BIOMARKERS AND METHODS FOR PREDICTING PREECLAMPSIA

Information

  • Patent Application
  • 20190187145
  • Publication Number
    20190187145
  • Date Filed
    August 21, 2018
    6 years ago
  • Date Published
    June 20, 2019
    5 years ago
Abstract
The disclosure provides biomarker panels, methods and kits for determining the probability for preeclampsia in a pregnant female. The present disclosure is based, in part, on the discovery that certain proteins and peptides in biological samples obtained from a pregnant female are differentially expressed in pregnant females that have an increased risk of developing in the future or presently suffering from preeclampsia relative to matched controls. The present disclosure is further based, in part, on the unexpected discovery that panels combining one or more of these proteins and peptides can be utilized in methods of determining the probability for preeclampsia in a pregnant female with relatively high sensitivity and specificity. These proteins and peptides disclosed herein serve as biomarkers for classifying test samples, predicting a probability of preeclampsia, monitoring of progress of preeclampsia in a pregnant female, either individually or in a panel of biomarkers.
Description

This application incorporates by reference a Sequence Listing with this application as an ASCII text file entitled “13271-027-999_SL.TXT” created on Aug. 21, 2018, and having a size of 191,055 bytes.


The invention relates generally to the field of personalized medicine and, more specifically to compositions and methods for determining the probability for preeclampsia in a pregnant female.


BACKGROUND

Preeclampsia (PE), a pregnancy-specific multi-system disorder characterized by hypertension and excess protein excretion in the urine, is a leading cause of maternal and fetal morbidity and mortality worldwide. Preeclampsia affects at least 5-8% of all pregnancies and accounts for nearly 18% of maternal deaths in the United States. The disorder is probably multifactorial, although most cases of preeclampsia are characterized by abnormal maternal uterine vascular remodeling by fetally derived placental trophoblast cells.


Complications of preeclampsia can include compromised placental blood flow, placental abruption, eclampsia, HELLP syndrome (hemolysis, elevated liver enzymes and low platelet count), acute renal failure, cerebral hemorrhage, hepatic failure or rupture, pulmonary edema, disseminated intravascular coagulation and future cardiovascular disease. Even a slight increase in blood pressure can be a sign of preeclampsia. While symptoms can include swelling, sudden weight gain, headaches and changes in vision, some women remain asymptomatic.


Management of preeclampsia consists of two options: delivery or observation. Management decisions depend on the gestational age at which preeclampsia is diagnosed and the relative state of health of the fetus. The only cure for preeclampsia is delivery of the fetus and placenta. However, the decision to deliver involves balancing the potential benefit to the fetus of further in utero development with fetal and maternal risk of progressive disease, including the development of eclampsia, which is preeclampsia complicated by maternal seizures.


There is a great need to identify women at risk for preeclampsia as most currently available tests fail to predict the majority of women who eventually develop preeclampsia. Women identified as high-risk can be scheduled for more intensive antenatal surveillance and prophylactic interventions. Reliable early detection of preeclampsia would enable planning appropriate monitoring and clinical management, potentially providing the early identification of disease complications. Such monitoring and management might include: more frequent assessment of blood pressure and urinary protein concentration, uterine artery doppler measurement, ultrasound assessment of fetal growth and prophylactic treatment with aspirin. Finally, reliable antenatal identification of preeclampsia also is crucial to cost-effective allocation of monitoring resources.


The present invention addresses this need by providing compositions and methods for determining whether a pregnant woman is at risk for developing preeclampsia. Related advantages are provided as well.


SUMMARY

The present invention provides compositions and methods for predicting the probability of preeclampsia in a pregnant female.


In one aspect, the invention provides a panel of isolated biomarkers comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments, N is a number selected from the group consisting of 2 to 24. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, and VVGGLVALR. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, GFQALGDAADIR. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, VVGGLVALR, LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, and GFQALGDAADIR.


In some embodiments, the invention provides a biomarker panel comprising at least two of the isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4). In additional embodiments, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).


In some embodiments, the invention provides a biomarker panel comprising at least two of the isolated biomarkers selected from the group consisting of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


In other embodiments, the invention provides a biomarker panel comprising alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1 CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN). In another aspect, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1 CAM (CHL1), complement component C5 (C5 or C05), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN).


Also provided by the invention is a method of determining probability for preeclampsia in a pregnant female comprising detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22 in a biological sample obtained from the pregnant female, and analyzing the measurable feature to determine the probability for preeclampsia in the pregnant female. In some embodiments, a measurable feature comprises fragments or derivatives of each of the N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments of the disclosed methods detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22, combinations or portions and/or derivatives thereof in a biological sample obtained from the pregnant female. In additional embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female further encompass detecting a measurable feature for one or more risk indicia associated with preeclampsia.


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of N biomarkers, wherein N is selected from the group consisting of 2 to 24. In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, and VVGGLVALR.


In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, GFQALGDAADIR.


In additional embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, VVGGLVALR, LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, and GFQALGDAADIR.


In other embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1 CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN).


In some embodiments of the methods of determining probability for preeclampsia in a pregnant female, the probability for preeclampsia in the pregnant female is calculated based on the quantified amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments, the disclosed methods for determining the probability of preeclampsia encompass detecting and/or quantifying one or more biomarkers using mass spectrometry, a capture agent or a combination thereof.


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass an initial step of providing a biomarker panel comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In additional embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass an initial step of providing a biological sample from the pregnant female.


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass communicating the probability to a health care provider. In additional embodiments, the communication informs a subsequent treatment decision for the pregnant female. In further embodiments, the treatment decision comprises one or more selected from the group of consisting of more frequent assessment of blood pressure and urinary protein concentration, uterine artery doppler measurement, ultrasound assessment of fetal growth and prophylactic treatment with aspirin.


In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass analyzing the measurable feature of one or more isolated biomarkers using a predictive model. In some embodiments of the disclosed methods, a measurable feature of one or more isolated biomarkers is compared with a reference feature.


In additional embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass using one or more analyses selected from a linear discriminant analysis model, a support vector machine classification algorithm, a recursive feature elimination model, a prediction analysis of microarray model, a logistic regression model, a CART algorithm, a flex tree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, a machine learning algorithm, a penalized regression method, and a combination thereof. In one embodiment, the disclosed methods of determining probability for preeclampsia in a pregnant female encompasses logistic regression.


In some embodiments, the invention provides a method of determining probability for preeclampsia in a pregnant female encompasses quantifying in a biological sample obtained from the pregnant female an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22; multiplying the amount by a predetermined coefficient, and determining the probability for preeclampsia in the pregnant female comprising adding the individual products to obtain a total risk score that corresponds to the probability.


Other features and advantages of the invention will be apparent from the detailed description, and from the claims.







DETAILED DESCRIPTION

The present disclosure is based, in part, on the discovery that certain proteins and peptides in biological samples obtained from a pregnant female are differentially expressed in pregnant females that have an increased risk of developing in the future or presently suffering from preeclampsia relative to matched controls. The present disclosure is further based, in part, on the unexpected discovery that panels combining one or more of these proteins and peptides can be utilized in methods of determining the probability for preeclampsia in a pregnant female with relatively high sensitivity and specificity. These proteins and peptides disclosed herein serve as biomarkers for classifying test samples, predicting a probability of preeclampsia, monitoring of progress of preeclampsia in a pregnant female, either individually or in a panel of biomarkers.


The disclosure provides biomarker panels, methods and kits for determining the probability for preeclampsia in a pregnant female. One major advantage of the present disclosure is that risk of developing preeclampsia can be assessed early during pregnancy so that management of the condition can be initiated in a timely fashion. Sibai, Hypertension. In: Gabbe et al., eds. Obstetrics: Normal and Problem Pregnancies. 6th ed. Philadelphia, Pa.: Saunders Elsevier; 2012:chap 35. The present invention is of particular benefit to asymptomatic females who would not otherwise be identified and treated.


By way of example, the present disclosure includes methods for generating a result useful in determining probability for preeclampsia in a pregnant female by obtaining a dataset associated with a sample, where the dataset at least includes quantitative data about biomarkers and panels of biomarkers that have been identified as predictive of preeclampsia, and inputting the dataset into an analytic process that uses the dataset to generate a result useful in determining probability for preeclampsia in a pregnant female. As described further below, this quantitative data can include amino acids, peptides, polypeptides, proteins, nucleotides, nucleic acids, nucleosides, sugars, fatty acids, steroids, metabolites, carbohydrates, lipids, hormones, antibodies, regions of interest that serve as surrogates for biological macromolecules and combinations thereof.


In addition to the specific biomarkers identified in this disclosure, for example, by accession number, sequence, or reference, the invention also contemplates contemplates use of biomarker variants that are at least 90% or at least 95% or at least 97% identical to the exemplified sequences and that are now known or later discover and that have utility for the methods of the invention. These variants may represent polymorphisms, splice variants, mutations, and the like. In this regard, the instant specification discloses multiple art-known proteins in the context of the invention and provides exemplary accession numbers associated with one or more public databases as well as exemplary references to published journal articles relating to these art-known proteins. However, those skilled in the art appreciate that additional accession numbers and journal articles can easily be identified that can provide additional characteristics of the disclosed biomarkers and that the exemplified references are in no way limiting with regard to the disclosed biomarkers. As described herein, various techniques and reagents find use in the methods of the present invention. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. In a particular embodiment, the biological sample is serum. As described herein, biomarkers can be detected through a variety of assays and techniques known in the art. As further described herein, such assays include, without limitation, mass spectrometry (MS)-based assays, antibody-based assays as well as assays that combine aspects of the two.


Protein biomarkers associated with the probability for preeclampsia in a pregnant female include, but are not limited to, one or more of the isolated biomarkers listed in Tables 2, 3, 4, 5, and 7 through 22. In addition to the specific biomarkers, the disclosure further includes biomarker variants that are about 90%, about 95%, or about 97% identical to the exemplified sequences. Variants, as used herein, include polymorphisms, splice variants, mutations, and the like.


Additional markers can be selected from one or more risk indicia, including but not limited to, maternal age, race, ethnicity, medical history, past pregnancy history, and obstetrical history. Such additional markers can include, for example, age, prepregnancy weight, ethnicity, race; the presence, absence or severity of diabetes, hypertension, heart disease, kidney disease; the incidence and/or frequency of prior preeclampsia, prior preeclampsia; the presence, absence, frequency or severity of present or past smoking, illicit drug use, alcohol use; the presence, absence or severity of bleeding after the 12th gestational week; cervical cerclage and transvaginal cervical length. Additional risk indicia useful for as markers can be identified using learning algorithms known in the art, such as linear discriminant analysis, support vector machine classification, recursive feature elimination, prediction analysis of microarray, logistic regression, CART, FlexTree, LART, random forest, MART, and/or survival analysis regression, which are known to those of skill in the art and are further described herein.


Provided herein are panels of isolated biomarkers comprising N of the biomarkers selected from the group listed in Tables 2, 3, 4, 5, and 7 through 22. In the disclosed panels of biomarkers N can be a number selected from the group consisting of 2 to 24. In the disclosed methods, the number of biomarkers that are detected and whose levels are determined, can be 1, or more than 1, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more. In certain embodiments, the number of biomarkers that are detected, and whose levels are determined, can be 1, or more than 1, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, or more. The methods of this disclosure are useful for determining the probability for preeclampsia in a pregnant female.


While certain of the biomarkers listed in Tables 2, 3, 4, 5, and 7 through 22 are useful alone for determining the probability for preeclampsia in a pregnant female, methods are also described herein for the grouping of multiple subsets of the biomarkers that are each useful as a panel of three or more biomarkers. In some embodiments, the invention provides panels comprising N biomarkers, wherein N is at least three biomarkers. In other embodiments, N is selected to be any number from 3-23 biomarkers.


In yet other embodiments, N is selected to be any number from 2-5, 2-10, 2-15, 2-20, or 2-23. In other embodiments, N is selected to be any number from 3-5, 3-10, 3-15, 3-20, or 3-23. In other embodiments, N is selected to be any number from 4-5, 4-10, 4-15, 4-20, or 4-23. In other embodiments, N is selected to be any number from 5-10, 5-15, 5-20, or 5-23. In other embodiments, N is selected to be any number from 6-10, 6-15, 6-20, or 6-23. In other embodiments, N is selected to be any number from 7-10, 7-15, 7-20, or 7-23. In other embodiments, N is selected to be any number from 8-10, 8-15, 8-20, or 8-23. In other embodiments, N is selected to be any number from 9-10, 9-15, 9-20, or 9-23. In other embodiments, N is selected to be any number from 10-15, 10-20, or 10-23. It will be appreciated that N can be selected to encompass similar, but higher order, ranges.


In certain embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, or five isolated biomarkers comprising an amino acid sequence selected from SPELQAEAK, SSNNPHSPIVEEFQVPYN, VNHVTLSQPK, VVGGLVALR, and FSVVYAK. In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, five of the isolated biomarkers consisting of an amino acid sequence selected from SPELQAEAK, SSNNPHSPIVEEFQVPYN, VNHVTLSQPK, VVGGLVALR, and FSVVYAK.


In certain embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, or five isolated biomarkers comprising an amino acid sequence selected from LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, GFQALGDAADIR. In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, five of the isolated biomarkers consisting of an amino acid sequence selected from LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, GFQALGDAADIR.


In certain embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, or five isolated biomarkers comprising an amino acid sequence selected from FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, VVGGLVALR, LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, and GFQALGDAADIR. In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, five of the isolated biomarkers consisting of an amino acid sequence selected from FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, VVGGLVALR, LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, and GFQALGDAADIR.


In some embodiments, the panel of isolated biomarkers comprises one or more peptides comprising a fragment from alpha-1-microglobulin (AMBP) Traboni and Cortese, Nucleic Acids Res. 14 (15), 6340 (1986); ADP/ATP translocase 3 (ANT3) Cozens et al., J. Mol. Biol. 206 (2), 261-280 (1989) (NCBI Reference Sequence: NP 001627.2); apolipoprotein A-II (APOA2) Fullerton et al., Hum. Genet. 111 (1), 75-87 (2002) GenBank: AY100524.1); apolipoprotein B (APOB) Knott et al., Nature 323, 734-738 (1986) (GenBank: EAX00803.1); apolipoprotein C-III (APOC3), Fullerton et al., Hum. Genet. 115 (1), 36-56 (2004)(GenBank: AAS68230.1); beta-2-microglobulin (B2MG) Cunningham et al., Biochemistry 12 (24), 4811-4822 (1973) (GenBank: AI686916.1); complement component 1, s subcomponent (C1S) Mackinnon et al., Eur. J. Biochem. 169 (3), 547-553 (1987), and retinol binding protein 4 (RBP4 or RET4) Rask et al., Ann. N. Y. Acad. Sci. 359, 79-90 (1981) (UniProtKB/Swiss-Prot: P02753.3).


In some embodiments, the panel of isolated biomarkers comprises one or more peptides comprising a fragment from cell adhesion molecule with homology to L1CAM (close homolog of L1) (CHL1) (GenBank: AAI43497.1), complement component C5 (C5 or CO5) Haviland, J. Immunol. 146 (1), 362-368 (1991)(GenBank: AAA51925.1); Complement component C8 beta chain (C8B or CO8B) Howard et al., Biochemistry 26 (12), 3565-3570 (1987) (NCBI Reference Sequence: NP_000057.1), endothelin-converting enzyme 1 (ECE1) Xu et al., Cell 78 (3), 473-485 (1994) (NCBI Reference Sequence: NM_001397.2; NP 001388.1); coagulation factor XIII, B polypeptide (F13B) Grundmann et al., Nucleic Acids Res. 18 (9), 2817-2818 (1990) (NCBI Reference Sequence: NP_001985.2); Interleukin 5 (IL5), Murata et al., J. Exp. Med. 175 (2), 341-351 (1992) (NCBI Reference Sequence: NP_000870.1), Peptidase D (PEPD) Endo et al., J. Biol. Chem. 264 (8), 4476-4481 (1989) (UniProtKB/Swiss-Prot: P12955.3); Plasminogen (PLMN) Petersen et al., J. Biol. Chem. 265 (11), 6104-6111 (1990), (NCBI Reference Sequences: NP_000292.1 NP_001161810.1).


In additional embodiments, the invention provides a panel of isolated biomarkers comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments, N is a number selected from the group consisting of 2 to 24. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, and VVGGLVALR.


In further embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4). In another embodiment, the invention provides a biomarker panel comprising at least three isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).


In further embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG). In another embodiment, the invention provides a biomarker panel comprising at least three isolated biomarkers selected from the group consisting of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


In some embodiments, the invention provides a biomarker panel comprising alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1 CAM (CHL1), complement component C5 (C5 or C05), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN). In another aspect, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1 CAM (CHL1), complement component C5 (C5 or C05), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN).


In some embodiments, the invention provides a biomarker panel comprising Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG). In another aspect, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


As used in this application, including the appended claims, the singular forms “a,” “an,” and “the” include plural references, unless the content clearly dictates otherwise, and are used interchangeably with “at least one” and “one or more.”


The term “about,” particularly in reference to a given quantity, is meant to encompass deviations of plus or minus five percent.


As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “contains,” “containing,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, product-by-process, or composition of matter that comprises, includes, or contains an element or list of elements does not include only those elements but can include other elements not expressly listed or inherent to such process, method, product-by-process, or composition of matter.


As used herein, the term “panel” refers to a composition, such as an array or a collection, comprising one or more biomarkers. The term can also refer to a profile or index of expression patterns of one or more biomarkers described herein. The number of biomarkers useful for a biomarker panel is based on the sensitivity and specificity value for the particular combination of biomarker values.


As used herein, and unless otherwise specified, the terms “isolated” and “purified” generally describes a composition of matter that has been removed from its native environment (e.g., the natural environment if it is naturally occurring), and thus is altered by the hand of man from its natural state. An isolated protein or nucleic acid is distinct from the way it exists in nature.


The term “biomarker” refers to a biological molecule, or a fragment of a biological molecule, the change and/or the detection of which can be correlated with a particular physical condition or state. The terms “marker” and “biomarker” are used interchangeably throughout the disclosure. For example, the biomarkers of the present invention are correlated with an increased likelihood of preeclampsia. Such biomarkers include, but are not limited to, biological molecules comprising nucleotides, nucleic acids, nucleosides, amino acids, sugars, fatty acids, steroids, metabolites, peptides, polypeptides, proteins, carbohydrates, lipids, hormones, antibodies, regions of interest that serve as surrogates for biological macromolecules and combinations thereof (e.g., glycoproteins, ribonucleoproteins, lipoproteins). The term also encompasses portions or fragments of a biological molecule, for example, peptide fragment of a protein or polypeptide that comprises at least 5 consecutive amino acid residues, at least 6 consecutive amino acid residues, at least 7 consecutive amino acid residues, at least 8 consecutive amino acid residues, at least 9 consecutive amino acid residues, at least 10 consecutive amino acid residues, at least 11 consecutive amino acid residues, at least 12 consecutive amino acid residues, at least 13 consecutive amino acid residues, at least 14 consecutive amino acid residues, at least 15 consecutive amino acid residues, at least 5 consecutive amino acid residues, at least 16 consecutive amino acid residues, at least 17 consecutive amino acid residues, at least 18 consecutive amino acid residues, at least 19 consecutive amino acid residues, at least 20 consecutive amino acid residues, at least 21 consecutive amino acid residues, at least 22 consecutive amino acid residues, at least 23 consecutive amino acid residues, at least 24 consecutive amino acid residues, at least 25 consecutive amino acid residues, or more consecutive amino acid residues.


The invention also provides a method of determining probability for preeclampsia in a pregnant female, the method comprising detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22 in a biological sample obtained from the pregnant female, and analyzing the measurable feature to determine the probability for preeclampsia in the pregnant female. As disclosed herein, a measurable feature comprises fragments or derivatives of each of said N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments of the disclosed methods detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22, combinations or portions and/or derivatives thereof in a biological sample obtained from said pregnant female.


In some embodiments, the present invention describes a method for predicting the time to onset of preeclamspsia in a pregnant female, the method comprising: (a) obtaining a biological sample from said pregnant female; (b) quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22 in said biological sample; (c) multiplying or thresholding said amount by a predetermined coefficient, (d) determining predicted onset of of said preeclampsia in said pregnant female comprising adding said individual products to obtain a total risk score that corresponds to said predicted onset of said preeclampsia in said pregnant female. Although described and exemplified with reference to methods of determining probability for preeclampsia in a pregnant female, the present disclosure is similarly applicable to the method of predicting time to onset of in a pregnant female. It will be apparent to one skilled in the art that each of the aforementioned methods has specific and substantial utilities and benefits with regard maternal-fetal health considerations.


In some embodiments, the method of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of N biomarkers, wherein N is selected from the group consisting of 2 to 24. In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, and VVGGLVALR.


In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, GFQALGDAADIR.


In further embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, VVGGLVALR, LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, and GFQALGDAADIR


In additional embodiments, the method of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).


In additional embodiments, the method of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


In further embodiments, the disclosed method of determining probability for preeclampsia in a pregnant female comprises detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1 CAM (CHL1), complement component C5 (C5 or C05), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), plasminogen (PLMN), of Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


In additional embodiments, the methods of determining probability for preeclampsia in a pregnant female further encompass detecting a measurable feature for one or more risk indicia associated with preeclampsia. In additional embodiments the risk indicia are selected form the group consisting of history of preeclampsia, first pregnancy, age, obesity, diabetes, gestational diabetes, hypertension, kidney disease, multiple pregnancy, interval between pregnancies, migraine headaches, rheumatoid arthritis, and lupus.


A “measurable feature” is any property, characteristic or aspect that can be determined and correlated with the probability for preeclampsia in a subject. For a biomarker, such a measurable feature can include, for example, the presence, absence, or concentration of the biomarker, or a fragment thereof, in the biological sample, an altered structure, such as, for example, the presence or amount of a post-translational modification, such as oxidation at one or more positions on the amino acid sequence of the biomarker or, for example, the presence of an altered conformation in comparison to the conformation of the biomarker in normal control subjects, and/or the presence, amount, or altered structure of the biomarker as a part of a profile of more than one biomarker. In addition to biomarkers, measurable features can further include risk indicia including, for example, maternal age, race, ethnicity, medical history, past pregnancy history, obstetrical history. For a risk indicium, a measurable feature can include, for example, age, prepregnancy weight, ethnicity, race; the presence, absence or severity of diabetes, hypertension, heart disease, kidney disease; the incidence and/or frequency of prior preeclampsia, prior preeclampsia; the presence, absence, frequency or severity of present or past smoking, illicit drug use, alcohol use; the presence, absence or severity of bleeding after the 12th gestational week; cervical cerclage and transvaginal cervical length.


In some embodiments of the disclosed methods of determining probability for preeclampsia in a pregnant female, the probability for preeclampsia in the pregnant female is calculated based on the quantified amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In some embodiments, the disclosed methods for determining the probability of preeclampsia encompass detecting and/or quantifying one or more biomarkers using mass sprectrometry, a capture agent or a combination thereof.


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass an initial step of providing a biomarker panel comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. In additional embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass an initial step of providing a biological sample from the pregnant female.


In some embodiments, the disclosed methods of determining probability for preeclampsia in a pregnant female encompass communicating the probability to a health care provider. In additional embodiments, the communication informs a subsequent treatment decision for the pregnant female.


In some embodiments, the method of determining probability for preeclampsia in a pregnant female encompasses the additional feature of expressing the probability as a risk score.


As used herein, the term “risk score” refers to a score that can be assigned based on comparing the amount of one or more biomarkers in a biological sample obtained from a pregnant female to a standard or reference score that represents an average amount of the one or more biomarkers calculated from biological samples obtained from a random pool of pregnant females. Because the level of a biomarker may not be static throughout pregnancy, a standard or reference score has to have been obtained for the gestational time point that corresponds to that of the pregnant female at the time the sample was taken. The standard or reference score can be predetermined and built into a predictor model such that the comparison is indirect rather than actually performed every time the probability is determined for a subject. A risk score can be a standard (e.g., a number) or a threshold (e.g., a line on a graph). The value of the risk score correlates to the deviation, upwards or downwards, from the average amount of the one or more biomarkers calculated from biological samples obtained from a random pool of pregnant females. In certain embodiments, if a risk score is greater than a standard or reference risk score, the pregnant female can have an increased likelihood of preeclampsia. In some embodiments, the magnitude of a pregnant female's risk score, or the amount by which it exceeds a reference risk score, can be indicative of or correlated to that pregnant female's level of risk.


In the context of the present invention, the term “biological sample,” encompasses any sample that is taken from pregnant female and contains one or more of the biomarkers listed in Table 1. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. As will be appreciated by those skilled in the art, a biological sample can include any fraction or component of blood, without limitation, T cells, monocytes, neutrophils, erythrocytes, platelets and microvesicles such as exosomes and exosome-like vesicles. In a particular embodiment, the biological sample is serum.


Preeclampsia refers to a condition characterized by high blood pressure and excess protein in the urine (proteinuria) after 20 weeks of pregnancy in a woman who previously had normal blood pressure. Preeclampsia encompasses Eclampsia, a more severe form of preeclampsia that is further characterized by seizures. Preeclampsia can be further classified as mild or severe depending upon the severity of the clinical symptoms. While preeclampsia usually develops during the second half of pregnancy (after 20 weeks), it also can develop shortly after birth or before 20 weeks of pregnancy.


Preeclampsia has been characterized by some investigators as 2 different disease entities: early-onset preeclampsia and late-onset preeclampsia, both of which are intended to be encompassed by reference to preeclampsia herein. Early-onset preeclampsia is usually defined as preeclampsia that develops before 34 weeks of gestation, whereas late-onset preeclampsia develops at or after 34 weeks of gestation. Preclampsia also includes postpartum preeclampsia is a less common condition that occurs when a woman has high blood pressure and excess protein in her urine soon after childbirth. Most cases of postpartum preeclampsia develop within 48 hours of childbirth. However, postpartum preeclampsia sometimes develops up to four to six weeks after childbirth. This is known as late postpartum preeclampsia.


Clinical criteria for diagnosis of preeclampsia are well established, for example, blood pressure of at least 140/90 mm Hg and urinary excretion of at least 0.3 grams of protein in a 24-hour urinary protein excretion (or at least +1 or greater on dipstick testing), each on two occasions 4-6 hours apart. Severe preeclampsia generally refers to a blood pressure of at least 160/110 mm Hg on at least 2 occasions 6 hours apart and greater than 5 grams of protein in a 24-hour urinary protein excretion or persistent +3 proteinuria on dipstick testing. Preeclampsia can include HELLP syndrome (hemolysis, elevated liver enzymes, low platelet count). Other elements of preeclampsia can include in-utero growth restriction (IUGR) in less than the 10% percentile according to the US demographics, persistent neurologic symptoms (headache, visual disturbances), epigastric pain, oliguria (less than 500 mL/24 h), serum creatinine greater than 1.0 mg/dL, elevated liver enzymes (greater than two times normal), thrombocytopenia (<100,000 cells/μL).


In some embodiments, the pregnant female was between 17 and 28 weeks of gestation at the time the biological sample was collected. In other embodiments, the pregnant female was between 16 and 29 weeks, between 17 and 28 weeks, between 18 and 27 weeks, between 19 and 26 weeks, between 20 and 25 weeks, between 21 and 24 weeks, or between 22 and 23 weeks of gestation at the time the biological sample was collected. In further embodiments, the the pregnant female was between about 17 and 22 weeks, between about 16 and 22 weeks between about 22 and 25 weeks, between about 13 and 25 weeks, between about 26 and 28, or between about 26 and 29 weeks of gestation at the time the biological sample was collected. Accordingly, the gestational age of a pregnant female at the time the biological sample is collected can be 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 weeks.


In some embodiments of the claimed methods the measurable feature comprises fragments or derivatives of each of the N biomarkers selected from the biomarkers listed in Table 1. In additional embodiments of the claimed methods, detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Table 1, combinations or portions and/or derivatives thereof in a biological sample obtained from said pregnant female.


The term “amount” or “level” as used herein refers to a quantity of a biomarker that is detectable or measurable in a biological sample and/or control. The quantity of a biomarker can be, for example, a quantity of polypeptide, the quantity of nucleic acid, or the quantity of a fragment or surrogate. The term can alternatively include combinations thereof. The term “amount” or “level” of a biomarker is a measurable feature of that biomarker.


In some embodiments, calculating the probability for preeclampsia in a pregnant female is based on the quantified amount of each of N biomarkers selected from the biomarkers listed in Table 1. Any existing, available or conventional separation, detection and quantification methods can be used herein to measure the presence or absence (e.g., readout being present vs. absent; or detectable amount vs. undetectable amount) and/or quantity (e.g., readout being an absolute or relative quantity, such as, for example, absolute or relative concentration) of biomarkers, peptides, polypeptides, proteins and/or fragments thereof and optionally of the one or more other biomarkers or fragments thereof in samples. In some embodiments, detection and/or quantification of one or more biomarkers comprises an assay that utilizes a capture agent. In further embodiments, the capture agent is an antibody, antibody fragment, nucleic acid-based protein binding reagent, small molecule or variant thereof. In additional embodiments, the assay is an enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA). In some embodiments, detection and/or quantification of one or more biomarkers further comprises mass spectrometry (MS). In yet further embodiments, the mass spectrometry is co-immunoprecitipation-mass spectrometry (co-IP MS), where coimmunoprecipitation, a technique suitable for the isolation of whole protein complexes is followed by mass spectrometric analysis.


As used herein, the term “mass spectrometer” refers to a device able to volatilize/ionize analytes to form gas-phase ions and determine their absolute or relative molecular masses. Suitable methods of volatilization/ionization are matrix-assisted laser desorption ionization (MALDI), electrospray, laser/light, thermal, electrical, atomized/sprayed and the like, or combinations thereof. Suitable forms of mass spectrometry include, but are not limited to, ion trap instruments, quadrupole instruments, electrostatic and magnetic sector instruments, time of flight instruments, time of flight tandem mass spectrometer (TOF MS/MS), Fourier-transform mass spectrometers, Orbitraps and hybrid instruments composed of various combinations of these types of mass analyzers. These instruments can, in turn, be interfaced with a variety of other instruments that fractionate the samples (for example, liquid chromatography or solid-phase adsorption techniques based on chemical, or biological properties) and that ionize the samples for introduction into the mass spectrometer, including matrix-assisted laser desorption (MALDI), electrospray, or nanospray ionization (ESI) or combinations thereof.


Generally, any mass spectrometric (MS) technique that can provide precise information on the mass of peptides, and preferably also on fragmentation and/or (partial) amino acid sequence of selected peptides (e.g., in tandem mass spectrometry, MS/MS; or in post source decay, TOF MS), can be used in the methods disclosed herein. Suitable peptide MS and MS/MS techniques and systems are well-known per se (see, e.g., Methods in Molecular Biology, vol. 146: “Mass Spectrometry of Proteins and Peptides”, by Chapman, ed., Humana Press 2000; Biemann 1990. Methods Enzymol 193: 455-79; or Methods in Enzymology, vol. 402: “Biological Mass Spectrometry”, by Burlingame, ed., Academic Press 2005) and can be used in practicing the methods disclosed herein. Accordingly, in some embodiments, the disclosed methods comprise performing quantitative MS to measure one or more biomarkers. Such quantitiative methods can be performed in an automated (Villanueva, et al., Nature Protocols (2006) 1(2):880-891) or semi-automated format. In particular embodiments, MS can be operably linked to a liquid chromatography device (LC-MS/MS or LC-MS) or gas chromatography device (GC-MS or GC-MS/MS). Other methods useful in this context include isotope-coded affinity tag (ICAT) followed by chromatography and MS/MS.


As used herein, the terms “multiple reaction monitoring (MRM)” or “selected reaction monitoring (SRM)” refer to an MS-based quantification method that is particularly useful for quantifying analytes that are in low abundance. In an SRM experiment, a predefined precursor ion and one or more of its fragments are selected by the two mass filters of a triple quadrupole instrument and monitored over time for precise quantification. Multiple SRM precursor and fragment ion pairs can be measured within she same experiment on she chromatographic time scale by rapidly toggling between the different precursor/fragment pairs to perform an MRM experiments. A series of transitions (precursor/fragment ion pairs) in combination with the retention time of the targeted analyte (e.g., peptide or small molecule such as chemical entity, steroid, hormone) can constitute a definitive assay. A large number of analytes can be quantified during a single LC-MS experiment. The term “scheduled,” or “dynamic” in reference to MRM or SRM, refers to a variation of the assay wherein the transitions for a particular analyte are only acquired in a time window around the expected retention time, significantly increasing the number of analytes that can be detected and quantified in a single LC-MS experiment and contributing to the selectivity of the test, as retention time is a property dependent on the physical nature of the analyte. A single analyte can also be monitored with more than one transition. Finally, included in the assay can be standards that correspond to the analytes of interest (e.g., same amino acid sequence), but differ by the inclusion of stable isotopes. Stable isotopic standards (SIS) can be incorporated into the assay at precise levels and used to quantify the corresponding unknown analyte. An additional level of specificity is contributed by the co-elution of the unknown analyte and its corresponding SIS and properties of their transitions (e.g., the similarity in the ratio of the level of two transitions of the unknown and the ratio of the two transitions of its corresponding SIS).


Mass spectrometry assays, instruments and systems suitable for biomarker peptide analysis can include, without limitation, matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) MS; MALDI-TOF post-source-decay (PSD); MALDI-TOF/TOF; surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF) MS; electrospray ionization mass spectrometry (ESI-MS); ESI-MS/MS; ESI-MS/(MS)n (n is an integer greater than zero); ESI 3D or linear (2D) ion trap MS; ESI triple quadrupole MS; ESI quadrupole orthogonal TOF (Q-TOF); ESI Fourier transform MS systems; desorption/ionization on silicon (DIOS); secondary ion mass spectrometry (SIMS); atmospheric pressure chemical ionization mass spectrometry (APCI-MS); APCI-MS/MS; APCI-(MS)n; atmospheric pressure photoionization mass spectrometry (APPI-MS); APPI-MS/MS; and APPI-(MS)n. Peptide ion fragmentation in tandem MS (MS/MS) arrangements can be achieved using manners established in the art, such as, e.g., collision induced dissociation (CID). As described herein, detection and quantification of biomarkers by mass spectrometry can involve multiple reaction monitoring (MRM), such as described among others by Kuhn et al. Proteomics 4: 1175-86 (2004). Scheduled multiple-reaction-monitoring (Scheduled MRM) mode acquisition during LC-MS/MS analysis enhances the sensitivity and accuracy of peptide quantitation. Anderson and Hunter, Molecular and Cellular Proteomics 5(4):573 (2006). As described herein, mass spectrometry-based assays can be advantageously combined with upstream peptide or protein separation or fractionation methods, such as for example with the chromatographic and other methods described herein below.


A person skilled in the art will appreciate that a number of methods can be used to determine the amount of a biomarker, including mass spectrometry approaches, such as MS/MS, LC-MS/MS, multiple reaction monitoring (MRM) or SRM and product-ion monitoring (PIM) and also including antibody based methods such as immunoassays such as Western blots, enzyme-linked immunosorbant assay (ELISA), immunoprecipitation, immunohistochemistry, immunofluorescence, radioimmunoassay, dot blotting, and fluorescence-activated cell sorting (FACS). Accordingly, in some embodiments, determining the level of the at least one biomarker comprises using an immunoassay and/or mass spectrometric methods. In additional embodiments, the mass spectrometric methods are selected from MS, MS/MS, LC-MS/MS, SRM, PIM, and other such methods that are known in the art. In other embodiments, LC-MS/MS further comprises 1D LC-MS/MS, 2D LC-MS/MS or 3D LC-MS/MS. Immunoassay techniques and protocols are generally known to those skilled in the art (Price and Newman, Principles and Practice of Immunoassay, 2nd Edition, Grove's Dictionaries, 1997; and Gosling, Immunoassays: A Practical Approach, Oxford University Press, 2000.) A variety of immunoassay techniques, including competitive and non-competitive immunoassays, can be used (Self et al., Curr. Opin. Biotechnol., 7:60-65 (1996).


In further embodiments, the immunoassay is selected from Western blot, ELISA, immunoprecipitation, immunohistochemistry, immunofluorescence, radioimmunoassay (MA), dot blotting, and FACS. In certain embodiments, the immunoassay is an ELISA. In yet a further embodiment, the ELISA is direct ELISA (enzyme-linked immunosorbent assay), indirect ELISA, sandwich ELISA, competitive ELISA, multiplex ELISA, ELISPOT technologies, and other similar techniques known in the art. Principles of these immunoassay methods are known in the art, for example John R. Crowther, The ELISA Guidebook, 1st ed., Humana Press 2000, ISBN 0896037282. Typically ELISAs are performed with antibodies but they can be performed with any capture agents that bind specifically to one or more biomarkers of the invention and that can be detected. Multiplex ELISA allows simultaneous detection of two or more analytes within a single compartment (e.g., microplate well) usually at a plurality of array addresses (Nielsen and Geierstanger 2004. J Immunol Methods 290: 107-20 (2004) and Ling et al. 2007. Expert Rev Mol Diagn 7: 87-98 (2007)).


In some embodiments, Radioimmunoassay (MA) can be used to detect one or more biomarkers in the methods of the invention. MA is a competition-based assay that is well known in the art and involves mixing known quantities of radioactavely-labelled (e.g., 125I or 131I-labelled) target analyte with antibody specific for the analyte, then adding non-labelled analyte from a sample and measuring the amount of labelled analyte that is displaced (see, e.g., An Introduction to Radioimmunoassay and Related Techniques, by Chard T, ed., Elsevier Science 1995, ISBN 0444821198 for guidance).


A detectable label can be used in the assays described herein for direct or indirect detection of the biomarkers in the methods of the invention. A wide variety of detectable labels can be used, with the choice of label depending on the sensitivity required, ease of conjugation with the antibody, stability requirements, and available instrumentation and disposal provisions. Those skilled in the art are familiar with selection of a suitable detectable label based on the assay detection of the biomarkers in the methods of the invention. Suitable detectable labels include, but are not limited to, fluorescent dyes (e.g., fluorescein, fluorescein isothiocyanate (FITC), Oregon Green™, rhodamine, Texas red, tetrarhodimine isothiocynate (TRITC), Cy3, Cy5, etc.), fluorescent markers (e.g., green fluorescent protein (GFP), phycoerythrin, etc.), enzymes (e.g., luciferase, horseradish peroxidase, alkaline phosphatase, etc.), nanoparticles, biotin, digoxigenin, metals, and the like.


For mass-sectrometry based analysis, differential tagging with isotopic reagents, e.g., isotope-coded affinity tags (ICAT) or the more recent variation that uses isobaric tagging reagents, iTRAQ (Applied Biosystems, Foster City, Calif.), or tandem mass tags, TMT, (Thermo Scientific, Rockford, Ill.), followed by multidimensional liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis can provide a further methodology in practicing the methods of the invention.


A chemiluminescence assay using a chemiluminescent antibody can be used for sensitive, non-radioactive detection of protein levels. An antibody labeled with fluorochrome also can be suitable. Examples of fluorochromes include, without limitation, DAPI, fluorescein, Hoechst 33258, R-phycocyanin, B-phycoerythrin, R-phycoerythrin, rhodamine, Texas red, and lissamine. Indirect labels include various enzymes well known in the art, such as horseradish peroxidase (HRP), alkaline phosphatase (AP), beta-galactosidase, urease, and the like. Detection systems using suitable substrates for horseradish-peroxidase, alkaline phosphatase, beta-galactosidase are well known in the art.


A signal from the direct or indirect label can be analyzed, for example, using a spectrophotometer to detect color from a chromogenic substrate; a radiation counter to detect radiation such as a gamma counter for detection of 125I; or a fluorometer to detect fluorescence in the presence of light of a certain wavelength. For detection of enzyme-linked antibodies, a quantitative analysis can be made using a spectrophotometer such as an EMAX Microplate Reader (Molecular Devices; Menlo Park, Calif.) in accordance with the manufacturer's instructions. If desired, assays used to practice the invention can be automated or performed robotically, and the signal from multiple samples can be detected simultaneously.


In some embodiments, the methods described herein encompass quantification of the biomarkers using mass spectrometry (MS). In further embodiments, the mass spectrometry can be liquid chromatography-mass spectrometry (LC-MS), multiple reaction monitoring (MRM) or selected reaction monitoring (SRM). In additional embodiments, the MRM or SRM can further encompass scheduled MRM or scheduled SRM.


As described above, chromatography can also be used in practicing the methods of the invention. Chromatography encompasses methods for separating chemical substances and generally involves a process in which a mixture of analytes is carried by a moving stream of liquid or gas (“mobile phase”) and separated into components as a result of differential distribution of the analytes as they flow around or over a stationary liquid or solid phase (“stationary phase”), between the mobile phase and said stationary phase. The stationary phase can be usually a finely divided solid, a sheet of filter material, or a thin film of a liquid on the surface of a solid, or the like. Chromatography is well understood by those skilled in the art as a technique applicable for the separation of chemical compounds of biological origin, such as, e.g., amino acids, proteins, fragments of proteins or peptides, etc.


Chromatography can be columnar (i.e., wherein the stationary phase is deposited or packed in a column), preferably liquid chromatography, and yet more preferably high-performance liquid chromatography (HPLC) or ultra high performance/pressure liquid chromatography (UHPLC). Particulars of chromatography are well known in the art (Bidlingmeyer, Practical HPLC Methodology and Applications, John Wiley & Sons Inc., 1993). Exemplary types of chromatography include, without limitation, high-performance liquid chromatography (HPLC), UHPLC, normal phase HPLC (NP-HPLC), reversed phase HPLC (RP-HPLC), ion exchange chromatography (IEC), such as cation or anion exchange chromatography, hydrophilic interaction chromatography (HILIC), hydrophobic interaction chromatography (HIC), size exclusion chromatography (SEC) including gel filtration chromatography or gel permeation chromatography, chromatofocusing, affinity chromatography such as immuno-affinity, immobilised metal affinity chromatography, and the like. Chromatography, including single-, two- or more-dimensional chromatography, can be used as a peptide fractionation method in conjunction with a further peptide analysis method, such as for example, with a downstream mass spectrometry analysis as described elsewhere in this specification.


Further peptide or polypeptide separation, identification or quantification methods can be used, optionally in conjunction with any of the above described analysis methods, for measuring biomarkers in the present disclosure. Such methods include, without limitation, chemical extraction partitioning, isoelectric focusing (IEF) including capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITP), capillary electrochromatography (CEC), and the like, one-dimensional polyacrylamide gel electrophoresis (PAGE), two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), capillary gel electrophoresis (CGE), capillary zone electrophoresis (CZE), micellar electrokinetic chromatography (MEKC), free flow electrophoresis (FFE), etc.


In the context of the invention, the term “capture agent” refers to a compound that can specifically bind to a target, in particular a biomarker. The term includes antibodies, antibody fragments, nucleic acid-based protein binding reagents (e.g. aptamers, Slow Off-rate Modified Aptamers (SOMAmer™)), protein-capture agents, natural ligands (i.e. a hormone for its receptor or vice versa), small molecules or variants thereof.


Capture agents can be configured to specifically bind to a target, in particular a biomarker. Capture agents can include but are not limited to organic molecules, such as polypeptides, polynucleotides and other non polymeric molecules that are identifiable to a skilled person. In the embodiments disclosed herein, capture agents include any agent that can be used to detect, purify, isolate, or enrich a target, in particular a biomarker. Any art-known affinity capture technologies can be used to selectively isolate and enrich/concentrate biomarkers that are components of complex mixtures of biological media for use in the disclosed methods.


Antibody capture agents that specifically bind to a biomarker can be prepared using any suitable methods known in the art. See, e.g., Coligan, Current Protocols in Immunology (1991); Harlow & Lane, Antibodies: A Laboratory Manual (1988); Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986). Antibody capture agents can be any immunoglobulin or derivative thereof, whether natural or wholly or partially synthetically produced. All derivatives thereof which maintain specific binding ability are also included in the term. Antibody capture agents have a binding domain that is homologous or largely homologous to an immunoglobulin binding domain and can be derived from natural sources, or partly or wholly synthetically produced. Antibody capture agents can be monoclonal or polyclonal antibodies. In some embodiments, an antibody is a single chain antibody. Those of ordinary skill in the art will appreciate that antibodies can be provided in any of a variety of forms including, for example, humanized, partially humanized, chimeric, chimeric humanized, etc. Antibody capture agents can be antibody fragments including, but not limited to, Fab, Fab′, F(ab′)2, scFv, Fv, dsFv diabody, and Fd fragments. An antibody capture agent can be produced by any means. For example, an antibody capture agent can be enzymatically or chemically produced by fragmentation of an intact antibody and/or it can be recombinantly produced from a gene encoding the partial antibody sequence. An antibody capture agent can comprise a single chain antibody fragment. Alternatively or additionally, antibody capture agent can comprise multiple chains which are linked together, for example, by disulfide linkages; and, any functional fragments obtained from such molecules, wherein such fragments retain specific-binding properties of the parent antibody molecule. Because of their smaller size as functional components of the whole molecule, antibody fragments can offer advantages over intact antibodies for use in certain immunochemical techniques and experimental applications.


Suitable capture agents useful for practicing the invention also include aptamers. Aptamers are oligonucleotide sequences that can bind to their targets specifically via unique three dimensional (3-D) structures. An aptamer can include any suitable number of nucleotides and different aptamers can have either the same or different numbers of nucleotides. Aptamers can be DNA or RNA or chemically modified nucleic acids and can be single stranded, double stranded, or contain double stranded regions, and can include higher ordered structures. An aptamer can also be a photoaptamer, where a photoreactive or chemically reactive functional group is included in the aptamer to allow it to be covalently linked to its corresponding target. Use of an aptamer capture agent can include the use of two or more aptamers that specifically bind the same biomarker. An aptamer can include a tag. An aptamer can be identified using any known method, including the SELEX (systematic evolution of ligands by exponential enrichment), process. Once identified, an aptamer can be prepared or synthesized in accordance with any known method, including chemical synthetic methods and enzymatic synthetic methods and used in a variety of applications for biomarker detection. Liu et al., Curr Med Chem. 18(27):4117-25 (2011). Capture agents useful in practicing the methods of the invention also include SOMAmers (Slow Off-Rate Modified Aptamers) known in the art to have improved off-rate characteristics. Brody et al., J Mol Biol. 422(5):595-606 (2012). SOMAmers can be generated using using any known method, including the SELEX method.


It is understood by those skilled in the art that biomarkers can be modified prior to analysis to improve their resolution or to determine their identity. For example, the biomarkers can be subject to proteolytic digestion before analysis. Any protease can be used. Proteases, such as trypsin, that are likely to cleave the biomarkers into a discrete number of fragments are particularly useful. The fragments that result from digestion function as a fingerprint for the biomarkers, thereby enabling their detection indirectly. This is particularly useful where there are biomarkers with similar molecular masses that might be confused for the biomarker in question. Also, proteolytic fragmentation is useful for high molecular weight biomarkers because smaller biomarkers are more easily resolved by mass spectrometry. In another example, biomarkers can be modified to improve detection resolution. For instance, neuraminidase can be used to remove terminal sialic acid residues from glycoproteins to improve binding to an anionic adsorbent and to improve detection resolution. In another example, the biomarkers can be modified by the attachment of a tag of particular molecular weight that specifically binds to molecular biomarkers, further distinguishing them. Optionally, after detecting such modified biomarkers, the identity of the biomarkers can be further determined by matching the physical and chemical characteristics of the modified biomarkers in a protein database (e.g., SwissProt).


It is further appreciated in the art that biomarkers in a sample can be captured on a substrate for detection. Traditional substrates include antibody-coated 96-well plates or nitrocellulose membranes that are subsequently probed for the presence of the proteins. Alternatively, protein-binding molecules attached to microspheres, microparticles, microbeads, beads, or other particles can be used for capture and detection of biomarkers. The protein-binding molecules can be antibodies, peptides, peptoids, aptamers, small molecule ligands or other protein-binding capture agents attached to the surface of particles. Each protein-binding molecule can include unique detectable label that is coded such that it can be distinguished from other detectable labels attached to other protein-binding molecules to allow detection of biomarkers in multiplex assays. Examples include, but are not limited to, color-coded microspheres with known fluorescent light intensities (see e.g., microspheres with xMAP technology produced by Luminex (Austin, Tex.); microspheres containing quantum dot nanocrystals, for example, having different ratios and combinations of quantum dot colors (e.g., Qdot nanocrystals produced by Life Technologies (Carlsbad, Calif.); glass coated metal nanoparticles (see e.g., SERS nanotags produced by Nanoplex Technologies, Inc. (Mountain View, Calif.); barcode materials (see e.g., sub-micron sized striped metallic rods such as Nanobarcodes produced by Nanoplex Technologies, Inc.), encoded microparticles with colored bar codes (see e.g., CellCard produced by Vitra Bioscience, vitrabio.com), glass microparticles with digital holographic code images (see e.g., CyVera microbeads produced by Illumina (San Diego, Calif.); chemiluminescent dyes, combinations of dye compounds; and beads of detectably different sizes.


In another aspect, biochips can be used for capture and detection of the biomarkers of the invention. Many protein biochips are known in the art. These include, for example, protein biochips produced by Packard BioScience Company (Meriden Conn.), Zyomyx (Hayward, Calif.) and Phylos (Lexington, Mass.). In general, protein biochips comprise a substrate having a surface. A capture reagent or adsorbent is attached to the surface of the substrate. Frequently, the surface comprises a plurality of addressable locations, each of which location has the capture agent bound there. The capture agent can be a biological molecule, such as a polypeptide or a nucleic acid, which captures other biomarkers in a specific manner. Alternatively, the capture agent can be a chromatographic material, such as an anion exchange material or a hydrophilic material. Examples of protein biochips are well known in the art.


Measuring mRNA in a biological sample can be used as a surrogate for detection of the level of the corresponding protein biomarker in a biological sample. Thus, any of the biomarkers or biomarker panels described herein can also be detected by detecting the appropriate RNA. Levels of mRNA can measured by reverse transcription quantitative polymerase chain reaction (RT-PCR followed with qPCR). RT-PCR is used to create a cDNA from the mRNA. The cDNA can be used in a qPCR assay to produce fluorescence as the DNA amplification process progresses. By comparison to a standard curve, qPCR can produce an absolute measurement such as number of copies of mRNA per cell. Northern blots, microarrays, Invader assays, and RT-PCR combined with capillary electrophoresis have all been used to measure expression levels of mRNA in a sample. See Gene Expression Profiling: Methods and Protocols, Richard A. Shimkets, editor, Humana Press, 2004.


Some embodiments disclosed herein relate to diagnostic and prognostic methods of determining the probability for preeclampsia in a pregnant female. The detection of the level of expression of one or more biomarkers and/or the determination of a ratio of biomarkers can be used to determine the probability for preeclampsia in a pregnant female. Such detection methods can be used, for example, for early diagnosis of the condition, to determine whether a subject is predisposed to preeclampsia, to monitor the progress of preeclampsia or the progress of treatment protocols, to assess the severity of preeclampsia, to forecast the outcome of preeclampsia and/or prospects of recovery or birth at full term, or to aid in the determination of a suitable treatment for preeclampsia.


The quantitation of biomarkers in a biological sample can be determined, without limitation, by the methods described above as well as any other method known in the art. The quantitative data thus obtained is then subjected to an analytic classification process. In such a process, the raw data is manipulated according to an algorithm, where the algorithm has been pre-defined by a training set of data, for example as described in the examples provided herein. An algorithm can utilize the training set of data provided herein, or can utilize the guidelines provided herein to generate an algorithm with a different set of data.


In some embodiments, analyzing a measurable feature to determine the probability for preeclampsia in a pregnant female encompasses the use of a predictive model. In further embodiments, analyzing a measurable feature to determine the probability for preeclampsia in a pregnant female encompasses comparing said measurable feature with a reference feature. As those skilled in the art can appreciate, such comparison can be a direct comparison to the reference feature or an indirect comparison where the reference feature has been incorporated into the predictive model. In further embodiments, analyzing a measurable feature to determine the probability for preeclampsia in a pregnant female encompasses one or more of a linear discriminant analysis model, a support vector machine classification algorithm, a recursive feature elimination model, a prediction analysis of microarray model, a logistic regression model, a CART algorithm, a flex tree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, a machine learning algorithm, a penalized regression method, or a combination thereof. In particular embodiments, the analysis comprises logistic regression.


An analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, machine learning algorithms; etc.


Classification can be made according to predictive modeling methods that set a threshold for determining the probability that a sample belongs to a given class. The probability preferably is at least 50%, or at least 60%, or at least 70%, or at least 80% or higher. Classifications also can be made by determining whether a comparison between an obtained dataset and a reference dataset yields a statistically significant difference. If so, then the sample from which the dataset was obtained is classified as not belonging to the reference dataset class. Conversely, if such a comparison is not statistically significantly different from the reference dataset, then the sample from which the dataset was obtained is classified as belonging to the reference dataset class.


The predictive ability of a model can be evaluated according to its ability to provide a quality metric, e.g. AUC (area under the curve) or accuracy, of a particular value, or range of values. Area under the curve measures are useful for comparing the accuracy of a classifier across the complete data range. Classifiers with a greater AUC have a greater capacity to classify unknowns correctly between two groups of interest. In some embodiments, a desired quality threshold is a predictive model that will classify a sample with an accuracy of at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, at least about 0.95, or higher. As an alternative measure, a desired quality threshold can refer to a predictive model that will classify a sample with an AUC of at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.


As is known in the art, the relative sensitivity and specificity of a predictive model can be adjusted to favor either the selectivity metric or the sensitivity metric, where the two metrics have an inverse relationship. The limits in a model as described above can be adjusted to provide a selected sensitivity or specificity level, depending on the particular requirements of the test being performed. One or both of sensitivity and specificity can be at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.


The raw data can be initially analyzed by measuring the values for each biomarker, usually in triplicate or in multiple triplicates. The data can be manipulated, for example, raw data can be transformed using standard curves, and the average of triplicate measurements used to calculate the average and standard deviation for each patient. These values can be transformed before being used in the models, e.g. log-transformed, Box-Cox transformed (Box and Cox, Royal Stat. Soc., Series B, 26:211-246(1964). The data are then input into a predictive model, which will classify the sample according to the state. The resulting information can be communicated to a patient or health care provider.


To generate a predictive model for preeclampsia, a robust data set, comprising known control samples and samples corresponding to the preeclampsia classification of interest is used in a training set. A sample size can be selected using generally accepted criteria. As discussed above, different statistical methods can be used to obtain a highly accurate predictive model. Examples of such analysis are provided in Example 2.


In one embodiment, hierarchical clustering is performed in the derivation of a predictive model, where the Pearson correlation is employed as the clustering metric. One approach is to consider a preeclampsia dataset as a “learning sample” in a problem of “supervised learning.” CART is a standard in applications to medicine (Singer, Recursive Partitioning in the Health Sciences, Springer (1999)) and can be modified by transforming any qualitative features to quantitative features; sorting them by attained significance levels, evaluated by sample reuse methods for Hotelling's T2 statistic; and suitable application of the lasso method. Problems in prediction are turned into problems in regression without losing sight of prediction, indeed by making suitable use of the Gini criterion for classification in evaluating the quality of regressions.


This approach led to what is termed FlexTree (Huang, Proc. Nat. Acad. Sci. U.S.A 101:10529-10534(2004)). FlexTree performs very well in simulations and when applied to multiple forms of data and is useful for practicing the claimed methods. Software automating FlexTree has been developed. Alternatively, LARTree or LART can be used (Turnbull (2005) Classification Trees with Subset Analysis Selection by the Lasso, Stanford University). The name reflects binary trees, as in CART and FlexTree; the lasso, as has been noted; and the implementation of the lasso through what is termed LARS by Efron et al. (2004) Annals of Statistics 32:407-451 (2004). See, also, Huang et al.., Proc. Natl. Acad. Sci. USA. 101(29):10529-34 (2004). Other methods of analysis that can be used include logic regression. One method of logic regression Ruczinski, Journal of Computational and Graphical Statistics 12:475-512 (2003). Logic regression resembles CART in that its classifier can be displayed as a binary tree. It is different in that each node has Boolean statements about features that are more general than the simple “and” statements produced by CART.


Another approach is that of nearest shrunken centroids (Tibshirani, Proc. Natl. Acad. Sci. U.S.A 99:6567-72(2002)). The technology is k-means-like, but has the advantage that by shrinking cluster centers, one automatically selects features, as is the case in the lasso, to focus attention on small numbers of those that are informative. The approach is available as PAM software and is widely used. Two further sets of algorithms that can be used are random forests (Breiman, Machine Learning 45:5-32 (2001)) and MART (Hastie, The Elements of Statistical Learning, Springer (2001)). These two methods are known in the art as “committee methods,” that involve predictors that “vote” on outcome.


To provide significance ordering, the false discovery rate (FDR) can be determined. First, a set of null distributions of dissimilarity values is generated. In one embodiment, the values of observed profiles are permuted to create a sequence of distributions of correlation coefficients obtained out of chance, thereby creating an appropriate set of null distributions of correlation coefficients (Tusher et al., Proc. Natl. Acad. Sci. U.S.A 98, 5116-21 (2001)). The set of null distribution is obtained by: permuting the values of each profile for all available profiles; calculating the pair-wise correlation coefficients for all profile; calculating the probability density function of the correlation coefficients for this permutation; and repeating the procedure for N times, where N is a large number, usually 300. Using the N distributions, one calculates an appropriate measure (mean, median, etc.) of the count of correlation coefficient values that their values exceed the value (of similarity) that is obtained from the distribution of experimentally observed similarity values at given significance level.


The FDR is the ratio of the number of the expected falsely significant correlations (estimated from the correlations greater than this selected Pearson correlation in the set of randomized data) to the number of correlations greater than this selected Pearson correlation in the empirical data (significant correlations). This cut-off correlation value can be applied to the correlations between experimental profiles. Using the aforementioned distribution, a level of confidence is chosen for significance. This is used to determine the lowest value of the correlation coefficient that exceeds the result that would have obtained by chance. Using this method, one obtains thresholds for positive correlation, negative correlation or both. Using this threshold(s), the user can filter the observed values of the pair wise correlation coefficients and eliminate those that do not exceed the threshold(s). Furthermore, an estimate of the false positive rate can be obtained for a given threshold. For each of the individual “random correlation” distributions, one can find how many observations fall outside the threshold range. This procedure provides a sequence of counts. The mean and the standard deviation of the sequence provide the average number of potential false positives and its standard deviation.


In an alternative analytical approach, variables chosen in the cross-sectional analysis are separately employed as predictors in a time-to-event analysis (survival analysis), where the event is the occurrence of preeclampsia, and subjects with no event are considered censored at the time of giving birth. Given the specific pregnancy outcome (preeclampsia event or no event), the random lengths of time each patient will be observed, and selection of proteomic and other features, a parametric approach to analyzing survival can be better than the widely applied semi-parametric Cox model. A Weibull parametric fit of survival permits the hazard rate to be monotonically increasing, decreasing, or constant, and also has a proportional hazards representation (as does the Cox model) and an accelerated failure-time representation. All the standard tools available in obtaining approximate maximum likelihood estimators of regression coefficients and corresponding functions are available with this model.


In addition the Cox models can be used, especially since reductions of numbers of covariates to manageable size with the lasso will significantly simplify the analysis, allowing the possibility of a nonparametric or semi-parametric approach to prediction of time to preeclampsia. These statistical tools are known in the art and applicable to all manner of proteomic data. A set of biomarker, clinical and genetic data that can be easily determined, and that is highly informative regarding the probability for preeclampsia and predicted time to a preeclampsia event in said pregnant female is provided. Also, algorithms provide information regarding the probability for preeclampsia in the pregnant female.


In the development of a predictive model, it can be desirable to select a subset of markers, i.e. at least 3, at least 4, at least 5, at least 6, up to the complete set of markers. Usually a subset of markers will be chosen that provides for the needs of the quantitative sample analysis, e.g. availability of reagents, convenience of quantitation, etc., while maintaining a highly accurate predictive model. The selection of a number of informative markers for building classification models requires the definition of a performance metric and a user-defined threshold for producing a model with useful predictive ability based on this metric. For example, the performance metric can be the AUROC, the sensitivity and/or specificity of the prediction as well as the overall accuracy of the prediction model.


As will be understood by those skilled in the art, an analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include, without limitation, linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, and machine learning algorithms.


As described in Example 2, various methods are used in a training model. The selection of a subset of markers can be for a forward selection or a backward selection of a marker subset. The number of markers can be selected that will optimize the performance of a model without the use of all the markers. One way to define the optimum number of terms is to choose the number of terms that produce a model with desired predictive ability (e.g. an AUC>0.75, or equivalent measures of sensitivity/specificity) that lies no more than one standard error from the maximum value obtained for this metric using any combination and number of terms used for the given algorithm.









TABLE 1





Transitions with p-values less than 0.05 in


univariate Cox Proportional Hazards to predict


Gestational Age of time to event (preeclampsia).

















TSDQIHFFFAK_447.56_512.3
0.00
ANT3_HUMAN





DPNGLPPEAQK_583.3_669.4
0.00
RET4_HUMAN





SVSLPSLDPASAK_636.35_885.5
0.00
APOB_HUMAN





SSNNPHSPIVEEFQVPYNK_729.36_261.2
0.00
C1S_HUMAN





IEGNLIFDPNNYLPK_873.96_414.2
0.00
APOB_HUMAN





YWGVASFLQK_599.82_849.5
0.00
RET4_HUMAN





ITENDIQIALDDAK_779.9_632.3
0.00
APOB_HUMAN





IEGNLIFDPNNYLPK_873.96_845.5
0.00
APOB_HUMAN





GWVTDGFSSLK_598.8_953.5
0.00
APOC3_HUMAN





TGISPLALIK_506.82_741.5
0.00
APOB_HUMAN





SVSLPSLDPASAK_636.35_473.3
0.00
APOB_HUMAN





IIGGSDADIK_494.77_762.4
0.00
C1S_HUMAN





TGISPLALIK_506.82_654.5
0.00
APOB_HUMAN





TLLIANETLR_572.34_703.4
0.00
IL5_HUMAN





YWGVASFLQK_599.82_350.2
0.00
RET4_HUMAN





VSALLTPAEQTGTWK_801.43_371.2
0.00
APOB_HUMAN





DPNGLPPEAQK_583.3_497.2
0.00
RET4_HUMAN





VNHVTLSQPK_561.82_673.4
0.00
B2MG_HUMAN





DALSSVQESQVAQQAR_572.96_502.3
0.00
APOC3_HUMAN





IAQYYYTFK_598.8_884.4
0.00
F13B_HUMAN





IEEIAAK_387.22_531.3
0.00
CO5_HUMAN





GWVTDGFSSLK_598.8_854.4
0.00
APOC3_HUMAN





VNHVTLSQPK_561.82_351.2
0.00
B2MG_HUMAN





ITENDIQIALDDAK_779.9_873.5
0.00
APOB_HUMAN





VSALLTPAEQTGTWK_801.43_585.4
0.00
APOB_HUMAN





VILGAHQEVNLEPHVQEIEVSR_832.78_
0.00
PLMN_HUMAN


860.4







SPELQAEAK_486.75_788.4
0.00
APOA2_HUMAN





SPELQAEAK_486.75_659.4
0.00
APOA2_HUMAN





DYWSTVK_449.72_620.3
0.00
APOC3_HUMAN





VPLALFALNR_557.34_620.4
0.00
PEPD_HUMAN





TSDQIHFFFAK_447.56_659.4
0.00
ANT3_HUMAN





DALSSVQESQVAQQAR_572.96_672.4
0.00
APOC3_HUMAN





VIAVNEVGR_478.78_284.2
0.00
CHL1_HUMAN





LLEVPEGR_456.76_686.3
0.00
C1S_HUMAN





VEPLYELVTATDFAYSSTVR_754.38_
0.00
CO8B_HUMAN


549.3
0.00






HHGPTITAK_321.18_275.1
0.01
AMBP_HUMAN





ALNFGGIGVVVGHELTHAFDDQGR_837.09_
0.01
ECE1_HUMAN


299.2







ETLLQDFR_511.27_565.3
0.01
AMBP_HUMAN





HHGPTITAK_321.18_432.3
0.01
AMBP_HUMAN





IIGGSDADIK_494.77_260.2
0.01
C1S_HUMAN
















TABLE 2







Top 40 transitions with p-values less than 0.05 in


univariate Cox Proportional Hazards to predict


Gestational Age of time to event (preeclampsia),


sorted by protein ID.










cox



Transition
pvalues
protein





HHGPTITAK_321.18_275.1
0.01
AMBP_HUMAN





ETLLQDFR_511.27_565.3
0.01
AMBP_HUMAN





HHGPTITAK_321.18_432.3
0.01
AMBP_HUMAN





TSDQIHFFFAK_447.56_512.3
0.00
ANT3_HUMAN





TSDQIHFFFAK_447.56_659.4
0.00
ANT3_HUMAN





SPELQAEAK_486.75_788.4
0.00
APOA2_HUMAN





SPELQAEAK_486.75_659.4
0.00
APOA2_HUMAN





SVSLPSLDPASAK_636.35_885.5
0.00
APOB_HUMAN





IEGNLIFDPNNYLPK_873.96_414.2
0.00
APOB_HUMAN





ITENDIQIALDDAK_779.9_632.3
0.00
APOB_HUMAN





IEGNLIFDPNNYLPK_873.96_845.5
0.00
APOB_HUMAN





TGISPLALIK_506.82_741.5
0.00
APOB_HUMAN





SVSLPSLDPASAK_636.35_473.3
0.00
APOB_HUMAN





TGISPLALIK_506.82_654.5
0.00
APOB_HUMAN





VSALLTPAEQTGTWK_801.43_371.2
0.00
APOB_HUMAN





ITENDIQIALDDAK_779.9_873.5
0.00
APOB_HUMAN





VSALLTPAEQTGTWK_801.43_585.4
0.00
APOB_HUMAN





GWVTDGFSSLK_598.8_953.5
0.00
APOC3_HUMAN





DALSSVQESQVAQQAR_572.96_502.3
0.00
APOC3_HUMAN





GWVTDGFSSLK_598.8_854.4
0.00
APOC3_HUMAN





DYWSTVK_449.72620.3
0.00
APOC3_HUMAN





DALSSVQESQVAQQAR_572.96_672.4
0.00
APOC3_HUMAN





VNHVTLSQPK_561.82_673.4
0.00
B2MG_HUMAN





VNHVTLSQPK_561.82_351.2
0.00
B2MG_HUMAN





SSNNPHSPIVEEFQVPYNK_729.36_
0.00
C1S_HUMAN


261.2







IIGGSDADIK_494.77_762.4
0.00
C1S_HUMAN





LLEVPEGR_456.76_686.3
0.00
C1S_HUMAN





IIGGSDADIK_494.77_260.2
0.01
C1S_HUMAN





VIAVNEVGR_478.78_284.2
0.00
CHL1_HUMAN





IEEIAAK_387.22_531.3
0.00
CO5_HUMAN





VEPLYELVTATDFAYSSTVR_754.38_
0.00
CO8B_HUMAN


549.3







ALNFGGIGVVVGHELTHAFDDQGR_
0.01
ECE1_HUMAN


837.09_299.2







IAQYYYTFK_598.8_884.4
0.00
F13B_HUMAN





TLLIANETLR_572.34_703.4
0.00
IL5_HUMAN





VPLALFALNR_557.34_620.4
0.00
PEPD_HUMAN





VILGAHQEVNLEPHVQEIEVSR_832.78_
0.00
PLMN_HUMAN


860.4







DPNGLPPEAQK_583.3_669.4
0.00
RET4_HUMAN





YWGVASFLQK_599.82_849.5
0.00
RET4_HUMAN





YWGVASFLQK_599.82_350.2
0.00
RET4_HUMAN





DPNGLPPEAQK_583.3_497.2
0.00
RET4_HUMAN
















TABLE 3







Transitions selected by Cox stepwise AIC analysis












Transition
coef
exp(coef)
se(coef)
z
Pr(>|z|)















Collection.Window.GA.in.Days
0.43
1.54E+00
0.19
2.22
0.03





IIGGSDADIK_494.77_762.4
44.40
1.91E+19
18.20
2.44
0.01





GGEGTGYFVDFSVR_745.85_869.5
6.91
1.00E+03
2.76
2.51
0.01





SPEQQETVLDGNLIIR_906.48_685.4
17.28
3.21E+07
7.49
2.31
0.02





EPGLCTWQSLR_673.83_790.4
−2.08
1.25E−01
1.02
−2.05
0.04
















TABLE 4







Transitions selected by Cox lasso analysis












Transition
coef
exp(coef)
se(coef)
z
Pr(>|z|)















Collection.Window.GA.in.Days
0.05069
1.052
0.02348
2.159
0.0309





SPELQAEAK_486.75_788.4
0.68781
1.98936
0.4278
1.608
0.1079





SSNNPHSPIVEEFQVPYNK_
2.63659
13.96553
1.69924
1.552
0.1208


729.36_261.2
















TABLE 5







Area under the ROC curve for individual analytes


to discriminate preeclampsia subjects from non-


preeclampsia subjects. The 196 transitions with


the highest ROC area are shown.








Transition
ROC area





SPELQAEAK_486.75_788.4
0.92





SSNNPHSPIVEEFQVPYNK_729.36_261.2
0.88





VNHVTLSQPK_561.82_673.4
0.85





TLLIANETLR_572.34_703.4
0.84





SSNNPHSPIVEEFQVPYNK_729.36_521.3
0.83





IIGGSDADIK_494.77_762.4
0.82





VVGGLVALR_442.29_784.5
0.82





ALNFGGIGVVVGHELTHAFDDQGR_837.09_299.2
0.81





DYWSTVK_449.72_620.3
0.81





FSVVYAK_407.23_579.4
0.81





GWVTDGFSSLK_598.8_953.5
0.81





IIGGSDADIK_494.77_260.2
0.81





LLEVPEGR_456.76_356.2
0.81





DALSSVQESQVAQQAR_572.96_672.4
0.80





DPNGLPPEAQK_583.3_497.2
0.80





FSVVYAK_407.23_381.2
0.80





LLEVPEGR_456.76_686.3
0.80





SPELQAEAK_486.75_659.4
0.80





VVLSSGSGPGLDLPLVLGLPLQLK_791.48_598.4
0.79





ETLLQDFR_511.27_565.3
0.79





VNHVTLSQPK_561.82_351.2
0.79





VVGGLVALR_442.29_685.4
0.79





YTTEIIK_434.25_603.4
0.79





DPNGLPPEAQK_583.3_669.4
0.78





EDTPNSVWEPAK_686.82_315.2
0.78





GWVTDGFSSLK_598.8_854.4
0.78





HHGPTITAK_321.18_432.3
0.78





LHEAFSPVSYQHDLALLR_699.37_251.2
0.78





GA.of.Time.to.Event.in.Days
0.77





DALSSVQESQVAQQAR_572.96_502.3
0.77





DYWSTVK_449.72_347.2
0.77





IAQYYYTFK_598.8_395.2
0.77





YWGVASFLQK_599.82_849.5
0.77





AHYDLR_387.7_288.2
0.76





EDTPNSVWEPAK_686.82_630.3
0.76





GDTYPAELYITGSILR_884.96_922.5
0.76





SVSLPSLDPASAK_636.35_885.5
0.76





TSESGELHGLTTEEEFVEGIYK_819.06_310.2
0.76





ALEQDLPVNIK_620.35_570.4
0.75





HHGPTITAK_321.18_275.1
0.75





IAQYYYTFK_598.8_884.4
0.75





ITENDIQIALDDAK_779.9_632.3
0.75





LPNNVLQEK_527.8_844.5
0.75





YWGVASFLQK_599.82_350.2
0.75





FQLPGQK_409.23_276.1
0.75





HTLNQIDEVK_598.82_958.5
0.75





VVLSSGSGPGLDLPLVLGLPLQLK_791.48_768.5
0.75





DADPDTFFAK_563.76_302.1
0.74





DADPDTFFAK_563.76_825.4
0.74





FQLPGQK_409.23_429.2
0.74





HFQNLGK_422.23_527.2
0.74





VIAVNEVGR_478.78_284.2
0.74





VPLALFALNR_557.34_620.4
0.74





ETLLQDFR_511.27_322.2
0.73





FNAVLTNPQGDYDTSTGK_964.46_262.1
0.73





SVSLPSLDPASAK_636.35_473.3
0.73





AHYDLR_387.7_566.3
0.72





ALNHLPLEYNSALYSR_620.99_538.3
0.72





AWVAWR_394.71_258.1
0.72





AWVAWR_394.71_531.3
0.72





ETAASLLQAGYK_626.33_879.5
0.72





IALGGLLFPASNLR_481.29_657.4
0.72





IAPQLSTEELVSLGEK_857.47_533.3
0.72





ITENDIQIALDDAK_779.9_873.5
0.72





VAPEEHPVLLTEAPLNPK_652.03_869.5
0.71





EPGLCTWQSLR_673.83_375.2
0.71





IAPQLSTEELVSLGEK_857.47_333.2
0.71





SPEQQETVLDGNLIIR_906.48_699.3
0.71





VSALLTPAEQTGTWK_801.43_371.2
0.71





VSALLTPAEQTGTWK_801.43_585.4
0.71





VSEADSSNADWVTK_754.85_347.2
0.71





GDTYPAELYITGSILR_884.96_274.1
0.70





IPGIFELGISSQSDR_809.93_849.4
0.70





IQTHSTTYR_369.52_540.3
0.70





LLDSLPSDTR_558.8_890.4
0.70





QLGLPGPPDVPDHAAYHPF_676.67_299.2
0.70





SYELPDGQVITIGNER_895.95_251.1
0.70





VILGAHQEVNLEPHVQEIEVSR_832.78_860.4
0.70





WGAAPYR_410.71_577.3
0.69





DFHINLFQVLPWLK_885.49_543.3
0.69





LLDSLPSDTR_558.8_276.2
0.69





VEPLYELVTATDFAYSSTVR_754.38_549.3
0.69





VPTADLEDVLPLAEDITNILSK_789.43_841.4
0.69





GGEGTGYFVDFSVR_745.85_869.5
0.69





HTLNQIDEVK_598.82_951.5
0.69





LIENGYFHPVK_439.57_627.4
0.69





LPNNVLQEK_527.8_730.4
0.69





NKPGVYTDVAYYLAWIR_677.02_545.3
0.69





NTVISVNPSTK_580.32_845.5
0.69





QLGLPGPPDVPDHAAYHPF_676.67_263.1
0.69





YTTEIIK_434.25_704.4
0.69





LPDATPK_371.21_628.3
0.68





IEGNLIFDPNNYLPK_873.96_845.5
0.68





LEQGENVFLQATDK_796.4_822.4
0.68





TLYSSSPR_455.74_533.3
0.68





TLYSSSPR_455.74_696.3
0.68





VSEADSSNADWVTK_754.85_533.3
0.68





DGSPDVTTADIGANTPDATK_973.45_844.4
0.67





EWVAIESDSVQPVPR_856.44_486.2
0.67





IALGGLLFPASNLR_481.29_412.3
0.67





IEEIAAK_387.22_531.3
0.67





IEGNLIFDPNNYLPK_873.96_414.2
0.67





LYYGDDEK_501.72_726.3
0.67





TGISPLALIK_506.82_741.5
0.67





VPTADLEDVLPLAEDITNILSK_789.43_940.5
0.67





ADSQAQLLLSTVVGVFTAPGLHLK_822.46_983.6
0.66





AYSDLSR_406.2_577.3
0.66





DFHINLFQVLPWLK_885.49_400.2
0.66





DLHLSDVFLK_396.22_260.2
0.66





EWVAIESDSVQPVPR_856.44_468.3
0.66





FNAVLTNPQGDYDTSTGK_964.46_333.2
0.66





LSSPAVITDK_515.79_743.4
0.66





LYYGDDEK_501.72_563.2
0.66





SGFSFGFK_438.72_732.4
0.66





IIEVEEEQEDPYLNDR_995.97_777.4
0.66





AVYEAVLR_460.76_750.4
0.66





WGAAPYR_410.71_634.3
0.66





FTFTLHLETPKPSISSSNLNPR_829.44_874.4
0.65





DAQYAPGYDK_564.25_315.1
0.65





YGLVTYATYPK_638.33_334.2
0.65





DGSPDVTTADIGANTPDATK_973.45_531.3
0.65





ETAASLLQAGYK_626.33_679.4
0.65





ALNHLPLEYNSALYSR_620.99_696.4
0.65





DISEVVTPR_508.27_787.4
0.65





IS.2_662.3_313.1
0.65





IVLGQEQDSYGGK_697.35_261.2
0.65





IVLGQEQDSYGGK_697.35_754.3
0.65





TLEAQLTPR_514.79_685.4
0.65





VPVAVQGEDTVQSLTQGDGVAK_733.38_775.4
0.65





VAPEEHPVLLTEAPLNPK_652.03_568.3
0.64





ADSQAQLLLSTVVGVFTAPGLHLK_822.46_664.4
0.64





AEAQAQYSAAVAK_654.33_908.5
0.64





DISEVVTPR_508.27_472.3
0.64





ELLESYIDGR_597.8_710.3
0.64





TGISPLALIK_506.82_654.5
0.64





TNLESILSYPK_632.84_807.5
0.64





DAQYAPGYDK_564.25_813.4
0.63





LPTAVVPLR_483.31_755.5
0.63





DSPVLIDFFEDTER_841.9_512.3
0.63





FAFNLYR_465.75_712.4
0.63





FVFGTTPEDILR_697.87_843.5
0.63





GDSGGAFAVQDPNDK_739.33_473.2
0.63





SLDFTELDVAAEK_719.36_316.2
0.63





SLLQPNK_400.24_599.4
0.63





TLLIANETLR_572.34_816.5
0.63





VILGAHQEVNLEPHVQEIEVSR_832.78_603.3
0.63





VQEAHLTEDQIFYFPK_655.66_701.4
0.63





FTFTLHLETPKPSISSSNLNPR_829.44_787.4
0.63





AYSDLSR_406.2_375.2
0.62





DDLYVSDAFHK_655.31_344.1
0.62





DDLYVSDAFHK_655.31_704.3
0.62





DPDQTDGLGLSYLSSHIANVER_796.39_456.2
0.62





ESDTSYVSLK_564.77_347.2
0.62





ESDTSYVSLK_564.77_696.4
0.62





FVFGTTPEDILR_697.87_742.4
0.62





ILDDLSPR_464.76_587.3
0.62





LEQGENVFLQATDK_796.4_675.4
0.62





LHEAFSPVSYQHDLALLR_699.37_380.2
0.62





LIENGYFHPVK_439.57_343.2
0.62





SLPVSDSVLSGFEQR_810.92_836.4
0.62





TWDPEGVIFYGDTNPK_919.93_403.2
0.62





VGEYSLYIGR_578.8_708.4
0.62





VIAVNEVGR_478.78_744.4
0.62





VPGTSTSATLTGLTR_731.4_761.5
0.62





YEVQGEVFTKPQLWP_910.96_293.1
0.62





AFTECCVVASQLR_770.87_673.4
0.61





APLTKPLK_289.86_357.3
0.61





DSPVLIDFFEDTER_841.9_399.2
0.61





ELLESYIDGR_597.8_839.4
0.61





FLQEQGHR_338.84_369.2
0.61





IQTHSTTYR_369.52_627.3
0.61





IS.3_432.6_397.3
0.61





IS.4_706.3_780.3
0.61





IS.4_706.3_927.4
0.61





IS.5_726.3_876.3
0.61





ISLLLIESWLEPVR_834.49_500.3
0.61





LQGTLPVEAR_542.31_842.5
0.61





NKPGVYTDVAYYLAWIR_677.02_821.5
0.61





SLDFTELDVAAEK_719.36_874.5
0.61





SYTITGLQPGTDYK_772.39_352.2
0.61





TASDFITK_441.73_710.4
0.61





VLSALQAVQGLLVAQGR_862.02_941.6
0.61





VTGWGNLK_437.74_617.3
0.61





YEVQGEVFTKPQLWP_910.96_392.2
0.61





AFIQLWAFDAVK_704.89_650.4
0.60





APLTKPLK_289.86_260.2
0.60





GYVIIKPLVWV_643.9_304.2
0.60





IITGLLEFEVYLEYLQNR_738.4_822.4
0.60





ILDDLSPR_464.76_702.3
0.60





LSSPAVITDK_515.79_830.5
0.60





TDAPDLPEENQAR_728.34_843.4
0.60





TFTLLDPK_467.77_359.2
0.60





TFTLLDPK_467.77_686.4
0.60





VLEPTLK_400.25_587.3
0.60





YEFLNGR_449.72_606.3
0.60





YGLVTYATYPK_638.33_843.4
0.60
















TABLE 6







AUROCs for random forest, boosting, lasso, and logistic regression


models for a specific number of transitions permitted in the model,


as estimated by 100 rounds of bootstrap resampling.











Number of






transitions
rf
boosting
logit
lasso














1
0.81
0.75
0.48
0.92


2
0.95
0.85
0.61
0.86


3
0.95
0.83
0.56
0.93


4
0.94
0.82
0.52
0.92


5
0.95
0.81
0.51
0.94


6
0.95
0.81
0.49
0.93


7
0.95
0.83
0.46
0.93


8
0.96
0.79
0.49
0.91


9
0.95
0.82
0.46
0.88


10
0.94
0.80
0.50
0.85


11
0.93
0.78
0.49
0.84


12
0.94
0.79
0.47
0.82


13
0.92
0.80
0.48
0.84


14
0.95
0.73
0.47
0.83


15
0.93
0.73
0.49
0.83
















TABLE 7







Top 15 transitions selected by each multivariate method, ranked by


importance for that method.












rf
boosting
lasso
logit














1
FSVVYAK_407.
DPNGLPPEAQK_583.
SPELQAEAK_486.
AFIQLWAFDAVK_704.



23_579.4
3_497.2
75_788.4
89_650.4





2
SPELQAEAK_486.
ALNFGGIGVVVGH
VILGAHQEVNL
AFIQLWAFDAVK_704.



75_788.4
ELTHAFDDQGR_
EPHVQEIEVSR_
89_836.4




837.09_299.2
832.78_860.4






3
VNHVTLSQPK_
ALEQDLPVNIK_620.
VVGGLVALR_442.
AEAQAQYSAAVAK_



561.82_673.4
35_570.4
29_784.5
654.33_709.4





4
SSNNPHSPIVE
DALSSVQESQVAQ_
TSESGELHGLTT
AFTECCVVASQLR_



EFQVPYNK_729.
QAR_572.96_502.3
EEEFVEGIYK_819.
770.87_574.3



36_261.2

06_310.2






5
SSNNPHSPIVE
AHYDLR_387.7_288.2
SSNNPHSPIVEE
ADSQAQLLLSTVVG



EFQVPYNK_729.

FQVPYNK_729.36_
VFTAPGLHLK_822.46_



36_521.3

261.2
664.4





6
VVGGLVALR_
FQLPGQK_409.23_
VVLSSGSGPGL
AEAQAQYSAAVAK_



442.29_784.5
276.1
DLPLVLGLPLQL
654.33_908.5





K_791.48_598.4






7
FQLPGQK_409.
AFTECCVVASQLR_
ALEQDLPVNIK_
ADSQAQLLLSTVVG



23_276.1
770.87_673.4
620.35_570.4
VFTAPGLHLK_822.46_






983.6





8
TLLIANETLR_
ALNHLPLEYNSAL
IQTHSTTYR_369.
AFTECCVVASQLR_



572.34_703.4
YSR_620.99_538.3
52_540.3
770.87_673.4





9
DYWSTVK_449.
ADSQAQLLLSTVV
SSNNPHSPIVEE
Collection.Window.GA.



72_620.3
GVFTAPGLHLK_822.
FQVPYNK_729.36_
in.Days




46_664.4
521.3






10
VVGGLVALR_
AEAQAQYSAAVA
FSVVYAK_407.23_
AHYDLR_387.7_288.2



442.29_685.4
K_654.33_908.5
579.4






11
DPNGLPPEAQ
ADSQAQLLLSTVV
IAQYYYTFK_598.
AHYDLR_387.7_566.3



K_583.3_497.2
GVFTAPGLHLK_822.
8_884.4





46_983.6







12
LLEVPEGR_456.
AITPPHPASQANIIF
IAQYYYTFK 598.
AITPPHPASQANIIFDI



76_356.2
DITEGNLR_825.77_
8_395.2
TEGNLR_825.77_459.3




459.3







13
GWVTDGFSSL
Collection.Window.G
GDTYPAELYITG
AITPPHPASQANIIFDI



K_598.8_953.5
A.in.Days
SILR_884.96_
TEGNLR_825.77_917.5





922.5






14
VILGAHQEVN
AEAQAQYSAAVA
SPEQQETVLDG
ALEQDLPVNIK_620.35_



LEPHVQEIEVS
K_654.33_709.4
NLIIR_906.48_
570.4



R_832.78_860.4

699.3






15
FQLPGQK_409.
AFIQLWAFDAVK_
IAPQLSTEELVS
ALEQDLPVNIK 620.35_



23_429.2
704.89_650.4
LGEK_857.47_
798.5





533.3









In yet another aspect, the invention provides kits for determining probability of preeclampsia, wherein the kits can be used to detect N of the isolated biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. For example, the kits can be used to detect one or more, two or more, three or more, four or more, or five of the isolated biomarkers selected from the group consisting of SPELQAEAK, SSNNPHSPIVEEFQVPYN, VNHVTLSQPK, VVGGLVALR, and FSVVYAK, LDFHFSSDR, TVQAVLTVPK, GPGEDFR, ETLLQDFR, ATVVYQGER, and GFQALGDAADIR. In another aspect, the kits can be used to detect one or more, two or more, three or more, four or more, five or more, six or more, seven or more, or eight of the isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4), Inhibin beta C chain (INHBC), Pigment epithelium-derived factor (PEDF), Prostaglandin-H2 D-isomerase (PTGDS), alpha-1-microglobulin (AMBP), Beta-2-glycoprotein 1 (APOH), Metalloproteinase inhibitor 1 (TIMP1), Coagulation factor XIII B chain (F13B), Alpha-2-HS-glycoprotein (FETUA), Sex hormone-binding globulin (SHBG).


The kit can include one or more agents for detection of biomarkers, a container for holding a biological sample isolated from a pregnant female; and printed instructions for reacting agents with the biological sample or a portion of the biological sample to detect the presence or amount of the isolated biomarkers in the biological sample. The agents can be packaged in separate containers. The kit can further comprise one or more control reference samples and reagents for performing an immunoassay.


In one embodiment, the kit comprises agents for measuring the levels of at least N of the isolated biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22. The kit can include antibodies that specifically bind to these biomarkers, for example, the kit can contain at least one of an antibody that specifically binds to alpha-1-microglobulin (AMBP), an antibody that specifically binds to ADP/ATP translocase 3 (ANT3), an antibody that specifically binds to apolipoprotein A-II (APOA2), an antibody that specifically binds to apolipoprotein C-III (APOC3), an antibody that specifically binds to apolipoprotein B (APOB), an antibody that specifically binds to beta-2-microglobulin (B2MG), an antibody that specifically binds to retinol binding protein 4 (RBP4 or RET4), an antibody that specifically binds to Inhibin beta C chain (INHBC), an antibody that specifically binds to Pigment epithelium-derived factor (PEDF), an antibody that specifically binds to Prostaglandin-H2 D-isomerase (PTGDS), an antibody that specifically binds to alpha-1-microglobulin (AMBP), an antibody that specifically binds to Beta-2-glycoprotein 1 (APOH), an antibody that specifically binds to Metalloproteinase inhibitor 1 (TIMP1), an antibody that specifically binds to Coagulation factor XIII B chain (F13B), an antibody that specifically binds to Alpha-2-HS-glycoprotein (FETUA), and an antibody that specifically binds to Sex hormone-binding globulin (SHBG).


The kit can comprise one or more containers for compositions contained in the kit. Compositions can be in liquid form or can be lyophilized. Suitable containers for the compositions include, for example, bottles, vials, syringes, and test tubes. Containers can be formed from a variety of materials, including glass or plastic. The kit can also comprise a package insert containing written instructions for methods of determining probability of preeclampsia.


From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.


The following examples are provided by way of illustration, not limitation.


EXAMPLES
Example 1. Development of Sample Set for Discovery and Validation of Biomarkers for Preeclampsia

A standard protocol was developed governing conduct of the Proteomic Assessment of Preterm Risk (PAPR) clinical study. This protocol also provided the option that the samples and clinical information could be used to study other pregnancy complications. Specimens were obtained from women at 11 Internal Review Board (IRB) approved sites across the United States. After providing informed consent, serum and plasma samples were obtained, as well as pertinent information regarding the patient's demographic characteristics, past medical and pregnancy history, current pregnancy history and concurrent medications. Following delivery, data were collected relating to maternal and infant conditions and complications. Serum and plasma samples were processed according to a protocol that requires standardized refrigerated centrifugation, aliquoting of the samples into 0.5 ml 2-D bar-coded cryovials and subsequent freezing at −80° C.


Following delivery, preeclampsia cases were individually reviewed. Only preterm preeclampsia cases were used for this analysis. For discovery of biomarkers of preeclampsia, 20 samples collected between 17-28 weeks of gestation were analyzed. Samples included 9 cases, 9 term controls matched within one week of sample collection and 2 random term controls. The samples were processed in batches of 24 that included 20 clinical samples and 4 identical human gold standards (HGS). HGS samples are identical aliquots from a pool of human blood and were used for quality control. HGS samples were placed in position 1, 8, 15 and 24 of a batch with patient samples processed in the remaining 20 positions. Matched cases and controls were always processed adjacently.


The samples were subsequently depleted of high abundance proteins using the Human 14 Multiple Affinity Removal System (MARS 14), which removes 14 of the most abundant proteins that are essentially uninformative with regard to the identification for disease-relevant changes in the serum proteome. To this end, equal volumes of each clinical or HGS sample were diluted with column buffer and filtered to remove precipitates. Filtered samples were depleted using a MARS-14 column (4.6×100 mm, Cat. #5188-6558, Agilent Technologies). Samples were chilled to 4° C. in the autosampler, the depletion column was run at room temperature, and collected fractions were kept at 4° C. until further analysis. The unbound fractions were collected for further analysis.


A second aliquot of each clinical serum sample and of each HGS was diluted into ammonium bicarbonate buffer and depleted of the 14 high and approximately 60 additional moderately abundant proteins using an IgY14-SuperMix (Sigma) hand-packed column, comprised of 10 mL of bulk material (50% slurry, Sigma). Shi et al., Methods, 56(2):246-53 (2012). Samples were chilled to 4° C. in the autosampler, the depletion column was run at room temperature, and collected fractions were kept at 4° C. until further analysis. The unbound fractions were collected for further analysis.


Depleted serum samples were denatured with trifluorethanol, reduced with dithiotreitol, alkylated using iodoacetamide, and then digested with trypsin at a 1:10 trypsin: protein ratio. Following trypsin digestion, samples were desalted on a C18 column, and the eluate lyophilized to dryness. The desalted samples were resolubilized in a reconstitution solution containing five internal standard peptides.


Depleted and trypsin digested samples were analyzed using a scheduled Multiple Reaction Monitoring method (sMRM). The peptides were separated on a 150 mm×0.32 mm Bio-Basic C18 column (ThermoFisher) at a flow rate of 5 μl/min using a Waters Nano Acquity UPLC and eluted using an acetonitrile gradient into a AB SCIEX QTRAP 5500 with a Turbo V source (AB SCIEX, Framingham, Mass.). The sMRM assay measured 1708 transitions that correspond to 854 peptides and 236 proteins. Chromatographic peaks were integrated using Rosetta Elucidator software (Ceiba Solutions).


Transitions were excluded from analysis, if their intensity area counts were less than 10000 and if they were missing in more than three samples per batch. Intensity area counts were log transformed and Mass Spectrometry run order trends and depletion batch effects were minimized using a regression analysis.


Example 2. Analysis of Transitions to Identify PE Biomarkers

The objective of these analyses was to examine the data collected in Example 1 to identify transitions and proteins that predict preeclampsia. The specific analyses employed were (i) Cox time-to-event analyses and (ii) models with preeclampsia as a binary categorical dependent variable. The dependent variable for all the Cox analyses was Gestational Age of time to event (where event is preeclampsia). For the purpose of the Cox analyses, preeclampsia subjects have the event on the day of birth. Non-preeclampsia subjects are censored on the day of birth. Gestational age on the day of specimen collection is a covariate in all Cox analyses.


The assay data obtained in Example 1 were previously adjusted for run order and log transformed. The data was not further adjusted. There were 9 matched non-preeclampsia subjects, and two unmatched non-preeclampsia subjects, where matching was done according to center, gestational age and ethnicity.


Univariate Cox Proportional Hazards Analyses

Univariate Cox Proportional Hazards analyses was performed to predict Gestational Age of time to event (preeclampsia), including Gestational age on the day of specimen collection as a covariate. Table 1 shows the 40 transitions with p-values less than 0.05. Table 2 shows the same transitions sorted by protein ID. There are 8 proteins that have multiple transitions with p-values less than 0.05: AMBP, ANT3, APOA2, APOB, APOC3, B2MG, C1S, and RET4.


Multivariate Cox Proportional Hazards Analyses: Stepwise AIC Selection


Cox Proportional Hazards analyses was performed to predict Gestational Age of time to event (preeclampsia), including Gestational age on the day of specimen collection as a covariate, using stepwise and lasso models for variable selection. The stepwise variable selection analysis used the Akaike Information Criterion (AIC) as the stopping criterion. Table 3 shows the transitions selected by the stepwise AIC analysis. The coefficient of determination (R2) for the stepwise AIC model is 0.87 of a maximum possible 0.9.


Multivariate Cox Proportional Hazards Analyses: Lasso Selection


Lasso variable selection was utilized as the second method of multivariate Cox Proportional Hazards analyses to predict Gestational Age of time to event (preeclampsia), including Gestational age on the day of specimen collection as a covariate. Lasso regression models estimate regression coefficients using penalized optimization methods, where the penalty discourages the model from considering large regression coefficients since we usually believe such large values are not very likely. As a result, some regression coefficients are forced to be zero (i.e., excluded from the model). Here, the resulting model included analytes with non-zero regression coefficients only. The number of these analytes (with non-zero regression coefficients) depends on the severity of the penalty. Cross-validation was used to choose an optimum penalty level. Table 4 shows the results. The coefficient of determination (R2) for the lasso model is 0.53 of a maximum possible 0.9.


Univariate ROC Analysis of Preeclampsia as a Binary Categorical Dependent Variable


Univariate analyses was used to discriminate preeclampsia subjects from non-preeclampsia subjects (preeclampsia as a binary categorical variable) as estimated by area under the receiver operating characteristic (ROC) curve. Table 5 shows the area under the ROC curve for the 196 transitions with the highest ROC area of 0.6 or greater.


Multivariate Analysis of Preeclampsia as a Binary Categorical Dependent Variable


Multivariate analyses was performed to predict preeclampsia as a binary categorical dependent variable, using random forest, boosting, lasso, and logistic regression models. Random forest and boosting models grow many classification trees. The trees vote on the assignment of each subject to one of the possible classes. The forest chooses the class with the most votes over all the trees.


For each of the four methods (random forest, boosting, lasso, and logistic regression) each method was allowed to select and rank its own best 15 transitions. We then built models with 1 to 15 transitions. Each method sequentially reduces the number of nodes from 15 to 1 independently. A recursive option was used to reduce the number nodes at each step: To determine which node to be removed, the nodes were ranked at each step based on their importance from a nested cross-validation procedure. The least important node was eliminated. The importance measures for lasso and logistic regression are z-values. For random forest and boosting, the variable importance was calculated from permuting out-of-bag data: for each tree, the classification error rate on the out-of-bag portion of the data was recorded; the error rate was then recalculated after permuting the values of each variable (i.e., transition); if the transition was in fact important, there would have been be a big difference between the two error rates; the difference between the two error rates were then averaged over all trees, and normalized by the standard deviation of the differences. The AUCs for these models are shown in Table 6 and in FIG. 1, as estimated by 100 rounds of bootstrap resampling. Table 7 shows the top 15 transitions selected by each multivariate method, ranked by importance for that method. These multivariate analyses suggest that models that combine 2 or more transitions give AUC greater than 0.9, as estimated by bootstrap.


In multivariate models, random forest (rf) and lasso models gave the best area under the ROC curve as estimated by bootstrap. The following transitions were selected by these two models for having high univariate ROC's:











FSVVYAK_407.23_579.4







SPELQAEAK_486.75_788.4







VNHVTLSQPK_561.82_673.4







SSNNPHSPIVEEFQVPYNK_729.36_261.2







SSNNPHSPIVEEFQVPYNK_729.36_521.3







VVGGLVALR_442.29_784.5






In summary, univariate and multivariate Cox analyses were performed using transitions collected in Example 1 to predict Gestational Age at Birth, including Gestational age on the day of specimen collection as a covariate. In the univariate Cox analyses, 8 proteins were identified with multiple transitions with p-value less than 0.05. In multivariate Cox analyses, stepwise AIC variable analysis selected 4 transitions, while the lasso model selected 2 transitions. Univariate (ROC) and multivariate (random forest, boosting, lasso, and logistic regression) analyses were performed to predict preeclampsia as a binary categorical variable. Univariate analyses identify 78 analytes with AUROC of 0.7 or greater and 196 analytes with AUROC of 0.6 or greater. Multivariate analyses suggest that models that combine 2 or more transitions give AUC greater than 0.9, as estimated by bootstrap.


From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.


Example 3. Study II Shotgun Identification of Preeclampsia Biomarkers

A further study used a hypothesis-independent shotgun approach to identify and quantify additional biomarkers not present on our multiplexed hypothesis dependent MRM assay. Samples were processed as described in the preceding Examples unless noted below.


Serum samples were depleted of the 14 most abundant serum samples by MARS14 as described in Example 1. Depleted serum was then reduced with dithiothreitol, alkylated with iodacetamide, and then digested with trypsin at a 1:20 trypsin to protein ratio overnight at 37° C. Following trypsin digestion, the samples were desalted on an Empore C18 96-well Solid Phase Extraction Plate (3M Company) and lyophilized to dryness. The desalted samples were resolubilized in a reconstitution solution containing five internal standard peptides.


Tryptic digests of MARS depleted patient (preeclampsia cases and normal pregnancycontrols) samples were fractionated by two-dimensional liquid chromatography and analyzed by tandem mass spectrometry. Aliquots of the samples, equivalent to 3-4 μl of serum, were injected onto a 6 cm×75 μm self-packed strong cation exchange (Luna SCX, Phenomenex) column. Peptides were eluded from the SCX column with salt (15, 30, 50, 70, and 100% B, where B=250 mM ammonium acetate, 2% acetonitrile, 0.1% formic acid in water) and consecutively for each salt elution, were bound to a 0.5 μl C18 packed stem trap (Optimize Technologies, Inc.) and further fractionated on a 10 cm×75 μm reversed phase ProteoPep II PicoFrit column (New Objective). Peptides were eluted from the reversed phase column with an acetonitrile gradient containing 0.1% formic acid and directly ionized on an LTQ-Orbitrap (ThermoFisher). For each scan, peptide parent ion masses were obtained in the Orbitrap at 60K resolution and the top seven most abundant ions were fragmented in the LTQ to obtain peptide sequence information.


Parent and fragment ion data were used to search the Human RefSeq database using the Sequest (Eng et al., J. Am. Soc. Mass Spectrom 1994; 5:976-989) and X!Tandem (Craig and Beavis, Bioinformatics 2004; 20:1466-1467) algorithms. For Sequest, data was searched with a 20 ppm tolerance for the parent ion and 1 AMU for the fragment ion. Two missed trypsin cleavages were allowed, and modifications included static cysteine carboxyamidomethylation and methionine oxidation. After searching the data was filtered by charge state vs. Xcorr scores (charge+1≥1.5 Xcorr, charge+2≥2.0, charge+3≥2.5). Similar search parameters were used for X!tandem, except the mass tolerance for the fragment ion was 0.8 AMU and there is no Xcorr filtering. Instead, the PeptideProphet algorithm (Keller et al., Anal. Chem 2002; 74:5383-5392) was used to validate each X!Tandem peptide-spectrum assignment and protein assignments were validated using ProteinProphet algorithm (Nesvizhskii et al., Anal. Chem 2002; 74:5383-5392). Data was filtered to include only the peptide-spectrum matches that had PeptideProphet probability of 0.9 or more. After compiling peptide and protein identifications, spectral count data for each peptide were imported into DAnTE software (Polpitiya et al., Bioinformatics. 2008; 24:1556-1558). Log transformed data was mean centered and missing values were filtered, by requiring that a peptide had to be identified in at least 2 cases and 2 controls. To determine the significance of an analyte, Receiver Operating Characteristic (ROC) curves for each analyte were created where the true positive rate (Sensitivity) is plotted as a function of the false positive rate (1-Specificity) for different thresholds that separate the SPTB and Term groups. The area under the ROC curve (AUC) is equal to the probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one. Peptides with AUC greater than or equal to 0.6 identified by both approaches are found in Table 8 and those found uniquely by Sequest or Xtandem are found in Tables 9 and 10, respectively.


The differentially expressed proteins identified by the hypothesis-independent strategy above, not already present in our MRM-MS assay, were candidates for incorporation into the MRM-MS assay. Candidates were prioritized by AUC and biological function, with preference given for new pathways. Sequences for each protein of interest, were imported into Skyline software which generated a list of tryptic peptides, m/z values for the parent ions and fragment ions, and an instrument-specific collision energy (McLean et al. Bioinformatics (2010) 26 (7): 966-968. McLean et al. Anal. Chem (2010) 82 (24): 10116-10124).


The list was refined by eliminating peptides containing cysteines and methionines, where possible, and by using the shotgun data to select the charge state(s) and a subset of potential fragment ions for each peptide that had already been observed on a mass spectrometer.


After prioritizing parent and fragment ions, a list of transitions was exported with a single predicted collision energy. Approximately 100 transitions were added to a single MRM run. For development, MRM data was collected on either a QTRAP 5500 (AB Sciex) or a 6490 QQQ (Agilent). Commercially available human female serum (from pregnant and non-pregnant donors), was depleted and processed to tryptic peptides, as described above, and used to “scan” for peptides of interest. For development, peptides from the digested serum were separated with a 15 min acetonitrile.e gradient at 100 ul/min on a 2.1×50 mM Poroshell 120 EC-C18 column (Agilent) at 40° C.


The MS/MS data was imported back into Skyline, where all chromatograms for each peptide were overlayed and used to identify a consensus peak corresponding to the peptide of interest and the transitions with the highest intensities and the least noise. Table 11, contains a list of the most intensely observed candidate transitions and peptides for transfer to the MRM assay.


Next, the top 2-10 transitions per peptide and up to 7 peptides per protein were selected for collision energy (CE) optimization on the Agilent 6490. Using Skyline or MassHunter Qual software, the optimized CE value for each transition was determined based on the peak area or signal to noise. The two transitions with the largest peak areas per peptide and at least two peptides per protein were chosen for the final MRM method. Substitutions of transitions with lower peak areas were made when a transition with a larger peak area had a high background level or had a low m/z value that has more potential for interference.


Lastly, the retention times of selected peptides were mapped using the same column and gradient as our established sMRM assay. The newly discovered analytes were subsequently added to the sMRM method and used in a further hypothesis-dependent discovery study described in Example 4 below.


The above method was typical for most proteins. However, in some cases, the differentially expressed peptide identified in the shotgun method did not uniquely identify a protein, for example, in protein families with high sequence identity. In these cases, a MRM method was developed for each family member. Also, let it be noted that, for any given protein, peptides in addition to those found to be significant and fragment ions not observed on the Orbitrap may have been included in MRM optimization and added to the final sMRM method if those yielded the best signal intensities. In some cases, transition selection and CEs were re-optimized using purified, synthetic peptides.









TABLE 8







Preeclampsia: Peptides significant with AUC > 0.6 by X!Tandem and


Sequest











Protein






description
Uniprot ID (name)
Peptide
XT_AUC
S_AUC





afamin
P43652
R.IVQIYKDLLR.N
0.67
0.63



(AFAM_HUMAN)








afamin
P43652
K.VMNHICSK.Q
0.73
0.74



(AFAM_HUMAN)








afamin
P43652
R.RHPDLSIPELLR.I
0.86
0.83



(AFAM_HUMAN)








afamin
P43652
K.HFQNLGK.D
0.71
0.75



(AFAM_HUMAN)








alpha-1-
P01011
K.ITLLSALVETR.T
0.68
0.70


antichymotrypsin
(AACT_HUMAN)








alpha-1-
P01011
R.LYGSEAFATDFQDSAAA
0.70
0.78


antichymotrypsin
(AACT_HUMAN)
K.K







alpha-1-
P01011
R.NLAVSQVVHK.A
0.81
0.79


antichymotrypsin
(AACT_HUMAN)








alpha-1B-
P04217
R.CEGPIPDVTFELLR.E
0.78
0.60


glycoprotein
(A1BG_HUMAN)








alpha-1B-
P04217
R.LHDNQNGWSGDSAPVEL
0.72
0.66


glycoprotein
(A1BG_HUMAN)
ILSDETLPAPEFSPEPESGR.






A







alpha-1B-
P04217
R.CEGPIPDVTFELLR.E
0.64
0.60


glycoprotein
(A1BG_HUMAN)








alpha-1B-
P04217
R.TPGAAANLELIFVGPQHA
0.71
0.67


glycoprotein
(A1BG_HUMAN)
GNYR.C







alpha-1B-
P04217
K.LLELTGPK.S
0.70
0.66


glycoprotein
(A1BG_HUMAN)








alpha-1B-
P04217
R.ATWSGAVLAGR.D
0.84
0.74


glycoprotein
(A1BG_HUMAN)








alpha-2-
P08697
K.HQM*DLVATLSQLGLQE
0.67
0.67


antiplasmin
(A2AP_HUMAN)
LFQAPDLR.G







alpha-2-
P08697
K.LGNQEPGGQTALK.S
0.83
0.83


antiplasmin
(A2AP_HUMAN)








alpha-2-
P08697
K.GFPIKEDFLEQSEQLFGA
0.68
0.65


antiplasmin
(A2AP_HUMAN)
KPVSLTGK.Q







alpha-2-HS-
P02765
R.QPNCDDPETEEAALVAID
0.61
0.61


glycoprotein
(FETUA_HUMAN)
YINQNLPWGYK.H




preproprotein









alpha-2-HS-
P02765
K.VWPQQPSGELFEIEIDTL
0.79
0.67


glycoprotein
(FETUA_HUMAN)
ETTCHVLDPTPVAR.C




preproprotein









alpha-2-HS-
P02765
K.EHAVEGDCDFQLLK.L
0.90
0.77


glycoprotein
(FETUA_HUMAN)





preproprotein









alpha-2-HS-
P02765
R.QPNCDDPETEEAALVAID
0.63
0.61


glycoprotein
(FETUA_HUMAN)
YINQNLPWGYK.H




preproprotein









alpha-2-HS-
P02765
K.HTLNQIDEVK.V
0.70
0.68


glycoprotein
(FETUA_HUMAN)





preproprotein









alpha-2-HS-
P02765
R.TVVQPSVGAAAGPVVPP
0.83
0.83


glycoprotein
(FETUA_HUMAN)
CPGR.I




preproprotein









angiotensinogen
P01019
K.TGCSLMGASVDSTLAFN
0.75
0.67


preproprotein
(ANGT_HUMAN)
TYVHFQGK.M







angiotensinogen
P01019
R.AAM*VGMLANFLGFR.I
0.65
0.63


preproprotein
(ANGT_HUMAN)








angiotensinogen
P01019
R.AAMVGMLANFLGFR.I
0.65
0.64


preproprotein
(ANGT_HUMAN)








angiotensinogen
P01019
R.AAM*VGM*LANFLGFR.I
0.65
0.65


preproprotein
(ANGT_HUMAN)








angiotensinogen
P01019
R.AAMVGM*LANFLGFR.I
0.65
0.74


preproprotein
(ANGT_HUMAN)








angiotensinogen
P01019
K.QPFVQGLALYTPVVLPR.
0.60
0.74


preproprotein
(ANGT_HUMAN)
S







angiotensinogen
P01019
R.AAM*VGMLANFLGFR.I
0.64
0.63


preproprotein
(ANGT_HUMAN)








angiotensinogen
P01019
R.AAMVGMLANFLGFR.I
0.64
0.64


preproprotein
(ANGT_HUMAN)








angiotensinogen
P01019
R.AAM*VGM*LANFLGFR.I
0.64
0.65


preproprotein
(ANGT_HUMAN)








angiotensinogen
P01019
R.AAMVGM*LANFLGFR.I
0.64
0.74


preproprotein
(ANGT_HUMAN)








angiotensinogen
P01019
K.VLSALQAVQGLLVAQGR.
0.74
0.77


preproprotein
(ANGT_HUMAN)
A







angiotensinogen
P01019
K.QPFVQGLALYTPVVLPR.
0.75
0.74


preproprotein
(ANGT_HUMAN)
S







angiotensinogen
P01019
R.ADSQAQLLLSTVVGVFT
0.78
0.77


preproprotein
(ANGT_HUMAN)
APGLHLK.Q







antithrombin-III
P01008
R.ITDVIPSEAINELTVLVLV
0.78
0.78



(ANT3_HUMAN)
NTIYFK.G







antithrombin-III
P01008
K.NDNDNIFLSPLSISTAFA
0.87
0.83



(ANT3_HUMAN)
MTK.L







antithrombin-III
P01008
R.EVPLNTIIFMGR.V
0.69
0.62



(ANT3_HUMAN)








antithrombin-III
P01008
R.EVPLNTIIFM*GR.V
0.69
0.69



(ANT3_HUMAN)








antithrombin-III
P01008
R.VAEGTQVLELPFKGDDIT
0.83
0.92



(ANT3_HUMAN)
M*VLILPKPEK.S







antithrombin-III
P01008
R.VAEGTQVLELPFKGDDIT
0.83
0.96



(ANT3_HUMAN)
MVLILPKPEK.S







antithrombin-III
P01008
K.EQLQDMGLVDLFSPEK.S
0.85
0.86



(ANT3_HUMAN)








antithrombin-III
P01008
R.VAEGTQVLELPFKGDDIT
0.94
0.92



(ANT3_HUMAN)
M*VLILPKPEK.S







antithrombin-III
P01008
R.VAEGTQVLELPFKGDDIT
0.94
0.96



(ANT3_HUMAN)
MVLILPKPEK.S







antithrombin-III
P01008
R.EVPLNTIIFMGR.V
0.63
0.62



(ANT3_HUMAN)








antithrombin-III
P01008
R.EVPLNTIIFM*GR.V
0.63
0.69



(ANT3_HUMAN)








antithrombin-III
P01008
R.DIPMNPMCIYR.S
0.71
0.70



(ANT3_HUMAN)








apolipoprotein
P02652
K.EPCVESLVSQYFQTVTD
0.83
0.83


A-II
(APOA2_HUMAN)
YGK.D




preproprotein









apolipoprotein
P06727
K.SLAELGGHLDQQVEEFR.
0.67
0.67


A-IV
(APOA4_HUMAN)
R







apolipoprotein
P06727
R.LAPLAEDVR.G
0.67
0.90


A-IV
(APOA4_HUMAN)








apolipoprotein
P06727
R.VLRENADSLQASLRPHA
0.79
0.63


A-IV
(APOA4_HUMAN)
DELK.A







apolipoprotein
P06727
R.SLAPYAQDTQEKLNHQL
0.90
0.65


A-IV
(APOA4_HUMAN)
EGLTFQMK.K







apolipoprotein
P06727
R.SLAPYAQDTQEKLNHQL
0.90
0.69


A-IV
(APOA4_HUMAN)
EGLTFQM*K.K







apolipoprotein
P06727
K.LGPHAGDVEGHLSFLEK.
0.63
0.73


A-IV
(APOA4_HUMAN)
D







apolipoprotein
P06727
K.SELTQQLNALFQDKLGE
0.68
0.68


A-IV
(APOA4_HUMAN)
VNTYAGDLQK.K







apolipoprotein
P06727
R.SLAPYAQDTQEKLNHQL
0.71
0.65


A-IV
(APOA4_HUMAN)
EGLTFQMK.K







apolipoprotein
P06727
R.SLAPYAQDTQEKLNHQL
0.71
0.69


A-IV
(APOA4_HUMAN)
EGLTFQM*K.K







apolipoprotein
P06727
R.LLPHANEVSQK.I
0.62
0.79


A-IV
(APOA4_HUMAN)








apolipoprotein
P06727
K.SLAELGGHLDQQVEEFR
0.67
0.69


A-IV
(APOA4_HUMAN)
R.R







apolipoprotein
P06727
K.SELTQQLNALFQDK.L
0.68
0.62


A-IV
(APOA4_HUMAN)








apolipoprotein
P04114
K.GFEPTLEALFGK.Q
0.73
0.76


B-100
(APOB_HUMAN)








apolipoprotein
P04114
K.ALYWVNGQVPDGVSK.V
0.78
0.67


B-100
(APOB_HUMAN)








apolipoprotein
P04114
K.FIIPSPK.R
0.90
0.90


B-100
(APOB_HUMAN)








apolipoprotein
P04114
R.TPALHFK.S
0.68
0.81


B-100
(APOB_HUMAN)








apolipoprotein
P04114
K.TEVIPPLIENR.Q
0.62
0.64


B-100
(APOB_HUMAN)








apolipoprotein
P04114
R.NLQNNAEWVYQGAIR.Q
0.65
0.60


B-100
(APOB_HUMAN)








apolipoprotein
P04114
K.LPQQANDYLNSFNWER.
0.65
0.62


B-100
(APOB_HUMAN)
Q







apolipoprotein
P04114
R.LAAYLMLMR.S
0.60
0.73


B-100
(APOB_HUMAN)








apolipoprotein
P04114
R.VIGNMGQTMEQLTPELK.
0.68
0.67


B-100
(APOB_HUMAN)
S







apolipoprotein
P04114
K.LIVAMSSWLQK.A
0.74
0.86


B-100
(APOB_HUMAN)








apolipoprotein
P04114
R.TSSFALNLPTLPEVK.F
0.79
0.70


B-100
(APOB_HUMAN)








apolipoprotein
P04114
K.IADFELPTIIVPEQTIEIPSI
0.62
0.61


B-100
(APOB_HUMAN)
K.F







apolipoprotein
P04114
K.IEGNLIFDPNNYLPK.E
0.63
0.62


B-100
(APOB_HUMAN)








apolipoprotein
P04114
R.TSSFALNLPTLPEVKFPE
0.66
0.72


B-100
(APOB_HUMAN)
VDVLTK.Y







apolipoprotein
P04114
R.LELELRPTGEIEQYSVSA
0.78
0.78


B-100
(APOB_HUMAN)
TYELQR.E







apolipoprotein
P02655
K.STAAMSTYTGIFTDQVLS
0.73
0.73


C-II
(APOC2_HUMAN)
VLK.G







apolipoprotein
P02656
R.GWVTDGFSSLKDYWST
1.00
1.00


C-III
(APOC3_HUMAN)
VKDK.F







apolipoprotein E
P02649
R.WELALGR.F
0.60
0.63



(APOE_HUMAN)








apolipoprotein E
P02649
R.LAVYQAGAR.E
0.61
0.64



(APOE_HUMAN)








apolipoprotein E
P02649
K.SWFEPLVEDMQR.Q
0.83
0.73



(APOE_HUMAN)








apolipoprotein E
P02649
R.AATVGSLAGQPLQER.A
0.67
0.67



(APOE_HUMAN)








apolipoprotein(a)
P08519
R.TPEYYPNAGLIMNYCR.N
0.72
0.61



(APOA_HUMAN)








beta-2-
P02749
K.TFYEPGEEITYSCKPGYV
0.66
0.76


glycoprotein 1
(APOH_HUMAN)
SR.G







beta-2-
P02749
K.FICPLTGLWPINTLK.C
0.72
0.70


glycoprotein 1
(APOH_HUMAN)








bone marrow
P13727
R.SLQTFSQAWFTCR.R
0.82
0.72


proteoglycan
(PRG2_HUMAN)








ceruloplasmin
P00450
K.HYYIGIIETTWDYASDHG
0.78
0.89



(CERU_HUMAN)
EKK.L







ceruloplasmin
P00450
R.EYTDASFTNRK.E
0.63
0.63



(CERU_HUMAN)








ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLI
0.66
0.68



(CERU_HUMAN)
GPMK.I







ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLI
0.66
0.76



(CERU_HUMAN)
GPM*K.I







ceruloplasmin
P00450
R.SGAGTEDSACIPWAYYS
0.95
0.95



(CERU_HUMAN)
TVDQVKDLYSGLIGPLIVC






R.R







ceruloplasmin
P00450
R.KAEEEHLGILGPQLHAD
0.85
0.77



(CERU_HUMAN)
VGDKVK.I







ceruloplasmin
P00450
K.EVGPTNADPVCLAK.M
0.62
0.77



(CERU_HUMAN)








ceruloplasmin
P00450
R.MYSVNGYTFGSLPGLSM
0.63
0.71



(CERU_HUMAN)
CAEDR.V







ceruloplasmin
P00450
K.DIASGLIGPLIICK.K
0.63
0.66



(CERU_HUMAN)








ceruloplasmin
P00450
R.QKDVDKEFYLFPTVFDE
0.64
0.66



(CERU_HUMAN)
NESLLLEDNIR.M







ceruloplasmin
P00450
R.GPEEEHLGILGPVIWAEV
0.65
0.61



(CERU_HUMAN)
GDTIR.V







ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLI
0.67
0.68



(CERU_HUMAN)
GPMK.I







ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLI
0.67
0.76



(CERU_HUMAN)
GPM*K.I







ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLI
0.67
0.68



(CERU_HUMAN)
GPMK.I







ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLI
0.67
0.76



(CERU_HUMAN)
GPM*K.I







ceruloplasmin
P00450
K.GAYPLSIEPIGVR.F
0.67
0.63



(CERU_HUMAN)








ceruloplasmin
P00450
R.GVYSSDVFDIFPGTYQTL
0.67
0.67



(CERU_HUMAN)
EM*FPR.T







ceruloplasmin
P00450
K.DIASGLIGPLIICKK.D
0.67
0.73



(CERU_HUMAN)








ceruloplasmin
P00450
R.SGAGTEDSACIPWAYYS
0.70
0.70



(CERU_HUMAN)
TVDQVK.D







ceruloplasmin
P00450
R.IYHSHIDAPK.D
0.77
0.76



(CERU_HUMAN)








ceruloplasmin
P00450
R.ADDKVYPGEQYTYMLL
0.77
0.80



(CERU_HUMAN)
ATEEQSPGEGDGNCVTR.I







ceruloplasmin
P00450
K.DLYSGLIGPLIVCR.R
0.78
0.82



(CERU_HUMAN)








ceruloplasmin
P00450
R.TTIEKPVWLGFLGPIIK.A
0.88
0.85



(CERU_HUMAN)








cholinesterase
P06276
K.IFFPGVSEFGK.E
0.87
0.76



(CHLE_HUMAN)








cholinesterase
P06276
R.AILQSGSFNAPWAVTSLY
1.00
0.83



(CHLE_HUMAN)
EAR.N







coagulation
P00748
R.LHEAFSPVSYQHDLALL
0.72
0.76


factor XII
(FA12_HUMAN)
R.L







coagulation
P05160
R.GDTYPAELYITGSILR.M
0.67
0.83


factor XIII B
(F13B_HUMAN)





chain









coagulation
P05160
K.VLHGDLIDFVCK.Q
0.69
0.60


factor XIII B
(F13B_HUMAN)





chain









complement C1r
P00736
K.LVFQQFDLEPSEGCFYD
0.69
0.66


subcomponent
(C1R_HUMAN)
YVK.I







complement C1s
P09871
R.VKNYVDWIMK.T
0.69
0.60


subcomponent
(C1S_HUMAN)








complement C1s
P09871
K.SNALDIIFQTDLTGQK.K
0.75
0.70


subcomponent
(C1S_HUMAN)








complement C2
P06681
R.DFHINLFR.M
0.75
0.72



(CO2_HUMAN)








complement C2
P06681
R.GALISDQWVLTAAHCFR.
0.60
0.75



(CO2_HUMAN)
D







complement C2
P06681
K.KNQGILEFYGDDIALLK.
0.62
0.67



(CO2_HUMAN)
L







complement C3
P01024
R.IHWESASLLR.S
0.80
0.77



(CO3_HUMAN)








complement C4-
P0C0L5
R.VHYTVCIWR.N
0.67
0.65


B-like
(CO4B_HUMAN)





preproprotein









complement C4-
P0C0L5
K.AEMADQAAAWLTR.Q
0.78
0.89


B-like
(CO4B_HUMAN)





preproprotein









complement C4-
P0C0L5
K.M*RPSTDTITVMVENSH
0.65
0.65


B-like
(CO4B_HUMAN)
GLR.V




preproprotein









complement C4-
P0C0L5
K.MRPSTDTITVMVENSHG
0.65
0.72


B-like
(CO4B_HUMAN)
LR.V




preproprotein









complement C4-
P0C0L5
R.VQQPDCREPFLSCCQFAE
0.67
0.60


B-like
(CO4B_HUMAN)
SLRK.K




preproprotein









complement C4-
P0C0L5
K.LVNGQSHISLSK.A
0.73
0.73


B-like
(CO4B_HUMAN)





preproprotein









complement C4-
P0C0L5
R.GQIVFMNREPK.R
0.80
0.62


B-like
(CO4B_HUMAN)





preproprotein









complement C4-
P0C0L5
K.VGLSGM*AIADVTLLSGF
0.80
0.80


B-like
(CO4B_HUMAN)
HALR.A




preproprotein









complement C4-
P0C0L5
K.VGLSGMAIADVTLLSGF
0.80
0.83


B-like
(CO4B_HUMAN)
HALR.A




preproprotein









complement C4-
P0C0L5
R.GHLFLQTDQPIYNPGQR.
0.70
0.68


B-like
(CO4B_HUMAN)
V




preproprotein









complement C4-
P0C0L5
K.M*RPSTDTITVMVENSH
0.75
0.65


B-like
(CO4B_HUMAN)
GLR.V




preproprotein









complement C4-
P0C0L5
K.MRPSTDTITVMVENSHG
0.75
0.72


B-like
(CO4B_HUMAN)
LR.V




preproprotein









complement C4-
P0C0L5
K.SHALQLNNR.Q
0.76
0.70


B-like
(CO4B_HUMAN)





preproprotein









complement C4-
P0C0L5
R.YVSHFETEGPHVLLYFDS
0.88
0.89


B-like
(CO4B_HUMAN)
VPTSR.E




preproprotein









complement C4-
P0C0L5
R.GSSTWLTAFVLK.V
0.61
0.72


B-like
(CO4B_HUMAN)





preproprotein









complement C4-
P0C0L5
R.YIYGKPVQGVAYVR.F
0.63
0.73


B-like
(CO4B_HUMAN)





preproprotein









complement C4-
P0C0L5
K.SCGLHQLLR.G
0.65
0.65


B-like
(CO4B_HUMAN)





preproprotein









complement C4-
P0C0L5
R.GPEVQLVAHSPWLK.D
0.69
0.73


B-like
(CO4B_HUMAN)





preproprotein









complement C4-
P0C0L5
R.KKEVYM*PSSIFQDDFVI
0.70
0.67


B-like
(CO4B_HUMAN)
PDISEPGTWK.I




preproprotein









complement C4-
P0C0L5
R.KKEVYMPSSIFQDDFVIP
0.70
0.69


B-like
(CO4B_HUMAN)
DISEPGTWK.I




preproprotein









complement C4-
P0C0L5
R.VQQPDCREPFLSCCQFAE
0.76
0.74


B-like
(CO4B_HUMAN)
SLR.K




preproprotein









complement C4-
P0C0L5
K.VGLSGM*AIADVTLLSGF
0.80
0.80


B-like
(CO4B_HUMAN)
HALR.A




preproprotein









complement C4-
P0C0L5
K.VGLSGMAIADVTLLSGF
0.80
0.83


B-like
(CO4B_HUMAN)
HALR.A




preproprotein









complement C4-
P0C0L5
K.ASAGLLGAHAAAITAYA
0.85
0.83


B-like
(CO4B_HUMAN)
LTLTK.A




preproprotein









complement C5
P01031
K.ITHYNYLILSK.G
0.73
0.73


preproprotein
(CO5_HUMAN)








complement C5
P01031
R.KAFDICPLVK.I
0.83
0.87


preproprotein
(CO5_HUMAN)








complement C5
P01031
R.IPLDLVPK.T
0.90
0.63


preproprotein
(CO5_HUMAN)








complement C5
P01031
R.MVETTAYALLTSLNLKD
0.92
0.75


preproprotein
(CO5_HUMAN)
INYVNPVIK.W







complement C5
P01031
K.ALLVGEHLNIIVTPK.S
1.00
0.87


preproprotein
(CO5_HUMAN)








complement C5
P01031
K.LKEGMLSIMSYR.N
0.62
0.75


preproprotein
(CO5_HUMAN)








complement C5
P01031
R.YIYPLDSLTWIEYWPR.D
0.70
0.69


preproprotein
(CO5_HUMAN)








complement C5
P01031
K.GGSASTWLTAFALR.V
0.63
0.83


preproprotein
(CO5_HUMAN)








complement C5
P01031
R.YGGGFYSTQDTINAIEGL
0.73
0.74


preproprotein
(CO5_HUMAN)
TEYSLLVK.Q







complement
P13671
K.AKDLHLSDVFLK.A
0.63
0.62


component C6
(CO6_HUMAN)








complement
P13671
K.ALNHLPLEYNSALYSR.I
0.60
0.62


component C6
(CO6_HUMAN)








complement
P10643
R.LSGNVLSYTFQVK.I
0.71
0.63


component C7
(CO7_HUMAN)








complement
P07357
R.KDDIMLDEGMLQSLMEL
0.78
0.89


component C8
(CO8A_HUMAN)
PDQYNYGMYAK.F




alpha chain









complement
P07358
R.DFGTHYITEAVLGGIYEY
0.80
0.73


component C8
(CO8B_HUMAN)
TLVMNK.E




beta chain






preproprotein









complement
P07358
R.DTMVEDLVVLVR.G
0.88
0.76


component C8
(CO8B_HUMAN)





beta chain






preproprotein









complement
P07358
R.YYAGGCSPHYILNTR.F
0.70
0.71


component C8
(CO8B_HUMAN)





beta chain






preproprotein









complement
P07360
R.SLPVSDSVLSGFEQR.V
0.79
0.81


component C8
(CO8G_HUMAN)





gamma chain









complement
P07360
R.VQEAHLTEDQIFYFPK.Y
0.98
0.84


component C8
(CO8G_HUMAN)





gamma chain









complement
P02748
R.TAGYGINILGMDPLSTPF
0.62
0.64


component C9
(CO9_HUMAN)
DNEFYNGLCNR.D







complement
P02748
R.RPWNVASLIYETK.G
0.60
0.74


component C9
(CO9_HUMAN)








complement
P02748
R.AIEDYINEFSVRK.C
0.67
0.67


component C9
(CO9_HUMAN)








complement
P02748
R.AIEDYINEFSVR.K
0.77
0.79


component C9
(CO9_HUMAN)








complement
P00751
R.LEDSVTYHCSR.G
0.60
0.60


factor B
(CFAB_HUMAN)





preproprotein









complement
P00751
R.FIQVGVISWGVVDVCK.N
0.67
0.79


factor B
(CFAB_HUMAN)





preproprotein









complement
P00751
R.DFHINLFQVLPWLK.E
0.78
0.76


factor B
(CFAB_HUMAN)





preproprotein









complement
P00751
K.YGQTIRPICLPCTEGTTR.
0.60
0.70


factor B
(CFAB_HUMAN)
A




preproprotein









complement
P00751
R.LLQEGQALEYVCPSGFY
0.74
0.74


factor B
(CFAB_HUMAN)
PYPVQTR.T




preproprotein









complement
P08603
R.RPYFPVAVGK.Y
0.67
0.70


factor H
(CFAH_HUMAN)








complement
P08603
K.CTSTGWIPAPR.C
0.70
0.66


factor H
(CFAH_HUMAN)








complement
P08603
K.CLHPCVISR.E
0.94
0.64


factor H
(CFAH_HUMAN)








complement
P08603
R.EIMENYNIALR.W
0.67
0.71


factor H
(CFAH_HUMAN)








complement
P08603
K.CLHPCVISR.E
0.75
0.64


factor H
(CFAH_HUMAN)








complement
P08603
K.AVYTCNEGYQLLGEINY
0.73
0.62


factor H
(CFAH_HUMAN)
R.E







complement
P08603
R.SITCIFIGVWTQLPQCVAI
0.61
0.61


factor H
(CFAH_HUMAN)
DK.L







complement
P08603
R.WQSIPLCVEK.I
0.65
0.65


factor H
(CFAH_HUMAN)








complement
P08603
K.TDCLSLPSFENAIPMGEK.
0.74
0.77


factor H
(CFAH_HUMAN)
K







complement
P08603
K.CFEGFGIDGPAIAK.C
0.76
0.69


factor H
(CFAH_HUMAN)








complement
P08603
K.CFEGFGIDGPAIAK.C
0.83
0.69


factor H
(CFAH_HUMAN)








complement
P08603
K.IDVHLVPDR.K
0.61
0.67


factor H
(CFAH_HUMAN)








complement
P08603
K.SSNLIILEEHLK.N
0.77
0.69


factor H
(CFAH_HUMAN)








complement
P05156
R.AQLGDLPWQVAIK.D
0.66
0.69


factor I
(CFAI_HUMAN)





preproprotein









complement
P05156
R.VFSLQWGEVK.L
0.69
0.77


factor I
(CFAI_HUMAN)





preproprotein









corticosteroid-
P08185
R.WSAGLTSSQVDLYIPK.V
0.63
0.61


binding globulin
(CBG_HUMAN)








fibrinogen alpha
P02671
K.TFPGFFSPMLGEFVSETE
0.80
0.78


chain
(FIBA_HUMAN)
SR.G







gelsolin
P06396
R.IEGSNKVPVDPATYGQF
0.78
0.78



(GELS_HUMAN)
YGGDSYIILYNYR.H







gelsolin
P06396
R.AQPVQVAEGSEPDGFWE
0.62
0.65



(GELS_HUMAN)
ALGGK.A







gelsolin
P06396
K.TPSAAYLWVGTGASEAE
0.78
0.78



(GELS_HUMAN)
KTGAQELLR.V







gelsolin
P06396
R.VEKFDLVPVPTNLYGDF
0.61
0.63



(GELS_HUMAN)
FTGDAYVILK.T







gelsolin
P06396
R.EVQGFESATFLGYFK.S
0.87
0.88



(GELS_HUMAN)








gelsolin
P06396
K.NWRDPDQTDGLGLSYLS
0.89
0.89



(GELS_HUMAN)
SHIANVER.V







gelsolin
P06396
K.TPSAAYLWVGTGASEAE
0.87
0.77



(GELS_HUMAN)
K.T







glutathione
P22352
K.FLVGPDGIPIMR.W
0.85
0.77


peroxidase 3
(GPX3_HUMAN)








hemopexin
P02790
R.LEKEVGTPHGIILDSVDA
0.93
0.74



(HEMO_HUMAN)
AFICPGSSR.L







hemopexin
P02790
R.WKNFPSPVDAAFR.Q
0.64
0.82



(HEMO_HUMAN)








hemopexin
P02790
R.GECQAEGVLFFQGDREW
0.60
0.64



(HEMO_HUMAN)
FWDLATGTMK.E







hemopexin
P02790
R.GECQAEGVLFFQGDREW
0.60
0.83



(HEMO_HUMAN)
FWDLATGTM*K.E







hemopexin
P02790
R.GECQAEGVLFFQGDREW
0.93
0.64



(HEMO_HUMAN)
FWDLATGTMK.E







hemopexin
P02790
R.GECQAEGVLFFQGDREW
0.93
0.83



(HEMO_HUMAN)
FWDLATGTM*K.E







hemopexin
P02790
K.EVGTPHGBLDSVDAAFI
0.62
0.69



(HEMO_HUMAN)
CPGSSR.L







hemopexin
P02790
R.LWWLDLK.S
0.64
0.64



(HEMO_HUMAN)








hemopexin
P02790
K.NFPSPVDAAFR.Q
0.65
0.72



(HEMO_HUMAN)








hemopexin
P02790
R.EWFWDLATGTMK.E
0.68
0.65



(HEMO_HUMAN)








hemopexin
P02790
K.GGYTLVSGYPK.R
0.69
0.65



(HEMO_HUMAN)








hemopexin
P02790
K.LYLVQGTQVYVFLTK.G
0.69
0.76



(HEMO_HUMAN)








heparin cofactor
P05546
R.EYYFAEAQIADFSDPAFI
0.80
0.78


2
(HEP2_HUMAN)
SK.T







heparin cofactor
P05546
K.QFPILLDFK.T
0.62
1.00


2
(HEP2_HUMAN)








heparin cofactor
P05546
K.QFPILLDFK.T
0.64
1.00


2
(HEP2_HUMAN)








heparin cofactor
P05546
K.FAFNLYR.V
0.70
0.60


2
(HEP2_HUMAN)








histidine-rich
P04196
R.DGYLFQLLR.I
0.65
0.65


glycoprotein
(HRG_HUMAN)








insulin-like
P35858
R.SFEGLGQLEVLTLDHNQ
0.75
0.83


growth factor-
(ALS_HUMAN)
LQEVK.A




binding protein






complex acid






labile subunit









insulin-like
P35858
R.TFTPQPPGLER.L
0.75
0.60


growth factor-
(ALS_HUMAN)





binding protein






complex acid






labile subunit









insulin-like
P35858
R.AFWLDVSHNR.L
0.77
0.75


growth factor-
(ALS_HUMAN)





binding protein






complex acid






labile subunit









insulin-like
P35858
R.LAELPADALGPLQR.A
0.66
0.64


growth factor-
(ALS_HUMAN)





binding protein






complex acid






labile subunit









insulin-like
P35858
R.LEALPNSLLAPLGR.L
0.70
0.67


growth factor-
(ALS_HUMAN)





binding protein






complex acid






labile subunit









insulin-like
P35858
R.NLIAAVAPGAFLGLK.A
0.70
0.68


growth factor-
(ALS_HUMAN)





binding protein






complex acid






labile subunit









inter-alpha-
P19827
R.QAVDTAVDGVFIR.S
0.60
0.64


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1









inter-alpha-
P19827
K.TAFISDFAVTADGNAFIG
0.81
0.86


trypsin inhibitor
(ITIH1_HUMAN)
DIK.D




heavy chain H1









inter-alpha-
P19827
R.GHMLENHVER.L
0.63
0.61


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1









inter-alpha-
P19827
R.GHM*LENHVER.L
0.63
0.70


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1









inter-alpha-
P19827
K.TAFISDFAVTADGNAFIG
0.75
0.60


trypsin inhibitor
(ITIH1_HUMAN)
DIKDKVTAWK.Q




heavy chain H1









inter-alpha-
P19827
R.GIEILNQVQESLPELSNH
0.80
0.80


trypsin inhibitor
(ITIH1_HUMAN)
ASILIMLTDGDPTEGVTDR.




heavy chain H1

S







inter-alpha-
P19827
K.ILGDM*QPGDYFDLVLF
0.85
0.79


trypsin inhibitor
(ITIH1_HUMAN)
GTR.V




heavy chain H1









inter-alpha-
P19827
K.LDAQASFLPK.E
0.88
0.75


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1









inter-alpha-
P19827
R.GFSLDEATNLNGGLLR.G
0.80
0.80


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1









inter-alpha-
P19827
K.TAFISDFAVTADGNAFIG
0.93
0.96


trypsin inhibitor
(ITIH1_HUMAN)
DIKDK.V




heavy chain H1









inter-alpha-
P19827
K.GSLVQASEANLQAAQDF
0.60
0.65


trypsin inhibitor
(ITIH1_HUMAN)
VR.G




heavy chain H1









inter-alpha-
P19827
R.GHMLENHVER.L
0.64
0.61


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1









inter-alpha-
P19827
R.GHM*LENHVER.L
0.64
0.70


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1









inter-alpha-
P19827
R.LWAYLTIQELLAK.R
0.72
0.74


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1









inter-alpha-
P19827
R.EVAFDLEIPK.T
0.78
0.62


trypsin inhibitor
(ITIH1_HUMAN)





heavy chain H1









inter-alpha-
P19823
R.SILQMSLDHHIVTPLTSL
0.76
0.76


trypsin inhibitor
(ITIH2_HUMAN)
VIENEAGDER.M




heavy chain H2









inter-alpha-
P19823
R.SILQM*SLDHHIVTPLTSL
0.76
0.80


trypsin inhibitor
(ITIH2_HUMAN)
VIENEAGDER.M




heavy chain H2









inter-alpha-
P19823
R.SILQMSLDHHIVTPLTSL
0.77
0.76


trypsin inhibitor
(ITIH2_HUMAN)
VIENEAGDER.M




heavy chain H2









inter-alpha-
P19823
R.SILQM*SLDHHIVTPLTSL
0.77
0.80


trypsin inhibitor
(ITIH2_HUMAN)
VIENEAGDER.M




heavy chain H2









inter-alpha-
P19823
K.AGELEVFNGYFVHFFAP
0.79
0.76


trypsin inhibitor
(ITIH2_HUMAN)
DNLDPIPK.N




heavy chain H2









inter-alpha-
P19823
R.ETAVDGELVVLYDVK.R
0.94
0.97


trypsin inhibitor
(ITIH2_HUMAN)





heavy chain H2









inter-alpha-
P19823
R.NVQFNYPHTSVTDVTQN
0.74
0.83


trypsin inhibitor
(ITIH2_HUMAN)
NFHNYFGGSEIVVAGK.F




heavy chain H2









inter-alpha-
P19823
R.FLHVPDTFEGHFDGVPVI
0.81
0.81


trypsin inhibitor
(ITIH2_HUMAN)
SK.G




heavy chain H2









inter-alpha-
Q14624
K.YIFHNFM*ER.L
0.70
0.73


trypsin inhibitor
(ITIH4_HUMAN)





heavy chain H4









inter-alpha-
Q14624
R.SFAAGIQALGGTNINDA
0.75
0.75


trypsin inhibitor
(ITIH4_HUMAN)
MLMAVQLLDSSNQEER.L




heavy chain H4









inter-alpha-
Q14624
R.NMEQFQVSVSVAPNAK.I
1.00
1.00


trypsin inhibitor
(ITIH4_HUMAN)





heavy chain H4









inter-alpha-
Q14624
R.VQGNDHSATR.E
0.85
0.86


trypsin inhibitor
(ITIH4_HUMAN)





heavy chain H4









inter-alpha-
Q14624
K.WKETLFSVMPGLK.M
0.66
0.69


trypsin inhibitor
(ITIH4_HUMAN)





heavy chain H4









inter-alpha-
Q14624
K.AGFSWIEVTFK.N
0.78
0.82


trypsin inhibitor
(ITIH4_HUMAN)





heavy chain H4









inter-alpha-
Q14624
R.DQFNLIVFSTEATQWRPS
0.61
0.60


trypsin inhibitor
(ITIH4_HUMAN)
LVPASAENVNK.A




heavy chain H4









inter-alpha-
Q14624
R.LWAYLTIQQLLEQTVSA
0.66
0.66


trypsin inhibitor
(ITIH4_HUMAN)
SDADQQALR.N




heavy chain H4









kallistatin
P29622
K.FSISGSYVLDQILPR.L
0.79
0.72



(KAIN_HUMAN)








kininogen-1
P01042
K.AATGECTATVGKR.S
0.76
0.60



(KNG1_HUMAN)








kininogen-1
P01042
K.ENFLFLTPDCK.S
0.71
0.68



(KNG1_HUMAN)








kininogen-1
P01042
R.DIPTNSPELEETLTHTITK.
0.65
0.64



(KNG1_HUMAN)
L







kininogen-1
P01042
K.IYPTVNCQPLGM*ISLMK.
0.66
0.60



(KNG1_HUMAN)
R







kininogen-1
P01042
K.IYPTVNCQPLGMISLMK.
0.66
0.62



(KNG1_HUMAN)
R







kininogen-1
P01042
K.IYPTVNCQPLGMISLM*K.
0.66
0.63



(KNG1_HUMAN)
R







kininogen-1
P01042
R.IGEIKEETTSHLR.S
0.67
0.70



(KNG1_HUMAN)








kininogen-1
P01042
K.YNSQNQSNNQFVLYR.I
0.76
0.65



(KNG1_HUMAN)








kininogen-1
P01042
K.TVGSDTFYSFK.Y
0.78
0.77



(KNG1_HUMAN)








leucine-rich
P02750
R.DGFDISGNPWICDQNLSD
0.73
0.73


alpha-2-
(A2GL_HUMAN)
LYR.W




glycoprotein









leucine-rich
P02750
R.NALTGLPPGLFQASATLD
0.79
0.79


alpha-2-
(A2GL_HUMAN)
TLVLK.E




glycoprotein









leucine-rich
P02750
K.ALGHLDLSGNR.L
0.71
0.71


alpha-2-
(A2GL_HUMAN)





glycoprotein









leucine-rich
P02750
R.VAAGAFQGLR.Q
0.71
0.77


alpha-2-
(A2GL_HUMAN)





glycoprotein









lipopolysacchari
P18428
R.SPVTLLAAVMSLPEEHN
0.65
0.61


de-binding
(LBP_HUMAN)
K.M




protein









lumican
P51884
K.SLEYLDLSFNQIAR.L
0.93
0.96



(LITM_HUMAN)








monocyte
P08571
R.LTVGAAQVPAQLLVGAL
0.68
0.63


differentiation
(CD14_HUMAN)
R.V




antigen CD14









N-
Q96PD5
R.EGKEYGVVLAPDGSTVA
0.64
0.64


acetylmuramoyl-
(PGRP2_HUMAN)
VEPLLAGLEAGLQGR.R




L-alanine






amidase









N-
Q96PD5
K.EFTEAFLGCPAIHPR.C
0.63
0.62


acetylmuramoyl-
(PGRP2_HUMAN)





L-alanine






amidase









N-
Q96PD5
R.TDCPGDALFDLLR.T
0.88
0.86


acetylmuramoyl-
(PGRP2_HUMAN)





L-alanine






amidase









phosphatidylinos
P80108
K.VAFLTVTLHQGGATR.M
0.63
0.65


itol-glycan-
(PHLD_HUMAN)





specific






phospholipase D









pigment
P36955
R.ALYYDLISSPDIHGTYKE
0.69
0.65


epithelium-
(PEDF_HUMAN)
LLDTVTAPQK.N




derived factor









pigment
P36955
K.TVQAVLTVPK.L
0.72
0.62


epithelium-
(PEDF_HUMAN)





derived factor









pigment
P36955
R.LDLQEINNWVQAQMK.G
0.67
0.68


epithelium-
(PEDF_HUMAN)





derived factor









plasma kallikrein
P03952
R.LVGITSWGEGCAR.R
1.00
0.67


preproprotein
(KLKB1_HUMAN)








plasma protease
P05155
K.TNLESILSYPKDFTCVHQ
0.83
0.83


C1 inhibitor
(IC1_HUMAN)
ALK.G







plasma protease
P05155
R.LVLLNAIYLSAK.W
0.64
0.61


C1 inhibitor
(IC1_HUMAN)








plasma protease
P05155
K.FQPTLLTLPR.I
0.86
0.77


C1 inhibitor
(IC1_HUMAN)








plasminogen
P00747
R.HSIFTPETNPR.A
0.66
0.64



(PLMN_HUMAN)








plasminogen
P00747
R.FVTWIEGVMR.N
0.65
0.74



(PLMN_HUMAN)








PREDICTED:
P0C0L4
R.GQIVFMNR.E
0.75
0.61


complement C4-
(CO4A_HUMAN)





A









PREDICTED:
P0C0L4
R.DSSTWLTAFVLK.V
0.65
0.67


complement C4-
(CO4A_HUMAN)





A









PREDICTED:
P0C0L4
R.YLDKTEQWSTLPPETK.D
0.70
0.60


complement C4-
(CO4A_HUMAN)





A









PREDICTED:
P0C0L4
R.DFALLSLQVPLK.D
0.78
0.62


complement C4-
(CO4A_HUMAN)





A









PREDICTED:
P0C0L4
R.TLEIPGNSDPNMIPDGDF
0.74
0.78


complement C4-
(CO4A_HUMAN)
NSYVR.V




A









PREDICTED:
P0C0L4
R.EMSGSPASGIPVK.V
0.88
0.88


complement C4-
(CO4A_HUMAN)





A









PREDICTED:
P0C0L4
K.LHLETDSLALVALGALD
0.68
0.64


complement C4-
(CO4A_HUMAN)
TALYAAGSK.S




A









PREDICTED:
P0C0L4
R.GCGEQTMIYLAPTLAAS
0.71
0.67


complement C4-
(CO4A_HUMAN)
R.Y




A









pregnancy zone
P20742
R.NELIPLIYLENPR.R
1.00
0.67


protein
(PZP_HUMAN)








pregnancy zone
P20742
K.LEAGINQLSFPLSSEPIQG
1.00
0.73


protein
(PZP_HUMAN)
SYR.V







pregnancy zone
P20742
R.NQGNTWLTAFVLK.T
0.73
0.78


protein
(PZP_HUMAN)








pregnancy zone
P20742
R.AFQPFFVELTMPYSVIR.G
0.83
0.88


protein
(PZP_HUMAN)








pregnancy zone
P20742
R.IQHPFTVEEFVLPK.F
0.65
0.79


protein
(PZP_HUMAN)








pregnancy zone
P20742
K.ALLAYAFSLLGK.Q
0.69
0.74


protein
(PZP_HUMAN)








pregnancy-
P11464
R.TLFLLGVTK.Y
0.74
0.83


specific beta-1-
(PSG1_HUMAN)/





glycoprotein 1/
Q9UQ74





8/4
(PSG8_HUMAN)/






Q00888






(PSG4_HUMAN)








protein AMBP
P02760
R.TVAACNLPIVR.G
0.78
0.77


preproprotein
(AMBP_HUMAN)








protein AMBP
P02760
K.WYNLAIGSTCPWLK.K
0.80
0.80


preproprotein
(AMBP_HUMAN)








protein Z-
Q9UK55
K.LILVDYILFK.G
0.69
0.62


dependent
(ZPI_HUMAN)





protease inhibitor









prothrombin
P00734
R.KSPQELLCGASLISDR.W
0.63
0.65


preproprotein
(THRB_HUMAN)








prothrombin
P00734
R.TATSEYQTFFNPR.T
0.79
0.61


preproprotein
(THRB_HUMAN)








prothrombin
P00734
R.VTGWGNLKETWTANVG
1.00
0.71


preproprotein
(THRB_HUMAN)
K.G







prothrombin
P00734
R.IVEGSDAEIGMSPWQVM
0.65
0.61


preproprotein
(THRB_HUMAN)
LFR.K







prothrombin
P00734
K.HQDFNSAVQLVENFCR.
0.65
0.64


preproprotein
(THRB_HUMAN)
N







prothrombin
P00734
R.IVEGSDAEIGM*SPWQV
0.65
0.80


preproprotein
(THRB_HUMAN)
MLFR.K







prothrombin
P00734
R.IVEGSDAEIGMSPWQVM
0.65
1.00


preproprotein
(THRB_HUMAN)
*LFR.K







prothrombin
P00734
R.RQECSIPVCGQDQVTVA
0.74
0.73


preproprotein
(THRB_HUMAN)
MTPR.S







prothrombin
P00734
R.LAVTTHGLPCLAWASAQ
0.76
0.80


preproprotein
(THRB_HUMAN)
AK.A







prothrombin
P00734
K.GQPSVLQVVNLPIVERPV
0.76
0.67


preproprotein
(THRB_HUMAN)
CK.D







retinol-binding
P02753
R.LLNLDGTCADSYSFVFSR.
0.70
0.66


protein 4
(RET4_HUMAN)
D







sex hormone-
P04278
R.LFLGALPGEDSSTSFCLN
0.72
0.72


binding globulin
(SHBG_HUMAN)
GLWAQGQR.L







sex hormone-
P04278
R.TWDPEGVIFYGDTNPKD
0.75
0.76


binding globulin
(SHBG_HUMAN)
DWFMLGLR.D







sex hormone-
P04278
R.IALGGLLFPASNLR.L
0.62
0.72


binding globulin
(SHBG_HUMAN)








sex hormone-
P04278
K.VVLSSGSGPGLDLPLVLG
0.65
0.68


binding globulin
(SHBG_HUMAN)
LPLQLK.L







thyroxine-
P05543
K.AVLHIGEK.G
0.64
0.75


binding globulin
(THBG_HUMAN)








thyroxine-
P05543
K.GWVDLFVPK.F
0.60
0.61


binding globulin
(THBG_HUMAN)








thyroxine-
P05543
K.FSISATYDLGATLLK.M
0.62
0.64


binding globulin
(THBG_HUMAN)








thyroxine-
P05543
R.SILFLGK.V
0.66
0.63


binding globulin
(THBG_HUMAN)








transforming
Q15582
R.LTLLAPLNSVFK.D
0.78
0.65


growth factor-
(BGH3_HUMAN)





beta-induced






protein ig-h3









vitamin D-
P02774
K.EYANQFMWEYSTNYGQ
0.67
0.64


binding protein
(VTDB_HUMAN)
APLSLLVSYTK.S







vitamin D-
P02774
K.EYANQFM*WEYSTNYG
0.67
0.67


binding protein
(VTDB_HUMAN)
QAPLSLLVSYTK.S







vitamin D-
P02774
K.ELPEHTVK.L
0.79
0.74


binding protein
(VTDB_HUMAN)








vitamin D-
P02774
R.RTHLPEVFLSK.V
0.63
0.76


binding protein
(VTDB_HUMAN)








vitamin D-
P02774
K.TAMDVFVCTYFMPAAQ
0.66
0.63


binding protein
(VTDB_HUMAN)
LPELPDVELPTNK.D







vitamin D-
P02774
K.LPDATPTELAK.L
0.67
0.73


binding protein
(VTDB_HUMAN)








vitamin D-
P02774
K.EYANQFMWEYSTNYGQ
0.65
0.64


binding protein
(VTDB_HUMAN)
APLSLLVSYTK.S







vitamin D-
P02774
K.EYANQFM*WEYSTNYG
0.65
0.67


binding protein
(VTDB_HUMAN)
QAPLSLLVSYTK.S







vitamin D-
P02774
K.ELSSFIDKGQELCADYSE
0.71
0.73


binding protein
(VTDB_HUMAN)
NTFTEYKK.K







vitamin D-
P02774
K.EDFTSLSLVLYSR.K
0.71
0.75


binding protein
(VTDB_HUMAN)








vitamin D-
P02774
K.HQPQEFPTYVEPTNDEIC
0.77
0.75


binding protein
(VTDB_HUMAN)
EAFRK.D







vitamin D-
P02774
K.HQPQEFPTYVEPTNDEIC
0.60
0.67


binding protein
(VTDB_HUMAN)
EAFR.K







vitamin D-
P02774
R.KFPSGTFEQVSQLVK.E
0.62
0.61


binding protein
(VTDB_HUMAN)








vitamin D-
P02774
K.ELSSFIDKGQELCADYSE
0.64
0.64


binding protein
(VTDB_HUMAN)
NTFTEYK.K







vitamin D-
P02774
K.EFSHLGKEDFTSLSLVLY
0.66
0.64


binding protein
(VTDB_HUMAN)
SR.K







vitamin D-
P02774
K.SYLSMVGSCCTSASPTV
0.68
0.77


binding protein
(VTDB_HUMAN)
CFLK.E







vitronectin
P04004
R.IYISGMAPRPSLAK.K
0.63
0.66



(VTNC_HUMAN)








vitronectin
P04004
R.IYISGMAPRPSLAK.K
0.64
0.66



(VTNC_HUMAN)








vitronectin
P04004
K.LIRDVWGIEGPIDAAFTR.
0.81
0.75



(VTNC_HUMAN)
I







von Willebrand
P04275
R.IGWPNAPILIQDFETLPR.
0.67
0.67


factor
(VWF_HUMAN)
E




preproprotein   





*Oxidation of Methionine













TABLE 9







Preeclampsia: Additional peptides significant with AUC > 0.6 by Sequest


only










Protein description
Uniprot ID (name)
Peptide
S_AUC





afamin
P43652
R.LCFFYNKK.S
0.67



(AFAM_HUMAN)







afamin
P43652
R.RPCFESLK.A
0.81



(AFAM_HUMAN)







afamin
P43652
R.IVQIYK.D
0.61



(AFAM_HUMAN)







afamin
P43652
R.FLVNLVK.L
0.60



(AFAM_HUMAN)







afamin
P43652
K.LPNNVLQEK.I
0.67



(AFAM_HUMAN)







alpha-1-
P01011
R.LYGSEAFATDFQDSAAAK
0.61


antichymotrypsin
(AACT_HUMAN)
K.L






alpha-1-
P01011
K.EQLSLLDRFTEDAKR.L
0.71


antichymotrypsin
(AACT_HUMAN)







alpha-1-
P01011
R.EIGELYLPK.F
0.68


antichymotrypsin
(AACT_HUMAN)







alpha-1-
P01011
R.WRDSLEFR.E
0.71


antichymotrypsin
(AACT_HUMAN)







alpha-1-
P01011
K.RLYGSEAFATDFQDSAAA
0.89


antichymotrypsin
(AACT_HUMAN)
K.K






alpha-1B-
P04217
R.FALVR.E
1.00


glycoprotein
(A1BG_HUMAN)







alpha-1B-
P04217
R.GVTFLLRR.E
0.67


glycoprotein
(A1BG_HUMAN)







alpha-1B-
P04217
R.RGEKELLVPR.S
0.71


glycoprotein
(A1BG_HUMAN)







alpha-1B-
P04217
K.ELLVPR.S
0.61


glycoprotein
(A1BG_HUMAN)







alpha-1B-
P04217
K.NGVAQEPVHLDSPAIK.H
0.64


glycoprotein
(A1BG_HUMAN)







alpha-2-antiplasmin
P08697
R.NKFDPSLTQR.D
0.60



(A2AP_HUMAN)







alpha-2-antiplasmin
P08697
R.QLTSGPNQEQVSPLTLLK.
0.67



(A2AP_HUMAN)
L






alpha-2-antiplasmin
P08697
K.HQM*DLVATLSQLGLQEL
0.67



(A2AP_HUMAN)
FQAPDLR.G






angiotensinogen
P01019
R.FM*QAVTGWK.T
0.60


preproprotein
(ANGT_HUMAN)







angiotensinogen
P01019
K.PKDPTFIPAPIQAK.T
0.83


preproprotein
(ANGT_HUMAN)







angiotensinogen
P01019
R.SLDFTELDVAAEK.I
0.60


preproprotein
(ANGT_HUMAN)







ankyrin repeat and
Q8NFD2
R.KNLVPR.D
1.00


protein kinase
(ANKK1_HUMAN)




domain-containing





protein 1








antithrombin-III
P01008
R.RVWELSK.A
0.68



(ANT3_HUMAN)







apolipoprotein A-IV
P06727
K.VKIDQTVEELRR.S
0.62



(APOA4_HUMAN)







apolipoprotein A-IV
P06727
K.DLRDKVNSFFSTFK.E
0.92



(APOA4_HUMAN)







apolipoprotein A-IV
P06727
K.LVPFATELHER.L
0.71



(APOA4_HUMAN)







apolipoprotein A-IV
P06727
R.RVEPYGENFNK.A
0.86



(APOA4_HUMAN)







apolipoprotein A-IV
P06727
K.VNSFFSTFK.E
0.87



(APOA4_HUMAN)







apolipoprotein B-
P04114
K.AVSM*PSFSILGSDVR.V
0.70


100
(APOB_HUMAN)







apolipoprotein B-
P04114
K.AVSMPSFSILGSDVR.V
0.66


100
(APOB_HUMAN)







apolipoprotein B-
P04114
K.AVSMPSFSILGSDVR.V
0.66


100
(APOB_HUMAN)







apolipoprotein B-
P04114
K.AVSM*PSFSILGSDVR.V
0.70


100
(APOB_HUMAN)







apolipoprotein B-
P04114
K.VNWEEEAASGLLTSLKD
0.60


100
(APOB_HUMAN)
NVPK.A






apolipoprotein B- 
P04114
R.DLKVEDIPLAR.I
0.70


100
(APOB_HUMAN)







apolipoprotein C-I
P02654
K.MREWFSETFQK.V
0.73



(APOC1_HUMAN)







apolipoprotein C-II
P02655
K.STAAMSTYTGIFTDQVLS
0.68



(APOC2_HUMAN)
VLKGEE.-






apolipoprotein E
P02649
R.AKLEEQAQQIR.L
0.67



(APOE_HUMAN)







apolipoprotein E
P02649
R.FWDYLR.W
0.67



(APOE_HUMAN)







apolipoprotein E
P02649
R.LKSWFEPLVEDMQR.Q
0.65



(APOE_HUMAN)







beta-2-glycoprotein
P02749
K.VSFFCK.N
0.67


1
(APOH_HUMAN)







beta-2-glycoprotein
P02749
R.VCPFAGILENGAVR.Y
0.63


1
(APOH_HUMAN)







beta-2-
P61769
K.SNFLNCYVSGFHPSDIEVD
0.60


microglobulin
(B2MG_HUMAN)
LLK.N






biotinidase
P43251
R.LSSGLVTAALYGR.L
1.00



(BTD_HUMAN)







carboxypeptidase
Q96IY4
K.IAWHVIR.N
0.90


B2 preproprotein
(CBPB2_HUMAN)







carboxypeptidase N
P22792
K.LSNNALSGLPQGVFGK.L
0.62


subunit 2
(CPN2_HUMAN)







carboxypeptidase N
P15169
R.DHLGFQVTWPDESK.A
0.93


subunit 2
(CBPN_HUMAN)







ceruloplasmin
P00450
K.VYVHLK.N
0.67



(CERU_HUMAN)







ceruloplasmin
P00450
K.LISVDTEHSNIYLQNGPDR.
0.62



(CERU_HUMAN)
I






ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIG
0.76



(CERU_HUMAN)
PM*K.I






ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIG
0.68



(CERU_HUMAN)
PMK.I






ceruloplasmin
P00450
R.QKDVDKEFYLFPTVFDEN
0.66



(CERU_HUMAN)
ESLLLEDNIR.M






ceruloplasmin
P00450
K.DVDKEFYLFPTVFDENES
0.60



(CERU_HUMAN)
LLLEDNIR.M






ceruloplasmin
P00450
K.DIFTGLIGPMK.I
0.62



(CERU_HUMAN)







ceruloplasmin
P00450
R.SVPPSASHVAPTETFTYE
0.66



(CERU_HUMAN)
WTVPK.E






ceruloplasmin
P00450
R.GVYSSDVFDIFPGTYQTLE
0.67



(CERU_HUMAN)
M*FPR.T






ceruloplasmin
P00450
K.DIFTGLIGPMK.I
0.62



(CERU_HUMAN)







ceruloplasmin
P00450
K.VNKDDEEFIESNK.M
0.78



(CERU_HUMAN)







clusterin
P10909
R.KYNELLK.S
0.75


preproprotein
(CLUS_HUMAN)







coagulation factor
P00748
R.TTLSGAPCQPWASEATYR.
0.64


XII
(FA12_HUMAN)
N






complement C1q
P02745
K.GHIYQGSEADSVFSGFLIF
0.64


subcomponent
(C1QA_HUMAN)
PSA.-



subunit A








complement C1q
P02747
K.FQSVFTVTR.Q
0.65


subcomponent
(C1QC_HUMAN)




subunit C








complement C1r
P00736
R.WILTAAHTLYPK.E
0.68


subcomponent
(C1R_HUMAN)







complement C1r
P00736
K.VLNYVDWIKK.E
0.81


subcomponent
(C1R_HUMAN)







complement C1s
P09871
R.LPVAPLRK.C
0.63


subcomponent
(C1S_HUMAN)







complement C2
P06681
R.PICLPCTMEANLALR.R
0.78



(CO2_HUMAN)







complement C2
P06681
R.QHLGDVLNFLPL.-
0.70



(CO2_HUMAN)







complement C4-B-
P0C0L5
K.LGQYASPTAKR.C
0.89


like preproprotein
(CO4B_HUMAN)







complement C4-B-
P0C0L5
K.M*RPSTDTITVMVENSHG
0.65


like preproprotein
(CO4B_HUMAN)
LR.V






complement C4-B-
P0C0L5
K.MRPSTDTITVMVENSHGL
0.72


like preproprotein
(CO4B_HUMAN)
R.V






complement C5
P01031
K.EFPYRIPLDLVPK.T
0.67


preproprotein
(CO5_HUMAN)







complement C5
P01031
R.VFQFLEK.S
0.60


preproprotein
(CO5_HUMAN)







complement C5
P01031
R.MVETTAYALLTSLNLK.D
0.61


preproprotein
(CO5_HUMAN)







complement C5
P01031
R.ENSLYLTAFTVIGIR.K
0.81


preproprotein
(CO5_HUMAN)







complement
P07357
K.YNPVVIDFEMQPIHEVLR.
0.62


component C8
(CO8A_HUMAN)
H



alpha chain








complement
P07358
K.IPGIFELGISSQSDR.G
0.61


component C8 beta
(CO8B_HUMAN)




chain preproprotein








complement
P07360
R.RPASPISTIQPK.A
0.71


component C8
(CO8G_HUMAN)




gamma chain








complement
P07360
R.FLQEQGHR.A
0.87


component C8
(CO8G_HUMAN)




gamma chain








complement factor
P00751
K.VSVGGEKR.D
0.60


B preproprotein
(CFAB_HUMAN)







complement factor
P00751
K.CLVNLIEK.V
0.69


B preproprotein
(CFAB_HUMAN)







complement factor
P00751
K.KDNEQHVFK.V
0.68


B preproprotein
(CFAB_HUMAN)







complement factor
P00751
K.ISVIRPSK.G
0.63


B preproprotein
(CFAB_HUMAN)







complement factor
P00751
K.KCLVNLIEK.V
0.63


B preproprotein
(CFAB_HUMAN)







complement factor
P00751
R.LPPTTTCQQQKEELLPAQ
0.64


B preproprotein
(CFAB_HUMAN)
DIK.A






complement factor
P00751
K.LQDEDLGFL.-
0.66


B preproprotein
(CFAB_HUMAN)







complement factor
P08603
K.SCDIPVFMNAR.T
0.60


H
(CFAH_HUMAN)







complement factor
P08603
K.HGGLYHENMR.R
0.75


H
(CFAH_HUMAN)







complement factor
P08603
K.IIYKENER.F
0.69


H
(CFAH_HUMAN)







complement factor
P05156
K.RAQLGDLPWQVAIK.D
0.68


preproprotein
(CFAI_HUMAN)
I






conserved
Q9Y2V7
K.ISNLLK.F
0.71


oligomeric Golgi
(COG6_HUMAN)




complex subunit 6





isoform








cornulin
Q9UBG3
R.RYARTEGNCTALTR.G
0.81



(CRNN_HUMAN)







FERM domain-
Q9BZ67
R.VQLGPYQPGRPAACDLR.
0.63


containing protein 8
(FRMD8_HUMAN)
E






gelsolin
P06396
R.VPEARPNSMVVEHPEFLK.
0.61



(GELS_HUMAN)
A






gelsolin
P06396
K.AGKEPGLQIWR.V
0.70



(GELS_HUMAN)







glucose-induced
Q9NWU2
K.VWSEVNQAVLDYENRES
0.83


degradation protein
(GID8_HUMAN)
TPK.L



8 homolog








hemK
Q9Y5R4
R.M*LWALLSGPGRRGSTR.
0.61


methyltransferase
(HEMK1_HUMAN)
G



family member 1








hemopexin
P02790
R.ELISER.W
0.82



(HEMO_HUMAN)







hemopexin
P02790
R.DVRDYFM*PCPGR.G
0.70



(HEMO_HUMAN)







hemopexin
P02790
K.GDKVWVYPPEKK.E
0.71



(HEMO_HUMAN)







hemopexin
P02790
R.DVRDYFMPCPGR.G
0.60



(HEMO_HUMAN)







hemopexin
P02790
R.EWFWDLATGTMK.E
0.65



(HEMO_HUMAN)







hemopexin
P02790
R.YYCFQGNQFLR.F
0.68



(HEMO_HUMAN)







hemopexin
P02790
R.RLWWLDLK.S
0.65



(HEMO_HUMAN)







heparin cofactor 2
P05546
R.LNILNAK.F
0.75



(HEP2_HUMAN)







heparin cofactor 2
P05546
R.NFGYTLR. S
0.66



(HEP2_HUMAN)







histone deacetylase
Q8TEE9
K.LLPPPPIM*SARVLPR.P
0.63


complex subunit
(SAP25_HUMAN)




SAP25








hyaluronan-binding
Q14520
K.RPGVYTQVTK.F
0.68


protein 2
(HABP2_HUMAN)







hyaluronan-binding
Q14520
K.FLNWIK.A
0.62


protein 2
(HABP2_HUMAN)







immediate early
Q5T953
-.
0.93


response gene 5-like
(IER5L_HUMAN)
MECALDAQSLISISLRKIHSS



protein

R.T






inactive caspase-12
Q6UXS9
K.AGADTHGRLLQGNICND
0.60



(CASPC_HUMAN)
AVTK.A






insulin-like growth
P35858
K.ANVFVQLPR.L
0.62


factor-binding
(ALS_HUMAN)




protein complex





acid labile subunit








inter-alpha-trypsin
P19827
K.ELAAQTIKK.S
0.71


inhibitor heavy
(ITIH1_HUMAN)




chain H1








inter-alpha-trypsin
P19827
K.ILGDM*QPGDYFDLVLFG
0.79


inhibitor heavy
(ITIH1_HUMAN)
TR.V



chain H1








inter-alpha-trypsin
P19827
K.VTFQLTYEEVLKR.N
0.70


inhibitor heavy
(ITIH1_HUMAN)




chain H1








inter-alpha-trypsin
P19827
R.TMEQFTIHLTVNPQSK.V
0.61


inhibitor heavy
(ITIH1_HUMAN)




chain H1








inter-alpha-trypsin
P19827
R.FAHYVVTSQVVNTANEA
0.63


inhibitor heavy
(ITIH1_HUMAN)
R.E



chain H1








inter-alpha-trypsin
P19823
R.SSALDMENFRTEVNVLPG
0.89


inhibitor heavy
(ITIH2_HUMAN)
AK.V



chain H2








inter-alpha-trypsin
P19823
K.MKQTVEAMK.T
0.93


inhibitor heavy
(ITIH2_HUMAN)




chain H2








inter-alpha-trypsin
P19823
R.IYLQPGR.L
0.66


inhibitor heavy
(ITIH2_HUMAN)




chain H2








inter-alpha-trypsin
P19823
K.HLEVDVWVIEPQGLR.F
0.61


inhibitor heavy
(ITIH2_HUMAN)




chain H2








inter-alpha-trypsin
P19823
K.FYNQVSTPLLR.N
0.89


inhibitor heavy
(ITIH2_HUMAN)




chain H2








inter-alpha-trypsin
P19823
R.KLGSYEHR.I
0.69


inhibitor heavy
(ITIH2_HUMAN)




chain H2








inter-alpha-trypsin
Q14624
K.GSEMVVAGK.L
1.00


inhibitor heavy
(ITIH4_HUMAN)




chain H4








inter-alpha-trypsin
Q14624
R.MNFRPGVLSSR.Q
0.72


inhibitor heavy
(ITIH4_HUMAN)




chain H4








inter-alpha-trypsin
Q14624
K.YIFHNFM*ER.L
0.73


inhibitor heavy
(ITIH4_HUMAN)




chain H4








inter-alpha-trypsin
Q14624
K.ETLFSVMPGLK.M
0.60


inhibitor heavy
(ITIH4_HUMAN)




chain H4








inter-alpha-trypsin
Q14624
R.FKPTLSQQQK.S
0.64


inhibitor heavy
(ITIH4_HUMAN)




chain H4








inter-alpha-trypsin
Q14624
K.WKETLFSVMPGLK.M
0.69


inhibitor heavy
(ITIH4_HUMAN)




chain H4








inter-alpha-trypsin
Q14624
R.RLGVYELLLK.V
0.65


inhibitor heavy
(ITIH4_HUMAN)




chain H4








inter-alpha-trypsin
Q14624
R.DTDRFSSHVGGTLGQFYQ
0.69


inhibitor heavy
(ITIH4_HUMAN)
EVLWGSPAASDDGRR.T



chain H4








inter-alpha-trypsin
Q14624
K.VRPQQLVK.H
0.62


inhibitor heavy
(ITIH4_HUMAN)




chain H4








inter-alpha-trypsin
Q14624
R.NVHSAGAAGSR.M
0.69


inhibitor heavy
(ITIH4_HUMAN)




chain H4








kallistatin
P29622
R.LGFTDLFSK.W
0.63



(KAIN_HUMAN)







kallistatin
P29622
R.VGSALFLSHNLK.F
0.62



(KAIN_HUMAN)







kininogen-1
P01042
R.VQVVAGKK.Y
0.68



(KNG1_HUMAN)







leucine-rich alpha-
P02750
R.LHLEGNKLQVLGK.D
0.75


2-glycoprotein
(A2GL_HUMAN)







lumican
P51884
R.FNALQYLR.L
0.77



(LUM_HUMAN)







m7GpppX
Q96C86
R.IVFENPDPSDGFVLIPDLK.
0.94


diphosphatase
(DCPS_HUMAN)
W






MAGUK p55
Q8N3R9
K.ILEIEDLFSSLK.H
0.69


subfamily member
(MPP5_HUMAN)




5








MBT domain-
Q05BQ5
K.WFDYLR.E
0.63


containing protein 1
(MBTD1_HUMAN)







obscurin
Q5VST9
R.CELQIRGLAVEDTGEYLC
0.73



(OBSCN_HUMAN)
VCGQERTSATLTVR.A






olfactory receptor
Q8NH94
K.DMKQGLAKLM*HR.M
0.89


1L1
(OR1L1_HUMAN)







phosphatidylinositol-
P80108
K.GIVAAFYSGPSLSDKEK.L
0.79


glycan-specific
(PHLD_HUMAN)




phospholipase D








phosphatidylinositol-
P80108
R.TLLLVGSPTWK.N
0.65


glycan-specific
(PHLD_HUMAN)




phospholipase D








phosphatidylinositol-
P80108
R.WYVPVKDLLGIYEK.L
0.92


glycan-specific
(PHLD_HUMAN)




phospholipase D








pigment epithelium-
P36955
R.SSTSPTTNVLLSPLSVATA
0.63


derived factor
(PEDF_HUMAN)
LSALSLGAEQR.T






plasma protease C
P05155
K.GVTSVSQIFHSPDLAIR.D
0.60


inhibitor
(IC1_HUMAN)







PREDICTED:
P0C0L4
R.DKGQAGLQR.A
0.67


complement C4-A
(CO4A_HUMAN)







PREDICTED:
P0C0L4
K.SHKPLNMGK.V
0.87


complement C4-A
(CO4A_HUMAN)







PREDICTED:
P0C0L4
R.KKEVYM*PSSIFQDDFVIP
0.67


complement C4-A
(CO4A_HUMAN)
DISEPGTWK.I






PREDICTED:
P0C0L4
R.FGLLDEDGKK.T
0.64


complement C4-A
(CO4A_HUMAN)







PREDICTED:
P0C0L4
R.KKEVYMPSSIFQDDFVIPD
0.69


complement C4-A
(CO4A_HUMAN)
ISEPGTWK.I






PREDICTED:
P0C0L4
K.GLCVATPVQLR.V
0.78


complement C4-A
(CO4A_HUMAN)







PREDICTED:
P0C0L4
R.YRVFALDQK.M
0.63


complement C4-A
(CO4A_HUMAN)







PREDICTED:
P0C0L4
K.AEFQDALEKLNMGITDLQ
0.60


complement C4-A
(CO4A_HUMAN)
GLR.L






PREDICTED:
P0C0L4
R.ECVGFEAVQEVPVGLVQP
0.60


complement C4-A
(CO4A_HUMAN)
ASATLYDYYNPERR.C






PREDICTED:
P0C0L4
K.AEFQDALEKLNMGITDLQ
0.60


complement C4-A
(CO4A_HUMAN)
GLR.L






PREDICTED:
P0C0L4
R.VTASDPLDTLGSEGALSP
0.61


complement C4-A
(CO4A_HUMAN)
GGVASLLR.L






pregnancy zone
P20742
R.NELIPLIYLENPRR.N
0.60


protein
(PZP_HUMAN)







pregnancy zone
P20742
K.AVGYLITGYQR.Q
0.67


protein
(PZP_HUMAN)







protein AMBP
P02760
R.AFIQLWAFDAVK.G
0.70


preproprotein
(AMBP_HUMAN)







protein CBFA2T2
O43439
R.LTEREWADEWKHLDHAL
0.61



(MTG8R_HUMAN)
NCIMEMVEK.T






protein NLRC3
Q7RTR2
K.ALM*DLLAGKGSQGSQA
0.83



(NLRC3_HUMAN)
PQALDR.T






prothrombin
P00734
R.TFGSGEADCGLRPLFEK.K
0.69


preproprotein
(THRB_HUMAN)







ras-related GTP-
Q7L523
K.ISNIIK.Q
0.68


binding protein A
(RRAGA_HUMAN)







retinol-binding
P02753
R.FSGTWYAMAK.K
0.64


protein 4
(RET4_HUMAN)







retinol-binding
P02753
R.LLNNWDVCADMVGTFTD
0.61


protein 4
(RET4_HUMAN)
TEDPAKFK.M






retinol-binding
P02753
K.YWGVASFLQK.G
0.63


protein 4
(RET4_HUMAN)







serum amyloid P-
P02743
R.GYVIIKPLVWV.-
0.60


component
(SAMP_HUMAN)







sex hormone-
P04278
R.LPLVPALDGCLR.R
0.63


binding globulin
(SHBG_HUMAN)







spectrin beta chain,
Q13813
R.NELIRQEKLEQLAR.R
0.88


non-erythrocytic 1
(SPTN1_HUMAN)







TATA element
P82094
K.EELATRLNSSETADLLK.E
0.71


modulatory factor
(TMF1_HUMAN)







testicular haploid
P0DJG4
R.QCLLNRPFSDNSAR.D
0.67


expressed gene
(THEGL_HUMAN)




protein-like








thyroxine-binding
P05543
K.NALALFVLPK.E
0.61


globulin
(THBG_HUMAN)







thyroxine-binding
P05543
R.SFMLLILER.S
0.64


globulin
(THBG_HUMAN)







titin
Q8WZ42
K.TEPKAPEPISSK.P
0.89



(TITIN_HUMAN)







transthyretin
P02766
R.GSPAINVAVHVFR.K
0.61



(TTHY_HUMAN)







tripartite motif-
Q9C035
R.ELISDLEHRLQGSVM*ELL
0.92


containing protein 5
(TRIM5_HUMAN)
QGVDGVIK.R






vitamin D-binding
P02774
K.TAMDVFVCTYFMPAAQL
0.88


protein
(VTDB_HUMAN)
PELPDVELPTNKDVCDPGN





TK.V






vitamin D-binding
P02774
K.VM*DKYTFELSR.R
0.70


protein
(VTDB_HUMAN)







vitamin D-binding
P02774
K.LAQKVPTADLEDVLPLAE
0.61


protein
(VTDB_HUMAN)
DITNILSK.C






vitamin D-binding
P02774
K.SCESNSPFPVHPGTAECCT
0.68


protein
(VTDB_HUMAN)
K.E






vitamin D-binding
P02774
R.KLCMAALK.H
0.71


protein
(VTDB_HUMAN)







vitamin D-binding
P02774
K.LCDNLSTK.N
0.60


protein
(VTDB_HUMAN)







vitamin D-binding
P02774
K.VM*DKYTFELSR.R
0.70


protein
(VTDB_HUMAN)







vitronectin
P04004
R.IYISGM*APR.P
0.75



(VTNC_HUMAN)







vitronectin
P04004
R.ERVYFFK.G
0.67



(VTNC_HUMAN)







vitronectin
P04004
R.IYISGMAPR.P
0.81



(VTNC_HUMAN)







vitronectin
P04004
K.AVRPGYPK.L
0.63



(VTNC_HUMAN)







zinc finger protein
P52746
K.TRFLLR.T
0.67


142
(ZN142_HUMAN)





*Oxidation of methionine













TABLE 10







Preeclampsia: Additional peptides significant with AUC > 0.6 by


X!Tandem only










Protein description
Uniprot ID (name)
Peptide
XT_AUC





afamin
P43652
K.TYVPPPFSQDLFTFHADMCQSQN
0.76



(AFAM_HUMAN)
EELQR.K






afamin
P43652
K.KSDVGFLPPFPTLDPEEK.C
0.62



(AFAM_HUMAN)







alpha-1-
P01011
R.GTHVDLGLASANVDFAFSLYK.Q
0.69


antichymotrypsin
(AACT_HUMAN)







alpha-1B-
P04217
K.SLPAPWLSM*APVSWITPGLK.T
0.67


glycoprotein
(A1BG_HUMAN)







alpha-1B-
P04217
K.SLPAPWLSM*APVSWITPGLK.T
0.67


glycoprotein
(A1BG_HUMAN)







alpha-1B-
P04217
R.C{circumflex over ( )}LAPLEGAR.F
0.62


glycoprotein
(A1BG_HUMAN)







alpha-2-antiplasmin
P08697
R.WFLLEQPEIQVAHFPFK.N
0.60



(A2AP_HUMAN)







alpha-2-antiplasmin
P08697
R.LCQDLGPGAFR.L
0.92



(A2AP_HUMAN)







alpha-2-antiplasmin
P08697
K.HQMDLVATLSQLGLQELFQAPDL
0.67



(A2AP_HUMAN)
R.G






alpha-2-HS-
P02765
R.QLKEHAVEGDCDFQLLK.L
0.63


glycoprotein
(FETUA_HUMAN)




preproprotein








alpha-2-HS-
P02765
R.Q{circumflex over ( )}LKEHAVEGDCDFQLLK.L
0.65


glycoprotein
(FETUA_HUMAN)




preproprotein








alpha-2-HS-
P02765
K.C{circumflex over ( )}NLLAEK.Q
0.61


glycoprotein
(FETUA_HUMAN)




preproprotein








angiotensinogen
P01019
R.SLDFTELDVAAEKIDR.F
0.62


preproprotein
(ANGT_HUMAN)







angiotensinogen
P01019
K.DPTFIPAPIQAK.T
0.78


preproprotein
(ANGT_HUMAN)







apolipoprotein A-II
P02652
K.EPCVESLVSQYFQTVTDYGKDLM
0.67


preproprotein
(APOA2_HUMAN)
EK.V






apolipoprotein B-
P04114
K.FSVPAGIVIPSFQALTAR.F
0.66


100
(APOB_HUMAN)







apolipoprotein B-
P04114
K.EQHLFLPFSYK.N
0.90


100
(APOB_HUMAN)







apolipoprotein B-
P04114
R.GIISALLVPPETEEAK.Q
0.70


100
(APOB_HUMAN)







beta-2-glycoprotein
P02749
K.C{circumflex over ( )}FKEHSSLAFWK.T
0.70


1
(APOH_HUMAN)







beta-2-glycoprotein
P02749
K.EHSSLAFWK.T
0.62


1
(APOH_HUMAN)







ceruloplasmin
P00450
R.FNKNNEGTYYSPNYNPQSR.S
0.64



(CERU_HUMAN)







ceruloplasmin
P00450
K.HYYIGIIETTWDYASDHGEK.K
0.63



(CERU_HUMAN)







ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPM*K.I
0.66



(CERU_HUMAN)







ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPM*K.I
0.66



(CERU_HUMAN)







ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPMK.I
0.67



(CERU_HUMAN)







ceruloplasmin
P00450
K.M*YYSAVDPTKDIFTGLIGPMK.I
0.67



(CERU_HUMAN)







ceruloplasmin
P00450
K.MYYSAVDPTKDIFTGLIGPM*K.I
0.67



(CERU_HUMAN)







ceruloplasmin
P00450
K.MYYSAVDPTKDIFTGLIGPM*K.I
0.67



(CERU_HUMAN)







ceruloplasmin
P00450
R.GVYSSDVFDIFPGTYQTLEM*FPR.
0.67



(CERU_HUMAN)
T






coagulation factor
P00748
R.VVGGLVALR.G
0.64


XII
(FA12_HUMAN)







complement Clq
P02745
K.KGHIYQGSEADSVFSGFLIFPSA.-
0.81


subcomponent
(C1QA_HUMAN)




subunit A








complement Clq
P02747
R.Q{circumflex over ( )}THQPPAPNSLIR.F
0.64


subcomponent
(C1QC_HUMAN)




subunit C








complement Cls
P09871
R.Q{circumflex over ( )}FGPYCGHGFPGPLNIETK.S
0.71


subcomponent
(C1S_HUMAN)







complement C2
P06681
R.QPYSYDFPEDVAPALGTSFSHML
0.63



(CO2_HUMAN)
GATNPTQK.T






complement C2
P06681
R.LLGMETMAWQEIR.H
0.70



(CO2_HUMAN)







complement C4-B-
P0C0L5
R.AVGSGATFSHYYYM*ILSR.G
0.67


like preproprotein
(CO4B_HUMAN)







complement C4-B-
P0C0L5
R.FGLLDEDGKKTFFR.G
0.61


like preproprotein
(CO4B_HUMAN)







complement C4-B-
P0C0L5
K.ITQVLHFTK.D
0.67


like preproprotein
(CO4B_HUMAN)







complement C4-B-
P0C0L5
K.M*RPSTDTITVM*VENSHGLR.V
0.65


like preproprotein
(CO4B_HUMAN)







complement C4-B-
P0C0L5
K.M*RPSTDTITVM*VENSHGLR.V
0.75


like preproprotein
(CO4B_HUMAN)







complement C5
P01031
R.IVACASYKPSR.E
0.67


preproprotein
(CO5_HUMAN)







complement C5
P01031
R.SYFPESWLWEVHLVPR.R
0.60


preproprotein
(CO5_HUMAN)







complement C5
P01031
K.Q{circumflex over ( )}LPGGQNPVSYVYLEVVSK.H
0.74


preproprotein
(CO5_HUMAN)







complement C5
P01031
K.TLLPVSKPEIR.S
0.78


preproprotein
(CO5_HUMAN)







complement
P07358
R.GGASEHITTLAYQELPTADLMQE
0.60


component C8 beta
(CO8B_HUMAN)
WGDAVQYNPAIIK.V



chain preproprotein








complement factor
P00751
K.GTDYHKQPWQAK.I
0.89


B preproprotein
(CFAB_HUMAN)







complement factor
P00751
K.VKDISEVVTPR.F
0.64


B preproprotein
(CFAB_HUMAN)







complement factor
P00751
K.Q{circumflex over ( )}VPAHAR.D
0.63


B preproprotein
(CFAB_HUMAN)







complement factor
P00751
R.GDSGGPLIVHKR.S
0.79


B preproprotein
(CFAB_HUMAN)







complement factor
P00751
R.FLCTGGVSPYADPNTCR.G
0.71


B preproprotein
(CFAB_HUMAN)







complement factor
P00751
K.KEAGIPEFYDYDVALIK.L
0.74


B preproprotein
(CFAB_HUMAN)







complement factor
P00751
R.YGLVTYATYPK.I
0.88


B preproprotein
(CFAB_HUMAN)







complement factor
P08603
K.EFDHNSNIR.Y
1.00


H
(CFAH_HUMAN)







complement factor
P08603
K.WSSPPQCEGLPCK.S
0.71


H
(CFAH_HUMAN)







complement factor
P08603
R.KGEWVALNPLR.K
0.67


H
(CFAH_HUMAN)







complement factor I
P05156
K.SLECLHPGTK.F
0.60


preproprotein
(CFAI_HUMAN)







corticosteroid-
P08185
R.GLASANVDFAFSLYK.H
0.62


binding globulin
(CBG_HUMAN)







fetuin-B
Q9UGM5
K.LVVLPFPK.E
0.74



(FETUB_HUMAN)







fetuin-B
Q9UGM5
R.ASSQWVVGPSYFVEYLIK.E
0.61



(FETUB_HUMAN)







ficolin-3
O75636
R.LLGEVDHYQLALGK.F
0.61



(FCN3_HUMAN)







gelsolin
P06396
K.QTQVSVLPEGGETPLFK.Q
0.69



(GELS_HUMAN)







hemopexin
P02790
K.VDGALCMEK.S
0.60



(HEMO_HUMAN)







hemopexin
P02790
K.SGAQATWTELPWPHEKVDGALC
0.66



(HEMO_HUMAN)
M*EK.S






hemopexin
P02790
K.SGAQATWTELPWPHEKVDGALC
0.66



(HEMO_HUMAN)
M*EK.S






hemopexin
P02790
R.EWFWDLATGTMK.E
0.68



(HEMO_HUMAN)







hemopexin
P02790
R.Q{circumflex over ( )}GHNSVFLIK.G
0.67



(HEMO_HUMAN)







heparin cofactor 2
P05546
K.TLEAQLTPR.V
0.67



(HEP2_HUMAN)







histidine-rich
P04196
K.DSPVLIDFFEDTER.Y
0.60


glycoprotein
(HRG_HUMAN)







insulin-like growth
P35858
K.ALRDFALQNPSAVPR.F
0.89


factor-binding
(ALS_HUMAN)




protein complex





acid labile subunit








insulin-like growth
P35858
R.LWLEGNPWDCGCPLK.A
0.60


factor-binding
(ALS_HUMAN)




protein complex





acid labile subunit








inter-alpha-trypsin
P19827
K.ILGDM*QPGDYFDLVLFGTR.V
0.85


inhibitor heavy
(ITIH1_HUMAN)




chain H1








inter-alpha-trypsin
P19823
R.SSALDMENFR.T
0.63


inhibitor heavy
(ITIH2_HUMAN)




chain H2








inter-alpha-trypsin
P19823
R.SLAPTAAAK.R
0.83


inhibitor heavy
(ITIH2_HUMAN)




chain H2








inter-alpha-trypsin
P19823
R.LSNENHGIAQR.I
0.76


inhibitor heavy
(ITIH2_HUMAN)




chain H2








inter-alpha-trypsin
P19823
R.IYGNQDTSSQLKK.F
0.63


inhibitor heavy
(ITIH2_HUMAN)




chain H2








inter-alpha-trypsin
Q14624
K.TGLLLLSDPDKVTIGLLFWDGR.G
0.60


inhibitor heavy
(ITIH4_HUMAN)




chain H4








inter-alpha-trypsin
Q14624
K.YIFHNFM*ER.L
0.70


inhibitor heavy
(ITIH4_HUMAN)




chain H4








inter-alpha-trypsin
Q14624
K.IPKPEASFSPR.R
0.65


inhibitor heavy
(ITIH4_HUMAN)




chain H4








inter-alpha-trypsin
Q14624
R.QGPVNLLSDPEQGVEVTGQYER.
0.64


inhibitor heavy
(ITIH4_HUMAN)
E



chain H4








inter-alpha-trypsin
Q14624
R.ANTVQEATFQMELPK.K
0.61


inhibitor heavy
(ITIH4_HUMAN)




chain H4








inter-alpha-trypsin
Q14624
K.WKETLFSVMPGLK.M
0.66


inhibitor heavy
(ITIH4_HUMAN)




chain H4








inter-alpha-trypsin
Q14624
R.RLDYQEGPPGVEISCWSVEL.-
0.69


inhibitor heavy
(ITIH4_HUMAN)




chain H4








inter-alpha-trypsin
Q14624
K.SPEQQETVLDGNLIIR.Y
0.66


inhibitor heavy
(ITIH4_HUMAN)




chain H4








kallistatin
P29622
K.ALWEKPFISSR.T
0.65



(KAIN_HUMAN)







kininogen-1
P01042
R.Q{circumflex over ( )}VVAGLNFR.I
0.67



(KNG1_HUMAN)







kininogen-1
P01042
R.QVVAGLNFR.I
0.71



(KNG1_HUMAN)







kininogen-1
P01042
K.LGQSLDCNAEVYVVPWEK.K
0.62



(KNG1_HUMAN)







kininogen-1
P01042
R.IASFSQNCDIYPGKDFVQPPTK.I
0.64



(KNG1_HUMAN)







leucine-rich alpha-
P02750
R.C{circumflex over ( )}AGPEAVKGQTLLAVAK.S
0.70


2-glycoprotein
(A2GL_HUMAN)







leucine-rich alpha-
P02750
K.GQTLLAVAK.S
0.67


2-glycoprotein
(A2GL_HUMAN)







leucine-rich alpha-
P02750
K.DLLLPQPDLR.Y
0.71


2-glycoprotein
(A2GL_HUMAN)







lumican
P51884
K.ILGPLSYSK.I
0.83



(LUM_HUMAN)







PREDICTED:
P0C0L4
R.QGSFQGGFR.S
0.83


complement C4-A
(CO4A_HUMAN)







PREDICTED:
P0C0L4
K.YVLPNFEVK.I
0.69


complement C4-A
(CO4A_HUMAN)







PREDICTED:
P0C0L4
R.LLATLCSAEVCQCAEGK.C
0.60


complement C4-A
(CO4A_HUMAN)







PREDICTED:
P0C0L4
R.VGDTLNLNLR.A
0.66


complement C4-A
(CO4A_HUMAN)







PREDICTED:
P0C0L4
R.EPFLSCCQFAESLR.K
0.62


complement C4-A
(CO4A_HUMAN)







PREDICTED:
P0C0L4
R.EELVYELNPLDHR.G
0.60


complement C4-A
(CO4A_HUMAN)







PREDICTED:
P0C0L4
R.GSFEFPVGDAVSK.V
0.62


complement C4-A
(CO4A_HUMAN)







PREDICTED:
P0C0L4
R.GCGEQTMIYLAPTLAASR.Y
0.71


complement C4-A
(CO4A_HUMAN)







pregnancy zone
P20742
K.GSFALSFPVESDVAPIAR.M
0.63


protein
(PZP_HUMAN)







protein AMBP
P02760
R.VVAQGVGIPEDSIFTMADRGECV
0.62


preproprotein
(AMBP_HUMAN)
PGEQEPEPILIPR.V






prothrombin
P00734
R.SGIECQLWR.S
0.65


preproprotein
(THRB_HUMAN)







thyroxine-binding
P05543
K.MSSINADFAFNLYR.R
0.63


globulin
(THBG_HUMAN)







vitronectin
P04004
R.MDWLVPATCEPIQSVFFFSGDKY
1.00



(VTNC_HUMAN)
YR.V






vitronectin
P04004
R.IYISGM*APRPSLAK.K
0.64



(VTNC_HUMAN)







vitronectin
P04004
R.IYISGMAPRPSLAK.K
0.63



(VTNC_HUMAN)







vitronectin
P04004
R.DVWGIEGPIDAAFTR.I
0.61



(VTNC_HUMAN)







zinc finger CCHC
Q8N567
R. SCPDNPK.G
0.68


domain-containing
(ZCHC9_HUMAN)




protein 9





*Oxidation of Methionine, {circumflex over ( )}cyclic pyrolidone derivative by the loss of NH3 (−17 Da)













TABLE 11







Candidate peptides and transitions for transferring to the MRM assay













m/z,
fragment ion, m/z,



Protein
Peptide
charge
charge, rank
area














inter-alpha-trypsin
K.AAISGENAGLVR.A
579.3173++
S [y9] − 902.4690 + [1]
518001


inhibitor heavy chain H1


G [y8] − 815.4370 + [2]
326256


ITIH1_HUMAN


N [y6] − 629.3729 + [3]
296670





S [b4] − 343.1976 + [4]
258172





inter-alpha-trypsin
K.GSLVQASEANLQAA
668.6763+++
A [y7] − 806.4155 + [1]
304374


inhibitor heavy chain H1
QDFVR.G

V [b4] − 357.2132 + [3]
294094


ITIH1_HUMAN


A [b13] − 635.3253 + + [7]
249287





A [y6] − 735.3784 + [2]
193844





F [y3] − 421.2558 + [4]
167816





L [b11] − 535.7775 + + [6]
156882





A [b6] − 556.3089 + [5]
149216





A [y14] − 760.3786 + + [8]
123723





inter-alpha-trypsin
K.TAFISDFAVTADGNA
1087.0442++
G [y4] − 432.2453 + [1]
22362


inhibitor heavy chain H1
FIGDIK.D

V [b9] − 952.4775 + [2]
9508


ITIH1_HUMAN


I [y5] − 545.3293 + [3]
8319





A [b8] − 853.4090 + [4]
7006





G [y9] − 934.4993 + [5]
6755





F [y6] − 692.3978 + [6]
6193





inter-alpha-trypsin
K.VTYDVSR.D
420.2165++
T [b2] − 201.1234 + [1]
792556


inhibitor heavy chain H1


Y [y5] − 639.3097 + [2]
609348


ITIH1_HUMAN


V [y3] − 361.2194 + [3]
256946





D [y4] − 476.2463 + [4]
169546





Y [y5] − 320.1585 + + [5]
110608





S [y2] − 262.1510 + [6]
50268





D [b4] − 479.2136 + [7]
13662





Y [b3] − 182.5970 + + [8]
10947





inter-alpha-trypsin
R.EVAFDLEIPK.T
580.8135++
P [y2] − 244.1656 + [1]
2032509


inhibitor heavy chain H1


D [y6] − 714.4032 + [2]
672749


ITIH1_HUMAN


A [y8] − 932.5088 + [3]
390837





F [y7] − 861.4716 + [4]
305087





L [y5] − 599.3763 + [5]
255527





inter-alpha-trypsin
R.LWAYLTIQELLAK.R
781.4531++
W [b2] − 300.1707 + [1]
602601


inhibitor heavy chain H1


A [b3] − 371.2078 + [2]
356967


ITIH1_HUMAN


T [y8] − 915.5510 + [3]
150419





Y [b4] − 534.2711 + [4]
103449





L [b5] − 647.3552 + [5]
99820





I [y7] − 814.5033 + [6]
72044





Q [y6] − 701.4192 + [7]
66989





E [y5] − 573.3606 + [8]
44843





inter-alpha-trypsin
K.FYNQVSTPLLR.N
669.3642++
S [y6] − 686.4196 + [1]
367330


inhibitor heavy chain H2


V [y7] − 785.4880 + [2]
182396


ITIH2_HUMAN


P [y4] − 498.3398 + [3]
103638





Q [b4] − 553.2405 + [4]
54270





Y [b2] − 311.1390 + [5]
52172





N [b3] − 425.1819 + [6]
34567





inter-alpha-trypsin
K.HLEVDVWVIEPQGL
597.3247+++
P [y5] − 570.3358 + [1]
303693


inhibitor heavy chain H2
R.F

I [y7] − 812.4625 + [2]
206996


ITIH2_HUMAN


E [y6] − 699.3784 + [3]
126752





P [y5] − 285.6715 + + [4]
79841





inter-alpha-trypsin
K.TAGLVR.S
308.6925++
G [y4] − 444.2929 + [1]
789068


inhibitor heavy chain H2


A [b2] − 173.0921 + [2]
460019


ITIH2_HUMAN


V [y2] − 274.1874 + [3]
34333





L [y3] − 387.2714 + [4]
29020





G [b3] − 230.1135 + [5]
15169





inter-alpha-trypsin
R.IYLQPGR.L
423.7452++
L [y5] − 570.3358 + [1]
638209


inhibitor heavy chain H2


Y [b2] − 277.1547 + [2]
266889


ITIH2_HUMAN


P [y3] − 329.1932 + [3]
235194





Q [y4] − 457.2518 + [4]
171389





inter-alpha-trypsin
R.LSNENHGIAQR.I
413.5461+++
N [y9] − 519.7574 + + [1]
325409


inhibitor heavy chain H2


G [y5] − 544.3202 + [2]
139598


ITIH2_HUMAN


S [b2] − 201.1234 + [3]
54786





N [y7] − 398.2146 + + [4]
39521





E [y8] − 462.7359 + + [5]
30623





inter-alpha-trypsin
R.SLAPTAAAKR.R
415.2425++
A [y7] − 629.3617 + [1]
582421


inhibitor heavy chain H2


P [y6] − 558.3246 + [2]
463815


ITIH2_HUMAN


L [b2] − 201.1234 + [3]
430584





A [b3] − 272.1605 + [4]
204183





T [y5] − 461.2718 + [5]
47301





pregnancy-specific beta-
K.FQLPGQK.L
409.2320++
L [y5] − 542.3297 + [3]
192218


1-glycoprotein 1


P [y4] − 429.2456 + [2]
252933


PSG1_HUMAN


Q [y2] − 275.1714 + [6]
15366





Q [b2] − 276.1343 + [1]
305361





L [b3] − 389.2183 + [4]
27279





G [b5] − 543.2926 + [5]
18416





pregnancy-specific beta-
R.DLYHYITSYVVDGEIII
955.4762+++
G [y7] − 707.3471 + [1]
66891


1-glycoprotein 1
YGPAYSGR.E

Y [y8] − 870.4104 + [2]
45076


PSG1_HUMAN


P [y6] − 650.3257 + [3]
28437





I [y9] − 983.4945 + [4]
20423





V [b10] − 628.3033 + + [5]
17864





E [b14] − 828.3830 + + [6]
13690





V [b11] − 677.8375 + + [7]
12354





I [b6] − 805.3879 + [8]
11186





V [y15] − 805.4147 + + [9]
10573





G [b13] − 763.8617 + + [10]
10407





pregnancy-specific beta-
TLFIFGVTK
513.3051++
F [y7] − 811.4713 + [1]
102139


1-glycoprotein 4


L [b2] − 215.1390 + [2]
86272


PSG4_HUMAN


F [y5] − 551.3188 + [3]
49520





I [y6] − 664.4028 + [4]
26863





T [y2] − 248.1605 + [5]
18671





F [b3] − 362.2074 + [6]
17343





G [y4] − 404.2504 + [7]
17122





pregnancy-specific beta-
NYTYIWWLNGQSLPV
1097.5576++
W [b6] − 841.3879 + [1]
25756


1-glycoprotein 4
SPR

G [y9] − 940.5211 + [2]
25018


PSG4_HUMAN


Y [b4] − 542.2245 + [3]
19778


PSG8_HUMAN
LQLSETNR
480.7591++
T [y3] − 390.2096 + [1]
185568













pregnancy-specific beta-1-glycoprotein 8

Q [b2] − 242.1499 + [2]
120644




N [y2] − 289.1619 + [3]
95164




S [y5] − 606.2842 + [4]
84314




L [b3] − 355.2340 + [5]
38587




E [y4] − 519.2522 + [6]
34807




L [y6] − 719.3682 + [7]
17482




E [b5] − 571.3086 + [8]
8855




S [b4] − 442.2660 + [9]
7070














Pan-PSG
ILILPSVTR
506.3317++
P [y5] − 559.3198 + [1]
484395





L [b2] − 227.1754 + [2]
102774





L [b4] − 227.1754 + + [3]
102774





I [y7] − 785.4880 + [4]
90153





I [b3] − 340.2595 + [5]
45515





L [y6] − 672.4039 + [6]
40368





thyroxine-binding
K.ELELQIGNALFIGK.H
515.6276+++
E [b3] − 186.5919 + + [1]
48549


globulin


E [b3] − 372.1765 + [2]
28849


THBG_HUMAN


G [y2] − 204.1343 + [3]
27487





F [b11] − 614.8322 + + [4]
14892





L [b4] − 485.2606 + [5]
14552





L [b2] − 243.1339 + [6]
10169





L [b4] − 243.1339 + + [7]
10169





thyroxine-binding
K.AQWANPFDPSK.T
630.8040++
A [b4] − 457.2194 + [1]
48405


globulin


S [y2] − 234.1448 + [2]
43781


THBG_HUMAN


D [y4] − 446.2245 + [3]
26549





D [y4] − 446.2245 + [4]
25148





thyroxine-binding
K.TEDSSSFLIDK.T
621.2984++
E [b2] − 231.0975 + [1]
37113


globulin


D [y2] − 262.1397 + [2]
14495


THBG_HUMAN









thyroxine-binding
K.AVLHIGEK.G
433.7584++
V [b2] − 171.1128 + [1]
151828


globulin


L [y6] − 696.4039 + [2]
102903


THBG_HUMAN


H [y5] − 583.3198 + [3]
73288





I [y4] − 446.2609 + [4]
54128





G [y3] − 333.1769 + [5]
32717





H [b4] − 421.2558 + [6]
22662





thyroxine-binding
K.AVLHIGEK.G
289.5080+++
L [y6] − 348.7056 + + [1]
2496283


globulin


V [b2] − 171.1128 + [2]
551283


THBG_HUMAN


I [y4] − 446.2609 + [3]
229168





H [y5] − 292.1636 + + [4]
212709





H [y5] − 583.3198 + [5]
160132





G [y3] − 333.1769 + [6]
117961





H [b4] − 421.2558 + [7]
56579





I [y4] − 223.6341 + + [8]
36569





H [b4] − 211.1315 + + [9]
19460





L [b3] − 284.1969 + [10]
15758





thyroxine-binding
K.FLNDVK.T
368.2054++
N [y4] − 475.2511 + [1]
298227


globulin


V [y2] − 246.1812 + [2]
252002


THBG_HUMAN


L [b2] − 261.1598 + [3]
98700





D [y3] − 361.2082 + [4]
29215





D [b4] − 490.2296 + [5]
27258





N [b3] − 375.2027 + [6]
10971





thyroxine-binding
K.FSISATYDLGATLLK.
800.4351++
S [b2] − 235.1077 + [1]
50075


globulin
M

G [y6] − 602.3872 + [2]
46373


THBG_HUMAN


D [y8] − 830.4982 + [3]
43372





Y [y9] − 993.5615 + [4]
40970





T [y4] − 474.3286 + [5]
22161





L [y7] − 715.4713 + [6]
19710





S [b4] − 435.2238 + [7]
19310





L [y3] − 373.2809 + [8]
14157





I [b3] − 348.1918 + [9]
13207





thyroxine-binding
K.LSNAAHK.A
370.7061++
H [y2] − 284.1717 + [4]
19319


globulin


S [b2] − 201.1234 + [1]
60611


THBG_HUMAN


N [b3] − 315.1663 + [2]
42142





A [b4] − 386.2034 + [3]
31081





thyroxine-binding
K.GWVDLFVPK.F
530.7949++
V [y7] − 817.4818 + [2]
297536


globulin


D [y6] − 718.4134 + [4]
226951


THBG_HUMAN


L [y5] − 603.3865 + [8]
60712





F [y4] − 490.3024 + [9]
45586





V [y3] − 343.2340 + [6]
134588





P [y2] − 244.1656 + [1]
1619888





V [b3] − 343.1765 + [7]
126675





D [b4] − 458.2034 + [10]
14705





F [b6] − 718.3559 + [5]
208674





V [b7] − 817.4243 + [3]
270156





thyroxine-binding
K.NALALFVLPK.E
543.3395++
L [b3] − 299.1714 + [1]
365040


globulin


P [y2] − 244.1656 + [2]
274988


THBG_HUMAN


A [y7] − 787.5076 + [3]
237035





L [y6] − 716.4705 + [4]
107838





L [y3] − 357.2496 + [5]
103847





L [y8] − 900.5917 + [6]
97265





F [y5] − 603.3865 + [7]
88231





A [b4] − 370.2085 + [8]
82559





V [y4] − 456.3180 + [9]
32352





L [b5] − 483.2926 + [10]
11974





thyroxine-binding
R.SILFLGK.V
389.2471++
L [y5] − 577.3708 + [1]
564222


globulin


I [b2] − 201.1234 + [2]
384240


THBG_HUMAN


G [y2] − 204.1343 + [3]
302557





L [y3] − 317.2183 + [4]
282436





F [y4] − 464.2867 + [5]
194047





L [b3] − 314.2074 + [6]
27878





leucine-rich alpha-2-
R.VLDLTR.N
358.7187++
D [y4] − 504.2776 + [1]
629222


glycoprotein


L [y5] − 617.3617 + [2]
236165


A2GL_HUMAN


L [b2] − 213.1598 + [3]
171391





L [y3] − 389.2507 + [4]
167609





R [y1] − 175.1190 + [5]
41213





T [y2] − 276.1666 + [6]
37194





D [b3] − 328.1867 + [7]
27029





leucine-rich alpha-2-
K.ALGHLDLSGNR.L
576.8096++
G [y9] − 484.7490 + + [1]
46334


glycoprotein


L [y7] − 774.4104 + [2]
44285


A2GL_HUMAN


D [y6] − 661.3264 + [3]
40188





H [y8] − 456.2383 + + [4]
29392





H [b4] − 379.2088 + [5]
26871





L [y5] − 546.2994 + [6]
17178





L [b5] − 492.2929 + [7]
14578





leucine-rich alpha-2-
K.LPPGLLANFILLR.T
712.9348++
R [y1] − 175.1190 + [1]
34435


glycoprotein


A [b7] − 662.4236 + [2]
25768


A2GL_HUMAN


G [y10] − 1117.6728 + [3]
11662





leucine-rich alpha-2-
R.TLDLGENQLETLPPD
1019.0468++
P [y6] − 710.4196 + [1]
232459


glycoprotein
LLR.G

L [y7] − 823.5036 + [2]
16075


A2G L_HUMAN


E [y9] − 1053.5939 + [3]
15839





D [b3] − 330.1660 + [4]
15524





leucine-rich alpha-2-
R.GPLQLER.L
406.7349++
P [b2] − 155.0815 + [1]
144054


glycoprotein


Q [y4] − 545.3042 + [2]
103146


A2GL_HUMAN


L [y5] − 658.3883 + [3]
77125





L [y3] − 417.2456 + [4]
65928





R [y1] − 175.1190 + [5]
27585





E [y2] − 304.1615 + [6]
22956





leucine-rich alpha-2-
R.LHLEGNK.L
405.7271++
H [b2] − 251.1503 + [1]
79532


glycoprotein


L [y5] − 560.3039 + [2]
54272


A2GL_HUMAN


G [b5] − 550.2984 + [3]
49019





G [y3] − 318.1772 + [4]
18570





L [b3] − 364.2343 + [5]
14068





E [y4] − 447.2198 + [6]
13318





leucine-rich alpha-2-
K.LQVLGK.D
329.2183++
V [y4] − 416.2867 + [1]
141056


glycoprotein


G [y2] − 204.1343 + [2]
102478


A2GL_HUMAN


Q [b2] − 242.1499 + [3]
98414





L [y3] − 317.2183 + [4]
60587





Q [y5] − 544.3453 + [5]
50833





leucine-rich alpha-2-
K.DLLLPQPDLR.Y
590.3402++
P [y6] − 725.3941 + [1]
592715


glycoprotein


L [b3] − 342.2023 + [2]
570948


A2GL_HUMAN


L [b2] − 229.1183 + [3]
403755





P [y6] − 363.2007 + + [4]
120157





L [y2] − 288.2030 + [5]
89508





L [y7] − 838.4781 + [6]
76185





L [b4] − 455.2864 + [7]
60422





L [y7] − 419.7427 + + [8]
45849





P [y4] − 500.2827 + [9]
45223





L [y8] − 951.5622 + [10]
22393





Q [y5] − 628.3413 + [11]
15450





leucine-rich alpha-2-
R.VAAGAFQGLR.Q
495.2800++
A [y8] − 819.4472 + [1]
183637


glycoprotein


G [y7] − 748.4100 + [2]
110920


A2GL_HUMAN


F [y5] − 620.3515 + [3]
85535





A [y9] − 890.4843 + [4]
45894





G [y3] − 345.2245 + [5]
45644





Q [y4] − 473.2831 + [6]
40579





A [y8] − 410.2272 + + [7]
39266





A [b3] − 242.1499 + [8]
35890





A [y6] − 691.3886 + [9]
29637





G [b4] − 299.1714 + [10]
19195





A [b5] − 370.2085 + [11]
14944





A [y9] − 445.7458 + + [12]
11567





leucine-rich alpha-2-
R.WLQAQK.D
387.2189++
L [y5] − 587.3511 + [1]
80533


glycoprotein


Q [y4] − 474.2671 + [2]
57336


A2GL_HUMAN


A [y3] − 346.2085 + [3]
35952





L [b2] − 300.1707 + [4]
22509





leucine-rich alpha-2-
K.GQILLAVAK.S
450.7793++
Q [b2] − 186.0873 + [1]
110213


glycoprotein


T [y7] − 715.4713 + [2]
81127


A2GL_HUMAN


L [y5] − 501.3395 + [3]
52292





L [y6] − 614.4236 + [4]
46349





A [y4] − 388.2554 + [5]
41283





A [y2] − 218.1499 + [6]
38843





V [y3] − 317.2183 + [7]
28961





T [b3] − 287.1350 + [8]
23831





leucine-rich alpha-2-
R.YLFLNGNK.L
484.7636++
F [y6] − 692.3726 + [1]
61861


glycoprotein


L [b2] − 277.1547 + [2]
39468


A2GL_HUMAN


F [b3] − 424.2231 + [3]
21454





L [y5] − 545.3042 + [4]
20016





N [y4] − 432.2201 + [5]
18077





leucine-rich alpha-2-
R.NALTGLPPGLFQASA
780.7773+++
T [y8] − 902.5557 + [1]
44285


glycoprotein
TLDTLVLK.E

P [y17] − 886.0036 + + [2]
39557


A2GL_HUMAN


D [y6] − 688.4240 + [3]
19464


alpha-1B-glycoprotein
K.NGVAQEPVHLDSPAI
837.9441++
P [y10] − 1076.6099 + [1]
130137


A1BG_HUMAN
K.H

V [b3] − 271.1401 + [2]
110650





A [y13] − 702.8777 + + [3]
75803





S [y5] − 515.3188 + [4]
63197





G [b2] − 172.0717 + [5]
57307





E [b6] − 599.2784 + [6]
49765





A [b4] − 342.1772 + [7]
36058





E [y11] − 1205.6525 + [8]
34131





P [y4] − 428.2867 + [9]
31158





H [y8] − 880.4887 + [10]
28296





D [y6] − 630.3457 + [11]
20534





L [y7] − 743.4298 + [12]
17946





alpha-1B-glycoprotein
K.HQFLLTGDTQGR.Y
686.8520++
Q [b2] − 266.1248 + [1]
1144372


A1BG_HUMAN


F [y10] − 1107.5793 + [2]
725830





T [y7] − 734.3428 + [3]
341528





L [y8] − 847.4268 + [4]
297048





F [b3] − 413.1932 + [5]
230163





G [y6] − 633.2951 + [6]
226694





T [y4] − 461.2467 + [7]
217446





L [y9] − 960.5109 + [8]
215574





L [b4] − 526.2772 + [9]
184306





L [b5] − 639.3613 + [10]
157607





Q [y11] − 1235.6379 + [11]
117366





Q [y11] − 618.3226 + + [12]
109274





D [b8] − 912.4574 + [13]
53233





T [b6] − 740.4090 + [14]
49104





D [y5] − 576.2736 + [15]
35232





alpha-1B-glycoprotein
R.SGLSTGWTQLSK.L
632.8302++
G [y7] − 819.4359 + [1]
1138845


A1BG_HUMAN


L [b3] − 258.1448 + [2]
1128060





S [y9] − 1007.5156 + [3]
877313





S [y2] − 234.1448 + [4]
653032





T [y8] − 920.4836 + [5]
651216





T [y5] − 576.3352 + [6]
538856





W [y6] − 762.4145 + [7]
406137





L [y3] − 347.2289 + [8]
313255





Q [y4] − 475.2875 + [9]
209919





L [y10] − 560.8035 + + [10]
103666





W [b7] − 689.3253 + [11]
48587





Q [b9] − 918.4316 + [12]
27677





T [b8] − 790.3730 + [13]
26742





L [b10] − 1031.5156 + [14]
23936





alpha-1B-glycoprotein
K.LLELTGPK.S
435.7684++
E [y6] − 644.3614 + [1]
6043967


A1BG_HUMAN


L [b2] − 227.1754 + [2]
2185138





L [y7] − 757.4454 + [3]
1878211





L [y5] − 515.3188 + [4]
923148





T [y4] − 402.2347 + [5]
699198





G [y3] − 301.1870 + [6]
666018





P [y2] − 244.1656 + [7]
430183





E [b3] − 356.2180 + [8]
244199





alpha-1B-glycoprotein
R.GVTFLLR.R
403.2502++
T [y5] − 649.4032 + [1]
4135468


A1BG_HUMAN


L [y3] − 401.2871 + [2]
2868709





V [b2] − 157.0972 + [3]
2109754





F [y4] − 548.3555 + [4]
1895653





R [y1] − 175.1190 + [5]
918856





L [y2] − 288.2030 + [6]
780084





T [b3] − 258.1448 + [7]
478494





T [y5] − 325.2052 + + [8]
415711





F [y4] − 274.6814 + + [9]
140533





L [b6] − 631.3814 + [10]
129473





alpha-1B-glycoprotein
K.ELLVPR.S
363.7291++
P [y2] − 272.1717 + [1]
9969478


A1BG_HUMAN


L [y4] − 484.3242 + [2]
3676023





V [y3] − 371.2401 + [3]
2971809





L [b2] − 243.1339 + [4]
809753





L [y5] − 597.4083 + [5]
159684





alpha-1B-glycoprotein
R.SSTSPDR.I
375.1748++
S [b2] − 175.0713 + [1]
89016


A1BG_HUMAN


R [y1] − 175.1190 + [2]
82740





P [y3] − 387.1987 + [3]
76299





T [y5] − 575.2784 + [4]
75253





D [b6] − 575.2307 + [5]
71180





S [y4] − 474.2307 + [6]
53784





alpha-1B-glycoprotein
R.LELHVDGPPPRPQLR.A
862.4837++
D [b6] − 707.3723 + [1]
49322


A1BG_HUMAN


G [y9] − 1017.5952 + [2]
32049





G [y9] − 509.3012 + + [3]
27715





alpha-1B-glycoprotein
R.LELHVDGPPPRPQLR.A
575.3249+++
V [y11] − 616.3489 + + [1]
841163


A1BG_HUMAN


D [y10] − 566.8147 + + [2]
621546





E [b2] − 243.1339 + [3]
581025





H [y12] − 684.8784 + + [4]
485731





R [y5] − 669.4155 + [5]
477653





L [y13] − 741.4204 + + [6]
369224





H [b4] − 493.2769 + [7]
219485





D [b6] − 707.3723 + [8]
195842





V [b5] − 592.3453 + [9]
170689





R [y1] − 175.1190 + [10]
160049





L [b3] − 356.2180 + [11]
63902





G [b7] − 764.3937 + [12]
62128





P [y4] − 513.3144 + [13]
33888





alpha-1B-glycoprotein
R.ATWSGAVLAGR.D
544.7960++
S [y8] − 730.4206 + [1]
1933290


A1BG_HUMAN


G [y7] − 643.3886 + [2]
1828931





L [y4] − 416.2616 + [3]
869412





V [y5] − 515.3300 + [4]
615117





A [y3] − 303.1775 + [5]
584118





A [y6] − 586.3671 + [6]
471353





W [y9] − 458.7536 + + [7]
466690





W [y9] − 916.4999 + [8]
454934





G [y2] − 232.1404 + [9]
338886





S [b4] − 446.2034 + [10]
165831





W [b3] − 359.1714 + [11]
139166





R [y1] − 175.1190 + [12]
83145





A [b6] − 574.2620 + [13]
65281





G [b5] − 503.2249 + [14]
30473





V [b7] − 673.3304 + [15]
30408





alpha-1B-glycoprotein
R.TPGAAANLELIFVGP
1148.5953++
G [y9] − 999.4755 + [1]
39339


A1BG_HUMAN
QHAGNYR.C

F [y11] − 1245.6123 + [2]
22329





V [y10] − 1098.5439 + [3]
14054





I [b11] − 1051.5782 + [4]
12281





P [y8] − 942.4540 + [5]
10574





alpha-1B-glycoprotein
R.TPGAAANLELIFVGP
766.0659+++
G [y9] − 999.4755 + [1]
426098


A1BG_HUMAN
QHAGNYR.C

P [y8] − 942.4540 + [2]
191245





V [y10] − 1098.5439 + [3]
183889





F [y11] − 1245.6123 + [4]
172790





G [b3] − 256.1292 + [5]
172068





A [y5] − 580.2838 + [6]
170557





A [b4] − 327.1663 + [7]
146455





H [y6] − 717.3427 + [8]
127934





E [b9] − 825.4101 + [9]
119922





G [y4] − 509.2467 + [10]
107378





L [b10] − 938.4942 + [11]
102387





A [b5] − 398.2034 + [12]
86428





L [b10] − 469.7507 + + [13]
68959





E [y14] − 800.9152 + + [14]
67711





I [y12] − 679.8518 + + [15]
65740





N [b7] − 583.2835 + [16]
58648





A [y17] − 949.9972 + + [17]
55561





G [y20] − 1049.5451 + + [18]
51555





I [b11] − 1051.5782 + [19]
51489





L [y13] − 736.3939 + + [20]
49190





L [y15] − 857.4572 + + [21]
48534





A [y18] − 985.5158 + + [22]
48337





L [b8] − 696.3675 + [23]
47352





N [y16] − 914.4787 + + [24]
43280





A [b6] − 469.2405 + [25]
38091





Q [y7] − 845.4013 + [26]
32443





insulin-like growth factor-
R.SLALGTFAHTPALAS
737.7342+++
G [y6] − 660.3424 + [1]
37287


binding protein complex
LGLSNNR.L

A [b3] − 272.1605 + [2]
21210


acid labile subunit


S [y8] − 860.4585 + [3]
15266


ALS_HUMAN


S [y4] − 490.2368 + [4]
12497





L [y5] − 603.3209 + [5]
9592





insulin-like growth factor-
R.ELVLAGNR.L
436.2534++
A [y4] − 417.2205 + [1]
74710


binding protein complex


L [y5] − 530.3045 + [2]
71602


acid labile subunit


G [y3] − 346.1833 + [3]
39449


ALS_HUMAN


V [y6] − 629.3729 + [4]
30127





insulin-like growth factor-
R.LAYLQPALFSGLAELR.
881.4985++
P [y11] − 1173.6626 + [1]
47285


binding protein complex
E

Y [b3] − 348.1918 + [2]
27425


acid labile subunit


Q [b5] − 589.3344 + [3]
18779


ALS_HUMAN


L [b4] − 461.2758 + [4]
13442













insulin-like growth factor-binding protein
588.0014+++
S [y7] − 745.4203 + [1]
29519


complex acid labile subunit

A [y4] − 488.2827 + [2]
23305


ALS_HUMAN

G [y6] − 658.3883 + [3]
22089




F [y8] − 892.4887 + [4]
16888




Q [b5] − 589.3344 + [5]
15807




L [y2] − 288.2030 + [6]
15266




Y [b3] − 348.1918 + [7]
12835




L [y5] − 601.3668 + [8]
12024














insulin-like growth factor-
R.ELDLSR.N
366.6980++
S [y2] − 262.1510 + [1]
91447


binding protein complex


D [b3] − 358.1609 + [2]
85115


acid labile subunit


D [y4] − 490.2620 + [3]
75618


ALS_HUMAN


L [y3] − 375.2350 + [4]
37835





insulin-like growth factor-
K.ANVFVQLPR.L
522.3035++
N [b2] − 186.0873 + [1]
90097


binding protein complex


F [y6] − 759.4512 + [2]
61085


acid labile subunit


P [y2] − 272.1717 + [3]
46657


ALS_HUMAN


V [y5] − 612.3828 + [4]
43595





V [b3] − 285.1557 + [5]
31451





Q [y4] − 513.3144 + [6]
28908





V [y7] − 858.5196 + [7]
15725





L [y3] − 385.2558 + [8]
14324





Q [y4] − 257.1608 + + [9]
13753





insulin-like growth factor-
R.NLIAAVAPGAFLGLK.
727.9401++
L [b2] − 228.1343 + [1]
26729


binding protein complex
A

I [b3] − 341.2183 + [2]
25535


acid labile subunit


P [y8] − 802.4822 + [3]
25120


ALS_HUMAN


A [y9] − 873.5193 + [4]
17542





A [y12] − 1114.6619 + [5]
14895





insulin-like growth factor-
R.VAGLLEDTFPGLLGL
835.9774++
P [y7] − 725.4668 + [1]
22005


binding protein complex
R.V

L [b4] − 341.2183 + [2]
13753


acid labile subunit


E [y11] − 1217.6525 + [3]
12611


ALS_HUMAN


D [y10] − 1088.6099 + [4]
11003





insulin-like growth factor-
R.SFEGLGQLEVLTLDH
833.1026+++
Q [y4] − 503.2824 + [1]
328959


binding protein complex
NQLQEVK.A

T [y11] − 662.8464 + + [2]
54479


acid labile subunit


G [b4] − 421.1718 + [3]
24263


ALS_HUMAN









insulin-like growth factor-
R.NLPEQVFR.G
501.7720++
P [y6] − 775.4097 + [1]
88417


binding protein complex


E [y5] − 678.3570 + [2]
13620


acid labile subunit






ALS_HUMAN









insulin-like growth factor-
R.IRPHTFTGLSGLR.R
485.6124+++
S [y4] − 432.2565 + [1]
82619


binding protein complex


L [y5] − 545.3406 + [2]
70929


acid labile subunit


T [b5] − 303.1795 + + [3]
56677


ALS_HUMAN









insulin-like growth factor-
K.LEYLLLSR.N
503.8002++
Y [y6] − 764.4665 + [1]
67619


binding protein complex


E [b2] − 243.1339 + [2]
56261


acid labile subunit


L [y4] − 488.3191 + [3]
32890


ALS_HUMAN


L [y5] − 601.4032 + [4]
24224





L [y3] − 375.2350 + [5]
21139





insulin-like growth factor-
R.LAELPADALGPLQR.
732.4145++
E [b3] − 314.1710 + [1]
57859


binding protein complex
A

P [y10] − 1037.5738 + [2]
45907


acid labile subunit


P [y10] − 519.2905 + + [3]
22723


ALS_HUMAN


L [b4] − 427.2551 + [4]
14054





insulin-like growth factor-
R.LEALPNSLLAPLGR.L
732.4327++
A [b3] − 314.1710 + [1]
52485


binding protein complex


P [y10] − 1037.6102 + [2]
37028


acid labile subunit


E [b2] − 243.1339 + [3]
24846


ALS_HUMAN


P [y10] − 519.3087 + + [4]
15601





P [y4] − 442.2772 + [5]
12327





insulin-like growth factor-
R.TFTPQPPGLER.L
621.8275++
P [y6] − 668.3726 + [1]
57877


binding protein complex


P [y8] − 447.2456 + + [2]
50606


acid labile subunit


P [b4] − 447.2238 + [3]
50606


ALS_HUMAN


F [b2] − 249.1234 + [4]
42083





P [y8] − 893.4839 + [5]
34716





T [y9] − 497.7694 + + [6]
24220





T [b3] − 350.1710 + [7]
22053





insulin-like growth factor-
R.DFALQNPSAVPR.F
657.8437++
A [b3] − 334.1397 + [1]
28905


binding protein complex


P [y6] − 626.3620 + [2]
23750


acid labile subunit


P [y2] − 272.1717 + [3]
20860


ALS_HUMAN


F [b2] − 263.1026 + [4]
17536





N [y7] − 740.4050 + [5]
15320





Q [y8] − 868.4635 + [6]
12525





beta-2-glycoprotein 1
K.FICPLTGLWPINTLK.
886.9920++
C [b3] − 421.1904 + [1]
546451


APOH_HUMAN
C

C [y13] − 756.9158 + + [2]
438858





P [y6] − 685.4243 + [3]
229375





I [b2] − 261.1598 + [4]
188092





W [y7] − 871.5036 + [5]
143885





G [y9] − 1041.6091 + [6]
143458





T [b13] − 757.3972 + + [7]
127058





T [y10] − 1142.6568 + [8]
89126





T [b6] − 732.3749 + [9]
51907





L [b5] − 631.3272 + [10]
43351





L [b8] − 902.4804 + [11]
38788





N [y4] − 475.2875 + [12]
38574





W [b9] − 1088.5597 + [13]
37148





T [y3] − 361.2445 + [14]
34153





G [b7] − 789.3964 + [15]
22460





P [b4] − 518.2432 + [16]
19893





L [y8] − 984.5877 + [17]
19180





beta-2-glycoprotein 1
K.FICPLTGLWPINTLK.
591.6638+++
P [y6] − 685.4243 + [1]
541745


APOH_HUMAN
C

P [y6] − 343.2158 + + [2]
234580





G [b7] − 789.3964 + [3]
99108





W [y7] − 871.5036 + [4]
89126





L [b8] − 902.4804 + [5]
68306





C [b3] − 421.1904 + [6]
58396





N [y4] − 475.2875 + [7]
54474





I [y5] − 588.3715 + [8]
54403





W [y7] − 436.2554 + + [9]
44706





I [b2] − 261.1598 + [10]
40214





T [y3] − 361.2445 + [11]
20535





beta-2-glycoprotein 1
R.VCPFAGILENGAVR.
751.8928++
P [y12] − 622.3433 + + [1]
431648


APOH_HUMAN
Y

C [b2] − 260.1063 + [2]
223667





P [y12] − 1243.6793 + [3]
134827





G [y9] − 928.5211 + [4]
89980





L [y7] − 758.4155 + [5]
85773





A [y10] − 999.5582 + [6]
69303





A [b5] − 575.2646 + [7]
47913





E [y6] − 645.3315 + [8]
44705





N [y5] − 516.2889 + [9]
23244





I [y8] − 871.4996 + [10]
20320





G [y4] − 402.2459 + [11]
19180





I [b7] − 745.3702 + [12]
18966





F [b4] − 504.2275 + [13]
16399





beta-2-glycoprotein 1
R.VCPFAGILENGAVR.
501.5977+++
E [y6] − 645.3315 + [1]
131191


APOH_HUMAN
Y

N [y5] − 516.2889 + [2]
130264





I [b7] − 745.3702 + [3]
112154





G [b6] − 632.2861 + [4]
102743





G [y4] − 402.2459 + [5]
82779





C [b2] − 260.1063 + [6]
65453





L [y7] − 758.4155 + [7]
54330





I [b7] − 373.1887 + + [8]
39143





L [y7] − 379.7114 + + [9]
29661





V [y2] − 274.1874 + [10]
28377





P [y12] − 622.3433 + + [11]
28163





beta-2-glycoprotein 1
K.CTEEGK.W
362.1525++
E [y3] − 333.1769 + [1]
59464


APOH_HUMAN


E [b3] − 391.1282 + [2]
21675





beta-2-glycoprotein 1
K.WSPELPVCAPIICPPP
940.4923+++
P [y12] − 648.8692 + + [1]
294510


APOH_HUMAN
SIPTFATLR.V

P [y11] − 600.3428 + + [2]
206026





P [y7] − 805.4567 + [3]
122891





P [y10] − 1102.6255 + [4]
75113





L [b5] − 613.2980 + [5]
74578





P [y11] − 1199.6783 + [6]
72855





A [b9] − 1040.4870 + [7]
28643





T [y3] − 195.1290 + + [8]
28524





S [b2] − 274.1186 + [9]
23770





P [y10] − 551.8164 + + [10]
22284





C [y13] − 728.8845 + + [11]
20918





E [b4] − 500.2140 + [12]
17114





beta-2-glycoprotein 1
K.ATFGCHDGYSLDGP
796.0036+++
P [y8] − 503.2315 + + [1]
67031


APOH_HUMAN
EEIECTK.L

E [y4] − 537.2337 + [2]
59841





C [b5] − 537.2126 + [3]
56454





I [y5] − 650.3178 + [4]
55384





C [y3] − 408.1911 + [5]
46946





E [y6] − 779.3604 + [6]
45282





T [b2] − 173.0921 + [7]
37675





G [y9] − 1062.4772 + [8]
36843





C [y17] − 1005.4144 + + [9]
35774





P [y8] − 1005.4557 + [10]
33991





D [y10] − 1177.5041 + [11]
30366





E [y7] − 908.4030 + [12]
26503





T [y2] − 248.1605 + [13]
24840





Y [b9] − 1009.3832 + [14]
19491





G [y9] − 531.7422 + + [15]
17946





S [b10] − 1096.4153 + [16]
17352





beta-2-glycoprotein 1
K.ATVVYQGER.V
511.7669++
Y [y5] − 652.3049 + [1]
762897


APOH_HUMAN


V [y6] − 751.3733 + [2]
548908





T [b2] − 173.0921 + [3]
252556





V [y7] − 850.4417 + [4]
231995





V [b3] − 272.1605 + [5]
223140





Q [y4] − 489.2416 + [6]
165023





G [y3] − 361.1830 + [7]
135013





V [b4] − 371.2289 + [8]
86760





V [y7] − 425.7245 + + [9]
54314





beta-2-glycoprotein 1
K.VSFFCK.N
394.1940++
S [y5] − 688.3123 + [1]
384559


APOH_HUMAN


F [y4] − 601.2803 + [2]
321951





C [y2] − 307.1435 + [3]
265521





S [b2] − 187.1077 + [4]
237662





F [y3] − 454.2119 + [5]
168104





beta-2-glycoprotein 1
K.CSYTEDAQCIDGTIE
1043.4588++
P [y2] − 244.1656 + [1]
34574


APOH_HUMAN
VPK.C

V [y3] − 343.2340 + [2]
9173





E [y4] − 472.2766 + [3]
7291





Y [b3] − 411.1333 + [4]
6233





beta-2-glycoprotein 1
K.CSYTEDAQCIDGTIE
695.9750+++
D [b11] − 672.2476 + + [1]
37044


APOH_HUMAN
VPK.C

D [y8] − 858.4567 + [2]
18816





D [b6] − 756.2505 + [3]
12289





V [y3] − 343.2340 + [4]
11348





A [b7] − 414.1474 + + [5]
9761





G [y7] − 743.4298 + [6]
8644





beta-2-glycoprotein 1
K.EHSSLAFWK.T
552.7773++
H [b2] − 267.1088 + [1]
237907


APOH_HUMAN


S [y7] − 838.4458 + [2]
200568





W [y2] − 333.1921 + [3]
101078





S [y6] − 751.4137 + [4]
54920





A [y4] − 551.2976 + [5]
52920





F [y3] − 480.2605 + [6]
40102





L [y5] − 664.3817 + [7]
30341





F [b7] − 772.3624 + [8]
27871





S [b3] − 354.1408 + [9]
27754





A [b6] − 625.2940 + [10]
25931





beta-2-glycoprotein 1
K.TDASDVKPC.-
496.7213++
D [b2] − 217.0819 + [1]
323810


APOH_HUMAN


P [y2] − 276.1013 + [2]
119128





A [y7] − 776.3607 + [3]
86083





S [y6] − 705.3236 + [4]
79262





A [b3] − 288.1190 + [5]
77498





D [y5] − 618.2916 + [6]
70501





K [y3] − 404.1962 + [7]
55801





V [y4] − 503.2646 + [8]
46217





transforming growth
K.SPYQLVLQHSR.L
443.2421+++
Y [y9] − 572.3171 + + [1]
560916


factor-beta-induced


P [b2] − 185.0921 + [2]
413241


protein ig-h3


H [y3] − 399.2099 + [3]
320572


BGH3_HUMAN


L [y5] − 640.3525 + [4]
313309





Q [y4] − 527.2685 + [5]
244398





L [y7] − 426.7561 + + [6]
215854





V [y6] − 739.4209 + [7]
172897





L [y7] − 852.5050 + [8]
164959





Q [y8] − 490.7854 + + [9]
149814





L [y5] − 320.6799 + + [10]
127463





L [b5] − 589.2980 + [11]
118061





S [y2] − 262.1510 + [12]
110123





V [y6] − 370.2141 + + [13]
97399





P [y10] − 620.8435 + + [14]
94640





V [b6] − 688.3665 + [15]
87772





Q [b4] − 476.2140 + [16]
74203





Y [b3] − 348.1554 + [17]
65984





H [y3] − 200.1086 + + [18]
55624





Q [y4] − 264.1379 + + [19]
41606





L [b7] − 801.4505 + [20]
18241





V [b6] − 344.6869 + + [21]
17678





L [b7] − 401.2289 + + [22]
14976





transforming growth
R.VLTDELK.H
409.2369++
T [y5] − 605.3141 + [1]
937957


factor-beta-induced


L [b2] − 213.1598 + [2]
298671


protein ig-h3


L [y6] − 718.3981 + [3]
244116


BGH3_HUMAN


L [y2] − 260.1969 + [4]
135739





D [y4] − 504.2664 + [5]
52472





E [y3] − 389.2395 + [6]
50839





transforming growth
K.VISTITNNIQQIIEIED
897.4798+++
E [y8] − 1010.4789 + [1]
282865


factor-beta-induced
TFETLR.A

D [y7] − 881.4363 + [2]
237234


protein ig-h3


I [y9] − 1123.5630 + [3]
195581


BGH3_HUMAN


T [y6] − 766.4094 + [4]
186875





I [b2] − 213.1598 + [5]
174492





T [y3] − 389.2507 + [6]
145598





F [y5] − 665.3617 + [7]
143872





E [y4] − 518.2933 + [8]
108148





Q [b11] − 606.8328 + + [9]
106647





I [b5] − 514.3235 + [10]
82030





N [b8] − 843.4571 + [11]
75125





T [b4] − 401.2395 + [12]
71448





I [b12] − 663.3748 + + [13]
58314





N [b7] − 365.2107 + + [14]
54862





I [b9] − 956.5411 + [15]
51034





L [y2] − 288.2030 + [16]
50734





S [b3] − 300.1918 + [17]
48708





Q [b10] − 542.8035 + + [18]
43754





Q [b11] − 1212.6583 + [19]
37375





T [b6] − 615.3712 + [20]
33322





I [b9] − 478.7742 + + [21]
29570





Q [b10] − 1084.5997 + [22]
25817





T [y6] − 383.7083 + + [23]
17187





N [b8] − 422.2322 + + [24]
17111





I [b13] − 719.9168 + + [25]
16661





transforming growth
K.IPSETLNR.I
465.2562++
S [y6] − 719.3682 + [1]
326570


factor-beta-induced


P [y7] − 816.4210 + [2]
168951


protein ig-h3


E [y5] − 632.3362 + [3]
102452


BGH3_HUMAN


P [b2] − 211.1441 + [4]
85885





T [y4] − 503.2936 + [5]
67650





L [y3] − 402.2459 + [6]
20939





N [y2] − 289.1619 + [7]
13979





transforming growth
R.ILGDPEALR.D
492.2796++
P [y5] − 585.3355 + [1]
1431619


factor-beta-induced


G [y7] − 757.3839 + [2]
1066060


protein ig-h3


L [b2] − 227.1754 + [3]
742225


BGH3_HUMAN


L [y8] − 870.4680 + [4]
254257





D [b4] − 399.2238 + [5]
159932





G [b3] − 284.1969 + [6]
66816





D [y6] − 700.3624 + [7]
65780





A [y3] − 359.2401 + [8]
62730





E [y4] − 488.2827 + [9]
23711





L [y2] − 288.2030 + [10]
16344





transforming growth
R.DLLNNHILK.S
360.5451+++
L [y7] − 426.2585 + + [1]
1488651


factor-beta-induced


L [b2] − 229.1183 + [2]
591961


protein ig-h3


N [y6] − 369.7165 + + [3]
366710


BGH3_HUMAN


N [y5] − 624.3828 + [4]
103993





L [y2] − 260.1969 + [5]
75103





N [b4] − 228.6263 + + [6]
66125





N [y6] − 738.4257 + [7]
49493





H [y4] − 510.3398 + [8]
43681





N [y5] − 312.6950 + + [9]
41551





I [y3] − 373.2809 + [10]
40285





L [b3] − 342.2023 + [11]
33494





L [y8] − 482.8006 + + [12]
33034





transforming growth
K.AIISNK.D
323.2001++
I [y4] − 461.2718 + [1]
99850


factor-beta-induced


I [b2] − 185.1285 + [2]
43105


protein ig-h3


S [y3] − 348.1878 + [3]
39192


BGH3_HUMAN


N [y2] − 261.1557 + [4]
24516





transforming growth
K.DILATNGVIHYIDELLI
804.1003+++
P [y5] − 517.2617 + [1]
400251


factor-beta-induced
PDSAK.T

I [b2] − 229.1183 + [2]
306709


protein ig-h3


L [b3] − 342.2023 + [3]
147923


BGH3_HUMAN


I [y6] − 630.3457 + [4]
91265





S [y3] − 305.1819 + [5]
61472





L [y7] − 743.4298 + [6]
57894





A [b4] − 413.2395 + [7]
52430





H [y13] − 757.3985 + + [8]
30183





G [y16] − 891.9855 + + [9]
27711





D [y10] − 1100.5834 + [10]
24979





A [y19] − 1035.0493 + + [11]
23223





L [y8] − 856.5138 + [12]
22507





L [y20] − 1091.5913 + + [13]
16783





transforming growth
K.TLFELAAESDVSTAID
1049.5388++
D [y4] − 550.2984 + [1]
64464


factor-beta-induced
LFR.Q

S [y8] − 922.4993 + [2]
47291


protein ig-h3


S [y11] − 1223.6266 + [3]
44234


BGH3_HUMAN


A [b6] − 675.3712 + [4]
35972





L [b5] − 604.3341 + [5]
34997





A [b7] − 746.4083 + [6]
33045





E [b4] − 491.2500 + [7]
31744





D [y10] − 1136.5946 + [8]
30183





E [b8] − 875.4509 + [9]
26475





F [y2] − 322.1874 + [10]
25044





T [y7] − 835.4672 + [11]
21596





I [y5] − 663.3824 + [12]
21011





L [y3] − 435.2714 + [13]
20295





L [b2] − 215.1390 + [14]
20295





V [y9] − 1021.5677 + [15]
18929





A [y6] − 734.4196 + [16]
17694





F [b3] − 362.2074 + [17]
14441





transforming growth
R.QAGLGNHLSGSER.L
442.5567+++
G [y9] − 478.7309 + + [1]
180677


factor-beta-induced


L [y10] − 535.2729 + + [2]
147807


protein ig-h3


S [y5] − 535.2471 + [3]
129825


BGH3_HUMAN


G [y11] − 563.7836 + + [4]
84584





L [y6] − 648.3311 + [5]
51642





A [b2] − 200.1030 + [6]
26469





G [y4] − 448.2150 + [7]
26397





H [y7] − 393.1987 + + [8]
25390





A [y12] − 599.3022 + + [9]
21434





N [y8] − 450.2201 + + [10]
19276





transforming growth
R.LTLLAPLNSVFK.D
658.4028++
P [y7] − 804.4614 + [1]
1635673


factor-beta-induced


A [y8] − 875.4985 + [2]
869779


protein ig-h3


L [b3] − 328.2231 + [3]
516429


BGH3_HUMAN


T [b2] − 215.1390 + [4]
415472





L [y9] − 988.5826 + [5]
334225





L [b4] − 441.3071 + [6]
209200





L [y10] − 1101.6667 + [7]
174268





A [b5] − 512.3443 + [8]
160217





A [y8] − 438.2529 + + [9]
83264





N [y5] − 594.3246 + [10]
54512





F [y2] − 294.1812 + [11]
51649





L [y9] − 494.7949 + + [12]
34541





L [y6] − 707.4087 + [13]
34086





S [y4] − 480.2817 + [14]
30053





T [y11] − 1202.7143 + [15]
16653





transforming growth
K.DGTPPIDAHTR.N
393.8633+++
P [y8] − 453.7432 + + [1]
355240


factor-beta-induced


P [y7] − 405.2169 + + [2]
88181


protein ig-h3


T [b3] − 274.1034 + [3]
81204


BGH3_HUMAN


G [b2] − 173.0557 + [4]
40062





D [y5] − 599.2896 + [5]
37689





A [y4] − 242.6350 + + [6]
29633





P [y7] − 809.4264 + [7]
22153





I [y6] − 712.3737 + [8]
16327





transforming growth
K.YLYHGQTLETLGGK.
527.2753+++
E [y6] − 604.3301 + [1]
483222


factor-beta-induced
K

Y [y12] − 652.3357 + + [2]
264640


protein ig-h3


T [y5] − 475.2875 + [3]
239600


BGH3_HUMAN


G [y3] − 261.1557 + [4]
206272





L [b2] − 277.1547 + [5]
134992





L [y13] − 708.8777 + + [6]
119379





T [b7] − 863.4046 + [7]
104307





L [y4] − 374.2398 + [8]
100344





H [y11] − 570.8040 + + [9]
93318





L [y7] − 717.4141 + [10]
91276





G [b13] − 717.3566 + + [11]
80707





T [y8] − 818.4618 + [12]
57888





Q [b6] − 762.3570 + [13]
54766





G [y10] − 1003.5419 + [14]
51523





T [b7] − 432.2060 + + [15]
49121





G [y2] − 204.1343 + [16]
45518





T [y8] − 409.7345 + + [17]
44437





L [y7] − 359.2107 + + [18]
33028





T [b10] − 603.7931 + + [19]
26902





G [b5] − 634.2984 + [20]
21858





Q [b6] − 381.6821 + + [21]
17595





H [b4] − 577.2769 + [22]
16093





L [b8] − 488.7480 + + [23]
15133





T [y5] − 238.1474 + + [24]
15013





E [b9] − 553.2693 + + [25]
12370





transforming growth
R.EGVYTVFAPTNEAFR.
850.9176++
P [y7] − 834.4104 + [1]
364143


factor-beta-induced
A

F [y9] − 1052.5160 + [2]
269144


protein ig-h3


A [y8] − 905.4476 + [3]
176007


BGH3_HUMAN


V [b3] − 286.1397 + [4]
107490





V [y10] − 1151.5844 + [5]
74822





T [b5] − 550.2508 + [6]
47560





V [b6] − 649.3192 + [7]
45398





G [b2] − 187.0713 + [8]
43056





Y [b4] − 449.2031 + [9]
33148





F [b7] − 796.3876 + [10]
24440





A [b8] − 867.4247 + [11]
24020





E [y4] − 522.2671 + [12]
17174





A [y3] − 393.2245 + [13]
14712





F [y2] − 322.1874 + [14]
12611





transforming growth
R.LLGDAK.E
308.6869++
A [y2] − 218.1499 + [1]
206606


factor-beta-induced


G [y4] − 390.1983 + [2]
204445


protein ig-h3


L [y5] − 503.2824 + [3]
117829


BGH3_HUMAN


L [b2] − 227.1754 + [4]
43998





transforming growth
K.ELANILK.Y
400.7475++
A [y5] − 558.3610 + [1]
963502


factor-beta-induced


L [y2] − 260.1969 + [2]
583986


protein ig-h3


N [y4] − 487.3239 + [3]
326252


BGH3_HUMAN


I [y3] − 373.2809 + [4]
302352





I [b5] − 541.2980 + [5]
179670





L [b2] − 243.1339 + [6]
74642





L [y6] − 671.4450 + [7]
38792





N [b4] − 428.2140 + [8]
14952





transforming growth
K.YHIGDEILVSGGIGAL
935.0151++
H [b2] − 301.1295 + [1]
24601


factor-beta-induced
VR.L

S [y9] − 829.4890 + [2]
15456


protein ig-h3






BGH3_HUMAN









transforming growth
K.YHIGDEILVSGGIGAL
623.6791+++
S [y9] − 829.4890 + [1]
917445


factor-beta-induced
VR.L

G [y5] − 515.3300 + [2]
654048


protein ig-h3


I [b7] − 828.3886 + [3]
553713


BGH3_HUMAN


G [y8] − 742.4570 + [4]
467481





L [b8] − 941.4727 + [5]
322194





G [y7] − 685.4355 + [6]
228428





E [b6] − 715.3046 + [7]
199383





V [y10] − 928.5574 + [8]
141616





G [b4] − 471.2350 + [9]
126224





L [b8] − 471.2400 + + [10]
117080





H [b2] − 301.1295 + [11]
107162





I [y6] − 628.4141 + [12]
105488





A [y4] − 458.3085 + [13]
103491





L [y3] − 387.2714 + [14]
73094





I [b3] − 414.2136 + [15]
72515





S [y9] − 415.2482 + + [16]
65044





V [b9] − 1040.5411 + [17]
61760





V [y2] − 274.1874 + [19]
56093





I [b7] − 414.6980 + + [18]
56093





V [b9] − 520.7742 + + [20]
39413





L [y11] − 1041.6415 + [21]
38962





D [b5] − 586.2620 + [22]
36257





S [b10] − 564.2902 + + [23]
32329





I [y6] − 314.7107 + + [24]
30526





A [b15] − 741.8830 + + [25]
27692





V [y10] − 464.7824 + + [26]
26340





L [y11] − 521.3244 + + [27]
20415





G [b12] − 621.3117 + + [28]
18612





G [b12] − 1241.6161 + [29]
13073





transforming growth
K.LEVSLK.N
344.7156++
V [y4] − 446.2973 + [1]
120860


factor-beta-induced


E [y5] − 575.3399 + [2]
82786


protein ig-h3


E [b2] − 243.1339 + [3]
76794


BGH3_HUMAN


S [y3] − 347.2289 + [4]
36335





L [y2] − 260.1969 + [5]
24932





transforming growth
K.NNVVSVNK.E
437.2431++
V [y5] − 546.3246 + [1]
17073


factor-beta-induced


N [b2] − 229.0931 + [2]
14045


protein ig-h3






BGH3_HUMAN









transforming growth
R.GDELADSALEIFK.Q
704.3537++
E [b3] − 302.0983 + [1]
687754


factor-beta-induced


A [y9] − 993.5251 + [2]
431716


protein ig-h3


D [y8] − 922.4880 + [3]
368670


BGH3_HUMAN


D [b2] − 173.0557 + [4]
358545





F [y2] − 294.1812 + [5]
200930





L [b4] − 415.1823 + [6]
197364





S [y7] − 807.4611 + [7]
187412





I [y3] − 407.2653 + [8]
129601





A [b5] − 486.2195 + [9]
121605





E [y4] − 536.3079 + [10]
108432





A [y6] − 720.4291 + [11]
107627





L [y5] − 649.3919 + [12]
95662





L [y10] − 1106.6092 + [13]
79325





D [b6] − 601.2464 + [14]
42625





A [b8] − 759.3155 + [15]
28647





S [b7] − 688.2784 + [16]
20709








transforming growth
K.QASAFSR.A
383.6958++
F [y3] − 409.2194 + [1]
64604


factor-beta-induced


S [y5] − 567.2885 + [2]
60496


protein ig-h3


S [y2] − 262.1510 + [3]
42825


BGH3_HUMAN


A [y4] − 480.2565 + [4]
25211





transforming growth
R.LAPVYQK.L
409.7422++
P [y5] − 634.3559 + [1]
416225


factor-beta-induced


Y [y3] − 438.2347 + [2]
171715


protein ig-h3


V [y4] − 537.3031 + [3]
98187


BGH3_HUMAN


Q [y2] − 275.1714 + [4]
42056





A [y6] − 705.3930 + [5]
32429





ceruloplasmin
K.LISVDTEHSNIYLQNG
724.3624+++
I [b2] − 227.1754 + [1]
168111


CERU_HUMAN
PDR.I

N [y5] − 558.2630 + [2]
87133





G [y4] − 444.2201 + [3]
86682





L [y7] − 799.4057 + [4]
84956





Q [y6] − 686.3216 + [5]
79928





Y [y8] − 962.4690 + [6]
64167





S [b3] − 314.2074 + [7]
39476





N [y10] − 1189.5960 + [8]
24691





P [y3] − 387.1987 + [9]
22065





I [y18] − 1029.4980 + + [10]
20714





N [b10] − 1096.5269 + [11]
18087





I [y9] − 1075.5531 + [12]
15460





ceruloplasmin
K.ALYLQYTDETFR.T
760.3750++
Y [b3] − 348.1918 + [1]
681082


CERU_HUMAN


Y [y7] − 931.4156 + [2]
405797





Q [y8] − 1059.4742 + [3]
343430





T [y6] − 768.3523 + [4]
279638





L [b2] − 185.1285 + [5]
229654





L [y9] − 1172.5582 + [6]
164660





L [b4] − 461.2758 + [7]
142145





D [y5] − 667.3046 + [8]
107547





Y [y10] − 668.3144 + + [9]
91862





E [y4] − 552.2776 + [10]
76852





Q [b5] − 589.3344 + [11]
75200





T [y3] − 423.2350 + [12]
64168





F [y2] − 322.1874 + [13]
47807





Y [b6] − 752.3978 + [14]
40377





L [y9] − 586.7828 + + [15]
40227





ceruloplasmin
R.TTIEKPVWLGFLGPII
956.5690++
E [b4] − 445.2293 + [1]
92012


CERU_HUMAN
K.A

K [b5] − 573.3243 + [2]
45856





L [y9] − 957.6132 + [3]
32272





G [y8] − 844.5291 + [4]
29044





K [y13] − 734.4579 + + [5]
26118





G [y5] − 527.3552 + [6]
24917





L [y6] − 640.4392 + [7]
19738





I [b3] − 316.1867 + [8]
18838





P [y4] − 470.3337 + [9]
18012





W [y10] − 1143.6925 + [10]
17412





I [y15] − 855.5213 + + [11]
14785





V [b7] − 769.4454 + [12]
14710





ceruloplasmin
R.TTIEKPVWLGFLGPII
638.0484+++
G [y8] − 844.5291 + [1]
1645779


CERU_HUMAN
K.A

G [y5] − 527.3552 + [2]
1180842





L [y6] − 640.4392 + [3]
920117





T [b2] − 203.1026 + [4]
775570





F [y7] − 787.5076 + [5]
416229





P [y4] − 470.3337 + [6]
285341





W [b8] − 955.5247 + [7]
275960





I [y2] − 260.1969 + [8]
256597





V [b7] − 769.4454 + [9]
230104





E [b4] − 445.2293 + [10]
117754





W [b8] − 478.2660 + + [11]
105521





P [y12] − 670.4105 + + [13]
104020





P [b6] − 670.3770 + [12]
104020





G [b10] − 1125.6303 + [14]
93363





F [y7] − 394.2575 + + [15]
76176





K [b5] − 573.3243 + [16]
63718





I [b3] − 316.1867 + [17]
52986





L [b9] − 1068.6088 + [18]
33548





I [y3] − 373.2809 + [19]
20864





ceruloplasmin
K.VYVHLK.N
379.7316++
V [y4] − 496.3242 + [1]
228979


CERU_HUMAN


Y [y5] − 659.3875 + [2]
196857





H [y3] − 397.2558 + [3]
89610





Y [b2] − 263.1390 + [4]
88034





L [y2] − 260.1969 + [5]
85482





Y [y5] − 330.1974 + + [6]
31821





ceruloplasmin
R.IYHSHIDAPK.D
590.8091++
H [y8] − 452.7354 + + [1]
167209


CERU_HUMAN


P [y2] − 244.1656 + [2]
84831





A [y3] − 315.2027 + [3]
78036





S [y7] − 767.4046 + [4]
75864





H [b3] − 414.2136 + [5]
67808





Y [y9] − 534.2671 + + [6]
50296





H [y8] − 904.4635 + [7]
42801





D [b7] − 866.4155 + [8]
28721





H [y6] − 680.3726 + [9]
23817





A [b8] − 937.4526 + [10]
19964





D [y4] − 430.2296 + [11]
17653





Y [b2] − 277.1547 + [12]
16742





ceruloplasmin
R.IYHSHIDAPK.D
394.2085+++
H [y8] − 452.7354 + + [1]
402227


CERU_HUMAN


Y [y9] − 534.2671 + + [2]
305348





P [y2] − 244.1656 + [5]
101993





A [y3] − 315.2027 + [3]
97580





Y [b2] − 277.1547 + [4]
93377





D [y4] − 430.2296 + [6]
89734





S [y7] − 767.4046 + [7]
88263





S [y7] − 384.2060 + + [8]
60663





I [y5] − 543.3137 + [9]
44692





H [y6] − 680.3726 + [11]
38528





A [b8] − 469.2300 + + [10]
37547





H [b5] − 638.3045 + [12]
36146





H [b3] − 414.2136 + [13]
23467





ceruloplasmin
R.HYYIAAEEIIWNYAPS
905.4549+++
P [y9] − 977.5302 + [1]
253794


CERU_HUMAN
GIDIFTK.E

E [b8] − 977.4363 + [2]
233479





Y [b2] − 301.1295 + [3]
128823





I [b9] − 1090.5204 + [4]
103955





A [y10] − 1048.5673 + [5]
78247





P [y9] − 489.2687 + + [6]
76005





E [b8] − 489.2218 + + [7]
76005





I [b10] − 1203.6045 + [8]
56671





F [y3] − 395.2289 + [9]
49456





Y [b3] − 464.1928 + [10]
46864





E [b7] − 848.3937 + [11]
44622





A [b5] − 648.3140 + [12]
42451





A [b6] − 719.3511 + [13]
40629





I [b4] − 577.2769 + [14]
39999





D [y5] − 623.3399 + [15]
29631





I [y4] − 508.3130 + [16]
28581





T [y2] − 248.1605 + [17]
27040





I [b10] − 602.3059 + + [18]
24448





Y [y11] − 1211.6307 + [19]
24238





G [y7] − 793.4454 + [20]
21926





W [b11] − 695.3455 + + [21]
18704





S [y8] − 880.4775 + [22]
18633





ceruloplasmin
R.IGGSYK.K
312.6712++
G [y5] − 511.2511 + [1]
592392


CERU_HUMAN


G [y4] − 454.2296 + [2]
89266





G [b2] − 171.1128 + [3]
71261





Y [y2] − 310.1761 + [4]
52498





S [y3] − 397.2082 + [5]
22364





ceruloplasmin
R.EYTDASFTNR.K
602.2675++
S [y5] − 624.3100 + [1]
163623


CERU_HUMAN


F [y4] − 537.2780 + [2]
83580





T [y8] − 911.4217 + [3]
83391





A [y6] − 695.3471 + [4]
82886





D [y7] − 810.3741 + [5]
76315





T [y3] − 390.2096 + [6]
66018





Y [b2] − 293.1132 + [7]
50224





N [y2] − 289.1619 + [8]
29376





ceruloplasmin
R.GPEEEHLGILGPVIW
829.7675+++
A [y8] − 860.4472 + [1]
259776


CERU_HUMAN
AEVGDTIR.V

W [y9] − 1046.5265 + [2]
210032





E [y7] − 789.4101 + [3]
201448





G [y5] − 561.2991 + [4]
189809





V [y6] − 660.3675 + [5]
121142





T [y3] − 389.2507 + [6]
80306





P [b2] − 155.0815 + [7]
65806





V [b13] − 664.8459 + + [8]
65676





G [b11] − 1132.5633 + [9]
64765





I [y10] − 1159.6106 + [10]
58783





L [b10] − 1075.5419 + [11]
56702





I [b9] − 962.4578 + [12]
54101





L [b7] − 792.3523 + [13]
48509





P [b12] − 615.3117 + + [14]
37715





D [y4] − 504.2776 + [15]
34528





G [b8] − 849.3737 + [16]
34008





I [b14] − 721.3879 + + [17]
23669





H [b6] − 679.2682 + [18]
22174





W [b15] − 814.4276 + + [19]
21979





E [b3] − 284.1241 + [20]
18272





G [b11] − 566.7853 + + [21]
17882





A [b16] − 849.9461 + + [22]
15476





ceruloplasmin
R.VTFHNK.G
373.2032++
T [y5] − 646.3307 + [1]
178952


CERU_HUMAN


F [y4] − 545.2831 + [2]
175829





T [b2] − 201.1234 + [3]
127758





N [y2] − 261.1557 + [4]
107852





H [y3] − 398.2146 + [5]
103754





ceruloplasmin
K.GAYPLSIEPIGVR.F
686.3852++
S [y8] − 870.5043 + [1]
970541


CERU_HUMAN


P [y5] − 541.3457 + [2]
966508





P [y10] − 1080.6412 + [3]
590391





E [y6] − 670.3883 + [4]
493076





I [y7] − 783.4723 + [5]
391013





Y [b3] − 292.1292 + [6]
265598





L [y9] − 983.5884 + [7]
217591





P [b4] − 389.1819 + [8]
188839





S [b6] − 589.2980 + [9]
95623





G [y3] − 331.2088 + [10]
85605





L [b5] − 502.2660 + [11]
76628





V [y2] − 274.1874 + [12]
52365





I [b7] − 702.3821 + [13]
39225





E [b8] − 831.4247 + [14]
26866





ceruloplasmin
K.NNEGTYYSPNYNPQ
952.4139++
P [y4] − 487.2623 + [1]
37339


CERU_HUMAN
SR.S

S [y9] − 1062.4963 + [2]
33696





P [y8] − 975.4643 + [3]
29467





N [y5] − 601.3052 + [4]
24068





N [b2] − 229.0931 + [5]
19060





Y [y10] − 1225.5596 + [6]
16718





E [b3] − 358.1357 + [7]
16523





ceruloplasmin
R.SVPPSASHVAPTETF
844.4199+++
P [y2] − 244.1656 + [1]
579331


CERU_HUMAN
TYEWTVPK.E

T [y8] − 1023.5146 + [2]
126817





W [y5] − 630.3610 + [3]
101524





V [y3] − 343.2340 + [4]
99970





Y [y7] − 922.4669 + [5]
95448





E [y6] − 759.4036 + [6]
88030





T [y4] − 444.2817 + [7]
55884





F [y9] − 1170.5830 + [8]
55743





V [b2] − 187.1077 + [9]
46982





P [y20] − 1124.5497 + + [10]
37303





P [b3] − 284.1605 + [11]
21690





E [b18] − 951.4494 + + [12]
18652





P [b4] − 381.2132 + [13]
16956





T [b14] − 681.3384 + + [14]
15543





ceruloplasmin
K.GSLHANGR.Q
271.1438+++
L [y6] − 334.1854 + + [1]
154779


CERU_HUMAN


A [y4] − 417.2205 + [2]
41628





S [y7] − 377.7014 + + [3]
35762





H [y5] − 277.6433 + + [4]
29542





ceruloplasmin
R.QSEDSTFYLGER.T
716.3230++
G [y3] − 361.1830 + [1]
157040


CERU_HUMAN


Y [y5] − 637.3304 + [2]
126155





F [y6] − 784.3988 + [3]
97814





L [y4] − 474.2671 + [4]
80146





T [y7] − 443.2269 + + [5]
70746





T [y7] − 885.4465 + [6]
54844





S [y8] − 972.4785 + [7]
44101





S [b2] − 216.0979 + [8]
42193





D [y9] − 1087.5055 + [9]
36186





E [y10] − 1216.5481 + [10]
35055





E [b3] − 345.1405 + [11]
20778





E [y2] − 304.1615 + [12]
19153





ceruloplasmin
R.TYYIAAVEVEWDYSP
1045.4969++
P [y3] − 400.2303 + [1]
64887


CERU_HUMAN
QR.E

Y [b3] − 428.1816 + [2]
49716





S [y4] − 487.2623 + [3]
37369





Y [b2] − 265.1183 + [4]
35596





E [y8] − 1080.4745 + [5]
28569





W [y7] − 951.4319 + [6]
26204





V [b7] − 782.4083 + [7]
23577





A [b6] − 683.3399 + [8]
23512





V [y9] − 1179.5429 + [10]
22526





D [y6] − 765.3526 + [9]
22526





Y [y5] − 650.3257 + [11]
19965





A [b5] − 612.3028 + [12]
18520





ceruloplasmin
K.ELHHLQEQNVSNAF
674.6728+++
N [y6] − 707.3723 + [1]
22715


CERU_HUMAN
LDK.G

L [y3] − 188.1155 + + [2]
21336





S [y7] − 794.4043 + [3]
10176





ceruloplasmin
K.GEFYIGSK.Y
450.7267++
E [b2] − 187.0713 + [1]
53262


CERU_HUMAN


F [y6] − 714.3821 + [2]
50438





I [y4] − 404.2504 + [3]
39602





Y [y5] − 567.3137 + [4]
34020





G [y3] − 291.1663 + [5]
33100





ceruloplasmin
R.QYTDSTFR.V
509.2354++
T [y6] − 726.3417 + [1]
164056


CERU_HUMAN


S [y4] − 510.2671 + [2]
155584





D [y5] − 625.2940 + [3]
136472





T [y3] − 423.2350 + [4]
54313





F [y2] − 322.1874 + [5]
47220





Y [b2] − 292.1292 + [6]
27846





Y [y7] − 889.4050 + [7]
16550





ceruloplasmin
K.AEEEHLGILGPQLHA
710.0272+++
E [b2] − 201.0870 + [1]
60743


CERU_HUMAN
DVGDK.V

V [y4] − 418.2296 + [2]
23296





E [y17] − 899.9759 + + [3]
14619





ceruloplasmin
K.LEFALLFLVFDENES
945.1372+++
L [y6] − 359.1925 + + [1]
19544


CERU_HUMAN
WYLDDNIK.T

L [b5] − 574.3235 + [2]
17902





ceruloplasmin
K.TYSDHPEK.V
488.7222++
S [y6] − 712.3260 + [1]
93810


CERU_HUMAN


P [y3] − 373.2082 + [2]
43778





Y [b2] − 265.1183 + [3]
35960





H [y4] − 510.2671 + [4]
16651





ceruloplasmin
K.TYSDHPEK.V
326.1505+++
S [y6] − 356.6667 + + [1]
539251


CERU_HUMAN


Y [y7] − 438.1983 + + [2]
180506





Y [b2] − 265.1183 + [3]
109445





P [y3] − 373.2082 + [4]
84742





H [y4] − 255.6372 + + [5]
27596





P [y3] − 187.1077 + + [6]
25016





D [y5] − 625.2940 + [7]
24000





H [y4] − 510.2671 + [8]
20795





hepatoctye growth factor
R.YEYLEGGDR.W
551.2460++
E [b2] − 293.1132 + [1]
229354


activator


Y [y7] − 809.3788 + [2]
204587


HGFA_HUMAN


L [y6] − 646.3155 + [3]
96740





Y [b3] − 456.1765 + [4]
54186





E [y8] − 938.4214 + [5]
22065





hepatoctye growth factor
R.VQLSPDLLATLPEPA
981.0387++
P [y8] − 810.4104 + [1]
51109


activator
SPGR.Q

Q [b2] − 228.1343 + [2]
19063


HGFA_HUMAN









hepatoctye growth factor
R.TTDVTQTFGIEK.Y
670.3406++
D [b3] − 318.1296 + [1]
104844


activator


T [y8] − 923.4833 + [2]
93287


HGFA_HUMAN


T [b2] − 203.1026 + [3]
72498





D [y10] − 1137.5786 + [4]
53886





I [y3] − 389.2395 + [5]
53811





Q [y7] − 822.4356 + [6]
42253





V [b4] − 417.1980 + [7]
38726





T [y6] − 694.3770 + [8]
36474





F [y5] − 593.3293 + [9]
26793





E [y2] − 276.1554 + [10]
24616





G [y4] − 446.2609 + [11]
22215





V [y9] − 1022.5517 + [12]
20564





hepatoctye growth factor
R.EALVPLVADHK.C
596.3402++
P [y7] − 779.4410 + [1]
57992


activator


L [b3] − 314.1710 + [2]
42740


HGFA_HUMAN









hepatoctye growth factor
R.EALVPLVADHK.C
397.8959+++
P [y7] − 390.2241 + + [1]
502380


activator


V [y5] − 569.3042 + [2]
108586


HGFA_HUMAN


V [y8] − 439.7584 + + [3]
100001





H [y2] − 284.1717 + [4]
71234





L [y9] − 496.3004 + + [5]
65572





A [y4] − 470.2358 + [6]
62284





hepatoctye growth factor
R.LHKPGVYTR.V
357.5417+++
P [y6] − 692.3726 + [1]
104812


activator


H [y8] − 479.2669 + + [2]
49302


HGFA_HUMAN


K [y7] − 410.7374 + + [3]
30859





Y [y3] − 439.2300 + [4]
23829





hepatoctye growth factor
R.VANYVDWINDR.I
682.8333++
D [y6] − 818.3791 + [1]
132314


activator


V [y7] − 917.4476 + [2]
81805


HGFA_HUMAN


N [b3] − 285.1557 + [3]
70622





W [y5] − 703.3522 + [4]
53586





N [y3] − 404.1888 + [5]
37675





A [b2] − 171.1128 + [6]
36474





alpha-1-antichymotrypsin
R.GTHVDLGLASANVD
1113.0655++
L [b6] − 623.3148 + [1]
244118


AACT_HUMAN
FAFSLYK.Q

L [b8] − 793.4203 + [2]
211429





H [b3] − 296.1353 + [3]
204581





D [b5] − 510.2307 + [4]
200032





S [y4] − 510.2922 + [5]
195904





V [b4] − 395.2037 + [6]
187415





A [b9] − 864.4574 + [7]
167905





G [b7] − 680.3362 + [8]
87564





Y [y2] − 310.1761 + [9]
74385





F [y7] − 875.4662 + [10]
50794





F [y5] − 657.3606 + [11]
44462





S [b10] − 951.4894 + [12]
43899





D [y8] − 990.4931 + [13]
39866





A [y6] − 728.3978 + [14]
33300





A [b11] − 1022.5265 + [15]
32502





L [y3] − 423.2602 + [16]
29829





V [y9] − 1089.5615 + [17]
22043





N [b12] − 1136.5695 + [18]
17353





alpha-1-antichymotrypsin
R.GTHVDLGLASANVD
742.3794+++
D [y8] − 990.4931 + [1]
830612


AACT_HUMAN
FAFSLYK.Q

L [b8] − 793.4203 + [2]
635646





G [b7] − 680.3362 + [3]
582273





S [y4] − 510.2922 + [4]
548645





D [b5] − 510.2307 + [5]
471071





F [y7] − 875.4662 + [6]
420278





A [b9] − 864.4574 + [7]
411366





A [y6] − 728.3978 + [8]
391668





Y [y2] − 310.1761 + [9]
390214





F [y5] − 657.3606 + [10]
358134





T [b2] − 159.0764 + [11]
288721





H [b3] − 296.1353 + [12]
251998





L [b6] − 623.3148 + [13]
240742





V [y9] − 1089.5615 + [14]
197218





V [b4] − 395.2037 + [15]
186055





L [y3] − 423.2602 + [16]
173673





S [b10] − 951.4894 + [17]
103651





N [b12] − 1136.5695 + [18]
97976





A [b11] − 1022.5265 + [19]
76448





alpha-1-antichymotrypsin
K.FNLTETSEAEIHQSFQ
800.7363+++
A [b9] − 993.4524 + [1]
75792


AACT_HUMAN
HLLR.T

L [b3] − 375.2027 + [2]
59001





H [y9] − 1165.6225 + [3]
57829





L [y2] − 288.2030 + [4]
55343





T [b4] − 476.2504 + [5]
19323





alpha-1-antichymotrypsin
K.EQLSLLDR.F
487.2693++
S [y5] − 603.3461 + [1]
4247034


AACT_HUMAN


L [y3] − 403.2300 + [2]
2094711





L [y6] − 716.4301 + [3]
1465135





L [y4] − 516.3140 + [4]
1365427





Q [b2] − 258.1084 + [5]
1222196





D [y2] − 290.1459 + [6]
957403





L [b3] − 371.1925 + [7]
114810





alpha-1-antichymotrypsin
K.EQLSLLDR.F
325.1819+++
L [y3] − 403.2300 + [1]
57123


AACT_HUMAN


D [y2] − 290.1459 + [2]
52105





alpha-1-antichymotrypsin
K.YTGNASALFILPDQD
876.9438++
L [y9] − 1088.5986 + [1]
39933


AACT_HUMAN
K.M

A [b5] − 507.2198 + [2]
20117





D [y4] − 505.2253 + [3]
19937





alpha-1-antichymotrypsin
R.EIGELYLPK.F
531.2975++
P [y2] − 244.1656 + [1]
8170395


AACT_HUMAN


G [y7] − 819.4611 + [2]
3338199





L [y5] − 633.3970 + [3]
2616703





L [y3] − 357.2496 + [4]
1922561





Y [y4] − 520.3130 + [5]
1527792





G [b3] − 300.1554 + [6]
1417240





I [b2] − 243.1339 + [7]
1097654





E [y6] − 762.4396 + [8]
302412





E [b4] − 429.1980 + [9]
81633





Y [b6] − 705.3454 + [10]
36795





L [b5] − 542.2821 + [11]
31993





alpha-1-antichymotrypsin
R.EIGELYLPK.F
354.5341+++
P [y2] − 244.1656 + [1]
189758


AACT_HUMAN


L [y3] − 357.2496 + [2]
86952





G [b3] − 300.1554 + [3]
49661





Y [y4] − 520.3130 + [4]
45518





E [b4] − 429.1980 + [5]
19576





I [b2] − 243.1339 + [6]
18375





L [b5] − 542.2821 + [7]
13091





alpha-1-antichymotrypsin
R.DYNLNDILLQLGIEEA
1148.5890++
G [y9] − 981.4888 + [1]
378153


AACT_HUMAN
FTSK.A

F [b17] − 981.4964 + + [2]
378153





N [b3] − 393.1405 + [3]
338897





L [y10] − 1094.5728 + [4]
283255





E [y7] − 811.3832 + [5]
180253





I [b7] − 848.3785 + [6]
172510





T [y3] − 335.1925 + [7]
162966





D [b6] − 735.2944 + [8]
135235





L [b4] − 506.2245 + [9]
131573





A [y5] − 553.2980 + [10]
129232





F [y4] − 482.2609 + [11]
124490





Y [b2] − 279.0975 + [12]
115367





L [b9] − 1074.5466 + [13]
106363





L [b8] − 961.4625 + [14]
101621





E [y6] − 682.3406 + [15]
98740





S [y2] − 234.1448 + [16]
75991





N [b5] − 620.2675 + [17]
66387





I [y8] − 924.4673 + [18]
61465





alpha-1-antichymotrypsin
R.DYNLNDILLQLGIEEA
766.0618+++
G [y9] − 981.4888 + [1]
309485


AACT_HUMAN
FTSK.A

F [b17] − 981.4964 + + [2]
309485





E [y7] − 811.3832 + [3]
262306





N [b3] − 393.1405 + [4]
212306





T [y3] − 335.1925 + [5]
199100





F [y4] − 482.2609 + [6]
164346





A [y5] − 553.2980 + [7]
161405





Y [b2] − 279.0975 + [8]
149220





E [y6] − 682.3406 + [9]
138836





L [y10] − 1094.5728 + [10]
137336





S [y2] − 234.1448 + [11]
134094





I [b7] − 848.3785 + [12]
80072





I [y8] − 924.4673 + [13]
77791





L [b4] − 506.2245 + [14]
70889





D [b6] − 735.2944 + [15]
64706





L [b8] − 961.4625 + [16]
51201





N [b5] − 620.2675 + [17]
42677





L [b9] − 1074.5466 + [18]
21609





alpha-1-antichymotrypsin
K.ADLSGITGAR.N
480.7591++
S [y7] − 661.3628 + [1]
4360743


AACT_HUMAN


G [y6] − 574.3307 + [2]
3966462





T [y4] − 404.2252 + [3]
1937824





D [b2] − 187.0713 + [4]
799907





G [y3] − 303.1775 + [5]
647883





I [y5] − 517.3093 + [6]
612145





L [b3] − 300.1554 + [7]
606995





S [b4] − 387.1874 + [8]
544408





L [y8] − 774.4468 + [9]
348247





G [b5] − 444.2089 + [10]
232083





I [b6] − 557.2930 + [11]
132531





A [y2] − 246.1561 + [12]
113896





alpha-1-antichymotrypsin
K.ADLSGITGAR.N
320.8418+++
T [y4] − 404.2252 + [1]
218597


AACT_HUMAN


G [y3] − 303.1775 + [2]
159381





G [b5] − 444.2089 + [3]
46527





A [y2] − 246.1561 + [4]
26911





D [b2] − 187.0713 + [5]
22497





S [b4] − 387.1874 + [6]
14589





alpha-1-antichymotrypsin
R.NLAVSQVVHK.A
547.8195++
L [b2] − 228.1343 + [1]
1872233


AACT_HUMAN


A [y8] − 867.5047 + [2]
1133381





A [b3] − 299.1714 + [3]
1126331





V [y7] − 796.4676 + [4]
672341





S [y6] − 697.3991 + [5]
650028





H [y2] − 284.1717 + [6]
582720





V [y3] − 383.2401 + [7]
211547





V [b4] − 398.2398 + [8]
163917





Q [y5] − 610.3671 + [9]
100778





V [y4] − 482.3085 + [10]
88456





S [b5] − 485.2718 + [11]
64488





V [b7] − 712.3988 + [12]
36045





alpha-1-antichymotrypsin
R.NLAVSQVVHK.A
365.5487+++
L [b2] − 228.1343 + [1]
1175923


AACT_HUMAN


V [y3] − 383.2401 + [2]
593693





S [y6] − 697.3991 + [3]
587502





H [y2] − 284.1717 + [4]
440259





V [y4] − 482.3085 + [5]
375955





Q [y5] − 610.3671 + [6]
349044





A [b3] − 299.1714 + [7]
339236





V [b4] − 398.2398 + [8]
172805





S [b5] − 485.2718 + [9]
84594





alpha-1-antichymotrypsin
K.AVLDVFEEGTEASAA
954.4835++
D [b4] − 399.2238 + [1]
1225699


AACT_HUMAN
TAVK.I

G [y11] − 1005.5211 + [2]
812780





V [b5] − 498.2922 + [3]
741243





E [y12] − 1134.5637 + [4]
651070





V [b2] − 171.1128 + [5]
634335





A [y8] − 718.4094 + [6]
416106





S [y7] − 647.3723 + [7]
360507





F [b6] − 645.3606 + [8]
293935





T [y4] − 418.2660 + [9]
281736





E [y9] − 847.4520 + [10]
247592





A [y3] − 317.2183 + [11]
246550





E [b7] − 774.4032 + [12]
234044





T [y10] − 948.4997 + [13]
221478





A [y6] − 560.3402 + [14]
212344





A [y5] − 489.3031 + [15]
195364





E [b8] − 903.4458 + [16]
183901





L [b3] − 284.1969 + [17]
176116





V [y2] − 246.1812 + [18]
157419





T [b10] − 1061.5150 + [19]
52841





E [b11] − 1190.5576 + [20]
34757





G [b9] − 960.4673 + [21]
25807





alpha-1-antichymotrypsin
K.AVLDVFEEGTEASAA
636.6581+++
V [b2] − 171.1128 + [1]
659591


AACT_HUMAN
TAVK.I

S [y7] − 647.3723 + [2]
630596





A [y8] − 718.4094 + [3]
509467





D [b4] − 399.2238 + [4]
353335





A [y6] − 560.3402 + [5]
306747





A [y5] − 489.3031 + [6]
280878





E [y9] − 847.4520 + [7]
247347





T [y4] − 418.2660 + [8]
197203





A [y3] − 317.2183 + [9]
128853





V [b5] − 498.2922 + [10]
120271





V [y2] − 246.1812 + [11]
115428





L [b3] − 284.1969 + [12]
102984





G [y11] − 1005.5211 + [13]
91215





F [b6] − 645.3606 + [14]
79016





E [y12] − 1134.5637 + [15]
72947





E [b7] − 774.4032 + [16]
58358





T [y10] − 948.4997 + [17]
41071





E [b8] − 903.4458 + [18]
32918





G [b9] − 960.4673 + [19]
24275





alpha-1-antichymotrypsin
K.ITLLSALVETR.T
608.3690++
S [y7] − 775.4308 + [1]
7387615


AACT_HUMAN


T [b2] − 215.1390 + [2]
3498457





L [y8] − 888.5149 + [3]
2684639





L [b3] − 328.2231 + [4]
2164246





A [y6] − 688.3988 + [5]
2045853





L [y5] − 617.3617 + [6]
2027311





L [y9] − 1001.5990 + [7]
1949318





V [y4] − 504.2776 + [8]
1598519





T [y2] − 276.1666 + [9]
1416847





E [y3] − 405.2092 + [10]
967259





A [b6] − 599.3763 + [11]
579420





L [b4] − 441.3071 + [12]
431556





S [b5] − 528.3392 + [13]
107634





L [b7] − 712.4604 + [14]
71104





V [b8] − 811.5288 + [15]
24197





alpha-1-antichymotrypsin
K.ITLLSALVETR.T
405.9151+++
E [y3] − 405.2092 + [1]
738128


AACT_HUMAN


T [y2] − 276.1666 + [2]
368830





V [y4] − 504.2776 + [3]
328133





A [b6] − 599.3763 + [4]
132469





T [b2] − 215.1390 + [5]
126898





L [y5] − 617.3617 + [6]
124559





S [y7] − 775.4308 + [7]
54263





L [b3] − 328.2231 + [8]
37891





A [y6] − 688.3988 + [9]
29853





L [b4] − 441.3071 + [10]
25558





L [b7] − 712.4604 + [11]
13353





S [b5] − 528.3392 + [12]
12290





Pigment epithelium-
K.LAAAVSNFGYDLYR.
780.3963++
D [b11] − 1109.5262 + [1]
136227


derived factor
V

F [b8] − 774.4145 + [2]
61248


PEDF_HUMAN*


N [b7] − 314.1767 + + [3]
55532





A [y12] − 1375.6641 + [4]
53268





V [b5] − 213.6392 + + [5]
35818





L [b12] − 1222.6103 + [6]
34918





G [b9] − 831.4359 + [7]
33934





Y [b10] − 994.4993 + [8]
32923





G [b9] − 416.2216 + + [9]
32650





V [b5] − 426.2711 + [10]
15646





A [b2] − 185.1285 + [11]
14964





D [b11] − 555.2667 + + [12]
13922





L [y3] − 226.1368 + + [13]
13027





A [b4] − 327.2027 + [14]
12782





A [y12] − 688.3357 + + [15]
12446





V [y10] − 1233.5899 + [16]
12400





A [y11] − 652.8171 + + [17]
10793





Pigment epithelium-
K.LAAAVSNFGYDLYR.
520.5999+++
G [y6] − 786.3781 + [1]
42885


derived factor
V

D [y4] − 566.2933 + [2]
32080


PEDF_HUMAN*


Y [y5] − 729.3566 + [3]
17494





L [y3] − 451.2663 + [5]
12304





Y [y2] − 338.1823 + [6]
7780





Pigment epithelium-
R.ALYYDLISSPDIHGTY
652.6632+++
Y [y15] − 886.4305 + + [1]
12278


derived factor
K.E

L [b2] − 185.1285 + [2]
7601


PEDF_HUMAN*


S [y10] − 1104.5320 + [3]
7345





Y [y14] − 804.8988 + + [4]
5976





Pigment epithelium-
K.ELLDTVTAPQK.N
607.8350++
T [y5] − 272.6581 + + [1]
59670


derived factor


Q [y2] − 275.1714 + [2]
11954


PEDF_HUMAN*









Pigment epithelium-
K.ELLDTVTAPQK.N
405.5591+++
L [b2] − 243.1339 + [1]
16428


derived factor


T [b7] − 386.7080 + + [2]
7918


PEDF_HUMAN*


Q [y2] − 275.1714 + [3]
7043





T [y5] − 272.6581 + + [4]
5237





Pigment epithelium-
K.SSFVAPLEK.S
489.2687++
A [y5] − 557.3293 + [1]
20068


derived factor


A [y5] − 279.1683 + + [2]
5059


PEDF_HUMAN*


S [b2] − 175.0713 + [3]
4883





Pigment epithelium-
K.SSFVAPLEK.S
326.5149+++
A [y5] − 279.1683 + + [1]
70240


derived factor


A [y5] − 557.3293 + [2]
63329


PEDF_HUMAN*


S [b2] − 175.0713 + [3]
39662





L [b7] − 351.6947 + + [4]
5393





Pigment epithelium-
K.EIPDEISILLLGVAHFK.
632.0277+++
P [y15] − 826.4745 + + [1]
37871


derived factor
G

G [y6] − 658.3671 + [2]
20077


PEDF_HUMAN*


L [y7] − 771.4512 + [3]
8952





Pigment epithelium-
K.TSLEDFYLDEER.T
758.8437++
R [y1] − 175.1190 + [1]
8206


derived factor


D [b9] − 1084.4833 + [2]
4591


PEDF_HUMAN*


F [b6] − 693.3090 + [3]
4498





Pigment epithelium-
K.TSLEDFYLDEER.T
506.2316+++
F [b6] − 693.3090 + [1]
3526


derived factor


D [y4] − 548.2311 + [2]
3208


PEDF_HUMAN*









Pigment epithelium-
K.VTQNLTLIEESLTSEFI
858.4413+++
T [b13] − 721.8905 + + [1]
11072


derived factor
HDIDR.E

T [y17] − 1009.5075 + + [2]
8442


PEDF_HUMAN*


D [y4] − 518.2569 + [3]
6522





Pigment epithelium-
K.TVQAVLTVPK.L
528.3266++
Q [y8] − 855.5298 + [1]
83536


derived factor


V [b2] − 201.1234 + [2]
64729


PEDF_HUMAN*


A [b4] − 200.6132 + + [3]
58198





P [y2] − 244.1656 + [4]
43347





Q [y8] − 428.2686 + + [5]
38398





A [y7] − 727.4713 + [6]
33770





Q [b3] − 329.1819 + [7]
17809





L [y5] − 557.3657 + [8]
17518





V [y6] − 656.4341 + [9]
17029





V [y6] − 328.7207 + + [10]
15839





T [y4] − 444.2817 + [11]
13859





V [y3] − 343.2340 + [12]
10717





A [b4] − 400.2191 + [13]
9695





Pigment epithelium-
K.TVQAVLTVPK.L
352.5535+++
P [y2] − 244.1656 + [1]
8295


derived factor


T [y4] − 444.2817 + [2]
2986


PEDF_HUMAN*


A [b4] − 400.2191 + [3]
2848





Pigment epithelium-
K.LSYEGEVIK.S
513.2611++
V [b7] − 389.6845 + + [1]
60831


derived factor


E [b6] − 679.2933 + [2]
34857


PEDF_HUMAN*


Y [y7] − 413.2031 + + [3]
10075





V [b7] − 778.3618 + [4]
8920





Y [b3] − 364.1867 + [5]
8008





Pigment epithelium-
K.LQSLFDSPDFSK.I
692.3432++
S [y2] − 234.1448 + [1]
49594


derived factor


L [y9] − 1055.5044 + [2]
48160


PEDF_HUMAN*


P [b8] − 888.4462 + [3]
23566





S [b7] − 791.3934 + [4]
13766





P [y5] − 297.1501 + + [5]
12305





P [y5] − 593.2930 + [6]
10702





F [b5] − 589.3344 + [7]
8929





D [b9] − 1003.4731 + [8]
8742





Pigment epithelium-
K.LQSLFDSPDFSK.I
461.8979+++
P [y5] − 593.2930 + [1]
9154


derived factor


P [y5] − 297.1501 + + [2]
5479


PEDF_HUMAN*









Pigment epithelium-
R.DTDTGALLFIGK.I
625.8350++
G [y2] − 204.1343 + [1]
32092


derived factor


G [y8] − 818.5135 + [2]
29707


PEDF_HUMAN*


T [b2] − 217.0819 + [4]
28172





T [b4] − 217.0819 + + [3]
28172





F [y4] − 464.2867 + [5]
22160





D [y10] − 1034.5881 + [6]
20267





T [y9] − 919.5611 + [7]
17083





L [y6] − 690.4549 + [8]
14854





L [y5] − 577.3708 + [9]
12349





T [b4] − 433.1565 + [10]
11773





I [y3] − 317.2183 + [11]
11575





D [b3] − 332.1088 + [12]
8968





A [y7] − 761.4920 + [13]
8598





*Transition scan on Agilent 6490






Example 4. Study III to Identify and Confirm Preeclampsia Biomarkers

A further hypothesis-dependent study was performed using essentially the same methods described in the preceding Examples unless noted below. The scheduled MRM assay used in Examples 1 and 2 but now augmented with newly discovered analytes from the Example 3 and related studies was used. Less robust transitions (from the original 1708 described in Example 1) were removed to improve analytical performance and make room for the newly discovered analytes.


Thirty subjects with preeclampsia who delivered preterm (<37 weeks 0 days) were selected for analyses. Twenty-three subjects were available with isolated preeclampsia; thus, eight subjects were selected with additional findings as follows: 5 subjects with gestational diabetes, one subject with pre-existing type 2 diabetes, and one subject with chronic hypertension. Subjects were classified as having severe preeclampsia if it was indicated in the Case Report Form as severe or if the pregnancy was complicated by HELLP syndrome. All other cases were classified as mild preeclampsia. Cases were matched to term controls (>/=37 weeks 0 days) without preeclampsia at a 2:1 control-to-case ratio.


The samples were processed in 4 batches with each containing 3 HGS controls. All serum samples were depleted of the 14 most abundant serum proteins using MARS14 (Agilent), digested with trypsin, desalted, and resolubilized with reconstitution solution containing 5 internal standard peptides as described in previous examples.


The LC-MS/MS analysis was performed with an Agilent Poroshell 120 EC-C18 column (2.1×50 mm, 2.7 μm) at a flow rate of 400 μl/min and eluted with an acetonitrile gradient into an AB Sciex QTRAP5500 mass spectrometer. The sMRM assay measured 750 transitions that correspond to 349 peptides and 164 proteins. Chromatographic peaks were integrated using MultiQuant™ software (AB Sciex).


Transitions were excluded from analysis if they were missing in more than 20% of the samples. Log transformed peak areas for each transition were corrected for run order and batch effects by regression. The ability of each analyte to separate cases and controls was determined by calculating univariate AUC values from ROC curves. Ranked univariate AUC values (0.6 or greater) are reported for individual gestational age window sample sets or various combinations (Tables 12-15). Multivariate classifiers were built by Lasso and Random Forest methods. 1000 rounds of bootstrap resampling were performed and the nonzero Lasso coefficients or Random Forest Gini importance values were summed for each analyte amongst panels with AUCs of 0.85 or greater. For summed Random Forest Gini Importance values an Empirical Cumulative Distribution Function was fitted and probabilities (P) were calculated. The nonzero Lasso summed coefficients calculated from the different window combinations are shown in Tables 16-19. Summed Random Forest Gini values, with P >0.9 are found in Tables 20-22.









TABLE 12







Univariate AUC values all windows









Transition
Protein
AUC





LDFHFSSDR_375.2_611.3
INHBC_HUMAN
0.785





TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
0.763





TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
0.762





ETLLQDFR_511.3_565.3
AMBP_HUMAN
0.756





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
0.756





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
0.756





IQTHSTTYR_369.5_627.3
F13B_HUMAN
0.755





IQTHSTTYR_369.5_540.3
F13B_HUMAN
0.753





ETLLQDFR_511.3_322.2
AMBP_HUMAN
0.751





LDFHFSSDR_375.2_464.2
INHBC_HUMAN
0.745





HHGPTITAK_321.2_275.1
AMBP_HUMAN
0.743





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
0.733





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
0.732





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
SHBG_HUMAN
0.728





HHGPTITAK_321.2_432.3
AMBP_HUMAN
0.728





FLYHK_354.2_447.2
AMBP_HUMAN
0.722





FLYHK_354.2_284.2
AMBP_HUMAN
0.721





IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
0.719





GDTYPAELYITGSILR_885.0_274.1
F13B_HUMAN
0.716





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.714





GPGEDFR_389.2_623.3
PTGDS_HUMAN
0.714





IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
0.712





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
0.708





FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
0.707





GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
0.707





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
PSG7_HUMAN
0.704





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
SHBG_HUMAN
0.704





ATVVYQGER_511.8_652.3
APOH_HUMAN
0.702





ALALPPLGLAPLLNLWAKPQGR_770.5_457.3
SHBG_HUMAN
0.702





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_768.5
SHBG_HUMAN
0.702





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
PSG7_HUMAN
0.702





AHYDLR_387.7_566.3
FETUA_HUMAN
0.701





GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.701





FSVVYAK_407.2_579.4
FETUA_HUMAN
0.701





TLAFVR_353.7_274.2
FA7_HUMAN
0.699





IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
0.698





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.696





GDTYPAELYITGSILR_885.0_922.5
F13B_HUMAN
0.694





FICPLTGLWPINTLK_887.0_756.9
APOH_HUMAN
0.694





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.692





ATVVYQGER_511.8_751.4
APOH_HUMAN
0.690





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
0.690





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
0.687





IAQYYYTFK_598.8_395.2
F13B_HUMAN
0.685





IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
0.685





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
0.684





FSVVYAK_407.2_381.2
FETUA_HUMAN
0.684





HFQNLGK_422.2_285.1
AFAM_HUMAN
0.684





AHYDLR_387.7_288.2
FETUA_HUMAN
0.684





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.683





DADPDTFFAK_563.8_825.4
AFAM_HUMAN
0.679





DADPDTFFAK_563.8_302.1
AFAM_HUMAN
0.676





IAQYYYTFK_598.8_884.4
F13B_HUMAN
0.673





VVESLAK_373.2_646.4
IBP1_HUMAN
0.673





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.673





GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
0.673





YTTEIIK_434.2_704.4
C1R_HUMAN
0.671





LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
0.666





TLAFVR_353.7_492.3
FA7_HUMAN
0.666





LIENGYFHPVK_439.6_343.2
F13B_HUMAN
0.665





ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
0.665





DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
0.664





TNTNEFLIDVDK_704.85_849.5
TF_HUMAN
0.663





NTVISVNPSTK_580.3_845.5
VCAM1_HUMAN
0.662





YEFLNGR_449.7_293.1
PLMN_HUMAN
0.662





AIGLPEELIQK_605.86_856.5
FABPL_HUMAN
0.662





YTTEIIK_434.2_603.4
C1R_HUMAN
0.661





AEHPTWGDEQLFQTTR_639.3_765.4
PGH1_HUMAN
0.658





HTLNQIDEVK_598.8_951.5
FETUA_HUMAN
0.658





HTLNQIDEVK_598.8_958.5
FETUA_HUMAN
0.656





LPNNVLQEK_527.8_730.4
AFAM_HUMAN
0.655





DPNGLPPEAQK_583.3_497.2
RET4_HUMAN
0.655





TFLTVYWTPER_706.9_401.2
ICAM1_HUMAN
0.653





TFLTVYWTPER_706.9_502.3
ICAM1_HUMAN
0.653





SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.652





FTFTLHLETPKPSISSSNLNPR_829.4_787.4
PSG1_HUMAN
0.652





DAQYAPGYDK_564.3_813.4
CFAB_HUMAN
0.651





ALDLSLK_380.2_185.1
ITIH3_HUMAN
0.651





NCSFSIIYPVVIK_770.4_555.4
CRHBP_HUMAN
0.650





NTVISVNPSTK_580.3_732.4
VCAM1_HUMAN
0.649





IPSNPSHR_303.2_610.3
FBLN3_HUMAN
0.649





DAQYAPGYDK_564.3_315.1
CFAB_HUMAN
0.647





TLPFSR_360.7_506.3
LYAM1_HUMAN
0.647





LPNNVLQEK_527.8_844.5
AFAM_HUMAN
0.644





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
0.644





AEHPTWGDEQLFQTTR_639.3_569.3
PGH1_HUMAN
0.644





NNQLVAGYLQGPNVNLEEK_700.7_999.5
IL1RA_HUMAN
0.642





EHSSLAFWK_552.8_267.1
APOH_HUMAN
0.642





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.641





VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
0.641





NFPSPVDAAFR_610.8_959.5
HEMO_HUMAN
0.641





WNFAYWAAHQPWSR_607.3_545.3
PRG2_HUMAN
0.638





WNFAYWAAHQPWSR_607.3_673.3
PRG2_HUMAN
0.638





TAVTANLDIR_537.3_802.4
CHL1_HUMAN
0.638





IPSNPSHR_303.2_496.3
FBLN3_HUMAN
0.637





YWGVASFLQK_599.8_849.5
RET4_HUMAN
0.637





ALDLSLK_380.2_575.3
ITIH3_HUMAN
0.636





YNSQLLSFVR_613.8_508.3
TFR1_HUMAN
0.636





EHSSLAFWK_552.8_838.4
APOH_HUMAN
0.635





YWGVASFLQK_599.8_350.2
RET4_HUMAN
0.635





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.633





DLYHYITSYVVDGEIIIYGPAYSGR_955.5_707.3
PSG1_HUMAN
0.633





FTFTLHLETPKPSISSSNLNPR_829.4_874.4
PSG1_HUMAN
0.633





YQISVNK_426.2_560.3
FIBB_HUMAN
0.632





YEFLNGR_449.7_606.3
PLMN_HUMAN
0.632





LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
0.631





LLEVPEGR_456.8_356.2
C1S_HUMAN
0.630





ENPAVIDFELAPIVDLVR_670.7_811.5
CO6_HUMAN
0.630





YYLQGAK_421.7_516.3
ITIH4_HUMAN
0.630





ITGFLKPGK_320.9_301.2
LBP_HUMAN
0.629





DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.629





HELTDEELQSLFTNFANVVDK_817.1_854.4
AFAM_HUMAN
0.629





YYLQGAK_421.7_327.1
ITIH4_HUMAN
0.628





NCSFSIIYPVVIK_770.4_831.5
CRHBP_HUMAN
0.627





FLNWIK_410.7_560.3
HABP2_HUMAN
0.627





ITGFLKPGK_320.9_429.3
LBP_HUMAN
0.627





VVESLAK_373.2_547.3
IBP1_HUMAN
0.627





NFPSPVDAAFR_610.8_775.4
HEMO_HUMAN
0.627





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
0.627





ENPAVIDFELAPIVDLVR_670.7_601.4
CO6_HUMAN
0.627





VQEVLLK_414.8_373.3
HYOU1_HUMAN
0.626





TQIDSPLSGK_523.3_703.4
VCAM1_HUMAN
0.626





VSEADSSNADWVTK_754.9_533.3
CFAB_HUMAN
0.625





DFNQFSSGEK_386.8_189.1
FETA_HUMAN
0.624





LPDTPQGLLGEAR_683.87_940.5
EGLN_HUMAN
0.623





DLYHYITSYVVDGEIIIYGPAYSGR_955.5_650.3
PSG1_HUMAN
0.623





FAFNLYR_465.8_712.4
HEP2_HUMAN
0.623





LLELTGPK_435.8_644.4
A1BG_HUMAN
0.623





NEIVFPAGILQAPFYTR_968.5_357.2
ECE1_HUMAN
0.623





EFDDDTYDNDIALLQLK_1014.48_501.3
TPA_HUMAN
0.621





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
0.621





LLELTGPK_435.8_227.2
A1BG_HUMAN
0.621





LIQDAVTGLTVNGQITGDK_972.0_640.4
ITIH3_HUMAN
0.621





QGHNSVFLIK_381.6_520.4
HEMO_HUMAN
0.620





ILPSVPK_377.2_244.2
PGH1_HUMAN
0.620





STLFVPR_410.2_272.2
PEPD_HUMAN
0.620





TLEAQLTPR_514.8_685.4
HEP2_HUMAN
0.619





QGHNSVFLIK_381.6_260.2
HEMO_HUMAN
0.619





LSSPAVITDK_515.8_743.4
PLMN_HUMAN
0.618





LLEVPEGR_456.8_686.4
C1S_HUMAN
0.617





GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
0.617





EALVPLVADHK_397.9_390.2
HGFA_HUMAN
0.616





SFRPFVPR_335.9_272.2
LBP_HUMAN
0.616





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.616





GSLVQASEANLQAAQDFVR_668.7_735.4
ITIH1_HUMAN
0.616





ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
0.615





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
0.615





ILPSVPK_377.2_227.2
PGH1_HUMAN
0.614





DIIKPDPPK_511.8_342.2
IL12B_HUMAN
0.613





QGFGNVATNTDGK_654.81_319.2
FIBB_HUMAN
0.613





AVLHIGEK_289.5_348.7
THBG_HUMAN
0.613





YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
0.613





LSSPAVITDK_515.8_830.5
PLMN_HUMAN
0.613





SFRPFVPR_335.9_635.3
LBP_HUMAN
0.613





GLQYAAQEGLLALQSELLR_1037.1_858.5
LBP_HUMAN
0.612





VELAPLPSWQPVGK_760.9_400.3
ICAM1_HUMAN
0.612





CRPINATLAVEK_457.9_559.3
CGB1_HUMAN
0.610





GIVEECCFR_585.3_771.3
IGF2_HUMAN
0.610





AVLHIGEK_289.5_292.2
THBG_HUMAN
0.610





TLEAQLTPR_514.8_814.4
HEP2_HUMAN
0.610





SILFLGK_389.2_577.4
THBG_HUMAN
0.609





HVVQLR_376.2_614.4
IL6RA_HUMAN
0.609





TQILEWAAER_608.8_761.4
EGLN_HUMAN
0.609





NSDQEIDFK_548.3_409.2
S10A5_HUMAN
0.609





SGAQATWTELPWPHEK_613.3_510.3
HEMO_HUMAN
0.607





EDTPNSVWEPAK_686.8_630.3
C1S_HUMAN
0.607





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
0.607





TLPFSR_360.7_409.2
LYAM1_HUMAN
0.607





GIVEECCFR_585.3_900.3
IGF2_HUMAN
0.606





SGAQATWTELPWPHEK_613.3_793.4
HEMO_HUMAN
0.606





VRPQQLVK_484.3_609.4
ITIH4_HUMAN
0.605





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.605





LEEHYELR_363.5_288.2
PAI2_HUMAN
0.605





FQLPGQK_409.2_275.1
PSG1_HUMAN
0.605





IHWESASLLR_606.3_437.2
CO3_HUMAN
0.604





NAVVQGLEQPHGLVVHPLR_688.4_890.6
LRP1_HUMAN
0.604





VTGLDFIPGLHPILTLSK_641.04_771.5
LEP_HUMAN
0.603





YNSQLLSFVR_613.8_734.5
TFR1_HUMAN
0.603





ALVLELAK_428.8_672.4
INHBE_HUMAN
0.603





FAFNLYR_465.8_565.3
HEP2_HUMAN
0.603





VRPQQLVK_484.3_722.4
ITIH4_HUMAN
0.602





SLQAFVAVAAR_566.8_487.3
IL23A_HUMAN
0.602





AGFAGDDAPR_488.7_701.3
ACTB_HUMAN
0.601





EDTPNSVWEPAK_686.8_315.2
C1S_HUMAN
0.601





VQEVLLK_414.8_601.4
HYOU1_HUMAN
0.601





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.601





TLFIFGVTK_513.3_215.1
PSG4_HUMAN
0.601





YNQLLR_403.7_288.2
ENOA_HUMAN
0.600





TQIDSPLSGK_523.3_816.5
VCAM1_HUMAN
0.600
















TABLE 13







Univariate AUC values early window









Transition
Protein
AUC





LDFHFSSDR_375.2_611.3
INHBC_HUMAN
0.858





LDFHFSSDR_375.2_464.2
INHBC_HUMAN
0.838





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.815





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
0.789





GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
0.778





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.778





TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
0.775





TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
0.775





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
0.772





ETLLQDFR_511.3_565.3
AMBP_HUMAN
0.772





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
0.769





VVESLAK_373.2_646.4
IBP1_HUMAN
0.766





FSVVYAK_407.2_381.2
FETUA_HUMAN
0.764





HHGPTITAK_321.2_275.1
AMBP_HUMAN
0.764





ETLLQDFR_511.3_322.2
AMBP_HUMAN
0.761





FLYHK_354.2_447.2
AMBP_HUMAN
0.758





GPGEDFR_389.2_623.3
PTGDS_HUMAN
0.755





HHGPTITAK_321.2_432.3
AMBP_HUMAN
0.755





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
0.752





FLYHK_354.2_284.2
AMBP_HUMAN
0.749





FSVVYAK_407.2_579.4
FETUA_HUMAN
0.749





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
0.749





IPSNPSHR_303.2_610.3
FBLN3_HUMAN
0.746





VVESLAK_373.2_547.3
IBP1_HUMAN
0.746





IPSNPSHR_303.2_496.3
FBLN3_HUMAN
0.746





NCSFSIIYPVVIK_770.4_555.4
CRHBP_HUMAN
0.746





GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
0.744





IQTHSTTYR_369.5_627.3
F13B_HUMAN
0.744





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
0.738





AHYDLR_387.7_566.3
FETUA_HUMAN
0.738





IQTHSTTYR_369.5_540.3
F13B_HUMAN
0.738





AIGLPEELIQK_605.86_856.5
FABPL_HUMAN
0.735





ATVVYQGER_511.8_751.4
APOH_HUMAN
0.735





FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
0.735





FICPLTGLWPINTLK_887.0_756.9
APOH_HUMAN
0.735





HTLNQIDEVK_598.8_958.5
FETUA_HUMAN
0.735





AQETSGEEISK_589.8_979.5
IBP1_HUMAN
0.732





DSPSVWAAVPGK_607.31_301.2
PROF1_HUMAN
0.732





GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.732





ATVVYQGER_511.8_652.3
APOH_HUMAN
0.729





NFPSPVDAAFR_610.8_959.5
HEMO_HUMAN
0.729





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
0.726





AHYDLR_387.7_288.2
FETUA_HUMAN
0.726





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
0.724





ETPEGAEAKPWYEPIYLGGVFQLEK_951.14_877.5
TNFA_HUMAN
0.724





ALDLSLK_380.2_185.1
ITIH3_HUMAN
0.721





IHWESASLLR_606.3_437.2
CO3_HUMAN
0.721





DAQYAPGYDK_564.3_813.4
CFAB_HUMAN
0.718





NFPSPVDAAFR_610.8_775.4
HEMO_HUMAN
0.718





AVGYLITGYQR_620.8_523.3
PZP_HUMAN
0.715





AVGYLITGYQR_620.8_737.4
PZP_HUMAN
0.712





DIPHWLNPTR_416.9_600.3
PAPP1_HUMAN
0.712





ALDLSLK_380.2_575.3
ITIH3_HUMAN
0.709





IEGNLIFDPNNYLPK_874.0_845.5
APOB_HUMAN
0.709





LIENGYFHPVK_439.6_343.2
F13B_HUMAN
0.709





QTLSWTVTPK_580.8_818.4
PZP_HUMAN
0.709





DAQYAPGYDK_564.3_315.1
CFAB_HUMAN
0.707





GLQYAAQEGLLALQSELLR_1037.1_858.5
LBP_HUMAN
0.707





IEGNLIFDPNNYLPK_874.0_414.2
APOB_HUMAN
0.707





IQHPFTVEEFVLPK_562.0_861.5
PZP_HUMAN
0.707





QTLSWTVTPK_580.8_545.3
PZP_HUMAN
0.707





VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
0.707





ILPSVPK_377.2_244.2
PGH1_HUMAN
0.704





IQHPFTVEEFVLPK_562.0_603.4
PZP_HUMAN
0.704





NCSFSIIYPVVIK_770.4_831.5
CRHBP_HUMAN
0.704





YNSQLLSFVR_613.8_508.3
TFR1_HUMAN
0.704





HTLNQIDEVK_598.8_951.5
FETUA_HUMAN
0.701





NEIWYR_440.7_637.4
FA12_HUMAN
0.701





QGHNSVFLIK_381.6_260.2
HEMO_HUMAN
0.701





YTTEIIK_434.2_603.4
C1R_HUMAN
0.701





STLFVPR_410.2_272.2
PEPD_HUMAN
0.699





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
0.698





TGISPLALIK_506.8_741.5
APOB_HUMAN
0.698





TSESGELHGLTTEEEFVEGIYK_819.06_310.2
TTHY_HUMAN
0.698





AEHPTWGDEQLFQTTR_639.3_569.3
PGH1_HUMAN
0.695





AEHPTWGDEQLFQTTR_639.3_765.4
PGH1_HUMAN
0.695





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.695





SVSLPSLDPASAK_636.4_473.3
APOB_HUMAN
0.695





ILPSVPK_377.2_227.2
PGH1_HUMAN
0.692





LIQDAVTGLTVNGQITGDK_972.0_640.4
ITIH3_HUMAN
0.692





QGHNSVFLIK_381.6_520.4
HEMO_HUMAN
0.692





TGISPLALIK_506.8_654.5
APOB_HUMAN
0.692





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.692





ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
0.689





IHWESASLLR_606.3_251.2
CO3_HUMAN
0.689





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
0.689





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
SHBG_HUMAN
0.687





ALNFGGIGVVVGHELTHAFDDQGR_837.1_299.2
ECE1_HUMAN
0.687





AQETSGEEISK_589.8_850.4
IBP1_HUMAN
0.687





GVTGYFTFNLYLK_508.3_683.9
PSG5_HUMAN
0.687





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
0.687





LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
0.687





SVSLPSLDPASAK_636.4_885.5
APOB_HUMAN
0.687





TLAFVR_353.7_274.2
FA7_HUMAN
0.687





YTTEIIK_434.2_704.4
C1R_HUMAN
0.687





EFDDDTYDNDIALLQLK_1014.48_388.3
TPA_HUMAN
0.684





IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
0.684





DFNQFSSGEK_386.8_189.1
FETA_HUMAN
0.681





EHSSLAFWK_552.8_838.4
APOH_HUMAN
0.681





ELPQSIVYK_538.8_409.2
FBLN3_HUMAN
0.681





ITGFLKPGK_320.9_301.2
LBP_HUMAN
0.681





ITGFLKPGK_320.9_429.3
LBP_HUMAN
0.681





AFQVWSDVTPLR_709.88_385.3
MMP2_HUMAN
0.678





GLQYAAQEGLLALQSELLR_1037.1_929.5
LBP_HUMAN
0.678





HYINLITR_515.3_301.1
NPY_HUMAN
0.678





NAVVQGLEQPHGLVVHPLR_688.4_890.6
LRP1_HUMAN
0.675





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.675





YNQLLR_403.7_288.2
ENOA_HUMAN
0.675





LDGSTHLNIFFAK_488.3_852.5
PAPP1_HUMAN
0.672





VVGGLVALR_442.3_784.5
FA12_HUMAN
0.672





WNFAYWAAHQPWSR_607.3_673.3
PRG2_HUMAN
0.672





NHYTESISVAK_624.8_252.1
NEUR1_HUMAN
0.670





NSDQEIDFK_548.3_409.2
S10A5_HUMAN
0.670





SGAQATWTELPWPHEK_613.3_510.3
HEMO_HUMAN
0.670





WNFAYWAAHQPWSR_607.3_545.3
PRG2_HUMAN
0.670





SFRPFVPR_335.9_272.2
LBP_HUMAN
0.670





AFQVWSDVTPLR_709.88_347.2
MMP2_HUMAN
0.667





DADPDTFFAK_563.8_825.4
AFAM_HUMAN
0.667





EHSSLAFWK_552.8_267.1
APOH_HUMAN
0.667





ITENDIQIALDDAK_779.9_632.3
APOB_HUMAN
0.667





ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
0.667





VQEVLLK_414.8_373.3
HYOU1_HUMAN
0.667





VSFSSPLVAISGVALR_802.0_715.4
PAPP1_HUMAN
0.667





HFQNLGK_422.2_285.1
AFAM_HUMAN
0.664





ITENDIQIALDDAK_779.9_873.5
APOB_HUMAN
0.664





ALQDQLVLVAAK_634.9_289.2
ANGT_HUMAN
0.661





DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.661





DLHLSDVFLK_396.2_366.2
CO6_HUMAN
0.661





TAVTANLDIR_537.3_802.4
CHL1_HUMAN
0.661





DADPDTFFAK_563.8_302.1
AFAM_HUMAN
0.658





DPTFIPAPIQAK_433.2_461.2
ANGT_HUMAN
0.658





FAFNLYR_465.8_712.4
HEP2_HUMAN
0.658





IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
0.658





IAQYYYTFK_598.8_395.2
F13B_HUMAN
0.658





LPNNVLQEK_527.8_730.4
AFAM_HUMAN
0.658





SLDFTELDVAAEK_719.4_874.5
ANGT_HUMAN
0.658





VELAPLPSWQPVGK_760.9_400.3
ICAM1_HUMAN
0.658





DIIKPDPPK_511.8_342.2
IL12B_HUMAN
0.655





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.655





LSETNR_360.2_330.2
PSG1_HUMAN
0.655





NEIWYR_440.7_357.2
FA12_HUMAN
0.655





SFRPFVPR_335.9_635.3
LBP_HUMAN
0.655





SGAQATWTELPWPHEK_613.3_793.4
HEMO_HUMAN
0.655





TGAQELLR_444.3_530.3
GELS_HUMAN
0.655





VSEADSSNADWVTK_754.9_533.3
CFAB_HUMAN
0.655





VVGGLVALR_442.3_685.4
FA12_HUMAN
0.655





DISEVVTPR_508.3_787.4
CFAB_HUMAN
0.652





IHPSYTNYR_575.8_598.3
PSG2_HUMAN
0.652





VSFSSPLVAISGVALR_802.0_602.4
PAPP1_HUMAN
0.652





YNQLLR_403.7_529.3
ENOA_HUMAN
0.652





ALQDQLVLVAAK_634.9_956.6
ANGT_HUMAN
0.650





IHPSYTNYR_575.8_813.4
PSG2_HUMAN
0.650





TFLTVYWTPER_706.9_401.2
ICAM1_HUMAN
0.650





VQEVLLK_414.8_601.4
HYOU1_HUMAN
0.650





GDTYPAELYITGSILR_885.0_274.1
F13B_HUMAN
0.647





GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
0.647





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
0.647





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
SHBG_HUMAN
0.647





YEFLNGR_449.7_293.1
PLMN_HUMAN
0.647





AQPVQVAEGSEPDGFWEALGGK_758.0_623.4
GELS_HUMAN
0.644





FLNWIK_410.7_561.3
HABP2_HUMAN
0.644





IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
0.644





NTVISVNPSTK_580.3_732.4
VCAM1_HUMAN
0.644





SFEGLGQLEVLTLDHNQLQEVK_833.1_503.3
ALS_HUMAN
0.644





TFLTVYWTPER_706.9_502.3
ICAM1_HUMAN
0.644





AGFAGDDAPR_488.7_701.3
ACTB_HUMAN
0.641





AIGLPEELIQK_605.86_355.2
FABPL_HUMAN
0.641





DISEVVTPR_508.3_472.3
CFAB_HUMAN
0.641





DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
0.641





ENPAVIDFELAPIVDLVR_670.7_811.5
CO6_HUMAN
0.641





FAFNLYR_465.8_565.3
HEP2_HUMAN
0.641





IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
0.641





TNTNEFLIDVDK_704.85_849.5
TF_HUMAN
0.639





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
PSG7_HUMAN
0.638





LDGSTHLNIFFAK_488.3_739.4
PAPP1_HUMAN
0.638





LPDTPQGLLGEAR_683.87_940.5
EGLN_HUMAN
0.638





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_768.5
SHBG_HUMAN
0.638





ALALPPLGLAPLLNLWAKPQGR_770.5_457.3
SHBG_HUMAN
0.635





LPNNVLQEK_527.8_844.5
AFAM_HUMAN
0.635





QINSYVK_426.2_496.3
CBG_HUMAN
0.635





QINSYVK_426.2_610.3
CBG_HUMAN
0.635





TGAQELLR_444.3_658.4
GELS_HUMAN
0.635





TLEAQLTPR_514.8_685.4
HEP2_HUMAN
0.635





WILTAAHTLYPK_471.9_621.4
C1R_HUMAN
0.635





SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.632





AGFAGDDAPR_488.7_630.3
ACTB_HUMAN
0.632





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.632





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
PSG7_HUMAN
0.632





NKPGVYTDVAYYLAWIR_677.0_545.3
FA12_HUMAN
0.632





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.632





YNSQLLSFVR_613.8_734.5
TFR1_HUMAN
0.632





ALVLELAK_428.8_672.4
INHBE_HUMAN
0.630





ENPAVIDFELAPIVDLVR_670.7_601.4
CO6_HUMAN
0.630





NNQLVAGYLQGPNVNLEEK_700.7_999.5
IL1RA_HUMAN
0.630





WGAAPYR_410.7_577.3
PGRP2_HUMAN
0.630





HELTDEELQSLFTNFANVVDK_817.1_854.4
AFAM_HUMAN
0.627





AKPALEDLR_506.8_288.2
APOA1_HUMAN
0.624





AVLHIGEK_289.5_348.7
THBG_HUMAN
0.624





EDTPNSVWEPAK_686.8_630.3
C1S_HUMAN
0.624





SPELQAEAK_486.8_788.4
APOA2_HUMAN
0.624





YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
0.624





NEIVFPAGILQAPFYTR_968.5_456.2
ECE1_HUMAN
0.621





TAVTANLDIR_537.3_288.2
CHL1_HUMAN
0.621





WWGGQPLWITATK_772.4_373.2
ENPP_HUMAN
0.621





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
0.618





ALNFGGIGVVVGHELTHAFDDQGR_837.1_360.2
ECE1_HUMAN
0.618





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.618





FNAVLTNPQGDYDTSTGK_964.5_262.1
C1QC_HUMAN
0.618





GDTYPAELYITGSILR_885.0_922.5
F13B_HUMAN
0.618





IAQYYYTFK_598.8_884.4
F13B_HUMAN
0.618





LEQGENVFLQATDK_796.4_822.4
C1QB_HUMAN
0.618





LSITGTYDLK_555.8_696.4
A1AT_HUMAN
0.618





NTVISVNPSTK_580.3_845.5
VCAM1_HUMAN
0.618





TLAFVR_353.7_492.3
FA7_HUMAN
0.618





TLEAQLTPR_514.8_814.4
HEP2_HUMAN
0.618





TQIDSPLSGK_523.3_703.4
VCAM1_HUMAN
0.618





AVLHIGEK_289.5_292.2
THBG_HUMAN
0.615





FLIPNASQAESK_652.8_931.4
1433Z_HUMAN
0.615





FNAVLTNPQGDYDTSTGK_964.5_333.2
C1QC_HUMAN
0.615





FQSVFTVTR_542.8_722.4
C1QC_HUMAN
0.615





INPASLDK_429.2_630.4
C163A_HUMAN
0.615





IPKPEASFSPR_410.2_506.3
ITIH4_HUMAN
0.615





ITQDAQLK_458.8_803.4
CBG_HUMAN
0.615





TSYQVYSK_488.2_397.2
C163A_HUMAN
0.615





WGAAPYR_410.7_634.3
PGRP2_HUMAN
0.615





AVDIPGLEAATPYR_736.9_286.1
TENA_HUMAN
0.613





DVLLLVHNLPQNLPGYFWYK_810.4_328.2
PSG9_HUMAN
0.613





SFEGLGQLEVLTLDHNQLQEVK_833.1_662.8
ALS_HUMAN
0.613





TASDFITK_441.7_710.4
GELS_HUMAN
0.613





AGPLQAR_356.7_584.4
DEF4_HUMAN
0.610





DYWSTVK_449.7_347.2
APOC3_HUMAN
0.610





FQSVFTVTR_542.79_623.4
C1QC_HUMAN
0.610





FQSVFTVTR_542.79_722.4
C1QC_HUMAN
0.610





SYTITGLQPGTDYK_772.4_352.2
FINC_HUMAN
0.610





FQLSETNR_497.8_476.3
PSG2_HUMAN
0.607





IPKPEASFSPR_410.2_359.2
ITIH4_HUMAN
0.607





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
0.607





SILFLGK_389.2_201.1
THBG_HUMAN
0.607





SLLQPNK_400.2_358.2
CO8A_HUMAN
0.607





VFQFLEK_455.8_811.4
CO5_HUMAN
0.607





VPGLYYFTYHASSR_554.3_720.3
C1QB_HUMAN
0.607





VSAPSGTGHLPGLNPL_506.3_860.5
PSG3_HUMAN
0.607





AGITIPR_364.2_486.3
IL17_HUMAN
0.604





FLIPNASQAESK_652.8_261.2
1433Z_HUMAN
0.604





FQSVFTVTR_542.8_623.4
C1QC_HUMAN
0.604





IRPFFPQQ_516.79_661.4
FIBB_HUMAN
0.604





LLELTGPK_435.8_644.4
A1BG_HUMAN
0.604





SETEIHQGFQHLHQLFAK_717.4_318.1
CBG_HUMAN
0.604





SILFLGK_389.2_577.4
THBG_HUMAN
0.604





STLFVPR_410.2_518.3
PEPD_HUMAN
0.604





TEQAAVAR_423.2_487.3
FA12_HUMAN
0.604





EDTPNSVWEPAK_686.8_315.2
C1S_HUMAN
0.601





FLNWIK_410.7_560.3
HABP2_HUMAN
0.601





ITQDAQLK_458.8_702.4
CBG_HUMAN
0.601





SPELQAEAK_486.8_659.4
APOA2_HUMAN
0.601





TLLPVSKPEIR_418.3_288.2
CO5_HUMAN
0.601





VFQFLEK_455.8_276.2
CO5_HUMAN
0.601





YGLVTYATYPK_638.3_843.4
CFAB_HUMAN
0.601
















TABLE 14







Univariate AUC values early-middle combined windows









Transition
Protein
AUC





LDFHFSSDR_375.2_611.3
INHBC_HUMAN
0.809





ETLLQDFR_511.3_565.3
AMBP_HUMAN
0.802





HHGPTITAK_321.2_275.1
AMBP_HUMAN
0.801





ATVVYQGER_511.8_652.3
APOH_HUMAN
0.799





ETLLQDFR_511.3_322.2
AMBP_HUMAN
0.796





ATVVYQGER_511.8_751.4
APOH_HUMAN
0.795





HHGPTITAK_321.2_432.3
AMBP_HUMAN
0.794





TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
0.791





AHYDLR_387.7_566.3
FETUA_HUMAN
0.789





TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
0.787





FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
0.785





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
0.783





AHYDLR_387.7_288.2
FETUA_HUMAN
0.781





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
0.780





FSVVYAK_407.2_381.2
FETUA_HUMAN
0.777





IQTHSTTYR_369.5_627.3
F13B_HUMAN
0.777





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
0.774





FICPLTGLWPINTLK_887.0_756.9
APOH_HUMAN
0.773





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
0.771





FSVVYAK_407.2_579.4
FETUA_HUMAN
0.770





IQTHSTTYR_369.5_540.3
F13B_HUMAN
0.769





LDFHFSSDR_375.2_464.2
INHBC_HUMAN
0.769





TLAFVR_353.7_274.2
FA7_HUMAN
0.769





FLYHK_354.2_447.2
AMBP_HUMAN
0.766





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
0.762





AIGLPEELIQK_605.86_856.5
FABPL_HUMAN
0.752





FLYHK_354.2_284.2
AMBP_HUMAN
0.752





ELIEELVNITQNQK_557.6_517.3
IL1_HUMAN
0.751





ETPEGAEAKPWYEPIYLGGVFQLEK_951.14_877.5
TNFA_HUMAN
0.751





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.749





LIQDAVTGLTVNGQITGDK_972.0_640.4
ITIH3_HUMAN
0.749





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
0.747





IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
0.745





HFQNLGK_422.2_285.1
AFAM_HUMAN
0.740





NNQLVAGYLQGPNVNLEEK_700.7_999.5
IL1RA_HUMAN
0.738





VVESLAK_373.2_646.4
IBP1_HUMAN
0.738





IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
0.737





IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
0.734





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
SHBG_HUMAN
0.731





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.724





TFLTVYWTPER_706.9_401.2
ICAM1_HUMAN
0.723





GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
0.717





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
PSG7_HUMAN
0.716





WNFAYWAAHQPWSR_607.3_545.3
PRG2_HUMAN
0.716





YTTEIIK_434.2_603.4
C1R_HUMAN
0.716





YTTEIIK_434.2_704.4
C1R_HUMAN
0.716





DIPHWLNPTR_416.9_600.3
PAPP1_HUMAN
0.715





WNFAYWAAHQPWSR_607.3_673.3
PRG2_HUMAN
0.715





IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
0.713





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
SHBG_HUMAN
0.713





GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
0.711





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_768.5
SHBG_HUMAN
0.711





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
PSG7_HUMAN
0.708





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.706





AEHPTWGDEQLFQTTR_639.3_765.4
PGH1_HUMAN
0.705





VVESLAK_373.2_547.3
IBP1_HUMAN
0.705





DADPDTFFAK_563.8_825.4
AFAM_HUMAN
0.704





DAQYAPGYDK_564.3_813.4
CFAB_HUMAN
0.704





GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
0.704





AEHPTWGDEQLFQTTR_639.3_569.3
PGH1_HUMAN
0.702





NFPSPVDAAFR_610.8_959.5
HEMO_HUMAN
0.702





ALALPPLGLAPLLNLWAKPQGR_770.5_457.3
SHBG_HUMAN
0.701





GVTGYFTFNLYLK_508.3_683.9
PSG5_HUMAN
0.701





DFNQFSSGEK_386.8_189.1
FETA_HUMAN
0.699





GDTYPAELYITGSILR_885.0_274.1
F13B_HUMAN
0.699





TLEAQLTPR_514.8_685.4
HEP2_HUMAN
0.699





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
0.699





DAQYAPGYDK_564.3_315.1
CFAB_HUMAN
0.698





VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
0.698





ILPSVPK_377.2_244.2
PGH1_HUMAN
0.695





DADPDTFFAK_563.8_302.1
AFAM_HUMAN
0.694





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
0.694





HTLNQIDEVK_598.8_958.5
FETUA_HUMAN
0.694





NFPSPVDAAFR_610.8_775.4
HEMO_HUMAN
0.694





VSFSSPLVAISGVALR_802.0_715.4
PAPP1_HUMAN
0.694





TLAFVR_353.7_492.3
FA7_HUMAN
0.693





ILPSVPK_377.2_227.2
PGH1_HUMAN
0.691





LLEVPEGR_456.8_356.2
C1S_HUMAN
0.691





TLEAQLTPR_514.8_814.4
HEP2_HUMAN
0.691





IPSNPSHR_303.2_610.3
FBLN3_HUMAN
0.690





LPNNVLQEK_527.8_730.4
AFAM_HUMAN
0.690





NCSFSIIYPVVIK_770.4_555.4
CRHBP_HUMAN
0.690





NCSFSIIYPVVIK_770.4_831.5
CRHBP_HUMAN
0.690





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.690





ALDLSLK_380.2_185.1
ITIH3_HUMAN
0.688





IHWESASLLR_606.3_437.2
CO3_HUMAN
0.688





IPSNPSHR_303.2_496.3
FBLN3_HUMAN
0.688





LDGSTHLNIFFAK_488.3_852.5
PAPP1_HUMAN
0.687





QGHNSVFLIK_381.6_260.2
HEMO_HUMAN
0.687





AVLHIGEK_289.5_348.7
THBG_HUMAN
0.686





VSEADSSNADWVTK_754.9_533.3
CFAB_HUMAN
0.686





TNTNEFLIDVDK_704.85_849.5
TF_HUMAN
0.685





AVLHIGEK_289.5_292.2
THBG_HUMAN
0.683





HTLNQIDEVK_598.8_951.5
FETUA_HUMAN
0.683





VSFSSPLVAISGVALR_802.0_602.4
PAPP1_HUMAN
0.683





IAQYYYTFK_598.8_395.2
F13B_HUMAN
0.681





ALDLSLK_380.2_575.3
ITIH3_HUMAN
0.680





LLEVPEGR_456.8_686.4
C1S_HUMAN
0.680





QGHNSVFLIK_381.6_520.4
HEMO_HUMAN
0.680





SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.680





SFRPFVPR_335.9_272.2
LBP_HUMAN
0.680





AFQVWSDVTPLR_709.88_385.3
MMP2_HUMAN
0.679





FAFNLYR_465.8_712.4
HEP2_HUMAN
0.679





IAQYYYTFK_598.8_884.4
F13B_HUMAN
0.679





ITGFLKPGK_320.9_429.3
LBP_HUMAN
0.679





EHSSLAFWK_552.8_838.4
APOH_HUMAN
0.677





GLQYAAQEGLLALQSELLR_1037.1_858.5
LBP_HUMAN
0.676





YYLQGAK_421.7_327.1
ITIH4_HUMAN
0.676





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
0.675





SFRPFVPR_335.9_635.3
LBP_HUMAN
0.675





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
0.674





ITGFLKPGK_320.9_301.2
LBP_HUMAN
0.673





VQEVLLK_414.8_373.3
HYOU1_HUMAN
0.673





YNSQLLSFVR_613.8_508.3
TFR1_HUMAN
0.673





EHSSLAFWK_552.8_267.1
APOH_HUMAN
0.672





FAFNLYR_465.8_565.3
HEP2_HUMAN
0.672





GDTYPAELYITGSILR_885.0_922.5
F13B_HUMAN
0.672





ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
0.672





NSDQEIDFK_548.3_409.2
S10A5_HUMAN
0.672





TAVTANLDIR_537.3_802.4
CHL1_HUMAN
0.672





YYLQGAK_421.7_516.3
ITIH4_HUMAN
0.672





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
0.670





AIGLPEELIQK_605.86_355.2
FABPL_HUMAN
0.669





ALNFGGIGVVVGHELTHAFDDQGR_837.1_299.2
ECE1_HUMAN
0.668





AQETSGEEISK_589.8_979.5
IBP1_HUMAN
0.668





LPNNVLQEK_527.8_844.5
AFAM_HUMAN
0.668





TGISPLALIK_506.8_654.5
APOB_HUMAN
0.666





DFHINLFQVLPWLK_885.5_543.3
CFAB_HUMAN
0.665





VQEVLLK_414.8_601.4
HYOU1_HUMAN
0.665





YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
0.665





CRPINATLAVEK_457.9_559.3
CGB1_HUMAN
0.663





LDGSTHLNIFFAK_488.3_739.4
PAPP1_HUMAN
0.663





TGISPLALIK_506.8_741.5
APOB_HUMAN
0.663





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.662





SLDFTELDVAAEK_719.4_874.5
ANGT_HUMAN
0.662





TFLTVYWTPER_706.9_502.3
ICAM1_HUMAN
0.662





VRPQQLVK_484.3_609.4
ITIH4_HUMAN
0.662





GLQYAAQEGLLALQSELLR_1037.1_929.5
LBP_HUMAN
0.661





NAVVQGLEQPHGLVVHPLR_688.4_890.6
LRP1_HUMAN
0.661





SILFLGK_389.2_201.1
THBG_HUMAN
0.661





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.659





IHWESASLLR_606.3_251.2
CO3_HUMAN
0.659





SILFLGK_389.2_577.4
THBG_HUMAN
0.658





SVSLPSLDPASAK_636.4_473.3
APOB_HUMAN
0.658





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.658





LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
0.657





DFHINLFQVLPWLK_885.5_400.2
CFAB_HUMAN
0.657





YSHYNER_323.48_418.2
HABP2_HUMAN
0.657





STLFVPR_410.2_272.2
PEPD_HUMAN
0.656





AFQVWSDVTPLR_709.88_347.2
MMP2_HUMAN
0.655





FQSVFTVTR_542.8_722.4
C1QC_HUMAN
0.655





GPGEDFR_389.2_623.3
PTGDS_HUMAN
0.655





LEEHYELR_363.5_288.2
PAI2_HUMAN
0.655





LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
0.655





FQSVFTVTR_542.79_722.4
C1QC_HUMAN
0.654





FTFTLHLETPKPSISSSNLNPR_829.4_787.4
PSG1_HUMAN
0.654





NHYTESISVAK_624.8_252.1
NEUR1_HUMAN
0.654





YSHYNER_323.48_581.3
HABP2_HUMAN
0.654





FQSVFTVTR_542.79_623.4
C1QC_HUMAN
0.652





IEGNLIFDPNNYLPK_874.0_845.5
APOB_HUMAN
0.652





VRPQQLVK_484.3_722.4
ITIH4_HUMAN
0.652





WILTAAHTLYPK_471.9_621.4
C1R_HUMAN
0.652





ITQDAQLK_458.8_803.4
CBG_HUMAN
0.651





SVSLPSLDPASAK_636.4_885.5
APOB_HUMAN
0.651





ESDTSYVSLK_564.8_347.2
CRP_HUMAN
0.650





ESDTSYVSLK_564.8_696.4
CRP_HUMAN
0.650





FQSVFTVTR_542.8_623.4
C1QC_HUMAN
0.650





HELTDEELQSLFTNFANVVDK_817.1_854.4
AFAM_HUMAN
0.650





IEGNLIFDPNNYLPK_874.0_414.2
APOB_HUMAN
0.650





DIIKPDPPK_511.8_342.2
IL12B_HUMAN
0.648





SPELQAEAK_486.8_788.4
APOA2_HUMAN
0.648





VELAPLPSWQPVGK_760.9_400.3
ICAM1_HUMAN
0.648





AQETSGEEISK_589.8_850.4
IBP1_HUMAN
0.647





QTLSWTVTPK_580.8_545.3
PZP_HUMAN
0.647





DISEVVTPR_508.3_787.4
CFAB_HUMAN
0.645





DVLLLVHNLPQNLPGYFWYK_810.4_328.2
PSG9_HUMAN
0.645





QTLSWTVTPK_580.8_818.4
PZP_HUMAN
0.645





SGAQATWTELPWPHEK_613.3_510.3
HEMO_HUMAN
0.645





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
0.645





AVGYLITGYQR_620.8_523.3
PZP_HUMAN
0.644





DISEVVTPR_508.3_472.3
CFAB_HUMAN
0.644





FLNWIK_410.7_560.3
HABP2_HUMAN
0.644





IQHPFTVEEFVLPK_562.0_861.5
PZP_HUMAN
0.644





ALQDQLVLVAAK_634.9_289.2
ANGT_HUMAN
0.643





AVGYLITGYQR_620.8_737.4
PZP_HUMAN
0.643





FLNWIK_410.7_561.3
HABP2_HUMAN
0.643





LEQGENVFLQATDK_796.4_822.4
C1QB_HUMAN
0.643





LSITGTYDLK_555.8_797.4
A1AT_HUMAN
0.641





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.641





VPGLYYFTYHASSR_554.3_720.3
C1QB_HUMAN
0.641





APLTKPLK_289.9_357.2
CRP_HUMAN
0.639





FNAVLTNPQGDYDTSTGK_964.5_333.2
C1QC_HUMAN
0.639





IQHPFTVEEFVLPK_562.0_603.4
PZP_HUMAN
0.639





LSSPAVITDK_515.8_743.4
PLMN_HUMAN
0.639





ALNFGGIGVVVGHELTHAFDDQGR_837.1_360.2
ECE1_HUMAN
0.637





FNAVLTNPQGDYDTSTGK_964.5_262.1
C1QC_HUMAN
0.637





LLELTGPK_435.8_227.2
A1BG_HUMAN
0.637





YNSQLLSFVR_613.8_734.5
TFR1_HUMAN
0.636





DLYHYITSYVVDGEIIIYGPAYSGR_955.5_707.3
PSG1_HUMAN
0.634





GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.634





IHPSYTNYR_575.8_813.4
PSG2_HUMAN
0.634





SGAQATWTELPWPHEK_613.3_793.4
HEMO_HUMAN
0.634





SPELQAEAK_486.8_659.4
APOA2_HUMAN
0.634





ALQDQLVLVAAK_634.9_956.6
ANGT_HUMAN
0.633





ITENDIQIALDDAK_779.9_632.3
APOB_HUMAN
0.632





ITQDAQLK_458.8_702.4
CBG_HUMAN
0.632





LSSPAVITDK_515.8_830.5
PLMN_HUMAN
0.632





SLLQPNK_400.2_358.2
CO8A_HUMAN
0.632





VPGLYYFTYHASSR_554.3_420.2
C1QB_HUMAN
0.632





YGLVTYATYPK_638.3_843.4
CFAB_HUMAN
0.632





AGITIPR_364.2_486.3
IL17_HUMAN
0.630





IHPSYTNYR_575.8_598.3
PSG2_HUMAN
0.630





QINSYVK_426.2_610.3
CBG_HUMAN
0.630





SSNNPHSPIVEEFQVPYNK_729.4_261.2
C1S_HUMAN
0.630





ANDQYLTAAALHNLDEAVK_686.3_317.2
IL1A_HUMAN
0.629





ATWSGAVLAGR_544.8_730.4
A1BG_HUMAN
0.629





TLPFSR_360.7_506.3
LYAM1_HUMAN
0.629





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.629





EFDDDTYDNDIALLQLK_1014.48_388.3
TPA_HUMAN
0.627





EFDDDTYDNDIALLQLK_1014.48_501.3
TPA_HUMAN
0.627





VTGLDFIPGLHPILTLSK_641.04_771.5
LEP_HUMAN
0.627





HVVQLR_376.2_614.4
IL6RA_HUMAN
0.626





LIENGYFHPVK_439.6_343.2
F13B_HUMAN
0.626





LLELTGPK_435.8_644.4
A1BG_HUMAN
0.626





YEVQGEVFTKPQLWP_911.0_392.2
CRP_HUMAN
0.626





DPNGLPPEAQK_583.3_497.2
RET4_HUMAN
0.625





FTFTLHLETPKPSISSSNLNPR_829.4_874.4
PSG1_HUMAN
0.625





YGLVTYATYPK_638.3_334.2
CFAB_HUMAN
0.625





APLTKPLK_289.9_398.8
CRP_HUMAN
0.623





DSPSVWAAVPGK_607.31_301.2
PROF1_HUMAN
0.623





ENPAVIDFELAPIVDLVR_670.7_811.5
CO6_HUMAN
0.623





ILILPSVTR_506.3_559.3
PSGx_HUMAN
0.623





SFEGLGQLEVLTLDHNQLQEVK_833.1_503.3
ALS_HUMAN
0.623





TSESGELHGLTTEEEFVEGIYK_819.06_310.2
TTHY_HUMAN
0.623





AGITIPR_364.2_272.2
IL17_HUMAN
0.622





DPDQTDGLGLSYLSSHIANVER_796.4_328.1
GELS_HUMAN
0.622





ATWSGAVLAGR_544.8_643.4
A1BG_HUMAN
0.620





HVVQLR_376.2_515.3
IL6RA_HUMAN
0.620





QINSYVK_426.2_496.3
CBG_HUMAN
0.620





TLFIFGVTK_513.3_215.1
PSG4_HUMAN
0.620





YEVQGEVFTKPQLWP_911.0_293.1
CRP_HUMAN
0.620





YYGYTGAFR_549.3_771.4
TRFL_HUMAN
0.620





AALAAFNAQNNGSNFQLEEISR_789.1_633.3
FETUA_HUMAN
0.619





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.619





EDTPNSVWEPAK_686.8_630.3
C1S_HUMAN
0.619





NNQLVAGYLQGPNVNLEEK_700.7_357.2
IL1RA_HUMAN
0.619





ELANTIK_394.7_475.3
S10AC_HUMAN
0.618





ENPAVIDFELAPIVDLVR_670.7_601.4
CO6_HUMAN
0.618





GEVTYTTSQVSK_650.3_913.5
EGLN_HUMAN
0.616





NEIWYR_440.7_637.4
FA12_HUMAN
0.616





TLFIFGVTK_513.3_811.5
PSG4_HUMAN
0.616





DLYHYITSYVVDGEIIIYGPAYSGR_955.5_650.3
PSG1_HUMAN
0.615





DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
0.615





VELAPLPSWQPVGK_760.9_342.2
ICAM1_HUMAN
0.615





DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
0.614





GIVEECCFR_585.3_900.3
IGF2_HUMAN
0.614





ITENDIQIALDDAK_779.9_873.5
APOB_HUMAN
0.614





LSETNR_360.2_330.2
PSG1_HUMAN
0.614





LSNENHGIAQR_413.5_519.8
ITIH2_HUMAN
0.614





YEFLNGR_449.7_293.1
PLMN_HUMAN
0.614





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
0.612





GIVEECCFR_585.3_771.3
IGF2_HUMAN
0.612





ILDDLSPR_464.8_587.3
ITIH4_HUMAN
0.611





IRPHTFTGLSGLR_485.6_545.3
ALS_HUMAN
0.611





VVGGLVALR_442.3_784.5
FA12_HUMAN
0.609





LEEHYELR_363.5_417.2
PAI2_HUMAN
0.609





LSNENHGIAQR_413.5_544.3
ITIH2_HUMAN
0.609





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
0.609





VLEPTLK_400.3_587.3
VTDB_HUMAN
0.609





ILILPSVTR_506.3_785.5
PSGx_HUMAN
0.608





TAVTANLDIR_537.3_288.2
CHL1_HUMAN
0.608





WWGGQPLWITATK_772.4_373.2
ENPP2_HUMAN
0.607





ALVLELAK_428.8_672.4
INHBE_HUMAN
0.605





EAQLPVIENK_570.8_329.2
PLMN_HUMAN
0.605





QRPPDLDTSSNAVDLLFFTDESGDSR_961.5_866.3
C1R_HUMAN
0.605





TDAPDLPEENQAR_728.3_613.3
CO5_HUMAN
0.605





TLPFSR_360.7_409.2
LYAM1_HUMAN
0.605





VQTAHFK_277.5_502.3
CO8A_HUMAN
0.605





ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
0.604





FQLPGQK_409.2_275.1
PSG1_HUMAN
0.604





NTVISVNPSTK_580.3_845.5
VCAM1_HUMAN
0.604





VLEPTLK_400.3_458.3
VTDB_HUMAN
0.604





YWGVASFLQK_599.8_849.5
RET4_HUMAN
0.604





AGPLQAR_356.7_584.4
DEF4_HUMAN
0.602





AHQLAIDTYQEFEETYIPK_766.0_521.3
CSH_HUMAN
0.602





DLHLSDVFLK_396.2_366.2
C06_HUMAN
0.602





SSNNPHSPIVEEFQVPYNK_729.4_521.3
C1S_HUMAN
0.602





YWGVASFLQK_599.8_350.2
RET4_HUMAN
0.602





AGPLQAR_356.7_487.3
DEF4_HUMAN
0.601





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.601





EAQLPVIENK_570.8_699.4
PLMN_HUMAN
0.601





EDTPNSVWEPAK_686.8_315.2
C1S_HUMAN
0.601





NTVISVNPSTK_580.3_732.4
VCAM1_HUMAN
0.601
















TABLE 15







Univariate AUC values middle-late combined windows









Transition
Protein
AUC





GDTYPAELYITGSILR_885.0_274.1
F13B_HUMAN
0.7750





TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
0.7667





IQTHSTTYR_369.5_627.3
F13B_HUMAN
0.7667





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
PSG7_HUMAN
0.7667





IQTHSTTYR_369.5_540.3
F13B_HUMAN
0.7646





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
SHBG_HUMAN
0.7646





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_768.5
SHBG_HUMAN
0.7625





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
SHBG_HUMAN
0.7625





TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
0.7604





GDTYPAELYITGSILR_885.0_922.5
F13B_HUMAN
0.7604





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
PSG7_HUMAN
0.7604





TLPFSR_360.7_506.3
LYAM1_HUMAN
0.7563





ALALPPLGLAPLLNLWAKPQGR_770.5_457.3
SHBG_HUMAN
0.7563





IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
0.7542





IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
0.7542





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
0.7500





QGFGNVATNTDGK_654.81_706.3
FIBB_HUMAN
0.7438





ETLLQDFR_511.3_565.3
AMBP_HUMAN
0.7438





ETLLQDFR_511.3_322.2
AMBP_HUMAN
0.7417





IAQYYYTFK_598.8_884.4
F13B_HUMAN
0.7396





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
0.7396





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
0.7396





LDFHFSSDR_375.2_611.3
INHBC_HUMAN
0.7354





YQISVNK_426.2_560.3
FIBB_HUMAN
0.7333





IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
0.7313





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.7292





TLAFVR_353.7_274.2
FA7_HUMAN
0.7229





HHGPTITAK_321.2_275.1
AMBP_HUMAN
0.7229





SLQAFVAVAAR_566.8_487.3
IL23A_HUMAN
0.7208





IAQYYYTFK_598.8_395.2
F13B_HUMAN
0.7208





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
0.7208





DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
0.7208





DPNGLPPEAQK_583.3_497.2
RET4_HUMAN
0.7167





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
0.7146





YQISVNK_426.2_292.1
FIBB_HUMAN
0.7125





TLAFVR_353.7_492.3
FA7_HUMAN
0.7125





IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
0.7125





AEIEYLEK_497.8_389.2
LYAM1_HUMAN
0.7125





YWGVASFLQK_599.8_849.5
RET4_HUMAN
0.7104





TLPFSR_360.7_409.2
LYAM1_HUMAN
0.7104





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.7104





TQILEWAAER_608.8_761.4
EGLN_HUMAN
0.7083





HFQNLGK_422.2_285.1
AFAM_HUMAN
0.7063





FTFTLHLETPKPSISSSNLNPR_829.4_787.4
PSG1_HUMAN
0.7063





DPDQTDGLGLSYLSSHIANVER_796.4_456.2
GELS_HUMAN
0.7063





DADPDTFFAK_563.8_825.4
AFAM_HUMAN
0.7042





YWGVASFLQK_599.8_350.2
RET4_HUMAN
0.7021





DADPDTFFAK_563.8_302.1
AFAM_HUMAN
0.7021





HHGPTITAK_321.2_432.3
AMBP_HUMAN
0.6979





NTVISVNPSTK_580.3_845.5
VCAM1_HUMAN
0.6958





FLYHK_354.2_447.2
AMBP_HUMAN
0.6958





FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
0.6958





FTFTLHLETPKPSISSSNLNPR_829.4_874.4
PSG1_HUMAN
0.6938





FLYHK_354.2_284.2
AMBP_HUMAN
0.6938





EALVPLVADHK_397.9_390.2
HGFA_HUMAN
0.6938





LNIGYIEDLK_589.3_837.4
PAI2_HUMAN
0.6917





QGFGNVATNTDGK_654.81_319.2
FIBB_HUMAN
0.6896





EALVPLVADHK_397.9_439.8
HGFA_HUMAN
0.6896





TNTNEFLIDVDK_704.85_849.5
TF_HUMAN
0.6875





DTYVSSFPR_357.8_272.2
TCEA1_HUMAN
0.6813





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
0.6771





GPGEDFR_389.2_623.3
PTGDS_HUMAN
0.6771





GEVTYTTSQVSK_650.3_913.5
EGLN_HUMAN
0.6771





GEVTYTTSQVSK_650.3_750.4
EGLN_HUMAN
0.6771





FICPLTGLWPINTLK_887.0_756.9
APOH_HUMAN
0.6771





YEFLNGR_449.7_606.3
PLMN_HUMAN
0.6750





YEFLNGR_449.7_293.1
PLMN_HUMAN
0.6750





TLFIFGVTK_513.3_215.1
PSG4_HUMAN
0.6750





LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
0.6750





LLELTGPK_435.8_227.2
A1BG_HUMAN
0.6750





TPSAAYLWVGTGASEAEK_919.5_849.4
GELS_HUMAN
0.6729





FQLPGQK_409.2_275.1
PSG1_HUMAN
0.6729





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
0.6729





DLYHYITSYVVDGEIIIYGPAYSGR_955.5_707.3
PSG1_HUMAN
0.6729





AHYDLR_387.7_566.3
FETUA_HUMAN
0.6729





LLEVPEGR_456.8_356.2
C1S_HUMAN
0.6708





TLFIFGVTK_513.3_811.5
PSG4_HUMAN
0.6688





FQLPGQK_409.2_429.2
PSG1_HUMAN
0.6667





DLYHYITSYVVDGEIIIYGPAYSGR_955.5_650.3
PSG1_HUMAN
0.6667





YYLQGAK_421.7_516.3
ITIH4_HUMAN
0.6646





FSVVYAK_407.2_579.4
FETUA_HUMAN
0.6646





EQLGEFYEALDCLR_871.9_747.4
A1AG1_HUMAN
0.6646





LDFHFSSDR_375.2_464.2
INHBC_HUMAN
0.6625





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.6625





YYLQGAK_421.7_327.1
ITIH4_HUMAN
0.6604





YTTEIIK_434.2_704.4
C1R_HUMAN
0.6604





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.6604





SNPVTLNVLYGPDLPR_585.7_654.4
PSG6_HUMAN
0.6604





LWAYLTIQELLAK_781.5_300.2
ITIH1_HUMAN
0.6604





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
0.6604





ATVVYQGER_511.8_652.3
APOH_HUMAN
0.6604





TPSAAYLWVGTGASEAEK_919.5_428.2
GELS_HUMAN
0.6583





SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.6583





LSSPAVITDK_515.8_830.5
PLMN_HUMAN
0.6583





GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.6583





EFDDDTYDNDIALLQLK_1014.48_501.3
TPA_HUMAN
0.6583





TFLTVYWTPER_706.9_502.3
ICAM1_HUMAN
0.6563





NTVISVNPSTK_580.3_732.4
VCAM1_HUMAN
0.6563





LPNNVLQEK_527.8_730.4
AFAM_HUMAN
0.6563





LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
0.6563





VANYVDWINDR_682.8_818.4
HGFA_HUMAN
0.6542





LSSPAVITDK_515.8_743.4
PLMN_HUMAN
0.6542





LPNNVLQEK_527.8_844.5
AFAM_HUMAN
0.6542





IPGIFELGISSQSDR_809.9_849.4
CO8B_HUMAN
0.6542





GAVHVVVAETDYQSFAVLYLER_822.8_580.3
CO8G_HUMAN
0.6542





FLNWIK_410.7_560.3
HABP2_HUMAN
0.6542





TFLTVYWTPER_706.9_401.2
ICAM1_HUMAN
0.6521





NKPGVYTDVAYYLAWIR_677.0_821.5
FA12_HUMAN
0.6521





AHYDLR_387.7_288.2
FETUA_HUMAN
0.6521





LLEVPEGR_456.8_686.4
C1S_HUMAN
0.6500





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
0.6500





GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
0.6500





ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
0.6500





EAQLPVIENK_570.8_329.2
PLMN_HUMAN
0.6479





CRPINATLAVEK_457.9_559.3
CGB1_HUMAN
0.6479





ATVVYQGER_511.8_751.4
APOH_HUMAN
0.6479





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.6479





AHQLAIDTYQEFEETYIPK_766.0_634.4
CSH_HUMAN
0.6479





VTGLDFIPGLHPILTLSK_641.04_771.5
LEP_HUMAN
0.6458





VANYVDWINDR_682.8_917.4
HGFA_HUMAN
0.6458





SSNNPHSPIVEEFQVPYNK_729.4_261.2
C1S_HUMAN
0.6458





NKPGVYTDVAYYLAWIR_677.0_545.3
FA12_HUMAN
0.6458





GSLVQASEANLQAAQDFVR_668.7_735.4
ITIH1_HUMAN
0.6458





YTTEIIK_434.2_603.4
C1R_HUMAN
0.6438





NEIVFPAGILQAPFYTR_968.5_357.2
ECE1_HUMAN
0.6438





IPGIFELGISSQSDR_809.9_679.3
CO8B_HUMAN
0.6438





SNPVTLNVLYGPDLPR_585.7_817.4
PSG6_HUMAN
0.6417





LLELTGPK_435.8_644.4
A1BG_HUMAN
0.6417





EAQLPVIENK_570.8_699.4
PLMN_HUMAN
0.6417





AEHPTWGDEQLFQTTR_639.3_765.4
PGH1_HUMAN
0.6417





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.6396





TQIDSPLSGK_523.3_703.4
VCAM1_HUMAN
0.6396





YHFEALADTGISSEFYDNANDLLSK_940.8_301.1
CO8A_HUMAN
0.6375





SCDLALLETYCATPAK_906.9_315.2
IGF2_HUMAN
0.6375





NAVVQGLEQPHGLVVHPLR_688.4_285.2
LRP1_HUMAN
0.6375





HVVQLR_376.2_614.4
IL6RA_HUMAN
0.6375





NNQLVAGYLQGPNVNLEEK_700.7_999.5
IL1RA_HUMAN
0.6354





GIVEECCFR_585.3_771.3
IGF2_HUMAN
0.6354





DGSPDVTTADIGANTPDATK_973.5_531.3
PGRP2_HUMAN
0.6354





AEHPTWGDEQLFQTTR_639.3_569.3
PGH1_HUMAN
0.6354





YVVISQGLDKPR_458.9_400.3
LRP1_HUMAN
0.6333





WGAAPYR_410.7_577.3
PGRP2_HUMAN
0.6333





VRPQQLVK_484.3_609.4
ITIH4_HUMAN
0.6333





AVYEAVLR_460.8_750.4
PEPD_HUMAN
0.6333





TQIDSPLSGK_523.3_816.5
VCAM1_HUMAN
0.6313





IPKPEASFSPR_410.2_359.2
ITIH4_HUMAN
0.6313





HELTDEELQSLFTNFANVVDK_817.1_854.4
AFAM_HUMAN
0.6313





GSLVQASEANLQAAQDFVR_668.7_806.4
ITIH1_HUMAN
0.6313





GAVHVVVAETDYQSFAVLYLER_822.8_863.5
CO8G_HUMAN
0.6313





ENPAVIDFELAPIVDLVR_670.7_811.5
CO6_HUMAN
0.6313





VRPQQLVK_484.3_722.4
ITIH4_HUMAN
0.6292





IRPFFPQQ_516.79_372.2
FIBB_HUMAN
0.6292





LWAYLTIQELLAK_781.5_371.2
ITIH1_HUMAN
0.6271





EQLGEFYEALDCLR_871.9_563.3
A1AG1_HUMAN
0.6271





LLDFEFSSGR_585.8_553.3
G6PE_HUMAN
0.6250





LIENGYFHPVK_439.6_343.2
F13B_HUMAN
0.6250





ENPAVIDFELAPIVDLVR_670.7_601.4
CO6_HUMAN
0.6250





WNFAYWAAHQPWSR_607.3_545.3
PRG2_HUMAN
0.6229





TAVTANLDIR_537.3_802.4
CHL1_HUMAN
0.6229





WNFAYWAAHQPWSR_607.3_673.3
PRG2_HUMAN
0.6208





HTLNQIDEVK_598.8_951.5
FETUA_HUMAN
0.6208





DPDQTDGLGLSYLSSHIANVER_796.4_328.1
GELS_HUMAN
0.6208





WGAAPYR_410.7_634.3
PGRP2_HUMAN
0.6188





TEQAAVAR_423.2_487.3
FA12_HUMAN
0.6188





LEEHYELR_363.5_288.2
PAI2_HUMAN
0.6188





GIVEECCFR_585.3_900.3
IGF2_HUMAN
0.6188





YHFEALADTGISSEFYDNANDLLSK_940.8_874.5
CO8A_HUMAN
0.6167





TQILEWAAER_608.8_632.3
EGLN_HUMAN
0.6167





DSPSVWAAVPGK_607.31_301.2
PROF1_HUMAN
0.6167





DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.6167





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
0.6167





YSHYNER_323.48_581.3
HABP2_HUMAN
0.6146





YSHYNER_323.48_418.2
HABP2_HUMAN
0.6146





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
0.6146





EHSSLAFWK_552.8_267.1
APOH_HUMAN
0.6146





TATSEYQTFFNPR_781.4_386.2
THRB_HUMAN
0.6104





SGFSFGFK_438.7_732.4
CO8B_HUMAN
0.6104





GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
0.6104





FSVVYAK_407.2_381.2
FETUA_HUMAN
0.6104





QTLSWTVTPK_580.8_545.3
PZP_HUMAN
0.6083





QLGLPGPPDVPDHAAYHPF_676.7_263.1
ITIH4_HUMAN
0.6083





LSITGTYDLK_555.8_797.4
A1AT_HUMAN
0.6083





LPDTPQGLLGEAR_683.87_940.5
EGLN_HUMAN
0.6083





VVESLAK_373.2_646.4
IBP1_HUMAN
0.6063





VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
0.6063





TEQAAVAR_423.2_615.4
FA12_HUMAN
0.6063





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.6063





QTLSWTVTPK_580.8_818.4
PZP_HUMAN
0.6063





HYINLITR_515.3_301.1
NPY_HUMAN
0.6063





DPTFIPAPIQAK_433.2_461.2
ANGT_HUMAN
0.6063





VSEADSSNADWVTK_754.9_533.3
CFAB_HUMAN
0.6042





VQEVLLK_414.8_373.3
HYOU1_HUMAN
0.6042





SILFLGK_389.2_577.4
THBG_HUMAN
0.6042





IQHPFTVEEFVLPK_562.0_603.4
PZP_HUMAN
0.6042





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.6042





AVGYLITGYQR_620.8_737.4
PZP_HUMAN
0.6042





ATWSGAVLAGR_544.8_643.4
A1BG_HUMAN
0.6042





AKPALEDLR_506.8_288.2
APOA1_HUMAN
0.6042





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.6021





NVNQSLLELHK_432.2_656.3
FRIH_HUMAN
0.6021





IQHPFTVEEFVLPK_562.0_861.5
PZP_HUMAN
0.6021





IPKPEASFSPR_410.2_506.3
ITIH4_HUMAN
0.6021





GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
0.6021





DGSPDVTTADIGANTPDATK_973.5_844.4
PGRP2_HUMAN
0.6021





AVGYLITGYQR_620.8_523.3
PZP_HUMAN
0.6021





ANDQYLTAAALHNLDEAVK_686.3_317.2
IL1A_HUMAN
0.6021





TLYSSSPR_455.7_696.3
IC1_HUMAN
0.6000





LHKPGVYTR_357.5_479.3
HGFA_HUMAN
0.6000





IIGGSDADIK_494.8_260.2
C1S_HUMAN
0.6000





HELTDEELQSLFTNFANVVDK_817.1_906.5
AFAM_HUMAN
0.6000





GGEGTGYFVDFSVR_745.9_869.5
HRG_HUMAN
0.6000





AVLHIGEK_289.5_348.7
THBG_HUMAN
0.6000





ALVLELAK_428.8_672.4
INHBE_HUMAN
0.6000
















TABLE 16







Lasso Summed Coefficients All Windows









Transition
Protein
SumBestCoef's_All












TQILEWAAER_608.8_761.4
EGLN_HUMAN
26.4563





GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
17.6447





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
16.2270





TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
15.1166





LDFHFSSDR_375.2_611.3
INHBC_HUMAN
15.0029





ATVVYQGER_511.8_652.3
APOH_HUMAN
13.2314





ETLLQDFR_511.3_565.3
AMBP_HUMAN
13.1219





GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
12.1693





IQTHSTTYR_369.5_627.3
F13B_HUMAN
9.4737





GDTYPAELYITGSILR_885.0_274.1
F13B_HUMAN
6.1820





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
6.1607





NEIVFPAGILQAPFYTR_968.5_357.2
ECE1_HUMAN
5.5493





AHYDLR_387.7_566.3
FETUA_HUMAN
5.4415





HHGPTITAK_321.2_275.1
AMBP_HUMAN
5.0751





SERPPIFEIR_415.2_564.3
LRP1_HUMAN
4.5620





ALDLSLK_380.2_185.1
ITIH3_HUMAN
4.4275





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
4.3562





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
3.9022





ETLLQDFR_511.3_322.2
AMBP_HUMAN
3.3017





YGIEEHGK_311.5_599.3
CXA1_HUMAN
2.8410





IHWESASLLR_606.3_437.2
CO3_HUMAN
2.6618





GEVTYTTSQVSK_650.3_750.4
EGLN_HUMAN
2.5328





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
2.5088





DLHLSDVFLK_396.2_260.2
CO6_HUMAN
2.4010





SYTITGLQPGTDYK_772.4_352.2
FINC_HUMAN
2.3304





SPELQAEAK_486.8_788.4
APOA2_HUMAN
2.2657





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
2.1480





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
2.0051





LLDFEFSSGR_585.8_944.4
G6PE_HUMAN
1.7763





GPGEDFR_389.2_623.3
PTGDS_HUMAN
1.6782





DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
1.6581





IQTHSTTYR_369.5_540.3
F13B_HUMAN
1.6107





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
1.4779





STLFVPR_410.2_518.3
PEPD_HUMAN
1.3961





GEVTYTTSQVSK_650.3_913.5
EGLN_HUMAN
1.3306





ALVLELAK_428.8_672.4
INHBE_HUMAN
1.2973





ANDQYLTAAALHNLDEAVK_686.3_317.2
IL1A_HUMAN
1.1850





STLFVPR_410.2_272.2
PEPD_HUMAN
1.1842





GPGEDFR_389.2_322.2
PTGDS_HUMAN
1.1742





IPSNPSHR_303.2_610.3
FBLN3_HUMAN
1.0868





HHGPTITAK_321.2_432.3
AMBP_HUMAN
1.0813





TLAFVR_353.7_274.2
FA7_HUMAN
1.0674





DLHLSDVFLK_396.2_366.2
CO6_HUMAN
0.9887





EFDDDTYDNDIALLQLK_1014.48_501.3
TPA_HUMAN
0.9468





AIGLPEELIQK_605.86_856.5
FABPL_HUMAN
0.7740





LIENGYFHPVK_439.6_343.2
F13B_HUMAN
0.7740





LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
0.6748





EHSSLAFWK_552.8_267.1
APOH_HUMAN
0.6035





NCSFSIIYPVVIK_770.4_831.5
CRHBP_HUMAN
0.6014





ALNSIIDVYHK_424.9_661.3
S10A8_HUMAN
0.5987





WGAAPYR_410.7_577.3
PGRP2_HUMAN
0.5699





TQILEWAAER_608.8_632.3
EGLN_HUMAN
0.5395





IPSNPSHR_303.2_496.3
FBLN3_HUMAN
0.4845





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.4398





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
0.3883





FLYHK_354.2_284.2
AMBP_HUMAN
0.3410





LPDTPQGLLGEAR_683.87_940.5
EGLN_HUMAN
0.3282





EALVPLVADHK_397.9_390.2
HGFA_HUMAN
0.3091





IEGNLIFDPNNYLPK_874.0_845.5
APOB_HUMAN
0.2933





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
0.2896





VPLALFALNR_557.3_620.4
PEPD_HUMAN
0.2875





FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
0.2823





NAVVQGLEQPHGLVVHPLR_688.4_890.6
LRP1_HUMAN
0.2763





ALNFGGIGVVVGHELTHAFDDQGR_837.1_299.2
ECE1_HUMAN
0.2385





SPELQAEAK_486.8_659.4
APOA2_HUMAN
0.2232





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
0.1608





VANYVDWINDR_682.8_917.4
HGFA_HUMAN
0.1507





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.1487





HVVQLR_376.2_614.4
IL6RA_HUMAN
0.1256





TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
0.1170





ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
0.1159





EALVPLVADHK_397.9_439.8
HGFA_HUMAN
0.0979





AITPPHPASQANIIFDITEGNLR_825.8_917.5
FBLN1_HUMAN
0.0797





FLYHK_354.2_447.2
AMBP_HUMAN
0.0778





SLLQPNK_400.2_358.2
CO8A_HUMAN
0.0698





TGISPLALIK_506.8_654.5
APOB_HUMAN
0.0687





ALNFGGIGVVVGHELTHAFDDQGR_837.1_360.2
ECE1_HUMAN
0.0571





DYWSTVK_449.7_347.2
APOC3_HUMAN
0.0357





AITPPHPASQANIIFDITEGNLR_825.8_459.3
FBLN1_HUMAN
0.0313





AALAAFNAQNNGSNFQLEEISR_789.1_633.3
FETUA_HUMAN
0.0279





DPNGLPPEAQK_583.3_497.2
RET4_HUMAN
0.0189





TLAFVR_353.7_492.3
FA7_HUMAN
0.0087
















TABLE 17







Lasso Summed Coefficients Early Window









Transition
Protein
SumBestCoef's Early












LDFHFSSDR_375.2_611.3
INHBC_HUMAN
40.2030





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
22.6926





GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
17.4169





GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
3.4083





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
3.2559





EFDDDTYDNDIALLQLK_1014.48_388.3
TPA_HUMAN
2.4073





STLFVPR_410.2_272.2
PEPD_HUMAN
2.3984





WGAAPYR_410.7_634.3
PGRP2_HUMAN
2.3564





LDFHFSSDR_375.2_464.2
INHBC_HUMAN
1.9038





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
1.7999





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
1.5802





GPGEDFR_389.2_623.3
PTGDS_HUMAN
1.4223





IHWESASLLR_606.3_437.2
CO3_HUMAN
1.2735





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
1.2652





AQPVQVAEGSEPDGFWEALGGK_758.0_623.4
GELS_HUMAN
1.2361





FAFNLYR_465.8_565.3
HEP2_HUMAN
1.0876





SGFSFGFK_438.7_732.4
CO8B_HUMAN
1.0459





VVGGLVALR_442.3_784.5
FA12_HUMAN
0.9572





IEGNLIFDPNNYLPK_874.0_845.5
APOB_HUMAN
0.9571





ETLLQDFR_511.3_565.3
AMBP_HUMAN
0.7851





LSIPQITTK_500.8_687.4
PSG5_HUMAN
0.7508





TASDFITK_441.7_710.4
GELS_HUMAN
0.6549





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.6179





AFQVWSDVTPLR_709.88_347.2
MMP2_HUMAN
0.6077





TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
0.5889





LSITGTYDLK_555.8_696.4
A1AT_HUMAN
0.5857





ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
0.5334





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
0.5257





NEIVFPAGILQAPFYTR_968.5_357.2
ECE1_HUMAN
0.4601





SLLQPNK_400.2_358.2
CO8A_HUMAN
0.4347





LSIPQITTK_500.8_800.5
PSG5_HUMAN
0.4329





GVTGYFTFNLYLK_508.3_683.9
PSG5_HUMAN
0.4302





IQTHSTTYR_369.5_627.3
F13B_HUMAN
0.4001





ATVVYQGER_511.8_652.3
APOH_HUMAN
0.3909





LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
0.3275





NNQLVAGYLQGPNVNLEEK_700.7_999.5
IL1RA_HUMAN
0.3178





SERPPIFEIR_415.2_564.3
LRP1_HUMAN
0.3112





AHYDLR_387.7_566.3
FETUA_HUMAN
0.2900





NEIWYR_440.7_637.4
FA12_HUMAN
0.2881





ALDLSLK_380.2_575.3
ITIH3_HUMAN
0.2631





NKPGVYTDVAYYLAWIR_677.0_545.3
FA12_HUMAN
0.2568





SYTITGLQPGTDYK_772.4_352.2
FINC_HUMAN
0.2277





LFIPQITPK_528.8_683.4
PSG11_HUMAN
0.2202





IIGGSDADIK_494.8_260.2
C1S_HUMAN
0.2182





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
0.2113





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
0.2071





AEIEYLEK_497.8_389.2
LYAM1_HUMAN
0.1925





EHSSLAFWK_552.8_838.4
APOH_HUMAN
0.1899





LPDTPQGLLGEAR_683.87_940.5
EGLN_HUMAN
0.1826





WGAAPYR_410.7_577.3
PGRP2_HUMAN
0.1669





LFIPQITPK_528.8_261.2
PSG11_HUMAN
0.1509





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.1446





DSPSVWAAVPGK_607.31_301.2
PROF1_HUMAN
0.1425





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
0.1356





ALDLSLK_380.2_185.1
ITIH3_HUMAN
0.1305





TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
0.1249





NAVVQGLEQPHGLVVHPLR_688.4_890.6
LRP1_HUMAN
0.1092





NSDQEIDFK_548.3_409.2
S10A5_HUMAN
0.0937





YNSQLLSFVR_613.8_508.3
TFR1_HUMAN
0.0905





LLDFEFSSGR_585.8_553.3
G6PE_HUMAN
0.0904





ALNFGGIGVVVGHELTHAFDDQGR_837.1_299.2
ECE1_HUMAN
0.0766





STLFVPR_410.2_518.3
PEPD_HUMAN
0.0659





DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.0506





EHSSLAFWK_552.8_267.1
APOH_HUMAN
0.0452





TQIDSPLSGK_523.3_703.4
VCAM1_HUMAN
0.0447





HHGPTITAK_321.2_432.3
AMBP_HUMAN
0.0421





AFQVWSDVTPLR_709.88_385.3
MMP2_HUMAN
0.0417





TGISPLALIK_506.8_741.5
APOB_HUMAN
0.0361





DLHLSDVFLK_396.2_366.2
CO6_HUMAN
0.0336





NTVISVNPSTK_580.3_845.5
VCAM1_HUMAN
0.0293





DIIKPDPPK_511.8_342.2
IL12B_HUMAN
0.0219





TGISPLALIK_506.8_654.5
APOB_HUMAN
0.0170





GAVHVVVAETDYQSFAVLYLER_822.8_580.3
CO8G_HUMAN
0.0151





LNIGYIEDLK_589.3_837.4
PAI2_HUMAN
0.0048





GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.0008
















TABLE 18







Lasso Summed Coefficients Early Middle Combined Windows









Transition
Protein
SumBestCoef's EM












ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
24.8794





AHYDLR_387.7_566.3
FETUA_HUMAN
20.8397





LDFHFSSDR_375.2_611.3
INHBC_HUMAN
18.6630





GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
14.7270





HHGPTITAK_321.2_432.3
AMBP_HUMAN
11.1473





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
10.9421





NNQLVAGYLQGPNVNLEEK_700.7_999.5
IL1RA_HUMAN
10.4646





HHGPTITAK_321.2_275.1
AMBP_HUMAN
7.7034





ETLLQDFR_511.3_565.3
AMBP_HUMAN
6.7435





TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
5.7356





SLQAFVAVAAR_566.8_487.3
IL23A_HUMAN
4.8684





YGIEEHGK_311.5_599.3
CXA1_HUMAN
4.4936





ATVVYQGER_511.8_652.3
APOH_HUMAN
3.9524





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
3.8937





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
3.8022





ALNFGGIGVVVGHELTHAFDDQGR_837.1_299.2
ECE1_HUMAN
3.7603





ETLLQDFR_511.3_322.2
AMBP_HUMAN
3.1792





TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
3.1046





AALAAFNAQNNGSNFQLEEISR_789.1_633.3
FETUA_HUMAN
3.0021





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
2.6899





DLHLSDVFLK_396.2_366.2
CO6_HUMAN
2.5525





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
2.4794





SYTITGLQPGTDYK_772.4_352.2
FINC_HUMAN
2.4535





IQTHSTTYR_369.5_627.3
F13B_HUMAN
2.3395





AHYDLR_387.7_288.2
FETUA_HUMAN
2.1058





NCSFSIIYPVVIK_770.4_831.5
CRHBP_HUMAN
2.0427





AIGLPEELIQK_605.86_856.5
FABPL_HUMAN
1.5354





GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
1.4175





TGISPLALIK_506.8_654.5
APOB_HUMAN
1.3562





YTTEIIK_434.2_603.4
C1R_HUMAN
1.2855





ETPEGAEAKPWYEPIYLGGVFQLEK_951.14_877.5
TNFA_HUMAN
1.1198





ANDQYLTAAALHNLDEAVK_686.3_317.2
IL1A_HUMAN
1.0574





ILPSVPK_377.2_244.2
PGH1_HUMAN
1.0282





ALDLSLK_380.2_185.1
ITIH3_HUMAN
1.0057





NAVVQGLEQPHGLVVHPLR_688.4_890.6
LRP1_HUMAN
0.9884





IEGNLIFDPNNYLPK_874.0_845.5
APOB_HUMAN
0.9846





ALDLSLK_380.2_575.3
ITIH3_HUMAN
0.9327





LDFHFSSDR_375.2_464.2
INHBC_HUMAN
0.8852





LSIPQITTK_500.8_800.5
PSG5_HUMAN
0.7740





SERPPIFEIR_415.2_564.3
LRP1_HUMAN
0.7013





AEAQAQYSAAVAK_654.3_709.4
ITIH4_HUMAN
0.6752





IHWESASLLR_606.3_437.2
CO3_HUMAN
0.6176





LFIPQITPK_528.8_261.2
PSG11_HUMAN
0.5345





FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
0.5022





DFNQFSSGEK_386.8_189.1
FETA_HUMAN
0.4932





TATSEYQTFFNPR_781.4_272.2
THRB_HUMAN
0.4725





SPELQAEAK_486.8_788.4
APOA2_HUMAN
0.4153





FIVGFTR_420.2_261.2
CCL20_HUMAN
0.4111





TLLPVSKPEIR_418.3_288.2
CO5_HUMAN
0.3409





DIIKPDPPK_511.8_342.2
IL12B_HUMAN
0.3403





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
0.3073





YTTEIIK_434.2_704.4
C1R_HUMAN
0.3050





SPELQAEAK_486.8_659.4
APOA2_HUMAN
0.3047





TGISPLALIK_506.8_741.5
APOB_HUMAN
0.3031





VVGGLVALR_442.3_784.5
FA12_HUMAN
0.2960





WWGGQPLWITATK_772.4_373.2
ENPP2_HUMAN
0.2498





TQILEWAAER_608.8_632.3
EGLN_HUMAN
0.2342





STLFVPR_410.2_272.2
PEPD_HUMAN
0.2035





DYWSTVK_449.7_347.2
APOC3_HUMAN
0.2018





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.1614





SILFLGK_389.2_201.1
THBG_HUMAN
0.1593





AFQVWSDVTPLR_709.88_385.3
MMP2_HUMAN
0.1551





IQTHSTTYR_369.5_540.3
F13B_HUMAN
0.1434





AFQVWSDVTPLR_709.88_347.2
MMP2_HUMAN
0.1420





LSITGTYDLK_555.8_797.4
A1AT_HUMAN
0.1395





LSITGTYDLK_555.8_696.4
A1 AT_HUMAN
0.1294





WGAAPYR_410.7_634.3
PGRP2_HUMAN
0.1259





IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
0.1222





FICPLTGLWPINTLK_887.0_756.9
APOH_HUMAN
0.1153





QINSYVK_426.2_496.3
CBG_HUMAN
0.1055





TATSEYQTFFNPR_781.4_386.2
THRB_HUMAN
0.0921





AFLEVNEEGSEAAASTAVVIAGR_764.4_685.4
ANT3_HUMAN
0.0800





AKPALEDLR_506.8_288.2
APOA1_HUMAN
0.0734





GPGEDFR_389.2_623.3
PTGDS_HUMAN
0.0616





SLLQPNK_400.2_358.2
CO8A_HUMAN
0.0565





ESDTSYVSLK_564.8_347.2
CRP_HUMAN
0.0497





FFQYDTWK_567.8_712.3
IGF2_HUMAN
0.0475





FSVVYAK_407.2_579.4
FETUA_HUMAN
0.0437





TQIDSPLSGK_523.3_703.4
VCAM1_HUMAN
0.0401





LNIGYIEDLK_589.3_837.4
PAI2_HUMAN
0.0307





IPSNPSHR_303.2_496.3
FBLN3_HUMAN
0.0281





NEIVFPAGILQAPFYTR_968.5_456.2
ECE1_HUMAN
0.0276





TLAFVR_353.7_274.2
FA7_HUMAN
0.0220





AEAQAQYSAAVAK_654.3_908.5
ITIH4_HUMAN
0.0105





AQPVQVAEGSEPDGFWEALGGK_758.0_623.4
GELS_HUMAN
0.0103





QINSYVK_426.2_610.3
CBG_HUMAN
0.0080





NSDQEIDFK_548.3_409.2
S10A5_HUMAN
0.0017
















TABLE 19







Lasso Summed Coefficients Middle-Late Combined Windows









Transition
Protein
SumBestCoef's ML












TQILEWAAER_608.8_761.4
EGLN_HUMAN
45.0403





GDTYPAELYITGSILR_885.0_274.1
F13B_HUMAN
31.4888





GEVTYTTSQVSK_650.3_750.4
EGLN_HUMAN
22.3322





GEVTYTTSQVSK_650.3_913.5
EGLN_HUMAN
17.0298





AVDIPGLEAATPYR_736.9_286.1
TENA_HUMAN
8.6029





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
7.9874





NEIVFPAGILQAPFYTR_968.5_357.2
ECE1_HUMAN
7.8773





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
6.8534





DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
5.0045





GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
4.6191





ATVVYQGER_511.8_652.3
APOH_HUMAN
4.2522





IAQYYYTFK_598.8_395.2
F13B_HUMAN
3.5721





NAVVQGLEQPHGLVVHPLR_688.4_285.2
LRP1_HUMAN
3.2886





IAQYYYTFK_598.8_884.4
F13B_HUMAN
2.9205





SERPPIFEIR_415.2_564.3
LRP1_HUMAN
2.4237





TLAFVR_353.7_274.2
FA7_HUMAN
2.1925





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
2.1591





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
2.1586





EFDDDTYDNDIALLQLK_1014.48_501.3
TPA_HUMAN
2.0892





TLAFVR_353.7_492.3
FA7_HUMAN
2.0399





EALVPLVADHK_397.9_439.8
HGFA_HUMAN
1.8856





ETLLQDFR_511.3_565.3
AMBP_HUMAN
1.7809





ALNSIIDVYHK_424.9_661.3
S10A8_HUMAN
1.6114





AITPPHPASQANIIFDITEGNLR_825.8_917.5
FBLN1_HUMAN
1.3423





EQLGEFYEALDCLR_871.9_747.4
A1AG1_HUMAN
1.2473





TFLTVYWTPER_706.9_502.3
ICAM1_HUMAN
0.9851





NTVISVNPSTK_580.3_845.5
VCAM1_HUMAN
0.9845





FLNWIK_410.7_560.3
HABP2_HUMAN
0.9798





ETPEGAEAKPWYEPIYLGGVFQLEK_951.14_990.6
TNFA_HUMAN
0.9679





NVNQSLLELHK_432.2_656.3
FRIH_HUMAN
0.8280





VPLALFALNR_557.3_620.4
PEPD_HUMAN
0.7851





IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
0.7731





AVYEAVLR_460.8_750.4
PEPD_HUMAN
0.7452





LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
0.7145





TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
0.6584





YSHYNER_323.48_418.2
HABP2_HUMAN
0.5244





LLELTGPK_435.8_644.4
A1BG_HUMAN
0.5072





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
0.5010





DPNGLPPEAQK_583.3_497.2
RET4_HUMAN
0.4803





AHYDLR_387.7_566.3
FETUA_HUMAN
0.4693





LPNNVLQEK_527.8_844.5
AFAM_HUMAN
0.4640





VTGLDFIPGLHPILTLSK_641.04_771.5
LEP_HUMAN
0.4584





LLELTGPK_435.8_227.2
A1BG_HUMAN
0.4515





YTTEIIK_434.2_704.4
C1R_HUMAN
0.4194





SSNNPHSPIVEEFQVPYNK_729.4_261.2
C1S_HUMAN
0.3886





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.3405





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.3368





EQLGEFYEALDCLR_871.9_563.3
A1AG1_HUMAN
0.3348





TQILEWAAER_608.8_632.3
EGLN_HUMAN
0.2943





ALVLELAK_428.8_672.4
INHBE_HUMAN
0.2895





LSNENHGIAQR_413.5_519.8
ITIH2_HUMAN
0.2835





LPNNVLQEK_527.8_730.4
AFAM_HUMAN
0.2764





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
0.2694





GDTYPAELYITGSILR_885.0_922.5
F13B_HUMAN
0.2594





GPITSAAELNDPQSILLR_632.3_601.4
EGLN_HUMAN
0.2388





ANLINNIFELAGLGK_793.9_834.5
LCAP_HUMAN
0.2158





SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.1921





EQSLNVSQDLDTIR_539.9_557.8
SYNE2_HUMAN
0.1836





FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
0.1806





ALNFGGIGVVVGHELTHAFDDQGR_837.1_360.2
ECE1_HUMAN
0.1608





ANDQYLTAAALHNLDEAVK_686.3_317.2
IL1A_HUMAN
0.1607





AQETSGEEISK_589.8_979.5
IBP1_HUMAN
0.1598





QINSYVK_426.2_610.3
CBG_HUMAN
0.1592





SILFLGK_389.2_577.4
THBG_HUMAN
0.1412





DAVVYPILVEFTR_761.4_286.1
HYOU1_HUMAN
0.1298





LIEIANHVDK_384.6_683.3
ADA12_HUMAN
0.1297





LSSPAVITDK_515.8_830.5
PLMN_HUMAN
0.1272





LIENGYFHPVK_439.6_343.2
F13B_HUMAN
0.1176





AALAAFNAQNNGSNFQLEEISR_789.1_633.3
FETUA_HUMAN
0.1160





IQTHSTTYR_369.5_540.3
F13B_HUMAN
0.1146





IPKPEASFSPR_410.2_506.3
ITIH4_HUMAN
0.1001





LLDFEFSSGR_585.8_944.4
G6PE_HUMAN
0.0800





YYLQGAK_421.7_516.3
ITIH4_HUMAN
0.0793





VRPQQLVK_484.3722.4
ITIH4_HUMAN
0.0744





GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.0610





ITQDAQLK_458.8_803.4
CBG_HUMAN
0.0541





TATSEYQTFFNPR_781.4_272.2
THRB_HUMAN
0.0511





ETLLQDFR_511.3_322.2
AMBP_HUMAN
0.0472





YEFLNGR_449.7_293.1
PLMN_HUMAN
0.0345





TLYSSSPR_455.7_696.3
IC1_HUMAN
0.0316





SLLQPNK_400.2_599.4
CO8A_HUMAN
0.0242





LLEVPEGR_456.8_686.4
C1S_HUMAN
0.0168





GGEGTGYFVDFSVR_745.9_722.4
HRG_HUMAN
0.0110





IQTHSTTYR_369.5_627.3
F13B_HUMAN
0.0046
















TABLE 20







Random Forest SummedGini All Windows










Transition
Protein
SumBestGini
Probability













TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
12.6521
1.0000





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
11.9585
0.9985





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
SHBG_HUMAN
10.5229
0.9971





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
PSG7_HUMAN
10.2666
0.9956





ETLLQDFR_511.3_565.3
AMBP_HUMAN
8.9862
0.9941





ALALPPLGLAPLLNLWAKPQGR_770.5_457.3
SHBG_HUMAN
8.6349
0.9927





IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
8.5838
0.9912





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
8.2463
0.9897





IQTHSTTYR_369.5_627.3
F13B_HUMAN
8.1199
0.9883





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
PSG7_HUMAN
7.7393
0.9868





IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
7.5601
0.9853





HHGPTITAK_321.2_432.3
AMBP_HUMAN
7.5181
0.9838





ETLLQDFR_511.3_322.2
AMBP_HUMAN
7.4043
0.9824





FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
7.2072
0.9809





GPGEDFR_389.2_623.3
PTGDS_HUMAN
7.1422
0.9794





IQTHSTTYR_369.5_540.3
F13B_HUMAN
6.9809
0.9780





TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
6.6191
0.9765





ATVVYQGER_511.8_652.3
APOH_HUMAN
6.5813
0.9750





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
SHBG_HUMAN
6.3244
0.9736





HHGPTITAK_321.2_275.1
AMBP_HUMAN
6.3081
0.9721





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_768.5
SHBG_HUMAN
6.0654
0.9706





GDTYPAELYITGSILR_885.0_274.1
F13B_HUMAN
5.9580
0.9692





ATVVYQGER_511.8_751.4
APOH_HUMAN
5.9313
0.9677





LDFHFSSDR_375.2_611.3
INHBC_HUMAN
5.8533
0.9662





LDFHFSSDR_375.2_464.2
INHBC_HUMAN
5.8010
0.9648





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
5.6648
0.9633





DTYVSSFPR_357.8_272.2
TCEA1_HUMAN
5.6549
0.9618





LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
5.3806
0.9604





FLYHK_354.2_447.2
AMBP_HUMAN
5.3764
0.9589





SPELQAEAK_486.8_659.4
APOA2_HUMAN
5.1896
0.9574





GPGEDFR_389.2_322.2
PTGDS_HUMAN
5.1876
0.9559





SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
5.1159
0.9545





TNTNEFLIDVDK_704.85_849.5
TF_HUMAN
4.7216
0.9530





FICPLTGLWPINTLK_887.0_756.9
APOH_HUMAN
4.6421
0.9515





LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
4.6250
0.9501





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
4.4215
0.9486





SYTITGLQPGTDYK_772.4_680.3
FINC_HUMAN
4.4103
0.9471





TLPFSR_360.7_409.2
LYAM1_HUMAN
4.2148
0.9457





SPELQAEAK_486.8_788.4
APOA2_HUMAN
4.2081
0.9442





GDTYPAELYITGSILR_885.0_922.5
F13B_HUMAN
4.0672
0.9427





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
3.9248
0.9413





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
3.9034
0.9398





FLYHK_354.2_284.2
AMBP_HUMAN
3.8982
0.9383





SGVDLADSNQK_567.3_591.3
VGFR3_HUMAN
3.8820
0.9369





LDGSTHLNIFFAK_488.3_739.4
PAPP1_HUMAN
3.8770
0.9354





HFQNLGK_422.2_527.2
AFAM_HUMAN
3.7628
0.9339





IAQYYYTFK_598.8_884.4
F13B_HUMAN
3.7040
0.9325





GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
3.6538
0.9310





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
3.6148
0.9295





IAQYYYTFK_598.8_395.2
F13B_HUMAN
3.5820
0.9280





GSLVQASEANLQAAQDFVR_668.7_735.4
ITIH1_HUMAN
3.5283
0.9266





TLPFSR_360.7_506.3
LYAM1_HUMAN
3.5064
0.9251





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
3.5045
0.9236





IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
3.4990
0.9222





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
3.4514
0.9207





TQILEWAAER_608.8_761.4
EGLN_HUMAN
3.4250
0.9192





AHQLAIDTYQEFEETYIPK_766.0_521.3
CSH_HUMAN
3.3634
0.9178





TEFLSNYLTNVDDITLVPGTLGR_846.8_600.3
ENPP2_HUMAN
3.3512
0.9163





HFQNLGK_422.2_285.1
AFAM_HUMAN
3.3375
0.9148





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
3.3371
0.9134





TELRPGETLNVNFLLR_624.68_875.5
CO3_HUMAN
3.1889
0.9119





YQISVNK_426.2_292.1
FIBB_HUMAN
3.1668
0.9104





YGFYTHVFR_397.2_659.4
THRB_HUMAN
3.1188
0.9075





SEPRPGVLLR_375.2_454.3
FA7_HUMAN
3.1068
0.9060





IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
3.0917
0.9046





ILILPSVTR_506.3_785.5
PSGx_HUMAN
3.0346
0.9031





TLAFVR_353.7_492.3
FA7_HUMAN
3.0237
0.9016





AKPALEDLR_506.8_288.2
APOA1_HUMAN
3.0189
0.9001
















TABLE 21







Random Forest SummedGini Early Window










Transition
Protein
SumBestGini
Probability













LSETNR_360.2_330.2
PSG1_HUMAN
26.3610
1.0000





ALNFGGIGVVVGHELTHAFDDQGR_837.1_1299.2
ECE1_HUMAN
24.8946
0.9985





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
24.8817
0.9971





LDFHFSSDR_375.2_464.2
INHBC_HUMAN
24.3229
0.9956





LDFHFSSDR_375.2_611.3
INHBC_HUMAN
22.2162
0.9941





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
19.6528
0.9927





TSESGELHGLTTEEEFVEGIYK_819.06_310.2
TTHY_HUMAN
19.2430
0.9912





ATVVYQGER_511.8_751.4
APOH_HUMAN
19.1321
0.9897





IQTHSTTYR_369.5_627.3
F13B_HUMAN
17.1528
0.9883





ATVVYQGER_511.8_652.3
APOH_HUMAN
17.0214
0.9868





HYINLITR_515.3_301.1
NPY_HUMAN
16.6713
0.9853





FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
15.0826
0.9838





AFLEVNEEGSEAAASTAVVIAGR_764.4_614.4
ANT3_HUMAN
14.6110
0.9824





IQTHSTTYR_369.5_540.3
F13B_HUMAN
14.5473
0.9809





AHQLAIDTYQEFEETYIPK_766.0_521.3
CSH_HUMAN
14.0287
0.9794





TGAQELLR_444.3_530.3
GELS_HUMAN
13.1389
0.9780





DSPSVWAAVPGK_607.31_301.2
PROF1_HUMAN
12.9571
0.9765





NCSFSIIYPVVIK_770.4_555.4
CRHBP_HUMAN
12.5867
0.9750





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
SHBG_HUMAN
12.1138
0.9721





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
11.7054
0.9706





TSDQIHFFFAK_447.6_512.3
ANT3_HUMAN
11.4261
0.9692





IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
11.0968
0.9677





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
10.9040
0.9662





EQSLNVSQDLDTIR_539.9_758.4
SYNE2_HUMAN
10.6572
0.9648





IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
10.0629
0.9633





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
10.0449
0.9618





ETPEGAEAKPWYEPIYLGGVFQLEK_951.14_877.5
TNFA_HUMAN
10.0286
0.9604





LPDTPQGLLGEAR_683.87_427.2
EGLN_HUMAN
9.8980
0.9589





FSVVYAK_407.2_381.2
FETUA_HUMAN
9.7971
0.9574





YGIEEHGK_311.5_599.3
CXA1_HUMAN
9.7850
0.9559





GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
9.7587
0.9545





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
SHBG_HUMAN
9.3421
0.9530





HHGPTITAK_321.2_275.1
AMBP_HUMAN
9.2728
0.9515





ALALPPLGLAPLLNLWAKPQGR_770.5_457.3
SHBG_HUMAN
9.2431
0.9501





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
9.1368
0.9486





AFQVWSDVTPLR_709.88_347.2
MMP2_HUMAN
8.6789
0.9471





AFQVWSDVTPLR_709.88_385.3
MMP2_HUMAN
8.6339
0.9457





ETLLQDFR_511.3_322.2
AMBP_HUMAN
8.6252
0.9442





ETLLQDFR_511.3_565.3
AMBP_HUMAN
8.3957
0.9427





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
8.3179
0.9413





HHGPTITAK_321.2_432.3
AMBP_HUMAN
8.2567
0.9398





DTYVSSFPR_357.8_272.2
TCEA1_HUMAN
8.2028
0.9383





GGEGTGYFVDFSVR_745.9_722.4
HRG_HUMAN
8.0751
0.9369





DFNQFSSGEK_386.8_189.1
FETA_HUMAN
8.0401
0.9354





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
PSG7_HUMAN
7.9924
0.9339





VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
7.8630
0.9325





QGHNSVFLIK_381.6_260.2
HEMO_HUMAN
7.8588
0.9310





AQETSGEEISK_589.8_979.5
IBP1_HUMAN
7.7787
0.9295





DIPHWLNPTR_416.9_600.3
PAPP1_HUMAN
7.6393
0.9280





SPELQAEAK_486.8_788.4
APOA2_HUMAN
7.6248
0.9266





QGHNSVFLIK_381.6_520.4
HEMO_HUMAN
7.6042
0.9251





LIENGYFHPVK_439.6_343.2
F13B_HUMAN
7.5771
0.9236





DIIKPDPPK_511.8_342.2
IL12B_HUMAN
7.5523
0.9222





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
7.5296
0.9207





TELRPGETLNVNFLLR_624.68_875.5
CO3_HUMAN
7.4484
0.9178





QINSYVK_426.2_496.3
CBG_HUMAN
7.3266
0.9163





YNSQLLSFVR_613.8_734.5
TFR1_HUMAN
7.3262
0.9148





TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
7.1408
0.9134





QTLSWTVTPK_580.8_818.4
PZP_HUMAN
6.9764
0.9119





DVLLLVHNLPQNLPGYFWYK_810.4_328.2
PSG9_HUMAN
6.9663
0.9104





FICPLTGLWPINTLK_887.0_756.9
APOH_HUMAN
6.8924
0.9090





TSYQVYSK_488.2_397.2
C163A_HUMAN
6.5617
0.9075





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_768.5
SHBG_HUMAN
6.4615
0.9060





QINSYVK_426.2_610.3
CBG_HUMAN
6.4595
0.9046





LHKPGVYTR_357.5_479.3
HGFA_HUMAN
6.4062
0.9031





ALVLELAK_428.8_672.4
INHBE_HUMAN
6.3684
0.9016





YNSQLLSFVR_613.8_508.3
TFR1_HUMAN
6.3628
0.9001
















TABLE 22







Random Forest SummedGini Early-Middle Combined Windows










Transition
Protein
SumBestGini
Probability





ATVVYQGER_511.8_652.3
APOH_HUMAN
120.6132
1.0000





ATVVYQGER_511.8_751.4
APOH_HUMAN
99.7548
0.9985





IQTHSTTYR_369.5_627.3
F13B_HUMAN
57.5339
0.9971





IQTHSTTYR_369.5_540.3
Fl3B_HUMAN
55.0267
0.9956





FICPLTGLWPINTLK_887.0_685.4
APOH_HUMAN
49.9116
0.9941





AHQLAIDTYQEFEETYIPK_766.0_521.3
CSH_HUMAN
48.9796
0.9927





HHGPTITAK_321.2_432.3
AMBP_HUMAN
45.7432
0.9912





SPELQAEAK_486.8_659.4
APOA2_HUMAN
42.1848
0.9897





NAHYDLR_387.7_566.3
FETUA_HUMAN
41.4591
0.9883





NETLLQDFR_511.3_565.3
AMBP_HUMAN
39.7301
0.9868





HHGPTITAK_321.2_275.1
AMBP_HUMAN
39.2096
0.9853





ETLLQDFR_511.3_322.2
AMBP_HUMAN
36.8033
0.9838





FICPLTGLWPINTLK_887.0_756.9
APOH_HUMAN
31.8246
0.9824





TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
31.1356
0.9809





IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
30.5805
0.9794





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
PSG7_HUMAN
29.5729
0.9780





AHYDLR_387.7_288.2
FETUA_HUMAN
29.0239
0.9765





NSPELQAEAK_486.8_788.4
APOA2_HUMAN
28.6741
0.9750





NETPEGAEAKPWYEPIYLGGVFQLEK_951.14_877.5
TNFA_HUMAN
26.8117
0.9736





LDFHFSSDR_375.2_611.3
INHBC_HUMAN
26.0001
0.9721





NDFNQFSSGEK_386.8_189.1
FETA_HUMAN
25.9113
0.9706





HFQNLGK_422.2_527.2
AFAM_HUMAN
25.7497
0.9692





DPDQTDGLGLSYLSSHIANVER_796.4_328.1
GELS_HUMAN
25.7418
0.9677





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
SHBG_HUMAN
25.6425
0.9662





IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
25.1737
0.9648





LDFHFSSDR_375.2_464.2
INHBC_HUMAN
25.0674
0.9633





NLIQDAVTGLTVNGQITGDK_972.0_640.4
ITIH3_HUMAN
24.5613
0.9618





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_768.5
SHBG_HUMAN
23.2995
0.9604





DIPHWLNPTR_416.9_600.3
PAPP1_HUMAN
22.9504
0.9589





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
22.2821
0.9574





QINSYVK_426.2_496.3
CBG_HUMAN
22.2233
0.9559





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
SHBG_HUMAN
22.1160
0.9545





TELRPGETLNVNFLLR_624.68_875.5
CO3_HUMAN
21.9043
0.9530





ITQDAQLK_458.8_803.4
CBG_HUMAN
21.8933
0.9515





IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
21.4577
0.9501





QINSYVK_426.2_610.3
CBG_HUMAN
21.3414
0.9486





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
21.2843
0.9471





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
21.2631
0.9457





DVLLLVHNLPQNLPGYFWYK_810.4_328.2
PSG9_HUMAN
21.2547
0.9442





HFQNLGK_422.2_285.1
AFAM_HUMAN
20.8051
0.9427





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
20.2572
0.9413





FLYHK_354.2_447.2
AMBP_HUMAN
19.6822
0.9398





NNQLVAGYLQGPNVNLEEK_700.7_999.5
IL1RA_HUMAN
19.2156
0.9383





VSFSSPLVAISGVALR_802.0_715.4
PAPP1_HUMAN
18.9721
0.9369





TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
18.9392
0.9354





TFVNITPAEVGVLVGK_822.47_968.6
PROF1_HUMAN
18.9351
0.9339





LQVLGK_329.2_416.3
A2GL_HUMAN
18.6613
0.9325





TLAFVR_353.7_274.2
FA7_HUMAN
18.5095
0.9310





ITQDAQLK_458.8_702.4
CBG_HUMAN
18.5046
0.9295





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
PSG7_HUMAN
18.4015
0.9280





VSFSSPLVAISGVALR_802.0_602.4
PAPP1_HUMAN
17.5397
0.9266





IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
17.5338
0.9251





TLFIFGVTK_513.3_215.1
PSG4_HUMAN
17.5245
0.9236





ALNFGGIGVVVGHELTHAFDDQGR_837.1_299.2
ECE1_HUMAN
17.1108
0.9222





FLYHK_354.2_284.2
AMBP_HUMAN
16.9237
0.9207





LDGSTHLNIFFAK_488.3_739.4
PAPP1_HUMAN
16.8260
0.9192





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
16.5607
0.9178





YNSQLLSFVR_613.8_734.5
TFR1_HUMAN
16.5425
0.9163





AFQVWSDVTPLR_709.88_385.3
MMP2_HUMAN
16.3293
0.9148





LDGSTHLNIFFAK_488.3_852.5
PAPP1_HUMAN
15.9820
0.9134





TPSAAYLWVGTGASEAEK_919.5_428.2
GELS_HUMAN
15.9084
0.9119





YTTEIIK_434.2_603.4
C1R_HUMAN
15.7998
0.9104





FSVVYAK_407.2_381.2
FETUA_HUMAN
15.4991
0.9090





NVNHVTLSQPK_374.9_244.2
B2MG_HUMAN
15.2938
0.9075





SYTITGLQPGTDYK_772.4_680.3
FINC_HUMAN
14.9898
0.9060





DIPHWLNPTR_416.9_373.2
PAPP1_HUMAN
14.6923
0.9046





AFQVWSDVTPLR_709.88_347.2
MMP2_HUMAN
14.4361
0.9031





IAQYYYTFK_598.8_884.4
F13B_HUMAN
14.4245
0.9016





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
14.3848
0.9001









From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.

Claims
  • 1. A panel of isolated biomarkers comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22.
  • 2. The panel of claim 1, wherein N is a number selected from the group consisting of 2 to 24.
  • 3. The panel of claim 2, wherein said panel comprises at least two of the isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, and VVGGLVALR.
  • 4. The panel of claim 2, wherein said panel comprises alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).
  • 5. The panel of claim 2, wherein said panel comprises at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4).
  • 6. The panel of claim 2, wherein said panel comprises at least two isolated biomarkers selected from the group consisting of alpha-1-microglobulin (AMBP), ADP/ATP translocase 3 (ANT3), apolipoprotein A-II (APOA2), apolipoprotein B (APOB), apolipoprotein C-III (APOC3), beta-2-microglobulin (B2MG), complement component 1, s subcomponent (C1S), and retinol binding protein 4 (RBP4 or RET4) cell adhesion molecule with homology to L1 CAM (CHL1), complement component C5 (C5 or CO5), complement component C8 beta chain (C8B or CO8B), endothelin-converting enzyme 1 (ECE1), coagulation factor XIII, B polypeptide (F13B), interleukin 5 (IL5), Peptidase D (PEPD), and plasminogen (PLMN).
  • 7. A method of determining probability for preeclampsia in a pregnant female, the method comprising detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22 in a biological sample obtained from said pregnant female, and analyzing said measurable features to determine the probability for preeclampsia in said pregnant female.
  • 8. The method of claim 7, wherein said measurable feature comprises fragments or derivatives of each of said N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22.
  • 9. The method of claim 7, wherein said detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22, combinations or portions and/or derivatives thereof in a biological sample obtained from said pregnant female.
  • 10. The method of claim 9, further comprising calculating the probability for preeclampsia in said pregnant female based on said quantified amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22.
  • 11. The method of claim 7, further comprising an initial step of providing a biomarker panel comprising N of the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22.
  • 12. The method of claim 7, further comprising an initial step of providing a biological sample from the pregnant female.
  • 13. The method of claim 7, further comprising communicating said probability to a health care provider.
  • 14. The method of claim 13, wherein said communication informs a subsequent treatment decision for said pregnant female.
  • 15. The method of claim 7, wherein N is a number selected from the group consisting of 2 to 24.
  • 16. The method of claim 15, wherein said N biomarkers comprise at least two of the isolated biomarkers selected from the group consisting of FSVVYAK, SPELQAEAK, VNHVTLSQPK, SSNNPHSPIVEEFQVPYNK, and VVGGLVALR.
  • 17. The method of claim 7, wherein said analysis comprises a use of a predictive model.
  • 18. The method of claim 17, wherein said analysis comprises comparing said measurable feature with a reference feature.
  • 19. The method of claim 18, wherein said analysis comprises using one or more selected from the group consisting of a linear discriminant analysis model, a support vector machine classification algorithm, a recursive feature elimination model, a prediction analysis of microarray model, a logistic regression model, a CART algorithm, a flex tree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, a machine learning algorithm, a penalized regression method, and a combination thereof.
  • 20-34. (canceled)
  • 35. A method of determining probability for preeclampsia in a pregnant female, the method comprising: (a) quantifying in a biological sample obtained from said pregnant female an amount of each of N biomarkers selected from the biomarkers listed in Tables 2, 3, 4, 5 and 7 through 22; (b) multiplying said amount by a predetermined coefficient, (c) determining the probability for preeclampsia in said pregnant female comprising adding said individual products to obtain a total risk score that corresponds to said probability.
  • 36-44. (canceled)
Parent Case Info

This application is a continuation of U.S. application Ser. No. 14/213,947, filed Mar. 14, 2014, which claims the benefit of U.S. provisional patent application No. 61/798,413, filed Mar. 15, 2013, each of which is herein incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
61798413 Mar 2013 US
Continuations (1)
Number Date Country
Parent 14213947 Mar 2014 US
Child 16107248 US