variables chosen in the cross-sectional analysis are separately employed as predictors in a time-to-event analysis (survival analysis), where the event is the occurrence of preeclampsia, and subjects with no event are considered censored at the time of giving birth. Given the specific pregnancy outcome (preeclampsia event or no event), the random lengths of time each patient will be observed, and selection of proteomic and other features, a parametric approach to analyzing survival can be better than the widely applied semi-parametric Cox model. A Weibull parametric fit of survival permits the hazard rate to be monotonically increasing, decreasing, or constant, and also has a proportional hazards representation (as does the Cox model) and an accelerated failure-time representation. All the standard tools available in obtaining approximate maximum likelihood estimators of regression coefficients and corresponding functions are available with this model.


In addition the Cox models can be used, especially since reductions of numbers of covariates to manageable size with the lasso will significantly simplify the analysis, allowing the possibility of a nonparametric or semi-parametric approach to prediction of time to preeclampsia. These statistical tools are known in the art and applicable to all manner of proteomic data. A set of biomarker, clinical and genetic data that can be easily determined, and that is highly informative regarding the probability for preeclampsia and predicted time to a preeclampsia event in said pregnant female is provided. Also, algorithms provide information regarding the probability for preeclampsia in the pregnant female.


In the development of a predictive model, it can be desirable to select a subset of markers, i.e. at least 3, at least 4, at least 5, at least 6, up to the complete set of markers. Usually a subset of markers will be chosen that provides for the needs of the quantitative sample analysis, e.g. availability of reagents, convenience of quantitation, etc., while maintaining a highly accurate predictive model. The selection of a number of informative markers for building classification models requires the definition of a performance metric and a user-defined threshold for producing a model with useful predictive ability based on this metric. For example, the performance metric can be the AUROC, the sensitivity and/or specificity of the prediction as well as the overall accuracy of the prediction model.


As will be understood by those skilled in the art, an analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include, without limitation, linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, and machine learning algorithms.


As described in Example 2, various methods are used in a training model. The selection of a subset of markers can be for a forward selection or a backward selection of a marker subset. The number of markers can be selected that will optimize the performance of a model without the use of all the markers. One way to define the optimum number of terms is to choose the number of terms that produce a model with desired predictive ability (e.g. an AUC>0.75, or equivalent measures of sensitivity/specificity) that lies no more than one standard error from the maximum value obtained for this metric using any combination and number of terms used for the given algorithm.









TABLE 1







Transitions with p-values less than 0.05 in univariate


Cox Proportional Hazards to predict Gestational


Age of time to event (preeclampsia).











SEQ ID NO:















TSDQIHFFFAK_447.56_512.3
13
0.00
ANT3_HUMAN





DPNGLPPEAQK_583.3_669.4
14
0.00
RET4_HUMAN





SVSLPSLDPASAK_636.35_885.5
15
0.00
APOB_HUMAN





SSNNPHSPIVEEFQVPYNK_729.36_261.2
4
0.00
C1S_HUMAN





IEGNLIFDPNNYLPK_873.96_414.2
16
0.00
APOB_HUMAN





YWGVASFLQK_599.82_849.5
17
0.00
RET4_HUMAN





ITENDIQIALDDAK_779.9_632.3
18
0.00
APOB_HUMAN





IEGNLIFDPNNYLPK_873.96_845.5
16
0.00
APOB_HUMAN





GWVTDGFSSLK_598.8_953.5
19
0.00
APOC3_HUMAN





TGISPLALIK_506.82_741.5
20
0.00
APOB_HUMAN





SVSLPSLDPASAK_636.35_473.3
15
0.00
APOB_HUMAN





IIGGSDADIK_494.77_762.4
21
0.00
C1S_HUMAN





TGISPLALIK_506.82_654.5
20
0.00
APOB_HUMAN





TLLIANETLR_572.34_703.4
22
0.00
IL5_HUMAN





YWGVASFLQK_599.82_350.2
17
0.00
RET4_HUMAN





VSALLTPAEQTGTWK_801.43_371.2
23
0.00
APOB_HUMAN





DPNGLPPEAQK_583.3_497.2
14
0.00
RET4_HUMAN





VNHVTLSQPK_561.82_673.4
3
0.00
B2MG_HUMAN





DALSSVQESQVAQQAR_572.96_502.3
24
0.00
APOC3_HUMAN





IAQYYYTFK_598.8_884.4
25
0.00
F13B_HUMAN





IEEIAAK_387.22_531.3
26
0.00
CO5_HUMAN





GWVTDGFSSLK_598.8_854.4
19
0.00
APOC3_HUMAN





VNHVTLSQPK_561.82_351.2
3
0.00
B2MG_HUMAN





ITENDIQIALDDAK_779.9_873.5
18
0.00
APOB_HUMAN





VSALLTPAEQTGTWK_801.43_585.4
23
0.00
APOB_HUMAN





VILGAHQEVNLEPHVQEIEVSR_832.78_860.4
27
0.00
PLMN_HUMAN





SPELQAEAK_486.75_788.4
2
0.00
APOA2_HUMAN





SPELQAEAK_486.75_659.4
2
0.00
APOA2_HUMAN





DYWSTVK_449.72_620.3
28
0.00
APOC3_HUMAN





VPLALFALNR_557.34_620.4
29
0.00
PEPD_HUMAN





TSDQIHFFFAK_447.56_659.4
13
0.00
ANT3_HUMAN





DALSSVQESQVAQQAR_572.96_672.4
24
0.00
APOC3_HUMAN





VIAVNEVGR_478.78_284.2
30
0.00
CHL1_HUMAN





LLEVPEGR_456.76_686.3
31
0.00
C1S_HUMAN





VEPLYELVTATDFAYSSTVR_754.38_549.3
32
0.00
CO8B_HUMAN





HHGPTITAK_321.18_275.1
33
0.01
AMBP_HUMAN





ALNFGGIGVVVGHELTHAFDDQ
34
0.01
ECE1_HUMAN


GR_837.09_299.2





ETLLQDFR_511.27_565.3
9
0.01
AMBP_HUMAN





HHGPTITAK_321.18_432.3
33
0.01
AMBP_HUMAN





IIGGSDADIK_494.77_260.2
21
0.01
C1S_HUMAN
















TABLE 2







Top 40 transitions with p-values less than 0.05 in univariate


Cox Proportional Hazards to predict Gestational Age of time


to event (preeclampsia), sorted by protein ID.











SEQ ID
cox



Transition
NO:
pvalues
protein













HHGPTITAK_321.18_275.1
33
0.01
AMBP_HUMAN





ETLLQDFR_511.27_565.3
9
0.01
AMBP_HUMAN





HHGPTITAK_321.18_432.3
33
0.01
AMBP_HUMAN





TSDQIHFFFAK_447.56_512.3
13
0.00
ANT3_HUMAN





TSDQIHFFFAK_447.56_659.4
13
0.00
ANT3_HUMAN





SPELQAEAK_486.75_788.4
2
0.00
APOA2_HUMAN





SPELQAEAK_486.75_659.4
2
0.00
APOA2_HUMAN





SVSLPSLDPASAK_636.35_885.5
15
0.00
APOB_HUMAN





IEGNLIFDPNNYLPK_873.96_414.2
16
0.00
APOB_HUMAN





ITENDIQIALDDAK_779.9_632.3
18
0.00
APOB_HUMAN





IEGNLIFDPNNYLPK_873.96_845.5
16
0.00
APOB_HUMAN





TGISPLALIK_506.82_741.5
20
0.00
APOB_HUMAN





SVSLPSLDPASAK_636.35_473.3
15
0.00
APOB_HUMAN





TGISPLALIK_506.82_654.5
20
0.00
APOB_HUMAN





VSALLTPAEQTGTWK_801.43_371.2
23
0.00
APOB_HUMAN





ITENDIQIALDDAK_779.9_873.5
18
0.00
APOB_HUMAN





VSALLTPAEQTGTWK_801.43_585.4
23
0.00
APOB_HUMAN





GWVTDGFSSLK_598.8_953.5
19
0.00
APOC3_HUMAN





DALSSVQESQVAQQAR_572.96_502.3
24
0.00
APOC3_HUMAN





GWVTDGFSSLK_598.8_854.4
19
0.00
APOC3_HUMAN





DYWSTVK_449.72_620.3
28
0.00
APOC3_HUMAN





DALSSVQESQVAQQAR_572.96_672.4
24
0.00
APOC3_HUMAN





VNHVTLSQPK_561.82_673.4
3
0.00
B2MG_HUMAN





VNHVTLSQPK_561.82_351.2
3
0.00
B2MG_HUMAN





SSNNPHSPIVEEFQVPYNK_729.36_261.2
4
0.00
C1S_HUMAN





IIGGSDADIK_494.77_762.4
21
0.00
C1S_HUMAN





LLEVPEGR_456.76_686.3
31
0.00
C1S_HUMAN





IIGGSDADIK_494.77_260.2
21
0.01
C1S_HUMAN





VIAVNEVGR_478.78_284.2
30
0.00
CHL1_HUMAN





IEEIAAK_387.22_531.3
26
0.00
CO5_HUMAN





VEPLYELVTATDFAYSSTVR_754.38_549.3
32
0.00
CO8B_HUMAN





ALNFGGIGVVVGHELTHAFDDQGR_837.09_299.2
34
0.01
ECE1_HUMAN





IAQYYYTFK_598.8_884.4
25
0.00
F13B_HUMAN





TLLIANETLR_572.34_703.4
22
0.00
IL5_HUMAN





VPLALFALNR_557.34_620.4
29
0.00
PEPD_HUMAN





VILGAHQEVNLEPHVQEIEVSR_832.78_860.4
27
0.00
PLMN_HUMAN





DPNGLPPEAQK_583.3_669.4
14
0.00
RET4_HUMAN





YWGVASFLQK_599.82_849.5
17
0.00
RET4_HUMAN





YWGVASFLQK_599.82_350.2
17
0.00
RET4_HUMAN





DPNGLPPEAQK_583.3_497.2
14
0.00
RET4_HUMAN
















TABLE 3







Transitions selected by Cox stepwise AIC analysis














SEQ ID







Transition
NO:
coef
exp(coef)
se(coef)
z
Pr(>|z|)
















Collection.Window.GA.in.Days

0.43
1.54E+00
0.19
2.22
0.03





IIGGSDADIK_494.77_762.4
21
44.40
1.91E+19
18.20
2.44
0.01





GGEGTGYFVDFSVR_745.85_869.5
35
6.91
1.00E+03
2.76
2.51
0.01





SPEQQETVLDGNLIIR_906.48_685.4
36
17.28
3.21E+07
7.49
2.31
0.02





EPGLCTWQSLR_673.83_790.4
37
−2.08
1.25E−01
1.02
−2.05
0.04
















TABLE 4







Transitions selected by Cox lasso analysis














SEQ ID







Transition
NO:
coef
exp(coef)
se(coef)
z
Pr(>|z|)
















Collection.Window.GA.in.Days

0.05069
1.052
0.02348
2.159
0.0309





SPELQAEAK_486.75_788.4
2
0.68781
1.98936
0.4278
1.608
0.1079





SSNNPHSPIVEEFQVPYNK_729.36_261.2
4
2.63659
13.96553
1.69924
1.552
0.1208
















TABLE 5







Area under the ROC curve for individual analytes


to discriminate preeclampsia subjects from


non-preeclampsia subjects. The 196 transitions


with the highest ROC area are shown.










SEQ




ID


Transition
NO:
ROC area












SPELQAEAK_486.75_788.4
2
0.92





SSNNPHSPIVEEFQVPYNK_729.36_261.2
4
0.88





VNHVTLSQPK_561.82_673.4
3
0.85





TLLIANETLR_572.34_703.4
22
0.84





SSNNPHSPIVEEFQVPYNK_729.36_521.3
4
0.83





IIGGSDADIK_494.77_762.4
21
0.82





VVGGLVALR_442.29_784.5
5
0.82





ALNFGGIGVVVGHELTHAFDDQGR_837.09_299.2
34
0.81





DYWSTVK_449.72_620.3
28
0.81





FSVVYAK_407.23_579.4
1
0.81





GWVTDGFSSLK_598.8_953.5
19
0.81





IIGGSDADIK_494.77_260.2
21
0.81





LLEVPEGR_456.76_356.2
31
0.81





DALSSVQESQVAQQAR_572.96_672.4
24
0.80





DPNGLPPEAQK_583.3_497.2
14
0.80





FSVVYAK_407.23_381.2
1
0.80





LLEVPEGR_456.76_686.3
31
0.80





SPELQAEAK_486.75_659.4
2
0.80





VVLSSGSGPGLDLPLVLGLPLQLK_791.48_598.4
38
0.79





ETLLQDFR_511.27_565.3
9
0.79





VNHVTLSQPK_561.82_351.2
3
0.79





VVGGLVALR_442.29_685.4
5
0.79





YTTEIIK_434.25_603.4
39
0.79





DPNGLPPEAQK_583.3_669.4
14
0.78





EDTPNSVWEPAK_686.82_315.2
40
0.78





GWVTDGFSSLK_598.8_854.4
19
0.78





HHGPTITAK_321.18_432.3
33
0.78





LHEAFSPVSYQHDLALLR_699.37_251.2
41
0.78





GA.of.Time.to.Event.in.Days

0.77





DALSSVQESQVAQQAR_572.96_502.3
24
0.77





DYWSTVK_449.72_347.2
28
0.77





IAQYYYTFK_598.8_395.2
25
0.77





YWGVASFLQK_599.82_849.5
17
0.77





AHYDLR_387.7_288.2
42
0.76





EDTPNSVWEPAK_686.82_630.3
40
0.76





GDTYPAELYITGSILR_884.96_922.5
43
0.76





SVSLPSLDPASAK_636.35_885.5
15
0.76





TSESGELHGLTTEEEFVEGIYK_819.06_310.2
44
0.76





ALEQDLPVNIK_620.35_570.4
45
0.75





HHGPTITAK_321.18_275.1
33
0.75





IAQYYYTFK_598.8_884.4
25
0.75





ITENDIQIALDDAK_779.9_632.3
18
0.75





LPNNVLQEK_527.8_844.5
46
0.75





YWGVASFLQK_599.82_350.2
17
0.75





FQLPGQK_409.23_276.1
47
0.75





HTLNQIDEVK_598.82_958.5
48
0.75





VVLSSGSGPGLDLPLVLGLPLQLK_791.48_768.5
38
0.75





DADPDTFFAK_563.76_302.1
49
0.74





DADPDTFFAK_563.76_825.4
49
0.74





FQLPGQK_409.23_429.2
47
0.74





HFQNLGK_422.23_527.2
50
0.74





VIAVNEVGR_478.78_284.2
30
0.74





VPLALFALNR_557.34_620.4
29
0.74





ETLLQDFR_511.27_322.2
9
0.73





FNAVLTNPQGDYDTSTGK_964.46_262.1
51
0.73





SVSLPSLDPASAK_636.35_473.3
15
0.73





AHYDLR_387.7_566.3
42
0.72





ALNHLPLEYNSALYSR_620.99_538.3
52
0.72





AWVAWR_394.71_258.1
53
0.72





AWVAWR_394.71_531.3
53
0.72





ETAASLLQAGYK_626.33_879.5
54
0.72





IALGGLLFPASNLR_481.29_657.4
55
0.72





IAPQLSTEELVSLGEK_857.47_533.3
56
0.72





ITENDIQIALDDAK_779.9_873.5
18
0.72





VAPEEHPVLLTEAPLNPK_652.03_869.5
57
0.71





EPGLCTWQSLR_673.83_375.2
37
0.71





IAPQLSTEELVSLGEK_857.47_333.2
56
0.71





SPEQQETVLDGNLIIR_906.48_699.3
36
0.71





VSALLTPAEQTGTWK_801.43_371.2
23
0.71





VSALLTPAEQTGTWK_801.43_585.4
23
0.71





VSEADSSNADWVTK_754.85_347.2
964
0.71





GDTYPAELYITGSILR_884.96_274.1
43
0.70





IPGIFELGISSQSDR_809.93_849.4
58
0.70





IQTHSTTYR_369.52_540.3
59
0.70





LLDSLPSDTR_558.8_890.4
60
0.70





QLGLPGPPDVPDHAAYHPF_676.67_299.2
61
0.70





SYELPDGQVITIGNER_895.95_251.1
62
0.70





VILGAHQEVNLEPHVQEIEVSR_832.78_860.4
27
0.70





WGAAPYR_410.71_577.3
63
0.69





DFHINLFQVLPWLK_885.49_543.3
64
0.69





LLDSLPSDTR_558.8_276.2
60
0.69





VEPLYELVTATDFAYSSTVR_754.38_549.3
32
0.69





VPTADLEDVLPLAEDITNILSK_789.43_841.4
65
0.69





GGEGTGYFVDFSVR_745.85_869.5
35
0.69





HTLNQIDEVK_598.82_951.5
48
0.69





LIENGYFHPVK_439.57_627.4
66
0.69





LPNNVLQEK_527.8_730.4
46
0.69





NKPGVYTDVAYYLAWIR_677.02_545.3
67
0.69





NTVISVNPSTK_580.32_845.5
68
0.69





QLGLPGPPDVPDHAAYHPF_676.67_263.1
61
0.69





YTTEIIK_434.25_704.4
39
0.69





LPDATPK_371.21_628.3
69
0.68





IEGNLIFDPNNYLPK_873.96_845.5
16
0.68





LEQGENVFLQATDK_796.4_822.4
70
0.68





TLYSSSPR_455.74_533.3
71
0.68





TLYSSSPR_455.74_696.3
71
0.68





VSEADSSNADWVTK_754.85_533.3
964
0.68





DGSPDVTTADIGANTPDATK_973.45_844.4
72
0.67





EWVAIESDSVQPVPR_856.44_486.2
73
0.67





IALGGLLFPASNLR_481.29_412.3
55
0.67





IEEIAAK_387.22_531.3
26
0.67





IEGNLIFDPNNYLPK_873.96_414.2
16
0.67





LYYGDDEK_501.72_726.3
74
0.67





TGISPLALIK_506.82_741.5
20
0.67





VPTADLEDVLPLAEDITNILSK_789.43_940.5
65
0.67





ADSQAQLLLSTVVGVFTAPGLHLK_822.46_983.6
75
0.66





AYSDLSR_406.2_577.3
76
0.66





DFHINLFQVLPWLK_885.49_400.2
64
0.66





DLHLSDVFLK_396.22_260.2
77
0.66





EWVAIESDSVQPVPR_856.44_468.3
73
0.66





FNAVLTNPQGDYDTSTGK_964.46_333.2
51
0.66





LSSPAVITDK_515.79_743.4
78
0.66





LYYGDDEK_501.72_563.2
74
0.66





SGFSFGFK_438.72_732.4
79
0.66





IIEVEEEQEDPYLNDR_995.97_777.4
80
0.66





AVYEAVLR_460.76_750.4
81
0.66





WGAAPYR_410.71_634.3
63
0.66





FTFTLHLETPKPSISSSNLNPR_829.44_874.4
82
0.65





DAQYAPGYDK_564.25_315.1
83
0.65





YGLVTYATYPK_638.33_334.2
84
0.65





DGSPDVTTADIGANTPDATK_973.45_531.3
72
0.65





ETAASLLQAGYK_626.33_679.4
54
0.65





ALNHLPLEYNSALYSR_620.99_696.4
52
0.65





DISEVVTPR_508.27_787.4
85
0.65





IS.2_662.3_313.1

0.65





IVLGQEQDSYGGK_697.35_261.2
86
0.65





IVLGQEQDSYGGK_697.35_754.3
86
0.65





TLEAQLTPR_514.79_685.4
87
0.65





VPVAVQGEDTVQSLTQGDGVAK_733.38_775.4
88
0.65





VAPEEHPVLLTEAPLNPK_652.03_568.3
57
0.64





ADSQAQLLLSTVVGVFTAPGLHLK_822.46_664.4
75
0.64





AEAQAQYSAAVAK_654.33_908.5
89
0.64





DISEVVTPR_508.27_472.3
85
0.64





ELLESYIDGR_597.8_710.3
90
0.64





TGISPLALIK_506.82_654.5
20
0.64





TNLESILSYPK_632.84_807.5
91
0.64





DAQYAPGYDK_564.25_813.4
83
0.63





LPTAVVPLR_483.31_755.5
92
0.63





DSPVLIDFFEDTER_841.9_512.3
93
0.63





FAFNLYR_465.75_712.4
94
0.63





FVFGTTPEDILR_697.87_843.5
95
0.63





GDSGGAFAVQDPNDK_739.33_473.2
96
0.63





SLDFTELDVAAEK_719.36_316.2
97
0.63





SLLQPNK_400.24_599.4
98
0.63





TLLIANETLR_572.34_816.5
22
0.63





VILGAHQEVNLEPHVQEIEVSR_832.78_603.3
27
0.63





VQEAHLTEDQIFYFPK_655.66_701.4
99
0.63





FTFTLHLETPKPSISSSNLNPR_829.44_787.4
82
0.63





AYSDLSR_406.2_375.2
76
0.62





DDLYVSDAFHK_655.31_344.1
100
0.62





DDLYVSDAFHK_655.31_704.3
100
0.62





DPDQTDGLGLSYLSSHIANVER_796.39_456.2
101
0.62





ESDTSYVSLK_564.77_347.2
102
0.62





ESDTSYVSLK_564.77_696.4
102
0.62





FVFGTTPEDILR_697.87_742.4
95
0.62





ILDDLSPR_464.76_587.3
103
0.62





LEQGENVFLQATDK_796.4_675.4
70
0.62





LHEAFSPVSYQHDLALLR_699.37_380.2
41
0.62





LIENGYFHPVK_439.57_343.2
66
0.62





SLPVSDSVLSGFEQR_810.92_836.4
104
0.62





TWDPEGVIFYGDTNPK_919.93_403.2
105
0.62





VGEYSLYIGR_578.8_708.4
106
0.62





VIAVNEVGR_478.78_744.4
30
0.62





VPGTSTSATLTGLTR_731.4_761.5
107
0.62





YEVQGEVFTKPQLWP_910.96_293.1
108
0.62





AFTECCVVASQLR_770.87_673.4
109
0.61





APLTKPLK_289.86_357.3
110
0.61





DSPVLIDFFEDTER_841.9_399.2
93
0.61





ELLESYIDGR_597.8_839.4
90
0.61





FLQEQGHR_338.84_369.2
111
0.61





IQTHSTTYR_369.52_627.3
59
0.61





IS.3_432.6_397.3

0.61





IS.4_706.3_780.3

0.61





IS.4_706.3_927.4

0.61





IS.5_726.3_876.3

0.61





ISLLLIESWLEPVR_834.49_500.3
112
0.61





LQGTLPVEAR_542.31_842.5
113
0.61





NKPGVYTDVAYYLAWIR_677.02_821.5
67
0.61





SLDFTELDVAAEK_719.36_874.5
97
0.61





SYTITGLQPGTDYK_772.39_352.2
114
0.61





TASDFITK_441.73_710.4
115
0.61





VLSALQAVQGLLVAQGR_862.02_941.6
116
0.61





VTGWGNLK_437.74_617.3
117
0.61





YEVQGEVFTKPQLWP_910.96_392.2
108
0.61





AFIQLWAFDAVK_704.89_650.4
118
0.60





APLTKPLK_289.86_260.2
110
0.60





GYVIIKPLVWV_643.9_304.2
119
0.60





IITGLLEFEVYLEYLQNR_738.4_822.4
120
0.60





ILDDLSPR_464.76_702.3
103
0.60





LSSPAVITDK_515.79_830.5
78
0.60





TDAPDLPEENQAR_728.34_843.4
121
0.60





TFTLLDPK_467.77_359.2
122
0.60





TFTLLDPK_467.77_686.4
122
0.60





VLEPTLK_400.25_587.3
123
0.60





YEFLNGR_449.72_606.3
124
0.60





YGLVTYATYPK_638.33_843.4
84
0.60
















TABLE 6







AUROCs for random forest, boosting, lasso, and logistic


regression models for a specific number of transitions


permitted in the model, as estimated by 100 rounds of


bootstrap resampling.











Number of






transitions
rf
boosting
logit
lasso














1
0.81
0.75
0.48
0.92


2
0.95
0.85
0.61
0.86


3
0.95
0.83
0.56
0.93


4
0.94
0.82
0.52
0.92


5
0.95
0.81
0.51
0.94


6
0.95
0.81
0.49
0.93


7
0.95
0.83
0.46
0.93


8
0.96
0.79
0.49
0.91


9
0.95
0.82
0.46
0.88


10
0.94
0.80
0.50
0.85


11
0.93
0.78
0.49
0.84


12
0.94
0.79
0.47
0.82


13
0.92
0.80
0.48
0.84


14
0.95
0.73
0.47
0.83


15
0.93
0.73
0.49
0.83
















TABLE 7







Top 15 transitions selected by each multivariate method, ranked by


importance for that method.

















SEQ

SEQ

SEQ

SEQ




ID

ID

ID

ID



rf
NO:
boosting
NO:
lasso
NO:
logit
NO:


















1
FSVVYA
1
DPNGL
14
SPELQAE
2
AFIQLWAF
118



K_407.23_579.4

PPEAQ

AK_486.75_788.4

DAVK_704.89_650.4





K_583.3_497.2





2
SPELQA
2
ALNFG
34
VILGAHQ
27
AFIQLWAF
118



EAK_486.75_788.4

GIGVV

EVNLEPH

DAVK_704.89_836.4





VGHEL

VQEIEVS





THAFD

R_832.78_860.4





DQGR_837.09_299.2





3
VNHVTL
3
ALEQD
45
VVGGLV
5
AEAQAQYS
89



SQPK_561.82_673.4

LPVNI

ALR_442.29_784.5

AAVAK_654.33_709.4





K_620.35_570.4





4
SSNNPH
4
DALSS
24
TSESGEL
44
AFTECCVV
109



SPIVEEF

VQESQ

HGLTTEE

ASQLR_770.87_574.3



QVPYNK_729.36_261.2

VAQQ

EFVEGIY





AR_572.96_502.3

K_819.06_310.2





5
SSNNPH
4
AHYDL
42
SSNNPHS
4
ADSQAQLL
75



SPIVEEF

R_387.7_288.2

PIVEEFQ

LSTVVGVFT



QVPYNK_729.36_521.3



VPYNK_729.36_261.2

APGLHLK_822.46_664.4





6
VVGGLV
5
FQLPG
47
VVLSSGS
38
AEAQAQYS
89



ALR_442.29_784.547

QK_409.23_276.1

GPGLDLP

AAVAK_654.33_908.5







LVLGLPL







QLK_791.48_598.4





7
FQLPGQ
47
AFTEC
109
ALEQDLP
45
ADSQAQLL
75



K_409.23_276.1

CVVAS

VNIK_620.35_570.4

LSTVVGVFT





QLR_770.87_673.4



APGLHLK_822.46_983.6





8
TLLIANE
22
ALNHL
52
IQTHSTT
59
AFTECCVV
109



TLR_572.34_703.4

PLEYN

YR_369.52_540.3

ASQLR_770.87_673.4





SALYS





R_620.99_538.3





9
DYWSTV
28
ADSQA
75
SSNNPHS
4
Collection.Window.



K_449.72_620.3

QLLLS

PIVEEFQ

GA.in.





TVVGV

VPYNK_729.36_521.3

Days





FTAPG





LHLK_822.46_664.4





10
VVGGLV
5
AEAQA
89
FSVVYAK_407.23_579.4
1
AHYDLR_387.7_288.2
42



ALR_442.29_685.4

QYSAA





VAK_654.33_908.5





11
DPNGLP
14
ADSQA
75
IAQYYYT
25
AHYDLR_387.7_566.3
42



PEAQK_583.3_497.2

QLLLS

FK_598.8_884.4





TVVGV





FTAPG





LHLK_822.46_983.6





12
LLEVPE
31
AITPPH
125
IAQYYYT
25
AITPPHPAS
125



GR_456.76_356.2

PASQA

FK_598.8_395.2

QANIIFDITE





NIIFDI



GNLR_825.77_459.3





TEGNL





R_825.77_459.3





13
GWVTD
19
Collection.

GDTYPAE
43
AITPPHPAS
125



GFSSLK_598.8_953.5

Window.

LYITGSIL

QANIIFDITE





GA.in.

R_884.96_922.5

GNLR_825.77_917.5





Days





14
VILGAH
27
AEAQA
89
SPEQQET
36
ALEQDLPV
45



QEVNLE

QYSAA

VLDGNLI

NIK_620.35_570.4



PHVQEIE

VAK_654.33_709.4

IR_906.48_699.3



VSR_832.78_860.4





15
FQLPGQ
47
AFIQL
118
IAPQLSTE
56
ALEQDLPV
45



K_409.23_429.2

WAFD

ELVSLGE

NIK_620.35_798.5





AVK_704.89_650.4

K_857.47_533.3









In yet another aspect, the invention provides kits for determining probability of preeclampsia, wherein the kits can be used to detect N of the isolated biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. For example, the kits can be used to detect one or more, two or more, three or more, four or more, or five of the isolated biomarkers selected from the group consisting of SPELQAEAK (SEQ ID NO: 2), SSNNPHSPIVEEFQVPYN (SEQ ID NO: 12), VNHVTLSQPK (SEQ ID NO: 3), VVGGLVALR (SEQ ID NO: 5), and FSVVYAK (SEQ ID NO: 1), LDFHFSSDR (SEQ ID NO: 6), TVQAVLTVPK (SEQ ID NO: 7), GPGEDFR (SEQ ID NO: 8), ETLLQDFR (SEQ ID NO: 9), ATVVYQGER (SEQ ID NO: 10), and GFQALGDAADIR (SEQ ID NO: 11). In another aspect, the kits can be used to detect one or more, two or more, three or more, four or more, five or more, six or more, seven or more, or eight of the isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4), Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


The kit can include one or more agents for detection of biomarkers, a container for holding a biological sample isolated from a pregnant female; and printed instructions for reacting agents with the biological sample or a portion of the biological sample to detect the presence or amount of the isolated biomarkers in the biological sample. The agents can be packaged in separate containers. The kit can further comprise one or more control reference samples and reagents for performing an immunoassay.


In one embodiment, the kit comprises agents for measuring the levels of at least N of the isolated biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. The kit can include antibodies that specifically bind to these biomarkers, for example, the kit can contain at least one of an antibody that specifically binds to alpha-1-microglobulin (AMBP), an antibody that specifically binds to ADP/ATP translocase 3 (ANT3), an antibody that specifically binds to apolipoprotein A-II (APOA2), an antibody that specifically binds to apolipoprotein C-III (APOC3), an antibody that specifically binds to apolipoprotein B (APOB), an antibody that specifically binds to beta-2-microglobulin (B2MG), an antibody that specifically binds to retinol binding protein 4 (RBP4 or RET4), an antibody that specifically binds to Inhibin beta C chain (INHBC), an antibody that specifically binds to Pigment epithelium-derived factor (PEDF), an antibody that specifically binds to Prostaglandin-H2 D-isomerase (PTGDS), an antibody that specifically binds to alpha-1-microglobulin (AMBP), an antibody that specifically binds to Beta-2-glycoprotein 1 (APOH), an antibody that specifically binds to Metalloproteinase inhibitor 1 (TIMP1), an antibody that specifically binds to Coagulation factor XIII B chain (F13B), an antibody that specifically binds to Alpha-2-HS-glycoprotein (FETUA), and an antibody that specifically binds to Sex hormone-binding globulin (SHBG).


The kit can comprise one or more containers for compositions contained in the kit. Compositions can be in liquid form or can be lyophilized. Suitable containers for the compositions include, for example, bottles, vials, syringes, and test tubes. Containers can be formed from a variety of materials, including glass or plastic. The kit can also comprise a package insert containing written instructions for methods of determining probability of preeclampsia.


From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.


The following examples are provided by way of illustration, not limitation.


EXAMPLES
Example 1
Development of Sample Set for Discovery and Validation of Biomarkers for Preeclampsia

A standard protocol was developed governing conduct of the Proteomic Assessment of Preterm Risk (PAPR) clinical study. This protocol also provided the option that the samples and clinical information could be used to study other pregnancy complications. Specimens were obtained from women at 11 Internal Review Board (IRB) approved sites across the United States. After providing informed consent, serum and plasma samples were obtained, as well as pertinent information regarding the patient's demographic characteristics, past medical and pregnancy history, current pregnancy history and concurrent medications. Following delivery, data were collected relating to maternal and infant conditions and complications. Serum and plasma samples were processed according to a protocol that requires standardized refrigerated centrifugation, aliquoting of the samples into 0.5 ml 2-D bar-coded cryovials and subsequent freezing at −80° C.


Following delivery, preeclampsia cases were individually reviewed. Only preterm preeclampsia cases were used for this analysis. For discovery of biomarkers of preeclampsia, 20 samples collected between 17-28 weeks of gestation were analyzed. Samples included 9 cases, 9 term controls matched within one week of sample collection and 2 random term controls. The samples were processed in batches of 24 that included 20 clinical samples and 4 identical human gold standards (HGS). HGS samples are identical aliquots from a pool of human blood and were used for quality control. HGS samples were placed in position 1, 8, 15 and 24 of a batch with patient samples processed in the remaining 20 positions. Matched cases and controls were always processed adjacently.


The samples were subsequently depleted of high abundance proteins using the Human 14 Multiple Affinity Removal System (MARS14), which removes 14 of the most abundant proteins that are essentially uninformative with regard to the identification for disease-relevant changes in the serum proteome. To this end, equal volumes of each clinical or HGS sample were diluted with column buffer and filtered to remove precipitates. Filtered samples were depleted using a MARS-14 column (4.6×100 mm, Cat. #5188-6558, Agilent Technologies). Samples were chilled to 4° C. in the autosampler, the depletion column was run at room temperature, and collected fractions were kept at 4° C. until further analysis. The unbound fractions were collected for further analysis.


A second aliquot of each clinical serum sample and of each HGS was diluted into ammonium bicarbonate buffer and depleted of the 14 high and approximately 60 additional moderately abundant proteins using an IgY14-SuperMix (Sigma) hand-packed column, comprised of 10 mL of bulk material (50% slurry, Sigma). Shi et al., Methods, 56(2):246-53 (2012). Samples were chilled to 4° C. in the autosampler, the depletion column was run at room temperature, and collected fractions were kept at 4° C. until further analysis. The unbound fractions were collected for further analysis.


Depleted serum samples were denatured with trifluorethanol, reduced with dithiotreitol, alkylated using iodoacetamide, and then digested with trypsin at a 1:10 trypsin; protein ratio. Following trypsin digestion, samples were desalted on a C18 column, and the eluate lyophilized to dryness. The desalted samples were resolubilized in a reconstitution solution containing five internal standard peptides.


Depleted and trypsin digested samples were analyzed using a scheduled Multiple Reaction Monitoring method (sMRM). The peptides were separated on a 150 mm×0.32 mm Bio-Basic C18 column (ThermoFisher) at a flow rate of 5 μl/min using a Waters Nano Acquity UPLC and eluted using an acetonitrile gradient into a AB SCIEX QTRAP 5500 with a Turbo V source (AB SCIEX, Framingham, Mass.). The sMRM assay measured 1708 transitions that correspond to 854 peptides and 236 proteins. Chromatographic peaks were integrated using Rosetta Elucidator software (Ceiba Solutions).


Transitions were excluded from analysis, if their intensity area counts were less than 10000 and if they were missing in more than three samples per batch. Intensity area counts were log transformed and Mass Spectrometry run order trends and depletion batch effects were minimized using a regression analysis.


Example 2
Analysis of Transitions to Identify PE Biomarkers

The objective of these analyses was to examine the data collected in Example 1 to identify transitions and proteins that predict preeclampsia. The specific analyses employed were (i) Cox time-to-event analyses and (ii) models with preeclampsia as a binary categorical dependent variable. The dependent variable for all the Cox analyses was Gestational Age of time to event (where event is preeclampsia). For the purpose of the Cox analyses, preeclampsia subjects have the event on the day of birth. Non-preeclampsia subjects are censored on the day of birth. Gestational age on the day of specimen collection is a covariate in all Cox analyses.


The assay data obtained in Example 1 were previously adjusted for run order and log transformed. The data was not further adjusted. There were 9 matched non-preeclampsia subjects, and two unmatched non-preeclampsia subjects, where matching was done according to center, gestational age and ethnicity.


Univariate Cox Proportional Hazards Analyses

Univariate Cox Proportional Hazards analyses was performed to predict Gestational Age of time to event (preeclampsia), including Gestational age on the day of specimen collection as a covariate. Table 1 shows the 40 transitions with p-values less than 0.05. Table 2 shows the same transitions sorted by protein ID. There are 8 proteins that have multiple transitions with p-values less than 0.05: AMBP, ANT3, APOA2, APOB, APOC3, B2MG, C1S, and RET4.


Multivariate Cox Proportional Hazards Analyses: Stepwise AIC Selection


Cox Proportional Hazards analyses was performed to predict Gestational Age of time to event (preeclampsia), including Gestational age on the day of specimen collection as a covariate, using stepwise and lasso models for variable selection. The stepwise variable selection analysis used the Akaike Information Criterion (AIC) as the stopping criterion. Table 3 shows the transitions selected by the stepwise AIC analysis. The coefficient of determination (R2) for the stepwise AIC model is 0.87 of a maximum possible 0.9.


Multivariate Cox Proportional Hazards Analyses: Lasso Selection


Lasso variable selection was utilized as the second method of multivariate Cox Proportional Hazards analyses to predict Gestational Age of time to event (preeclampsia), including Gestational age on the day of specimen collection as a covariate. Lasso regression models estimate regression coefficients using penalized optimization methods, where the penalty discourages the model from considering large regression coefficients since we usually believe such large values are not very likely. As a result, some regression coefficients are forced to be zero (i.e., excluded from the model). Here, the resulting model included analytes with non-zero regression coefficients only. The number of these analytes (with non-zero regression coefficients) depends on the severity of the penalty. Cross-validation was used to choose an optimum penalty level. Table 4 shows the results. The coefficient of determination (R2) for the lasso model is 0.53 of a maximum possible 0.9.


Univariate ROC Analysis of Preeclampsia as a Binary Categorical Dependent Variable


Univariate analyses was used to discriminate preeclampsia subjects from non-preeclampsia subjects (preeclampsia as a binary categorical variable) as estimated by area under the receiver operating characteristic (ROC) curve. Table 5 shows the area under the ROC curve for the 196 transitions with the highest ROC area of 0.6 or greater.


Multivariate Analysis of Preeclampsia as a Binary Categorical Dependent Variable


Multivariate analyses was performed to predict preeclampsia as a binary categorical dependent variable, using random forest, boosting, lasso, and logistic regression models. Random forest and boosting models grow many classification trees. The trees vote on the assignment of each subject to one of the possible classes. The forest chooses the class with the most votes over all the trees.


For each of the four methods (random forest, boosting, lasso, and logistic regression) each method was allowed to select and rank its own best 15 transitions. We then built models with 1 to 15 transitions. Each method sequentially reduces the number of nodes from 15 to 1 independently. A recursive option was used to reduce the number nodes at each step: To determine which node to be removed, the nodes were ranked at each step based on their importance from a nested cross-validation procedure. The least important node was eliminated. The importance measures for lasso and logistic regression are z-values. For random forest and boosting, the variable importance was calculated from permuting out-of-bag data: for each tree, the classification error rate on the out-of-bag portion of the data was recorded; the error rate was then recalculated after permuting the values of each variable (i.e., transition); if the transition was in fact important, there would have been be a big difference between the two error rates; the difference between the two error rates were then averaged over all trees, and normalized by the standard deviation of the differences. The AUCs for these models are shown in Table 6 and in FIG. 1, as estimated by 100 rounds of bootstrap resampling. Table 7 shows the top 15 transitions selected by each multivariate method, ranked by importance for that method. These multivariate analyses suggest that models that combine 2 or more transitions give AUC greater than 0.9, as estimated by bootstrap.


In multivariate models, random forest (rf) and lasso models gave the best area under the ROC curve as estimated by bootstrap. The following transitions were selected by these two models for having high univariate ROC's:.










FSVVYAK_407.23_579.4
(SEQ ID NO: 1)





SPELQAEAK_486.75_788.4
(SEQ ID NO: 2)





VNHVTLSQPK_561.82_673.4
(SEQ ID NO: 3)





SSNNPHSPIVEEFQVPYNK_729.36_261.2
(SEQ ID NO: 4)





SSNNPHSPIVEEFQVPYNK_729.36_521.3
(SEQ ID NO: 4)





VVGGLVALR_442.29_784.5
(SEQ ID NO: 5)






In summary, univariate and multivariate Cox analyses were performed using transitions collected in Example 1 to predict Gestational Age at Birth, including Gestational age on the day of specimen collection as a covariate. In the univariate Cox analyses, 8 proteins were identified with multiple transitions with p-value less than 0.05. In multivariate Cox analyses, stepwise AIC variable analysis selected 4 transitions, while the lasso model selected 2 transitions. Univariate (ROC) and multivariate (random forest, boosting, lasso, and logistic regression) analyses were performed to predict preeclampsia as a binary categorical variable. Univariate analyses identify 78 analytes with AUROC of 0.7 or greater and 196 analytes with AUROC of 0.6 or greater. Multivariate analyses suggest that models that combine 2 or more transitions give AUC greater than 0.9, as estimated by bootstrap.


From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.


Example 3
Study II Shotgun Identification of Preeclampsia Biomarkers

A further study used a hypothesis-independent shotgun approach to identify and quantify additional biomarkers not present on our multiplexed hypothesis dependent MRM assay. Samples were processed as described in the preceding Examples unless noted below.


Serum samples were depleted of the 14 most abundant serum samples by MARS14 as described in Example 1. Depleted serum was then reduced with dithiothreitol, alkylated with iodacetamide, and then digested with trypsin at a 1:20 trypsin to protein ratio overnight at 37° C. Following trypsin digestion, the samples were desalted on an Empore C18 96-well Solid Phase Extraction Plate (3M Company) and lyophilized to dryness. The desalted samples were resolubilized in a reconstitution solution containing five internal standard peptides.


Tryptic digests of MARS depleted patient (preeclampsia cases and normal pregnancycontrols) samples were fractionated by two-dimensional liquid chromatography and analyzed by tandem mass spectrometry. Aliquots of the samples, equivalent to 3-4 μA of serum, were injected onto a 6 cm×75 μm self-packed strong cation exchange (Luna SCX, Phenomenex) column. Peptides were eluded from the SCX column with salt (15, 30, 50, 70, and 100% B, where B=250 mM ammonium acetate, 2% acetonitrile, 0.1% formic acid in water) and consecutively for each salt elution, were bound to a 0.5 μl C18 packed stem trap (Optimize Technologies, Inc.) and further fractionated on a 10 cm×75 μm reversed phase ProteoPep II PicoFrit column (New Objective). Peptides were eluted from the reversed phase column with an acetonitrile gradient containing 0.1% formic acid and directly ionized on an LTQ-Orbitrap (ThermoFisher). For each scan, peptide parent ion masses were obtained in the Orbitrap at 60K resolution and the top seven most abundant ions were fragmented in the LTQ to obtain peptide sequence information.


Parent and fragment ion data were used to search the Human RefSeq database using the Sequest (Eng et al., J. Am. Soc. Mass Spectrom 1994; 5:976-989) and X!Tandem (Craig and Beavis, Bioinformatics 2004; 20:1466-1467) algorithms. For Sequest, data was searched with a 20 ppm tolerance for the parent ion and 1 AMU for the fragment ion. Two missed trypsin cleavages were allowed, and modifications included static cysteine carboxyamidomethylation and methionine oxidation. After searching the data was filtered by charge state vs. Xcorr scores (charge+1≧1.5 Xcorr, charge+2≧2.0, charge+3≧2.5). Similar search parameters were used for X!tandem, except the mass tolerance for the fragment ion was 0.8 AMU and there is no Xcorr filtering. Instead, the PeptideProphet algorithm (Keller et al., Anal. Chem. 2002; 74:5383-5392) was used to validate each X!Tandem peptide-spectrum assignment and protein assignments were validated using ProteinProphet algorithm (Nesvizhskii et al., Anal. Chem. 2002; 74:5383-5392). Data was filtered to include only the peptide-spectrum matches that had PeptideProphet probability of 0.9 or more. After compiling peptide and protein identifications, spectral count data for each peptide were imported into DAnTE software (Polpitiya et al., Bioinformatics. 2008; 24:1556-1558). Log transformed data was mean centered and missing values were filtered, by requiring that a peptide had to be identified in at least 2 cases and 2 controls. To determine the significance of an analyte, Receiver Operating Characteristic (ROC) curves for each analyte were created where the true positive rate (Sensitivity) is plotted as a function of the false positive rate (1-Specificity) for different thresholds that separate the SPTB and Term groups. The area under the ROC curve (AUC) is equal to the probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one. Peptides with AUC greater than or equal to 0.6 identified by both approaches are found in Table 8 and those found uniquely by Sequest or Xtandem are found in Tables 9 and 10, respectively.


The differentially expressed proteins identified by the hypothesis-independent strategy above, not already present in our MRM-MS assay, were candidates for incorporation into the MRM-MS assay. Candidates were prioritized by AUC and biological function, with preference given for new pathways. Sequences for each protein of interest, were imported into Skyline software which generated a list of tryptic peptides, m/z values for the parent ions and fragment ions, and an instrument-specific collision energy (McLean et al. Bioinformatics (2010) 26 (7): 966-968. McLean et al. Anal. Chem. (2010) 82 (24): 10116-10124).


The list was refined by eliminating peptides containing cysteines and methionines, where possible, and by using the shotgun data to select the charge state(s) and a subset of potential fragment ions for each peptide that had already been observed on a mass spectrometer.


After prioritizing parent and fragment ions, a list of transitions was exported with a single predicted collision energy. Approximately 100 transitions were added to a single MRM run. For development, MRM data was collected on either a QTRAP 5500 (AB Sciex) or a 6490 QQQ (Agilent). Commercially available human female serum (from pregnant and non-pregnant donors), was depleted and processed to tryptic peptides, as described above, and used to “scan” for peptides of interest. For development, peptides from the digested serum were separated with a 15 min acetonitrile.e gradient at 100 ul/min on a 2.1×50 mM Poroshell 120 EC-C18 column (Agilent) at 40° C.


The MS/MS data was imported back into Skyline, where all chromatograms for each peptide were overlayed and used to identify a concensus peak corresponding to the peptide of interest and the transitions with the highest intensities and the least noise. Table 11, contains a list of the most intensely observed candidate transitions and peptides for transfer to the MRM assay.


Next, the top 2-10 transitions per peptide and up to 7 peptides per protein were selected for collision energy (CE) optimization on the Agilent 6490. Using Skyline or MassHunter Qual software, the optimized CE value for each transition was determined based on the peak area or signal to noise. The two transitions with the largest peak areas per peptide and at least two peptides per protein were chosen for the final MRM method. Substitutions of transitions with lower peak areas were made when a transition with a larger peak area had a high background level or had a low m/z value that has more potential for interference.


Lastly, the retention times of selected peptides were mapped using the same column and gradient as our established sMRM assay. The newly discovered analytes were subsequently added to the sMRM method and used in a further hypothesis-dependent discovery study described in Example 4 below.


The above method was typical for most proteins. However, in some cases, the differentially expressed peptide identified in the shotgun method did not uniquely identify a protein, for example, in protein families with high sequence identity. In these cases, a MRM method was developed for each family member. Also, let it be noted that, for any given protein, peptides in addition to those found to be significant and fragment ions not observed on the Orbitrap may have been included in MRM optimization and added to the final sMRM method if those yielded the best signal intensities. In some cases, transition selection and CEs were re-optimized using purified, synthetic peptides.









TABLE 8







Preeclampsia: Peptides significant with AUC >0.6 by X!Tandem and


Sequest















SEQ




Protein


ID


description
Uniprot ID (name)
Peptide
NO:
XT_AUC
S_AUC





afamin
P43652
R.IVQIYKDLL
126
0.67
0.63



(AFAM_HUMAN)
R.N





afamin
P43652
K.VMNHICSK.Q
127
0.73
0.74



(AFAM_HUMAN)





afamin
P43652
R.RHPDLSIPEL
128
0.86
0.83



(AFAM_HUMAN)
LR.I





afamin
P43652
K.HFQNLGK.D
129
0.71
0.75



(AFAM_HUMAN)





alpha-1-
P01011
K.ITLLSALVET
130
0.68
0.70


antichymotrypsin
(AACT_HUMAN)
R.T





alpha-1-
P01011
R.LYGSEAFAT
131
0.70
0.78


antichymotrypsin
(AACT_HUMAN)
DFQDSAAAK.K





alpha-1-
P01011
R.NLAVSQVV
132
0.81
0.79


antichymotrypsin
(AACT_HUMAN)
HK.A





alpha-1B-
P04217
R.CEGPIPDVTF
133
0.78
0.60


glycoprotein
(A1BG_HUMAN)
ELLR.E





alpha-1B-
P04217
R.LHDNQNGW
134
0.72
0.66


glycoprotein
(A1BG_HUMAN)
SGDSAPVELIL




SDETLPAPEFS




PEPESGR.A





alpha-1B-
P04217
R.CEGPIPDVTF
133
0.64
0.60


glycoprotein
(A1BG_HUMAN)
ELLR.E





alpha-1B-
P04217
R.TPGAAANLE
135
0.71
0.67


glycoprotein
(A1BG_HUMAN)
LIFVGPQHAG




NYR.C





alpha-1B-
P04217
K.LLELTGPK.S
136
0.70
0.66


glycoprotein
(A1BG_HUMAN)





alpha-1B-
P04217
R.ATWSGAVL
137
0.84
0.74


glycoprotein
(A1BG_HUMAN)
AGR.D





alpha-2-
P08697
K.HQM*DLVA
138
0.67
0.67


antiplasmin
(A2AP_HUMAN)
TLSQLGLQELF




QAPDLR.G





alpha-2-
P08697
K.LGNQEPGG
139
0.83
0.83


antiplasmin
(A2AP_HUMAN)
QTALK.S





alpha-2-
P08697
K.GFPIKEDFLE
140
0.68
0.65


antiplasmin
(A2AP_HUMAN)
QSEQLFGAKP




VSLTGK.Q





alpha-2-HS-
P02765
R.QPNCDDPET
141
0.61
0.61


glycoprotein
(FETUA_HUMAN)
EEAALVAIDYI


preproprotein

NQNLPWGYK.H





alpha-2-HS-
P02765
K.VWPQQPSG
142
0.79
0.67


glycoprotein
(FETUA_HUMAN)
ELFEIEIDTLET


preproprotein

TCHVLDPTPV




AR.C





alpha-2-HS-
P02765
K.EHAVEGDC
143
0.90
0.77


glycoprotein
(FETUA_HUMAN)
DFQLLK.L


preproprotein





alpha-2-HS-
P02765
R.QPNCDDPET
141
0.63
0.61


glycoprotein
(FETUA_HUMAN)
EEAALVAIDYI


preproprotein

NQNLPWGYK.H





alpha-2-HS-
P02765
K.HTLNQIDEV
144
0.70
0.68


glycoprotein
(FETUA_HUMAN)
K.V


preproprotein





alpha-2-HS-
P02765
R.TVVQPSVGA
145
0.83
0.83


glycoprotein
(FETUA_HUMAN)
AAGPVVPPCP


preproprotein

GR.I





angiotensinogen
P01019
K.TGCSLMGA
146
0.75
0.67


preproprotein
(ANGT_HUMAN)
SVDSTLAFNT




YVHFQGK.M





angiotensinogen
P01019
R.AAM*VGML
147
0.65
0.63


preproprotein
(ANGT_HUMAN)
ANFLGFR.I





angiotensinogen
P01019
R.AAMVGMLA
147
0.65
0.64


preproprotein
(ANGT_HUMAN)
NFLGFR.I





angiotensinogen
P01019
R.AAM*VGM*
147
0.65
0.65


preproprotein
(ANGT_HUMAN)
LANFLGFR.I





angiotensinogen
P01019
R.AAMVGM*L
147
0.65
0.74


preproprotein
(ANGT_HUMAN)
ANFLGFR.I





angiotensinogen
P01019
K.QPFVQGLAL
148
0.60
0.74


preproprotein
(ANGT_HUMAN)
YTPVVLPR.S





angiotensinogen
P01019
R.AAM*VGML
147
0.64
0.63


preproprotein
(ANGT_HUMAN)
ANFLGFR.I





angiotensinogen
P01019
R.AAMVGMLA
147
0.64
0.64


preproprotein
(ANGT_HUMAN)
NFLGFR.I





angiotensinogen
P01019
R.AAM*VGM*
147
0.64
0.65


preproprotein
(ANGT_HUMAN)
LANFLGFR.I





angiotensinogen
P01019
R.AAMVGM*L
147
0.64
0.74


preproprotein
(ANGT_HUMAN)
ANFLGFR.I





angiotensinogen
P01019
K.VLSALQAV
149
0.74
0.77


preproprotein
(ANGT_HUMAN)
QGLLVAQGR.A





angiotensinogen
P01019
K.QPFVQGLAL
148
0.75
0.74


preproprotein
(ANGT_HUMAN)
YTPVVLPR.S





angiotensinogen
P01019
R.ADSQAQLLL
150
0.78
0.77


preproprotein
(ANGT_HUMAN)
STVVGVFTAP




GLHLK.Q





antithrombin-III
P01008
R.ITDVIPSEAI
151
0.78
0.78



(ANT3_HUMAN)
NELTVLVLVN




TIYFK.G





antithrombin-III
P01008
K.NDNDNIFLS
152
0.87
0.83



(ANT3_HUMAN)
PLSISTAFAMT




K.L





antithrombin-III
P01008
R.EVPLNTIIFM
153
0.69
0.62



(ANT3_HUMAN)
GR.V





antithrombin-III
P01008
R.EVPLNTIIFM
153
0.69
0.69



(ANT3_HUMAN)
*GR.V





antithrombin-III
P01008
R.VAEGTQVLE
154
0.83
0.92



(ANT3_HUMAN)
LPFKGDDITM*




VLILPKPEK.S





antithrombin-III
P01008
R.VAEGTQVLE
154
0.83
0.96



(ANT3_HUMAN)
LPFKGDDITM




VLILPKPEK.S





antithrombin-III
P01008
K.EQLQDMGL
155
0.85
0.86



(ANT3_HUMAN)
VDLFSPEK.S





antithrombin-III
P01008
R.VAEGTQVLE
154
0.94
0.92



(ANT3_HUMAN)
LPFKGDDITM*




VLILPKPEK.S





antithrombin-III
P01008
R.VAEGTQVLE
154
0.94
0.96



(ANT3_HUMAN)
LPFKGDDITM




VLILPKPEK.S





antithrombin-III
P01008
R.EVPLNTIIFM
153
0.63
0.62



(ANT3_HUMAN)
GR.V





antithrombin-III
P01008
R.EVPLNTIIFM
153
0.63
0.69



(ANT3_HUMAN)
*GR.V





antithrombin-III
P01008
R.DIPMNPMCI
156
0.71
0.70



(ANT3_HUMAN)
YR.S





apolipoprotein
P02652
K.EPCVESLVS
157
0.83
0.83


A-II
(APOA2_HUMAN)
QYFQTVTDYG


preproprotein

K.D





apolipoprotein
P06727
K.SLAELGGHL
158
0.67
0.67


A-IV
(APOA4_HUMAN)
DQQVEEFR.R





apolipoprotein
P06727
R.LAPLAEDVR
159
0.67
0.90


A-IV
(APOA4_HUMAN)
.G





apolipoprotein
P06727
R.VLRENADSL
160
0.79
0.63


A-IV
(APOA4_HUMAN)
QASLRPHADE




LK.A





apolipoprotein
P06727
R.SLAPYAQDT
161
0.90
0.65


A-IV
(APOA4_HUMAN)
QEKLNHQLEG




LTFQMK.K





apolipoprotein
P06727
R.SLAPYAQDT
161
0.90
0.69


A-IV
(APOA4_HUMAN)
QEKLNHQLEG




LTFQM*K.K





apolipoprotein
P06727
K.LGPHAGDV
162
0.63
0.73


A-IV
(APOA4_HUMAN)
EGHLSFLEK.D





apolipoprotein
P06727
K.SELTQQLNA
163
0.68
0.68


A-IV
(APOA4_HUMAN)
LFQDKLGEVN




TYAGDLQK.K





apolipoprotein
P06727
R.SLAPYAQDT
161
0.71
0.65


A-IV
(APOA4_HUMAN)
QEKLNHQLEG




LTFQMK.K





apolipoprotein
P06727
R.SLAPYAQDT
161
0.71
0.69


A-IV
(APOA4_HUMAN)
QEKLNHQLEG




LTFQM*K.K





apolipoprotein
P06727
R.LLPHANEVS
164
0.62
0.79


A-IV
(APOA4_HUMAN)
QK.I





apolipoprotein
P06727
K.SLAELGGHL
165
0.67
0.69


A-IV
(APOA4_HUMAN)
DQQVEEFRR.R





apolipoprotein
P06727
K.SELTQQLNA
166
0.68
0.62


A-IV
(APOA4_HUMAN)
LFQDK.L





apolipoprotein
P04114
K.GFEPTLEAL
167
0.73
0.76


B-100
(APOB_HUMAN)
FGK.Q





apolipoprotein
P04114
K.ALYWVNGQ
168
0.78
0.67


B-100
(APOB_HUMAN)
VPDGVSK.V





apolipoprotein
P04114
K.FIIPSPK.R
169
0.90
0.90


B-100
(APOB_HUMAN)





apolipoprotein
P04114
R.TPALHFK.S
170
0.68
0.81


B-100
(APOB_HUMAN)





apolipoprotein
P04114
K.TEVIPPLIEN
171
0.62
0.64


B-100
(APOB_HUMAN)
R.Q





apolipoprotein
P04114
R.NLQNNAEW
172
0.65
0.60


B-100
(APOB_HUMAN)
VYQGAIR.Q





apolipoprotein
P04114
K.LPQQANDY
173
0.65
0.62


B-100
(APOB_HUMAN)
LNSFNWER.Q





apolipoprotein
P04114
R.LAAYLMLM
174
0.60
0.73


B-100
(APOB_HUMAN)
R.S





apolipoprotein
P04114
R.VIGNMGQT
175
0.68
0.67


B-100
(APOB_HUMAN)
MEQLTPELK.S





apolipoprotein
P04114
K.LIVAMSSWL
176
0.74
0.86


B-100
(APOB_HUMAN)
QK.A





apolipoprotein
P04114
R.TSSFALNLP
177
0.79
0.70


B-100
(APOB_HUMAN)
TLPEVK.F





apolipoprotein
P04114
K.IADFELPTII
178
0.62
0.61


B-100
(APOB_HUMAN)
VPEQTIEIPSIK.F





apolipoprotein
P04114
K.IEGNLIFDPN
179
0.63
0.62


B-100
(APOB_HUMAN)
NYLPK.E





apolipoprotein
P04114
R.TSSFALNLP
180
0.66
0.72


B-100
(APOB_HUMAN)
TLPEVKFPEV




DVLTK.Y





apolipoprotein
P04114
R.LELELRPTG
181
0.78
0.78


B-100
(APOB_HUMAN)
EIEQYSVSATY




ELQR.E





apolipoprotein
P02655
K.STAAMSTYT
182
0.73
0.73


C-II
(APOC2_HUMAN)
GIFTDQVLSVL




K.G





apolipoprotein
P02656
R.GWVTDGFS
183
1.00
1.00


C-III
(APOC3_HUMAN)
SLKDYWSTVK




DK.F





apolipoprotein E
P02649
R.WELALGR.F
184
0.60
0.63



(APOE_HUMAN)





apolipoprotein E
P02649
R.LAVYQAGA
185
0.61
0.64



(APOE_HUMAN)
R.E





apolipoprotein E
P02649
K.SWFEPLVED
186
0.83
0.73



(APOE_HUMAN)
MQR.Q





apolipoprotein E
P02649
R.AATVGSLA
187
0.67
0.67



(APOE_HUMAN)
GQPLQER.A





apolipoprotein(a)
P08519
R.TPEYYPNAG
188
0.72
0.61



(APOA_HUMAN)
LIMNYCR.N





beta-2-
P02749
K.TFYEPGEEIT
189
0.66
0.76


glycoprotein 1
(APOH_HUMAN)
YSCKPGYVSR.G





beta-2-
P02749
K.FICPLTGLW
190
0.72
0.70


glycoprotein 1
(APOH_HUMAN)
PINTLK.C





bone marrow
P13727
R.SLQTFSQAW
191
0.82
0.72


proteoglycan
(PRG2_HUMAN)
FTCR.R





ceruloplasmin
P00450
K.HYYIGIIETT
192
0.78
0.89



(CERU_HUMAN)
WDYASDHGE




KK.L





ceruloplasmin
P00450
R.EYTDASFTN
193
0.63
0.63



(CERU_HUMAN)
RK.E





ceruloplasmin
P00450
K.M*YYSAVD
194
0.66
0.68



(CERU_HUMAN)
PTKDIFTGLIG




PMK.I





ceruloplasmin
P00450
K.M*YYSAVD
194
0.66
0.76



(CERU_HUMAN)
PTKDIFTGLIG




PM*K.I





ceruloplasmin
P00450
R.SGAGTEDSA
195
0.95
0.95



(CERU_HUMAN)
CIPWAYYSTV




DQVKDLYSGL




IGPLIVCR.R





ceruloplasmin
P00450
R.KAEEEHLGI
196
0.85
0.77



(CERU_HUMAN)
LGPQLHADVG




DKVK.I





ceruloplasmin
P00450
K.EVGPTNADP
197
0.62
0.77



(CERU_HUMAN)
VCLAK.M





ceruloplasmin
P00450
R.MYSVNGYT
198
0.63
0.71



(CERU_HUMAN)
FGSLPGLSMC




AEDR.V





ceruloplasmin
P00450
K.DIASGLIGPL
199
0.63
0.66



(CERU_HUMAN)
IICK.K





ceruloplasmin
P00450
R.QKDVDKEF
200
0.64
0.66



(CERU_HUMAN)
YLFPTVFDEN




ESLLLEDNIR.M





ceruloplasmin
P00450
R.GPEEEHLGI
201
0.65
0.61



(CERU_HUMAN)
LGPVIWAEVG




DTIR.V





ceruloplasmin
P00450
K.M*YYSAVD
194
0.67
0.68



(CERU_HUMAN)
PTKDIFTGLIG




PMK.I





ceruloplasmin
P00450
K.M*YYSAVD
194
0.67
0.76



(CERU_HUMAN)
PTKDIFTGLIG




PM*K.I





ceruloplasmin
P00450
K.M*YYSAVD
194
0.67
0.68



(CERU_HUMAN)
PTKDIFTGLIG




PMK.I





ceruloplasmin
P00450
K.M*YYSAVD
194
0.67
0.76



(CERU_HUMAN)
PTKDIFTGLIG




PM*K.I





ceruloplasmin
P00450
K.GAYPLSIEPI
202
0.67
0.63



(CERU_HUMAN)
GVR.F





ceruloplasmin
P00450
R.GVYSSDVFD
203
0.67
0.67



(CERU_HUMAN)
IFPGTYQTLEM




*FPR.T





ceruloplasmin
P00450
K.DIASGLIGPL
204
0.67
0.73



(CERU_HUMAN)
IICKK.D





ceruloplasmin
P00450
R.SGAGTEDSA
205
0.70
0.70



(CERU_HUMAN)
CIPWAYYSTV




DQVK.D





ceruloplasmin
P00450
R.IYHSHIDAP
206
0.77
0.76



(CERU_HUMAN)
K.D





ceruloplasmin
P00450
R.ADDKVYPG
207
0.77
0.80



(CERU_HUMAN)
EQYTYMLLAT




EEQSPGEGDG




NCVTR.I





ceruloplasmin
P00450
K.DLYSGLIGP
208
0.78
0.82



(CERU_HUMAN)
LIVCR.R





ceruloplasmin
P00450
R.TTIEKPVWL
209
0.88
0.85



(CERU_HUMAN)
GFLGPIIK.A





cholinesterase
P06276
K.IFFPGVSEFG
210
0.87
0.76



(CHLE_HUMAN)
K.E





cholinesterase
P06276
R.AILQSGSFN
211
1.00
0.83



(CHLE_HUMAN)
APWAVTSLYE




AR.N





coagulation
P00748
R.LHEAFSPVS
212
0.72
0.76


factor XII
(FA12_HUMAN)
YQHDLALLR.L





coagulation
P05160
R.GDTYPAELY
213
0.67
0.83


factor XIII B
(F13B_HUMAN)
ITGSILR.M


chain





coagulation
P05160
K.VLHGDLIDF
214
0.69
0.60


factor XIII B
(F13B_HUMAN)
VCK.Q


chain





complement C1r
P00736
K.LVFQQFDLE
215
0.69
0.66


subcomponent
(C1R_HUMAN)
PSEGCFYDYV




K.I





complement C1s
P09871
R.VKNYVDWI
216
0.69
0.60


subcomponent
(C1S_HUMAN)
MK.T





complement C1s
P09871
K.SNALDIIFQT
217
0.75
0.70


subcomponent
(C1S_HUMAN)
DLTGQK.K





complement C2
P06681
R.DFHINLFR.M
218
0.75
0.72



(CO2_HUMAN)





complement C2
P06681
R.GALISDQWV
219
0.60
0.75



(CO2_HUMAN)
LTAAHCFR.D





complement C2
P06681
K.KNQGILEFY
220
0.62
0.67



(CO2_HUMAN)
GDDIALLK.L





complement C3
P01024
R.IHWESASLL
221
0.80
0.77



(CO3_HUMAN)
R.S





complement C4-
P0C0L5
R.VHYTVCIW
222
0.67
0.65


B-like
(CO4B_HUMAN)
R.N


preproprotein





complement C4-
P0C0L5
K.AEMADQAA
223
0.78
0.89


B-like
(CO4B_HUMAN)
AWLTR.Q


preproprotein





complement C4-
P0C0L5
K.M*RPSTDTI
224
0.65
0.65


B-like
(CO4B_HUMAN)
TVMVENSHGL


preproprotein

R.V





complement C4-
P0C0L5
K.MRPSTDTIT
224
0.65
0.72


B-like
(CO4B_HUMAN)
VMVENSHGLR


preproprotein

.V





complement C4-
P0C0L5
R.VQQPDCREP
225
0.67
0.60


B-like
(CO4B_HUMAN)
FLSCCQFAESL


preproprotein

RK.K





complement C4-
P0C0L5
K.LVNGQSHIS
226
0.73
0.73


B-like
(CO4B_HUMAN)
LSK.A


preproprotein





complement C4-
P0C0L5
R.GQIVFMNRE
227
0.80
0.62


B-like
(CO4B_HUMAN)
PK.R


preproprotein





complement C4-
P0C0L5
K.VGLSGM*AI
228
0.80
0.80


B-like
(CO4B_HUMAN)
ADVTLLSGFH


preproprotein

ALR.A





complement C4-
P0C0L5
K.VGLSGMAIA
228
0.80
0.83


B-like
(CO4B_HUMAN)
DVTLLSGFHA


preproprotein

LR.A





complement C4-
P0C0L5
R.GHLFLQTDQ
229
0.70
0.68


B-like
(CO4B_HUMAN)
PIYNPGQR.V


preproprotein





complement C4-
P0C0L5
K.M*RPSTDTI
224
0.75
0.65


B-like
(CO4B_HUMAN)
TVMVENSHGL


preproprotein

R.V





complement C4-
P0C0L5
K.MRPSTDTIT
224
0.75
0.72


B-like
(CO4B_HUMAN)
VMVENSHGLR


preproprotein

.V





complement C4-
P0C0L5
K.SHALQLNN
230
0.76
0.70


B-like
(CO4B_HUMAN)
R.Q


preproprotein





complement C4-
P0C0L5
R.YVSHFETEG
231
0.88
0.89


B-like
(CO4B_HUMAN)
PHVLLYFDSV


preproprotein

PTSR.E





complement C4-
P0C0L5
R.GSSTWLTAF
232
0.61
0.72


B-like
(CO4B_HUMAN)
VLK.V


preproprotein





complement C4-
P0C0L5
R.YIYGKPVQG
233
0.63
0.73


B-like
(CO4B_HUMAN)
VAYVR.F


preproprotein





complement C4-
P0C0L5
K.SCGLHQLLR
234
0.65
0.65


B-like
(CO4B_HUMAN)
.G


preproprotein





complement C4-
P0C0L5
R.GPEVQLVA
235
0.69
0.73


B-like
(CO4B_HUMAN)
HSPWLK.D


preproprotein





complement C4-
P0C0L5
R.KKEVYM*PS
236
0.70
0.67


B-like
(CO4B_HUMAN)
SIFQDDFVIPDI


preproprotein

SEPGTWK.I





complement C4-
P0C0L5
R.KKEVYMPSS
236
0.70
0.69


B-like
(CO4B_HUMAN)
IFQDDFVIPDIS


preproprotein

EPGTWK.I





complement C4-
P0C0L5
R.VQQPDCREP
237
0.76
0.74


B-like
(CO4B_HUMAN)
FLSCCQFAESL


preproprotein

R.K





complement C4-
P0C0L5
K.VGLSGM*AI
228
0.80
0.80


B-like
(CO4B_HUMAN)
ADVTLLSGFH


preproprotein

ALR.A





complement C4-
P0C0L5
K.VGLSGMAIA
228
0.80
0.83


B-like
(CO4B_HUMAN)
DVTLLSGFHA


preproprotein

LR.A





complement C4-
P0C0L5
K.ASAGLLGA
238
0.85
0.83


B-like
(CO4B_HUMAN)
HAAAITAYAL


preproprotein

TLTK.A





complement C5
P01031
K.ITHYNYLILS
239
0.73
0.73


preproprotein
(CO5_HUMAN)
K.G





complement C5
P01031
R.KAFDICPLV
240
0.83
0.87


preproprotein
(CO5_HUMAN)
K.I





complement C5
P01031
R.IPLDLVPK.T
241
0.90
0.63


preproprotein
(CO5_HUMAN)





complement C5
P01031
R.MVETTAYA
242
0.92
0.75


preproprotein
(CO5_HUMAN)
LLTSLNLKDIN




YVNPVIK.W





complement C5
P01031
K.ALLVGEHL
243
1.00
0.87


preproprotein
(CO5_HUMAN)
NIIVTPK.S





complement C5
P01031
K.LKEGMLSIM
244
0.62
0.75


preproprotein
(CO5_HUMAN)
SYR.N





complement C5
P01031
R.YIYPLDSLT
245
0.70
0.69


preproprotein
(CO5_HUMAN)
WIEYWPR.D





complement C5
P01031
K.GGSASTWL
246
0.63
0.83


preproprotein
(CO5_HUMAN)
TAFALR.V





complement C5
P01031
R.YGGGFYSTQ
247
0.73
0.74


preproprotein
(CO5_HUMAN)
DTINAIEGLTE




YSLLVK.Q





complement
P13671
K.AKDLHLSD
248
0.63
0.62


component C6
(CO6_HUMAN)
VFLK.A





complement
P13671
K.ALNHLPLEY
249
0.60
0.62


component C6
(CO6_HUMAN)
NSALYSR.I





complement
P10643
R.LSGNVLSYT
250
0.71
0.63


component C7
(CO7_HUMAN)
FQVK.I





complement
P07357
R.KDDIMLDEG
251
0.78
0.89


component C8
(CO8A_HUMAN)
MLQSLMELPD


alpha chain

QYNYGMYAK.F





complement
P07358
R.DFGTHYITE
252
0.80
0.73


component C8
(CO8B_HUMAN)
AVLGGIYEYT


beta chain

LVMNK.E


preproprotein





complement
P07358
R.DTMVEDLV
253
0.88
0.76


component C8
(CO8B_HUMAN)
VLVR.G


beta chain


preproprotein





complement
P07358
R.YYAGGCSP
254
0.70
0.71


component C8
(CO8B_HUMAN)
HYILNTR.F


beta chain


preproprotein





complement
P07360
R.SLPVSDSVL
255
0.79
0.81


component C8
(CO8G_HUMAN)
SGFEQR.V


gamma chain





complement
P07360
R.VQEAHLTED
256
0.98
0.84


component C8
(CO8G_HUMAN)
QIFYFPK.Y


gamma chain





complement
P02748
R.TAGYGINIL
257
0.62
0.64


component C9
(CO9_HUMAN)
GMDPLSTPFD




NEFYNGLCNR.D





complement
P02748
R.RPWNVASLI
258
0.60
0.74


component C9
(CO9_HUMAN)
YETK.G





complement
P02748
R.AIEDYINEFS
259
0.67
0.67


component C9
(CO9_HUMAN)
VRK.C





complement
P02748
R.AIEDYINEFS
260
0.77
0.79


component C9
(CO9_HUMAN)
VR.K





complement
P00751
R.LEDSVTYHC
261
0.60
0.60


factor B
(CFAB_HUMAN)
SR.G


preproprotein





complement
P00751
R.FIQVGVISW
262
0.67
0.79


factor B
(CFAB_HUMAN)
GVVDVCK.N


preproprotein





complement
P00751
R.DFHINLFQV
263
0.78
0.76


factor B
(CFAB_HUMAN)
LPWLK.E


preproprotein





complement
P00751
K.YGQTIRPICL
264
0.60
0.70


factor B
(CFAB_HUMAN)
PCTEGTTR.A


preproprotein





complement
P00751
R.LLQEGQALE
265
0.74
0.74


factor B
(CFAB_HUMAN)
YVCPSGFYPY


preproprotein

PVQTR.T





complement
P08603
R.RPYFPVAVG
266
0.67
0.70


factor H
(CFAH_HUMAN)
K.Y





complement
P08603
K.CTSTGWIPA
267
0.70
0.66


factor H
(CFAH_HUMAN)
PR.C





complement
P08603
K.CLHPCVISR.E
268
0.94
0.64


factor H
(CFAH_HUMAN)





complement
P08603
R.EIMENYNIA
269
0.67
0.71


factor H
(CFAH_HUMAN)
LR.W





complement
P08603
K.CLHPCVISR.E
268
0.75
0.64


factor H
(CFAH_HUMAN)





complement
P08603
K.AVYTCNEG
270
0.73
0.62


factor H
(CFAH_HUMAN)
YQLLGEINYR.E





complement
P08603
R.SITCIHGVW
271
0.61
0.61


factor H
(CFAH_HUMAN)
TQLPQCVAID




K.L





complement
P08603
R.WQSIPLCVE
272
0.65
0.65


factor H
(CFAH_HUMAN)
K.I





complement
P08603
K.TDCLSLPSF
273
0.74
0.77


factor H
(CFAH_HUMAN)
ENAIPMGEK.K





complement
P08603
K.CFEGFGIDG
274
0.76
0.69


factor H
(CFAH_HUMAN)
PAIAK.C





complement
P08603
K.CFEGFGIDG
274
0.83
0.69


factor H
(CFAH_HUMAN)
PAIAK.C





complement
P08603
K.IDVHLVPDR
275
0.61
0.67


factor H
(CFAH_HUMAN)
.K





complement
P08603
K.SSNLIILEEH
276
0.77
0.69


factor H
(CFAH_HUMAN)
LK.N





complement
P05156
R.AQLGDLPW
277
0.66
0.69


factor I
(CFAI_HUMAN)
QVAIK.D


preproprotein





complement
P05156
R.VFSLQWGE
278
0.69
0.77


factor I
(CFAI_HUMAN)
VK.L


preproprotein





corticosteroid-
P08185
R.WSAGLTSSQ
279
0.63
0.61


binding globulin
(CBG_HUMAN)
VDLYIPK.V





fibrinogen alpha
P02671
K.TFPGFFSPM
280
0.80
0.78


chain
(FIBA_HUMAN)
LGEFVSETESR




.G





gelsolin
P06396
R.IEGSNKVPV
281
0.78
0.78



(GELS_HUMAN)
DPATYGQFYG




GDSYIILYNYR




.H





gelsolin
P06396
R.AQPVQVAE
282
0.62
0.65



(GELS_HUMAN)
GSEPDGFWEA




LGGK.A





gelsolin
P06396
K.TPSAAYLW
283
0.78
0.78



(GELS_HUMAN)
VGTGASEAEK




TGAQELLR.V





gelsolin
P06396
R.VEKFDLVPV
284
0.61
0.63



(GELS_HUMAN)
PTNLYGDFFT




GDAYVILK.T





gelsolin
P06396
R.EVQGFESAT
285
0.87
0.88



(GELS_HUMAN)
FLGYFK.S





gelsolin
P06396
K.NWRDPDQT
286
0.89
0.89



(GELS_HUMAN)
DGLGLSYLSS




HIANVER.V





gelsolin
P06396
K.TPSAAYLW
287
0.87
0.77



(GELS_HUMAN)
VGTGASEAEK.T





glutathione
P22352
K.FLVGPDGIPI
288
0.85
0.77


peroxidase 3
(GPX3_HUMAN)
MR.W





hemopexin
P02790
R.LEKEVGTPH
289
0.93
0.74



(HEMO_HUMAN)
GIILDSVDAAF




ICPGSSR.L





hemopexin
P02790
R.WKNFPSPVD
290
0.64
0.82



(HEMO_HUMAN)
AAFR.Q





hemopexin
P02790
R.GECQAEGV
291
0.60
0.64



(HEMO_HUMAN)
LFFQGDREWF




WDLATGTMK.E





hemopexin
P02790
R.GECQAEGV
291
0.60
0.83



(HEMO_HUMAN)
LFFQGDREWF




WDLATGTM*




K.E





hemopexin
P02790
R.GECQAEGV
291
0.93
0.64



(HEMO_HUMAN)
LFFQGDREWF




WDLATGTMK.E





hemopexin
P02790
R.GECQAEGV
291
0.93
0.83



(HEMO_HUMAN)
LFFQGDREWF




WDLATGTM*




K.E





hemopexin
P02790
K.EVGTPHGIIL
292
0.62
0.69



(HEMO_HUMAN)
DSVDAAFICP




GSSR.L





hemopexin
P02790
R.LWWLDLK.S
293
0.64
0.64



(HEMO_HUMAN)





hemopexin
P02790
K.NFPSPVDAA
294
0.65
0.72



(HEMO_HUMAN)
FR.Q





hemopexin
P02790
R.EWFWDLAT
295
0.68
0.65



(HEMO_HUMAN)
GTMK.E





hemopexin
P02790
K.GGYTLVSG
296
0.69
0.65



(HEMO_HUMAN)
YPK.R





hemopexin
P02790
K.LYLVQGTQ
297
0.69
0.76



(HEMO_HUMAN)
VYVFLTK.G





heparin cofactor 2
P05546
R.EYYFAEAQI
298
0.80
0.78



(HEP2_HUMAN)
ADFSDPAFISK.T





heparin cofactor 2
P05546
K.QFPILLDFK.T
299
0.62
1.00



(HEP2_HUMAN)





heparin cofactor 2
P05546
K.QFPILLDFK.T
299
0.64
1.00



(HEP2_HUMAN)





heparin cofactor 2
P05546
K.FAFNLYR.V
300
0.70
0.60



(HEP2_HUMAN)





histidine-rich
P04196
R.DGYLFQLLR
301
0.65
0.65


glycoprotein
(HRG_HUMAN)
.I





insulin-like
P35858
R.SFEGLGQLE
302
0.75
0.83


growth factor-
(ALS_HUMAN)
VLTLDHNQLQ


binding protein

EVK.A


complex acid


labile subunit





insulin-like
P35858
R.TFTPQPPGL
303
0.75
0.60


growth factor-
(ALS_HUMAN)
ER.L


binding protein


complex acid


labile subunit





insulin-like
P35858
R.AFWLDVSH
304
0.77
0.75


growth factor-
(ALS_HUMAN)
NR.L


binding protein


complex acid


labile subunit





insulin-like
P35858
R.LAELPADAL
305
0.66
0.64


growth factor-
(ALS_HUMAN)
GPLQR.A


binding protein


complex acid


labile subunit





insulin-like
P35858
R.LEALPNSLL
306
0.70
0.67


growth factor-
(ALS_HUMAN)
APLGR.L


binding protein


complex acid


labile subunit





insulin-like
P35858
R.NLIAAVAPG
307
0.70
0.68


growth factor-
(ALS_HUMAN)
AFLGLK.A


binding protein


complex acid


labile subunit





inter-alpha-
P19827
R.QAVDTAVD
308
0.60
0.64


trypsin inhibitor
(ITIH1_HUMAN)
GVFIR.S


heavy chain H1





inter-alpha-
P19827
K.TAFISDFAV
309
0.81
0.86


trypsin inhibitor
(ITIH1_HUMAN)
TADGNAFIGDI


heavy chain H1

K.D





inter-alpha-
P19827
R.GHMLENHV
310
0.63
0.61


trypsin inhibitor
(ITIH1_HUMAN)
ER.L


heavy chain H1





inter-alpha-
P19827
R.GHM*LENH
310
0.63
0.70


trypsin inhibitor
(ITIH1_HUMAN)
VER.L


heavy chain H1





inter-alpha-
P19827
K.TAFISDFAV
311
0.75
0.60


trypsin inhibitor
(ITIH1_HUMAN)
TADGNAFIGDI


heavy chain H1

KDKVTAWK.Q





inter-alpha-
P19827
R.GIEILNQVQ
312
0.80
0.80


trypsin inhibitor
(ITIH1_HUMAN)
ESLPELSNHAS


heavy chain H1

ILIMLTDGDPT




EGVTDR.S





inter-alpha-
P19827
K.ILGDM*QPG
313
0.85
0.79


trypsin inhibitor
(ITIH1_HUMAN)
DYFDLVLFGT


heavy chain H1

R.V





inter-alpha-
P19827
K.LDAQASFLP
314
0.88
0.75


trypsin inhibitor
(ITIH1_HUMAN)
K.E


heavy chain H1





inter-alpha-
P19827
R.GFSLDEATN
315
0.80
0.80


trypsin inhibitor
(ITIH1_HUMAN)
LNGGLLR.G


heavy chain H1





inter-alpha-
P19827
K.TAFISDFAV
316
0.93
0.96


trypsin inhibitor
(ITIH1_HUMAN)
TADGNAFIGDI


heavy chain H1

KDK.V





inter-alpha-
P19827
K.GSLVQASEA
317
0.60
0.65


trypsin inhibitor
(ITIH1_HUMAN)
NLQAAQDFVR


heavy chain H1

.G





inter-alpha-
P19827
R.GHMLENHV
310
0.64
0.61


trypsin inhibitor
(ITIH1_HUMAN)
ER.L


heavy chain H1





inter-alpha-
P19827
R.GHM*LENH
310
0.64
0.70


trypsin inhibitor
(ITIH1_HUMAN)
VER.L


heavy chain H1





inter-alpha-
P19827
R.LWAYLTIQE
318
0.72
0.74


trypsin inhibitor
(ITIH1_HUMAN)
LLAK.R


heavy chain H1





inter-alpha-
P19827
R.EVAFDLEIP
319
0.78
0.62


trypsin inhibitor
(ITIH1_HUMAN)
K.T


heavy chain H1





inter-alpha-
P19823
R.SILQMSLDH
320
0.76
0.76


trypsin inhibitor
(ITIH2_HUMAN)
HIVTPLTSLVI


heavy chain H2

ENEAGDER.M





inter-alpha-
P19823
R.SILQM*SLD
320
0.76
0.80


trypsin inhibitor
(ITIH2_HUMAN)
HHIVTPLTSLV


heavy chain H2

IENEAGDER.M





inter-alpha-
P19823
R.SILQMSLDH
320
0.77
0.76


trypsin inhibitor
(ITIH2_HUMAN)
HIVTPLTSLVI


heavy chain H2

ENEAGDER.M





inter-alpha-
P19823
R.SILQM*SLD
320
0.77
0.80


trypsin inhibitor
(ITIH2_HUMAN)
HHIVTPLTSLV


heavy chain H2

IENEAGDER.M





inter-alpha-
P19823
K.AGELEVFNG
321
0.79
0.76


trypsin inhibitor
(ITIH2_HUMAN)
YFVHFFAPDN


heavy chain H2

LDPIPK.N





inter-alpha-
P19823
R.ETAVDGELV
322
0.94
0.97


trypsin inhibitor
(ITIH2_HUMAN)
VLYDVK.R


heavy chain H2





inter-alpha-
P19823
R.NVQFNYPHT
323
0.74
0.83


trypsin inhibitor
(ITIH2_HUMAN)
SVTDVTQNNF


heavy chain H2

HNYFGGSEIV




VAGK.F





inter-alpha-
P19823
R.FLHVPDTFE
324
0.81
0.81


trypsin inhibitor
(ITIH2_HUMAN)
GHFDGVPVIS


heavy chain H2

K.G





inter-alpha-
Q14624
K.YIFHNFM*E
325
0.70
0.73


trypsin inhibitor
(ITIH4_HUMAN)
R.L


heavy chain H4





inter-alpha-
Q14624
R.SFAAGIQAL
326
0.75
0.75


trypsin inhibitor
(ITIH4_HUMAN)
GGTNINDAML


heavy chain H4

MAVQLLDSSN




QEER.L





inter-alpha-
Q14624
R.NMEQFQVS
327
1.00
1.00


trypsin inhibitor
(ITIH4_HUMAN)
VSVAPNAK.I


heavy chain H4





inter-alpha-
Q14624
R.VQGNDHSA
328
0.85
0.86


trypsin inhibitor
(ITIH4_HUMAN)
TR.E


heavy chain H4





inter-alpha-
Q14624
K.WKETLFSV
329
0.66
0.69


trypsin inhibitor
(ITIH4_HUMAN)
MPGLK.M


heavy chain H4





inter-alpha-
Q14624
K.AGFSWIEVT
330
0.78
0.82


trypsin inhibitor
(ITIH4_HUMAN)
FK.N


heavy chain H4





inter-alpha-
Q14624
R.DQFNLIVFS
331
0.61
0.60


trypsin inhibitor
(ITIH4_HUMAN)
TEATQWRPSL


heavy chain H4

VPASAENVNK




.A





inter-alpha-
Q14624
R.LWAYLTIQQ
332
0.66
0.66


trypsin inhibitor
(ITIH4_HUMAN)
LLEQTVSASD


heavy chain H4

ADQQALR.N





kallistatin
P29622
K.FSISGSYVL
333
0.79
0.72



(KAIN_HUMAN)
DQILPR.L





kininogen-1
P01042
K.AATGECTAT
334
0.76
0.60



(KNG1_HUMAN)
VGKR.S





kininogen-1
P01042
K.ENFLFLTPD
335
0.71
0.68



(KNG1_HUMAN)
CK.S





kininogen-1
P01042
R.DIPTNSPELE
336
0.65
0.64



(KNG1_HUMAN)
ETLTHTITK.L





kininogen-1
P01042
K.IYPTVNCQP
337
0.66
0.60



(KNG1_HUMAN)
LGM*ISLMK.R





kininogen-1
P01042
K.IYPTVNCQP
337
0.66
0.62



(KNG1_HUMAN)
LGMISLMK.R





kininogen-1
P01042
K.IYPTVNCQP
337
0.66
0.63



(KNG1_HUMAN)
LGMISLM*K.R





kininogen-1
P01042
R.IGEIKEETTS
338
0.67
0.70



(KNG1_HUMAN)
HLR.S





kininogen-1
P01042
K.YNSQNQSN
339
0.76
0.65



(KNG1_HUMAN)
NQFVLYR.I





kininogen-1
P01042
K.TVGSDTFYS
340
0.78
0.77



(KNG1_HUMAN)
FK.Y





leucine-rich
P02750
R.DGFDISGNP
341
0.73
0.73


alpha-2-
(A2GL_HUMAN)
WICDQNLSDL


glycoprotein

YR.W





leucine-rich
P02750
R.NALTGLPPG
342
0.79
0.79


alpha-2-
(A2GL_HUMAN)
LFQASATLDT


glycoprotein

LVLK.E





leucine-rich
P02750
K.ALGHLDLSG
343
0.71
0.71


alpha-2-
(A2GL_HUMAN)
NR.L


glycoprotein





leucine-rich
P02750
R.VAAGAFQG
344
0.71
0.77


alpha-2-
(A2GL_HUMAN)
LR.Q


glycoprotein





lipopolysacchari
P18428
R.SPVTLLAAV
345
0.65
0.61


de-binding
(LBP_HUMAN)
MSLPEEHNK.M


protein





lumican
P51884
K.SLEYLDLSF
346
0.93
0.96



(LUM_HUMAN)
NQIAR.L





monocyte
P08571
R.LTVGAAQV
347
0.68
0.63


differentiation
(CD14_HUMAN)
PAQLLVGALR.V


antigen CD14





N-
Q96PD5
R.EGKEYGVV
348
0.64
0.64


acetylmuramoyl-
(PGRP2_HUMAN)
LAPDGSTVAV


L-alanine

EPLLAGLEAG


amidase

LQGR.R





N-
Q96PD5
K.EFTEAFLGC
349
0.63
0.62


acetylmuramoyl-
(PGRP2_HUMAN)
PAIHPR.C


L-alanine


amidase





N-
Q96PD5
R.TDCPGDALF
350
0.88
0.86


acetylmuramoyl-
(PGRP2_HUMAN)
DLLR.T


L-alanine


amidase





phosphatidylinos
P80108
K.VAFLTVTLH
351
0.63
0.65


itol-glycan-
(PHLD_HUMAN)
QGGATR.M


specific


phospholipase D





pigment
P36955
R.ALYYDLISS
352
0.69
0.65


epithelium-
(PEDF_HUMAN)
PDIHGTYKELL


derived factor

DTVTAPQK.N





pigment
P36955
K.TVQAVLTVP
353
0.72
0.62


epithelium-
(PEDF_HUMAN)
K.L


derived factor





pigment
P36955
R.LDLQEINNW
354
0.67
0.68


epithelium-
(PEDF_HUMAN)
VQAQMK.G


derived factor





plasma kallikrein
P03952
R.LVGITSWGE
355
1.00
0.67


preproprotein
(KLKB1_HUMAN)
GCAR.R





plasma protease
P05155
K.TNLESILSYP
356
0.83
0.83


C1 inhibitor
(IC1_HUMAN)
KDFTCVHQAL




K.G





plasma protease
P05155
R.LVLLNAIYL
357
0.64
0.61


C1 inhibitor
(IC1_HUMAN)
SAK.W





plasma protease
P05155
K.FQPTLLTLP
358
0.86
0.77


C1 inhibitor
(IC1_HUMAN)
R.I





plasminogen
P00747
R.HSIFTPETNP
359
0.66
0.64



(PLMN_HUMAN)
R.A





plasminogen
P00747
R.FVTWIEGV
360
0.65
0.74



(PLMN_HUMAN)
MR.N





PREDICTED:
P0C0L4
R.GQIVFMNR.E
361
0.75
0.61


complement C4-A
(CO4A_HUMAN)





PREDICTED:
P0C0L4
R.DSSTWLTAF
362
0.65
0.67


complement C4-A
(CO4A_HUMAN)
VLK.V





PREDICTED:
P0C0L4
R.YLDKTEQW
363
0.70
0.60


complement C4-A
(CO4A_HUMAN)
STLPPETK.D





PREDICTED:
P0C0L4
R.DFALLSLQV
364
0.78
0.62


complement C4-A
(CO4A_HUMAN)
PLK.D





PREDICTED:
P0C0L4
R.TLEIPGNSDP
365
0.74
0.78


complement C4-A
(CO4A_HUMAN)
NMIPDGDFNS




YVR.V





PREDICTED:
P0C0L4
R.EMSGSPASG
366
0.88
0.88


complement C4-A
(CO4A_HUMAN)
IPVK.V





PREDICTED:
P0C0L4
K.LHLETDSLA
367
0.68
0.64


complement C4-A
(CO4A_HUMAN)
LVALGALDTA




LYAAGSK.S





PREDICTED:
P0C0L4
R.GCGEQTMIY
368
0.71
0.67


complement C4-A
(CO4A_HUMAN)
LAPTLAASR.Y





pregnancy zone
P20742
R.NELIPLIYLE
369
1.00
0.67


protein
(PZP_HUMAN)
NPR.R





pregnancy zone
P20742
K.LEAGINQLS
370
1.00
0.73


protein
(PZP_HUMAN)
FPLSSEPIQGS




YR.V





pregnancy zone
P20742
R.NQGNTWLT
371
0.73
0.78


protein
(PZP_HUMAN)
AFVLK.T





pregnancy zone
P20742
R.AFQPFFVEL
372
0.83
0.88


protein
(PZP_HUMAN)
TMPYSVIR.G





pregnancy zone
P20742
R.IQHPFTVEEF
373
0.65
0.79


protein
(PZP_HUMAN)
VLPK.F





pregnancy zone
P20742
K.ALLAYAFSL
374
0.69
0.74


protein
(PZP_HUMAN)
LGK.Q





pregnancy-
P11464
R.TLFLLGVTK.Y
375
0.74
0.83


specific beta-1-
(PSG1_HUMAN)/


glycoprotein 1/
Q9UQ74


8/4
(PSG8_HUMAN)/



Q00888



(PSG4_HUMAN)





protein AMBP
P02760
R.TVAACNLPI
376
0.78
0.77


preproprotein
(AMBP_HUMAN)
VR.G





protein AMBP
P02760
K.WYNLAIGST
377
0.80
0.80


preproprotein
(AMBP_HUMAN)
CPWLK.K





protein Z-
Q9UK55
K.LILVDYILFK.G
378
0.69
0.62


dependent
(ZPI_HUMAN)


protease inhibitor





prothrombin
P00734
R.KSPQELLCG
379
0.63
0.65


preproprotein
(THRB_HUMAN)
ASLISDR.W





prothrombin
P00734
R.TATSEYQTF
380
0.79
0.61


preproprotein
(THRB_HUMAN)
FNPR.T





prothrombin
P00734
R.VTGWGNLK
381
1.00
0.71


preproprotein
(THRB_HUMAN)
ETWTANVGK.G





prothrombin
P00734
R.IVEGSDAEIG
382
0.65
0.61


preproprotein
(THRB_HUMAN)
MSPWQVMLF




R.K





prothrombin
P00734
K.HQDFNSAV
383
0.65
0.64


preproprotein
(THRB_HUMAN)
QLVENFCR.N





prothrombin
P00734
R.IVEGSDAEIG
382
0.65
0.80


preproprotein
(THRB_HUMAN)
M*SPWQVMLF




R.K





prothrombin
P00734
R.IVEGSDAEIG
382
0.65
1.00


preproprotein
(THRB_HUMAN)
MSPWQVM*LF




R.K





prothrombin
P00734
R.RQECSIPVC
384
0.74
0.73


preproprotein
(THRB_HUMAN)
GQDQVTVAM




TPR.S





prothrombin
P00734
R.LAVTTHGLP
385
0.76
0.80


preproprotein
(THRB_HUMAN)
CLAWASAQA




K.A





prothrombin
P00734
K.GQPSVLQV
386
0.76
0.67


preproprotein
(THRB_HUMAN)
VNLPIVERPVC




K.D





retinol-binding
P02753
R.LLNLDGTCA
387
0.70
0.66


protein 4
(RET4_HUMAN)
DSYSFVFSR.D





sex hormone-
P04278
R.LFLGALPGE
388
0.72
0.72


binding globulin
(SHBG_HUMAN)
DSSTSFCLNGL




WAQGQR.L





sex hormone-
P04278
R.TWDPEGVIF
389
0.75
0.76


binding globulin
(SHBG_HUMAN)
YGDTNPKDD




WFMLGLR.D





sex hormone-
P04278
R.IALGGLLFP
390
0.62
0.72


binding globulin
(SHBG_HUMAN)
ASNLR.L





sex hormone-
P04278
K.VVLSSGSGP
391
0.65
0.68


binding globulin
(SHBG_HUMAN)
GLDLPLVLGL




PLQLK.L





thyroxine-
P05543
K.AVLHIGEK.G
392
0.64
0.75


binding globulin
(THBG_HUMAN)





thyroxine-
P05543
K.GWVDLFVP
393
0.60
0.61


binding globulin
(THBG_HUMAN)
K.F





thyroxine-
P05543
K.FSISATYDL
394
0.62
0.64


binding globulin
(THBG_HUMAN)
GATLLK.M





thyroxine-
P05543
R.SILFLGK.V
395
0.66
0.63


binding globulin
(THBG_HUMAN)





transforming
Q15582
R.LTLLAPLNS
396
0.78
0.65


growth factor-
(BGH3_HUMAN)
VFK.D


beta-induced


protein ig-h3





vitamin D-
P02774
K.EYANQFMW
397
0.67
0.64


binding protein
(VTDB_HUMAN)
EYSTNYGQAP




LSLLVSYTK.S





vitamin D-
P02774
K.EYANQFM*
397
0.67
0.67


binding protein
(VTDB_HUMAN)
WEYSTNYGQ




APLSLLVSYT




K.S





vitamin D-
P02774
K.ELPEHTVK.L
398
0.79
0.74


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
R.RTHLPEVFL
399
0.63
0.76


binding protein
(VTDB_HUMAN)
SK.V





vitamin D-
P02774
K.TAMDVFVC
400
0.66
0.63


binding protein
(VTDB_HUMAN)
TYFMPAAQLP




ELPDVELPTN




K.D





vitamin D-
P02774
K.LPDATPTEL
401
0.67
0.73


binding protein
(VTDB_HUMAN)
AK.L





vitamin D-
P02774
K.EYANQFMW
397
0.65
0.64


binding protein
(VTDB_HUMAN)
EYSTNYGQAP




LSLLVSYTK.S





vitamin D-
P02774
K.EYANQFM*
397
0.65
0.67


binding protein
(VTDB_HUMAN)
WEYSTNYGQ




APLSLLVSYT




K.S





vitamin D-
P02774
K.ELSSFIDKG
402
0.71
0.73


binding protein
(VTDB_HUMAN)
QELCADYSEN




TFTEYKK.K





vitamin D-
P02774
K.EDFTSLSLV
403
0.71
0.75


binding protein
(VTDB_HUMAN)
LYSR.K





vitamin D-
P02774
K.HQPQEFPTY
404
0.77
0.75


binding protein
(VTDB_HUMAN)
VEPTNDEICEA




FRK.D





vitamin D-
P02774
K.HQPQEFPTY
405
0.60
0.67


binding protein
(VTDB_HUMAN)
VEPTNDEICEA




FR.K





vitamin D-
P02774
R.KFPSGTFEQ
406
0.62
0.61


binding protein
(VTDB_HUMAN)
VSQLVK.E





vitamin D-
P02774
K.ELSSFIDKG
407
0.64
0.64


binding protein
(VTDB_HUMAN)
QELCADYSEN




TFTEYK.K





vitamin D-
P02774
K.EFSHLGKED
408
0.66
0.64


binding protein
(VTDB_HUMAN)
FTSLSLVLYSR




.K





vitamin D-
P02774
K.SYLSMVGSC
409
0.68
0.77


binding protein
(VTDB_HUMAN)
CTSASPTVCFL




K.E





vitronectin
P04004
R.IYISGMAPRP
410
0.63
0.66



(VTNC_HUMAN)
SLAK.K





vitronectin
P04004
R.IYISGMAPRP
410
0.64
0.66



(VTNC_HUMAN)
SLAK.K





vitronectin
P04004
K.LIRDVWGIE
411
0.81
0.75



(VTNC_HUMAN)
GPIDAAFTR.I





von Willebrand
P04275
R.IGWPNAPILI
412
0.67
0.67


factor
(VWF_HUMAN)
QDFETLPR.E


preproprotein





*= Oxidation of Methionine













TABLE 9







Preeclampsia: Additional peptides significant with AUC >0.6


by Sequest only














SEQ



Protein


ID


description
Uniprot ID (name)
Peptide
NO:
S_AUC





afamin
P43652
R.LCFFYNKK.S
413
0.67



(AFAM_HUMAN)





afamin
P43652
R.RPCFESLK.A
414
0.81



(AFAM_HUMAN)





afamin
P43652
R.IVQIYK.D
415
0.61



(AFAM_HUMAN)





afamin
P43652
R.FLVNLVK.L
416
0.60



(AFAM_HUMAN)





afamin
P43652
K.LPNNVLQEK.I
417
0.67



(AFAM_HUMAN)





alpha-1-
P01011
R.LYGSEAFATDF
418
0.61


antichymotrypsin
(AACT_HUMAN)
QDSAAAKK.L





alpha-1-
P01011
K.EQLSLLDRFTE
419
0.71


antichymotrypsin
(AACT_HUMAN)
DAKR.L





alpha-1-
P01011
R.EIGELYLPK.F
420
0.68


antichymotrypsin
(AACT_HUMAN)





alpha-1-
P01011
R.WRDSLEFR.E
421
0.71


antichymotrypsin
(AACT_HUMAN)





alpha-1-
P01011
K.RLYGSEAFATD
422
0.89


antichymotrypsin
(AACT_HUMAN)
FQDSAAAK.K





alpha-1B-
P04217
R.FALVR.E
423
1.00


glycoprotein
(A1BG_HUMAN)





alpha-1B-
P04217
R. GVTFLLRR.E
424
0.67


glycoprotein
(A1BG_HUMAN)





alpha-1B-
P04217
R.RGEKELLVPR.S
425
0.71


glycoprotein
(A1BG_HUMAN)





alpha-1B-
P04217
K.ELLVPR.S
426
0.61


glycoprotein
(A1BG_HUMAN)





alpha-1B-
P04217
K.NGVAQEPVHLD
427
0.64


glycoprotein
(A1BG_HUMAN)
SPAIK.H





alpha-2-
P08697
R.NKFDPSLTQR.D
428
0.60


antiplasmin
(A2AP_HUMAN)





alpha-2-
P08697
R. QLTSGPNQEQV
429
0.67


antiplasmin
(A2AP_HUMAN)
SPLTLLK.L





alpha-2-
P08697
K.HQM*DLVATLS
138
0.67


antiplasmin
(A2AP_HUMAN)
QLGLQELFQAPDL




R.G





angiotensinogen
P01019
R.FM*QAVTGWK.T
430
0.60


preproprotein
(ANGT_HUMAN)





angiotensinogen
P01019
K.PKDPTFIPAPIQ
431
0.83


preproprotein
(ANGT_HUMAN)
AK.T





angiotensinogen
P01019
R.SLDFTELDVAA
432
0.60


preproprotein
(ANGT_HUMAN)
EK.I





ankyrin repeat
Q8NFD2
R.KNLVPR.D
433
1.00


and protein
(ANKK1_HUMAN)


kinase domain-


containing


protein 1





antithrombin-III
P01008
R.RVWELSK.A
434
0.68



(ANT3_HUMAN)





apolipoprotein
P06727
K.VKIDQTVEELR
435
0.62


A-IV
(APOA4_HUMAN)
R.S





apolipoprotein
P06727
K.DLRDKVNSFFS
436
0.92


A-IV
(APOA4_HUMAN)
TFK.E





apolipoprotein
P06727
K.LVPFATELHER.L
437
0.71


A-IV
(APOA4_HUMAN)





apolipoprotein
P06727
R.RVEPYGENFNK.A
438
0.86


A-IV
(APOA4_HUMAN)





apolipoprotein
P06727
K.VNSFFSTFK.E
439
0.87


A-IV
(APOA4_HUMAN)





apolipoprotein B-
P04114
K.AVSM*PSFSILG
440
0.70


100
(APOB_HUMAN)
SDVR.V





apolipoprotein B-
P04114
K.AVSMPSFSILGS
440
0.66


100
(APOB_HUMAN)
DVR.V





apolipoprotein B-
P04114
K.AVSMPSFSILGS
440
0.66


100
(APOB_HUMAN)
DVR.V





apolipoprotein B-
P04114
K.AVSM*PSFSILG
440
0.70


100
(APOB_HUMAN)
SDVR.V





apolipoprotein B-
P04114
K.VNWEEEAASGL
441
0.60


100
(APOB_HUMAN)
LTSLKDNVPK.A





apolipoprotein B-
P04114
R.DLKVEDIPLAR.I
442
0.70


100
(APOB_HUMAN)





apolipoprotein C-I
P02654
K.MREWFSETFQK
443
0.73



(APOC1_HUMAN)
.V





apolipoprotein C-
P02655
K.STAAMSTYTGI
444
0.68


II
(APOC2_HUMAN)
FTDQVLSVLKGEE




.-





apolipoprotein E
P02649
R.AKLEEQAQQIR.L
445
0.67



(APOE_HUMAN)





apolipoprotein E
P02649
R.FWDYLR.W
446
0.67



(APOE_HUMAN)





apolipoprotein E
P02649
R.LKSWFEPLVED
447
0.65



(APOE_HUMAN)
MQR.Q





beta-2-
P02749
K.VSFFCK.N
448
0.67


glycoprotein 1
(APOH_HUMAN)





beta-2-
P02749
R.VCPFAGILENG
449
0.63


glycoprotein 1
(APOH_HUMAN)
AVR.Y





beta-2-
P61769
K.SNFLNCYVSGF
450
0.60


microglobulin
(B2MG_HUMAN)
HPSDIEVDLLK.N





biotinidase
P43251
R.LSSGLVTAALY
451
1.00



(BTD_HUMAN)
GR.L





carboxypeptidase
Q96IY4
K.IAWHVIR.N
452
0.90


B2 preproprotein
(CBPB2_HUMAN)





carboxypeptidase
P22792
K.LSNNALSGLPQ
453
0.62


N subunit 2
(CPN2_HUMAN)
GVFGK.L





carboxypeptidase
P15169
R.DHLGFQVTWPD
454
0.93


N subunit 2
(CBPN_HUMAN)
ESK.A





ceruloplasmin
P00450
K.VYVHLK.N
455
0.67



(CERU_HUMAN)





ceruloplasmin
P00450
K.LISVDTEHSNIY
456
0.62



(CERU_HUMAN)
LQNGPDR.I





ceruloplasmin
P00450
K.M*YYSAVDPTK
194
0.76



(CERU_HUMAN)
DIFTGLIGPM*K.I





ceruloplasmin
P00450
K.M*YYSAVDPTK
194
0.68



(CERU_HUMAN)
DIFTGLIGPMK.I





ceruloplasmin
P00450
R.QKDVDKEFYLF
200
0.66



(CERU_HUMAN)
PTVFDENESLLLE




DNIR.M





ceruloplasmin
P00450
K.DVDKEFYLFPT
457
0.60



(CERU_HUMAN)
VFDENESLLLEDN




IR.M





ceruloplasmin
P00450
K.DIFTGLIGPMK.I
458
0.62



(CERU_HUMAN)





ceruloplasmin
P00450
R.SVPPSASHVAPT
459
0.66



(CERU_HUMAN)
ETFTYEWTVPK.E





ceruloplasmin
P00450
R.GVYSSDVFDIFP
203
0.67



(CERU_HUMAN)
GTYQTLEM*FPR.T





ceruloplasmin
P00450
K.DIFTGLIGPMK.I
458
0.62



(CERU_HUMAN)





ceruloplasmin
P00450
K.VNKDDEEFIES
460
0.78



(CERU_HUMAN)
NK.M





clusterin
P10909
R.KYNELLK.S
461
0.75


preproprotein
(CLUS_HUMAN)





coagulation
P00748
R.TTLSGAPCQPW
462
0.64


factor XII
(FA12_HUMAN)
ASEATYR.N





complement C1q
P02745
K.GHIYQGSEADS
463
0.64


subcomponent
(C1QA_HUMAN)
VFSGFLIFPSA.-


subunit A





complement C1q
P02747
K.FQSVFTVTR.Q
464
0.65


subcomponent
(C1QC_HUMAN)


subunit C





complement C1r
P00736
R.WILTAAHTLYP
465
0.68


subcomponent
(C1R_HUMAN)
K.E





complement C1r
P00736
K.VLNYVDWIKK.E
466
0.81


subcomponent
(C1R_HUMAN)





complement C1s
P09871
R.LPVAPLRK.C
467
0.63


subcomponent
(C1S_HUMAN)





complement C2
P06681
R.PICLPCTMEANL
468
0.78



(CO2_HUMAN)
ALR.R





complement C2
P06681
R.QHLGDVLNFLP
469
0.70



(CO2_HUMAN)
L.-





complement C4-
P0C0L5
K.LGQYASPTAKR
470
0.89


B-like
(CO4B_HUMAN)
.C


preproprotein





complement C4-
P0C0L5
K.M*RPSTDTITV
224
0.65


B-like
(CO4B_HUMAN)
MVENSHGLR.V


preproprotein





complement C4-
P0C0L5
K.MRPSTDTITVM
224
0.72


B-like
(CO4B_HUMAN)
VENSHGLR.V


preproprotein





complement C5
P01031
K.EFPYRIPLDLVP
471
0.67


preproprotein
(CO5_HUMAN)
K.T





complement C5
P01031
R.VFQFLEK.S
472
0.60


preproprotein
(CO5_HUMAN)





complement C5
P01031
R.MVETTAYALLT
473
0.61


preproprotein
(CO5_HUMAN)
SLNLK.D





complement C5
P01031
R.ENSLYLTAFTVI
474
0.81


preproprotein
(CO5_HUMAN)
GIR.K





complement
P07357
K.YNPVVIDFEMQ
475
0.62


component C8
(CO8A_HUMAN)
PIHEVLR.H


alpha chain





complement
P07358
K.IPGIFELGISSQS
476
0.61


component C8
(CO8B_HUMAN)
DR.G


beta chain


preproprotein





complement
P07360
R.RPASPISTIQPK.A
477
0.71


component C8
(CO8G_HUMAN)


gamma chain





complement
P07360
R.FLQEQGHR.A
478
0.87


component C8
(CO8G_HUMAN)


gamma chain





complement
P00751
K.VSVGGEKR.D
479
0.60


factor B
(CFAB_HUMAN)


preproprotein





complement
P00751
K.CLVNLIEK.V
480
0.69


factor B
(CFAB_HUMAN)


preproprotein





complement
P00751
K.KDNEQHVFK.V
481
0.68


factor B
(CFAB_HUMAN)


preproprotein





complement
P00751
K.ISVIRPSK.G
482
0.63


factor B
(CFAB_HUMAN)


preproprotein





complement
P00751
K.KCLVNLIEK.V
483
0.63


factor B
(CFAB_HUMAN)


preproprotein





complement
P00751
R.LPPTTTCQQQK
484
0.64


factor B
(CFAB_HUMAN)
EELLPAQDIK.A


preproprotein





complement
P00751
K.LQDEDLGFL.-
485
0.66


factor B
(CFAB_HUMAN)


preproprotein





complement
P08603
K.SCDIPVFMNAR.T
486
0.60


factor H
(CFAH_HUMAN)





complement
P08603
K.HGGLYHENMR.R
487
0.75


factor H
(CFAH_HUMAN)





complement
P08603
K.IIYKENER.F
488
0.69


factor H
(CFAH_HUMAN)





complement
P05156
K.RAQLGDLPWQ
489
0.68


factor I
(CFAI_HUMAN)
VAIK.D


preproprotein





conserved
Q9Y2V7
K.ISNLLK.F
490
0.71


oligomeric Golgi
(COG6_HUMAN)


complex subunit


6 isoform





cornulin
Q9UBG3
R.RYARTEGNCTA
491
0.81



(CRNN_HUMAN)
LTR.G





FERM domain-
Q9BZ67
R.VQLGPYQPGRP
492
0.63


containing
(FRMD8_HUMAN)
AACDLR.E


protein 8





gelsolin
P06396
R.VPEARPNSMVV
493
0.61



(GELS_HUMAN)
EHPEFLK.A





gelsolin
P06396
K.AGKEPGLQIWR
494
0.70



(GELS_HUMAN)
.V





glucose-induced
Q9NWU2
K.VWSEVNQAVL
495
0.83


degradation
(GID8_HUMAN)
DYENRESTPK.L


protein 8


homolog





hemK
Q9Y5R4
R.M*LWALLSGPG
496
0.61


methyltransferase
(HEMK1_HUMAN)
RRGSTR.G


family member 1





hemopexin
P02790
R.ELISER.W
497
0.82



(HEMO_HUMAN)





hemopexin
P02790
R.DVRDYFM*PCP
498
0.70



(HEMO_HUMAN)
GR.G





hemopexin
P02790
K.GDKVWVYPPE
499
0.71



(HEMO_HUMAN)
KK.E





hemopexin
P02790
R.DVRDYFMPCPG
498
0.60



(HEMO_HUMAN)
R.G





hemopexin
P02790
R.EWFWDLATGT
295
0.65



(HEMO_HUMAN)
MK.E





hemopexin
P02790
R.YYCFQGNQFLR
500
0.68



(HEMO_HUMAN)
.F





hemopexin
P02790
R.RLWWLDLK.S
501
0.65



(HEMO_HUMAN)





heparin cofactor 2
P05546
R.LNILNAK.F
502
0.75



(HEP2_HUMAN)





heparin cofactor 2
P05546
R.NFGYTLR.S
503
0.66



(HEP2_HUMAN)





histone
Q8TEE9
K.LLPPPPIM*SAR
504
0.63


deacetylase
(SAP25_HUMAN)
VLPR.P


complex subunit


SAP25





hyaluronan-
Q14520
K.RPGVYTQVTK.F
505
0.68


binding protein 2
(HABP2_HUMAN)





hyaluronan-
Q14520
K.FLNWIK.A
506
0.62


binding protein 2
(HABP2_HUMAN)





immediate early
Q5T953
-
507
0.93


response gene 5-
(IER5L_HUMAN)
.MECALDAQSLISI


like protein

SLRKIHSSR.T





inactive caspase-
Q6UXS9
K.AGADTHGRLLQ
508
0.60


12
(CASPC_HUMAN)
GNICNDAVTK.A





insulin-like
P35858
K.ANVFVQLPR.L
509
0.62


growth factor-
(ALS_HUMAN)


binding protein


complex acid


labile subunit





inter-alpha-
P19827
K.ELAAQTIKK.S
510
0.71


trypsin inhibitor
(ITIH1_HUMAN)


heavy chain H1





inter-alpha-
P19827
K.ILGDM*QPGDY
313
0.79


trypsin inhibitor
(ITIH1_HUMAN)
FDLVLFGTR.V


heavy chain H1





inter-alpha-
P19827
K.VTFQLTYEEVL
511
0.70


trypsin inhibitor
(ITIH1_HUMAN)
KR.N


heavy chain H1





inter-alpha-
P19827
R.TMEQFTIHLTV
512
0.61


trypsin inhibitor
(ITIH1_HUMAN)
NPQSK.V


heavy chain H1





inter-alpha-
P19827
R.FAHYVVTSQVV
513
0.63


trypsin inhibitor
(ITIH1_HUMAN)
NTANEAR.E


heavy chain H1





inter-alpha-
P19823
R.SSALDMENFRT
514
0.89


trypsin inhibitor
(ITIH2_HUMAN)
EVNVLPGAK.V


heavy chain H2





inter-alpha-
P19823
K.MKQTVEAMK.T
515
0.93


trypsin inhibitor
(ITIH2_HUMAN)


heavy chain H2





inter-alpha-
P19823
R.IYLQPGR.L
516
0.66


trypsin inhibitor
(ITIH2_HUMAN)


heavy chain H2





inter-alpha-
P19823
K.HLEVDVWVIEP
517
0.61


trypsin inhibitor
(ITIH2_HUMAN)
QGLR.F


heavy chain H2





inter-alpha-
P19823
K.FYNQVSTPLLR.N
518
0.89


trypsin inhibitor
(ITIH2_HUMAN)


heavy chain H2





inter-alpha-
P19823
R.KLGSYEHR.I
519
0.69


trypsin inhibitor
(ITIH2_HUMAN)


heavy chain H2





inter-alpha-
Q14624
K.GSEMVVAGK.L
520
1.00


trypsin inhibitor
(ITIH4_HUMAN)


heavy chain H4





inter-alpha-
Q14624
R.MNFRPGVLSSR.Q
521
0.72


trypsin inhibitor
(ITIH4_HUMAN)


heavy chain H4





inter-alpha-
Q14624
K.YIFHNFM*ER.L
325
0.73


trypsin inhibitor
(ITIH4_HUMAN)


heavy chain H4





inter-alpha-
Q14624
K.ETLFSVMPGLK.M
522
0.60


trypsin inhibitor
(ITIH4_HUMAN)


heavy chain H4





inter-alpha-
Q14624
R.FKPTLSQQQK.S
523
0.64


trypsin inhibitor
(ITIH4_HUMAN)


heavy chain H4





inter-alpha-
Q14624
K.WKETLFSVMPG
329
0.69


trypsin inhibitor
(ITIH4_HUMAN)
LK.M


heavy chain H4





inter-alpha-
Q14624
R.RLGVYELLLK.V
524
0.65


trypsin inhibitor
(ITIH4_HUMAN)


heavy chain H4





inter-alpha-
Q14624
R.DTDRFSSHVGG
525
0.69


trypsin inhibitor
(ITIH4_HUMAN)
TLGQFYQEVLWG


heavy chain H4

SPAASDDGRR.T





inter-alpha-
Q14624
K.VRPQQLVK.H
526
0.62


trypsin inhibitor
(ITIH4_HUMAN)


heavy chain H4





inter-alpha-
Q14624
R.NVHSAGAAGSR
527
0.69


trypsin inhibitor
(ITIH4_HUMAN)
.M


heavy chain H4





kallistatin
P29622
R.LGFTDLFSK.W
528
0.63



(KAIN_HUMAN)





kallistatin
P29622
R.VGSALFLSHNL
529
0.62



(KAIN_HUMAN)
K.F





kininogen-1
P01042
R.VQVVAGKK.Y
530
0.68



(KNG1_HUMAN)





leucine-rich
P02750
R.LHLEGNKLQVL
531
0.75


alpha-2-
(A2GL_HUMAN)
GK.D


glycoprotein





lumican
P51884
R.FNALQYLR.L
532
0.77



(LUM_HUMAN)





m7GpppX
Q96C86
R.IVFENPDPSDGF
533
0.94


diphosphatase
(DCPS_HUMAN)
VLIPDLK.W





MAGUK p55
Q8N3R9
K.ILEIEDLFSSLK.H
534
0.69


subfamily
(MPP5_HUMAN)


member 5





MBT domain-
Q05BQ5
K.WFDYLR.E
535
0.63


containing
(MBTD1_HUMAN)


protein 1





obscurin
Q5VST9
R.CELQIRGLAVE
536
0.73



(OBSCN_HUMAN)
DTGEYLCVCGQE




RTSATLTVR.A





olfactory
Q8NH94
K.DMKQGLAKLM
537
0.89


receptor 1L1
(OR1L1_HUMAN)
*HR.M





phosphatidylinositol-
P80108
K.GIVAAFYSGPSL
538
0.79


glycan-
(PHLD_HUMAN)
SDKEK.L


specific


phospholipase D





phosphatidylinositol-
P80108
R.TLLLVGSPTWK.N
539
0.65


glycan-
(PHLD_HUMAN)


specific


phospholipase D





phosphatidylinositol-
P80108
R.WYVPVKDLLGI
540
0.92


glycan-
(PHLD_HUMAN)
YEK.L


specific


phospholipase D





pigment
P36955
R.SSTSPTTNVLLS
541
0.63


epithelium-
(PEDF_HUMAN)
PLSVATALSALSL


derived factor

GAEQR.T





plasma protease
P05155
K.GVTSVSQIFHSP
542
0.60


C1 inhibitor
(IC1_HUMAN)
DLAIR.D





PREDICTED:
P0C0L4
R.DKGQAGLQR.A
543
0.67


complement C4-A
(CO4A_HUMAN)





PREDICTED:
P0C0L4
K.SHKPLNMGK.V
544
0.87


complement C4-A
(C04A_HUMAN)





PREDICTED:
P0C0L4
R.KKEVYM*PSSIF
236
0.67


complement C4-A
(CO4A_HUMAN)
QDDFVIPDISEPGT




WK.I





PREDICTED:
P0C0L4
R.FGLLDEDGKK.T
545
0.64


complement C4-A
(CO4A_HUMAN)





PREDICTED:
P0C0L4
R.KKEVYMPSSIF
236
0.69


complement C4-A
(CO4A_HUMAN)
QDDFVIPDISEPGT




WK.I





PREDICTED:
P0C0L4
K.GLCVATPVQLR
546
0.78


complement C4-A
(CO4A_HUMAN)
.V





PREDICTED:
P0C0L4
R.YRVFALDQK.M
547
0.63


complement C4-A
(CO4A_HUMAN)





PREDICTED:
P0C0L4
K.AEFQDALEKLN
548
0.60


complement C4-A
(CO4A_HUMAN)
MGITDLQGLR.L





PREDICTED:
P0C0L4
R.ECVGFEAVQEV
549
0.60


complement C4-A
(CO4A_HUMAN)
PVGLVQPASATL




YDYYNPERR.C





PREDICTED:
P0C0L4
K.AEFQDALEKLN
548
0.60


complement C4-A
(CO4A_HUMAN)
MGITDLQGLR.L





PREDICTED:
P0C0L4
R.VTASDPLDTLG
550
0.61


complement C4-A
(CO4A_HUMAN)
SEGALSPGGVASL




LR.L





pregnancy zone
P20742
R.NELIPLIYLENP
551
0.60


protein
(PZP_HUMAN)
RR.N





pregnancy zone
P20742
K.AVGYLITGYQR.Q
552
0.67


protein
(PZP_HUMAN)





protein AMBP
P02760
R.AFIQLWAFDAV
553
0.70


preproprotein
(AMBP_HUMAN)
K.G





protein
O43439
R.LTEREWADEW
554
0.61


CBFA2T2
(MTG8R_HUMAN)
KHLDHALNCIME




MVEK.T





protein NLRC3
Q7RTR2
K.ALM*DLLAGKG
555
0.83



(NLRC3_HUMAN)
SQGSQAPQALDR.T





prothrombin
P00734
R.TFGSGEADCGL
556
0.69


preproprotein
(THRB_HUMAN)
RPLFEK.K





ras-related GTP-
Q7L523
K.ISNIIK.Q
557
0.68


binding protein A
(RRAGA_HUMAN)





retinol-binding
P02753
R.FSGTWYAMAK.K
558
0.64


protein 4
(RET4_HUMAN)





retinol-binding
P02753
R.LLNNWDVCAD
559
0.61


protein 4
(RET4_HUMAN)
MVGTFTDTEDPA




KFK.M





retinol-binding
P02753
K.YWGVASFLQK.G
560
0.63


protein 4
(RET4_HUMAN)





serum amyloid P-
P02743
R.GYVIIKPLVWV.-
561
0.60


component
(SAMP_HUMAN)





sex hormone-
P04278
R.LPLVPALDGCL
562
0.63


binding globulin
(SHBG_HUMAN)
R.R





spectrin beta
Q13813
R.NELIRQEKLEQL
563
0.88


chain, non-
(SPTN1_HUMAN)
AR.R


erythrocytic 1





TATA element
P82094
K.EELATRLNSSET
564
0.71


modulatory
(TMF1_HUMAN)
ADLLK.E


factor





testicular haploid
PODJG4
R.QCLLNRPFSDN
565
0.67


expressed gene
(THEGL_HUMAN)
SAR.D


protein-like





thyroxine-
P05543
K.NALALFVLPK.E
566
0.61


binding globulin
(THBG_HUMAN)





thyroxine-
P05543
R.SFMLLILER.S
567
0.64


binding globulin
(THBG_HUMAN)





titin
Q8WZ42
K.TEPKAPEPISSK.P
568
0.89



(TITIN_HUMAN)





transthyretin
P02766
R.GSPAINVAVHV
569
0.61



(TTHY_HUMAN)
FR.K





tripartite motif-
Q9C035
R.ELISDLEHRLQG
570
0.92


containing
(TRIM5_HUMAN)
SVM*ELLQGVDG


protein 5

VIK.R





vitamin D-
P02774
K.TAMDVFVCTYF
571
0.88


binding protein
(VTDB_HUMAN)
MPAAQLPELPDV




ELPTNKDVCDPG




NTK.V





vitamin D-
P02774
K.VM*DKYTFELS
572
0.70


binding protein
(VTDB_HUMAN)
R.R





vitamin D-
P02774
K.LAQKVPTADLE
573
0.61


binding protein
(VTDB_HUMAN)
DVLPLAEDITNILS




K.C





vitamin D-
P02774
K.SCESNSPFPVHP
574
0.68


binding protein
(VTDB_HUMAN)
GTAECCTK.E





vitamin D-
P02774
R.KLCMAALK.H
575
0.71


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
K.LCDNLSTK.N
576
0.60


binding protein
(VTDB_HUMAN)





vitamin D-
P02774
K.VM*DKYTFELS
572
0.70


binding protein
(VTDB_HUMAN)
R.R





vitronectin
P04004
R.IYISGM*APR.P
577
0.75



(VTNC_HUMAN)





vitronectin
P04004
R.ERVYFFK.G
578
0.67



(VTNC_HUMAN)





vitronectin
P04004
R.IYISGMAPR.P
577
0.81



(VTNC_HUMAN)





vitronectin
P04004
K.AVRPGYPK.L
579
0.63



(VTNC_HUMAN)





zinc finger
P52746
K.TRFLLR.T
580
0.67


protein 142
(ZN142_HUMAN)





*= Oxidation of methionine













TABLE 10







Preeclampsia: Additional peptides significant with AUC >0.6  by


X!Tandem only














SEQ



Protein


ID


description
Uniprot ID (name)
Peptide
NO:
XT_AUC





afamin
P43652
K.TYVPPPFSQDLFTFHA
581
0.76



(AFAM_HUMAN)
DMCQSQNEELQR.K





afamin
P43652
K.KSDVGFLPPFPTLDPEE
582
0.62



(AFAM_HUMAN)
K.C





alpha-1-
P01011
R.GTHVDLGLASANVDF
583
0.69


antichymotrypsin
(AACT_HUMAN)
AFSLYK.Q





alpha-1B-
P04217
K.SLPAPWLSM*APVSWI
584
0.67


glycoprotein
(A1BG_HUMAN)
TPGLK.T





alpha-1B-
P04217
K.SLPAPWLSM*APVSWI
584
0.67


glycoprotein
(A1BG_HUMAN)
TPGLK.T





alpha-1B-
P04217
R.C{circumflex over ( )}LAPLEGAR.F
585
0.62


glycoprotein
(A1BG_HUMAN)





alpha-2-
P08697
R.WFLLEQPEIQVAHFPF
586
0.60


antiplasmin
(A2AP_HUMAN)
K.N





alpha-2-
P08697
R.LCQDLGPGAFR.L
587
0.92


antiplasmin
(A2AP_HUMAN)





alpha-2-
P08697
K.HQMDLVATLSQLGLQ
138
0.67


antiplasmin
(A2AP_HUMAN)
ELFQAPDLR.G





alpha-2-HS-
P02765
R.QLKEHAVEGDCDFQL
588
0.63


glycoprotein
(FETUA_HUMAN)
LK.L


preproprotein





alpha-2-HS-
P02765
R.Q{circumflex over ( )}LKEHAVEGDCDFQ
588
0.65


glycoprotein
(FETUA_HUMAN)
LLK.L


preproprotein





alpha-2-HS-
P02765
K.C{circumflex over ( )}NLLAEK.Q
589
0.61


glycoprotein
(FETUA_HUMAN)


preproprotein





angiotensinogen
P01019
R.SLDFTELDVAAEKIDR.F
590
0.62


preproprotein
(ANGT_HUMAN)





angiotensinogen
P01019
K.DPTFIPAPIQAK.T
591
0.78


preproprotein
(ANGT_HUMAN)





apolipoprotein
P02652
K.EPCVESLVSQYFQTVT
592
0.67


A-II
(APOA2_HUMAN)
DYGKDLMEK.V


preproprotein





apolipoprotein B-
P04114
K.FSVPAGIVIPSFQALTA
593
0.66


100
(APOB_HUMAN)
R.F





apolipoprotein B-
P04114
K.EQHLFLPFSYK.N
594
0.90


100
(APOB_HUMAN)





apolipoprotein B-
P04114
R.GIISALLVPPETEEAK.Q
595
0.70


100
(APOB_HUMAN)





beta-2-
P02749
K.C{circumflex over ( )}FKEHSSLAFWK.T
596
0.70


glycoprotein 1
(APOH_HUMAN)





beta-2-
P02749
K.EHSSLAFWK.T
597
0.62


glycoprotein 1
(APOH_HUMAN)





ceruloplasmin
P00450
R.FNKNNEGTYYSPNYN
598
0.64



(CERU_HUMAN)
PQSR.S





ceruloplasmin
P00450
K.HYYIGIIETTWDYASD
599
0.63



(CERU_HUMAN)
HGEK.K





ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTG
194
0.66



(CERU_HUMAN)
LIGPM*K.I





ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTG
194
0.66



(CERU_HUMAN)
LIGPM*K.I





ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTG
194
0.67



(CERU_HUMAN)
LIGPMK.I





ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTG
194
0.67



(CERU_HUMAN)
LIGPMK.I





ceruloplasmin
P00450
K.MYYSAVDPTKDIFTGL
194
0.67



(CERU_HUMAN)
IGPM*K.I





ceruloplasmin
P00450
K.MYYSAVDPTKDIFTGL
194
0.67



(CERU_HUMAN)
IGPM*K.I





ceruloplasmin
P00450
R.GVYSSDVFDIFPGTYQ
203
0.67



(CERU_HUMAN)
TLEM*FPR.T





coagulation
P00748
R.VVGGLVALR.G
600
0.64


factor XII
(FA12_HUMAN)





complement C1q
P02745
K.KGHIYQGSEADSVFSG
601
0.81


subcomponent
(C1QA HUMAN)
FLIFPSA.-


subunit A





complement C1q
P02747
R.Q{circumflex over ( )}THQPPAPNSLIR.F
602
0.64


subcomponent
(C1QC_HUMAN)


subunit C





complement C1s
P09871
R.Q{circumflex over ( )}FGPYCGHGFPGPLN
603
0.71


subcomponent
(C1S_HUMAN)
IETK.S





complement C2
P06681
R.QPYSYDFPEDVAPALG
604
0.63



(CO2_HUMAN)
TSFSHMLGATNPTQK.T





complement C2
P06681
R.LLGMETMAWQEIR.H
605
0.70



(CO2_HUMAN)





complement C4-
P0C0L5
R.AVGSGATFSHYYYM*I
606
0.67


B-like
(CO4B_HUMAN)
LSR.G


preproprotein





complement C4-
P0C0L5
R.FGLLDEDGKKTFFR.G
607
0.61


B-like
(CO4B_HUMAN)


preproprotein





complement C4-
P0C0L5
K.ITQVLHFTK.D
608
0.67


B-like
(CO4B_HUMAN)


preproprotein





complement C4-
P0C0L5
K.M*RPSTDTITVM*VEN
224
0.65


B-like
(CO4B_HUMAN)
SHGLR.V


preproprotein





complement C4-
P0C0L5
K.M*RPSTDTITVM*VEN
224
0.75


B-like
(CO4B_HUMAN)
SHGLR.V


preproprotein





complement C5
P01031
R.IVACASYKPSR.E
609
0.67


preproprotein
(CO5_HUMAN)





complement C5
P01031
R.SYFPESWLWEVHLVP
610
0.60


preproprotein
(CO5_HUMAN)
R.R





complement C5
P01031
K.Q{circumflex over ( )}LPGGQNPVSYVYLE
611
0.74


preproprotein
(CO5_HUMAN)
VVSK.H





complement C5
P01031
K.TLLPVSKPEIR.S
612
0.78


preproprotein
(CO5_HUMAN)





complement
P07358
R. GGASEHITTLAYQELP
613
0.60


component C8
(CO8B_HUMAN)
TADLMQEWGDAVQYNP


beta chain

AIIK.V


preproprotein





complement
P00751
K.GTDYHKQPWQAK.I
614
0.89


factor B
(CFAB_HUMAN)


preproprotein





complement
P00751
K.VKDISEVVTPR.F
615
0.64


factor B
(CFAB_HUMAN)


preproprotein





complement
P00751
K.Q{circumflex over ( )}VPAHAR.D
616
0.63


factor B
(CFAB_HUMAN)


preproprotein





complement
P00751
R.GDSGGPLIVHKR.S
617
0.79


factor B
(CFAB_HUMAN)


preproprotein





complement
P00751
R.FLCTGGVSPYADPNTC
618
0.71


factor B
(CFAB_HUMAN)
R.G


preproprotein





complement
P00751
K.KEAGIPEFYDYDVALI
619
0.74


factor B
(CFAB_HUMAN)
K.L


preproprotein





complement
P00751
R.YGLVTYATYPK.I
620
0.88


factor B
(CFAB_HUMAN)


preproprotein





complement
P08603
K.EFDHNSNIR.Y
621
1.00


factor H
(CFAH_HUMAN)





complement
P08603
K.WSSPPQCEGLPCK.S
622
0.71


factor H
(CFAH_HUMAN)





complement
P08603
R.KGEWVALNPLR.K
623
0.67


factor H
(CFAH_HUMAN)





complement
P05156
K.SLECLHPGTK.F
624
0.60


factor I
(CFAI_HUMAN)


preproprotein





corticosteroid-
P08185
R.GLASANVDFAFSLYK.H
625
0.62


binding globulin
(CBG_HUMAN)





fetuin-B
Q9UGM5
K.LVVLPFPK.E
626
0.74



(FETUB_HUMAN)





fetuin-B
Q9UGM5
R.ASSQWVVGPSYFVEY
627
0.61



(FETUB_HUMAN)
LIK.E





ficolin-3
O75636
R.LLGEVDHYQLALGK.F
628
0.61



(FCN3_HUMAN)





gelsolin
P06396
K.QTQVSVLPEGGETPLF
629
0.69



(GELS_HUMAN)
K.Q





hemopexin
P02790
K.VDGALCMEK.S
630
0.60



(HEMO_HUMAN)





hemopexin
P02790
K.SGAQATWTELPWPHE
631
0.66



(HEMO_HUMAN)
KVDGALCM*EK.S





hemopexin
P02790
K.SGAQATWTELPWPHE
631
0.66



(HEMO_HUMAN)
KVDGALCM*EK.S





hemopexin
P02790
R.EWFWDLATGTMK.E
295
0.68



(HEMO_HUMAN)





hemopexin
P02790
R.Q{circumflex over ( )}GHNSVFLIK.G
632
0.67



(HEMO_HUMAN)





heparin cofactor 2
P05546
K.TLEAQLTPR.V
633
0.67



(HEP2_HUMAN)





histidine-rich
P04196
K.DSPVLIDFFEDTER.Y
634
0.60


glycoprotein
(HRG_HUMAN)





insulin-like
P35858
K.ALRDFALQNPSAVPR.F
635
0.89


growth factor-
(ALS_HUMAN)


binding protein


complex acid


labile subunit





insulin-like
P35858
R.LWLEGNPWDCGCPLK
636
0.60


growth factor-
(ALS_HUMAN)
.A


binding protein


complex acid


labile subunit





inter-alpha-
P19827
K.ILGDM*QPGDYFDLVL
313
0.85


trypsin inhibitor
(ITIH1_HUMAN)
FGTR.V


heavy chain H1





inter-alpha-
P19823
R.SSALDMENFR.T
637
0.63


trypsin inhibitor
(ITIH2_HUMAN)


heavy chain H2





inter-alpha-
P19823
R.SLAPTAAAK.R
638
0.83


trypsin inhibitor
(ITIH2_HUMAN)


heavy chain H2





inter-alpha-
P19823
R.LSNENHGIAQR.I
639
0.76


trypsin inhibitor
(ITIH2_HUMAN)


heavy chain H2





inter-alpha-
P19823
R.IYGNQDTSSQLKK.F
640
0.63


trypsin inhibitor
(ITIH2_HUMAN)


heavy chain H2





inter-alpha-
Q14624
K.TGLLLLSDPDKVTIGL
641
0.60


trypsin inhibitor
(ITIH4_HUMAN)
LFWDGR.G


heavy chain H4





inter-alpha-
Q14624
K.YIFHNFM*ER.L
325
0.70


trypsin inhibitor
(ITIH4_HUMAN)


heavy chain H4





inter-alpha-
Q14624
K.IPKPEASFSPR.R
642
0.65


trypsin inhibitor
(ITIH4_HUMAN)


heavy chain H4





inter-alpha-
Q14624
R.QGPVNLLSDPEQGVEV
643
0.64


trypsin inhibitor
(ITIH4_HUMAN)
TGQYER.E


heavy chain H4





inter-alpha-
Q14624
R.ANTVQEATFQMELPK.K
644
0.61


trypsin inhibitor
(ITIH4_HUMAN)


heavy chain H4





inter-alpha-
Q14624
K.WKETLFSVMPGLK.M
329
0.66


trypsin inhibitor
(ITIH4_HUMAN)


heavy chain H4





inter-alpha-
Q14624
R.RLDYQEGPPGVEISCW
645
0.69


trypsin inhibitor
(ITIH4_HUMAN)
SVEL.-


heavy chain H4





inter-alpha-
Q14624
K.SPEQQETVLDGNLIIR.Y
646
0.66


trypsin inhibitor
(ITIH4_HUMAN)


heavy chain H4





kallistatin
P29622
K.ALWEKPFISSR.T
647
0.65



(KAIN_HUMAN)





kininogen-1
P01042
R.Q{circumflex over ( )}VVAGLNFR.I
648
0.67



(KNG1_HUMAN)





kininogen-1
P01042
R.QVVAGLNFR.I
648
0.71



(KNG1_HUMAN)





kininogen-1
P01042
K.LGQSLDCNAEVYVVP
649
0.62



(KNG1_HUMAN)
WEK.K





kininogen-1
P01042
R.IASFSQNCDIYPGKDFV
650
0.64



(KNG1_HUMAN)
QPPTK.I





leucine-rich
P02750
R.C{circumflex over ( )}AGPEAVKGQTLLA
651
0.70


alpha-2-
(A2GL_HUMAN)
VAK.S


glycoprotein





leucine-rich
P02750
K.GQTLLAVAK.S
652
0.67


alpha-2-
(A2GL_HUMAN)


glycoprotein





leucine-rich
P02750
K.DLLLPQPDLR.Y
653
0.71


alpha-2-
(A2GL_HUMAN)


glycoprotein





lumican
P51884
K.ILGPLSYSK.I
654
0.83



(LUM_HUMAN)





PREDICTED:
P0C0L4
R.QGSFQGGFR.S
655
0.83


complement C4-A
(CO4A_HUMAN)





PREDICTED:
P0C0L4
K.YVLPNFEVK.I
656
0.69


complement C4-A
(CO4A_HUMAN)





PREDICTED:
P0C0L4
R.LLATLCSAEVCQCAEG
657
0.60


complement C4-A
(CO4A_HUMAN)
K.C





PREDICTED:
P0C0L4
R.VGDTLNLNLR.A
658
0.66


complement C4-A
(CO4A_HUMAN)





PREDICTED:
P0C0L4
R.EPFLSCCQFAESLR.K
659
0.62


complement C4-A
(CO4A_HUMAN)





PREDICTED:
P0C0L4
R.EELVYELNPLDHR.G
660
0.60


complement C4-A
(CO4A_HUMAN)





PREDICTED:
P0C0L4
R.GSFEFPVGDAVSK.V
661
0.62


complement C4-A
(CO4A_HUMAN)





PREDICTED:
P0C0L4
R.GCGEQTMIYLAPTLAA
368
0.71


complement C4-A
(CO4A_HUMAN)
SR.Y





pregnancy zone
P20742
K.GSFALSFPVESDVAPIA
662
0.63


protein
(PZP_HUMAN)
R.M





protein AMBP
P02760
R.VVAQGVGIPEDSIFTM
663
0.62


preproprotein
(AMBP_HUMAN)
ADRGECVPGEQEPEPILI




PR.V





prothrombin
P00734
R.SGIECQLWR.S
664
0.65


preproprotein
(THRB_HUMAN)





thyroxine-
P05543
K.MSSINADFAFNLYR.R
665
0.63


binding globulin
(THBG_HUMAN)





vitronectin
P04004
R.MDWLVPATCEPIQSVF
666
1.00



(VTNC_HUMAN)
FFSGDKYYR.V





vitronectin
P04004
R.IYISGM*APRPSLAK.K
410
0.64



(VTNC_HUMAN)





vitronectin
P04004
R.IYISGMAPRPSLAK.K
410
0.63



(VTNC_HUMAN)





vitronectin
P04004
R.DVWGIEGPIDAAFTR.I
667
0.61



(VTNC_HUMAN)





zinc finger
Q8N567
R.SCPDNPK.G
668
0.68


CCHC domain-
(ZCHC9_HUMAN)


containing


protein 9





*= Oxidation of Methionine, {circumflex over ( )}= cyclic pyrolidone derivative by the loss of NH3 (−17 Da)













TABLE 11







Candidate peptides and transitions for transferring to the MRM assay














SEQ







ID
m/z,
fragment ion, m/z,


Protein
Peptide
NO:
charge
charge, rank
area















inter-alpha-trypsin
K.AAISGENAGLVR.A
670
579.3173++
S [y9]-902.4690+[1]
518001


inhibitor heavy chain H1



G [y8]-815.4370+[2]
326256


ITIH1_HUMAN



N [y6]-629.3729+[3]
296670






S [b4]-343.1976+[4]
258172





inter-alpha-trypsin
K.GSLVQASEANLQAA
317
668.6763+++
A [y7]-806.4155+[1]
304374


inhibitor heavy chain H1
QDFVR.G


V [b4]-357.2132+[3]
294094


ITIH1_HUMAN



A [b13]-635.3253++[7]
249287






A [y6]-735.3784+[2]
193844






F [y3]-421.2558+[4]
167816






L [b11]-535.7775++[6]
156882






A [b6]-556.3089+[5]
149216






A [y14]-760.3786++[8]
123723





inter-alpha-trypsin
K.TAFISDFAVTADGNA
309
1087.0442++
G [y4]-432.2453+[1]
22362


inhibitor heavy chain H1
FIGDIK.D


V [b9]-952.4775+[2]
9508


ITIH1_HUMAN



I [y5]-545.3293+[3]
8319






A [b8]-853.4090+[4]
7006






G [y9]-934.4993+[5]
6755






F [y6]-692.3978+[6]
6193





inter-alpha-trypsin
K.VTYDVSR.D
671
420.2165++
T [b2]-201.1234+[1]
792556


inhibitor heavy chain H1



Y [y5]-639.3097+[2]
609348


ITIH1_HUMAN



V [y3]-361.2194+[3]
256946






D [y4]-476.2463+[4]
169546






Y [y5]-320.1585++[5]
110608






S [y2]-262.1510+[6]
50268






D [b4]-479.2136+[7]
13662






Y [b3]-182.5970++[8]
10947





inter-alpha-trypsin
R.EVAFDLEIPK.T
319
580.8135++
P [y2]-244.1656+[1]
2032509


inhibitor heavy chain H1



D [y6]-714.4032+[2]
672749


ITIH1_HUMAN



A [y8]-932.5088+[3]
390837






F [y7]-861.4716+[4]
305087






L [y5]-599.3763+[5]
255527





inter-alpha-trypsin
R.LWAYLTIQELLAK.R
318
781.4531++
W [b2]-300.1707+[1]
602601


inhibitor heavy chain H1



A [b3]-371.2078+[2]
356967


ITIH1_HUMAN



T [y8]-915.5510+[3]
150419






Y [b4]-534.2711+[4]
103449






L [b5]-647.3552+[5]
99820






I [y7]-814.5033+[6]
72044






Q [y6]-701.4192+[7]
66989






E [y5]-573.3606+[8]
44843





inter-alpha-trypsin
K.FYNQVSTPLLR.N
518
669.3642++
S [y6]-686.4196+[1]
367330


inhibitor heavy chain H2



V [y7]-785.4880+[2]
182396


ITIH2_HUMAN



P [y4]-498.3398+[3]
103638






Q [b4]-553.2405+[4]
54270






Y [b2]-311.1390+[5]
52172






N [b3]-425.1819+[6]
34567





inter-alpha-trypsin
K.HLEVDVWVIEPQGL
517
597.3247+++
P [y5]-570.3358+[1]
303693


inhibitor heavy chain H2
R.F


I [y7]-812.4625+[2]
206996


ITIH2_HUMAN



E [y6]-699.3784+[3]
126752






P [y5]-285.6715++[4]
79841





inter-alpha-trypsin
K.TAGLVR.S
672
308.6925++
G [y4]-444.2929+[1]
789068


inhibitor heavy chain H2



A [b2]-173.0921+[2]
460019


ITIH2_HUMAN



V [y2]-274.1874+[3]
34333






L [y3]-387.2714+[4]
29020






G [b3]-230.1135+[5]
15169





inter-alpha-trypsin
R.IYLQPGR.L
516
423.7452++
L [y5]-570.3358+[1]
638209


inhibitor heavy chain H2



Y [b2]-277.1547+[2]
266889


ITIH2_HUMAN



P [y3]-329.1932+[3]
235194






Q [y4]-457.2518+[4]
171389





inter-alpha-trypsin
R.LSNENHGIAQR.I
639
413.5461+++
N [y9]-519.7574++[1]
325409


inhibitor heavy chain H2



G [y5]-544.3202+[2]
139598


ITIH2_HUMAN



S [b2]-201.1234+[3]
54786






N [y7]-398.2146++[4]
39521






E [y8]-462.7359++[5]
30623





inter-alpha-trypsin
R.SLAPTAAAKR.R
673
415.2425++
A [y7]-629.3617+[1]
582421


inhibitor heavy chain H2



P [y6]-558.3246+[2]
463815


ITIH2_HUMAN



L [b2]-201.1234+[3]
430584






A [b3]-272.1605+[4]
204183






T [y5]-461.2718+[5]
47301





pregnancy-specific beta-
K.FQLPGQK.L
674
409.2320++
L [y5]-542.3297+[3]
192218


1-glycoprotein 1



P [y4]-429.2456+[2]
252933


PSG1_HUMAN



Q [y2]-275.1714+[6]
15366






Q [b2]-276.1343+[1]
305361






L [b3]-389.2183+[4]
27279






G [b5]-543.2926+[5]
18416





pregnancy-specific beta-
R.DLYHYITSYVVDGEIII
675
955.4762+++
G [y7]-707.3471+[1]
66891


1-glycoprotein 1
YGPAYSGR.E


Y [y8]-870.4104+[2]
45076


PSG1_HUMAN



P [y6]-650.3257+[3]
28437






I [y9]-983.4945+[4]
20423






V [b10]-628.3033++[5]
17864






E [b14]-828.3830++[6]
13690






V [b11]-677.8375++[7]
12354






I [b6]-805.3879+[8]
11186






V [y15]-805.4147++[9]
10573






G [b13]-
10407






763.8617++[10]





pregnancy-specific beta-
TLFIFGVTK
676
513.3051++
F [y7]-811.4713+[1]
102139


1-glycoprotein 4



L [b2]-215.1390+[2]
86272


PSG4_HUMAN



F [y5]-551.3188+[3]
49520






I [y6]-664.4028+[4]
26863






T [y2]-248.1605+[5]
18671






F [b3]-362.2074+[6]
17343






G [y4]-404.2504+[7]
17122





pregnancy-specific beta-
NYTYIWWLNGQSLPV
677
1097.5576++
W [b6]-841.3879+[1]
25756


1-glycoprotein 4
SPR


G [y9]-940.5211+[2]
25018


PSG4_HUMAN



Y [b4]-542.2245+[3]
19778





PSG8_HUMAN
LQLSETNR
678
480.7591++
T [y3]-390.2096+[1]
185568


pregnancy-specific



Q [b2]-242.1499+[2]
120644


beta-1-glycoprotein 8



N [y2]-289.1619+[3]
95164






S [y5]-606.2842+[4]
84314






L [b3]-355.2340+[5]
38587






E [y4]-519.2522+[6]
34807






L [y6]-719.3682+[7]
17482






E [b5]-571.3086+[8]
8855






S [b4]-442.2660+[9]
7070





Pan-PSG
ILILPSVTR
679
506.3317++
P [y5]-559.3198+[1]
484395






L [b2]-227.1754+[2]
102774






L [b4]-227.1754++[3]
102774






I [y7]-785.4880+[4]
90153






I [b3]-340.2595+[5]
45515






L [y6]-672.4039+[6]
40368





thyroxine-binding
K.ELELQIGNALFIGK.H
680
515.6276+++
E [b3]-186.5919++[1]
48549


globulin



E [b3]-372.1765+[2]
28849


THBG_HUMAN



G [y2]-204.1343+[3]
27487






F [b11]-614.8322++[4]
14892






L [b4]-485.2606+[5]
14552






L [b2]-243.1339+[6]
10169






L [b4]-243.1339++[7]
10169





thyroxine-binding
K.AQWANPFDPSK.T
681
630.8040++
A [b4]-457.2194+[1]
48405


globulin



S [y2]-234.1448+[2]
43781


THBG_HUMAN



D [y4]-446.2245+[3]
26549






D [y4]-446.2245+[4]
25148





thyroxine-binding
K.TEDSSSFLIDK.T
682
621.2984++
E [b2]-231.0975+[1]
37113


globulin



D [y2]-262.1397+[2]
14495


THBG_HUMAN





thyroxine-binding
K.AVLHIGEK.G
392
433.7584++
V [b2]-171.1128+[1]
151828


globulin



L [y6]-696.4039+[2]
102903


THBG_HUMAN



H [y5]-583.3198+[3]
73288






I [y4]-446.2609+[4]
54128






G [y3]-333.1769+[5]
32717






H [b4]-421.2558+[6]
22662





thyroxine-binding
K.AVLHIGEK.G
392
289.5080+++
L [y6]-348.7056++[1]
2496283


globulin



V [b2]-171.1128+[2]
551283


THBG_HUMAN



I [y4]-446.2609+[3]
229168






H [y5]-292.1636++[4]
212709






H [y5]-583.3198+[5]
160132






G [y3]-333.1769+[6]
117961






H [b4]-421.2558+[7]
56579






I [y4]-223.6341++[8]
36569






H [b4]-211.1315++[9]
19460






L [b3]-284.1969+[10]
15758





thyroxine-binding
K.FLNDVK.T
683
368.2054++
N [y4]-475.2511+[1]
298227


globulin



V [y2]-246.1812+[2]
252002


THBG_HUMAN



L [b2]-261.1598+[3]
98700






D [y3]-361.2082+[4]
29215






D [b4]-490.2296+[5]
27258






N [b3]-375.2027+[6]
10971





thyroxine-binding
K.FSISATYDLGATLLK.M
394
800.4351++
S [b2]-235.1077+[1]
50075


globulin



G [y6]-602.3872+[2]
46373


THBG_HUMAN



D [y8]-830.4982+[3]
43372






Y [y9]-993.5615+[4]
40970






T [y4]-474.3286+[5]
22161






L [y7]-715.4713+[6]
19710






S [b4]-435.2238+[7]
19310






L [y3]-373.2809+[8]
14157






I [b3]-348.1918+[9]
13207





thyroxine-binding
K.LSNAAHK.A
684
370.7061++
H [y2]-284.1717+[4]
19319


globulin



S [b2]-201.1234+[1]
60611


THBG_HUMAN



N [b3]-315.1663+[2]
42142






A [b4]-386.2034+[3]
31081





thyroxine-binding
K.GWVDLFVPK.F
393
530.7949++
V [y7]-817.4818+[2]
297536


globulin



D [y6]-718.4134+[4]
226951


THBG_HUMAN



L [y5]-603.3865+[8]
60712






F [y4]-490.3024+[9]
45586






V [y3]-343.2340+[6]
134588






P [y2]-244.1656+[1]
1619888






V [b3]-343.1765+[7]
126675






D [b4]-458.2034+[10]
14705






F [b6]-718.3559+[5]
208674






V [b7]-817.4243+[3]
270156





thyroxine-binding
K.NALALFVLPK.E
566
543.3395++
L [b3]-299.1714+[1]
365040


globulin



P [y2]-244.1656+[2]
274988


THBG_HUMAN



A [y7]-787.5076+[3]
237035






L [y6]-716.4705+[4]
107838






L [y3]-357.2496+[5]
103847






L [y8]-900.5917+[6]
97265






F [y5]-603.3865+[7]
88231






A [b4]-370.2085+[8]
82559






V [y4]-456.3180+[9]
32352






L [b5]-483.2926+[10]
11974





thyroxine-binding
R.SILFLGK.V
395
389.2471++
L [y5]-577.3708+[1]
564222


globulin



I [b2]-201.1234+[2]
384240


THBG_HUMAN



G [y2]-204.1343+[3]
302557






L [y3]-317.2183+[4]
282436






F [y4]-464.2867+[5]
194047






L [b3]-314.2074+[6]
27878





leucine-rich alpha-2-
R.VLDLTR.N
685
358.7187++
D [y4]-504.2776+[1]
629222


glycoprotein



L [y5]-617.3617+[2]
236165


A2GL_HUMAN



L [b2]-213.1598+[3]
171391






L [y3]-389.2507+[4]
167609






R [y1]-175.1190+[5]
41213






T [y2]-276.1666+[6]
37194






D [b3]-328.1867+[7]
27029





leucine-rich alpha-2-
K.ALGHLDLSGNR.L
686
576.8096++
G [y9]-484.7490++[1]
46334


glycoprotein



L [y7]-774.4104+[2]
44285


A2GL_HUMAN



D [y6]-661.3264+[3]
40188






H [y8]-456.2383++[4]
29392






H [b4]-379.2088+[5]
26871






L [y5]-546.2994+[6]
17178






L [b5]-492.2929+[7]
14578





leucine-rich alpha-2-
K.LPPGLLANFTLLR.T
687
712.9348++
R [y1]-175.1190+[1]
34435


glycoprotein



A [b7]-662.4236+[2]
25768


A2GL_HUMAN



G [y10]-1117.6728+[3]
11662





leucine-rich alpha-2-
R.TLDLGENQLETLPPD
688
1019.0468++
P [y6]-710.4196+[1]
232459


glycoprotein
LLR.G


L [y7]-823.5036+[2]
16075


A2GL_HUMAN



E [y9]-1053.5939+[3]
15839






D [b3]-330.1660+[4]
15524





leucine-rich alpha-2-
R.GPLQLER.L
689
406.7349++
P [b2]-155.0815+[1]
144054


glycoprotein



Q [y4]-545.3042+[2]
103146


A2GL_HUMAN



L [y5]-658.3883+[3]
77125






L [y3]-417.2456+[4]
65928






R [y1]-175.1190+[5]
27585






E [y2]-304.1615+[6]
22956





leucine-rich alpha-2-
R.LHLEGNK.L
690
405.7271++
H [b2]-251.1503+[1]
79532


glycoprotein



L [y5]-560.3039+[2]
54272


A2GL_HUMAN



G [b5]-550.2984+[3]
49019






G [y3]-318.1772+[4]
18570






L [b3]-364.2343+[5]
14068






E [y4]-447.2198+[6]
13318





leucine-rich alpha-2-
K.LQVLGK.D
691
329.2183++
V [y4]-416.2867+[1]
141056


glycoprotein



G [y2]-204.1343+[2]
102478


A2GL_HUMAN



Q [b2]-242.1499+[3]
98414






L [y3]-317.2183+[4]
60587






Q [y5]-544.3453+[5]
50833





leucine-rich alpha-2-
K.DLLLPQPDLR.Y
692
590.3402++
P [y6]-725.3941+[1]
592715


glycoprotein



L [b3]-342.2023+[2]
570948


A2GL_HUMAN



L [b2]-229.1183+[3]
403755






P [y6]-363.2007++[4]
120157






L [y2]-288.2030+[5]
89508






L [y7]-838.4781+[6]
76185






L [b4]-455.2864+[7]
60422






L [y7]-419.7427++[8]
45849






P [y4]-500.2827+[9]
45223






L [y8]-951.5622+[10]
22393






Q [y5]-628.3413+[11]
15450





leucine-rich alpha-2-
R.VAAGAFQGLR.Q
693
495.2800++
A [y8]-819.4472+[1]
183637


glycoprotein



G [y7]-748.4100+[2]
110920


A2GL_HUMAN



F [y5]-620.3515+[3]
85535






A [y9]-890.4843+[4]
45894






G [y3]-345.2245+[5]
45644






Q [y4]-473.2831+[6]
40579






A [y8]-410.2272++[7]
39266






A [b3]-242.1499+[8]
35890






A [y6]-691.3886+[9]
29637






G [b4]-299.1714+[10]
19195






A [b5]-370.2085+[11]
14944






A [y9]-445.7458++[12]
11567





leucine-rich alpha-2-
R.WLQAQK.D
694
387.2189++
L [y5]-587.3511+[1]
80533


glycoprotein



Q [y4]-474.2671+[2]
57336


A2GL_HUMAN



A [y3]-346.2085+[3]
35952






L [b2]-300.1707+[4]
22509





leucine-rich alpha-2-
K.GQTLLAVAK.S
695
450.7793++
Q [b2]-186.0873+[1]
110213


glycoprotein



T [y7]-715.4713+[2]
81127


A2GL_HUMAN



L [y5]-501.3395+[3]
52292






L [y6]-614.4236+[4]
46349






A [y4]-388.2554+[5]
41283






A [y2]-218.1499+[6]
38843






V [y3]-317.2183+[7]
28961






T [b3]-287.1350+[8]
23831





leucine-rich alpha-2-
R.YLFLNGNK.L
696
484.7636++
F [y6]-692.3726+[1]
61861


glycoprotein



L [b2]-277.1547+[2]
39468


A2GL_HUMAN



F [b3]-424.2231+[3]
21454






L [y5]-545.3042+[4]
20016






N [y4]-432.2201+[5]
18077





leucine-rich alpha-2-
R.NALTGLPPGLFQASA
342
780.7773+++
T [y8]-902.5557+[1]
44285


glycoprotein
TLDTLVLK.E


P [y17]-886.0036++[2]
39557


A2GL_HUMAN



D [y6]-688.4240+[3]
19464





alpha-1B-glycoprotein
K.NGVAQEPVHLDSPAI
427
837.9441++
P [y10]-1076.6099+[1]
130137


A1BG_HUMAN
K.H


V [b3]-271.1401+[2]
110650






A [y13]-702.8777++[3]
75803






S [y5]-515.3188+[4]
63197






G [b2]-172.0717+[5]
57307






E [b6]-599.2784+[6]
49765






A [b4]-342.1772+[7]
36058






E [y11]-1205.6525+[8]
34131






P [y4]-428.2867+[9]
31158






H [y8]-880.4887+[10]
28296






D [y6]-630.3457+[11]
20534






L [y7]-743.4298+[12]
17946





alpha-1B-glycoprotein
K.HQFLLTGDTQGR.Y
697
686.8520++
Q [b2]-266.1248+[1]
1144372


A1BG_HUMAN



F [y10]-1107.5793+[2]
725830






T [y7]-734.3428+[3]
341528






L [y8]-847.4268+[4]
297048






F [b3]-413.1932+[5]
230163






G [y6]-633.2951+[6]
226694






T [y4]-461.2467+[7]
217446






L [y9]-960.5109+[8]
215574






L [b4]-526.2772+[9]
184306






L [b5]-639.3613+[10]
157607






Q [y11]-
117366






1235.6379+[11]






Q [y11]-
109274






618.3226++[12]






D [b8]-912.4574+[13]
53233






T [b6]-740.4090+[14]
49104






D [y5]-576.2736+[15]
35232





alpha-1B-glycoprotein
R.SGLSTGWTQLSK.L
698
632.8302++
G [y7]-819.4359+[1]
1138845


A1BG_HUMAN



L [b3]-258.1448+[2]
1128060






S [y9]-1007.5156+[3]
877313






S [y2]-234.1448+[4]
653032






T [y8]-920.4836+[5]
651216






T [y5]-576.3352+[6]
538856






W [y6]-762.4145+[7]
406137






L [y3]-347.2289+[8]
313255






Q [y4]-475.2875+[9]
209919






L [y10]-
103666






560.8035++[10]






W [b7]-689.3253+[11]
48587






Q [b9]-918.4316+[12]
27677






T [b8]-790.3730+[13]
26742






L [b10]-
23936






1031.5156+[14]





alpha-1B-glycoprotein
K.LLELTGPK.S
699
435.7684++
E [y6]-644.3614+[1]
6043967


A1BG_HUMAN



L [b2]-227.1754+[2]
2185138






L [y7]-757.4454+[3]
1878211






L [y5]-515.3188+[4]
923148






T [y4]-402.2347+[5]
699198






G [y3]-301.1870+[6]
666018






P [y2]-244.1656+[7]
430183






E [b3]-356.2180+[8]
244199





alpha-1B-glycoprotein
R.GVTFLLR.R
700
403.2502++
T [y5]-649.4032+[1]
4135468


A1BG_HUMAN



L [y3]-401.2871+[2]
2868709






V [b2]-157.0972+[3]
2109754






F [y4]-548.3555+[4]
1895653






R [y1]-175.1190+[5]
918856






L [y2]-288.2030+[6]
780084






T [b3]-258.1448+[7]
478494






T [y5]-325.2052++[8]
415711






F [y4]-274.6814++[9]
140533






L [b6]-631.3814+[10]
129473





alpha-1B-glycoprotein
K.ELLVPR.S
701
363.7291++
P [y2]-272.1717+[1]
9969478


A1BG_HUMAN



L [y4]-484.3242+[2]
3676023






V [y3]-371.2401+[3]
2971809






L [b2]-243.1339+[4]
809753






L [y5]-597.4083+[5]
159684





alpha-1B-glycoprotein
R.SSTSPDR.I
702
375.1748++
S [b2]-175.0713+[1]
89016


A1BG_HUMAN



R [y1]-175.1190+[2]
82740






P [y3]-387.1987+[3]
76299






T [y5]-575.2784+[4]
75253






D [b6]-575.2307+[5]
71180






S [y4]-474.2307+[6]
53784





alpha-1B-glycoprotein
R.LELHVDGPPPRPQLR
703
862.4837++
D [b6]-707.3723+[1]
49322


A1BG_HUMAN
.A


G [y9]-1017.5952+[2]
32049






G [y9]-509.3012++[3]
27715





alpha-1B-glycoprotein
R.LELHVDGPPPRPQLR
703
575.3249+++
V [y11]-616.3489++[1]
841163


A1BG_HUMAN
.A


D [y10]-566.8147++[2]
621546






E [b2]-243.1339+[3]
581025






H [y12]-684.8784++[4]
485731






R [y5]-669.4155+[5]
477653






L [y13]-741.4204++[6]
369224






H [b4]-493.2769+[7]
219485






D [b6]-707.3723+[8]
195842






V [b5]-592.3453+[9]
170689






R [y1]-175.1190+[10]
160049






L [b3]-356.2180+[11]
63902






G [b7]-764.3937+[12]
62128






P [y4]-513.3144+[13]
33888





alpha-1B-glycoprotein
R.ATWSGAVLAGR.D
704
544.7960++
S [y8]-730.4206+[1]
1933290


A1BG_HUMAN



G [y7]-643.3886+[2]
1828931






L [y4]-416.2616+[3]
869412






V [y5]-515.3300+[4]
615117






A [y3]-303.1775+[5]
584118






A [y6]-586.3671+[6]
471353






W [y9]-458.7536++[7]
466690






W [y9]-916.4999+[8]
454934






G [y2]-232.1404+[9]
338886






S [b4]-446.2034+[10]
165831






W [b3]-359.1714+[11]
139166






R [y1]-175.1190+[12]
83145






A [b6]-574.2620+[13]
65281






G [b5]-503.2249+[14]
30473






V [b7]-673.3304+[15]
30408





alpha-1B-glycoprotein
R.TPGAAANLELIFVGP
705
1148.5953++
G [y9]-999.4755+[1]
39339


A1BG_HUMAN
QHAGNYR.C


F [y11]-1245.6123+[2]
22329






V [y10]-1098.5439+[3]
14054






I [b11]-1051.5782+[4]
12281






P [y8]-942.4540+[5]
10574





alpha-1B-glycoprotein
R.TPGAAANLELIFVGP
705
766.0659+++
G [y9]-999.4755+[1]
426098


A1BG_HUMAN
QHAGNYR.C


P [y8]-942.4540+[2]
191245






V [y10]-1098.5439+[3]
183889






F [y11]-1245.6123+[4]
172790






G [b3]-256.1292+[5]
172068






A [y5]-580.2838+[6]
170557






A [b4]-327.1663+[7]
146455






H [y6]-717.3427+[8]
127934






E [b9]-825.4101+[9]
119922






G [y4]-509.2467+[10]
107378






L [b10]-938.4942+[11]
102387






A [b5]-398.2034+[12]
86428






L [b10]-
68959






469.7507++[13]






E [y14]-
67711






800.9152++[14]






I [y12]-
65740






679.8518++[15]






N [b7]-583.2835+[16]
58648






A [y17]-
55561






949.9972++[17]






G [y20]-
51555






1049.5451++[18]






I [b11]-
51489






1051.5782+[19]






L [y13]-
49190






736.3939++[20]






L [y15]-
48534






857.4572++[21]






A [y18]-
48337






985.5158++[22]






L [b8]-696.3675+[23]
47352






N [y16]-
43280






914.4787++[24]






A [b6]-469.2405+[25]
38091






Q [y7]-845.4013+[26]
32443





insulin-like growth factor-
R.SLALGTFAHTPALAS
706
737.7342+++
G [y6]-660.3424+[1]
37287


binding protein complex
LGLSNNR.L


A [b3]-272.1605+[2]
21210


acid labile subunit



S [y8]-860.4585+[3]
15266


ALS_HUMAN



S [y4]-490.2368+[4]
12497






L [y5]-603.3209+[5]
9592





insulin-like growth factor-
R.ELVLAGNR.L
707
436.2534++
A [y4]-417.2205+[1]
74710


binding protein complex



L [y5]-530.3045+[2]
71602


acid labile subunit



G [y3]-346.1833+[3]
39449


ALS_HUMAN



V [y6]-629.3729+[4]
30127





insulin-like growth factor-
R.LAYLQPALFSGLAELR
708
881.4985++
P [y11]-1173.6626+[1]
47285


binding protein complex
.E


Y [b3]-348.1918+[2]
27425


acid labile subunit



Q [b5]-589.3344+[3]
18779


ALS_HUMAN



L [b4]-461.2758+[4]
13442





insulin-like growth


588.0014+++
S [y7]-745.4203+[1]
29519


factor-binding protein



A [y4]-488.2827+[2]
23305


complex acid labile



G [y6]-658.3883+[3]
22089


subunit



F [y8]-892.4887+[4]
16888


ALS_HUMAN



Q [b5]-589.3344+[5]
15807






L [y2]-288.2030+[6]
15266






Y [b3]-348.1918+[7]
12835






L [y5]-601.3668+[8]
12024





insulin-like growth factor-
R.ELDLSR.N
709
366.6980++
S [y2]-262.1510+[1]
91447


binding protein complex



D [b3]-358.1609+[2]
85115


acid labile subunit



D [y4]-490.2620+[3]
75618


ALS_HUMAN



L [y3]-375.2350+[4]
37835





insulin-like growth factor-
K.ANVFVQLPR.L
710
522.3035++
N [b2]-186.0873+[1]
90097


binding protein complex



F [y6]-759.4512+[2]
61085


acid labile subunit



P [y2]-272.1717+[3]
46657


ALS_HUMAN



V [y5]-612.3828+[4]
43595






V [b3]-285.1557+[5]
31451






Q [y4]-513.3144+[6]
28908






V [y7]-858.5196+[7]
15725






L [y3]-385.2558+[8]
14324






Q [y4]-257.1608++[9]
13753





insulin-like growth factor-
R.NLIAAVAPGAFLGLK.A
711
727.9401++
L [b2]-228.1343+[1]
26729


binding protein complex



I [b3]-341.2183+[2]
25535


acid labile subunit



P [y8]-802.4822+[3]
25120


ALS_HUMAN



A [y9]-873.5193+[4]
17542






A [y12]-1114.6619+[5]
14895





insulin-like growth factor-
R.VAGLLEDTFPGLLGL
712
835.9774++
P [y7]-725.4668+[1]
22005


binding protein complex
R.V


L [b4]-341.2183+[2]
13753


acid labile subunit



E [y11]-1217.6525+[3]
12611


ALS_HUMAN



D [y10]-1088.6099+[4]
11003





insulin-like growth factor-
R.SFEGLGQLEVLTLDH
713
833.1026+++
Q [y4]-503.2824+[1]
328959


binding protein complex
NQLQEVK.A


T [y11]-662.8464++[2]
54479


acid labile subunit



G [b4]-421.1718+[3]
24263


ALS_HUMAN





insulin-like growth factor-
R.NLPEQVFR.G
714
501.7720++
P [y6]-775.4097+[1]
88417


binding protein complex



E [y5]-678.3570+[2]
13620


acid labile subunit


ALS_HUMAN





insulin-like growth factor-
R.IRPHTFTGLSGLR.R
715
485.6124+++
S [y4]-432.2565+[1]
82619


binding protein complex



L [y5]-545.3406+[2]
70929


acid labile subunit



T [b5]-303.1795++[3]
56677


ALS_HUMAN





insulin-like growth factor-
K.LEYLLLSR.N
716
503.8002++
Y [y6]-764.4665+[1]
67619


binding protein complex



E [b2]-243.1339+[2]
56261


acid labile subunit



L [y4]-488.3191+[3]
32890


ALS_HUMAN



L [y5]-601.4032+[4]
24224






L [y3]-375.2350+[5]
21139





insulin-like growth factor-
R.LAELPADALGPLQR.A
717
732.4145++
E [b3]-314.1710+[1]
57859


binding protein complex



P [y10]-1037.5738+[2]
45907


acid labile subunit



P [y10]-519.2905++[3]
22723


ALS_HUMAN



L [b4]-427.2551+[4]
14054





insulin-like growth factor-
R.LEALPNSLLAPLGR.L
718
732.4327++
A [b3]-314.1710+[1]
52485


binding protein complex



P [y10]-1037.6102+[2]
37028


acid labile subunit



E [b2]-243.1339+[3]
24846


ALS_HUMAN



P [y10]-519.3087++[4]
15601






P [y4]-442.2772+[5]
12327





insulin-like growth factor-
R.TFTPQPPGLER.L
719
621.8275++
P [y6]-668.3726+[1]
57877


binding protein complex



P [y8]-447.2456++[2]
50606


acid labile subunit



P [b4]-447.2238+[3]
50606


ALS_HUMAN



F [b2]-249.1234+[4]
42083






P [y8]-893.4839+[5]
34716






T [y9]-497.7694++[6]
24220






T [b3]-350.1710+[7]
22053





insulin-like growth factor-
R.DFALQNPSAVPR.F
720
657.8437++
A [b3]-334.1397+[1]
28905


binding protein complex



P [y6]-626.3620+[2]
23750


acid labile subunit



P [y2]-272.1717+[3]
20860


ALS_HUMAN



F [b2]-263.1026+[4]
17536






N [y7]-740.4050+[5]
15320






Q [y8]-868.4635+[6]
12525





beta-2-glycoprotein 1
K.FICPLTGLWPINTLK.C
721
886.9920++
C [b3]-421.1904+[1]
546451


APOH_HUMAN



C [y13]-756.9158++[2]
438858






P [y6]-685.4243+[3]
229375






I [b2]-261.1598+[4]
188092






W [y7]-871.5036+[5]
143885






G [y9]-1041.6091+[6]
143458






T [b13]-757.3972++[7]
127058






T [y10]-1142.6568+[8]
89126






T [b6]-732.3749+[9]
51907






L [b5]-631.3272+[10]
43351






L [b8]-902.4804+[11]
38788






N [y4]-475.2875+[12]
38574






W [b9]-
37148






1088.5597+[13]






T [y3]-361.2445+[14]
34153






G [b7]-789.3964+[15]
22460






P [b4]-518.2432+[16]
19893






L [y8]-984.5877+[17]
19180





beta-2-glycoprotein 1
K.FICPLTGLWPINTLK.C
721
591.6638+++
P [y6]-685.4243+[1]
541745


APOH_HUMAN



P [y6]-343.2158++[2]
234580






G [b7]-789.3964+[3]
99108






W [y7]-871.5036+[4]
89126






L [b8]-902.4804+[5]
68306






C [b3]-421.1904+[6]
58396






N [y4]-475.2875+[7]
54474






I [y5]-588.3715+[8]
54403






W [y7]-436.2554++[9]
44706






I [b2]-261.1598+[10]
40214






T [y3]-361.2445+[11]
20535





beta-2-glycoprotein 1
R.VCPFAGILENGAVR.Y
722
751.8928++
P [y12]-622.3433++[1]
431648


APOH_HUMAN



C [b2]-260.1063+[2]
223667






P [y12]-1243.6793+[3]
134827






G [y9]-928.5211+[4]
89980






L [y7]-758.4155+[5]
85773






A [y10]-999.5582+[6]
69303






A [b5]-575.2646+[7]
47913






E [y6]-645.3315+[8]
44705






N [y5]-516.2889+[9]
23244






I [y8]-871.4996+[10]
20320






G [y4]-402.2459+[11]
19180






I [b7]-745.3702+[12]
18966






F [b4]-504.2275+[13]
16399





beta-2-glycoprotein 1
R.VCPFAGILENGAVR.Y
722
501.5977+++
E [y6]-645.3315+[1]
131191


APOH_HUMAN



N [y5]-516.2889+[2]
130264






I [b7]-745.3702+[3]
112154






G [b6]-632.2861+[4]
102743






G [y4]-402.2459+[5]
82779






C [b2]-260.1063+[6]
65453






L [y7]-758.4155+[7]
54330






I [b7]-373.1887++[8]
39143






L [y7]-379.7114++[9]
29661






V [y2]-274.1874+[10]
28377






P [y12]-
28163






622.3433++[11]





beta-2-glycoprotein 1
K.CTEEGK.W
723
362.1525++
E [y3]-333.1769+[1]
59464


APOH_HUMAN



E [b3]-391.1282+[2]
21675





beta-2-glycoprotein 1
K.WSPELPVCAPIICPPP
724
940.4923+++
P [y12]-648.8692++[1]
294510


APOH_HUMAN
SIPTFATLR.V


P [y11]-600.3428++[2]
206026






P [y7]-805.4567+[3]
122891






P [y10]-1102.6255+[4]
75113






L [b5]-613.2980+[5]
74578






P [y11]-1199.6783+[6]
72855






A [b9]-1040.4870+[7]
28643






T [y3]-195.1290++[8]
28524






S [b2]-274.1186+[9]
23770






P [y10]-
22284






551.8164++[10]






C [y13]-
20918






728.8845++[11]






E [b4]-500.2140+[12]
17114





beta-2-glycoprotein 1
K.ATFGCHDGYSLDGP
725
796.0036+++
P [y8]-503.2315++[1]
67031


APOH_HUMAN
EEIECTK.L


E [y4]-537.2337+[2]
59841






C [b5]-537.2126+[3]
56454






I [y5]-650.3178+[4]
55384






C [y3]-408.1911+[5]
46946






E [y6]-779.3604+[6]
45282






T [b2]-173.0921+[7]
37675






G [y9]-1062.4772+[8]
36843






C [y17]-
35774






1005.4144++[9]






P [y8]-1005.4557+[10]
33991






D [y10]-
30366






1177.5041+[11]






E [y7]-908.4030+[12]
26503






T [y2]-248.1605+[13]
24840






Y [b9]-1009.3832+[14]
19491






G [y9]-531.7422++[15]
17946






S [b10]-
17352






1096.4153+[16]





beta-2-glycoprotein 1
K.ATVVYQGER.V
726
511.7669++
Y [y5]-652.3049+[1]
762897


APOH_HUMAN



V [y6]-751.3733+[2]
548908






T [b2]-173.0921+[3]
252556






V [y7]-850.4417+[4]
231995






V [b3]-272.1605+[5]
223140






Q [y4]-489.2416+[6]
165023






G [y3]-361.1830+[7]
135013






V [b4]-371.2289+[8]
86760






V [y7]-425.7245++[9]
54314





beta-2-glycoprotein 1
K.VSFFCK.N
727
394.1940++
S [y5]-688.3123+[1]
384559


APOH_HUMAN



F [y4]-601.2803+[2]
321951






C [y2]-307.1435+[3]
265521






S [b2]-187.1077+[4]
237662






F [y3]-454.2119+[5]
168104





beta-2-glycoprotein 1
K.CSYTEDAQCIDGTIE
728
1043.4588++
P [y2]-244.1656+[1]
34574


APOH_HUMAN
VPK.C


V [y3]-343.2340+[2]
9173






E [y4]-472.2766+[3]
7291






Y [b3]-411.1333+[4]
6233





beta-2-glycoprotein 1
K.CSYTEDAQCIDGTIE
728
695.9750+++
D [b11]-672.2476++[1]
37044


APOH_HUMAN
VPK.C


D [y8]-858.4567+[2]
18816






D [b6]-756.2505+[3]
12289






V [y3]-343.2340+[4]
11348






A [b7]-414.1474++[5]
9761






G [y7]-743.4298+[6]
8644





beta-2-glycoprotein 1
K.EHSSLAFWK.T
729
552.7773++
H [b2]-267.1088+[1]
237907


APOH_HUMAN



S [y7]-838.4458+[2]
200568






W [y2]-333.1921+[3]
101078






S [y6]-751.4137+[4]
54920






A [y4]-551.2976+[5]
52920






F [y3]-480.2605+[6]
40102






L [y5]-664.3817+[7]
30341






F [b7]-772.3624+[8]
27871






S [b3]-354.1408+[9]
27754






A [b6]-625.2940+[10]
25931





beta-2-glycoprotein 1
K.TDASDVKPC.-
730
496.7213++
D [b2]-217.0819+[1]
323810


APOH_HUMAN



P [y2]-276.1013+[2]
119128






A [y7]-776.3607+[3]
86083






S [y6]-705.3236+[4]
79262






A [b3]-288.1190+[5]
77498






D [y5]-618.2916+[6]
70501






K [y3]-404.1962+[7]
55801






V [y4]-503.2646+[8]
46217





transforming growth
K.SPYQLVLQHSR.L
731
443.2421+++
Y [y9]-572.3171++[1]
560916


factor-beta-induced



P [b2]-185.0921+[2]
413241


protein ig-h3



H [y3]-399.2099+[3]
320572


BGH3_HUMAN



L [y5]-640.3525+[4]
313309






Q [y4]-527.2685+[5]
244398






L [y7]-426.7561++[6]
215854






V [y6]-739.4209+[7]
172897






L [y7]-852.5050+[8]
164959






Q [y8]-490.7854++[9]
149814






L [y5]-320.6799++[10]
127463






L [b5]-589.2980+[11]
118061






S [y2]-262.1510+[12]
110123






V [y6]-370.2141++[13]
97399






P [y10]-
94640






620.8435++[14]






V [b6]-688.3665+[15]
87772






Q [b4]-476.2140+[16]
74203






Y [b3]-348.1554+[17]
65984






H [y3]-200.1086++[18]
55624






Q [y4]-264.1379++[19]
41606






L [b7]-801.4505+[20]
18241






V [b6]-344.6869++[21]
17678






L [b7]-401.2289++[22]
14976





transforming growth
R.VLTDELK.H
732
409.2369++
T [y5]-
937957


factor-beta-induced



605.3141+[1]


protein ig-h3



L [b2]-
298671


BGH3_HUMAN



213.1598+[2]






L [y6]-
244116






718.3981+[3]






L [y2]-
135739






260.1969+[4]






D [y4]-
52472






504.2664+[5]






E [y3]-
50839






389.2395+[6]





transforming growth
K.VISTITNNIQQIIEIED
733
897.4798+++
E [y8]-1010.4789+[1]
282865


factor-beta-induced
TFETLR.A


D [y7]-881.4363+[2]
237234


protein ig-h3



I [y9]-1123.5630+[3]
195581


BGH3_HUMAN



T [y6]-766.4094+[4]
186875






I [b2]-213.1598+[5]
174492






T [y3]-389.2507+[6]
145598






F [y5]-665.3617+[7]
143872






E [y4]-518.2933+[8]
108148






Q [b11]-
106647






606.8328++[9]






I [b5]-514.3235+[10]
82030






N [b8]-843.4571+[11]
75125






T [b4]-401.2395+[12]
71448






I [b12]-
58314






663.3748++[13]






N [b7]-365.2107++[14]
54862






I [b9]-956.5411+[15]
51034






L [y2]-288.2030+[16]
50734






S [b3]-300.1918+[17]
48708






Q [b10]-
43754






542.8035++[18]






Q [b11]-
37375






1212.6583+[19]






T [b6]-615.3712+[20]
33322






I [b9]-478.7742++[21]
29570






Q [b10]-
25817






1084.5997+[22]






T [y6]-383.7083++[23]
17187






N [b8]-422.2322++[24]
17111






I [b13]-
16661






719.9168++[25]





transforming growth
K.IPSETLNR.I
734
465.2562++
S [y6]-719.3682+[1]
326570


factor-beta-induced



P [y7]-816.4210+[2]
168951


protein ig-h3



E [y5]-632.3362+[3]
102452


BGH3_HUMAN



P [b2]-211.1441+[4]
85885






T [y4]-503.2936+[5]
67650






L [y3]-402.2459+[6]
20939






N [y2]-289.1619+[7]
13979





transforming growth
R.ILGDPEALR.D
735
492.2796++
P [y5]-585.3355+[1]
1431619


factor-beta-induced



G [y7]-757.3839+[2]
1066060


protein ig-h3



L [b2]-227.1754+[3]
742225


BGH3_HUMAN



L [y8]-870.4680+[4]
254257






D [b4]-399.2238+[5]
159932






G [b3]-284.1969+[6]
66816






D [y6]-700.3624+[7]
65780






A [y3]-359.2401+[8]
62730






E [y4]-488.2827+[9]
23711






L [y2]-288.2030+[10]
16344





transforming growth
R.DLLNNHILK.S
736
360.5451+++
L [y7]-426.2585++[1]
1488651


factor-beta-induced



L [b2]-229.1183+[2]
591961


protein ig-h3



N [y6]-369.7165++[3]
366710


BGH3_HUMAN



N [y5]-624.3828+[4]
103993






L [y2]-260.1969+[5]
75103






N [b4]-228.6263++[6]
66125






N [y6]-738.4257+[7]
49493






H [y4]-510.3398+[8]
43681






N [y5]-312.6950++[9]
41551






I [y3]-373.2809+[10]
40285






L [b3]-342.2023+[11]
33494






L [y8]-482.8006++[12]
33034





transforming growth
K.AIISNK.D
737
323.2001++
I [y4]-461.2718+[1]
99850


factor-beta-induced



I [b2]-185.1285+[2]
43105


protein ig-h3



S [y3]-348.1878+[3]
39192


BGH3_HUMAN



N [y2]-261.1557+[4]
24516





transforming growth
K.DILATNGVIHYIDELLI
738
804.1003+++
P [y5]-517.2617+[1]
400251


factor-beta-induced
PDSAK.T


I [b2]-229.1183+[2]
306709


protein ig-h3



L [b3]-342.2023+[3]
147923


BGH3_HUMAN



I [y6]-630.3457+[4]
91265






S [y3]-305.1819+[5]
61472






L [y7]-743.4298+[6]
57894






A [b4]-413.2395+[7]
52430






H [y13]-757.3985++[8]
30183






G [y16]-891.9855++[9]
27711






D [y10]-
24979






1100.5834+[10]






A [y19]-
23223






1035.0493++[11]






L [y8]-856.5138+[12]
22507






L [y20]-
16783






1091.5913++[13]





transforming growth
K.TLFELAAESDVSTAID
739
1049.5388++
D [y4]-550.2984+[1]
64464


factor-beta-induced
LFR.Q


S [y8]-922.4993+[2]
47291


protein ig-h3



S [y11]-1223.6266+[3]
44234


BGH3_HUMAN



A [b6]-675.3712+[4]
35972






L [b5]-604.3341+[5]
34997






A [b7]-746.4083+[6]
33045






E [b4]-491.2500+[7]
31744






D [y10]-1136.5946+[8]
30183






E [b8]-875.4509+[9]
26475






F [y2]-322.1874+[10]
25044






T [y7]-835.4672+[11]
21596






I [y5]-663.3824+[12]
21011






L [y3]-435.2714+[13]
20295






L [b2]-215.1390+[14]
20295






V [y9]-1021.5677+[15]
18929






A [y6]-734.4196+[16]
17694






F [b3]-362.2074+[17]
14441





transforming growth
R.QAGLGNHLSGSER.L
740
442.5567+++
G [y9]-478.7309++[1]
180677


factor-beta-induced



L [y10]-535.2729++[2]
147807


protein ig-h3



S [y5]-535.2471+[3]
129825


BGH3_HUMAN



G [y11]-563.7836++[4]
84584






L [y6]-648.3311+[5]
51642






A [b2]-200.1030+[6]
26469






G [y4]-448.2150+[7]
26397






H [y7]-393.1987++[8]
25390






A [y12]-599.3022++[9]
21434






N [y8]-450.2201++[10]
19276





transforming growth
R.LTLLAPLNSVFK.D
741
658.4028++
P [y7]-804.4614+[1]
1635673


factor-beta-induced



A [y8]-875.4985+[2]
869779


protein ig-h3



L [b3]-328.2231+[3]
516429


BGH3_HUMAN



T [b2]-215.1390+[4]
415472






L [y9]-988.5826+[5]
334225






L [b4]-441.3071+[6]
209200






L [y10]-1101.6667+[7]
174268






A [b5]-512.3443+[8]
160217






A [y8]-438.2529++[9]
83264






N [y5]-594.3246+[10]
54512






F [y2]-294.1812+[11]
51649






L [y9]-494.7949++[12]
34541






L [y6]-707.4087+[13]
34086






S [y4]-480.2817+[14]
30053






T [y11]-
16653






1202.7143+[15]





transforming growth
K.DGTPPIDAHTR.N
742
393.8633+++
P [y8]-453.7432++[1]
355240


factor-beta-induced



P [y7]-405.2169++[2]
88181


protein ig-h3



T [b3]-274.1034+[3]
81204


BGH3_HUMAN



G [b2]-173.0557+[4]
40062






D [y5]-599.2896+[5]
37689






A [y4]-242.6350++[6]
29633






P [y7]-809.4264+[7]
22153






I [y6]-712.3737+[8]
16327





transforming growth
K.YLYHGQTLETLGGK.K
743
527.2753+++
E [y6]-604.3301+[1]
483222


factor-beta-induced



Y [y12]-652.3357++[2]
264640


protein ig-h3



T [y5]-475.2875+[3]
239600


BGH3_HUMAN



G [y3]-261.1557+[4]
206272






L [b2]-277.1547+[5]
134992






L [y13]-708.8777++[6]
119379






T [b7]-863.4046+[7]
104307






L [y4]-374.2398+[8]
100344






H [y11]-570.8040++[9]
93318






L [y7]-717.4141+[10]
91276






G [b13]-
80707






717.3566++[11]






T [y8]-818.4618+[12]
57888






Q [b6]-762.3570+[13]
54766






G [y10]-
51523






1003.5419+[14]






T [b7]-432.2060++[15]
49121






G [y2]-204.1343+[16]
45518






T [y8]-409.7345++[17]
44437






L [y7]-359.2107++[18]
33028






T [b10]-
26902






603.7931++[19]






G [b5]-634.2984+[20]
21858






Q [b6]-
17595






381.6821++[21]






H [b4]-577.2769+[22]
16093






L [b8]-488.7480++[23]
15133






T [y5]-238.1474++[24]
15013






E [b9]-553.2693++[25]
12370





transforming growth
R.EGVYTVFAPTNEAFR
744
850.9176++
P [y7]-834.4104+[1]
364143


factor-beta-induced
.A


F [y9]-1052.5160+[2]
269144


protein ig-h3



A [y8]-905.4476+[3]
176007


BGH3_HUMAN



V [b3]-286.1397+[4]
107490






V [y10]-1151.5844+[5]
74822






T [b5]-550.2508+[6]
47560






V [b6]-649.3192+[7]
45398






G [b2]-187.0713+[8]
43056






Y [b4]-449.2031+[9]
33148






F [b7]-796.3876+[10]
24440






A [b8]-867.4247+[11]
24020






E [y4]-522.2671+[12]
17174






A [y3]-393.2245+[13]
14712






F [y2]-322.1874+[14]
12611





transforming growth
R.LLGDAK.E
745
308.6869++
A [y2]-218.1499+[1]
206606


factor-beta-induced



G [y4]-390.1983+[2]
204445


protein ig-h3



L [y5]-503.2824+[3]
117829


BGH3_HUMAN



L [b2]-227.1754+[4]
43998





transforming growth
K.ELANILK.Y
746
400.7475++
A [y5]-558.3610+[1]
963502


factor-beta-induced



L [y2]-260.1969+[2]
583986


protein ig-h3



N [y4]-487.3239+[3]
326252


BGH3_HUMAN



I [y3]-373.2809+[4]
302352






I [b5]-541.2980+[5]
179670






L [b2]-243.1339+[6]
74642






L [y6]-671.4450+[7]
38792






N [b4]-428.2140+[8]
14952





transforming growth
K.YHIGDEILVSGGIGAL
747
935.0151++
H [b2]-301.1295+[1]
24601


factor-beta-induced
VR.L


S [y9]-829.4890+[2]
15456


protein ig-h3


BGH3_HUMAN





transforming growth
K.YHIGDEILVSGGIGAL
747
623.6791+++
S [y9]-829.4890+[1]
917445


factor-beta-induced
VR.L


G [y5]-515.3300+[2]
654048


protein ig-h3



I [b7]-828.3886+[3]
553713


BGH3_HUMAN



G [y8]-742.4570+[4]
467481






L [b8]-941.4727+[5]
322194






G [y7]-685.4355+[6]
228428






E [b6]-715.3046+[7]
199383






V [y10]-928.5574+[8]
141616






G [b4]-471.2350+[9]
126224






L [b8]-471.2400++[10]
117080






H [b2]-301.1295+[11]
107162






I [y6]-628.4141+[12]
105488






A [y4]-458.3085+[13]
103491






L [y3]-387.2714+[14]
73094






I [b3]-414.2136+[15]
72515






S [y9]-415.2482++[16]
65044






V [b9]-1040.5411+[17]
61760






V [y2]-274.1874+[19]
56093






I [b7]-414.6980++[18]
56093






V [b9]-520.7742++[20]
39413






L [y11]-
38962






1041.6415+[21]






D [b5]-586.2620+[22]
36257






S [b10]-
32329






564.2902++[23]






I [y6]-314.7107++[24]
30526






A [b15]-
27692






741.8830++[25]






V [y10]-
26340






464.7824++[26]






L [y11]-
20415






521.3244++[27]






G [b12]-
18612






621.3117++[28]






G [b12]-
13073






1241.6161+[29]





transforming growth
K.LEVSLK.N
748
344.7156++
V [y4]-446.2973+[1]
120860


factor-beta-induced



E [y5]-575.3399+[2]
82786


protein ig-h3



E [b2]-243.1339+[3]
76794


BGH3_HUMAN



S [y3]-347.2289+[4]
36335






L [y2]-260.1969+[5]
24932





transforming growth
K.NNVVSVNK.E
749
437.2431++
V [y5]-546.3246+[1]
17073


factor-beta-induced



N [b2]-229.0931+[2]
14045


protein ig-h3


BGH3_HUMAN





transforming growth
R.GDELADSALEIFK.Q
750
704.3537++
E [b3]-302.0983+[1]
687754


factor-beta-induced



A [y9]-993.5251+[2]
431716


protein ig-h3



D [y8]-922.4880+[3]
368670


BGH3_HUMAN



D [b2]-173.0557+[4]
358545






F [y2]-294.1812+[5]
200930






L [b4]-415.1823+[6]
197364






S [y7]-807.4611+[7]
187412






I [y3]-407.2653+[8]
129601






A [b5]-486.2195+[9]
121605






E [y4]-536.3079+[10]
108432






A [y6]-720.4291+[11]
107627






L [y5]-649.3919+[12]
95662






L [y10]-
79325






1106.6092+[13]






D [b6]-601.2464+[14]
42625






A [b8]-759.3155+[15]
28647






S [b7]-688.2784+[16]
20709





transforming growth
K.QASAFSR.A
751
383.6958++
F [y3]-409.2194+[1]
64604


factor-beta-induced



S [y5]-567.2885+[2]
60496


protein ig-h3



S [y2]-262.1510+[3]
42825


BGH3_HUMAN



A [y4]-480.2565+[4]
25211





transforming growth
R.LAPVYQK.L
752
409.7422++
P [y5]-634.3559+[1]
416225


factor-beta-induced



Y [y3]-438.2347+[2]
171715


protein ig-h3



V [y4]-537.3031+[3]
98187


BGH3_HUMAN



Q [y2]-275.1714+[4]
42056






A [y6]-705.3930+[5]
32429





ceruloplasmin
K.LISVDTEHSNIYLQNG
753
724.3624+++
I [b2]-227.1754+[1]
168111


CERU_HUMAN
PDR.I


N [y5]-558.2630+[2]
87133






G [y4]-444.2201+[3]
86682






L [y7]-799.4057+[4]
84956






Q [y6]-686.3216+[5]
79928






Y [y8]-962.4690+[6]
64167






S [b3]-314.2074+[7]
39476






N [y10]-1189.5960+[8]
24691






P [y3]-387.1987+[9]
22065






I [y18]-
20714






1029.4980++[10]






N [b10]-
18087






1096.5269+[11]






I [y9]-1075.5531+[12]
15460





ceruloplasmin
K.ALYLQYTDETFR.T
754
760.3750++
Y [b3]-348.1918+[1]
681082


CERU_HUMAN



Y [y7]-931.4156+[2]
405797






Q [y8]-1059.4742+[3]
343430






T [y6]-768.3523+[4]
279638






L [b2]-185.1285+[5]
229654






L [y9]-1172.5582+[6]
164660






L [b4]-461.2758+[7]
142145






D [y5]-667.3046+[8]
107547






Y [y10]-668.3144++[9]
91862






E [y4]-552.2776+[10]
76852






Q [b5]-589.3344+[11]
75200






T [y3]-423.2350+[12]
64168






F [y2]-322.1874+[13]
47807






Y [b6]-752.3978+[14]
40377






L [y9]-586.7828++[15]
40227





ceruloplasmin
R.TTIEKPVWLGFLGPII
755
956.5690++
E [b4]-445.2293+[1]
92012


CERU_HUMAN
K.A


K [b5]-573.3243+[2]
45856






L [y9]-957.6132+[3]
32272






G [y8]-844.5291+[4]
29044






K [y13]-734.4579++[5]
26118






G [y5]-527.3552+[6]
24917






L [y6]-640.4392+[7]
19738






I [b3]-316.1867+[8]
18838






P [y4]-470.3337+[9]
18012






W [y10]-
17412






1143.6925+[10]






I [y15]-
14785






855.5213++[11]






V [b7]-769.4454+[12]
14710





ceruloplasmin
R.TTIEKPVWLGFLGPII
755
638.0484+++
G [y8]-844.5291+[1]
1645779


CERU_HUMAN
K.A


G [y5]-527.3552+[2]
1180842






L [y6]-640.4392+[3]
920117






T [b2]-203.1026+[4]
775570






F [y7]-787.5076+[5]
416229






P [y4]-470.3337+[6]
285341






W [b8]-955.5247+[7]
275960






I [y2]-260.1969+[8]
256597






V [b7]-769.4454+[9]
230104






E [b4]-445.2293+[10]
117754






W [b8]-
105521






478.2660++[11]






P [y12]-
104020






670.4105++[13]






P [b6]-670.3770+[12]
104020






G [b10]-
93363






1125.6303+[14]






F [y7]-394.2575++[15]
76176






K [b5]-573.3243+[16]
63718






I [b3]-316.1867+[17]
52986






L [b9]-1068.6088+[18]
33548






I [y3]-373.2809+[19]
20864





ceruloplasmin
K.VYVHLK.N
756
379.7316++
V [y4]-496.3242+[1]
228979


CERU_HUMAN



Y [y5]-659.3875+[2]
196857






H [y3]-397.2558+[3]
89610






Y [b2]-263.1390+[4]
88034






L [y2]-260.1969+[5]
85482






Y [y5]-330.1974++[6]
31821





ceruloplasmin
R.IYHSHIDAPK.D
757
590.8091++
H [y8]-452.7354++[1]
167209


CERU_HUMAN



P [y2]-244.1656+[2]
84831






A [y3]-315.2027+[3]
78036






S [y7]-767.4046+[4]
75864






H [b3]-414.2136+[5]
67808






Y [y9]-534.2671++[6]
50296






H [y8]-904.4635+[7]
42801






D [b7]-866.4155+[8]
28721






H [y6]-680.3726+[9]
23817






A [b8]-937.4526+[10]
19964






D [y4]-430.2296+[11]
17653






Y [b2]-277.1547+[12]
16742





ceruloplasmin
R.IYHSHIDAPK.D
757
394.2085+++
H [y8]-452.7354++[1]
402227


CERU_HUMAN



Y [y9]-534.2671++[2]
305348






P [y2]-244.1656+[5]
101993






A [y3]-315.2027+[3]
97580






Y [b2]-277.1547+[4]
93377






D [y4]-430.2296+[6]
89734






S [y7]-767.4046+[7]
88263






S [y7]-384.2060++[8]
60663






I [y5]-543.3137+[9]
44692






H [y6]-680.3726+[11]
38528






A [b8]-469.2300++[10]
37547






H [b5]-638.3045+[12]
36146






H [b3]-414.2136+[13]
23467





ceruloplasmin
R.HYYIAAEEIIWNYAPS
758
905.4549+++
P [y9]-977.5302+[1]
253794


CERU_HUMAN
GIDIFTK.E


E [b8]-977.4363+[2]
233479






Y [b2]-301.1295+[3]
128823






I [b9]-1090.5204+[4]
103955






A [y10]-1048.5673+[5]
78247






P [y9]-489.2687++[6]
76005






E [b8]-489.2218++[7]
76005






I [b10]-1203.6045+[8]
56671






F [y3]-395.2289+[9]
49456






Y [b3]-464.1928+[10]
46864






E [b7]-848.3937+[11]
44622






A [b5]-648.3140+[12]
42451






A [b6]-719.3511+[13]
40629






I [b4]-577.2769+[14]
39999






D [y5]-623.3399+[15]
29631






I [y4]-508.3130+[16]
28581






T [y2]-248.1605+[17]
27040






I [b10]-
24448






602.3059++[18]






Y [y11]-
24238






1211.6307+[19]






G [y7]-793.4454+[20]
21926






W [b11]-
18704






695.3455++[21]






S [y8]-880.4775+[22]
18633





ceruloplasmin
R.IGGSYK.K
759
312.6712++
G [y5]-511.2511+[1]
592392


CERU_HUMAN



G [y4]-454.2296+[2]
89266






G [b2]-171.1128+[3]
71261






Y [y2]-310.1761+[4]
52498






S [y3]-397.2082+[5]
22364





ceruloplasmin
R.EYTDASFTNR.K
760
602.2675++
S [y5]-624.3100+[1]
163623


CERU_HUMAN



F [y4]-537.2780+[2]
83580






T [y8]-911.4217+[3]
83391






A [y6]-695.3471+[4]
82886






D [y7]-810.3741+[5]
76315






T [y3]-390.2096+[6]
66018






Y [b2]-293.1132+[7]
50224






N [y2]-289.1619+[8]
29376





ceruloplasmin
R.GPEEEHLGILGPVIW
761
829.7675+++
A [y8]-860.4472+[1]
259776


CERU_HUMAN
AEVGDTIR.V


W [y9]-1046.5265+[2]
210032






E [y7]-789.4101+[3]
201448






G [y5]-561.2991+[4]
189809






V [y6]-660.3675+[5]
121142






T [y3]-389.2507+[6]
80306






P [b2]-155.0815+[7]
65806






V [b13]-664.8459++[8]
65676






G [b11]-1132.5633+[9]
64765






I [y10]-
58783






1159.6106+[10]






L [b10]-
56702






1075.5419+[11]






I [b9]-962.4578+[12]
54101






L [b7]-792.3523+[13]
48509






P [b12]-
37715






615.3117++[14]






D [y4]-504.2776+[15]
34528






G [b8]-849.3737+[16]
34008






I [b14]-
23669






721.3879++[17]






H [b6]-679.2682+[18]
22174






W [b15]-
21979






814.4276++[19]






E [b3]-284.1241+[20]
18272






G [b11]-
17882






566.7853++[21]






A [b16]-
15476






849.9461++[22]





ceruloplasmin
R.VTFHNK.G
762
373.2032++
T [y5]-646.3307+[1]
178952


CERU_HUMAN



F [y4]-545.2831+[2]
175829






T [b2]-201.1234+[3]
127758






N [y2]-261.1557+[4]
107852






H [y3]-398.2146+[5]
103754





ceruloplasmin
K.GAYPLSIEPIGVR.F
763
686.3852++
S [y8]-870.5043+[1]
970541


CERU_HUMAN



P [y5]-541.3457+[2]
966508






P [y10]-1080.6412+[3]
590391






E [y6]-670.3883+[4]
493076






I [y7]-783.4723+[5]
391013






Y [b3]-292.1292+[6]
265598






L [y9]-983.5884+[7]
217591






P [b4]-389.1819+[8]
188839






S [b6]-589.2980+[9]
95623






G [y3]-331.2088+[10]
85605






L [b5]-502.2660+[11]
76628






V [y2]-274.1874+[12]
52365






I [b7]-702.3821+[13]
39225






E [b8]-831.4247+[14]
26866





ceruloplasmin
K.NNEGTYYSPNYNPQ
764
952.4139++
P [y4]-487.2623+[1]
37339


CERU_HUMAN
SR.S


S [y9]-1062.4963+[2]
33696






P [y8]-975.4643+[3]
29467






N [y5]-601.3052+[4]
24068






N [b2]-229.0931+[5]
19060






Y [y10]-1225.5596+[6]
16718






E [b3]-358.1357+[7]
16523





ceruloplasmin
R.SVPPSASHVAPTETF
765
844.4199+++
P [y2]-244.1656+[1]
579331


CERU_HUMAN
TYEWTVPK.E


T [y8]-1023.5146+[2]
126817






W [y5]-630.3610+[3]
101524






V [y3]-343.2340+[4]
99970






Y [y7]-922.4669+[5]
95448






E [y6]-759.4036+[6]
88030






T [y4]-444.2817+[7]
55884






F [y9]-1170.5830+[8]
55743






V [b2]-187.1077+[9]
46982






P [y20]-
37303






1124.5497++[10]






P [b3]-284.1605+[11]
21690






E [b18]-
18652






951.4494++[12]






P [b4]-381.2132+[13]
16956






T [b14]-
15543






681.3384++[14]





ceruloplasmin
K.GSLHANGR.Q
766
271.1438+++
L [y6]-334.1854++[1]
154779


CERU_HUMAN



A [y4]-417.2205+[2]
41628






S [y7]-377.7014++[3]
35762






H [y5]-277.6433++[4]
29542





ceruloplasmin
R.QSEDSTFYLGER.T
767
716.3230++
G [y3]-361.1830+[1]
157040


CERU_HUMAN



Y [y5]-637.3304+[2]
126155






F [y6]-784.3988+[3]
97814






L [y4]-474.2671+[4]
80146






T [y7]-443.2269++[5]
70746






T [y7]-885.4465+[6]
54844






S [y8]-972.4785+[7]
44101






S [b2]-216.0979+[8]
42193






D [y9]-1087.5055+[9]
36186






E [y10]-
35055






1216.5481+[10]






E [b3]-345.1405+[11]
20778






E [y2]-304.1615+[12]
19153





ceruloplasmin
R.TYYIAAVEVEWDYSP
768
1045.4969++
P [y3]-400.2303+[1]
64887


CERU_HUMAN
QR.E


Y [b3]-428.1816+[2]
49716






S [y4]-487.2623+[3]
37369






Y [b2]-265.1183+[4]
35596






E [y8]-1080.4745+[5]
28569






W [y7]-951.4319+[6]
26204






V [b7]-782.4083+[7]
23577






A [b6]-683.3399+[8]
23512






V [y9]-1179.5429+[10]
22526






D [y6]-765.3526+[9]
22526






Y [y5]-650.3257+[11]
19965






A [b5]-612.3028+[12]
18520





ceruloplasmin
K.ELHHLQEQNVSNAF
769
674.6728+++
N [y6]-707.3723+[1]
22715


CERU_HUMAN
LDK.G


L [y3]-188.1155++[2]
21336






S [y7]-794.4043+[3]
10176





ceruloplasmin
K.GEFYIGSK.Y
770
450.7267++
E [b2]-187.0713+[1]
53262


CERU_HUMAN



F [y6]-714.3821+[2]
50438






I [y4]-404.2504+[3]
39602






Y [y5]-567.3137+[4]
34020






G [y3]-291.1663+[5]
33100





ceruloplasmin
R.QYTDSTFR.V
771
509.2354++
T [y6]-726.3417+[1]
164056


CERU_HUMAN



S [y4]-510.2671+[2]
155584






D [y5]-625.2940+[3]
136472






T [y3]-423.2350+[4]
54313






F [y2]-322.1874+[5]
47220






Y [b2]-292.1292+[6]
27846






Y [y7]-889.4050+[7]
16550





ceruloplasmin
K.AEEEHLGILGPQLHA
772
710.0272+++
E [b2]-201.0870+[1]
60743


CERU_HUMAN
DVGDK.V


V [y4]-418.2296+[2]
23296






E [y17]-899.9759++[3]
14619





ceruloplasmin
K.LEFALLFLVFDENES
773
945.1372+++
L [y6]-359.1925++[1]
19544


CERU_HUMAN
WYLDDNIK.T


L [b5]-574.3235+[2]
17902





ceruloplasmin
K.TYSDHPEK.V
774
488.7222++
S [y6]-712.3260+[1]
93810


CERU_HUMAN



P [y3]-373.2082+[2]
43778






Y [b2]-265.1183+[3]
35960






H [y4]-510.2671+[4]
16651





ceruloplasmin
K.TYSDHPEK.V
774
326.1505+++
S [y6]-356.6667++[1]
539251


CERU_HUMAN



Y [y7]-438.1983++[2]
180506






Y [b2]-265.1183+[3]
109445






P [y3]-373.2082+[4]
84742






H [y4]-255.6372++[5]
27596






P [y3]-187.1077++[6]
25016






D [y5]-625.2940+[7]
24000






H [y4]-510.2671+[8]
20795





hepatocyte growth factor
R.YEYLEGGDR.W
775
551.2460++
E [b2]-293.1132+[1]
229354


activator



Y [y7]-809.3788+[2]
204587


HGFA_HUMAN



L [y6]-646.3155+[3]
96740






Y [b3]-456.1765+[4]
54186






E [y8]-938.4214+[5]
22065





hepatocyte growth factor
R.VQLSPDLLATLPEPA
776
981.0387++
P [y8]-810.4104+[1]
51109


activator
SPGR.Q


Q [b2]-228.1343+[2]
19063


HGFA_HUMAN





hepatocyte growth factor
R.TTDVTQTFGIEK.Y
777
670.3406++
D [b3]-318.1296+[1]
104844


activator



T [y8]-923.4833+[2]
93287


HGFA_HUMAN



T [b2]-203.1026+[3]
72498






D [y10]-1137.5786+[4]
53886






I [y3]-389.2395+[5]
53811






Q [y7]-822.4356+[6]
42253






V [b4]-417.1980+[7]
38726






T [y6]-694.3770+[8]
36474






F [y5]-593.3293+[9]
26793






E [y2]-276.1554+[10]
24616






G [y4]-446.2609+[11]
22215






V [y9]-1022.5517+[12]
20564





hepatocyte growth factor
R.EALVPLVADHK.C
778
596.3402++
P [y7]-779.4410+[1]
57992


activator



L [b3]-314.1710+[2]
42740


HGFA_HUMAN





hepatocyte growth factor
R.EALVPLVADHK.C
778
397.8959+++
P [y7]-390.2241++[1]
502380


activator



V [y5]-569.3042+[2]
108586


HGFA_HUMAN



V [y8]-439.7584++[3]
100001






H [y2]-284.1717+[4]
71234






L [y9]-496.3004++[5]
65572






A [y4]-470.2358+[6]
62284





hepatocyte growth factor
R.LHKPGVYTR.V
779
357.5417+++
P [y6]-692.3726+[1]
104812


activator



H [y8]-479.2669++[2]
49302


HGFA_HUMAN



K [y7]-410.7374++[3]
30859






Y [y3]-439.2300+[4]
23829





hepatocyte growth factor
R.VANYVDWINDR.I
780
682.8333++
D [y6]-818.3791+[1]
132314


activator



V [y7]-917.4476+[2]
81805


HGFA_HUMAN



N [b3]-285.1557+[3]
70622






W [y5]-703.3522+[4]
53586






N [y3]-404.1888+[5]
37675






A [b2]-171.1128+[6]
36474





alpha-1-antichymotrypsin
R.GTHVDLGLASANVD
583
1113.0655++
L [b6]-
244118


AACT_HUMAN
FAFSLYK.Q


623.3148+[1]






L [b8]-
211429






793.4203+[2]






H [b3]-
204581






296.1353+[3]






D [b5]-
200032






510.2307+[4]






S [y4]-
195904






510.2922+[5]






V [b4]-
187415






395.2037+[6]






A [b9]-
167905






864.4574+[7]






G [b7]-
87564






680.3362+[8]






Y [y2]-
74385






310.1761+[9]






F [y7]-
50794






875.4662+[10]






F [y5]-
44462






657.3606+[11]






S [b10]-
43899






951.4894+[12]






D [y8]-
39866






990.4931+[13]






A [y6]-
33300






728.3978+[14]






A [b11]-
32502






1022.5265+[15]






L [y3]-
29829






423.2602+[16]






V [y9]-
22043






1089.5615+[17]






N [b12]-
17353






1136.5695+[18]





alpha-1-antichymotrypsin
R.GTHVDLGLASANVD
583
742.3794+++
D [y8]-
830612


AACT_HUMAN
FAFSLYK.Q


990.4931+[1]






L [b8]-
635646






793.4203+[2]






G [b7]-
582273






680.3362+[3]






S [y4]-
548645






510.2922+[4]






D [b5]-
471071






510.2307+[5]






F [y7]-
420278






875.4662+[6]






A [b9]-
411366






864.4574+[7]






A [y6]-
391668






728.3978+[8]






Y [y2]-
390214






310.1761+[9]






F [y5]-
358134






657.3606+[10]






T [b2]-
288721






159.0764+[11]






H [b3]-
251998






296.1353+[12]






L [b6]-
240742






623.3148+[13]






V [y9]-
197218






1089.5615+[14]






V [b4]-
186055






395.2037+[15]






L [y3]-
173673






423.2602+[16]






S [b10]-
103651






951.4894+[17]






N [b12]-
97976






1136.5695+[18]






A [b11]-
76448






1022.5265+[19]





alpha-1-antichymotrypsin
K.FNLTETSEAEIHQSFQ
781
800.7363+++
A [b9]-
75792


AACT_HUMAN
HLLR.T


993.4524+[1]






L [b3]-
59001






375.2027+[2]






H [y9]-
57829






1165.6225+[3]






L [y2]-
55343






288.2030+[4]






T [b4]-
19323






476.2504+[5]





alpha-1-antichymotrypsin
K.EQLSLLDR.F
782
487.2693++
S [y5]-
4247034


AACT_HUMAN



603.3461+[1]






L [y3]-
2094711






403.2300+[2]






L [y6]-
1465135






716.4301+[3]






L [y4]-
1365427






516.3140+[4]






Q [b2]-
1222196






258.1084+[5]






D [y2]-
957403






290.1459+[6]






L [b3]-
114810






371.1925+[7]





alpha-1-antichymotrypsin
K.EQLSLLDR.F
782
325.1819+++
L [y3]-
57123


AACT_HUMAN



403.2300+[1]






D [y2]-
52105






290.1459+[2]





alpha-1-antichymotrypsin
K.YTGNASALFILPDQD
783
876.9438++
L [y9]-
39933


AACT_HUMAN
K.M


1088.5986+[1]






A [b5]-
20117






507.2198+[2]






D [y4]-
19937






505.2253+[3]





alpha-1-antichymotrypsin
R.EIGELYLPK.F
784
531.2975++
P [y2]-
8170395


AACT_HUMAN



244.1656+[1]






G [y7]-
3338199






819.4611+[2]






L [y5]-
2616703






633.3970+[3]






L [y3]-
1922561






357.2496+[4]






Y [y4]-
1527792






520.3130+[5]






G [b3]-
1417240






300.1554+[6]






I [b2]-
1097654






243.1339+[7]






E [y6]-
302412






762.4396+[8]






E [b4]-429.1980+[9]
81633






Y [b6]-705.3454+[10]
36795






L [b5]-542.2821+[11]
31993





alpha-1-antichymotrypsin
R.EIGELYLPK.F
784
354.5341+++
P [y2]-
189758


AACT_HUMAN



244.1656+[1]






L [y3]-
86952






357.2496+[2]






G [b3]-
49661






300.1554+[3]






Y [y4]-
45518






520.3130+[4]






E [b4]-
19576






429.1980+[5]






I [b2]-
18375






243.1339+[6]






L [b5]-
13091






542.2821+[7]





alpha-1-antichymotrypsin
R.DYNLNDILLQLGIEEA
785
1148.5890++
G [y9]-
378153


AACT_HUMAN
FTSK.A


981.4888+[1]






F [b17]-
378153






981.4964++[2]






N [b3]-
338897






393.1405+[3]






L [y10]-
283255






1094.5728+[4]






E [y7]-
180253






811.3832+[5]






I [b7]-
172510






848.3785+[6]






T [y3]-
162966






335.1925+[7]






D [b6]-
135235






735.2944+[8]






L [b4]-
131573






506.2245+[9]






A [y5]-
129232






553.2980+[10]






F [y4]-
124490






482.2609+[11]






Y [b2]-
115367






279.0975+[12]






L [b9]-
106363






1074.5466+[13]






L [b8]-
101621






961.4625+[14]






E [y6]-
98740






682.3406+[15]






S [y2]-
75991






234.1448+[16]






N [b5]-
66387






620.2675+[17]






I [y8]-
61465






924.4673+[18]





alpha-1-antichymotrypsin
R.DYNLNDILLQLGIEEA
785
766.0618+++
G [y9]-
309485


AACT_HUMAN
FTSK.A


981.4888+[1]






F [b17]-
309485






981.4964++[2]






E [y7]-
262306






811.3832+[3]






N [b3]-
212306






393.1405+[4]






T [y3]-
199100






335.1925+[5]






F [y4]-
164346






482.2609+[6]






A [y5]-
161405






553.2980+[7]






Y [b2]-
149220






279.0975+[8]






E [y6]-
138836






682.3406+[9]






L [y10]-
137336






1094.5728+[10]






S [y2]-
134094






234.1448+[11]






I [b7]-
80072






848.3785+[12]






I [y8]-
77791






924.4673+[13]






L [b4]-
70889






506.2245+[14]






D [b6]-
64706






735.2944+[15]






L [b8]-
51201






961.4625+[16]






N [b5]-
42677






620.2675+[17]






L [b9]-
21609






1074.5466+[18]





alpha-1-antichymotrypsin
K.ADLSGITGAR.N
786
480.7591++
S [y7]-
4360743


AACT_HUMAN



661.3628+[1]






G [y6]-
3966462






574.3307+[2]






T [y4]-
1937824






404.2252+[3]






D [b2]-
799907






187.0713+[4]






G [y3]-
647883






303.1775+[5]






I [Y5]-
612145






517.3093+[6]






L [b3]-
606995






300.1554+[7]






S [b4]-
544408






387.1874+[8]






L [y8]-
348247






774.4468+[9]






G [b5]-
232083






444.2089+[10]






I [b6]-
132531






557.2930+[11]






A [y2]-
113896






246.1561+[12]





alpha-1-antichymotrypsin
K.ADLSGITGAR.N
786
320.8418+++
T [y4]-
218597


AACT_HUMAN



404.2252+[1]






G [y3]-
159381






303.1775+[2]






G [b5]-
46527






444.2089+[3]






A [y2]-
26911






246.1561+[4]






D [b2]-
22497






187.0713+[5]






S [b4]-
14589






387.1874+[6]





alpha-1-antichymotrypsin
R.NLAVSQVVHK.A
132
547.8195++
L [b2]-
1872233


AACT_HUMAN



228.1343+[1]






A [y8]-
1133381






867.5047+[2]






A [b3]-
1126331






299.1714+[3]






V [y7]-
672341






796.4676+[4]






S [y6]-
650028






697.3991+[5]






H [y2]-
582720






284.1717+[6]






V [y3]-
211547






383.2401+[7]






V [b4]-
163917






398.2398+[8]






Q [y5]-
100778






610.3671+[9]






V [y4]-
88456






482.3085+[10]






S [b5]-
64488






485.2718+[11]






V [b7]-
36045






712.3988+[12]





alpha-1-antichymotrypsin
R.NLAVSQVVHK.A
132
365.5487+++
L [b2]-
1175923


AACT_HUMAN



228.1343+[1]






V [y3]-
593693






383.2401+[2]






S [y6]-
587502






697.3991+[3]






H [y2]-
440259






284.1717+[4]






V [y4]-
375955






482.3085+[5]






Q [y5]-
349044






610.3671+[6]






A [b3]-
339236






299.1714+[7]






V [b4]-
172805






398.2398+[8]






S [b5]-
84594






485.2718+[9]





alpha-1-antichymotrypsin
K.AVLDVFEEGTEASAA
787
954.4835++
D [b4]-
1225699


AACT_HUMAN
TAVK.I


399.2238+[1]






G [y11]-
812780






1005.5211+[2]






V [b5]-
741243






498.2922+[3]






E [y12]-
651070






1134.5637+[4]






V [b2]-
634335






171.1128+[5]






A [y8]-
416106






718.4094+[6]






S [y7]-
360507






647.3723+[7]






F [b6]-
293935






645.3606+[8]






T [y4]-
281736






418.2660+[9]






E [y9]-
247592






847.4520+[10]






A [y3]-
246550






317.2183+[11]






E [b7]-
234044






774.4032+[12]






T [y10]-
221478






948.4997+[13]






A [y6]-
212344






560.3402+[14]






A [y5]-
195364






489.3031+[15]






E [b8]-
183901






903.4458+[16]






L [b3]-
176116






284.1969+[17]






V [y2]-
157419






246.1812+[18]






T [b10]-
52841






1061.5150+[19]






E [b11]-
34757






1190.5576+[20]






G [b9]-
25807






960.4673+[21]





alpha-1-antichymotrypsin
K.AVLDVFEEGTEASAA
787
636.6581+++
V [b2]-
659591


AACT_HUMAN
TAVK.I


171.1128+[1]






S [y7]-
630596






647.3723+[2]






A [y8]-
509467






718.4094+[3]






D [b4]-
353335






399.2238+[4]






A [y6]-
306747






560.3402+[5]






A [y5]-
280878






489.3031+[6]






E [y9]-
247347






847.4520+[7]






T [y4]-
197203






418.2660+[8]






A [y3]-
128853






317.2183+[9]






V [b5]-
120271






498.2922+[10]






V [y2]-
115428






246.1812+[11]






L [b3]-
102984






284.1969+[12]






G [y11]-
91215






1005.5211+[13]






F [b6]-
79016






645.3606+[14]






E [y12]-
72947






1134.5637+[15]






E [b7]-
58358






774.4032+[16]






T [y10]-
41071






948.4997+[17]






E [b8]-
32918






903.4458+[18]






G [b9]-
24275






960.4673+[19]





alpha-1-antichymotrypsin
K.ITLLSALVETR.T
130
608.3690++
S [y7]-
7387615


AACT_HUMAN



775.4308+[1]






T [b2]-
3498457






215.1390+[2]






L [y8]-
2684639






888.5149+[3]






L [b3]-
2164246






328.2231+[4]






A [y6]-
2045853






688.3988+[5]






L [y5]-
2027311






617.3617+[6]






L [y9]-
1949318






1001.5990+[7]






V [y4]-
1598519






504.2776+[8]






T [y2]-
1416847






276.1666+[9]






E [y3]-
967259






405.2092+[10]






A [b6]-
579420






599.3763+[11]






L [b4]-
431556






441.3071+[12]






S [b5]-
107634






528.3392+[13]






L [b7]-712.4604+[14]
71104






V [b8]-811.5288+[15]
24197





alpha-1-antichymotrypsin
K.ITLLSALVETR.T
130
405.9151+++
E [y3]-
738128


AACT_HUMAN



405.2092+[1]






T [y2]-
368830






276.1666+[2]






V [y4]-
328133






504.2776+[3]






A [b6]-
132469






599.3763+[4]






T [b2]-
126898






215.1390+[5]






L [y5]-
124559






617.3617+[6]






S [y7]-
54263






775.4308+[7]






L [b3]-
37891






328.2231+[8]






A [y6]-
29853






688.3988+[9]






L [b4]-
25558






441.3071+[10]






L [b7]-
13353






712.4604+[11]






S [b5]-
12290






528.3392+[12]





Pigment epithelium-
K.LAAAVSNFGYDLYR.V
788
780.3963++
D [b11]-
136227


derived factor



1109.5262+[1]


PEDF_HUMAN*



F [b8]-
61248






774.4145+[2]






N [b7]-
55532






314.1767++[3]






A [y12]-
53268






1375.6641+[4]






V [b5]-
35818






213.6392++[5]






L [b12]-
34918






1222.6103+[6]






G [b9]-
33934






831.4359+[7]






Y [b10]-
32923






994.4993+[8]






G [b9]-
32650






416.2216++[9]






V [b5]-
15646






426.2711+[10]






A [b2]-
14964






185.1285+[11]






D [b11]-
13922






555.2667++[12]






L [y3]-
13027






226.1368++[13]






A [b4]-
12782






327.2027+[14]






A [y12]-
12446






688.3357++[15]






V [y10]-
12400






1233.5899+[16]






A [y11]-
10793






652.8171++[17]





Pigment epithelium-
K.LAAAVSNFGYDLYR.V
788
520.5999+++
G [y6]-
42885


derived factor



786.3781+[1]


PEDF_HUMAN*



D [y4]-
32080






566.2933+[2]






V [y5]-
17494






729.3566+[3]






L [y3]-
12304






451.2663+[5]






Y [y2]-
7780






338.1823+[6]





Pigment epithelium-
R.ALYYDLISSPDIHGTY
789
652.6632+++
Y [y15]-
12278


derived factor
K.E


886.4305++[1]


PEDF_HUMAN*



L [b2]-
7601






185.1285+[2]






S [y10]-
7345






1104.5320+[3]






Y [y14]-
5976






804.8988++[4]





Pigment epithelium-
K.ELLDTVTAPQK.N
790
607.8350++
T [y5]-
59670


derived factor



272.6581++[1]


PEDF_HUMAN*



Q [y2]-
11954






275.1714+[2]





Pigment epithelium-
K.ELLDTVTAPQK.N
790
405.5591+++
L [b2]-
16428


derived factor



243.1339+[1]


PEDF_HUMAN*



T [b7]-
7918






386.7080++[2]






Q [y2]-
7043






275.1714+[3]






T [y5]-
5237






272.6581++[4]





Pigment epithelium-
K.SSFVAPLEK.S
791
489.2687++
A [y5]-
20068


derived factor



557.3293+[1]


PEDF_HUMAN*



A [y5]-
5059






279.1683++[2]






S [b2]-
4883






175.0713+[3]





Pigment epithelium-
K.SSFVAPLEK.S
791
326.5149+++
A [y5]-
70240


derived factor



279.1683++[1]


PEDF_HUMAN*



A [y5]-
63329






557.3293+[2]






S [b2]-
39662






175.0713+[3]






L [b7]-
5393






351.6947++[4]





Pigment epithelium-
K.EIPDEISILLLGVAHFK
792
632.0277+++
P [y15]-
37871


derived factor
.G


826.4745++[1]


PEDF_HUMAN*



G [y6]-
20077






658.3671+[2]






L [y7]-
8952






771.4512+[3]





Pigment epithelium-
K.TSLEDFYLDEER.T
793
758.8437++
R [y1]-
8206


derived factor



175.1190+[1]


PEDF_HUMAN*



D [b9]-
4591






1084.4833+[2]






F [b6]-
4498






693.3090+[3]





Pigment epithelium-
K.TSLEDFYLDEER.T
793
506.2316+++
F [b6]-693.3090+[1]
3526


derived factor



D [y4]-548.2311+[2]
3208


PEDF_HUMAN*





Pigment epithelium-
K.VTQNLTLIEESLTSEFI
794
858.4413+++
T [b13]-
11072


derived factor
HDIDR.E


721.8905++[1]


PEDF_HUMAN*



T [y17]-
8442






1009.5075++[2]






D [y4]-
6522






518.2569+[3]





Pigment epithelium-
K.TVQAVLTVPK.L
795
528.3266++
Q [y8]-
83536


derived factor



855.5298+[1]


PEDF_HUMAN*



V [b2]-
64729






201.1234+[2]






A [b4]-
58198






200.6132++[3]






P [y2]-
43347






244.1656+[4]






Q [y8]-
38398






428.2686++[5]






A [y7]-
33770






727.4713+[6]






Q [b3]-
17809






329.1819+[7]






L [y5]-
17518






557.3657+[8]






V [y6]-
17029






656.4341+[9]






V [y6]-
15839






328.7207++[10]






T [y4]-
13859






444.2817+[11]






V [y3]-343.2340+[12]
10717






A [b4]-400.2191+[13]
9695





Pigment epithelium-
K.TVQAVLTVPK.L
795
352.5535+++
P [y2]-
8295


derived factor



244.1656+[1]


PEDF_HUMAN*



T [y4]-
2986






444.2817+[2]






A [b4]-
2848






400.2191+[3]





Pigment epithelium-
K.LSYEGEVTK.S
796
513.2611++
V [b7]-
60831


derived factor



389.6845++[1]


PEDF_HUMAN*



E [b6]-
34857






679.2933+[2]






Y [y7]-
10075






413.2031++[3]






V [b7]-
8920






778.3618+[4]






Y [b3]-
8008






364.1867+[5]





Pigment epithelium-
K.LQSLFDSPDFSK.I
797
692.3432++
S [y2]-
49594


derived factor



234.1448+[1]


PEDF_HUMAN*



L [y9]-
48160






1055.5044+[2]






P [b8]-
23566






888.4462+[3]






S [b7]-
13766






791.3934+[4]






P [y5]-
12305






297.1501++[5]






P [y5]-
10702






593.2930+[6]






F [b5]-
8929






589.3344+[7]






D [b9]-
8742






1003.4731+[8]





Pigment epithelium-
K.LQSLFDSPDFSK.I
797
461.8979+++
P [y5]-
9154


derived factor



593.2930+[1]


PEDF_HUMAN*



P [y5]-
5479






297.1501++[2]





Pigment epithelium-
R.DTDTGALLFIGK.I
798
625.8350++
G [y2]-
32092


derived factor



204.1343+[1]


PEDF_HUMAN*



G [y8]-
29707






818.5135+[2]






T [b2]-
28172






217.0819+[4]






T [b4]-
28172






217.0819++[3]






F [y4]-
22160






464.2867+[5]






D [y10]-
20267






1034.5881+[6]






T [y9]-
17083






919.5611+[7]






L [y6]-
14854






690.4549+[8]






L [y5]-
12349






577.3708+[9]






T [b4]-
11773






433.1565+[10]






I [y3]-
11575






317.2183+[11]






D [b3]-332.1088+[12]
8968






A [y7]-761.4920+[13]
8598





*Transition scan on Agilent 6490






Example 4
Study III to Identify and Confirm Preeclampsia Biomarkers

A further hypothesis-dependent study was performed using essentially the same methods described in the preceding Examples unless noted below. The scheduled MRM assay used in Examples 1 and 2 but now augmented with newly discovered analytes from the Example 3 and related studies was used. Less robust transitions (from the original 1708 described in Example 1) were removed to improve analytical performance and make room for the newly discovered analytes.


Thirty subjects with preeclampsia who delivered preterm (<37 weeks 0 days) were selected for analyses. Twenty-three subjects were available with isolated preeclampsia; thus, eight subjects were selected with additional findings as follows: 5 subjects with gestational diabetes, one subject with pre-existing type 2 diabetes, and one subject with chronic hypertension. Subjects were classified as having severe preeclampsia if it was indicated in the Case Report Form as severe or if the pregnancy was complicated by HELLP syndrome. All other cases were classified as mild preeclampsia. Cases were matched to term controls (>/=37 weeks 0 days) without preeclampsia at a 2:1 control-to-case ratio.


The samples were processed in 4 batches with each containing 3 HGS controls. All serum samples were depleted of the 14 most abundant serum proteins using MARS14 (Agilent), digested with trypsin, desalted, and resolubilized with reconstitution solution containing 5 internal standard peptides as described in previous examples.


The LC-MS/MS analysis was performed with an Agilent Poroshell 120 EC-C18 column (2.1×50 mm, 2.7 μm) at a flow rate of 400 μl/min and eluted with an acetonitrile gradient into an AB Sciex QTRAP5500 mass spectrometer. The sMRM assay measured 750 transitions that correspond to 349 peptides and 164 proteins. Chromatographic peaks were integrated using MultiQuant™ software (AB Sciex).


Transitions were excluded from analysis if they were missing in more than 20% of the samples. Log transformed peak areas for each transition were corrected for run order and batch effects by regression. The ability of each analyte to separate cases and controls was determined by calculating univariate AUC values from ROC curves. Ranked univariate AUC values (0.6 or greater) are reported for individual gestational age window sample sets or various combinations (Tables 12-15). Multivariate classifiers were built by Lasso and Random Forest methods. 1000 rounds of bootstrap resampling were performed and the nonzero Lasso coefficients or Random Forest Gini importance values were summed for each analyte amongst panels with AUCs of 0.85 or greater. For summed Random Forest Gini Importance values an Empirical Cumulative Distribution Function was fitted and probabilities (P) were calculated. The nonzero Lasso summed coefficients calculated from the different window combinations are shown in Tables 16-19. Summed Random Forest Gini values, with P>0.9 are found in Tables 20-22.









TABLE 12







Univariate AUC values all windows











SEQ ID




Transition
NO:
Protein
AUC













LDFHFSSDR_375.2_611.3
6
INHBC_HUMAN
0.785





TVQAVLTVPK_528.3_428.3
7
PEDF_HUMAN
0.763





TVQAVLTVPK_528.3_855.5
7
PEDF_HUMAN
0.762





ETLLQDFR_511.3_565.3
9
AMBP_HUMAN
0.756





DTDTGALLFIGK_625.8_818.5
799
PEDF_HUMAN
0.756





DTDTGALLFIGK_625.8_217.1
799
PEDF_HUMAN
0.756





IQTHSTTYR_369.5_627.3
59
F13B_HUMAN
0.755





IQTHSTTYR_369.5_540.3
59
F13B_HUMAN
0.753





ETLLQDFR_511.3_322.2
9
AMBP_HUMAN
0.751





LDFHFSSDR_375.2_464.2
6
INHBC_HUMAN
0.745





HHGPTITAK_321.2_275.1
33
AMBP_HUMAN
0.743





VNHVTLSQPK_374.9_244.2
3
B2MG_HUMAN
0.733





VEHSDLSFSK_383.5_468.2
800
B2MG_HUMAN
0.732





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
801
SHBG_HUMAN
0.728





HHGPTITAK_321.2_432.3
33
AMBP_HUMAN
0.728





FLYHK_354.2_447.2
802
AMBP_HUMAN
0.722





FLYHK_354.2_284.2
802
AMBP_HUMAN
0.721





IALGGLLFPASNLR_481.3_657.4
55
SHBG_HUMAN
0.719





GDTYPAELYITGSILR_885.0_274.1
43
F13B_HUMAN
0.716





VEHSDLSFSK_383.5_234.1
800
B2MG_HUMAN
0.714





GPGEDFR_389.2_623.3
8
PTGDS_HUMAN
0.714





IALGGLLFPASNLR_481.3_412.3
55
SHBG_HUMAN
0.712





EVFSKPISWEELLQ_852.9_260.2
803
FA40A_HUMAN
0.708





FICPLTGLWPINTLK_887.0_685.4
804
APOH_HUMAN
0.707





GFQALGDAADIR_617.3_717.4
11
TIMP1_HUMAN
0.707





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
805
PSG7_HUMAN
0.704





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
38
SHBG_HUMAN
0.704





ATVVYQGER_511.8_652.3
10
APOH_HUMAN
0.702





ALALPPLGLAPLLNLWAKPQGR_770.5_457.3
801
SHBG_HUMAN
0.702





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_768.5
38
SHBG_HUMAN
0.702





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
805
PSG7_HUMAN
0.702





AHYDLR_387.7_566.3
42
FETUA_HUMAN
0.701





GPGEDFR_389.2_322.2
8
PTGDS_HUMAN
0.701





FSVVYAK_407.2_579.4
1
FETUA_HUMAN
0.701





TLAFVR_353.7_274.2
806
FA7_HUMAN
0.699





IAPQLSTEELVSLGEK_857.5_533.3
56
AFAM_HUMAN
0.698





HFQNLGK_422.2_527.2
50
AFAM_HUMAN
0.696





GDTYPAELYITGSILR_885.0_922.5
43
F13B_HUMAN
0.694





FICPLTGLWPINTLK_887.0_756.9
804
APOH_HUMAN
0.694





EVFSKPISWEELLQ_852.9_376.2
803
FA40A_HUMAN
0.692





ATVVYQGER_511.8_751.4
10
APOH_HUMAN
0.690





ELIEELVNITQNQK_557.6_618.3
807
IL13_HUMAN
0.690





VNHVTLSQPK_374.9_459.3
3
B2MG_HUMAN
0.687





IAQYYYTFK_598.8_395.2
25
F13B_HUMAN
0.685





IAPQLSTEELVSLGEK_857.5_333.2
56
AFAM_HUMAN
0.685





LIENGYFHPVK_439.6_627.4
66
F13B_HUMAN
0.684





FSVVYAK_407.2_381.2
1
FETUA_HUMAN
0.684





HFQNLGK_422.2_285.1
50
AFAM_HUMAN
0.684





AHYDLR_387.7_288.2
42
FETUA_HUMAN
0.684





ELPQSIVYK_538.8_417.7
808
FBLN3_HUMAN
0.683





DADPDTFFAK_563.8_825.4
49
AFAM_HUMAN
0.679





DADPDTFFAK_563.8_302.1
49
AFAM_HUMAN
0.676





IAQYYYTFK_598.8_884.4
25
F13B_HUMAN
0.673





VVESLAK_373.2_646.4
809
IBP1_HUMAN
0.673





YGIEEHGK_311.5_599.3
810
CXA1_HUMAN
0.673





GFQALGDAADIR_617.3_288.2
11
TIMP1_HUMAN
0.673





YTTEIIK_434.2_704.4
39
C1R_HUMAN
0.671





LPDTPQGLLGEAR_683.87_427.2
811
EGLN_HUMAN
0.666





TLAFVR_353.7_492.3
806
FA7_HUMAN
0.666





LIENGYFHPVK_439.6_343.2
66
F13B_HUMAN
0.665





ELIEELVNITQNQK_557.6_517.3
807
IL13_HUMAN
0.665





DPNGLPPEAQK_583.3_669.4
14
RET4_HUMAN
0.664





TNTNEFLIDVDK_704.85_849.5
812
TF_HUMAN
0.663





NTVISVNPSTK_580.3_845.5
68
VCAM1_HUMAN
0.662





YEFLNGR_449.7_293.1
124
PLMN_HUMAN
0.662





AIGLPEELIQK_605.86_856.5
813
FABPL_HUMAN
0.662





YTTEIIK_434.2_603.4
39
C1R_HUMAN
0.661





AEHPTWGDEQLFQTTR_639.3_765.4
814
PGH1_HUMAN
0.658





HTLNQIDEVK_598.8_951.5
48
FETUA_HUMAN
0.658





HTLNQIDEVK_598.8_958.5
48
FETUA_HUMAN
0.656





LPNNVLQEK_527.8_730.4
46
AFAM_HUMAN
0.655





DPNGLPPEAQK_583.3_497.2
14
RET4_HUMAN
0.655





TFLTVYWTPER_706.9_401.2
815
ICAM1_HUMAN
0.653





TFLTVYWTPER_706.9_502.3
815
ICAM1_HUMAN
0.653





SEPRPGVLLR_375.2_454.3
816
FA7_HUMAN
0.652





FTFTLHLETPKPSISSSNLNPR_829.4_787.4
82
PSG1_HUMAN
0.652





DAQYAPGYDK_564.3_813.4
83
CFAB_HUMAN
0.651





ALDLSLK_380.2_185.1
817
ITIH3_HUMAN
0.651





NCSFSIIYPVVIK_770.4_555.4
818
CRHBP_HUMAN
0.650





NTVISVNPSTK_580.3_732.4
68
VCAM1_HUMAN
0.649





IPSNPSHR_303.2_610.3
819
FBLN3_HUMAN
0.649





DAQYAPGYDK_564.3_315.1
83
CFAB_HUMAN
0.647





TLPFSR_360.7_506.3
820
LYAM1_HUMAN
0.647





LPNNVLQEK_527.8_844.5
46
AFAM_HUMAN
0.644





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
821
FETUA_HUMAN
0.644





AEHPTWGDEQLFQTTR_639.3_569.3
814
PGH1_HUMAN
0.644





NNQLVAGYLQGPNVNLEEK_700.7_999.5
822
IL1RA_HUMAN
0.642





EHSSLAFWK_552.8_267.1
823
APOH_HUMAN
0.642





ALNHLPLEYNSALYSR_621.0_696.4
52
CO6_HUMAN
0.641





VSEADSSNADWVTK_754.9_347.2
964
CFAB_HUMAN
0.641





NFPSPVDAAFR_610.8_959.5
824
HEMO_HUMAN
0.641





WNFAYWAAHQPWSR_607.3_545.3
825
PRG2_HUMAN
0.638





WNFAYWAAHQPWSR_607.3_673.3
825
PRG2_HUMAN
0.638





TAVTANLDIR_537.3_802.4
826
CHL1_HUMAN
0.638





IPSNPSHR_303.2_496.3
819
FBLN3_HUMAN
0.637





YWGVASFLQK_599.8_849.5
17
RET4_HUMAN
0.637





ALDLSLK_380.2_575.3
817
ITIH3_HUMAN
0.636





YNSQLLSFVR_613.8_508.3
827
TFR1_HUMAN
0.636





EHSSLAFWK_552.8_838.4
823
APOH_HUMAN
0.635





YWGVASFLQK_599.8_350.2
17
RET4_HUMAN
0.635





ALNHLPLEYNSALYSR_621.0_538.3
52
CO6_HUMAN
0.633





DLYHYITSYVVDGEIIIYGPAYSGR_955.5_707.3
828
PSG1_HUMAN
0.633





FTFTLHLETPKPSISSSNLNPR_829.4_874.4
82
PSG1_HUMAN
0.633





YQISVNK_426.2_560.3
829
FIBB_HUMAN
0.632





YEFLNGR_449.7_606.3
124
PLMN_HUMAN
0.632





LNIGYIEDLK_589.3_950.5
830
PAI2_HUMAN
0.631





LLEVPEGR_456.8_356.2
31
C1S_HUMAN
0.630





ENPAVIDFELAPIVDLVR_670.7_811.5
831
CO6_HUMAN
0.630





YYLQGAK_421.7_516.3
832
ITIH4_HUMAN
0.630





ITGFLKPGK_320.9_301.2
833
LBP_HUMAN
0.629





DLHLSDVFLK_396.2_260.2
77
CO6_HUMAN
0.629





HELTDEELQSLFTNFANVVDK_817.1_854.4
834
AFAM_HUMAN
0.629





YYLQGAK_421.7_327.1
832
ITIH4_HUMAN
0.628





NCSFSIIYPVVIK_770.4_831.5
818
CRHBP_HUMAN
0.627





FLNWIK_410.7_560.3
835
HABP2_HUMAN
0.627





ITGFLKPGK_320.9_429.3
833
LBP_HUMAN
0.627





VVESLAK_373.2_547.3
809
IBP1_HUMAN
0.627





NFPSPVDAAFR_610.8_775.4
824
HEMO_HUMAN
0.627





AEIEYLEK_497.8_552.3
836
LYAM1_HUMAN
0.627





ENPAVIDFELAPIVDLVR_670.7_601.4
831
CO6_HUMAN
0.627





VQEVLLK_414.8_373.3
837
HYOU1_HUMAN
0.626





TQIDSPLSGK_523.3_703.4
838
VCAM1_HUMAN
0.626





VSEADSSNADWVTK_754.9_533.3
964
CFAB_HUMAN
0.625





DFNQFSSGEK_386.8_189.1
839
FETA_HUMAN
0.624





LPDTPQGLLGEAR_683.87_940.5
811
EGLN_HUMAN
0.623





DLYHYITSYVVDGEIIIYGPAYSGR_955.5_650.3
828
PSG1_HUMAN
0.623





FAFNLYR_465.8_712.4
94
HEP2_HUMAN
0.623





LLELTGPK_435.8_644.4
840
A1BG_HUMAN
0.623





NEIVFPAGILQAPFYTR_968.5_357.2
841
ECE1_HUMAN
0.623





EFDDDTYDNDIALLQLK_1014.48_501.3
842
TPA_HUMAN
0.621





FSLVSGWGQLLDR_493.3_403.2
843
FA7_HUMAN
0.621





LLELTGPK_435.8_227.2
840
A1BG_HUMAN
0.621





LIQDAVTGLTVNGQITGDK_972.0_640.4
844
ITIH3_HUMAN
0.621





QGHNSVFLIK_381.6_520.4
845
HEMO_HUMAN
0.620





ILPSVPK_377.2_244.2
846
PGH1_HUMAN
0.620





STLFVPR_410.2_272.2
847
PEPD_HUMAN
0.620





TLEAQLTPR_514.8_685.4
87
HEP2_HUMAN
0.619





QGHNSVFLIK_381.6_260.2
845
HEMO_HUMAN
0.619





LSSPAVITDK_515.8_743.4
78
PLMN_HUMAN
0.618





LLEVPEGR_456.8_686.4
31
C1S_HUMAN
0.617





GVTGYFTFNLYLK_508.3_260.2
848
PSG5_HUMAN
0.617





EALVPLVADHK_397.9_390.2
849
HGFA_HUMAN
0.616





SFRPFVPR_335.9_272.2
850
LBP_HUMAN
0.616





DFNQFSSGEK_386.8_333.2
839
FETA_HUMAN
0.616





GSLVQASEANLQAAQDFVR_668.7_735.4
851
ITIH1_HUMAN
0.616





ITLPDFTGDLR_624.3_920.5
852
LBP_HUMAN
0.615





LIQDAVTGLTVNGQITGDK_972.0_798.4
844
ITIH3_HUMAN
0.615





ILPSVPK_377.2_227.2
846
PGH1_HUMAN
0.614





DIIKPDPPK_511.8_342.2
853
IL12B_HUMAN
0.613





QGFGNVATNTDGK_654.81_319.2
854
FIBB_HUMAN
0.613





AVLHIGEK_289.5_348.7
855
THBG_HUMAN
0.613





YENYTSSFFIR_713.8_756.4
856
IL12B_HUMAN
0.613





LSSPAVITDK_515.8_830.5
78
PLMN_HUMAN
0.613





SFRPFVPR_335.9_635.3
850
LBP_HUMAN
0.613





GLQYAAQEGLLALQSELLR_1037.1_858.5
857
LBP_HUMAN
0.612





VELAPLPSWQPVGK_760.9_400.3
858
ICAM1_HUMAN
0.612





CRPINATLAVEK_457.9_559.3
859
CGB1_HUMAN
0.610





GIVEECCFR_585.3_771.3
860
IGF2_HUMAN
0.610





AVLHIGEK_289.5_292.2
855
THBG_HUMAN
0.610





TLEAQLTPR_514.8_814.4
87
HEP2_HUMAN
0.610





SILFLGK_389.2_577.4
861
THBG_HUMAN
0.609





HVVQLR_376.2_614.4
862
IL6RA_HUMAN
0.609





TQILEWAAER_608.8_761.4
863
EGLN_HUMAN
0.609





NSDQEIDFK_548.3_409.2
864
S10A5_HUMAN
0.609





SGAQATWTELPWPHEK_613.3_510.3
865
HEMO_HUMAN
0.607





EDTPNSVWEPAK_686.8_630.3
40
C1S_HUMAN
0.607





ITLPDFTGDLR_624.3_288.2
852
LBP_HUMAN
0.607





TLPFSR_360.7_409.2
820
LYAM1_HUMAN
0.607





GIVEECCFR_585.3_900.3
860
IGF2_HUMAN
0.606





SGAQATWTELPWPHEK_613.3_793.4
865
HEMO_HUMAN
0.606





VRPQQLVK_484.3_609.4
866
ITIH4_HUMAN
0.605





SEYGAALAWEK_612.8_788.4
867
CO6_HUMAN
0.605





LEEHYELR_363.5_288.2
868
PAI2_HUMAN
0.605





FQLPGQK_409.2_275.1
47
PSG1_HUMAN
0.605





IHWESASLLR_606.3_437.2
869
CO3_HUMAN
0.604





NAVVQGLEQPHGLVVHPLR_688.4_890.6
870
LRP1_HUMAN
0.604





VTGLDFIPGLHPILTLSK_641.04_771.5
871
LEP_HUMAN
0.603





YNSQLLSFVR_613.8_734.5
827
TFR1_HUMAN
0.603





ALVLELAK_428.8_672.4
872
INHBE_HUMAN
0.603





FAFNLYR_465.8_565.3
94
HEP2_HUMAN
0.603





VRPQQLVK_484.3_722.4
866
ITIH4_HUMAN
0.602





SLQAFVAVAAR_566.8_487.3
873
IL23A_HUMAN
0.602





AGFAGDDAPR_488.7_701.3
874
ACTB_HUMAN
0.601





EDTPNSVWEPAK_686.8_315.2
40
C1S_HUMAN
0.601





VQEVLLK_414.8_601.4
837
HYOU1_HUMAN
0.601





SEYGAALAWEK_612.8_845.5
867
CO6_HUMAN
0.601





TLFIFGVTK_513.3_215.1
676
PSG4_HUMAN
0.601





YNQLLR_403.7_288.2
875
ENOA_HUMAN
0.600





TQIDSPLSGK_523.3_816.5
838
VCAM1_HUMAN
0.600
















TABLE 13







Univariate AUC values early window











SEQ ID




Transition
NO:
Protein
AUC













LDFHFSSDR_375.2_611.3
6
INHBC_HUMAN
0.858





LDFHFSSDR_375.2_464.2
6
INHBC_HUMAN
0.838





ELPQSIVYK_538.8_417.7
808
FBLN3_HUMAN
0.815





VNHVTLSQPK_374.9_244.2
3
B2MG_HUMAN
0.789





GFQALGDAADIR_617.3_717.4
11
TIMP1_HUMAN
0.778





VEHSDLSFSK_383.5_234.1
800
B2MG_HUMAN
0.778





TVQAVLTVPK_528.3_428.3
7
PEDF_HUMAN
0.775





TVQAVLTVPK_528.3_855.5
7
PEDF_HUMAN
0.775





DTDTGALLFIGK_625.8_217.1
799
PEDF_HUMAN
0.772





ETLLQDFR_511.3_565.3
9
AMBP_HUMAN
0.772





DTDTGALLFIGK_625.8_818.5
799
PEDF_HUMAN
0.769





VVESLAK_373.2_646.4
809
IBP1_HUMAN
0.766





FSVVYAK_407.2_381.2
1
FETUA_HUMAN
0.764





HHGPTITAK_321.2_275.1
33
AMBP_HUMAN
0.764





ETLLQDFR_511.3_322.2
9
AMBP_HUMAN
0.761





FLYHK_354.2_447.2
802
AMBP_HUMAN
0.758





GPGEDFR_389.2_623.3
8
PTGDS_HUMAN
0.755





HHGPTITAK_321.2_432.3
33
AMBP_HUMAN
0.755





VEHSDLSFSK_383.5_468.2
800
B2MG_HUMAN
0.752





FLYHK_354.2_284.2
802
AMBP_HUMAN
0.749





FSVVYAK_407.2_579.4
1
FETUA_HUMAN
0.749





VNHVTLSQPK_374.9_459.3
3
B2MG_HUMAN
0.749





IPSNPSHR_303.2_610.3
819
FBLN3_HUMAN
0.746





VVESLAK_373.2_547.3
809
IBP1_HUMAN
0.746





IPSNPSHR_303.2_496.3
819
FBLN3_HUMAN
0.746





NCSFSIIYPVVIK_770.4_555.4
818
CRHBP_HUMAN
0.746





GFQALGDAADIR_617.3_288.2
11
TIMP1_HUMAN
0.744





IQTHSTTYR_369.5_627.3
59
F13B_HUMAN
0.744





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
821
FETUA_HUMAN
0.738





AHYDLR_387.7_566.3
42
FETUA_HUMAN
0.738





IQTHSTTYR_369.5_540.3
59
F13B_HUMAN
0.738





AIGLPEELIQK_605.86_856.5
813
FABPL_HUMAN
0.735





ATVVYQGER_511.8_751.4
10
APOH_HUMAN
0.735





FICPLTGLWPINTLK_887.0_685.4
804
APOH_HUMAN
0.735





FICPLTGLWPINTLK_887.0_756.9
804
APOH_HUMAN
0.735





HTLNQIDEVK_598.8_958.5
48
FETUA_HUMAN
0.735





AQETSGEEISK_589.8_979.5
876
IBP1_HUMAN
0.732





DSPSVWAAVPGK_607.31_301.2
877
PROF1_HUMAN
0.732





GPGEDFR_389.2_322.2
8
PTGDS_HUMAN
0.732





ATVVYQGER_511.8_652.3
10
APOH_HUMAN
0.729





NFPSPVDAAFR_610.8_959.5
824
HEMO_HUMAN
0.729





LIENGYFHPVK_439.6_627.4
66
F13B_HUMAN
0.726





AHYDLR_387.7_288.2
42
FETUA_HUMAN
0.726





ELIEELVNITQNQK_557.6_618.3
807
IL13_HUMAN
0.724





ETPEGAEAKPWYEPIYLGGVFQLEK_951.14_877.5
878
TNFA_HUMAN
0.724





ALDLSLK_380.2_185.1
817
ITIH3_HUMAN
0.721





IHWESASLLR_606.3_437.2
869
CO3_HUMAN
0.721





DAQYAPGYDK_564.3_813.4
83
CFAB_HUMAN
0.718





NFPSPVDAAFR_610.8_775.4
824
HEMO_HUMAN
0.718





AVGYLITGYQR_620.8_523.3
879
PZP_HUMAN
0.715





AVGYLITGYQR_620.8_737.4
879
PZP_HUMAN
0.712





DIPHWLNPTR_416.9_600.3
880
PAPP1_HUMAN
0.712





ALDLSLK_380.2_575.3
817
ITIH3_HUMAN
0.709





IEGNLIFDPNNYLPK_874.0_845.5
16
APOB_HUMAN
0.709





LIENGYFHPVK_439.6_343.2
66
F13B_HUMAN
0.709





QTLSWTVTPK_580.8_818.4
881
PZP_HUMAN
0.709





DAQYAPGYDK_564.3_315.1
83
CFAB_HUMAN
0.707





GLQYAAQEGLLALQSELLR_1037.1_858.5
857
LBP_HUMAN
0.707





IEGNLIFDPNNYLPK_874.0_414.2
16
APOB_HUMAN
0.707





IQHPFTVEEFVLPK_562.0_861.5
882
PZP_HUMAN
0.707





QTLSWTVTPK_580.8_545.3
881
PZP_HUMAN
0.707





VSEADSSNADWVTK_754.9_347.2
964
CFAB_HUMAN
0.707





ILPSVPK_377.2_244.2
846
PGH1_HUMAN
0.704





IQHPFTVEEFVLPK_562.0_603.4
882
PZP_HUMAN
0.704





NCSFSIIYPVVIK_770.4_831.5
818
CRHBP_HUMAN
0.704





YNSQLLSFVR_613.8_508.3
827
TFR1_HUMAN
0.704





HTLNQIDEVK_598.8_951.5
48
FETUA_HUMAN
0.701





NEIWYR_440.7_637.4
883
FA12_HUMAN
0.701





QGHNSVFLIK_381.6_260.2
845
HEMO_HUMAN
0.701





YTTEIIK_434.2_603.4
39
C1R_HUMAN
0.701





STLFVPR_410.2_272.2
847
PEPD_HUMAN
0.699





EVFSKPISWEELLQ_852.9_260.2
803
FA40A_HUMAN
0.698





TGISPLALIK_506.8_741.5
20
APOB_HUMAN
0.698





TSESGELHGLTTEEEFVEGIYK_819.06_310.2
44
TTHY_HUMAN
0.698





AEHPTWGDEQLFQTTR_639.3_569.3
814
PGH1_HUMAN
0.695





AEHPTWGDEQLFQTTR_639.3_765.4
814
PGH1_HUMAN
0.695





HFQNLGK_422.2_527.2
50
AFAM_HUMAN
0.695





SVSLPSLDPASAK_636.4_473.3
15
APOB_HUMAN
0.695





ILPSVPK_377.2_227.2
846
PGH1_HUMAN
0.692





LIQDAVTGLTVNGQITGDK_972.0_640.4
844
ITIH3_HUMAN
0.692





QGHNSVFLIK_381.6_520.4
845
HEMO_HUMAN
0.692





TGISPLALIK_506.8_654.5
20
APOB_HUMAN
0.692





YGIEEHGK_311.5_599.3
810
CXA1_HUMAN
0.692





ELIEELVNITQNQK_557.6_517.3
807
IL13_HUMAN
0.689





IHWESASLLR_606.3_251.2
869
CO3_HUMAN
0.689





LIQDAVTGLTVNGQITGDK_972.0_798.4
844
ITIH3_HUMAN
0.689





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
801
SHBG_HUMAN
0.687





ALNFGGIGVVVGHELTHAFDDQGR_837.1_299.2
34
ECE1_HUMAN
0.687





AQETSGEEISK_589.8_850.4
876
IBP1_HUMAN
0.687





GVTGYFTFNLYLK_508.3_683.9
848
PSG5_HUMAN
0.687





ITLPDFTGDLR_624.3_288.2
852
LBP_HUMAN
0.687





LPDTPQGLLGEAR_683.87_427.2
811
EGLN_HUMAN
0.687





SVSLPSLDPASAK_636.4_885.5
15
APOB_HUMAN
0.687





TLAFVR_353.7_274.2
806
FA7_HUMAN
0.687





YTTEIIK_434.2_704.4
39
C1R_HUMAN
0.687





EFDDDTYDNDIALLQLK_1014.48_388.3
842
TPA_HUMAN
0.684





IALGGLLFPASNLR_481.3_657.4
55
SHBG_HUMAN
0.684





DFNQFSSGEK_386.8_189.1
839
FETA_HUMAN
0.681





EHSSLAFWK_552.8_838.4
823
APOH_HUMAN
0.681





ELPQSIVYK_538.8_409.2
808
FBLN3_HUMAN
0.681





ITGFLKPGK_320.9_301.2
833
LBP_HUMAN
0.681





ITGFLKPGK_320.9_429.3
833
LBP_HUMAN
0.681





AFQVWSDVTPLR_709.88_385.3
884
MMP2_HUMAN
0.678





GLQYAAQEGLLALQSELLR_1037.1_929.5
857
LBP_HUMAN
0.678





HYINLITR_515.3_301.1
885
NPY_HUMAN
0.678





NAVVQGLEQPHGLVVHPLR_688.4_890.6
870
LRP1_HUMAN
0.675





WWGGQPLWITATK_772.4_929.5
886
ENPP2_HUMAN
0.675





YNQLLR_403.7_288.2
875
ENOA_HUMAN
0.675





LDGSTHLNIFFAK_488.3_852.5
887
PAPP1_HUMAN
0.672





VVGGLVALR_442.3_784.5
5
FA12_HUMAN
0.672





WNFAYWAAHQPWSR_607.3_673.3
825
PRG2_HUMAN
0.672





NHYTESISVAK_624.8_252.1
888
NEUR1_HUMAN
0.670





NSDQEIDFK_548.3_409.2
864
S10A5_HUMAN
0.670





SGAQATWTELPWPHEK_613.3_510.3
865
HEMO_HUMAN
0.670





WNFAYWAAHQPWSR_607.3_545.3
825
PRG2_HUMAN
0.670





SFRPFVPR_335.9_272.2
850
LBP_HUMAN
0.670





AFQVWSDVTPLR_709.88_347.2
884
MMP2_HUMAN
0.667





DADPDTFFAK_563.8_825.4
49
AFAM_HUMAN
0.667





EHSSLAFWK_552.8_267.1
823
APOH_HUMAN
0.667





ITENDIQIALDDAK_779.9_632.3
18
APOB_HUMAN
0.667





ITLPDFTGDLR_624.3_920.5
852
LBP_HUMAN
0.667





VQEVLLK_414.8_373.3
837
HYOU1_HUMAN
0.667





VSFSSPLVAISGVALR_802.0_715.4
889
PAPP1_HUMAN
0.667





HFQNLGK_422.2_285.1
50
AFAM_HUMAN
0.664





ITENDIQIALDDAK_779.9_873.5
18
APOB_HUMAN
0.664





ALQDQLVLVAAK_634.9_289.2
890
ANGT_HUMAN
0.661





DLHLSDVFLK_396.2_260.2
77
CO6_HUMAN
0.661





DLHLSDVFLK_396.2_366.2
77
CO6_HUMAN
0.661





TAVTANLDIR_537.3_802.4
826
CHL1_HUMAN
0.661





DADPDTFFAK_563.8_302.1
49
AFAM_HUMAN
0.658





DPTFIPAPIQAK_433.2_461.2
891
ANGT_HUMAN
0.658





FAFNLYR_465.8_712.4
94
HEP2_HUMAN
0.658





IALGGLLFPASNLR_481.3_412.3
55
SHBG_HUMAN
0.658





IAQYYYTFK_598.8_395.2
25
F13B_HUMAN
0.658





LPNNVLQEK_527.8_730.4
46
AFAM_HUMAN
0.658





SLDFTELDVAAEK_719.4_874.5
97
ANGT_HUMAN
0.658





VELAPLPSWQPVGK_760.9_400.3
858
ICAM1_HUMAN
0.658





DIIKPDPPK_511.8_342.2
853
IL12B_HUMAN
0.655





EVFSKPISWEELLQ_852.9_376.2
803
FA40A_HUMAN
0.655





LSETNR_360.2_330.2
892
PSG1_HUMAN
0.655





NEIWYR_440.7_357.2
883
FA12_HUMAN
0.655





SFRPFVPR_335.9_635.3
850
LBP_HUMAN
0.655





SGAQATWTELPWPHEK_613.3_793.4
865
HEMO_HUMAN
0.655





TGAQELLR_444.3_530.3
893
GELS_HUMAN
0.655





VSEADSSNADWVTK_754.9_533.3
964
CFAB_HUMAN
0.655





VVGGLVALR_442.3_685.4
5
FA12_HUMAN
0.655





DISEVVTPR_508.3_787.4
85
CFAB_HUMAN
0.652





IHPSYTNYR_575.8_598.3
894
PSG2_HUMAN
0.652





VSFSSPLVAISGVALR_802.0_602.4
889
PAPP1_HUMAN
0.652





YNQLLR_403.7_529.3
875
ENOA_HUMAN
0.652





ALQDQLVLVAAK_634.9_956.6
890
ANGT_HUMAN
0.650





IHPSYTNYR_575.8_813.4
894
PSG2_HUMAN
0.650





TFLTVYWTPER_706.9_401.2
815
ICAM1_HUMAN
0.650





VQEVLLK_414.8_601.4
837
HYOU1_HUMAN
0.650





GDTYPAELYITGSILR_885.0_274.1
43
F13B_HUMAN
0.647





GVTGYFTFNLYLK_508.3_260.2
848
PSG5_HUMAN
0.647





SLDFTELDVAAEK_719.4_316.2
97
ANGT_HUMAN
0.647





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
38
SHBG_HUMAN
0.647





YEFLNGR_449.7_293.1
124
PLMN_HUMAN
0.647





AQPVQVAEGSEPDGFWEALGGK_758.0_623.4
895
GELS_HUMAN
0.644





FLNWIK_410.7_561.3
835
HABP2_HUMAN
0.644





IAPQLSTEELVSLGEK_857.5_533.3
56
AFAM_HUMAN
0.644





NTVISVNPSTK_580.3_732.4
68
VCAM1_HUMAN
0.644





SFEGLGQLEVLTLDHNQLQEVK_833.1_503.3
896
ALS_HUMAN
0.644





TFLTVYWTPER_706.9_502.3
815
ICAM1_HUMAN
0.644





AGFAGDDAPR_488.7_701.3
874
ACTB_HUMAN
0.641





AIGLPEELIQK_605.86_355.2
813
FABPL_HUMAN
0.641





DISEVVTPR_508.3_472.3
85
CFAB_HUMAN
0.641





DPTFIPAPIQAK_433.2_556.3
891
ANGT_HUMAN
0.641





ENPAVIDFELAPIVDLVR_670.7_811.5
831
CO6_HUMAN
0.641





FAFNLYR_465.8_565.3
94
HEP2_HUMAN
0.641





IAPQLSTEELVSLGEK_857.5_333.2
56
AFAM_HUMAN
0.641





TNTNEFLIDVDK_704.85_849.5
812
TF_HUMAN
0.639





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
805
PSG7_HUMAN
0.638





LDGSTHLNIFFAK_488.3_739.4
887
PAPP1_HUMAN
0.638





LPDTPQGLLGEAR_683.87_940.5
811
EGLN_HUMAN
0.638





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_768.5
38
SHBG_HUMAN
0.638





ALALPPLGLAPLLNLWAKPQGR_770.5_457.3
801
SHBG_HUMAN
0.635





LPNNVLQEK_527.8_844.5
46
AFAM_HUMAN
0.635





QINSYVK_426.2_496.3
897
CBG_HUMAN
0.635





QINSYVK_426.2_610.3
897
CBG_HUMAN
0.635





TGAQELLR_444.3_658.4
893
GELS_HUMAN
0.635





TLEAQLTPR_514.8_685.4
87
HEP2_HUMAN
0.635





WILTAAHTLYPK_471.9_621.4
898
C1R_HUMAN
0.635





SEPRPGVLLR_375.2_454.3
816
FA7_HUMAN
0.632





AGFAGDDAPR_488.7_630.3
874
ACTB_HUMAN
0.632





DFNQFSSGEK_386.8_333.2
839
FETA_HUMAN
0.632





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
805
PSG7_HUMAN
0.632





NKPGVYTDVAYYLAWIR_677.0_545.3
67
FA12_HUMAN
0.632





SEYGAALAWEK_612.8_788.4
867
CO6_HUMAN
0.632





YNSQLLSFVR_613.8_734.5
827
TFR1_HUMAN
0.632





ALVLELAK_428.8_672.4
872
INHBE_HUMAN
0.630





ENPAVIDFELAPIVDLVR_670.7_601.4
831
CO6_HUMAN
0.630





NNQLVAGYLQGPNVNLEEK_700.7_999.5
822
IL1RA_HUMAN
0.630





WGAAPYR_410.7_577.3
63
PGRP2_HUMAN
0.630





HELTDEELQSLFTNFANVVDK_817.1_854.4
834
AFAM_HUMAN
0.627





AKPALEDLR_506.8_288.2
899
APOA1_HUMAN
0.624





AVLHIGEK_289.5_348.7
855
THBG_HUMAN
0.624





EDTPNSVWEPAK_686.8_630.3
40
C1S_HUMAN
0.624





SPELQAEAK_486.8_788.4
2
APOA2_HUMAN
0.624





YENYTSSFFIR_713.8_756.4
856
IL12B_HUMAN
0.624





NEIVFPAGILQAPFYTR_968.5_456.2
841
ECE1_HUMAN
0.621





TAVTANLDIR_537.3_288.2
826
CHL1_HUMAN
0.621





WWGGQPLWITATK_772.4_373.2
886
ENPP2_HUMAN
0.621





AVDIPGLEAATPYR_736.9_399.2
900
TENA_HUMAN
0.618





ALNFGGIGVVVGHELTHAFDDQGR_837.1_360.2
34
ECE1_HUMAN
0.618





ALNHLPLEYNSALYSR_621.0_696.4
52
CO6_HUMAN
0.618





FNAVLTNPQGDYDTSTGK_964.5_262.1
51
C1QC_HUMAN
0.618





GDTYPAELYITGSILR_885.0_922.5
43
F13B_HUMAN
0.618





IAQYYYTFK_598.8_884.4
25
F13B_HUMAN
0.618





LEQGENVFLQATDK_796.4_822.4
70
C1QB_HUMAN
0.618





LSITGTYDLK_555.8_696.4
901
A1AT_HUMAN
0.618





NTVISVNPSTK_580.3_845.5
68
VCAM1_HUMAN
0.618





TLAFVR_353.7_492.3
806
FA7_HUMAN
0.618





TLEAQLTPR_514.8_814.4
87
HEP2_HUMAN
0.618





TQIDSPLSGK_523.3_703.4
838
VCAM1_HUMAN
0.618





AVLHIGEK_289.5_292.2
855
THBG_HUMAN
0.615





FLIPNASQAESK_652.8_931.4
902
1433Z_HUMAN
0.615





FNAVLTNPQGDYDTSTGK_964.5_333.2
51
C1QC_HUMAN
0.615





FQSVFTVTR_542.8_722.4
903
C1QC_HUMAN
0.615





INPASLDK_429.2_630.4
904
C163A_HUMAN
0.615





IPKPEASFSPR_410.2_506.3
905
ITIH4_HUMAN
0.615





ITQDAQLK_458.8_803.4
906
CBG_HUMAN
0.615





TSYQVYSK_488.2_397.2
907
C163A_HUMAN
0.615





WGAAPYR_410.7_634.3
63
PGRP2_HUMAN
0.615





AVDIPGLEAATPYR_736.9_286.1
900
TENA_HUMAN
0.613





DVLLLVHNLPQNLPGYFWYK_810.4_328.2
908
PSG9_HUMAN
0.613





SFEGLGQLEVLTLDHNQLQEVK_833.1_662.8
896
ALS_HUMAN
0.613





TASDFITK_441.7_710.4
115
GELS_HUMAN
0.613





AGPLQAR_356.7_584.4
909
DEF4_HUMAN
0.610





DYWSTVK_449.7_347.2
28
APOC3_HUMAN
0.610





FQSVFTVTR_542.79_623.4
903
C1QC_HUMAN
0.610





FQSVFTVTR_542.79_722.4
903
C1QC_HUMAN
0.610





SYTITGLQPGTDYK_772.4_352.2
114
FINC_HUMAN
0.610





FQLSETNR_497.8_476.3
910
PSG2_HUMAN
0.607





IPKPEASFSPR_410.2_359.2
905
ITIH4_HUMAN
0.607





LIEIANHVDK_384.6_498.3
911
ADA12_HUMAN
0.607





SILFLGK_389.2_201.1
861
THBG_HUMAN
0.607





SLLQPNK_400.2_358.2
98
CO8A_HUMAN
0.607





VFQFLEK_455.8_811.4
912
CO5_HUMAN
0.607





VPGLYYFTYHASSR_554.3_720.3
913
C1QB_HUMAN
0.607





VSAPSGTGHLPGLNPL_506.3_860.5
914
PSG3_HUMAN
0.607





AGITIPR_364.2_486.3
915
IL17_HUMAN
0.604





FLIPNASQAESK_652.8_261.2
902
1433Z_HUMAN
0.604





FQSVFTVTR_542.8_623.4
903
C1QC_HUMAN
0.604





IRPFFPQQ_516.79_661.4
916
FIBB_HUMAN
0.604





LLELTGPK_435.8_644.4
840
A1BG_HUMAN
0.604





SETEIHQGFQHLHQLFAK_717.4_318.1
917
CBG_HUMAN
0.604





SILFLGK_389.2_577.4
861
THBG_HUMAN
0.604





STLFVPR_410.2_518.3
847
PEPD_HUMAN
0.604





TEQAAVAR_423.2_487.3
918
FA12_HUMAN
0.604





EDTPNSVWEPAK_686.8_315.2
40
C1S_HUMAN
0.601





FLNWIK_410.7_560.3
835
HABP2_HUMAN
0.601





ITQDAQLK_458.8_702.4
906
CBG_HUMAN
0.601





SPELQAEAK_486.8_659.4
2
APOA2_HUMAN
0.601





TLLPVSKPEIR_418.3_288.2
919
CO5_HUMAN
0.601





VFQFLEK_455.8_276.2
912
CO5_HUMAN
0.601





YGLVTYATYPK_638.3_843.4
84
CFAB_HUMAN
0.601
















TABLE 14







Univariate AUC values early-middle combined windows











SEQ ID




Transition
NO:
Protein
AUC













LDFHFSSDR_375.2_611.3
6
INHBC_HUMAN
0.809





ETLLQDFR_511.3_565.3
9
AMBP_HUMAN
0.802





HHGPTITAK_321.2_275.1
33
AMBP_HUMAN
0.801





ATVVYQGER_511.8_652.3
10
APOH_HUMAN
0.799





ETLLQDFR_511.3_322.2
9
AMBP_HUMAN
0.796





ATVVYQGER_511.8_751.4
10
APOH_HUMAN
0.795





HHGPTITAK_321.2_432.3
33
AMBP_HUMAN
0.794





TVQAVLTVPK_528.3_855.5
7
PEDF_HUMAN
0.791





AHYDLR_387.7_566.3
42
FETUA_HUMAN
0.789





TVQAVLTVPK_528.3_428.3
7
PEDF_HUMAN
0.787





FICPLTGLWPINTLK_887.0_685.4
804
APOH_HUMAN
0.785





VNHVTLSQPK_374.9_244.2
3
B2MG_HUMAN
0.783





AHYDLR_387.7_288.2
42
FETUA_HUMAN
0.781





ELIEELVNITQNQK_557.6_618.3
807
IL13_HUMAN
0.780





FSVVYAK_407.2_381.2
1
FETUA_HUMAN
0.777





IQTHSTTYR_369.5_627.3
59
F13B_HUMAN
0.777





DTDTGALLFIGK_625.8_818.5
799
PEDF_HUMAN
0.774





FICPLTGLWPINTLK_887.0_756.9
804
APOH_HUMAN
0.773





DTDTGALLFIGK_625.8_217.1
799
PEDF_HUMAN
0.771





FSVVYAK_407.2_579.4
1
FETUA_HUMAN
0.770





IQTHSTTYR_369.5_540.3
59
F13B_HUMAN
0.769





LDFHFSSDR_375.2_464.2
6
INHBC_HUMAN
0.769





TLAFVR_353.7_274.2
806
FA7_HUMAN
0.769





FLYHK_354.2_447.2
802
AMBP_HUMAN
0.766





VNHVTLSQPK_374.9_459.3
3
B2MG_HUMAN
0.762





AIGLPEELIQK_605.86_856.5
813
FABPL_HUMAN
0.752





FLYHK_354.2_284.2
802
AMBP_HUMAN
0.752





ELIEELVNITQNQK_557.6_517.3
807
IL13_HUMAN
0.751





ETPEGAEAKPWYEPIYLGGVFQLEK_951.14_877.5
878
TNFA_HUMAN
0.751





HFQNLGK_422.2_527.2
50
AFAM_HUMAN
0.749





LIQDAVTGLTVNGQITGDK_972.0_640.4
844
ITIH3_HUMAN
0.749





LIQDAVTGLTVNGQITGDK_972.0_798.4
844
ITIH3_HUMAN
0.747





IAPQLSTEELVSLGEK_857.5_533.3
56
AFAM_HUMAN
0.745





HFQNLGK_422.2_285.1
50
AFAM_HUMAN
0.740





NNQLVAGYLQGPNVNLEEK_700.7_999.5
822
IL1RA_HUMAN
0.738





VVESLAK_373.2_646.4
809
IBP1_HUMAN
0.738





IAPQLSTEELVSLGEK_857.5_333.2
56
AFAM_HUMAN
0.737





IALGGLLFPASNLR_481.3_657.4
55
SHBG_HUMAN
0.734





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
801
SHBG_HUMAN
0.731





ELPQSIVYK_538.8_417.7
808
FBLN3_HUMAN
0.724





TFLTVYWTPER_706.9_401.2
815
ICAM1_HUMAN
0.723





GVTGYFTFNLYLK_508.3_260.2
848
PSG5_HUMAN
0.717





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
805
PSG7_HUMAN
0.716





WNFAYWAAHQPWSR_607.3_545.3
825
PRG2_HUMAN
0.716





YTTEIIK_434.2_603.4
39
C1R_HUMAN
0.716





YTTEIIK_434.2_704.4
39
C1R_HUMAN
0.716





DIPHWLNPTR_416.9_600.3
880
PAPP1_HUMAN
0.715





WNFAYWAAHQPWSR_607.3_673.3
825
PRG2_HUMAN
0.715





IALGGLLFPASNLR_481.3_412.3
55
SHBG_HUMAN
0.713





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
38
SHBG_HUMAN
0.713





GFQALGDAADIR_617.3_717.4
11
TIMP1_HUMAN
0.711





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_768.5
38
SHBG_HUMAN
0.711





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
805
PSG7_HUMAN
0.708





YGIEEHGK_311.5_599.3
810
CXA1_HUMAN
0.706





AEHPTWGDEQLFQTTR_639.3_765.4
814
PGH1_HUMAN
0.705





VVESLAK_373.2_547.3
809
IBP1_HUMAN
0.705





DADPDTFFAK_563.8_825.4
49
AFAM_HUMAN
0.704





DAQYAPGYDK_564.3_813.4
83
CFAB_HUMAN
0.704





GFQALGDAADIR_617.3_288.2
11
TIMP1_HUMAN
0.704





AEHPTWGDEQLFQTTR_639.3_569.3
814
PGH1_HUMAN
0.702





NFPSPVDAAFR_610.8_959.5
824
HEMO_HUMAN
0.702





ALALPPLGLAPLLNLWAKPQGR_770.5_457.3
801
SHBG_HUMAN
0.701





GVTGYFTFNLYLK_508.3_683.9
848
PSG5_HUMAN
0.701





DFNQFSSGEK_386.8_189.1
839
FETA_HUMAN
0.699





GDTYPAELYITGSILR_885.0_274.1
43
F13B_HUMAN
0.699





TLEAQLTPR_514.8_685.4
87
HEP2_HUMAN
0.699





VEHSDLSFSK_383.5_468.2
800
B2MG_HUMAN
0.699





DAQYAPGYDK_564.3_315.1
83
CFAB_HUMAN
0.698





VSEADSSNADWVTK_754.9_347.2
964
CFAB_HUMAN
0.698





ILPSVPK_377.2_244.2
846
PGH1_HUMAN
0.695





DADPDTFFAK_563.8_302.1
49
AFAM_HUMAN
0.694





EVFSKPISWEELLQ_852.9_260.2
803
FA40A_HUMAN
0.694





HTLNQIDEVK_598.8_958.5
48
FETUA_HUMAN
0.694





NFPSPVDAAFR_610.8_775.4
824
HEMO_HUMAN
0.694





VSFSSPLVAISGVALR_802.0_715.4
889
PAPP1_HUMAN
0.694





TLAFVR_353.7_492.3
806
FA7_HUMAN
0.693





ILPSVPK_377.2_227.2
846
PGH1_HUMAN
0.691





LLEVPEGR_456.8_356.2
31
C1S_HUMAN
0.691





TLEAQLTPR_514.8_814.4
87
HEP2_HUMAN
0.691





IPSNPSHR_303.2_610.3
819
FBLN3_HUMAN
0.690





LPNNVLQEK_527.8_730.4
46
AFAM_HUMAN
0.690





NCSFSIIYPVVIK_770.4_555.4
818
CRHBP_HUMAN
0.690





NCSFSIIYPVVIK_770.4_831.5
818
CRHBP_HUMAN
0.690





VEHSDLSFSK_383.5_234.1
800
B2MG_HUMAN
0.690





ALDLSLK_380.2_185.1
817
ITIH3_HUMAN
0.688





IHWESASLLR_606.3_437.2
869
CO3_HUMAN
0.688





IPSNPSHR_303.2_496.3
819
FBLN3_HUMAN
0.688





LDGSTHLNIFFAK_488.3_852.5
887
PAPP1_HUMAN
0.687





QGHNSVFLIK_381.6_260.2
845
HEMO_HUMAN
0.687





AVLHIGEK_289.5_348.7
855
THBG_HUMAN
0.686





VSEADSSNADWVTK_754.9_533.3
964
CFAB_HUMAN
0.686





TNTNEFLIDVDK_704.85_849.5
812
TF_HUMAN
0.685





AVLHIGEK_289.5_292.2
855
THBG_HUMAN
0.683





HTLNQIDEVK_598.8_951.5
48
FETUA_HUMAN
0.683





VSFSSPLVAISGVALR_802.0_602.4
889
PAPP1_HUMAN
0.683





IAQYYYTFK_598.8_395.2
25
F13B_HUMAN
0.681





ALDLSLK_380.2_575.3
817
ITIH3_HUMAN
0.680





LLEVPEGR_456.8_686.4
31
C1S_HUMAN
0.680





QGHNSVFLIK_381.6_520.4
845
HEMO_HUMAN
0.680





SEPRPGVLLR_375.2_454.3
816
FA7_HUMAN
0.680





SFRPFVPR_335.9_272.2
850
LBP_HUMAN
0.680





AFQVWSDVTPLR_709.88_385.3
884
MMP2_HUMAN
0.679





FAFNLYR_465.8_712.4
94
HEP2_HUMAN
0.679





IAQYYYTFK_598.8_884.4
25
F13B_HUMAN
0.679





ITGFLKPGK_320.9_429.3
833
LBP_HUMAN
0.679





EHSSLAFWK_552.8_838.4
823
APOH_HUMAN
0.677





GLQYAAQEGLLALQSELLR_1037.1_858.5
857
LBP_HUMAN
0.676





YYLQGAK_421.7_327.1
832
ITIH4_HUMAN
0.676





LIENGYFHPVK_439.6_627.4
66
F13B_HUMAN
0.675





SFRPFVPR_335.9_635.3
850
LBP_HUMAN
0.675





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
821
FETUA_HUMAN
0.674





ITGFLKPGK_320.9_301.2
833
LBP_HUMAN
0.673





VQEVLLK_414.8_373.3
837
HYOU1_HUMAN
0.673





YNSQLLSFVR_613.8_508.3
827
TFR1_HUMAN
0.673





EHSSLAFWK_552.8_267.1
823
APOH_HUMAN
0.672





FAFNLYR_465.8_565.3
94
HEP2_HUMAN
0.672





GDTYPAELYITGSILR_885.0_922.5
43
F13B_HUMAN
0.672





ITLPDFTGDLR_624.3_920.5
852
LBP_HUMAN
0.672





NSDQEIDFK_548.3_409.2
864
S10A5_HUMAN
0.672





TAVTANLDIR_537.3_802.4
826
CHL1_HUMAN
0.672





YYLQGAK_421.7_516.3
832
ITIH4_HUMAN
0.672





ITLPDFTGDLR_624.3_288.2
852
LBP_HUMAN
0.670





AIGLPEELIQK_605.86_355.2
813
FABPL_HUMAN
0.669





ALNFGGIGVVVGHELTHAFDDQGR_837.1_299.2
34
ECE1_HUMAN
0.668





AQETSGEEISK_589.8_979.5
876
IBP1_HUMAN
0.668





LPNNVLQEK_527.8_844.5
46
AFAM_HUMAN
0.668





TGISPLALIK_506.8_654.5
20
APOB_HUMAN
0.666





DFHINLFQVLPWLK_885.5_543.3
64
CFAB_HUMAN
0.665





VQEVLLK_414.8_601.4
837
HYOU1_HUMAN
0.665





YENYTSSFFIR_713.8_756.4
856
IL12B_HUMAN
0.665





CRPINATLAVEK_457.9_559.3
859
CGB1_HUMAN
0.663





LDGSTHLNIFFAK_488.3_739.4
887
PAPP1_HUMAN
0.663





TGISPLALIK_506.8_741.5
20
APOB_HUMAN
0.663





EVFSKPISWEELLQ_852.9_376.2
803
FA40A_HUMAN
0.662





SLDFTELDVAAEK_719.4_874.5
97
ANGT_HUMAN
0.662





TFLTVYWTPER_706.9_502.3
815
ICAM1_HUMAN
0.662





VRPQQLVK_484.3_609.4
866
ITIH4_HUMAN
0.662





GLQYAAQEGLLALQSELLR_1037.1_929.5
857
LBP_HUMAN
0.661





NAVVQGLEQPHGLVVHPLR_688.4_890.6
870
LRP1_HUMAN
0.661





SILFLGK_389.2_201.1
861
THBG_HUMAN
0.661





DFNQFSSGEK_386.8_333.2
839
FETA_HUMAN
0.659





IHWESASLLR_606.3_251.2
869
CO3_HUMAN
0.659





SILFLGK_389.2_577.4
861
THBG_HUMAN
0.658





SVSLPSLDPASAK_636.4_473.3
15
APOB_HUMAN
0.658





WWGGQPLWITATK_772.4_929.5
886
ENPP2_HUMAN
0.658





LNIGYIEDLK_589.3_950.5
830
PAI2_HUMAN
0.657





DFHINLFQVLPWLK_885.5_400.2
64
CFAB_HUMAN
0.657





YSHYNER_323.48_418.2
920
HABP2_HUMAN
0.657





STLFVPR_410.2_272.2
847
PEPD_HUMAN
0.656





AFQVWSDVTPLR_709.88_347.2
884
MMP2_HUMAN
0.655





FQSVFTVTR_542.8_722.4
903
C1QC_HUMAN
0.655





GPGEDFR_389.2_623.3
8
PTGDS_HUMAN
0.655





LEEHYELR_363.5_288.2
868
PAI2_HUMAN
0.655





LPDTPQGLLGEAR_683.87_427.2
811
EGLN_HUMAN
0.655





FQSVFTVTR_542.79_722.4
903
C1QC_HUMAN
0.654





FTFTLHLETPKPSISSSNLNPR_829.4_787.4
82
PSG1_HUMAN
0.654





NHYTESISVAK_624.8_252.1
888
NEUR1_HUMAN
0.654





YSHYNER_323.48_581.3
920
HABP2_HUMAN
0.654





FQSVFTVTR_542.79_623.4
903
C1QC_HUMAN
0.652





IEGNLIFDPNNYLPK_874.0_845.5
16
APOB_HUMAN
0.652





VRPQQLVK_484.3_722.4
866
ITIH4_HUMAN
0.652





WILTAAHTLYPK_471.9_621.4
898
C1R_HUMAN
0.652





ITQDAQLK_458.8_803.4
906
CBG_HUMAN
0.651





SVSLPSLDPASAK_636.4_885.5
15
APOB_HUMAN
0.651





ESDTSYVSLK_564.8_347.2
102
CRP_HUMAN
0.650





ESDTSYVSLK_564.8_696.4
102
CRP_HUMAN
0.650





FQSVFTVTR_542.8_623.4
903
C1QC_HUMAN
0.650





HELTDEELQSLFTNFANVVDK_817.1_854.4
834
AFAM_HUMAN
0.650





IEGNLIFDPNNYLPK_874.0_414.2
16
APOB_HUMAN
0.650





DIIKPDPPK_511.8_342.2
853
IL12B_HUMAN
0.648





SPELQAEAK_486.8_788.4
2
APOA2_HUMAN
0.648





VELAPLPSWQPVGK_760.9_400.3
858
ICAM1_HUMAN
0.648





AQETSGEEISK_589.8_850.4
876
IBP1_HUMAN
0.647





QTLSWTVTPK_580.8_545.3
881
PZP_HUMAN
0.647





DISEVVTPR_508.3_787.4
85
CFAB_HUMAN
0.645





DVLLLVHNLPQNLPGYFWYK_810.4_328.2
908
PSG9_HUMAN
0.645





QTLSWTVTPK_580.8_818.4
881
PZP_HUMAN
0.645





SGAQATWTELPWPHEK_613.3_510.3
865
HEMO_HUMAN
0.645





SLDFTELDVAAEK_719.4_316.2
97
ANGT_HUMAN
0.645





AVGYLITGYQR_620.8_523.3
879
PZP_HUMAN
0.644





DISEVVTPR_508.3_472.3
85
CFAB_HUMAN
0.644





FLNWIK_410.7_560.3
835
HABP2_HUMAN
0.644





IQHPFTVEEFVLPK_562.0_861.5
882
PZP_HUMAN
0.644





ALQDQLVLVAAK_634.9_289.2
890
ANGT_HUMAN
0.643





AVGYLITGYQR_620.8_737.4
879
PZP_HUMAN
0.643





FLNWIK_410.7_561.3
835
HABP2_HUMAN
0.643





LEQGENVFLQATDK_796.4_822.4
70
C1QB_HUMAN
0.643





LSITGTYDLK_555.8_797.4
901
A1AT_HUMAN
0.641





SEPRPGVLLR_375.2_654.4
816
FA7_HUMAN
0.641





VPGLYYFTYHASSR_554.3_720.3
913
C1QB_HUMAN
0.641





APLTKPLK_289.9_357.2
110
CRP_HUMAN
0.639





FNAVLTNPQGDYDTSTGK_964.5_333.2
51
C1QC_HUMAN
0.639





IQHPFTVEEFVLPK_562.0_603.4
882
PZP_HUMAN
0.639





LSSPAVITDK_515.8_743.4
78
PLMN_HUMAN
0.639





ALNFGGIGVVVGHELTHAFDDQGR_837.1_360.2
34
ECE1_HUMAN
0.637





FNAVLTNPQGDYDTSTGK_964.5_262.1
51
C1QC_HUMAN
0.637





LLELTGPK_435.8_227.2
840
A1BG_HUMAN
0.637





YNSQLLSFVR_613.8_734.5
827
TFR1_HUMAN
0.636





DLYHYITSYVVDGEIIIYGPAYSGR_955.5_707.3
828
PSG1_HUMAN
0.634





GPGEDFR_389.2_322.2
8
PTGDS_HUMAN
0.634





IHPSYTNYR_575.8_813.4
894
PSG2_HUMAN
0.634





SGAQATWTELPWPHEK_613.3_793.4
865
HEMO_HUMAN
0.634





SPELQAEAK_486.8_659.4
2
APOA2_HUMAN
0.634





ALQDQLVLVAAK_634.9_956.6
890
ANGT_HUMAN
0.633





ITENDIQIALDDAK_779.9_632.3
18
APOB_HUMAN
0.632





ITQDAQLK_458.8_702.4
906
CBG_HUMAN
0.632





LSSPAVITDK_515.8_830.5
78
PLMN_HUMAN
0.632





SLLQPNK_400.2_358.2
98
CO8A_HUMAN
0.632





VPGLYYFTYHASSR_554.3_420.2
913
C1QB_HUMAN
0.632





YGLVTYATYPK_638.3_843.4
84
CFAB_HUMAN
0.632





AGITIPR_364.2_486.3
915
IL17_HUMAN
0.630





IHPSYTNYR_575.8_598.3
894
PSG2_HUMAN
0.630





QINSYVK_426.2_610.3
897
CBG_HUMAN
0.630





SSNNPHSPIVEEFQVPYNK_729.4_261.2
4
C1S_HUMAN
0.630





ANDQYLTAAALHNLDEAVK_686.3_317.2
921
IL1A_HUMAN
0.629





ATWSGAVLAGR_544.8_730.4
922
A1BG_HUMAN
0.629





TLPFSR_360.7_506.3
820
LYAM1_HUMAN
0.629





TYLHTYESEI_628.3_515.3
923
ENPP2_HUMAN
0.629





EFDDDTYDNDIALLQLK_1014.48_388.3
842
TPA_HUMAN
0.627





EFDDDTYDNDIALLQLK_1014.48_501.3
842
TPA_HUMAN
0.627





VTGLDFIPGLHPILTLSK_641.04_771.5
871
LEP_HUMAN
0.627





HVVQLR_376.2_614.4
862
IL6RA_HUMAN
0.626





LIENGYFHPVK_439.6_343.2
66
F13B_HUMAN
0.626





LLELTGPK_435.8_644.4
840
A1BG_HUMAN
0.626





YEVQGEVFTKPQLWP_911.0_392.2
108
CRP_HUMAN
0.626





DPNGLPPEAQK_583.3_497.2
14
RET4_HUMAN
0.625





FTFTLHLETPKPSISSSNLNPR_829.4_874.4
82
PSG1_HUMAN
0.625





YGLVTYATYPK_638.3_334.2
84
CFAB_HUMAN
0.625





APLTKPLK_289.9_398.8
110
CRP_HUMAN
0.623





DSPSVWAAVPGK_607.31_301.2
877
PROF1_HUMAN
0.623





ENPAVIDFELAPIVDLVR_670.7_811.5
831
CO6_HUMAN
0.623





ILILPSVTR_506.3_559.3
679
PSGx_HUMAN
0.623





SFEGLGQLEVLTLDHNQLQEVK_833.1_503.3
896
ALS_HUMAN
0.623





TSESGELHGLTTEEEFVEGIYK_819.06_310.2
44
TTHY_HUMAN
0.623





AGITIPR_364.2_272.2
915
IL17_HUMAN
0.622





DPDQTDGLGLSYLSSHIANVER_796.4_328.1
101
GELS_HUMAN
0.622





ATWSGAVLAGR_544.8_643.4
922
A1BG_HUMAN
0.620





HVVQLR_376.2_515.3
862
IL6RA_HUMAN
0.620





QINSYVK_426.2_496.3
897
CBG_HUMAN
0.620





TLFIFGVTK_513.3_215.1
676
PSG4_HUMAN
0.620





YEVQGEVFTKPQLWP_911.0_293.1
108
CRP_HUMAN
0.620





YYGYTGAFR_549.3_771.4
924
TRFL_HUMAN
0.620





AALAAFNAQNNGSNFQLEEISR_789.1_633.3
821
FETUA_HUMAN
0.619





ALNHLPLEYNSALYSR_621.0_696.4
52
CO6_HUMAN
0.619





EDTPNSVWEPAK_686.8_630.3
40
C1S_HUMAN
0.619





NNQLVAGYLQGPNVNLEEK_700.7_357.2
822
IL1RA_HUMAN
0.619





ELANTIK_394.7_475.3
925
S10AC_HUMAN
0.618





ENPAVIDFELAPIVDLVR_670.7_601.4
831
CO6_HUMAN
0.618





GEVTYTTSQVSK_650.3_913.5
926
EGLN_HUMAN
0.616





NEIWYR_440.7_637.4
883
FA12_HUMAN
0.616





TLFIFGVTK_513.3_811.5
676
PSG4_HUMAN
0.616





DLYHYITSYVVDGEIIIYGPAYSGR_955.5_650.3
828
PSG1_HUMAN
0.615





DPTFIPAPIQAK_433.2_556.3
891
ANGT_HUMAN
0.615





VELAPLPSWQPVGK_760.9_342.2
858
ICAM1_HUMAN
0.615





DPNGLPPEAQK_583.3_669.4
14
RET4_HUMAN
0.614





GIVEECCFR_585.3_900.3
860
IGF2_HUMAN
0.614





ITENDIQIALDDAK_779.9_873.5
18
APOB_HUMAN
0.614





LSETNR_360.2_330.2
892
PSG1_HUMAN
0.614





LSNENHGIAQR_413.5_519.8
927
ITIH2_HUMAN
0.614





YEFLNGR_449.7_293.1
124
PLMN_HUMAN
0.614





AEIEYLEK_497.8_552.3
836
LYAM1_HUMAN
0.612





GIVEECCFR_585.3_771.3
860
IGF2_HUMAN
0.612





ILDDLSPR_464.8_587.3
103
ITIH4_HUMAN
0.611





IRPHTFTGLSGLR_485.6_545.3
928
ALS_HUMAN
0.611





VVGGLVALR_442.3_784.5
5
FA12_HUMAN
0.609





LEEHYELR_363.5_417.2
868
PAI2_HUMAN
0.609





LSNENHGIAQR_413.5_544.3
927
ITIH2_HUMAN
0.609





TYLHTYESEI_628.3_908.4
923
ENPP2_HUMAN
0.609





VLEPTLK_400.3_587.3
123
VTDB_HUMAN
0.609





ILILPSVTR_506.3_785.5
679
PSGx_HUMAN
0.608





TAVTANLDIR_537.3_288.2
826
CHL1_HUMAN
0.608





WWGGQPLWITATK_772.4_373.2
886
ENPP2_HUMAN
0.607





ALVLELAK_428.8_672.4
872
INHBE_HUMAN
0.605





EAQLPVIENK_570.8_329.2
929
PLMN_HUMAN
0.605





QRPPDLDTSSNAVDLLFFTDESGDSR_961.5_866.3
930
C1R_HUMAN
0.605





TDAPDLPEENQAR_728.3_613.3
121
CO5_HUMAN
0.605





TLPFSR_360.7_409.2
820
LYAM1_HUMAN
0.605





VQTAHFK_277.5_502.3
931
CO8A_HUMAN
0.605





ANLINNIFELAGLGK_793.9_299.2
932
LCAP_HUMAN
0.604





FQLPGQK_409.2_275.1
47
PSG1_HUMAN
0.604





NTVISVNPSTK_580.3_845.5
68
VCAM1_HUMAN
0.604





VLEPTLK_400.3_458.3
123
VTDB_HUMAN
0.604





YWGVASFLQK_599.8_849.5
17
RET4_HUMAN
0.604





AGPLQAR_356.7_584.4
909
DEF4_HUMAN
0.602





AHQLAIDTYQEFEETYIPK_766.0_521.3
933
CSH_HUMAN
0.602





DLHLSDVFLK_396.2_366.2
77
CO6_HUMAN
0.602





SSNNPHSPIVEEFQVPYNK_729.4_521.3
4
C1S_HUMAN
0.602





YWGVASFLQK_599.8_350.2
17
RET4_HUMAN
0.602





AGPLQAR_356.7_487.3
909
DEF4_HUMAN
0.601





ALNHLPLEYNSALYSR_621.0_538.3
52
CO6_HUMAN
0.601





EAQLPVIENK_570.8_699.4
929
PLMN_HUMAN
0.601





EDTPNSVWEPAK_686.8_315.2
40
C1S_HUMAN
0.601





NTVISVNPSTK_580.3_732.4
68
VCAM1_HUMAN
0.601
















TABLE 15







Univariate AUC values middle-late combined windows











SEQ ID




Transition
NO:
Protein
AUC













GDTYPAELYITGSILR_885.0_274.1
43
F13B_HUMAN
0.7750





TVQAVLTVPK_528.3_428.3
7
PEDF_HUMAN
0.7667





IQTHSTTYR_369.5_627.3
59
F13B_HUMAN
0.7667





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
805
PSG7_HUMAN
0.7667





IQTHSTTYR_369.5_540.3
59
F13B_HUMAN
0.7646





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
801
SHBG_HUMAN
0.7646





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_768.5
38
SHBG_HUMAN
0.7625





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
38
SHBG_HUMAN
0.7625





TVQAVLTVPK_528.3_855.5
7
PEDF_HUMAN
0.7604





GDTYPAELYITGSILR_885.0_922.5
43
F13B_HUMAN
0.7604





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
805
PSG7_HUMAN
0.7604





TLPFSR_360.7_506.3
820
LYAM1_HUMAN
0.7563





ALALPPLGLAPLLNLWAKPQGR_770.5_457.3
801
SHBG_HUMAN
0.7563





IALGGLLFPASNLR_481.3_657.4
55
SHBG_HUMAN
0.7542





IALGGLLFPASNLR_481.3_412.3
55
SHBG_HUMAN
0.7542





DTDTGALLFIGK_625.8_217.1
799
PEDF_HUMAN
0.7500





QGFGNVATNTDGK_654.81_706.3
854
FIBB_HUMAN
0.7438





ETLLQDFR_511.3_565.3
9
AMBP_HUMAN
0.7438





ETLLQDFR_511.3_322.2
9
AMBP_HUMAN
0.7417





IAQYYYTFK_598.8_884.4
25
F13B_HUMAN
0.7396





DTDTGALLFIGK_625.8_818.5
799
PEDF_HUMAN
0.7396





AEIEYLEK_497.8_552.3
836
LYAM1_HUMAN
0.7396





LDFHFSSDR_375.2_611.3
6
INHBC_HUMAN
0.7354





YQISVNK_426.2_560.3
829
FIBB_HUMAN
0.7333





IAPQLSTEELVSLGEK_857.5_533.3
56
AFAM_HUMAN
0.7313





EVFSKPISWEELLQ_852.9_376.2
803
FA40A_HUMAN
0.7292





TLAFVR_353.7_274.2
806
FA7_HUMAN
0.7229





HHGPTITAK_321.2_275.1
33
AMBP_HUMAN
0.7229





SLQAFVAVAAR_566.8_487.3
873
IL23A_HUMAN
0.7208





IAQYYYTFK_598.8_395.2
25
F13B_HUMAN
0.7208





EVFSKPISWEELLQ_852.9_260.2
803
FA40A_HUMAN
0.7208





DPNGLPPEAQK_583.3_669.4
14
RET4_HUMAN
0.7208





DPNGLPPEAQK_583.3_497.2
14
RET4_HUMAN
0.7167





VEHSDLSFSK_383.5_468.2
800
B2MG_HUMAN
0.7146





YQISVNK_426.2_292.1
829
FIBB_HUMAN
0.7125





TLAFVR_353.7_492.3
806
FA7_HUMAN
0.7125





IAPQLSTEELVSLGEK_857.5_333.2
56
AFAM_HUMAN
0.7125





AEIEYLEK_497.8_389.2
836
LYAM1_HUMAN
0.7125





YWGVASFLQK_599.8_849.5
17
RET4_HUMAN
0.7104





TLPFSR_360.7_409.2
820
LYAM1_HUMAN
0.7104





HFQNLGK_422.2_527.2
50
AFAM_HUMAN
0.7104





TQILEWAAER_608.8_761.4
863
EGLN_HUMAN
0.7083





HFQNLGK_422.2_285.1
50
AFAM_HUMAN
0.7063





FTFTLHLETPKPSISSSNLNPR_829.4_787.4
82
PSG1_HUMAN
0.7063





DPDQTDGLGLSYLSSHIANVER_796.4_456.2
101
GELS_HUMAN
0.7063





DADPDTFFAK_563.8_825.4
49
AFAM_HUMAN
0.7042





YWGVASFLQK_599.8_350.2
17
RET4_HUMAN
0.7021





DADPDTFFAK_563.8_302.1
49
AFAM_HUMAN
0.7021





HHGPTITAK_321.2_432.3
33
AMBP_HUMAN
0.6979





NTVISVNPSTK_580.3_845.5
68
VCAM1_HUMAN
0.6958





FLYHK_354.2_447.2
802
AMBP_HUMAN
0.6958





FICPLTGLWPINTLK_887.0_685.4
804
APOH_HUMAN
0.6958





FTFTLHLETPKPSISSSNLNPR_829.4_874.4
82
PSG1_HUMAN
0.6938





FLYHK_354.2_284.2
802
AMBP_HUMAN
0.6938





EALVPLVADHK_397.9_390.2
849
HGFA_HUMAN
0.6938





LNIGYIEDLK_589.3_837.4
830
PAI2_HUMAN
0.6917





QGFGNVATNTDGK_654.81_319.2
854
FIBB_HUMAN
0.6896





EALVPLVADHK_397.9_439.8
849
HGFA_HUMAN
0.6896





TNTNEFLIDVDK_704.85_849.5
812
TF_HUMAN
0.6875





DTYVSSFPR_357.8_272.2
934
TCEA1_HUMAN
0.6813





VNHVTLSQPK_374.9_244.2
3
B2MG_HUMAN
0.6771





GPGEDFR_389.2_623.3
8
PTGDS_HUMAN
0.6771





GEVTYTTSQVSK_650.3_913.5
926
EGLN_HUMAN
0.6771





GEVTYTTSQVSK_650.3_750.4
926
EGLN_HUMAN
0.6771





FICPLTGLWPINTLK_887.0_756.9
804
APOH_HUMAN
0.6771





YEFLNGR_449.7_606.3
124
PLMN_HUMAN
0.6750





YEFLNGR_449.7_293.1
124
PLMN_HUMAN
0.6750





TLFIFGVTK_513.3_215.1
676
PSG4_HUMAN
0.6750





LNIGYIEDLK_589.3_950.5
830
PAI2_HUMAN
0.6750





LLELTGPK_435.8_227.2
840
A1BG_HUMAN
0.6750





TPSAAYLWVGTGASEAEK_919.5_849.4
935
GELS_HUMAN
0.6729





FQLPGQK_409.2_275.1
47
PSG1_HUMAN
0.6729





ELIEELVNITQNQK_557.6_618.3
807
IL13_HUMAN
0.6729





DLYHYITSYVVDGEIIIYGPAYSGR_955.5_707.3
828
PSG1_HUMAN
0.6729





AHYDLR_387.7_566.3
42
FETUA_HUMAN
0.6729





LLEVPEGR_456.8_356.2
31
C1S_HUMAN
0.6708





TLFIFGVTK_513.3_811.5
676
PSG4_HUMAN
0.6688





FQLPGQK_409.2_429.2
47
PSG1_HUMAN
0.6667





DLYHYITSYVVDGEIIIYGPAYSGR_955.5_650.3
828
PSG1_HUMAN
0.6667





YYLQGAK_421.7_516.3
832
ITIH4_HUMAN
0.6646





FSVVYAK_407.2_579.4
1
FETUA_HUMAN
0.6646





EQLGEFYEALDCLR_871.9_747.4
936
A1AG1_HUMAN
0.6646





LDFHFSSDR_375.2_464.2
6
INHBC_HUMAN
0.6625





ALNHLPLEYNSALYSR_621.0_696.4
52
CO6_HUMAN
0.6625





YYLQGAK_421.7_327.1
832
ITIH4_HUMAN
0.6604





YTTEIIK_434.2_704.4
39
C1R_HUMAN
0.6604





VEHSDLSFSK_383.5_234.1
800
B2MG_HUMAN
0.6604





SNPVTLNVLYGPDLPR_585.7_654.4
937
PSG6_HUMAN
0.6604





LWAYLTIQELLAK_781.5_300.2
938
ITIH1_HUMAN
0.6604





FSLVSGWGQLLDR_493.3_403.2
843
FA7_HUMAN
0.6604





ATVVYQGER_511.8_652.3
10
APOH_HUMAN
0.6604





TPSAAYLWVGTGASEAEK_919.5_428.2
935
GELS_HUMAN
0.6583





SEPRPGVLLR_375.2_454.3
816
FA7_HUMAN
0.6583





LSSPAVITDK_515.8_830.5
78
PLMN_HUMAN
0.6583





GPGEDFR_389.2_322.2
8
PTGDS_HUMAN
0.6583





EFDDDTYDNDIALLQLK_1014.48_501.3
842
TPA_HUMAN
0.6583





TFLTVYWTPER_706.9_502.3
815
ICAM1_HUMAN
0.6563





NTVISVNPSTK_580.3_732.4
68
VCAM1_HUMAN
0.6563





LPNNVLQEK_527.8_730.4
46
AFAM_HUMAN
0.6563





LPDTPQGLLGEAR_683.87_427.2
811
EGLN_HUMAN
0.6563





VANYVDWINDR_682.8_818.4
939
HGFA_HUMAN
0.6542





LSSPAVITDK_515.8_743.4
78
PLMN_HUMAN
0.6542





LPNNVLQEK_527.8_844.5
46
AFAM_HUMAN
0.6542





IPGIFELGISSQSDR_809.9_849.4
58
CO8B_HUMAN
0.6542





GAVHVVVAETDYQSFAVLYLER_822.8_580.3
940
CO8G_HUMAN
0.6542





FLNWIK_410.7_560.3
835
HABP2_HUMAN
0.6542





TFLTVYWTPER_706.9_401.2
815
ICAM1_HUMAN
0.6521





NKPGVYTDVAYYLAWIR_677.0_821.5
67
FA12_HUMAN
0.6521





AHYDLR_387.7_288.2
42
FETUA_HUMAN
0.6521





LLEVPEGR_456.8_686.4
31
C1S_HUMAN
0.6500





LIENGYFHPVK_439.6_627.4
66
F13B_HUMAN
0.6500





GFQALGDAADIR_617.3_717.4
11
TIMP1_HUMAN
0.6500





ELIEELVNITQNQK_557.6_517.3
807
IL13_HUMAN
0.6500





EAQLPVIENK_570.8_329.2
929
PLMN_HUMAN
0.6479





CRPINATLAVEK_457.9_559.3
859
CGB1_HUMAN
0.6479





ATVVYQGER_511.8_751.4
10
APOH_HUMAN
0.6479





ALNHLPLEYNSALYSR_621.0_538.3
52
CO6_HUMAN
0.6479





AHQLAIDTYQEFEETYIPK_766.0_634.4
933
CSH_HUMAN
0.6479





VTGLDFIPGLHPILTLSK_641.04_771.5
871
LEP_HUMAN
0.6458





VANYVDWINDR_682.8_917.4
939
HGFA_HUMAN
0.6458





SSNNPHSPIVEEFQVPYNK_729.4_261.2
4
C1S_HUMAN
0.6458





NKPGVYTDVAYYLAWIR_677.0_545.3
67
FA12_HUMAN
0.6458





GSLVQASEANLQAAQDFVR_668.7_735.4
851
ITIH1_HUMAN
0.6458





YTTEIIK_434.2_603.4
39
C1R_HUMAN
0.6438





NEIVFPAGILQAPFYTR_968.5_357.2
841
ECE1_HUMAN
0.6438





IPGIFELGISSQSDR_809.9_679.3
58
CO8B_HUMAN
0.6438





SNPVTLNVLYGPDLPR_585.7_817.4
937
PSG6_HUMAN
0.6417





LLELTGPK_435.8_644.4
840
A1BG_HUMAN
0.6417





EAQLPVIENK_570.8_699.4
929
PLMN_HUMAN
0.6417





AEHPTWGDEQLFQTTR_639.3_765.4
814
PGH1_HUMAN
0.6417





YGIEEHGK_311.5_599.3
810
CXA1_HUMAN
0.6396





TQIDSPLSGK_523.3_703.4
838
VCAM1_HUMAN
0.6396





YHFEALADTGISSEFYDNANDLLSK_940.8_301.1
941
CO8A_HUMAN
0.6375





SCDLALLETYCATPAK_906.9_315.2
942
IGF2_HUMAN
0.6375





NAVVQGLEQPHGLVVHPLR_688.4_285.2
870
LRP1_HUMAN
0.6375





HVVQLR_376.2_614.4
862
IL6RA_HUMAN
0.6375





NNQLVAGYLQGPNVNLEEK_700.7_999.5
822
IL1RA_HUMAN
0.6354





GIVEECCFR_585.3_771.3
860
IGF2_HUMAN
0.6354





DGSPDVTTADIGANTPDATK_973.5_531.3
72
PGRP2_HUMAN
0.6354





AEHPTWGDEQLFQTTR_639.3_569.3
814
PGH1_HUMAN
0.6354





YVVISQGLDKPR_458.9_400.3
943
LRP1_HUMAN
0.6333





WGAAPYR_410.7_577.3
63
PGRP2_HUMAN
0.6333





VRPQQLVK_484.3_609.4
866
ITIH4_HUMAN
0.6333





AVYEAVLR_460.8_750.4
81
PEPD_HUMAN
0.6333





TQIDSPLSGK_523.3_816.5
838
VCAM1_HUMAN
0.6313





IPKPEASFSPR_410.2_359.2
905
ITIH4_HUMAN
0.6313





HELTDEELQSLFTNFANVVDK_817.1_854.4
834
AFAM_HUMAN
0.6313





GSLVQASEANLQAAQDFVR_668.7_806.4
851
ITIH1_HUMAN
0.6313





GAVHVVVAETDYQSFAVLYLER_822.8_863.5
940
CO8G_HUMAN
0.6313





ENPAVIDFELAPIVDLVR_670.7_811.5
831
CO6_HUMAN
0.6313





VRPQQLVK_484.3_722.4
866
ITIH4_HUMAN
0.6292





IRPFFPQQ_516.79_372.2
916
FIBB_HUMAN
0.6292





LWAYLTIQELLAK_781.5_371.2
938
ITIH1_HUMAN
0.6271





EQLGEFYEALDCLR_871.9_563.3
936
A1AG1_HUMAN
0.6271





LLDFEFSSGR_585.8_553.3
944
G6PE_HUMAN
0.6250





LIENGYFHPVK_439.6_343.2
66
F13B_HUMAN
0.6250





ENPAVIDFELAPIVDLVR_670.7_601.4
831
CO6_HUMAN
0.6250





WNFAYWAAHQPWSR_607.3_545.3
825
PRG2_HUMAN
0.6229





TAVTANLDIR_537.3_802.4
826
CHL1_HUMAN
0.6229





WNFAYWAAHQPWSR_607.3_673.3
825
PRG2_HUMAN
0.6208





HTLNQIDEVK_598.8_951.5
48
FETUA_HUMAN
0.6208





DPDQTDGLGLSYLSSHIANVER_796.4_328.1
101
GELS_HUMAN
0.6208





WGAAPYR_410.7_634.3
63
PGRP2_HUMAN
0.6188





TEQAAVAR_423.2_487.3
918
FA12_HUMAN
0.6188





LEEHYELR_363.5_288.2
868
PAI2_HUMAN
0.6188





GIVEECCFR_585.3_900.3
860
IGF2_HUMAN
0.6188





YHFEALADTGISSEFYDNANDLLSK_940.8_874.5
941
CO8A_HUMAN
0.6167





TQILEWAAER_608.8_632.3
863
EGLN_HUMAN
0.6167





DSPSVWAAVPGK_607.31_301.2
877
PROF1_HUMAN
0.6167





DLHLSDVFLK_396.2_260.2
77
CO6_HUMAN
0.6167





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
895
GELS_HUMAN
0.6167





YSHYNER_323.48_581.3
920
HABP2_HUMAN
0.6146





YSHYNER_323.48_418.2
920
HABP2_HUMAN
0.6146





VNHVTLSQPK_374.9_459.3
3
B2MG_HUMAN
0.6146





EHSSLAFWK_552.8_267.1
823
APOH_HUMAN
0.6146





TATSEYQTFFNPR_781.4_386.2
945
THRB_HUMAN
0.6104





SGFSFGFK_438.7_732.4
79
CO8B_HUMAN
0.6104





GFQALGDAADIR_617.3_288.2
11
TIMP1_HUMAN
0.6104





FSVVYAK_407.2_381.2
1
FETUA_HUMAN
0.6104





QTLSWTVTPK_580.8_545.3
881
PZP_HUMAN
0.6083





QLGLPGPPDVPDHAAYHPF_676.7_263.1
61
ITIH4_HUMAN
0.6083





LSITGTYDLK_555.8_797.4
901
A1AT_HUMAN
0.6083





LPDTPQGLLGEAR_683.87_940.5
811
EGLN_HUMAN
0.6083





VVESLAK_373.2_646.4
809
IBP1_HUMAN
0.6063





VSEADSSNADWVTK_754.9_347.2
964
CFAB_HUMAN
0.6063





TEQAAVAR_423.2_615.4
918
FA12_HUMAN
0.6063





SEPRPGVLLR_375.2_654.4
816
FA7_HUMAN
0.6063





QTLSWTVTPK_580.8_818.4
881
PZP_HUMAN
0.6063





HYINLITR_515.3_301.1
885
NPY_HUMAN
0.6063





DPTFIPAPIQAK_433.2_461.2
891
ANGT_HUMAN
0.6063





VSEADSSNADWVTK_754.9_533.3
964
CFAB_HUMAN
0.6042





VQEVLLK_414.8_373.3
837
HYOU1_HUMAN
0.6042





SILFLGK_389.2_577.4
861
THBG_HUMAN
0.6042





IQHPFTVEEFVLPK_562.0_603.4
882
PZP_HUMAN
0.6042





ELPQSIVYK_538.8_417.7
808
FBLN3_HUMAN
0.6042





AVGYLITGYQR_620.8_737.4
879
PZP_HUMAN
0.6042





ATWSGAVLAGR_544.8_643.4
922
A1BG_HUMAN
0.6042





AKPALEDLR_506.8_288.2
899
APOA1_HUMAN
0.6042





SEYGAALAWEK_612.8_845.5
867
CO6_HUMAN
0.6021





NVNQSLLELHK_432.2_656.3
946
FRIH_HUMAN
0.6021





IQHPFTVEEFVLPK_562.0_861.5
882
PZP_HUMAN
0.6021





IPKPEASFSPR_410.2_506.3
905
ITIH4_HUMAN
0.6021





GVTGYFTFNLYLK_508.3_260.2
848
PSG5_HUMAN
0.6021





DGSPDVTTADIGANTPDATK_973.5_844.4
72
PGRP2_HUMAN
0.6021





AVGYLITGYQR_620.8_523.3
879
PZP_HUMAN
0.6021





ANDQYLTAAALHNLDEAVK_686.3_317.2
921
ILIA_HUMAN
0.6021





TLYSSSPR_455.7_696.3
71
IC1_HUMAN
0.6000





LHKPGVYTR_357.5_479.3
947
HGFA_HUMAN
0.6000





IIGGSDADIK_494.8_260.2
21
C1S_HUMAN
0.6000





HELTDEELQSLFTNFANVVDK_817.1_906.5
834
AFAM_HUMAN
0.6000





GGEGTGYFVDFSVR_745.9_869.5
35
HRG_HUMAN
0.6000





AVLHIGEK_289.5_348.7
855
THBG_HUMAN
0.6000





ALVLELAK_428.8_672.4
872
INHBE_HUMAN
0.6000
















TABLE 16







Lasso Summed Coefficients All Windows











SEQ





ID


Transition
NO:
Protein
SumBestCoefs_All













TQILEWAAER_608.8_761.4
863
EGLN_HUMAN
26.4563





GFQALGDAADIR_617.3_717.4
11
TIMP1_HUMAN
17.6447





AVDIPGLEAATPYR_736.9_399.2
900
TENA_HUMAN
16.2270





TVQAVLTVPK_528.3_428.3
7
PEDF_HUMAN
15.1166





LDFHFSSDR_375.2_611.3
6
INHBC_HUMAN
15.0029





ATVVYQGER_511.8_652.3
10
APOH_HUMAN
13.2314





ETLLQDFR_511.3_565.3
9
AMBP_HUMAN
13.1219





GFQALGDAADIR_617.3_288.2
11
TIMP1_HUMAN
12.1693





IQTHSTTYR_369.5_627.3
59
F13B_HUMAN
9.4737





GDTYPAELYITGSILR_885.0_274.1
43
F13B_HUMAN
6.1820





ELPQSIVYK_538.8_417.7
808
FBLN3_HUMAN
6.1607





NEIVFPAGILQAPFYTR_968.5_357.2
841
ECE1_HUMAN
5.5493





AHYDLR_387.7_566.3
42
FETUA_HUMAN
5.4415





HHGPTITAK_321.2_275.1
33
AMBP_HUMAN
5.0751





SERPPIFEIR_415.2_564.3
948
LRP1_HUMAN
4.5620





ALDLSLK_380.2_185.1
817
ITIH3_HUMAN
4.4275





DTDTGALLFIGK_625.8_217.1
799
PEDF_HUMAN
4.3562





ALNHLPLEYNSALYSR_621.0_696.4
52
CO6_HUMAN
3.9022





ETLLQDFR_511.3_322.2
9
AMBP_HUMAN
3.3017





YGIEEHGK_311.5_599.3
810
CXA1_HUMAN
2.8410





IHWESASLLR_606.3_437.2
869
CO3_HUMAN
2.6618





GEVTYTTSQVSK_650.3_750.4
926
EGLN_HUMAN
2.5328





ELIEELVNITQNQK_557.6_618.3
807
IL13_HUMAN
2.5088





DLHLSDVFLK_396.2_260.2
77
CO6_HUMAN
2.4010





SYTITGLQPGTDYK_772.4_352.2
114
FINC_HUMAN
2.3304





SPELQAEAK_486.8_788.4
2
APOA2_HUMAN
2.2657





VNHVTLSQPK_374.9_459.3
3
B2MG_HUMAN
2.1480





DTDTGALLFIGK_625.8_818.5
799
PEDF_HUMAN
2.0051





LLDFEFSSGR_585.8_944.4
944
G6PE_HUMAN
1.7763





GPGEDFR_389.2_623.3
8
PTGDS_HUMAN
1.6782





DPNGLPPEAQK_583.3_669.4
14
RET4_HUMAN
1.6581





IQTHSTTYR_369.5_540.3
59
F13B_HUMAN
1.6107





VNHVTLSQPK_374.9_244.2
3
B2MG_HUMAN
1.4779





STLFVPR_410.2_518.3
847
PEPD_HUMAN
1.3961





GEVTYTTSQVSK_650.3_913.5
926
EGLN_HUMAN
1.3306





ALVLELAK_428.8_672.4
872
INHBE_HUMAN
1.2973





ANDQYLTAAALHNLDEAVK_686.3_317.2
921
ILIA_HUMAN
1.1850





STLFVPR_410.2_272.2
847
PEPD_HUMAN
1.1842





GPGEDFR_389.2_322.2
8
PTGDS_HUMAN
1.1742





IPSNPSHR_303.2_610.3
819
FBLN3_HUMAN
1.0868





HHGPTITAK_321.2_432.3
33
AMBP_HUMAN
1.0813





TLAFVR_353.7_274.2
806
FA7_HUMAN
1.0674





DLHLSDVFLK_396.2_366.2
77
CO6_HUMAN
0.9887





EFDDDTYDNDIALLQLK_1014.48_501.3
842
TPA_HUMAN
0.9468





AIGLPEELIQK_605.86_856.5
813
FABPL_HUMAN
0.7740





LIENGYFHPVK_439.6_343.2
66
F13B_HUMAN
0.7740





LPDTPQGLLGEAR_683.87_427.2
811
EGLN_HUMAN
0.6748





EHSSLAFWK_552.8_267.1
823
APOH_HUMAN
0.6035





NCSFSIIYPVVIK_770.4_831.5
818
CRHBP_HUMAN
0.6014





ALNSIIDVYHK_424.9_661.3
949
S10A8_HUMAN
0.5987





WGAAPYR_410.7_577.3
63
PGRP2_HUMAN
0.5699





TQILEWAAER_608.8_632.3
863
EGLN_HUMAN
0.5395





IPSNPSHR_303.2_496.3
819
FBLN3_HUMAN
0.4845





VEHSDLSFSK_383.5_234.1
800
B2MG_HUMAN
0.4398





VEHSDLSFSK_383.5_468.2
800
B2MG_HUMAN
0.3883





FLYHK_354.2_284.2
802
AMBP_HUMAN
0.3410





LPDTPQGLLGEAR_683.87_940.5
811
EGLN_HUMAN
0.3282





EALVPLVADHK_397.9_390.2
849
HGFA_HUMAN
0.3091





IEGNLIFDPNNYLPK_874.0_845.5
16
APOB_HUMAN
0.2933





LIENGYFHPVK_439.6_627.4
66
F13B_HUMAN
0.2896





VPLALFALNR_557.3_620.4
29
PEPD_HUMAN
0.2875





FICPLTGLWPINTLK_887.0_685.4
804
APOH_HUMAN
0.2823





NAVVQGLEQPHGLVVHPLR_688.4_890.6
870
LRP1_HUMAN
0.2763





ALNFGGIGVVVGHELTHAFDDQGR_837.1_299.2
34
ECE1_HUMAN
0.2385





SPELQAEAK_486.8_659.4
2
AP0A2_HUMAN
0.2232





EVFSKPISWEELLQ_852.9_260.2
803
FA40A_HUMAN
0.1608





VANYVDWINDR_682.8_917.4
939
HGFA_HUMAN
0.1507





EVFSKPISWEELLQ_852.9_376.2
803
FA40A_HUMAN
0.1487





HVVQLR_376.2_614.4
862
IL6RA_HUMAN
0.1256





TVQAVLTVPK_528.3_855.5
7
PEDF_HUMAN
0.1170





ELIEELVNITQNQK_557.6_517.3
807
IL13_HUMAN
0.1159





EALVPLVADHK_397.9_439.8
849
HGFA_HUMAN
0.0979





AITPPHPASQANIIFDITEGNLR_825.8_917.5
125
FBLN1_HUMAN
0.0797





FLYHK_354.2_447.2
802
AMBP_HUMAN
0.0778





SLLQPNK_400.2_358.2
98
CO8A_HUMAN
0.0698





TGISPLALIK_506.8_654.5
20
APOB_HUMAN
0.0687





ALNFGGIGVVVGHELTHAFDDQGR_837.1_360.2
34
ECE1_HUMAN
0.0571





DYWSTVK_449.7_347.2
28
APOC3_HUMAN
0.0357





AITPPHPASQANIIFDITEGNLR_825.8_459.3
125
FBLN1_HUMAN
0.0313





AALAAFNAQNNGSNFQLEEISR_789.1_633.3
821
FETUA_HUMAN
0.0279





DPNGLPPEAQK_583.3_497.2
14
RET4_HUMAN
0.0189





TLAFVR_353.7_492.3
806
FA7_HUMAN
0.0087
















TABLE 17







Lasso Summed Coefficients Early Window











SEQ ID




Transition
NO:
Protein
SumBestCoefs_Early













LDFHFSSDR_375.2_611.3
6
INHBC_HUMAN
40.2030





ELPQSIVYK_538.8_417.7
808
FBLN3_HUMAN
22.6926





GFQALGDAADIR_617.3_288.2
11
TIMP1_HUMAN
17.4169





GFQALGDAADIR_617.3_717.4
11
TIMP1_HUMAN
3.4083





VNHVTLSQPK_374.9_459.3
3
B2MG_HUMAN
3.2559





EFDDDTYDNDIALLQLK_1014.48_388.3
842
TPA_HUMAN
2.4073





STLFVPR_410.2_272.2
847
PEPD_HUMAN
2.3984





WGAAPYR_410.7_634.3
63
PGRP2_HUMAN
2.3564





LDFHFSSDR_375.2_464.2
6
INHBC_HUMAN
1.9038





VNHVTLSQPK_374.9_244.2
3
B2MG_HUMAN
1.7999





DTDTGALLFIGK_625.8_217.1
799
PEDF_HUMAN
1.5802





GPGEDFR_389.2_623.3
8
PTGDS_HUMAN
1.4223





IHWESASLLR_606.3_437.2
869
CO3_HUMAN
1.2735





ELIEELVNITQNQK_557.6_618.3
807
IL13_HUMAN
1.2652





AQPVQVAEGSEPDGFWEALGGK_758.0_623.4
895
GELS_HUMAN
1.2361





FAFNLYR_465.8_565.3
94
HEP2_HUMAN
1.0876





SGFSFGFK_438.7_732.4
79
CO8B_HUMAN
1.0459





VVGGLVALR_442.3_784.5
5
FA12_HUMAN
0.9572





IEGNLIFDPNNYLPK_874.0_845.5
16
APOB_HUMAN
0.9571





ETLLQDFR_511.3_565.3
9
AMBP_HUMAN
0.7851





LSIPQITTK_500.8_687.4
950
PSG5_HUMAN
0.7508





TASDFITK_441.7_710.4
115
GELS_HUMAN
0.6549





YGIEEHGK_311.5_599.3
810
CXA1_HUMAN
0.6179





AFQVWSDVTPLR_709.88_347.2
884
MMP2_HUMAN
0.6077





TVQAVLTVPK_528.3_855.5
7
PEDF_HUMAN
0.5889





LSITGTYDLK_555.8_696.4
901
A1AT_HUMAN
0.5857





ELIEELVNITQNQK_557.6_517.3
807
IL13_HUMAN
0.5334





LIENGYFHPVK_439.6_627.4
66
F13B_HUMAN
0.5257





NEIVFPAGILQAPFYTR_968.5_357.2
841
ECE1_HUMAN
0.4601





SLLQPNK_400.2_358.2
98
CO8A_HUMAN
0.4347





LSIPQITTK_500.8_800.5
950
PSG5_HUMAN
0.4329





GVTGYFTFNLYLK_508.3_683.9
848
PSG5_HUMAN
0.4302





IQTHSTTYR_369.5_627.3
59
F13B_HUMAN
0.4001





ATVVYQGER_511.8_652.3
10
APOH_HUMAN
0.3909





LPDTPQGLLGEAR_683.87_427.2
811
EGLN_HUMAN
0.3275





NNQLVAGYLQGPNVNLEEK_700.7_999.5
822
IL1RA_HUMAN
0.3178





SERPPIFEIR_415.2_564.3
948
LRP1_HUMAN
0.3112





AHYDLR_387.7_566.3
42
FETUA_HUMAN
0.2900





NEIWYR_440.7_637.4
883
FA12_HUMAN
0.2881





ALDLSLK_380.2_575.3
817
ITIH3_HUMAN
0.2631





NKPGVYTDVAYYLAWIR_677.0_545.3
67
FA12_HUMAN
0.2568





SYTITGLQPGTDYK_772.4_352.2
114
FINC_HUMAN
0.2277





LFIPQITPK_528.8_683.4
951
PSG11_HUMAN
0.2202





IIGGSDADIK_494.8_260.2
21
C1S_HUMAN
0.2182





AVDIPGLEAATPYR_736.9_399.2
900
TENA_HUMAN
0.2113





DTDTGALLFIGK_625.8_818.5
799
PEDF_HUMAN
0.2071





AEIEYLEK_497.8_389.2
836
LYAM1_HUMAN
0.1925





EHSSLAFWK_552.8_838.4
823
APOH_HUMAN
0.1899





LPDTPQGLLGEAR_683.87_940.5
811
EGLN_HUMAN
0.1826





WGAAPYR_410.7_577.3
63
PGRP2_HUMAN
0.1669





LFIPQITPK_528.8_261.2
951
PSG11_HUMAN
0.1509





WWGGQPLWITATK_772.4_929.5
886
ENPP2_HUMAN
0.1446





DSPSVWAAVPGK_607.31_301.2
877
PROF1_HUMAN
0.1425





LIQDAVTGLTVNGQITGDK_972.0_798.4
844
ITIH3_HUMAN
0.1356





ALDLSLK_380.2_185.1
817
ITIH3_HUMAN
0.1305





TVQAVLTVPK_528.3_428.3
7
PEDF_HUMAN
0.1249





NAVVQGLEQPHGLVVHPLR_688.4_890.6
870
LRP1_HUMAN
0.1092





NSDQEIDFK_548.3_409.2
864
S10A5_HUMAN
0.0937





YNSQLLSFVR_613.8_508.3
827
TFR1_HUMAN
0.0905





LLDFEFSSGR_585.8_553.3
944
G6PE_HUMAN
0.0904





ALNFGGIGVVVGHELTHAFDDQGR_837.1_299.2
34
ECE1_HUMAN
0.0766





STLFVPR_410.2_518.3
847
PEPD_HUMAN
0.0659





DLHLSDVFLK_396.2_260.2
77
CO6_HUMAN
0.0506





EHSSLAFWK_552.8_267.1
823
APOH_HUMAN
0.0452





TQIDSPLSGK_523.3_703.4
838
VCAM1_HUMAN
0.0447





HHGPTITAK_321.2_432.3
33
AMBP_HUMAN
0.0421





AFQVWSDVTPLR_709.88_385.3
884
MMP2_HUMAN
0.0417





TGISPLALIK_506.8_741.5
20
APOB_HUMAN
0.0361





DLHLSDVFLK_396.2_366.2
77
CO6_HUMAN
0.0336





NTVISVNPSTK_580.3_845.5
68
VCAM1_HUMAN
0.0293





DIIKPDPPK_511.8_342.2
853
IL12B_HUMAN
0.0219





TGISPLALIK_506.8_654.5
20
APOB_HUMAN
0.0170





GAVHVVVAETDYQSFAVLYLER_822.8_580.3
940
CO8G_HUMAN
0.0151





LNIGYIEDLK_589.3_837.4
830
PAI2_HUMAN
0.0048





GPGEDFR_389.2_322.2
8
PTGDS_HUMAN
0.0008
















TABLE 18







Lasso Summed Coefficients Early Middle Combined Windows











SEQ ID




Transition
NO:
Protein
SumBestCoefs_EM













ELPQSIVYK_538.8_417.7
808
FBLN3_HUMAN
24.8794





AHYDLR_387.7_566.3
42
FETUA_HUMAN
20.8397





LDFHFSSDR_375.2_611.3
6
INHBC_HUMAN
18.6630





GFQALGDAADIR_617.3_288.2
11
TIMP1_HUMAN
14.7270





HHGPTITAK_321.2_432.3
33
AMBP_HUMAN
11.1473





VNHVTLSQPK_374.9_459.3
3
B2MG_HUMAN
10.9421





NNQLVAGYLQGPNVNLEEK_700.7_999.5
822
IL1RA_HUMAN
10.4646





HHGPTITAK_321.2_275.1
33
AMBP_HUMAN
7.7034





ETLLQDFR_511.3_565.3
9
AMBP_HUMAN
6.7435





TVQAVLTVPK_528.3_428.3
7
PEDF_HUMAN
5.7356





SLQAFVAVAAR_566.8_487.3
873
IL23A_HUMAN
4.8684





YGIEEHGK_311.5_599.3
810
CXA1_HUMAN
4.4936





ATVVYQGER_511.8_652.3
10
APOH_HUMAN
3.9524





VNHVTLSQPK_374.9_244.2
3
B2MG_HUMAN
3.8937





ELIEELVNITQNQK_557.6_618.3
807
IL13_HUMAN
3.8022





ALNFGGIGVVVGHELTHAFDDQGR_837.1_299.2
34
ECE1_HUMAN
3.7603





ETLLQDFR_511.3_322.2
9
AMBP_HUMAN
3.1792





TVQAVLTVPK_528.3_855.5
7
PEDF_HUMAN
3.1046





AALAAFNAQNNGSNFQLEEISR_789.1_633.3
821
FETUA_HUMAN
3.0021





AVDIPGLEAATPYR_736.9_399.2
900
TENA_HUMAN
2.6899





DLHLSDVFLK_396.2_366.2
77
CO6_HUMAN
2.5525





DTDTGALLFIGK_625.8_818.5
799
PEDF_HUMAN
2.4794





SYTITGLQPGTDYK_772.4_352.2
114
FINC_HUMAN
2.4535





IQTHSTTYR_369.5_627.3
59
F13B_HUMAN
2.3395





AHYDLR_387.7_288.2
42
FETUA_HUMAN
2.1058





NCSFSIIYPVVIK_770.4_831.5
818
CRHBP_HUMAN
2.0427





AIGLPEELIQK_605.86_856.5
813
FABPL_HUMAN
1.5354





GFQALGDAADIR_617.3_717.4
11
TIMP1_HUMAN
1.4175





TGISPLALIK_506.8_654.5
20
APOB_HUMAN
1.3562





YTTEIIK_434.2_603.4
39
C1R_HUMAN
1.2855





ETPEGAEAKPWYEPIYLGGVFQLEK_951.14_877.5
878
TNFA_HUMAN
1.1198





ANDQYLTAAALHNLDEAVK_686.3_317.2
921
IL1A_HUMAN
1.0574





ILPSVPK_377.2_244.2
846
PGH1_HUMAN
1.0282





ALDLSLK_380.2_185.1
817
ITIH3_HUMAN
1.0057





NAVVQGLEQPHGLVVHPLR_688.4_890.6
870
LRP1_HUMAN
0.9884





IEGNLIFDPNNYLPK_874.0_845.5
16
APOB_HUMAN
0.9846





ALDLSLK_380.2_575.3
817
ITIH3_HUMAN
0.9327





LDFHFSSDR_375.2_464.2
6
INHBC_HUMAN
0.8852





LSIPQITTK_500.8_800.5
950
PSG5_HUMAN
0.7740





SERPPIFEIR_415.2_564.3
948
LRP1_HUMAN
0.7013





AEAQAQYSAAVAK_654.3_709.4
89
ITIH4_HUMAN
0.6752





IHWESASLLR_606.3_437.2
869
CO3_HUMAN
0.6176





LFIPQITPK_528.8_261.2
951
PSG11_HUMAN
0.5345





FICPLTGLWPINTLK_887.0_685.4
804
APOH_HUMAN
0.5022





DFNQFSSGEK_386.8_189.1
839
FETA_HUMAN
0.4932





TATSEYQTFFNPR_781.4_272.2
945
THRB_HUMAN
0.4725





SPELQAEAK_486.8_788.4
2
APOA2_HUMAN
0.4153





FIVGFTR_420.2_261.2
952
CCL20_HUMAN
0.4111





TLLPVSKPEIR_418.3_288.2
919
CO5_HUMAN
0.3409





DIIKPDPPK_511.8_342.2
853
IL12B_HUMAN
0.3403





DTDTGALLFIGK_625.8_217.1
799
PEDF_HUMAN
0.3073





YTTEIIK_434.2_704.4
39
C1R_HUMAN
0.3050





SPELQAEAK_486.8_659.4
2
APOA2_HUMAN
0.3047





TGISPLALIK_506.8_741.5
20
APOB_HUMAN
0.3031





VVGGLVALR_442.3_784.5
5
FA12_HUMAN
0.2960





WWGGQPLWITATK_772.4_373.2
886
ENPP2_HUMAN
0.2498





TQILEWAAER_608.8_632.3
863
EGLN_HUMAN
0.2342





STLFVPR_410.2_272.2
847
PEPD_HUMAN
0.2035





DYWSTVK_449.7_347.2
28
APOC3_HUMAN
0.2018





WWGGQPLWITATK_772.4_929.5
886
ENPP2_HUMAN
0.1614





SILFLGK_389.2_201.1
861
THBG_HUMAN
0.1593





AFQVWSDVTPLR_709.88_385.3
884
MMP2_HUMAN
0.1551





IQTHSTTYR_369.5_540.3
59
F13B_HUMAN
0.1434





AFQVWSDVTPLR_709.88_347.2
884
MMP2_HUMAN
0.1420





LSITGTYDLK_555.8_797.4
901
A1AT_HUMAN
0.1395





LSITGTYDLK_555.8_696.4
901
A1AT_HUMAN
0.1294





WGAAPYR_410.7_634.3
63
PGRP2_HUMAN
0.1259





IAPQLSTEELVSLGEK_857.5_533.3
56
AFAM_HUMAN
0.1222





FICPLTGLWPINTLK_887.0_756.9
804
APOH_HUMAN
0.1153





QINSYVK_426.2_496.3
897
CBG_HUMAN
0.1055





TATSEYQTFFNPR_781.4_386.2
945
THRB_HUMAN
0.0921





AFLEVNEEGSEAAASTAVVIAGR_764.4_685.4
953
ANT3_HUMAN
0.0800





AKPALEDLR_506.8_288.2
899
APOA1_HUMAN
0.0734





GPGEDFR_389.2_623.3
8
PTGDS_HUMAN
0.0616





SLLQPNK_400.2_358.2
98
CO8A_HUMAN
0.0565





ESDTSYVSLK_564.8_347.2
102
CRP_HUMAN
0.0497





FFQYDTWK_567.8_712.3
954
IGF2_HUMAN
0.0475





FSVVYAK_407.2_579.4
1
FETUA_HUMAN
0.0437





TQIDSPLSGK_523.3_703.4
838
VCAM1_HUMAN
0.0401





LNIGYIEDLK_589.3_837.4
830
PAI2_HUMAN
0.0307





IPSNPSHR_303.2_496.3
819
FBLN3_HUMAN
0.0281





NEIVFPAGILQAPFYTR_968.5_456.2
841
ECE1_HUMAN
0.0276





TLAFVR_353.7_274.2
806
FA7_HUMAN
0.0220





AEAQAQYSAAVAK_654.3_908.5
89
ITIH4_HUMAN
0.0105





AQPVQVAEGSEPDGFWEALGGK_758.0_623.4
895
GELS_HUMAN
0.0103





QINSYVK_426.2_610.3
897
CBG_HUMAN
0.0080





NSDQEIDFK_548.3_409.2
864
S10A5_HUMAN
0.0017
















TABLE 19







Lasso Summed Coefficients Middle-Late Combined Windows











SEQ ID




Transtion
NO:
Protein
SumBestCoefs_ML













TQILEWAAER_608.8_761.4
863
EGLN_HUMAN
45.0403





GDTYPAELYITGSILR_885.0_274.1
43
F13B_HUMAN
31.4888





GEVTYTTSQVSK_650.3_750.4
926
EGLN_HUMAN
22.3322





GEVTYTTSQVSK_650.3_913.5
926
EGLN_HUMAN
17.0298





AVDIPGLEAATPYR_736.9_286.1
900
TENA_HUMAN
8.6029





AVDIPGLEAATPYR_736.9_399.2
900
TENA_HUMAN
7.9874





NEIVFPAGILQAPFYTR_968.5_357.2
841
ECE1_HUMAN
7.8773





ALNHLPLEYNSALYSR_621.0_696.4
52
CO6_HUMAN
6.8534





DPNGLPPEAQK_583.3_669.4
14
RET4_HUMAN
5.0045





GFQALGDAADIR_617.3_717.4
11
TIMP1_HUMAN
4.6191





ATVVYQGER_511.8_652.3
10
APOH_HUMAN
4.2522





IAQYYYTFK_598.8_395.2
25
F13B_HUMAN
3.5721





NAVVQGLEQPHGLVVHPLR_688.4_285.2
870
LRP1_HUMAN
3.2886





IAQYYYTFK_598.8_884.4
25
F13B_HUMAN
2.9205





SERPPIFEIR_415.2_564.3
948
LRP1_HUMAN
2.4237





TLAFVR_353.7_274.2
806
FA7_HUMAN
2.1925





EVFSKPISWEELLQ_852.9_260.2
803
FA40A_HUMAN
2.1591





EVFSKPISWEELLQ_852.9_376.2
803
FA40A_HUMAN
2.1586





EFDDDTYDNDIALLQLK_1014.48_501.3
842
TPA_HUMAN
2.0892





TLAFVR_353.7_492.3
806
FA7_HUMAN
2.0399





EALVPLVADHK_397.9_439.8
849
HGFA_HUMAN
1.8856





ETLLQDFR_511.3_565.3
9
AMBP_HUMAN
1.7809





ALNSIIDVYHK_424.9_661.3
949
S10A8_HUMAN
1.6114





AITPPHPASQANIIFDITEGNLR_825.8_917.5
125
FBLN1_HUMAN
1.3423





EQLGEFYEALDCLR_871.9_747.4
936
A1AG1_HUMAN
1.2473





TFLTVYWTPER_706.9_502.3
815
ICAM1_HUMAN
0.9851





NTVISVNPSTK_580.3_845.5
68
VCAM1_HUMAN
0.9845





FLNWIK_410.7_560.3
835
HABP2_HUMAN
0.9798





ETPEGAEAKPWYEPIYLGGVFQLEK_951.14_990.6
878
TNFA_HUMAN
0.9679





NVNQSLLELHK_432.2_656.3
946
FRIH_HUMAN
0.8280





VPLALFALNR_557.3_620.4
29
PEPD_HUMAN
0.7851





IAPQLSTEELVSLGEK_857.5_533.3
56
AFAM_HUMAN
0.7731





AVYEAVLR_460.8_750.4
81
PEPD_HUMAN
0.7452





LPDTPQGLLGEAR_683.87_427.2
811
EGLN_HUMAN
0.7145





TVQAVLTVPK_528.3_428.3
7
PEDF_HUMAN
0.6584





YSHYNER_323.48_418.2
920
HABP2_HUMAN
0.5244





LLELTGPK_435.8_644.4
840
A1BG_HUMAN
0.5072





DTDTGALLFIGK_625.8_818.5
799
PEDF_HUMAN
0.5010





DPNGLPPEAQK_583.3_497.2
14
RET4_HUMAN
0.4803





AHYDLR_387.7_566.3
42
FETUA_HUMAN
0.4693





LPNNVLQEK_527.8_844.5
46
AFAM_HUMAN
0.4640





VTGLDFIPGLHPILTLSK_641.04_771.5
871
LEP_HUMAN
0.4584





LLELTGPK_435.8_227.2
840
A1BG_HUMAN
0.4515





YTTEIIK_434.2_704.4
39
C1R_HUMAN
0.4194





SSNNPHSPIVEEFQVPYNK_729.4_261.2
4
C1S_HUMAN
0.3886





ALNHLPLEYNSALYSR_621.0_538.3
52
CO6_HUMAN
0.3405





HFQNLGK_422.2_527.2
50
AFAM_HUMAN
0.3368





EQLGEFYEALDCLR_871.9_563.3
936
A1AG1_HUMAN
0.3348





TQILEWAAER_608.8_632.3
863
EGLN_HUMAN
0.2943





ALVLELAK_428.8_672.4
872
INHBE_HUMAN
0.2895





LSNENHGIAQR_413.5_519.8
927
ITIH2_HUMAN
0.2835





LPNNVLQEK_527.8_730.4
46
AFAM_HUMAN
0.2764





DTDTGALLFIGK_625.8_217.1
799
PEDF_HUMAN
0.2694





GDTYPAELYITGSILR_885.0_922.5
43
F13B_HUMAN
0.2594





GPITSAAELNDPQSILLR_632.3_601.4
955
EGLN_HUMAN
0.2388





ANLINNIFELAGLGK_793.9_834.5
932
LCAP_HUMAN
0.2158





SEPRPGVLLR_375.2_454.3
816
FA7_HUMAN
0.1921





EQSLNVSQDLDTIR_539.9_557.8
956
SYNE2_HUMAN
0.1836





FICPLTGLWPINTLK_887.0_685.4
804
APOH_HUMAN
0.1806





ALNFGGIGVVVGHELTHAFDDQGR_837.1_360.2
34
ECE1_HUMAN
0.1608





ANDQYLTAAALHNLDEAVK_686.3_317.2
921
IL1A_HUMAN
0.1607





AQETSGEEISK_589.8_979.5
876
IBP1_HUMAN
0.1598





QINSYVK_426.2_610.3
897
CBG_HUMAN
0.1592





SILFLGK_389.2_577.4
861
THBG_HUMAN
0.1412





DAVVYPILVEFTR_761.4_286.1
957
HYOU1_HUMAN
0.1298





LIEIANHVDK_384.6_683.3
911
ADA12_HUMAN
0.1297





LSSPAVITDK_515.8_830.5
78
PLMN_HUMAN
0.1272





LIENGYFHPVK_439.6_343.2
66
F13B_HUMAN
0.1176





AALAAFNAQNNGSNFQLEEISR_789.1_633.3
821
FETUA_HUMAN
0.1160





IQTHSTTYR_369.5_540.3
59
F13B_HUMAN
0.1146





IPKPEASFSPR_410.2_506.3
905
ITIH4_HUMAN
0.1001





LLDFEFSSGR_585.8_944.4
944
G6PE_HUMAN
0.0800





YYLQGAK_421.7_516.3
832
ITIH4_HUMAN
0.0793





VRPQQLVK_484.3_722.4
866
ITIH4_HUMAN
0.0744





GPGEDFR_389.2_322.2
8
PTGDS_HUMAN
0.0610





ITQDAQLK_458.8_803.4
906
CBG_HUMAN
0.0541





TATSEYQTFFNPR_781.4_272.2
945
THRB_HUMAN
0.0511





ETLLQDFR_511.3_322.2
9
AMBP_HUMAN
0.0472





YEFLNGR_449.7_293.1
124
PLMN_HUMAN
0.0345





TLYSSSPR_455.7_696.3
71
IC1_HUMAN
0.0316





SLLQPNK_400.2_599.4
98
CO8A_HUMAN
0.0242





LLEVPEGR_456.8_686.4
31
C1S_HUMAN
0.0168





GGEGTGYFVDFSVR_745.9_722.4
35
HRG_HUMAN
0.0110





IQTHSTTYR_369.5_627.3
59
F13B_HUMAN
0.0046
















TABLE 20







Random Forest SummedGini All Windows












SEQ ID





Transition
NO:
Protein
SumBestGini
Probability














TVQAVLTVPK_528.3_428.3
7
PEDF_HUMAN
12.6521
1.0000





DTDTGALLFIGK_625.8_818.5
799
PEDF_HUMAN
11.9585
0.9985





ALALPPLGLAPLLNLWAKPQG
801
SHBG_HUMAN
10.5229
0.9971


R_770.5_256.2





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
805
PSG7_HUMAN
10.2666
0.9956





ETLLQDFR_511.3_565.3
9
AMBP_HUMAN
8.9862
0.9941





ALALPPLGLAPLLNLWAKPQG
801
SHBG_HUMAN
8.6349
0.9927


R_770.5_457.3





IALGGLLFPASNLR_481.3_657.4
55
SHBG_HUMAN
8.5838
0.9912





DTDTGALLFIGK_625.8_217.1
799
PEDF_HUMAN
8.2463
0.9897





IQTHSTTYR_369.5_627.3
59
F13B_HUMAN
8.1199
0.9883





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
805
PSG7_HUMAN
7.7393
0.9868





IALGGLLFPASNLR_481.3_412.3
55
SHBG_HUMAN
7.5601
0.9853





HHGPTITAK_321.2_432.3
33
AMBP_HUMAN
7.5181
0.9838





ETLLQDFR_511.3_322.2
9
AMBP_HUMAN
7.4043
0.9824





FICPLTGLWPINTLK_887.0_685.4
804
APOH_HUMAN
7.2072
0.9809





GPGEDFR_389.2_623.3
8
PTGDS_HUMAN
7.1422
0.9794





IQTHSTTYR_369.5_540.3
59
F13B_HUMAN
6.9809
0.9780





TVQAVLTVPK_528.3_855.5
7
PEDF_HUMAN
6.6191
0.9765





ATVVYQGER_511.8_652.3
10
APOH_HUMAN
6.5813
0.9750





VVLSSGSGPGLDLPLVLGLPLQ
38
SHBG_HUMAN
6.3244
0.9736


LK_791.5_598.4





HHGPTITAK_321.2_275.1
33
AMBP_HUMAN
6.3081
0.9721





VVLSSGSGPGLDLPLVLGLPLQ
38
SHBG_HUMAN
6.0654
0.9706


LK_791.5_768.5





GDTYPAELYITGSILR_885.0_274.1
43
F13B_HUMAN
5.9580
0.9692





ATVVYQGER_511.8_751.4
10
APOH_HUMAN
5.9313
0.9677





LDFHFSSDR_375.2_611.3
6
INHBC_HUMAN
5.8533
0.9662





LDFHFSSDR_375.2_464.2
6
INHBC_HUMAN
5.8010
0.9648





EVFSKPISWEELLQ_852.9_260.2
803
FA40A_HUMAN
5.6648
0.9633





DTYVSSFPR_357.8_272.2
934
TCEA1_HUMAN
5.6549
0.9618





LPDTPQGLLGEAR_683.87_427.2
811
EGLN_HUMAN
5.3806
0.9604





FLYHK_354.2_447.2
802
AMBP_HUMAN
5.3764
0.9589





SPELQAEAK_486.8_659.4
2
APOA2_HUMAN
5.1896
0.9574





GPGEDFR_389.2_322.2
8
PTGDS_HUMAN
5.1876
0.9559





SGVDLADSNQK_567.3_662.3
958
VGFR3_HUMAN
5.1159
0.9545





TNTNEFLIDVDK_704.85_849.5
812
TF_HUMAN
4.7216
0.9530





FICPLTGLWPINTLK_887.0_756.9
804
APOH_HUMAN
4.6421
0.9515





LNIGYIEDLK_589.3_950.5
830
PAI2_HUMAN
4.6250
0.9501





EVFSKPISWEELLQ_852.9_376.2
803
FA40A_HUMAN
4.4215
0.9486





SYTITGLQPGTDYK_772.4_680.3
114
FINC_HUMAN
4.4103
0.9471





TLPFSR_360.7_409.2
820
LYAM1_HUMAN
4.2148
0.9457





SPELQAEAK_486.8_788.4
2
APOA2_HUMAN
4.2081
0.9442





GDTYPAELYITGSILR_885.0_922.5
43
F13B_HUMAN
4.0672
0.9427





AEIEYLEK_497.8_552.3
836
LYAM1_HUMAN
3.9248
0.9413





FSLVSGWGQLLDR_493.3_403.2
843
FA7_HUMAN
3.9034
0.9398





FLYHK_354.2_284.2
802
AMBP_HUMAN
3.8982
0.9383





SGVDLADSNQK_567.3_591.3
958
VGFR3_HUMAN
3.8820
0.9369





LDGSTHLNIFFAK_488.3_739.4
887
PAPP1_HUMAN
3.8770
0.9354





HFQNLGK_422.2_527.2
50
AFAM_HUMAN
3.7628
0.9339





IAQYYYTFK_598.8_884.4
25
F13B_HUMAN
3.7040
0.9325





GFQALGDAADIR_617.3_717.4
11
TIMP1_HUMAN
3.6538
0.9310





ELPQSIVYK_538.8_417.7
808
FBLN3_HUMAN
3.6148
0.9295





IAQYYYTFK_598.8_395.2
25
F13B_HUMAN
3.5820
0.9280





GSLVQASEANLQAAQDFVR_668.7_735.4
851
ITIH1_HUMAN
3.5283
0.9266





TLPFSR_360.7_506.3
820
LYAM1_HUMAN
3.5064
0.9251





VNHVTLSQPK_374.9_244.2
3
B2MG_HUMAN
3.5045
0.9236





IAPQLSTEELVSLGEK_857.5_533.3
56
AFAM_HUMAN
3.4990
0.9222





VEHSDLSFSK_383.5_468.2
800
B2MG_HUMAN
3.4514
0.9207





TQILEWAAER_608.8_761.4
863
EGLN_HUMAN
3.4250
0.9192





AHQLAIDTYQEFEETYIPK_766.0_521.3
933
CSH_HUMAN
3.3634
0.9178





TEFLSNYLTNVDDITLVPGTLG
959
ENPP2_HUMAN
3.3512
0.9163


R_846.8_600.3





HFQNLGK_422.2_285.1
50
AFAM_HUMAN
3.3375
0.9148





VEHSDLSFSK_383.5_234.1
800
B2MG_HUMAN
3.3371
0.9134





TELRPGETLNVNFLLR_624.68_875.5
960
CO3_HUMAN
3.1889
0.9119





YQISVNK_426.2_292.1
829
FIBB_HUMAN
3.1668
0.9104





YGFYTHVFR_397.2_659.4
961
THRB_HUMAN
3.1188
0.9075





SEPRPGVLLR_375.2_454.3
816
FA7_HUMAN
3.1068
0.9060





IAPQLSTEELVSLGEK_857.5_333.2
56
AFAM_HUMAN
3.0917
0.9046





ILILPSVTR_506.3_785.5
679
PSGx_HUMAN
3.0346
0.9031





TLAFVR_353.7_492.3
806
FA7_HUMAN
3.0237
0.9016





AKPALEDLR_506.8_288.2
899
APOA1_HUMAN
3.0189
0.9001
















TABLE 21







Random Forest SummedGini Early Window












SEQ ID





Transition
NO:
Protein
SumBestGini
Probability














LSETNR_360.2_330.2
892
PSG1_HUMAN
26.3610
1.0000





ALNFGGIGVVVGHELTHAFDD
34
ECE1_HUMAN
24.8946
0.9985


QGR_837.1_299.2





ELPQSIVYK_538.8_417.7
808
FBLN3_HUMAN
24.8817
0.9971





LDFHFSSDR_375.2_464.2
6
INHBC_HUMAN
24.3229
0.9956





LDFHFSSDR_375.2_611.3
6
INHBC_HUMAN
22.2162
0.9941





FSLVSGWGQLLDR_493.3_403.2
843
FA7_HUMAN
19.6528
0.9927





TSESGELHGLTTEEEFVEGIYK_819.06_310.2
44
TTHY_HUMAN
19.2430
0.9912





ATVVYQGER_511.8_751.4
10
APOH_HUMAN
19.1321
0.9897





IQTHSTTYR_369.5_627.3
59
F13B_HUMAN
17.1528
0.9883





ATVVYQGER_511.8_652.3
10
APOH_HUMAN
17.0214
0.9868





HYINLITR_515.3_301.1
885
NPY_HUMAN
16.6713
0.9853





FICPLTGLWPINTLK_887.0_685.4
804
APOH_HUMAN
15.0826
0.9838





AFLEVNEEGSEAAASTAVVIA
953
ANT3_HUMAN
14.6110
0.9824


GR_764.4_614.4





IQTHSTTYR_369.5_540.3
59
F13B_HUMAN
14.5473
0.9809





AHQLAIDTYQEFEETYIPK_766.0_521.3
933
CSH_HUMAN
14.0287
0.9794





TGAQELLR_444.3_530.3
893
GELS_HUMAN
13.1389
0.9780





DSPSVWAAVPGK_607.31_301.2
877
PROF1_HUMAN
12.9571
0.9765





NCSFSIIYPVVIK_770.4_555.4
818
CRHBP_HUMAN
12.5867
0.9750





ALALPPLGLAPLLNLWAKPQG
801
SHBG_HUMAN
12.1138
0.9721


R_770.5_256.2





DTDTGALLFIGK_625.8_818.5
799
PEDF_HUMAN
11.7054
0.9706





TSDQIHFFFAK_447.6_512.3
13
ANT3_HUMAN
11.4261
0.9692





IALGGLLFPASNLR_481.3_657.4
55
SHBG_HUMAN
11.0968
0.9677





DTDTGALLFIGK_625.8_217.1
799
PEDF_HUMAN
10.9040
0.9662





EQSLNVSQDLDTIR_539.9_758.4
956
SYNE2_HUMAN
10.6572
0.9648





IALGGLLFPASNLR_481.3_412.3
55
SHBG_HUMAN
10.0629
0.9633





FGFGGSTDSGPIR_649.3_745.4
962
ADA12_HUMAN
10.0449
0.9618





ETPEGAEAKPWYEPIYLGGVF
878
TNFA_HUMAN
10.0286
0.9604


QLEK_951.14_877.5





LPDTPQGLLGEAR_683.87_427.2
811
EGLN_HUMAN
9.8980
0.9589





FSVVYAK_407.2_381.2
1
FETUA_HUMAN
9.7971
0.9574





YGIEEHGK_311.5_599.3
810
CXA1_HUMAN
9.7850
0.9559





GFQALGDAADIR_617.3_717.4
11
TIMP1_HUMAN
9.7587
0.9545





VVLSSGSGPGLDLPLVLGLPLQ
38
SHBG_HUMAN
9.3421
0.9530


LK_791.5_598.4





HHGPTITAK_321.2_275.1
33
AMBP_HUMAN
9.2728
0.9515





ALALPPLGLAPLLNLWAKPQG
801
SHBG_HUMAN
9.2431
0.9501


R_770.5_457.3





LIEIANHVDK_384.6_498.3
911
ADA12_HUMAN
9.1368
0.9486





AFQVWSDVTPLR_709.88_347.2
884
MMP2_HUMAN
8.6789
0.9471





AFQVWSDVTPLR_709.88_385.3
884
MMP2_HUMAN
8.6339
0.9457





ETLLQDFR_511.3_322.2
9
AMBP_HUMAN
8.6252
0.9442





ETLLQDFR_511.3_565.3
9
AMBP_HUMAN
8.3957
0.9427





VNHVTLSQPK_374.9_459.3
3
B2MG_HUMAN
8.3179
0.9413





HHGPTITAK_321.2_432.3
33
AMBP_HUMAN
8.2567
0.9398





DTYVSSFPR_357.8_272.2
934
TCEA1_HUMAN
8.2028
0.9383





GGEGTGYFVDFSVR_745.9_722.4
35
HRG_HUMAN
8.0751
0.9369





DFNQFSSGEK_386.8_189.1
839
FETA_HUMAN
8.0401
0.9354





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
805
PSG7_HUMAN
7.9924
0.9339





VSEADSSNADWVTK_754.9_347.2
964
CFAB_HUMAN
7.8630
0.9325





QGHNSVFLIK_381.6_260.2
845
HEMO_HUMAN
7.8588
0.9310





AQETSGEEISK_589.8_979.5
876
IBP1_HUMAN
7.7787
0.9295





DIPHWLNPTR_416.9_600.3
880
PAPP1_HUMAN
7.6393
0.9280





SPELQAEAK_486.8_788.4
2
APOA2_HUMAN
7.6248
0.9266





QGHNSVFLIK_381.6_520.4
845
HEMO_HUMAN
7.6042
0.9251





LIENGYFHPVK_439.6_343.2
66
F13B_HUMAN
7.5771
0.9236





DIIKPDPPK_511.8_342.2
853
IL12B_HUMAN
7.5523
0.9222





VNHVTLSQPK_374.9_244.2
3
B2MG_HUMAN
7.5296
0.9207





TELRPGETLNVNFLLR_624.68_875.5
960
CO3_HUMAN
7.4484
0.9178





QINSYVK_426.2_496.3
897
CBG_HUMAN
7.3266
0.9163





YNSQLLSFVR_613.8_734.5
827
TFR1_HUMAN
7.3262
0.9148





TVQAVLTVPK_528.3_855.5
7
PEDF_HUMAN
7.1408
0.9134





QTLSWTVTPK_580.8_818.4
881
PZP_HUMAN
6.9764
0.9119





DVLLLVHNLPQNLPGYFWYK_810.4_328.2
908
PSG9_HUMAN
6.9663
0.9104





FICPLTGLWPINTLK_887.0_756.9
804
APOH_HUMAN
6.8924
0.9090





TSYQVYSK_488.2_397.2
907
C163A_HUMAN
6.5617
0.9075





VVLSSGSGPGLDLPLVLGLPLQ
38
SHBG_HUMAN
6.4615
0.9060


LK_791.5_768.5





QINSYVK_426.2_610.3
897
CBG_HUMAN
6.4595
0.9046





LHKPGVYTR_357.5_479.3
947
HGFA_HUMAN
6.4062
0.9031





ALVLELAK_428.8_672.4
872
INHBE_HUMAN
6.3684
0.9016





YNSQLLSFVR_613.8_508.3
827
TFR1_HUMAN
6.3628
0.9001
















TABLE 22







Random Forest SummedGini Early-Middle Combined Windows












SEQ ID





Transition
NO:
Protein
SumBestGini
Probability














ATVVYQGER_511.8_652.3
10
APOH_HUMAN
120.6132
1.0000





ATVVYQGER_511.8_751.4
10
APOH_HUMAN
99.7548
0.9985





IQTHSTTYR_369.5_627.3
59
F13B_HUMAN
57.5339
0.9971





IQTHSTTYR_369.5_540.3
59
F13B_HUMAN
55.0267
0.9956





FICPLTGLWPINTLK_887.0_685.4
804
APOH_HUMAN
49.9116
0.9941





AHQLAIDTYQEFEETYIPK_766.0_521.3
933
CSH_HUMAN
48.9796
0.9927





HHGPTITAK_321.2_432.3
33
AMBP_HUMAN
45.7432
0.9912





SPELQAEAK_486.8_659.4
2
APOA2_HUMAN
42.1848
0.9897





AHYDLR_387.7_566.3
42
FETUA_HUMAN
41.4591
0.9883





ETLLQDFR_511.3_565.3
9
AMBP_HUMAN
39.7301
0.9868





HHGPTITAK_321.2_275.1
33
AMBP_HUMAN
39.2096
0.9853





ETLLQDFR_511.3_322.2
9
AMBP_HUMAN
36.8033
0.9838





FICPLTGLWPINTLK_887.0_756.9
804
APOH_HUMAN
31.8246
0.9824





TVQAVLTVPK_528.3_855.5
7
PEDF_HUMAN
31.1356
0.9809





IALGGLLFPASNLR_481.3_657.4
55
SHBG_HUMAN
30.5805
0.9794





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
805
PSG7_HUMAN
29.5729
0.9780





AHYDLR_387.7_288.2
42
FETUA_HUMAN
29.0239
0.9765





SPELQAEAK_486.8_788.4
2
APOA2_HUMAN
28.6741
0.9750





ETPEGAEAKPWYEPIYLGGVF
878
TNFA_HUMAN
26.8117
0.9736


QLEK_951.14_877.5





LDFHFSSDR_375.2_611.3
6
INHBC_HUMAN
26.0001
0.9721





DFNQFSSGEK_386.8_189.1
839
FETA_HUMAN
25.9113
0.9706





HFQNLGK_422.2_527.2
50
AFAM_HUMAN
25.7497
0.9692





DPDQTDGLGLSYLSSHIANVE
101
GELS_HUMAN
25.7418
0.9677


R_796.4_328.1





VVLSSGSGPGLDLPLVLGLPLQ
38
SHBG_HUMAN
25.6425
0.9662


LK_791.5_598.4





IALGGLLFPASNLR_481.3_412.3
55
SHBG_HUMAN
25.1737
0.9648





LDFHFSSDR_375.2_464.2
6
INHBC_HUMAN
25.0674
0.9633





LIQDAVTGLTVNGQITGDK_972.0_640.4
844
ITIH3_HUMAN
24.5613
0.9618





VVLSSGSGPGLDLPLVLGLPLQ
38
SHBG_HUMAN
23.2995
0.9604


LK_791.5_768.5





DIPHWLNPTR_416.9_600.3
880
PAPP1_HUMAN
22.9504
0.9589





VNHVTLSQPK_374.9_459.3
3
B2MG_HUMAN
22.2821
0.9574





QINSYVK_426.2_496.3
897
CBG_HUMAN
22.2233
0.9559





ALALPPLGLAPLLNLWAKPQG
801
SHBG_HUMAN
22.1160
0.9545


R_770.5_256.2





TELRPGETLNVNFLLR_624.68_875.5
960
CO3_HUMAN
21.9043
0.9530





ITQDAQLK_458.8_803.4
906
CBG_HUMAN
21.8933
0.9515





IAPQLSTEELVSLGEK_857.5_533.3
56
AFAM_HUMAN
21.4577
0.9501





QINSYVK_426.2_610.3
897
CBG_HUMAN
21.3414
0.9486





LIQDAVTGLTVNGQITGDK_972.0_798.4
844
ITIH3_HUMAN
21.2843
0.9471





DTDTGALLFIGK_625.8_818.5
799
PEDF_HUMAN
21.2631
0.9457





DVLLLVHNLPQNLPGYFWYK_810.4_328.2
908
PSG9_HUMAN
21.2547
0.9442





HFQNLGK_422.2_285.1
50
AFAM_HUMAN
20.8051
0.9427





DTDTGALLFIGK_625.8_217.1
799
PEDF_HUMAN
20.2572
0.9413





FLYHK_354.2_447.2
802
AMBP_HUMAN
19.6822
0.9398





NNQLVAGYLQGPNVNLEEK_700.7_999.5
822
IL1RA_HUMAN
19.2156
0.9383





VSFSSPLVAISGVALR_802.0_715.4
889
PAPP1_HUMAN
18.9721
0.9369





TVQAVLTVPK_528.3_428.3
7
PEDF_HUMAN
18.9392
0.9354





TFVNITPAEVGVLVGK_822.47_968.6
963
PROF1_HUMAN
18.9351
0.9339





LQVLGK_329.2_416.3
669
A2GL_HUMAN
18.6613
0.9325





TLAFVR_353.7_274.2
806
FA7_HUMAN
18.5095
0.9310





ITQDAQLK_458.8_702.4
906
CBG_HUMAN
18.5046
0.9295





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
805
PSG7_HUMAN
18.4015
0.9280





VSFSSPLVAISGVALR_802.0_602.4
889
PAPP1_HUMAN
17.5397
0.9266





IAPQLSTEELVSLGEK_857.5_333.2
56
AFAM_HUMAN
17.5338
0.9251





TLFIFGVTK_513.3_215.1
676
PSG4_HUMAN
17.5245
0.9236





ALNFGGIGVVVGHELTHAFDD
34
ECE1_HUMAN
17.1108
0.9222


QGR_837.1_299.2





FLYHK_354.2_284.2
802
AMBP_HUMAN
16.9237
0.9207





LDGSTHLNIFFAK_488.3_739.4
887
PAPP1_HUMAN
16.8260
0.9192





ELIEELVNITQNQK_557.6_618.3
807
IL13_HUMAN
16.5607
0.9178





YNSQLLSFVR_613.8_734.5
827
TFR1_HUMAN
16.5425
0.9163





AFQVWSDVTPLR_709.88_385.3
884
MMP2_HUMAN
16.3293
0.9148





LDGSTHLNIFFAK_488.3_852.5
887
PAPP1_HUMAN
15.9820
0.9134





TPSAAYLWVGTGASEAEK_919.5_428.2
935
GELS_HUMAN
15.9084
0.9119





YTTEIIK_434.2_603.4
39
C1R_HUMAN
15.7998
0.9104





FSVVYAK_407.2_381.2
1
FETUA_HUMAN
15.4991
0.9090





VNHVTLSQPK_374.9_244.2
3
B2MG_HUMAN
15.2938
0.9075





SYTITGLQPGTDYK_772.4_680.3
114
FINC_HUMAN
14.9898
0.9060





DIPHWLNPTR_416.9_373.2
880
PAPP1_HUMAN
14.6923
0.9046





AFQVWSDVTPLR_709.88_347.2
884
MMP2_HUMAN
14.4361
0.9031





IAQYYYTFK_598.8_884.4
25
F13B_HUMAN
14.4245
0.9016





FSLVSGWGQLLDR_493.3_403.2
843
FA7_HUMAN
14.3848
0.9001









From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.

Claims
  • 1. A panel of isolated biomarkers comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22.
  • 2. The panel of claim 1, wherein N is a number selected from the group consisting of 2 to 24.
  • 3. The panel of claim 2, wherein said panel comprises at least two of the isolated biomarkers selected from the group consisting of FSVVYAK (SEQ ID NO: 1), SPELQAEAK (SEQ ID NO: 2), VNHVTLSQPK (SEQ ID NO: 3), SSNNPHSPIVEEFQVPYNK (SEQ ID NO: 4), and VVGGLVALR (SEQ ID NO: 5).
  • 4. The panel of claim 2, wherein said panel comprises alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).
  • 5. The panel of claim 2, wherein said panel comprises at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).
  • 6. The panel of claim 2, wherein said panel comprises at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN).
  • 7. A method of determining probability for preeclampsia in a pregnant female, the method comprising detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22 in a biological sample obtained from said pregnant female, and analyzing said measurable features to determine the probability for preeclampsia in said pregnant female.
  • 8. The method of claim 7, wherein said measurable feature comprises fragments or derivatives of each of said N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22.
  • 9. The method of claim 7, wherein said detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22, combinations or portions and/or derivatives thereof in a biological sample obtained from said pregnant female.
  • 10. The method of claim 9, further comprising calculating the probability for preeclampsia in said pregnant female based on said quantified amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22.
  • 11. The method of claim 7, further comprising an initial step of providing a biomarker panel comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22.
  • 12. The method of claim 7, further comprising an initial step of providing a biological sample from the pregnant female.
  • 13. The method of claim 7, further comprising communicating said probability to a health care provider.
  • 14. The method of claim 13, wherein said communication informs a subsequent treatment decision for said pregnant female.
  • 15. The method of claim 7, wherein N is a number selected from the group consisting of 2 to 24.
  • 16. The method of claim 15, wherein said N biomarkers comprise at least two of the isolated biomarkers selected from the group consisting of FSVVYAK (SEQ ID NO: 1), SPELQAEAK (SEQ ID NO: 2), VNHVTLSQPK (SEQ ID NO: 3), SSNNPHSPIVEEFQVPYNK (SEQ ID NO: 4), and VVGGLVALR (SEQ ID NO: 5).
  • 17-32. (canceled)
  • 33. The method of claim 7, further comprising detecting a measurable feature for one or more risk indicia.
  • 34. The method of claim 33, wherein the one or more risk indicia are selected from the group consisting of history of preeclampsia, first pregnancy, age, obesity, diabetes, gestational diabetes, hypertension, kidney disease, multiple pregnancy, interval between pregnancies, new paternity, migraine headaches, rheumatoid arthritis, and lupus.
  • 35. A method of determining probability for preeclampsia in a pregnant female, the method comprising: (a) quantifying in a biological sample obtained from said pregnant female an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22; (b) multiplying said amount by a predetermined coefficient, (c) determining the probability for preeclampsia in said pregnant female comprising adding said individual products to obtain a total risk score that corresponds to said probability.
  • 36. The panel of claim 2, wherein said panel comprises at least two of the isolated biomarkers selected from the group consisting of LDFHFSSDR (SEQ ID NO: 6), TVQAVLTVPK (SEQ ID NO: 7), GPGEDFR (SEQ ID NO: 8), ETLLQDFR (SEQ ID NO: 9), ATVVYQGER (SEQ ID NO: 10), and GFQALGDAADIR (SEQ ID NO: 11).
  • 37. The panel of claim 2, wherein said panel comprises at least two of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), and Sex hormone-binding globulin (SHBG).
  • 38. The panel of claim 2, wherein said panel comprises at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), plasminogen (PLMN), of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), and Sex hormone-binding globulin (SHBG).
  • 39. The method of claim 7, wherein said N biomarkers comprise at least two of the isolated biomarkers selected from the group consisting of LDFHFSSDR (SEQ ID NO: 6), TVQAVLTVPK (SEQ ID NO: 7), GPGEDFR (SEQ ID NO: 8), ETLLQDFR (SEQ ID NO: 9), ATWYQGER (SEQ ID NO: 10), and GFQALGDAADIR (SEQ ID NO: 11).
  • 40. The method of claim 7, wherein said N biomarkers comprise at least two of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), and Sex hormone-binding globulin (SHBG).
  • 41. The method of claim 7, wherein said N biomarkers comprise at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), plasminogen (PLMN), of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), and Sex hormone-binding globulin (SHBG).
  • 42. The method of claim 35 wherein said N biomarkers comprise at least two of the isolated biomarkers selected from the group consisting of LDFHFSSDR (SEQ ID NO: 6), TVQAVLTVPK (SEQ ID NO: 7), GPGEDFR (SEQ ID NO: 8), ETLLQDFR (SEQ ID NO: 9), ATWYQGER (SEQ ID NO: 10), and GFQALGDAADIR (SEQ ID NO: 11).
  • 43. The method of claim 35 wherein said N biomarkers comprise at least two of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), and Sex hormone-binding globulin (SHBG).
  • 44. The method of claim 35, herein said N biomarkers comprise at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), plasminogen (PLMN), of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), and Sex hormone-binding globulin (SHBG).
Parent Case Info

This application claims the benefit of priority to U.S. provisional patent application No. 61/798,413, filed Mar. 15, 2013, which is herein incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
61798413 Mar 2013 US