BIOMARKERS AND METHODS FOR PREDICTING PRETERM BIRTH

Information

  • Patent Application
  • 20170146548
  • Publication Number
    20170146548
  • Date Filed
    October 05, 2016
    8 years ago
  • Date Published
    May 25, 2017
    7 years ago
Abstract
The disclosure provides biomarker panels, methods and kits for determining the probability for preterm birth in a pregnant female. The present disclosure is based, in part, on the discovery that certain proteins and peptides in biological samples obtained from a pregnant female are differentially expressed in pregnant females that have an increased risk of developing in the future or presently suffering from preterm birth relative to matched controls. The present disclosure is further based, in part, on the unexepected discovery that panels combining one or more of these proteins and peptides can be utilized in methods of determining the probability for preterm birth in a pregnant female with relatively high sensitivity and specificity. These proteins and peptides dislosed herein serve as biomarkers for classifying test samples, predicting a probability of preterm birth, monitoring of progress of preterm birth in a pregnant female, either individually or in a panel of biomarkers.
Description
BACKGROUND

According to the World Heath Organization, an estimated 15 million babies are born preterm (before 37 completed weeks of gestation) every year. In almost all countries with reliable data, preterm birth rates are increasing. See, World Health Organization; March of Dimes; The Partnership for Maternal, Newborn & Child Health; Save the Children, Born too soon: the global action report on preterm birth, ISBN 9789241503433(2012). An estimated 1 million babies die annually from preterm birth complications. Globally, preterm birth is the leading cause of newborn deaths (babies in the first four weeks of life) and the second leading cause of death after pneumonia in children under five years. Many survivors face a lifetime of disability, including learning disabilities and visual and hearing problems.


Across 184 countries with reliable data, the rate of preterm birth ranges from 5% to 18% of babies born. Blencowe et al., “National, regional and worldwide estimates of preterm birth.” The Lancet, 9; 379(9832):2162-72 (2012). While over 60% of preterm births occur in Africa and south Asia, preterm birth is nevertheless a global problem. Countries with the highest numbers include Brazil, India, Nigeria and the United States of America. Of the 11 countries with preterm birth rates over 15%, all but two are in sub-Saharan Africa. In the poorest countries, on average, 12% of babies are born too soon compared with 9% in higher-income countries. Within countries, poorer families are at higher risk. More than three-quarters of premature babies can be saved with feasible, cost-effective care, for example, antenatal steroid injections given to pregnant women at risk of preterm labour to strengthen the babies' lungs.


Infants born preterm are at greater risk than infants born at term for mortality and a variety of health and developmental problems. Complications include acute respiratory, gastrointestinal, immunologic, central nervous system, hearing, and vision problems, as well as longer-term motor, cognitive, visual, hearing, behavioral, social-emotional, health, and growth problems. The birth of a preterm infant can also bring considerable emotional and economic costs to families and have implications for public-sector services, such as health insurance, educational, and other social support systems. The greatest risk of mortality and morbidity is for those infants born at the earliest gestational ages. However, those infants born nearer to term represent the greatest number of infants born preterm and also experience more complications than infants born at term.


To prevent preterm birth in women who are less than 24 weeks pregnant with an ultrasound showing cervical opening, a surgical procedure known as cervical cerclage can be employed in which the cervix is stitched closed with strong sutures. For women less than 34 weeks pregnant and in active preterm labor, hospitalization may be necessary as well as the administration of medications to temporarily halt preterm labor an/or promote the fetal lung development. If a pregnant women is determined to be at risk for preterm birth, health care providers can implement various clinical strategies that may include preventive medications, for example, hydroxyprogesterone caproate (Makena) injections and/or vaginal progesterone gel, cervical pessaries, restrictions on sexual activity and/or other physical activities, and alterations of treatments for chronic conditions, such as diabetes and high blood pressure, that increase the risk of preterm labor.


There is a great need to identify and provide women at risk for preterm birth with proper antenatal care. Women identified as high-risk can be scheduled for more intensive antenatal surveillance and prophylactic interventions. Current strategies for risk assessment are based on the obstetric and medical history and clinical examination, but these strategies are only able to identify a small percentage of women who are at risk for preterm delivery. Reliable early identification of risk for preterm birth would enable planning appropriate monitoring and clinical management to prevent preterm delivery. Such monitoring and management might include: more frequent prenatal care visits, serial cervical length measurements, enhanced education regarding signs and symptoms of early preterm labor, lifestyle interventions for modifiable risk behaviors, cervical pessaries and progesterone treatment. Finally, reliable antenatal identification of risk for preterm birth also is crucial to cost-effective allocation of monitoring resources.


The present invention addresses this need by providing compositions and methods for determining whether a pregnant woman is at risk for preterm birth. Related advantages are provided as well.


SUMMARY

The present invention provides compositions and methods for predicting the probability of preterm birth in a pregnant female.


In one aspect, the invention provides a panel of isolated biomarkers comprising N of the biomarkers listed in Tables 1 through 63. In some embodiments, N is a number selected from the group consisting of 2 to 24. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of AFTECCVVASQLR, ELLESYIDGR, and ITLPDFTGDLR. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of FLNWIK, FGFGGSTDSGPIR, LLELTGPK, VEHSDLSFSK, IEGNLIFDPNNYLPK, ALVLELAK, TQILEWAAER, DVLLLVHNLPQNLPGYFWYK, SEPRPGVLLR, ITQDAQLK, ALDLSLK, WWGGQPLWITATK, and LSETNR


In further embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 50 and the biomarkers set forth in Table 52.


In a further aspect, the invention provides a panel of isolated biomarkers comprising N of the biomarkers listed in Tables 1 through 63. In some embodiments, N is a number selected from the group consisting of 2 to 24. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 50 and the biomarkers set forth in Table 52.


In some embodiments, the invention provides a biomarker panel comprising at least two of the isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G).


In some embodiments, the invention provides a biomarker panel comprising at least two of the isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In other embodiments, the invention provides a biomarker panel comprising lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), complement component C8 gamma chain (C8G or CO8G), complement component 1, q subcomponent, B chain (C1QB), fibrinogen beta chain (FIBB or FIB), C-reactive protein (CRP), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), chorionic somatomammotropin hormone (CSH), and angiotensinogen (ANG or ANGT).


In other embodiments, the invention provides a biomarker panel comprising Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In additional embodiments, the invention provides a biomarker panel comprising at least two of the isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 51 and the biomarkers set forth in Table 53.


Also provided by the invention is a method of determining probability for preterm birth in a pregnant female comprising detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in a biological sample obtained from the pregnant female, and analyzing the measurable feature to determine the probability for preterm birth in the pregnant female. In some embodiments, the invention provides a method of predicting GAB, the method encompassing detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in a biological sample obtained from a pregnant female, and analyzing said measurable feature to predict GAB.


In some embodiments, a measurable feature comprises fragments or derivatives of each of the N biomarkers selected from the biomarkers listed in Tables 1 through 63. In some embodiments of the disclosed methods detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63, combinations or portions and/or derivatives thereof in a biological sample obtained from the pregnant female. In additional embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female further encompass detecting a measurable feature for one or more risk indicia associated with preterm birth.


In some embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of N biomarkers, wherein N is selected from the group consisting of 2 to 24. In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of AFTECCVVASQLR, ELLESYIDGR, and ITLPDFTGDLR. In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FLNWIK, FGFGGSTDSGPIR, LLELTGPK, VEHSDLSFSK, IEGNLIFDPNNYLPK, ALVLELAK, TQILEWAAER, DVLLLVHNLPQNLPGYFWYK, SEPRPGVLLR, ITQDAQLK, ALDLSLK, WWGGQPLWITATK, and LSETNR. In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 50 and the biomarkers set forth in Table 52.


In other embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G).


In other embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), complement component C8 gamma chain (C8G or CO8G), complement component 1, q subcomponent, B chain (C1QB), fibrinogen beta chain (FIBB or FIB), C-reactive protein (CRP), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), chorionic somatomammotropin hormone (CSH), and angiotensinogen (ANG or ANGT).


In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 51 and the biomarkers set forth in Table 53.


In some embodiments of the methods of determining probability for preterm birth in a pregnant female, the probability for preterm birth in the pregnant female is calculated based on the quantified amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63. In some embodiments, the disclosed methods for determining the probability of preterm birth encompass detecting and/or quantifying one or more biomarkers using mass sprectrometry, a capture agent or a combination thereof.


In some embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass an initial step of providing a biomarker panel comprising N of the biomarkers listed in Tables 1 through 63. In additional embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass an initial step of providing a biological sample from the pregnant female.


In some embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass communicating the probability to a health care provider. In additional embodiments, the communication informs a subsequent treatment decision for the pregnant female. In further embodiments, the treatment decision of one or more selected from the group of consisting of more frequent prenatal care visits, serial cervical length measurements, enhanced education regarding signs and symptoms of early preterm labor, lifestyle interventions for modifiable risk behaviors and progesterone treatment.


In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass analyzing the measurable feature of one or more isolated biomarkers using a predictive model. In some embodiments of the disclosed methods, a measurable feature of one or more isolated biomarkers is compared with a reference feature.


In additional embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass using one or more analyses selected from a linear discriminant analysis model, a support vector machine classification algorithm, a recursive feature elimination model, a prediction analysis of microarray model, a logistic regression model, a CART algorithm, a flex tree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, a machine learning algorithm, a penalized regression method, and a combination thereof. In one embodiment, the disclosed methods of determining probability for preterm birth in a pregnant female encompass logistic regression.


In some embodiments, the invention provides a method of determining probability for preterm birth in a pregnant female, the method encompassing quantifying in a biological sample obtained from the pregnant female an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63; multiplying the amount by a predetermined coefficient, and determining the probability for preterm birth in the pregnant female comprising adding the individual products to obtain a total risk score that corresponds to the probability


In additional embodiments, the invention provides a method of prediciting GAB, the method comprising: (a) quantifying in a biological sample obtained from said pregnant female an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63; (b) multiplying or thresholding said amount by a predetermined coefficient, (c) determining the predicted GAB birth in said pregnant female comprising adding said individual products to obtain a total risk score that corresponds to said predicted GAB.


In further embodiments, the invention provides a method of prediciting time to birth in a pregnant female, the method comprising: (a) obtaining a biological sample from said pregnant female; (b) quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in said biological sample; (c) multiplying or thresholding said amount by a predetermined coefficient, (d) determining predicted GAB in said pregnant female comprising adding said individual products to obtain a total risk score that corresponds to said predicted GAB; and (e) substracting the estimated gestational age (GA) at time biological sample was obtained from the predicted GAB to predict time to birth in said pregnant female.


Other features and advantages of the invention will be apparent from the detailed description, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1. Scatterplot of actual gestational age at birth versus predicted gestational age from random forest regression model.



FIG 2. Distribution of predicted gestational age from random forest regression model versus actual gestational age at birth (GAB), where actual GAB is given in categories of (i) less than 37 weeks, (ii) 37 to 39 weeks, and (iii) 40 weeks or greater (peaks left to right, respectively).





DETAILED DESCRIPTION

The present disclosure is based, in part, on the discovery that certain proteins and peptides in biological samples obtained from a pregnant female are differentially expressed in pregnant females that have an increased risk of preterm birth relative to controls. The present disclosure is further based, in part, on the unexpected discovery that panels combining one or more of these proteins and peptides can be utilized in methods of determining the probability for preterm birth in a pregnant female with high sensitivity and specificity. These proteins and peptides disclosed herein serve as biomarkers for classifying test samples, predicting probability of preterm birth, predicting probability of term birth, predicting gestational age at birth (GAB), predicting time to birth and/or monitoring of progress of preventative therapy in a pregnant female, either individually or in a panel of biomarkers.


The disclosure provides biomarker panels, methods and kits for determining the probability for preterm birth in a pregnant female. One major advantage of the present disclosure is that risk of developing preterm birth can be assessed early during pregnancy so that appropriate monitoring and clinical management to prevent preterm delivery can be initiated in a timely fashion. The present invention is of particular benefit to females lacking any risk factors for preterm birth and who would not otherwise be identified and treated.


By way of example, the present disclosure includes methods for generating a result useful in determining probability for preterm birth in a pregnant female by obtaining a dataset associated with a sample, where the dataset at least includes quantitative data about biomarkers and panels of biomarkers that have been identified as predictive of preterm birth, and inputting the dataset into an analytic process that uses the dataset to generate a result useful in determining probability for preterm birth in a pregnant female. As described further below, this quantitative data can include amino acids, peptides, polypeptides, proteins, nucleotides, nucleic acids, nucleosides, sugars, fatty acids, steroids, metabolites, carbohydrates, lipids, hormones, antibodies, regions of interest that serve as surrogates for biological macromolecules and combinations thereof.


In addition to the specific biomarkers identified in this disclosure, for example, by accession number in a public database, sequence, or reference, the invention also contemplates use of biomarker variants that are at least 90% or at least 95% or at least 97% identical to the exemplified sequences and that are now known or later discovered and that have utility for the methods of the invention. These variants may represent polymorphisms, splice variants, mutations, and the like. In this regard, the instant specification discloses multiple art-known proteins in the context of the invention and provides exemplary accession numbers associated with one or more public databases as well as exemplary references to published journal articles relating to these art-known proteins. However, those skilled in the art appreciate that additional accession numbers and journal articles can easily be identified that can provide additional characteristics of the disclosed biomarkers and that the exemplified references are in no way limiting with regard to the disclosed biomarkers. As described herein, various techniques and reagents find use in the methods of the present invention. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. In a particular embodiment, the biological sample is serum. As described herein, biomarkers can be detected through a variety of assays and techniques known in the art. As further described herein, such assays include, without limitation, mass spectrometry (MS)-based assays, antibody-based assays as well as assays that combine aspects of the two.


Protein biomarkers associated with the probability for preterm birth in a pregnant female include, but are not limited to, one or more of the isolated biomarkers listed in Tables 1 through 63. In addition to the specific biomarkers, the disclosure further includes biomarker variants that are about 90%, about 95%, or about 97% identical to the exemplified sequences. Variants, as used herein, include polymorphisms, splice variants, mutations, and the like.


Additional markers can be selected from one or more risk indicia, including but not limited to, maternal characteristics, medical history, past pregnancy history, and obstetrical history. Such additional markers can include, for example, previous low birth weight or preterm delivery, multiple 2nd trimester spontaneous abortions, prior first trimester induced abortion, familial and intergenerational factors, history of infertility, nulliparity, placental abnormalities, cervical and uterine anomalies, short cervical length measurements, gestational bleeding, intrauterine growth restriction, in utero diethylstilbestrol exposure, multiple gestations, infant sex, short stature, low prepregnancy weight, low or high body mass index, diabetes, hypertension, urogenital infections (i.e. urinary tract infection), asthma, anxiety and depression, asthma, hypertension, hypothyroidism. Demographic risk indicia for preterm birth can include, for example, maternal age, race/ethnicity, single marital status, low socioeconomic status, maternal age, employment-related physical activity, occupational exposures and environment exposures and stress. Further risk indicia can include, inadequate prenatal care, cigarette smoking, use of marijuana and other illicit drugs, cocaine use, alcohol consumption, caffeine intake, maternal weight gain, dietary intake, sexual activity during late pregnancy and leisure-time physical activities. (Preterm Birth: Causes, Consequences, and Prevention, Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy Outcomes; Behrman R E, Butler A S, editors. Washington (D.C.): National Academies Press (US); 2007). Additional risk indicia useful for as markers can be identified using learning algorithms known in the art, such as linear discriminant analysis, support vector machine classification, recursive feature elimination, prediction analysis of microarray, logistic regression, CART, FlexTree, LART, random forest, MART, and/or survival analysis regression, which are known to those of skill in the art and are further described herein.


Provided herein are panels of isolated biomarkers comprising N of the biomarkers selected from the group listed in Tables 1 through 63. In the disclosed panels of biomarkers N can be a number selected from the group consisting of 2 to 24. In the disclosed methods, the number of biomarkers that are detected and whose levels are determined, can be 1, or more than 1, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more. In certain embodiments, the number of biomarkers that are detected, and whose levels are determined, can be 1, or more than 1, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, or more. The methods of this disclosure are useful for determining the probability for preterm birth in a pregnant female.


While certain of the biomarkers listed in Tables 1 through 63 are useful alone for determining the probability for preterm birth in a pregnant female, methods are also described herein for the grouping of multiple subsets of the biomarkers that are each useful as a panel of three or more biomarkers. In some embodiments, the invention provides panels comprising N biomarkers, wherein N is at least three biomarkers. In other embodiments, N is selected to be any number from 3-23 biomarkers.


In yet other embodiments, N is selected to be any number from 2-5, 2-10, 2-15, 2-20, or 2-23. In other embodiments, N is selected to be any number from 3-5, 3-10, 3-15, 3-20, or 3-23. In other embodiments, N is selected to be any number from 4-5, 4-10, 4-15, 4-20, or 4-23. In other embodiments, N is selected to be any number from 5-10, 5-15, 5-20, or 5-23. In other embodiments, N is selected to be any number from 6-10, 6-15, 6-20, or 6-23. In other embodiments, N is selected to be any number from 7-10, 7-15, 7-20, or 7-23. In other embodiments, N is selected to be any number from 8-10, 8-15, 8-20, or 8-23. In other embodiments, N is selected to be any number from 9-10, 9-15, 9-20, or 9-23. In other embodiments, N is selected to be any number from 10-15, 10-20, or 10-23. It will be appreciated that N can be selected to encompass similar, but higher order, ranges.


In certain embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, or five isolated biomarkers comprising an amino acid sequence selected from AFTECCVVASQLR, ELLESYIDGR, ITLPDFTGDLR, TDAPDLPEENQAR and SFRPFVPR. In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, or five isolated biomarkers comprising an amino acid sequence selected from FLNWIK, FGFGGSTDSGPIR, LLELTGPK, VEHSDLSFSK, IEGNLIFDPNNYLPK, ALVLELAK, TQILEWAAER, DVLLLVHNLPQNLPGYFWYK, SEPRPGVLLR, ITQDAQLK, ALDLSLK, WWGGQPLWITATK, and LSETNR.


In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, or three of the isolated biomarkers consisting of an amino acid sequence selected from AFTECCVVASQLR, ELLESYIDGR, and ITLPDFTGDLR. In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, or three of the isolated biomarkers consisting of an amino acid sequence selected from FLNWIK, FGFGGSTDSGPIR, LLELTGPK, VEHSDLSFSK, IEGNLIFDPNNYLPK, ALVLELAK, TQILEWAAER, DVLLLVHNLPQNLPGYFWYK, SEPRPGVLLR, ITQDAQLK, ALDLSLK, WWGGQPLWITATK, and LSETNR.


In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, or three of the isolated biomarkers consisting of an amino acid sequence selected from the biomarkers set forth in Table 50 and the biomarkers set forth in Table 52.


In some embodiments, the panel of isolated biomarkers comprises one or more peptides comprising a fragment from lipopolysaccharide-binding protein (LBP), Schumann et al., Science 249 (4975), 1429-1431 (1990) (UniProtKB/Swiss-Prot: P18428.3); prothrombin (THRB), Walz et al., Proc. Natl. Acad. Sci. U.S.A. 74 (5), 1969-1972(1977) (NCBI Reference Sequence: NP_000497.1); complement component C5 (C5 or CO5) Haviland, J. Immunol. 146 (1), 362-368 (1991) (GenBank: AAA51925.1); plasminogen (PLMN) Petersen et al., J. Biol. Chem. 265 (11), 6104-6111(1990) (NCBI Reference Sequences: NP_000292.1 NP_001161810.1); and complement component C8 gamma chain (C8G or CO8G), Haefliger et al., Mol. Immunol. 28 (1-2), 123-131 (1991) (NCBI Reference Sequence: NP_000597.2).


In some embodiments, the panel of isolated biomarkers comprises one or more peptides comprising a fragment from cell adhesion molecule with homology to complement component 1, q subcomponent, B chain (C1QB), Reid, Biochem. J. 179 (2), 367-371 (1979) (NCBI Reference Sequence: NP_000482.3); fibrinogen beta chain (FIBB or FIB); Watt et al., Biochemistry 18 (1), 68-76 (1979) (NCBI Reference Sequences: NP_001171670.1 and NP_005132.2); C-reactive protein (CRP), Oliveira et al., J. Biol. Chem. 254 (2), 489-502 (1979) (NCBI Reference Sequence: NP_000558.2); inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) Kim et al., Mol. Biosyst. 7 (5), 1430-1440 (2011) (NCBI Reference Sequences: NP_001159921.1 and NP_002209.2); chorionic somatomammotropin hormone (CSH) Selby et al., J. Biol. Chem. 259 (21), 13131-13138 (1984) (NCBI Reference Sequence: NP_001308.1); and angiotensinogen (ANG or ANGT) Underwood et al., Metabolism 60(8):1150-7 (2011) (NCBI Reference Sequence: NP_000020.1).


In additional embodiments, the invention provides a panel of isolated biomarkers comprising N of the biomarkers listed in Tables 1 through 63. In some embodiments, N is a number selected from the group consisting of 2 to 24. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of AFTECCVVASQLR, ELLESYIDGR, and ITLPDFTGDLR. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of AFTECCVVASQLR, ELLESYIDGR, ITLPDFTGDLR, TDAPDLPEENQAR and SFRPFVPR. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of FLNWIK, FGFGGSTDSGPIR, LLELTGPK, VEHSDLSFSK, IEGNLIFDPNNYLPK, ALVLELAK, TQILEWAAER, DVLLLVHNLPQNLPGYFWYK, SEPRPGVLLR, ITQDAQLK, ALDLSLK, WWGGQPLWITATK, and LSETNR.


In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 50 and the biomarkers set forth in Table 52.


In further embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G). In another embodiment, the invention provides a biomarker panel comprising at least three isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G).


In further embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In some embodiments, the invention provides a biomarker panel comprising lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), complement component C8 gamma chain (C8G or CO8G), complement component 1, q subcomponent, B chain (C1QB), fibrinogen beta chain (FIBB or FIB), C-reactive protein (CRP), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), chorionic somatomammotropin hormone (CSH), and angiotensinogen (ANG or ANGT). In some embodiments, the invention provides a biomarker panel comprising Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In another aspect, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), complement component C8 gamma chain (C8G or CO8G), complement component 1, q subcomponent, B chain (C1QB), fibrinogen beta chain (FIBB or FIB), C-reactive protein (CRP), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), chorionic somatomammotropin hormone (CSH), and angiotensinogen (ANG or ANGT) and the biomarkers set forth in Tables 51 and 53.


In another aspect, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


It must be noted that, as used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “a biomarker” includes a mixture of two or more biomarkers, and the like.


The term “about,” particularly in reference to a given quantity, is meant to encompass deviations of plus or minus five percent.


As used in this application, including the appended claims, the singular forms “a,” “an,” and “the” include plural references, unless the content clearly dictates otherwise, and are used interchangeably with “at least one” and “one or more.”


As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “contains,” “containing,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, product-by-process, or composition of matter that comprises, includes, or contains an element or list of elements does not include only those elements but can include other elements not expressly listed or inherent to such process, method, product-by-process, or composition of matter.


As used herein, the term “panel” refers to a composition, such as an array or a collection, comprising one or more biomarkers. The term can also refer to a profile or index of expression patterns of one or more biomarkers described herein. The number of biomarkers useful for a biomarker panel is based on the sensitivity and specificity value for the particular combination of biomarker values.


As used herein, and unless otherwise specified, the terms “isolated” and “purified” generally describes a composition of matter that has been removed from its native environment (e.g., the natural environment if it is naturally occurring), and thus is altered by the hand of man from its natural state. An isolated protein or nucleic acid is distinct from the way it exists in nature.


The term “biomarker” refers to a biological molecule, or a fragment of a biological molecule, the change and/or the detection of which can be correlated with a particular physical condition or state. The terms “marker” and “biomarker” are used interchangeably throughout the disclosure. For example, the biomarkers of the present invention are correlated with an increased likelihood of preterm birth. Such biomarkers include, but are not limited to, biological molecules comprising nucleotides, nucleic acids, nucleosides, amino acids, sugars, fatty acids, steroids, metabolites, peptides, polypeptides, proteins, carbohydrates, lipids, hormones, antibodies, regions of interest that serve as surrogates for biological macromolecules and combinations thereof (e.g., glycoproteins, ribonucleoproteins, lipoproteins). The term also encompasses portions or fragments of a biological molecule, for example, peptide fragment of a protein or polypeptide that comprises at least 5 consecutive amino acid residues, at least 6 consecutive amino acid residues, at least 7 consecutive amino acid residues, at least 8 consecutive amino acid residues, at least 9 consecutive amino acid residues, at least 10 consecutive amino acid residues, at least 11 consecutive amino acid residues, at least 12 consecutive amino acid residues, at least 13 consecutive amino acid residues, at least 14 consecutive amino acid residues, at least 15 consecutive amino acid residues, at least 5 consecutive amino acid residues, at least 16 consecutive amino acid residues, at least 17 consecutive amino acid residues, at least 18 consecutive amino acid residues, at least 19 consecutive amino acid residues, at least 20 consecutive amino acid residues, at least 21 consecutive amino acid residues, at least 22 consecutive amino acid residues, at least 23 consecutive amino acid residues, at least 24 consecutive amino acid residues, at least 25 consecutive amino acid residues,or more consecutive amino acid residues.


The invention also provides a method of determining probability for preterm birth in a pregnant female, the method comprising detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in a biological sample obtained from the pregnant female, and analyzing the measurable feature to determine the probability for preterm birth in the pregnant female. As disclosed herein, a measurable feature comprises fragments or derivatives of each of said N biomarkers selected from the biomarkers listed in Tables 1 through 63. In some embodiments of the disclosed methods detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63, combinations or portions and/or derivatives thereof in a biological sample obtained from said pregnant female.


The invention further provides a method of predicting GAB, the method encompassing detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in a biological sample obtained from a pregnant female, and analyzing the measurable feature to predict GAB.


The invention also provides a method of prediciting GAB, the method comprising: (a) quantifying in a biological sample obtained from the pregnant female an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63; (b) multiplying or thresholding the amount by a predetermined coefficient, (c) determining the predicted GAB birth in the pregnant female comprising adding the individual products to obtain a total risk score that corresponds to the predicted GAB.


The invention further provides a method of prediciting time to birth in a pregnant female, the method comprising: (a) obtaining a biological sample from the pregnant female; (b) quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in the biological sample; (c) multiplying or thresholding the amount by a predetermined coefficient, (d) determining predicted GAB in the pregnant female comprising adding the individual products to obtain a total risk score that corresponds to the predicted GAB; and (e) substracting the estimated gestational age (GA) at time biological sample was obtained from the predicted GAB to predict time to birth in said pregnant female. For methods directed to prediciting time to birth, it is understood that “birth” means birth following spontaneous onset of labor, with or without rupture of membranes.


Although described and exemplified with reference to methods of determining probability for preterm birth in a pregnant female, the present disclosure is similarly applicable to the methods of predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of prediciting time to birth in a pregnant female. It will be apparent to one skilled in the art that each of the aforementioned methods has specific and substantial utilities and benefits with regard maternal-fetal health considerations.


In some embodiments, the method of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of N biomarkers, wherein N is selected from the group consisting of 2 to 24. In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of AFTECCVVASQLR, ELLESYIDGR, and ITLPDFTGDLR. In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FLNWIK, FGFGGSTDSGPIR, LLELTGPK, VEHSDLSFSK, IEGNLIFDPNNYLPK, ALVLELAK, TQILEWAAER, DVLLLVHNLPQNLPGYFWYK, SEPRPGVLLR, ITQDAQLK, ALDLSLK, WWGGQPLWITATK, and LSETNR.


In additional embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 50 and the biomarkers set forth in Table 52.


In additional embodiments, the method of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G).


In additional embodiments, the method of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In further embodiments, the disclosed method of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), complement component C8 gamma chain (C8G or CO8G), complement component 1, q subcomponent, B chain (C1QB), fibrinogen beta chain (FIBB or FIB), C-reactive protein (CRP), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), chorionic somatomammotropin hormone (CSH), and angiotensinogen (ANG or ANGT).


In further embodiments, the disclosed method of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In further embodiments, the disclosed method of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In further embodiments, the disclosed method of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 51 and the biomarkers set forth in Table 53.


In additional embodiments, the methods of determining probability for preterm birth in a pregnant female further encompass detecting a measurable feature for one or more risk indicia associated with preterm birth. In additional embodiments the risk indicia are selected form the group consisting of previous low birth weight or preterm delivery, multiple 2nd trimester spontaneous abortions, prior first trimester induced abortion, familial and intergenerational factors, history of infertility, nulliparity, placental abnormalities, cervical and uterine anomalies, gestational bleeding, intrauterine growth restriction, in utero diethylstilbestrol exposure, multiple gestations, infant sex, short stature, low prepregnancy weight, low or high body mass index, diabetes, hypertension, and urogenital infections.


A “measurable feature” is any property, characteristic or aspect that can be determined and correlated with the probability for preterm birth in a subject. The term further encompasses any property, characteristic or aspect that can be determined and correlated in connection with a prediction of GAB, a prediction of term birth, or a prediction of time to birth in a pregnant female. For a biomarker, such a measurable feature can include, for example, the presence, absence, or concentration of the biomarker, or a fragment thereof, in the biological sample, an altered structure, such as, for example, the presence or amount of a post-translational modification, such as oxidation at one or more positions on the amino acid sequence of the biomarker or, for example, the presence of an altered conformation in comparison to the conformation of the biomarker in normal control subjects, and/or the presence, amount, or altered structure of the biomarker as a part of a profile of more than one biomarker. In addition to biomarkers, measurable features can further include risk indicia including, for example, maternal characteristics, age, race, ethnicity, medical history, past pregnancy history, obstetrical history. For a risk indicium, a measurable feature can include, for example, previous low birth weight or preterm delivery, multiple 2nd trimester spontaneous abortions, prior first trimester induced abortion, familial and intergenerational factors, history of infertility, nulliparity, placental abnormalities, cervical and uterine anomalies, short cervical length meansurements, gestational bleeding, intrauterine growth restriction, in utero diethylstilbestrol exposure, multiple gestations, infant sex, short stature, low prepregnancy weight/low body mass index, diabetes, hypertension, urogenital infections, hypothyroidism,asthma, low educational attainment, cigarette smoking, drug use and alcohol consumption.


In some embodiments of the disclosed methods of determining probability for preterm birth in a pregnant female, the probability for preterm birth in the pregnant female is calculated based on the quantified amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63. In some embodiments, the disclosed methods for determining the probability of preterm birth encompass detecting and/or quantifying one or more biomarkers using mass sprectrometry, a capture agent or a combination thereof


In some embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass an initial step of providing a biomarker panel comprising N of the biomarkers listed in Tables 1 through 63. In additional embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass an initial step of providing a biological sample from the pregnant female.


In some embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass communicating the probability to a health care provider. The disclosed of predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of prediciting time to birth in a pregnant female similarly encompass communicating the probability to a health care provider. As stated above, although described and exemplified with reference to determining probability for preterm birth in a pregnant female, all embodiments described throughout this disclosure are similarly applicable to the methods of predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of prediciting time to birth in a pregnant female. Specifically, he biomarkers and panels recited throughout this application with express reference to methods for preterm birth can also be used in methods for predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of prediciting time to birth in a pregnant female. It will be apparent to one skilled in the art that each of the aforementioned methods have specific and substantial utilities and benefits with regard maternal-fetal health considerations.


In additional embodiments, the communication informs a subsequent treatment decision for the pregnant female. In some embodiments, the method of determining probability for preterm birth in a pregnant female encompasses the additional feature of expressing the probability as a risk score.


As used herein, the term “risk score” refers to a score that can be assigned based on comparing the amount of one or more biomarkers in a biological sample obtained from a pregnant female to a standard or reference score that represents an average amount of the one or more biomarkers calculated from biological samples obtained from a random pool of pregnant females. Because the level of a biomarker may not be static throughout pregnancy, a standard or reference score has to have been obtained for the gestational time point that corresponds to that of the pregnant female at the time the sample was taken. The standard or reference score can be predetermined and built into a predictor model such that the comparison is indirect rather than actually performed every time the probability is determined for a subject. A risk score can be a standard (e.g., a number) or a threshold (e.g., a line on a graph). The value of the risk score correlates to the deviation, upwards or downwards, from the average amount of the one or more biomarkers calculated from biological samples obtained from a random pool of pregnant females. In certain embodiments, if a risk score is greater than a standard or reference risk score, the pregnant female can have an increased likelihood of preterm birth. In some embodiments, the magnitude of a pregnant female's risk score, or the amount by which it exceeds a reference risk score, can be indicative of or correlated to that pregnant female's level of risk.


In the context of the present invention, the term “biological sample,” encompasses any sample that is taken from pregnant female and contains one or more of the biomarkers listed in Tables 1 through 63. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. In a particular embodiment, the biological sample is serum. As will be appreciated by those skilled in the art, a biological sample can include any fraction or component of blood, without limitation, T cells, monocytes, neutrophils, erythrocytes, platelets and microvesicles such as exosomes and exosome-like vesicles. In a particular embodiment, the biological sample is serum.


Preterm birth refers to delivery or birth at a gestational age less than 37 completed weeks. Other commonly used subcategories of preterm birth have been established and delineate moderately preterm (birth at 33 to 36 weeks of gestation), very preterm (birth at <33 weeks of gestation), and extremely preterm (birth at <28 weeks of gestation). With regard to the methods disclosed herein, those skilled in the art understand that the cut-offs that delineate preterm birth and term birth as well as the cut-offs that delineate subcategories of preterm birth can be adjusted in practicing the methods disclosed herein, for example, to maximize a particular health benefit. It is further understood that such adjustments are well within the skill set of individuals considered skilled in the art and encompassed within the scope of the inventions disclosed herein. Gestational age is a proxy for the extent of fetal development and the fetus's readiness for birth. Gestational age has typically been defined as the length of time from the date of the last normal menses to the date of birth. However, obstetric measures and ultrasound estimates also can aid in estimating gestational age. Preterm births have generally been classified into two separate subgroups. One, spontaneous preterm births are those occurring subsequent to spontaneous onset of preterm labor or preterm premature rupture of membranes regardless of subsequent labor augmentation or cesarean delivery. Two, indicated preterm births are those occurring following induction or cesarean section for one or more conditions that the woman's caregiver determines to threaten the health or life of the mother and/or fetus. In some embodiments, the methods disclosed herein are directed to determining the probability for spontaneous preterm birth. In additional embodiments, the methods disclosed herein are directed to predicting gestational birth.


As used herein, the term “estimated gestational age” or “estimated GA” refers to the GA determined based on the date of the last normal menses and additional obstetric measures, ultrasound estimates or other clinical parameters including, without limitation, those described in the preceding paragraph. In contrast the term “predicted gestational age at birth” or “predicted GAB” refers to the GAB determined based on the methods of the invention as dislosed herein. As used herein, “term birth” refers to birth at a gestational age equal or more than 37 completed weeks.


In some embodiments, the pregnant female is between 17 and 28 weeks of gestation at the time the biological sample is collected. In other embodiments, the pregnant female is between 16 and 29 weeks, between 17 and 28 weeks, between 18 and 27 weeks, between 19 and 26 weeks, between 20 and 25 weeks, between 21 and 24 weeks, or between 22 and 23 weeks of gestation at the time the biological sample is collected. In further embodiments, the pregnant female is between about 17 and 22 weeks, between about 16 and 22 weeks between about 22 and 25 weeks, between about 13 and 25 weeks, between about 26 and 28, or between about 26 and 29 weeks of gestation at the time the biological sample is collected. Accordingly, the gestational age of a pregnant female at the time the biological sample is collected can be 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 weeks.


In some embodiments of the claimed methods the measurable feature comprises fragments or derivatives of each of the N biomarkers selected from the biomarkers listed in Tables 1 through 63. In additional embodiments of the claimed methods, detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63, combinations or portions and/or derivatives thereof in a biological sample obtained from said pregnant female.


The term “amount” or “level” as used herein refers to a quantity of a biomarker that is detectable or measurable in a biological sample and/or control. The quantity of a biomarker can be, for example, a quantity of polypeptide, the quantity of nucleic acid, or the quantity of a fragment or surrogate. The term can alternatively include combinations thereof. The term “amount” or “level” of a biomarker is a measurable feature of that biomarker.


In some embodiments, calculating the probability for preterm birth in a pregnant female is based on the quantified amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63. Any existing, available or conventional separation, detection and quantification methods can be used herein to measure the presence or absence (e.g., readout being present vs. absent; or detectable amount vs. undetectable amount) and/or quantity (e.g., readout being an absolute or relative quantity, such as, for example, absolute or relative concentration) of biomarkers, peptides, polypeptides, proteins and/or fragments thereof and optionally of the one or more other biomarkers or fragments thereof in samples. In some embodiments, detection and/or quantification of one or more biomarkers comprises an assay that utilizes a capture agent. In further embodiments, the capture agent is an antibody, antibody fragment, nucleic acid-based protein binding reagent, small molecule or variant thereof. In additional embodiments, the assay is an enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA). In some embodiments, detection and/or quantification of one or more biomarkers further comprises mass spectrometry (MS). In yet further embodiments, the mass spectrometry is co-immunoprecitipation-mass spectrometry (co-IP MS), where coimmunoprecipitation, a technique suitable for the isolation of whole protein complexes is followed by mass spectrometric analysis.


As used herein, the term “mass spectrometer” refers to a device able to volatilize/ionize analytes to form gas-phase ions and determine their absolute or relative molecular masses. Suitable methods of volatilization/ionization are matrix-assisted laser desorption ionization (MALDI), electrospray, laser/light, thermal, electrical, atomized/sprayed and the like, or combinations thereof. Suitable forms of mass spectrometry include, but are not limited to, ion trap instruments, quadrupole instruments, electrostatic and magnetic sector instruments, time of flight instruments, time of flight tandem mass spectrometer (TOF MS/MS), Fourier-transform mass spectrometers, Orbitraps and hybrid instruments composed of various combinations of these types of mass analyzers. These instruments can, in turn, be interfaced with a variety of other instruments that fractionate the samples (for example, liquid chromatography or solid-phase adsorption techniques based on chemical, or biological properties) and that ionize the samples for introduction into the mass spectrometer, including matrix-assisted laser desorption (MALDI), electrospray, or nanospray ionization (ESI) or combinations thereof.


Generally, any mass spectrometric (MS) technique that can provide precise information on the mass of peptides, and preferably also on fragmentation and/or (partial) amino acid sequence of selected peptides (e.g., in tandem mass spectrometry, MS/MS; or in post source decay, TOF MS), can be used in the methods disclosed herein. Suitable peptide MS and MS/MS techniques and systems are well-known per se (see, e.g., Methods in Molecular Biology, vol. 146: “Mass Spectrometry of Proteins and Peptides”, by Chapman, ed., Humana Press 2000; Biemann 1990. Methods Enzymol 193: 455-79; or Methods in Enzymology, vol. 402: “Biological Mass Spectrometry”, by Burlingame, ed., Academic Press 2005) and can be used in practicing the methods disclosed herein. Accordingly, in some embodiments, the disclosed methods comprise performing quantitative MS to measure one or more biomarkers. Such quantitiative methods can be performed in an automated (Villanueva, et al., Nature Protocols (2006) 1(2):880-891) or semi-automated format. In particular embodiments, MS can be operably linked to a liquid chromatography device (LC-MS/MS or LC-MS) or gas chromatography device (GC-MS or GC-MS/MS). Other methods useful in this context include isotope-coded affinity tag (ICAT), tandem mass tags (TMT), or stable isotope labeling by amino acids in cell culture (SILAC), followed by chromatography and MS/MS.


As used herein, the terms “multiple reaction monitoring (MRM)” or “selected reaction monitoring (SRM)” refer to an MS-based quantification method that is particularly useful for quantifying analytes that are in low abundance. In an SRM experiment, a predefined precursor ion and one or more of its fragments are selected by the two mass filters of a triple quadrupole instrument and monitored over time for precise quantification. Multiple SRM precursor and fragment ion pairs can be measured within the same experiment on the chromatographic time scale by rapidly toggling between the different precursor/fragment pairs to perform an MRM experiment. A series of transitions (precursor/fragment ion pairs) in combination with the retention time of the targeted analyte (e.g., peptide or small molecule such as chemical entity, steroid, hormone) can constitute a definitive assay. A large number of analytes can be quantified during a single LC-MS experiment. The term “scheduled,” or “dynamic” in reference to MRM or SRM, refers to a variation of the assay wherein the transitions for a particular analyte are only acquired in a time window around the expected retention time, significantly increasing the number of analytes that can be detected and quantified in a single LC-MS experiment and contributing to the selectivity of the test, as retention time is a property dependent on the physical nature of the analyte. A single analyte can also be monitored with more than one transition. Finally, included in the assay can be standards that correspond to the analytes of interest (e.g., same amino acid sequence), but differ by the inclusion of stable isotopes. Stable isotopic standards (SIS) can be incorporated into the assay at precise levels and used to quantify the corresponding unknown analyte. An additional level of specificity is contributed by the co-elution of the unknown analyte and its corresponding SIS and properties of their transitions (e.g., the similarity in the ratio of the level of two transitions of the unknown and the ratio of the two transitions of its corresponding SIS).


Mass spectrometry assays, instruments and systems suitable for biomarker peptide analysis can include, without limitation, matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) MS; MALDI-TOF post-source-decay (PSD); MALDI-TOF/TOF; surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF) MS; electrospray ionization mass spectrometry (ESI-MS); ESI-MS/MS; ESI-MS/(MS)n (n is an integer greater than zero); ESI 3D or linear (2D) ion trap MS; ESI triple quadrupole MS; ESI quadrupole orthogonal TOF (Q-TOF); ESI Fourier transform MS systems; desorption/ionization on silicon (DIOS); secondary ion mass spectrometry (SIMS); atmospheric pressure chemical ionization mass spectrometry (APCI-MS); APCI-MS/MS; APCI-(MS)n; ion mobility spectrometry (IMS); inductively coupled plasma mass spectrometry (ICP-MS)atmospheric pressure photoionization mass spectrometry (APPI-MS); APPI-MS/MS; and APPI-(MS)n. Peptide ion fragmentation in tandem MS (MS/MS) arrangements can be achieved using manners established in the art, such as, e.g., collision induced dissociation (CID). As described herein, detection and quantification of biomarkers by mass spectrometry can involve multiple reaction monitoring (MRM), such as described among others by Kuhn et al. Proteomics 4: 1175-86 (2004). Scheduled multiple-reaction-monitoring (Scheduled MRM) mode acquisition during LC-MS/MS analysis enhances the sensitivity and accuracy of peptide quantitation. Anderson and Hunter, Molecular and Cellular Proteomics 5(4):573 (2006). As described herein, mass spectrometry-based assays can be advantageously combined with upstream peptide or protein separation or fractionation methods, such as for example with the chromatographic and other methods described herein below. As further described herein, shotgun quantitative proteomics can be combined with SRM/MRM-based assays for high-throughput identification and verification of prognostic biomarkers of preterm birth.


A person skilled in the art will appreciate that a number of methods can be used to determine the amount of a biomarker, including mass spectrometry approaches, such as MS/MS, LC-MS/MS, multiple reaction monitoring (MRM) or SRM and product-ion monitoring (PIM) and also including antibody based methods such as immunoassays such as Western blots, enzyme-linked immunosorbant assay (ELISA), immunopercipitation, immunohistochemistry, immunofluorescence, radioimmunoassay, dot blotting, and FACS. Accordingly, in some embodiments, determining the level of the at least one biomarker comprises using an immunoassay and/or mass spectrometric methods. In additional embodiments, the mass spectrometric methods are selected from MS, MS/MS, LC-MS/MS, SRM, PIM, and other such methods that are known in the art. In other embodiments, LC-MS/MS further comprises 1D LC-MS/MS, 2D LC-MS/MS or 3D LC-MS/MS. Immunoassay techniques and protocols are generally known to those skilled in the art (Price and Newman, Principles and Practice of Immunoassay, 2nd Edition, Grove's Dictionaries, 1997; and Gosling, Immunoassays: A Practical Approach, Oxford University Press, 2000.) A variety of immunoassay techniques, including competitive and non-competitive immunoassays, can be used (Self et al., Curr. Opin. Biotechnol., 7:60-65 (1996).


In further embodiments, the immunoassay is selected from Western blot, ELISA, immunoprecipitation, immunohistochemistry, immunofluorescence, radioimmunoassay (RIA), dot blotting, and FACS. In certain embodiments, the immunoassay is an ELISA. In yet a further embodiment, the ELISA is direct ELISA (enzyme-linked immunosorbent assay), indirect ELISA, sandwich ELISA, competitive ELISA, multiplex ELISA, ELISPOT technologies, and other similar techniques known in the art. Principles of these immunoassay methods are known in the art, for example John R. Crowther, The ELISA Guidebook, 1st ed., Humana Press 2000, ISBN 0896037282. Typically ELISAs are performed with antibodies but they can be performed with any capture agents that bind specifically to one or more biomarkers of the invention and that can be detected. Multiplex ELISA allows simultaneous detection of two or more analytes within a single compartment (e.g., microplate well) usually at a plurality of array addresses (Nielsen and Geierstanger 2004. J Immunol Methods 290: 107-20 (2004) and Ling et al. 2007. Expert Rev Mol Diagn 7: 87-98 (2007)).


In some embodiments, Radioimmunoassay (RIA) can be used to detect one or more biomarkers in the methods of the invention. RIA is a competition-based assay that is well known in the art and involves mixing known quantities of radioactavely-labelled (e.g., 125I or 131I-labelled) target analyte with antibody specific for the analyte, then adding non-labelled analyte from a sample and measuring the amount of labelled analyte that is displaced (see, e.g., An Introduction to Radioimmunoassay and Related Techniques, by Chard T, ed., Elsevier Science 1995, ISBN 0444821198 for guidance).


A detectable label can be used in the assays described herein for direct or indirect detection of the biomarkers in the methods of the invention. A wide variety of detectable labels can be used, with the choice of label depending on the sensitivity required, ease of conjugation with the antibody, stability requirements, and available instrumentation and disposal provisions. Those skilled in the art are familiar with selection of a suitable detectable label based on the assay detection of the biomarkers in the methods of the invention. Suitable detectable labels include, but are not limited to, fluorescent dyes (e.g., fluorescein, fluorescein isothiocyanate (FITC), Oregon Green™, rhodamine, Texas red, tetrarhodimine isothiocynate (TRITC), Cy3, Cy5, etc.), fluorescent markers (e.g., green fluorescent protein (GFP), phycoerythrin, etc.), enzymes (e.g., luciferase, horseradish peroxidase, alkaline phosphatase, etc.), nanoparticles, biotin, digoxigenin, metals, and the like.


For mass-sectrometry based analysis, differential tagging with isotopic reagents, e.g., isotope-coded affinity tags (ICAT) or the more recent variation that uses isobaric tagging reagents, iTRAQ (Applied Biosystems, Foster City, Calif.), or tandem mass tags, TMT, (Thermo Scientific, Rockford, Ill.), followed by multidimensional liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis can provide a further methodology in practicing the methods of the inventon.


A chemiluminescence assay using a chemiluminescent antibody can be used for sensitive, non-radioactive detection of protein levels. An antibody labeled with fluorochrome also can be suitable. Examples of fluorochromes include, without limitation, DAPI, fluorescein, Hoechst 33258, R-phycocyanin, B-phycoerythrin, R-phycoerythrin, rhodamine, Texas red, and lissamine. Indirect labels include various enzymes well known in the art, such as horseradish peroxidase (HRP), alkaline phosphatase (AP), beta-galactosidase, urease, and the like. Detection systems using suitable substrates for horseradish-peroxidase, alkaline phosphatase, beta-galactosidase are well known in the art.


A signal from the direct or indirect label can be analyzed, for example, using a spectrophotometer to detect color from a chromogenic substrate; a radiation counter to detect radiation such as a gamma counter for detection of 125I; or a fluorometer to detect fluorescence in the presence of light of a certain wavelength. For detection of enzyme-linked antibodies, a quantitative analysis can be made using a spectrophotometer such as an EMAX Microplate Reader (Molecular Devices; Menlo Park, Calif.) in accordance with the manufacturer's instructions. If desired, assays used to practice the invention can be automated or performed robotically, and the signal from multiple samples can be detected simultaneously.


In some embodiments, the methods described herein encompass quantification of the biomarkers using mass spectrometry (MS). In further embodiments, the mass spectrometry can be liquid chromatography-mass spectrometry (LC-MS), multiple reaction monitoring (MRM) or selected reaction monitoring (SRM). In additional embodiments, the MRM or SRM can further encompass scheduled MRM or scheduled SRM.


As described above, chromatography can also be used in practicing the methods of the invention. Chromatography encompasses methods for separating chemical substances and generally involves a process in which a mixture of analytes is carried by a moving stream of liquid or gas (“mobile phase”) and separated into components as a result of differential distribution of the analytes as they flow around or over a stationary liquid or solid phase (“stationary phase”), between the mobile phase and said stationary phase. The stationary phase can be usually a finely divided solid, a sheet of filter material, or a thin film of a liquid on the surface of a solid, or the like. Chromatography is well understood by those skilled in the art as a technique applicable for the separation of chemical compounds of biological origin, such as, e.g., amino acids, proteins, fragments of proteins or peptides, etc.


Chromatography can be columnar (i.e., wherein the stationary phase is deposited or packed in a column), preferably liquid chromatography, and yet more preferably high-performance liquid chromatography (HPLC), or ultra high performance/pressure liquid chromatography (UHPLC). Particulars of chromatography are well known in the art (Bidlingmeyer, Practical HPLC Methodology and Applications, John Wiley & Sons Inc., 1993). Exemplary types of chromatography include, without limitation, high-performance liquid chromatography (HPLC), UHPLC, normal phase HPLC (NP-HPLC), reversed phase HPLC (RP-HPLC), ion exchange chromatography (IEC), such as cation or anion exchange chromatography, hydrophilic interaction chromatography (HILIC), hydrophobic interaction chromatography (HIC), size exclusion chromatography (SEC) including gel filtration chromatography or gel permeation chromatography, chromatofocusing, affinity chromatography such as immuno-affinity, immobilised metal affinity chromatography, and the like. Chromatography, including single-, two- or more-dimensional chromatography, can be used as a peptide fractionation method in conjunction with a further peptide analysis method, such as for example, with a downstream mass spectrometry analysis as described elsewhere in this specification.


Further peptide or polypeptide separation, identification or quantification methods can be used, optionally in conjunction with any of the above described analysis methods, for measuring biomarkers in the present disclosure. Such methods include, without limitation, chemical extraction partitioning, isoelectric focusing (IEF) including capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITP), capillary electrochromatography (CEC), and the like, one-dimensional polyacrylamide gel electrophoresis (PAGE), two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), capillary gel electrophoresis (CGE), capillary zone electrophoresis (CZE), micellar electrokinetic chromatography (MEKC), free flow electrophoresis (FFE), etc.


In the context of the invention, the term “capture agent” refers to a compound that can specifically bind to a target, in particular a biomarker. The term includes antibodies, antibody fragments, nucleic acid-based protein binding reagents (e.g. aptamers, Slow Off-rate Modified Aptamers (SOMAmer™)), protein-capture agents, natural ligands (i.e. a hormone for its receptor or vice versa), small molecules or variants thereof.


Capture agents can be configured to specifically bind to a target, in particular a biomarker. Capture agents can include but are not limited to organic molecules, such as polypeptides, polynucleotides and other non polymeric molecules that are identifiable to a skilled person. In the embodiments disclosed herein, capture agents include any agent that can be used to detect, purify, isolate, or enrich a target, in particular a biomarker. Any art-known affinity capture technologies can be used to selectively isolate and enrich/concentrate biomarkers that are components of complex mixtures of biological media for use in the disclosed methods.


Antibody capture agents that specifically bind to a biomarker can be prepared using any suitable methods known in the art. See, e.g., Coligan, Current Protocols in Immunology (1991); Harlow & Lane, Antibodies: A Laboratory Manual (1988); Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986). Antibody capture agents can be any immunoglobulin or derivative therof, whether natural or wholly or partially synthetically produced. All derivatives thereof which maintain specific binding ability are also included in the term. Antibody capture agents have a binding domain that is homologous or largely homologous to an immunoglobulin binding domain and can be derived from natural sources, or partly or wholly synthetically produced. Antibody capture agents can be monoclonal or polyclonal antibodies. In some embodiments, an antibody is a single chain antibody. Those of ordinary skill in the art will appreciate that antibodies can be provided in any of a variety of forms including, for example, humanized, partially humanized, chimeric, chimeric humanized, etc. Antibody capture agents can be antibody fragments including, but not limited to, Fab, Fab′, F(ab′)2, scFv, Fv, dsFv diabody, and Fd fragments. An antibody capture agent can be produced by any means. For example, an antibody capture agent can be enzymatically or chemically produced by fragmentation of an intact antibody and/or it can be recombinantly produced from a gene encoding the partial antibody sequence. An antibody capture agent can comprise a single chain antibody fragment. Alternatively or additionally, antibody capture agent can comprise multiple chains which are linked together, for example, by disulfide linkages; and, any functional fragments obtained from such molecules, wherein such fragments retain specific-binding properties of the parent antibody molecule. Because of their smaller size as functional components of the whole molecule, antibody fragments can offer advantages over intact antibodies for use in certain immunochemical techniques and experimental applications.


Suitable capture agents useful for practicing the invention also include aptamers. Aptamers are oligonucleotide sequences that can bind to their targets specifically via unique three dimensional (3-D) structures. An aptamer can include any suitable number of nucleotides and different aptamers can have either the same or different numbers of nucleotides. Aptamers can be DNA or RNA or chemically modified nucleic acids and can be single stranded, double stranded, or contain double stranded regions, and can include higher ordered structures. An aptamer can also be a photoaptamer, where a photoreactive or chemically reactive functional group is included in the aptamer to allow it to be covalently linked to its corresponding target. Use of an aptamer capture agent can include the use of two or more aptamers that specifically bind the same biomarker. An aptamer can include a tag. An aptamer can be identified using any known method, including the SELEX (systematic evolution of ligands by exponential enrichment), process. Once identified, an aptamer can be prepared or synthesized in accordance with any known method, including chemical synthetic methods and enzymatic synthetic methods and used in a variety of applications for biomarker detection. Liu et al., Curr Med Chem. 18(27):4117-25 (2011). Capture agents useful in practicing the methods of the invention also include SOMAmers (Slow Off-Rate Modified Aptamers) known in the art to have improved off-rate characteristics. Brody et al., J Mol Biol. 422(5):595-606 (2012). SOMAmers can be generated using any known method, including the SELEX method.


It is understood by those skilled in the art that biomarkers can be modified prior to analysis to improve their resolution or to determine their identity. For example, the biomarkers can be subject to proteolytic digestion before analysis. Any protease can be used. Proteases, such as trypsin, that are likely to cleave the biomarkers into a discrete number of fragments are particularly useful. The fragments that result from digestion function as a fingerprint for the biomarkers, thereby enabling their detection indirectly. This is particularly useful where there are biomarkers with similar molecular masses that might be confused for the biomarker in question. Also, proteolytic fragmentation is useful for high molecular weight biomarkers because smaller biomarkers are more easily resolved by mass spectrometry. In another example, biomarkers can be modified to improve detection resolution. For instance, neuraminidase can be used to remove terminal sialic acid residues from glycoproteins to improve binding to an anionic adsorbent and to improve detection resolution. In another example, the biomarkers can be modified by the attachment of a tag of particular molecular weight that specifically binds to molecular biomarkers, further distinguishing them. Optionally, after detecting such modified biomarkers, the identity of the biomarkers can be further determined by matching the physical and chemical characteristics of the modified biomarkers in a protein database (e.g., SwissProt).


It is further appreciated in the art that biomarkers in a sample can be captured on a substrate for detection. Traditional substrates include antibody-coated 96-well plates or nitrocellulose membranes that are subsequently probed for the presence of the proteins. Alternatively, protein-binding molecules attached to microspheres, microparticles, microbeads, beads, or other particles can be used for capture and detection of biomarkers. The protein-binding molecules can be antibodies, peptides, peptoids, aptamers, small molecule ligands or other protein-binding capture agents attached to the surface of particles. Each protein-binding molecule can include unique detectable label that is coded such that it can be distinguished from other detectable labels attached to other protein-binding molecules to allow detection of biomarkers in multiplex assays. Examples include, but are not limited to, color-coded microspheres with known fluorescent light intensities (see e.g., microspheres with xMAP technology produced by Luminex (Austin, Tex.); microspheres containing quantum dot nanocrystals, for example, having different ratios and combinations of quantum dot colors (e.g., Qdot nanocrystals produced by Life Technologies (Carlsbad, Calif.); glass coated metal nanoparticles (see e.g., SERS nanotags produced by Nanoplex Technologies, Inc. (Mountain View, Calif.); barcode materials (see e.g., sub-micron sized striped metallic rods such as Nanobarcodes produced by Nanoplex Technologies, Inc.), encoded microparticles with colored bar codes (see e.g., CellCard produced by Vitra Bioscience, vitrabio.com), glass microparticles with digital holographic code images (see e.g., CyVera microbeads produced by Illumina (San Diego, Calif); chemiluminescent dyes, combinations of dye compounds; and beads of detectably different sizes.


In another aspect, biochips can be used for capture and detection of the biomarkers of the invention. Many protein biochips are known in the art. These include, for example, protein biochips produced by Packard BioScience Company (Meriden Conn.), Zyomyx (Hayward, Calif) and Phylos (Lexington, Mass.). In general, protein biochips comprise a substrate having a surface. A capture reagent or adsorbent is attached to the surface of the substrate. Frequently, the surface comprises a plurality of addressable locations, each of which location has the capture agent bound there. The capture agent can be a biological molecule, such as a polypeptide or a nucleic acid, which captures other biomarkers in a specific manner. Alternatively, the capture agent can be a chromatographic material, such as an anion exchange material or a hydrophilic material. Examples of protein biochips are well known in the art.


Measuring mRNA in a biological sample can be used as a surrogate for detection of the level of the corresponding protein biomarker in a biological sample. Thus, any of the biomarkers or biomarker panels described herein can also be detected by detecting the appropriate RNA. Levels of mRNA can measured by reverse transcription quantitative polymerase chain reaction (RT-PCR followed with qPCR). RT-PCR is used to create a cDNA from the mRNA. The cDNA can be used in a qPCR assay to produce fluorescence as the DNA amplification process progresses. By comparison to a standard curve, qPCR can produce an absolute measurement such as number of copies of mRNA per cell. Northern blots, microarrays, Invader assays, and RT-PCR combined with capillary electrophoresis have all been used to measure expression levels of mRNA in a sample. See Gene Expression Profiling: Methods and Protocols, Richard A. Shimkets, editor, Humana Press, 2004.


Some embodiments disclosed herein relate to diagnostic and prognostic methods of determining the probability for preterm birth in a pregnant female. The detection of the level of expression of one or more biomarkers and/or the determination of a ratio of biomarkers can be used to determine the probability for preterm birth in a pregnant female. Such detection methods can be used, for example, for early diagnosis of the condition, to determine whether a subject is predisposed to preterm birth, to monitor the progress of preterm birth or the progress of treatment protocols, to assess the severity of preterm birth, to forecast the outcome of preterm birth and/or prospects of recovery or birth at full term, or to aid in the determination of a suitable treatment for preterm birth.


The quantitation of biomarkers in a biological sample can be determined, without limitation, by the methods described above as well as any other method known in the art. The quantitative data thus obtained is then subjected to an analytic classification process. In such a process, the raw data is manipulated according to an algorithm, where the algorithm has been pre-defined by a training set of data, for example as described in the examples provided herein. An algorithm can utilize the training set of data provided herein, or can utilize the guidelines provided herein to generate an algorithm with a different set of data.


In some embodiments, analyzing a measurable feature to determine the probability for preterm birth in a pregnant female encompasses the use of a predictive model. In further embodiments, analyzing a measurable feature to determine the probability for preterm birth in a pregnant female encompasses comparing said measurable feature with a reference feature. As those skilled in the art can appreciate, such comparison can be a direct comparison to the reference feature or an indirect comparison where the reference feature has been incorporated into the predictive model. In further embodiments, analyzing a measurable feature to determine the probability for preterm birth in a pregnant female encompasses one or more of a linear discriminant analysis model, a support vector machine classification algorithm, a recursive feature elimination model, a prediction analysis of microarray model, a logistic regression model, a CART algorithm, a flex tree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, a machine learning algorithm, a penalized regression method, or a combination thereof. In particular embodiments, the analysis comprises logistic regression.


An analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, machine learning algorithms; etc.


For creation of a random forest for prediction of GAB one skilled in the art can consider a set of k subjects (pregnant women) for whom the gestational age at birth (GAB) is known, and for whom N analytes (transitions) have been measured in a blood specimen taken several weeks prior to birth. A regression tree begins with a root node that contains all the subjects. The average GAB for all subjects can be cacluclated in the root node. The variance of the GAB within the root node will be high, because there is a mixture of women with different GAB's. The root node is then divided (partitioned) into two branches, so that each branch contains women with a similar GAB. The average GAB for subjects in each branch is again caluclated. The variance of the GAB within each branch will be lower than in the root node, because the subset of women within each branch has relatively more similar GAB's than those in the root node. The two branches are created by selecting an analyte and a threshold value for the analyte that creates branches with similar GAB. The analyte and threshold value are chosen from among the set of all analytes and threshold values, usually with a random subset of the analytes at each node. The procedure continues recursively producing branches to create leaves (terminal nodes) in which the subjects have very similar GAB's. The predicted GAB in each terminal node is the average GAB for subjects in that terminal node. This procedure creates a single regression tree. A random forest can consist of several hundred or several thousand such trees.


Classification can be made according to predictive modeling methods that set a threshold for determining the probability that a sample belongs to a given class. The probability preferably is at least 50%, or at least 60%, or at least 70%, or at least 80% or higher. Classifications also can be made by determining whether a comparison between an obtained dataset and a reference dataset yields a statistically significant difference. If so, then the sample from which the dataset was obtained is classified as not belonging to the reference dataset class. Conversely, if such a comparison is not statistically significantly different from the reference dataset, then the sample from which the dataset was obtained is classified as belonging to the reference dataset class.


The predictive ability of a model can be evaluated according to its ability to provide a quality metric, e.g. AUROC (area under the ROC curve) or accuracy, of a particular value, or range of values. Area under the curve measures are useful for comparing the accuracy of a classifier across the complete data range. Classifiers with a greater AUC have a greater capacity to classify unknowns correctly between two groups of interest. In some embodiments, a desired quality threshold is a predictive model that will classify a sample with an accuracy of at least about 0.5, at least about 0.55, at least about 0.6, at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, at least about 0.95, or higher. As an alternative measure, a desired quality threshold can refer to a predictive model that will classify a sample with an AUC of at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.


As is known in the art, the relative sensitivity and specificity of a predictive model can be adjusted to favor either the selectivity metric or the sensitivity metric, where the two metrics have an inverse relationship. The limits in a model as described above can be adjusted to provide a selected sensitivity or specificity level, depending on the particular requirements of the test being performed. One or both of sensitivity and specificity can be at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.


The raw data can be initially analyzed by measuring the values for each biomarker, usually in triplicate or in multiple triplicates. The data can be manipulated, for example, raw data can be transformed using standard curves, and the average of triplicate measurements used to calculate the average and standard deviation for each patient. These values can be transformed before being used in the models, e.g. log-transformed, Box-Cox transformed (Box and Cox, Royal Stat. Soc., Series B, 26:211-246(1964). The data are then input into a predictive model, which will classify the sample according to the state. The resulting information can be communicated to a patient or health care provider.


To generate a predictive model for preterm birth, a robust data set, comprising known control samples and samples corresponding to the preterm birth classification of interest is used in a training set. A sample size can be selected using generally accepted criteria. As discussed above, different statistical methods can be used to obtain a highly accurate predictive model. Examples of such analysis are provided in Example 2.


In one embodiment, hierarchical clustering is performed in the derivation of a predictive model, where the Pearson correlation is employed as the clustering metric. One approach is to consider a preterm birth dataset as a “learning sample” in a problem of “supervised learning.” CART is a standard in applications to medicine (Singer, Recursive Partitioning in the Health Sciences, Springer(1999)) and can be modified by transforming any qualitative features to quantitative features; sorting them by attained significance levels, evaluated by sample reuse methods for Hotelling's T2 statistic; and suitable application of the lasso method. Problems in prediction are turned into problems in regression without losing sight of prediction, indeed by making suitable use of the Gini criterion for classification in evaluating the quality of regressions.


This approach led to what is termed FlexTree (Huang, Proc. Nat. Acad. Sci. U.S.A 101:10529-10534(2004)). FlexTree performs very well in simulations and when applied to multiple forms of data and is useful for practicing the claimed methods. Software automating FlexTree has been developed. Alternatively, LARTree or LART can be used (Turnbull (2005) Classification Trees with Subset Analysis Selection by the Lasso, Stanford University). The name reflects binary trees, as in CART and FlexTree; the lasso, as has been noted; and the implementation of the lasso through what is termed LARS by Efron et al. (2004) Annals of Statistics 32:407-451 (2004). See, also, Huang et al., Proc. Natl. Acad. Sci. USA. 101(29):10529-34 (2004). Other methods of analysis that can be used include logic regression. One method of logic regression Ruczinski, Journal of Computational and Graphical Statistics 12:475-512 (2003). Logic regression resembles CART in that its classifier can be displayed as a binary tree. It is different in that each node has Boolean statements about features that are more general than the simple “and” statements produced by CART.


Another approach is that of nearest shrunken centroids (Tibshirani, Proc. Natl. Acad. Sci. U.S.A 99:6567-72(2002)). The technology is k-means-like, but has the advantage that by shrinking cluster centers, one automatically selects features, as is the case in the lasso, to focus attention on small numbers of those that are informative. The approach is available as PAM software and is widely used. Two further sets of algorithms that can be used are random forests (Breiman, Machine Learning 45:5-32 (2001)) and MART (Hastie, The Elements of Statistical Learning, Springer (2001)). These two methods are known in the art as “committee methods,” that involve predictors that “vote” on outcome.


To provide significance ordering, the false discovery rate (FDR) can be determined. First, a set of null distributions of dissimilarity values is generated. In one embodiment, the values of observed profiles are permuted to create a sequence of distributions of correlation coefficients obtained out of chance, thereby creating an appropriate set of null distributions of correlation coefficients (Tusher et al., Proc. Natl. Acad. Sci. U.S.A 98, 5116-21 (2001)). The set of null distribution is obtained by: permuting the values of each profile for all available profiles; calculating the pair-wise correlation coefficients for all profile; calculating the probability density function of the correlation coefficients for this permutation; and repeating the procedure for N times, where N is a large number, usually 300. Using the N distributions, one calculates an appropriate measure (mean, median, etc.) of the count of correlation coefficient values that their values exceed the value (of similarity) that is obtained from the distribution of experimentally observed similarity values at given significance level.


The FDR is the ratio of the number of the expected falsely significant correlations (estimated from the correlations greater than this selected Pearson correlation in the set of randomized data) to the number of correlations greater than this selected Pearson correlation in the empirical data (significant correlations). This cut-off correlation value can be applied to the correlations between experimental profiles. Using the aforementioned distribution, a level of confidence is chosen for significance. This is used to determine the lowest value of the correlation coefficient that exceeds the result that would have obtained by chance. Using this method, one obtains thresholds for positive correlation, negative correlation or both. Using this threshold(s), the user can filter the observed values of the pair wise correlation coefficients and eliminate those that do not exceed the threshold(s). Furthermore, an estimate of the false positive rate can be obtained for a given threshold. For each of the individual “random correlation” distributions, one can find how many observations fall outside the threshold range. This procedure provides a sequence of counts. The mean and the standard deviation of the sequence provide the average number of potential false positives and its standard deviation.


In an alternative analytical approach, variables chosen in the cross-sectional analysis are separately employed as predictors in a time-to-event analysis (survival analysis), where the event is the occurrence of preterm birth, and subjects with no event are considered censored at the time of giving birth. Given the specific pregnancy outcome (preterm birth event or no event), the random lengths of time each patient will be observed, and selection of proteomic and other features, a parametric approach to analyzing survival can be better than the widely applied semi-parametric Cox model. A Weibull parametric fit of survival permits the hazard rate to be monotonically increasing, decreasing, or constant, and also has a proportional hazards representation (as does the Cox model) and an accelerated failure-time representation. All the standard tools available in obtaining approximate maximum likelihood estimators of regression coefficients and corresponding functions are available with this model.


In addition the Cox models can be used, especially since reductions of numbers of covariates to manageable size with the lasso will significantly simplify the analysis, allowing the possibility of a nonparametric or semi-parametric approach to prediction of time to preterm birth. These statistical tools are known in the art and applicable to all manner of proteomic data. A set of biomarker, clinical and genetic data that can be easily determined, and that is highly informative regarding the probability for preterm birth and predicted time to a preterm birth event in said pregnant female is provided. Also, algorithms provide information regarding the probability for preterm birth in the pregnant female.


Accordingly, one skilled in the art understands that the probability for preterm birth according to the invention can be determined using either a quantitative or a categorical variable. For example, in practicing the methods of the invention the measurable feature of each of N biomarkers can be subjected to categorical data analysis to determine the probability for preterm birth as a binary categorical outcome. Alternatively, the methods of the invention may analyze the measurable feature of each of N biomarkers by initially calculating quantitative variables, in particular, predicted gestational age at birth. The predicted gestational age at birth can subsequently be used as a basis to predict risk of preterm birth. By initially using a quantitative variable and subsequently converting the quantitative variable into a categorical variable the methods of the invention take into account the continuum of measurements detected for the measurable features. For example, by predicting the gestational age at birth rather than making a binary prediction of preterm birth versus term birth, it is possible to tailor the treatment for the pregnant female. For example, an earlier predicted gestational age at birth will result in more intensive prenatal intervention, i.e. monitoring and treatment, than a predicted gestational age that approaches full term.


Among women with a predicted GAB of j days plus or minus k days, p(PTB) can estimated as the proportion of women in the PAPR clinical trial (see Example 1) with a predicted GAB of j days plus or minus k days who actually deliver before 37 weeks gestational age. More generally, for women with a predicted GAB of j days plus or minus k days, the probability that the actual gestational age at birth will be less than a specified gestational age, p(actual GAB <specified GAB), was estimated as the proportion of women in the PAPR clinical trial with a predicted GAB of j days plus or minus k days who actually deliver before the specified gestational age.


In the development of a predictive model, it can be desirable to select a subset of markers, i.e. at least 3, at least 4, at least 5, at least 6, up to the complete set of markers. Usually a subset of markers will be chosen that provides for the needs of the quantitative sample analysis, e.g. availability of reagents, convenience of quantitation, etc., while maintaining a highly accurate predictive model. The selection of a number of informative markers for building classification models requires the definition of a performance metric and a user-defined threshold for producing a model with useful predictive ability based on this metric. For example, the performance metric can be the AUC, the sensitivity and/or specificity of the prediction as well as the overall accuracy of the prediction model.


As will be understood by those skilled in the art, an analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include, without limitation, linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, and machine learning algorithms.


As described in Example 2, various methods are used in a training model. The selection of a subset of markers can be for a forward selection or a backward selection of a marker subset. The number of markers can be selected that will optimize the performance of a model without the use of all the markers. One way to define the optimum number of terms is to choose the number of terms that produce a model with desired predictive ability (e.g. an AUC>0.75, or equivalent measures of sensitivity/specificity) that lies no more than one standard error from the maximum value obtained for this metric using any combination and number of terms used for the given algorithm.









TABLE 1







Transitions with p-values less than 0.05 in


univariate Cox Proportional Hazards analyses


to predict Gestational Age at Birth











p-value




Cox uni-


Transition
Protein
variate





ITLPDFTGDLR_624.34_920.4
LBP_HUMAN
0.006





ELLESYIDGR_597.8_710.3
THRB_HUMAN
0.006





TDAPDLPEENQAR_728.34_613.3
CO5_HUMAN
0.007





AFTECCVVASQLR_770.87_574.3
CO5_HUMAN
0.009





SFRPFVPR_335.86_272.2
LBP_HUMAN
0.011





ITLPDFTGDLR_624.34_288.2
LBP_HUMAN
0.012





SFRPFVPR_335.86_635.3
LBP_HUMAN
0.015





ELLESYIDGR_597.8_839.4
THRB_HUMAN
0.018





LEQGENVFLQATDK_796.4_822.4
C1QB_HUMAN
0.019





ETAASLLQAGYK_626.33_679.4
THRB_HUMAN
0.021





VTGWGNLK_437.74_617.3
THRB_HUMAN
0.021





EAQLPVIENK_570.82_699.4
PLMN_HUMAN
0.023





EAQLPVIENK_570.82_329.1
PLMN_HUMAN
0.023





FLQEQGHR_338.84_497.3
CO8G_HUMAN
0.025





IRPFFPQQ_516.79_661.4
FIBB_HUMAN
0.028





ETAASLLQAGYK_626.33_879.5
THRB_HUMAN
0.029





AFTECCVVASQLR_770.87_673.4
CO5_HUMAN
0.030





TLLPVSKPEIR_418.26_288.2
CO5_HUMAN
0.030





LSSPAVITDK_515.79_743.4
PLMN_HUMAN
0.033





YEVQGEVFTKPQLWP_910.96_392.2
CRP_HUMAN
0.036





LQGTLPVEAR_542.31_571.3
CO5_HUMAN
0.036





VRPQQLVK_484.31_609.3
ITIH4_HUMAN
0.036





IEEIAAK_387.22_531.3
CO5_HUMAN
0.041





TLLPVSKPEIR_418.26_514.3
CO5_HUMAN
0.042





VQEAHLTEDQIFYFPK_655.66_701.4
CO8G_HUMAN
0.047





ISLLLIESWLEPVR_834.49_371.2
CSH_HUMAN
0.048





ALQDQLVLVAAK_634.88_289.2
ANGT_HUMAN
0.048





YEFLNGR_449.72_293.1
PLMN_HUMAN
0.049
















TABLE 2







Transitions selected by the Cox stepwise AIC analysis












Transition
coef
exp(coef)
se(coef)
z
Pr(>|z|)















Collection.Window.GA.in.Days
1.28E−01
1.14E+00
2.44E−02
5.26
1.40E−07





ITLPDFTGDLR_624.34_920.4
2.02E+00
7.52E+00
1.14E+00
1.77
0.07667





TPSAAYLWVGTGASEAEK_919.45_849.4
2.85E+01
2.44E+12
3.06E+00
9.31
  <2e−16





TATSEYQTFFNPR_781.37_386.2
5.14E+00
1.70E+02
6.26E−01
8.21
2.20E−16





TASDFITK_441.73_781.4
−1.25E+00
2.86E−01
1.58E+00
−0.79
0.42856





IITGLLEFEVYLEYLQNR_738.4_530.3
1.30E+01
4.49E+05
1.45E+00
9
  <2e−16





IIGGSDADIK_494.77_762.4
−6.43E+01
1.16E−28
6.64E+00
−9.68
  <2e−16





YTTEIIK_434.25_603.4
6.96E+01
1.75E+30
7.06E+00
9.86
  <2e−16





EDTPNSVWEPAK_686.82_315.2
7.91E+00
2.73E+03
2.66E+00
2.98
0.00293





LYYGDDEK_501.72_726.3
8.74E+00
6.23E+03
1.57E+00
5.57
2.50E−08





VRPQQLVK_484.31_609.3
4.64E+01
1.36E+20
3.97E+00
11.66
  <2e−16





GGEIEGFR_432.71_379.2
−3.33E+00
3.57E−02
2.19E+00
−1.52
0.12792





DGSPDVTTADIGANTPDATK_973.45_844.4
−1.52E+01
2.51E−07
1.41E+00
−10.8
  <2e−16





VQEAHLTEDQIFYFPK_655.66_391.2
−2.02E+01
1.77E−09
2.45E+00
−8.22
2.20E−16





VEIDTK_352.7_476.3
7.06E+00
1.17E+03
1.45E+00
4.86
1.20E−06





AVLTIDEK_444.76_605.3
7.85E+00
2.56E+03
9.46E−01
8.29
  <2e−16





FSVVYAK_407.23_579.4
−2.44E+01
2.42E−11
3.08E+00
−7.93
2.20E−15





YYLQGAK_421.72_516.3
−1.82E+01
1.22E−08
2.45E+00
−7.44
1.00E−13





EENFYVDETTVVK_786.88_259.1
−1.90E+01
5.36E−09
2.71E+00
−7.03
2.00E−12





YGFYTHVFR_397.2_421.3
1.90E+01
1.71E+08
2.73E+00
6.93
4.20E−12





HTLNQIDEVK_598.82_951.5
1.03E+01
3.04E+04
2.11E+00
4.89
9.90E−07





AFIQLWAFDAVK_704.89_836.4
1.08E+01
4.72E+04
2.59E+00
4.16
3.20E−05





SGFSFGFK_438.72_585.3
1.35E+01
7.32E+05
2.56E+00
5.27
1.40E−07





GWVTDGFSSLK_598.8_854.4
−3.12E+00
4.42E−02
9.16E−01
−3.4
0.00066





ITENDIQIALDDAK_779.9_632.3
1.91E+00
6.78E+00
1.36E+00
1.4
0.16036
















TABLE 3







Transitions selected by Cox lasso model












Transition
coef
exp(coef)
se(coef)
z
Pr(>|z|)















Collection.Window.GA.in.Days
0.0233
1.02357
0.00928
2.51
0.012





AFTECCVVASQLR_770.87_574.3
1.07568
2.93198
0.84554
1.27
0.203





ELLESYIDGR_597.8_710.3
1.3847
3.99365
0.70784
1.96
0.05





ITLPDFTGDLR_624.34_920.4
0.814
2.25691
0.40652
2
0.045
















TABLE 4







Area under the ROC (AUROC) curve for individual


analytes to discriminate pre-term birth subjects


from non-pre-term birth subjects. The 77


transitions with the highest AUROC area are shown.










Transition
  AUROC














ELLESYIDGR_597.8_710.3
0.71







AFTECCVVASQLR_770.87_574.3
0.70







ITLPDFTGDLR_624.34_920.4
0.70







IRPFFPQQ_516.79_661.4
0.68







TDAPDLPEENQAR_728.34_613.3
0.67







ITLPDFTGDLR_624.34_288.2
0.67







ELLESYIDGR_597.8_839.4
0.67







SFRPFVPR_335.86_635.3
0.67







ETAASLLQAGYK_626.33_879.5
0.67







TLLPVSKPEIR_418.26_288.2
0.66







ETAASLLQAGYK_626.33_679.4
0.66







SFRPFVPR_335.86_272.2
0.66







LQGTLPVEAR_542.31_571.3
0.66







VEPLYELVTATDFAYSSTVR_754.38_712.4
0.66







DPDQTDGLGLSYLSSHIANVER_796.39_328.1
0.66







VTGWGNLK_437.74_617.3
0.65







ALQDQLVLVAAK_634.88_289.2
0.65







EAQLPVIENK_570.82_329.1
0.65







VRPQQLVK_484.31_609.3
0.65







AFTECCVVASQLR_770.87_673.4
0.65







YEFLNGR_449.72_293.1
0.65







VGEYSLYIGR_578.8_871.5
0.64







EAQLPVIENK_570.82_699.4
0.64







TLLPVSKPEIR_418.26_514.3
0.64







IEEIAAK_387.22_531.3
0.64







LEQGENVFLQATDK_796.4_822.4
0.64







LQGTLPVEAR_542.31_842.5
0.64







FLQEQGHR_338.84_497.3
0.63







ISLLLIESWLEPVR_834.49_371.2
0.63







IITGLLEFEVYLEYLQNR_738.4_530.3
0.63







LSSPAVITDK_515.79_743.4
0.63







VRPQQLVK_484.31_722.4
0.63







SLPVSDSVLSGFEQR_810.92_723.3
0.63







VQEAHLTEDQIFYFPK_655.66_701.4
0.63







NADYSYSVWK_616.78_333.2
0.63







DAQYAPGYDK_564.25_813.4
0.62







FQLPGQK_409.23_276.1
0.62







TASDFITK_441.73_781.4
0.62







YGLVTYATYPK_638.33_334.2
0.62







GSFALSFPVESDVAPIAR_931.99_363.2
0.62







TLLIANETLR_572.34_703.4
0.62







VILGAHQEVNLEPHVQEIEVSR_832.78_860.4
0.62







TATSEYQTFFNPR_781.37_386.2
0.62







YEVQGEVFTKPQLWP_910.96_392.2
0.62







DISEVVTPR_508.27_472.3
0.62







GSFALSFPVESDVAPIAR_931.99_456.3
0.62







YGFYTHVFR_397.2_421.3
0.62







TLEAQLTPR_514.79_685.4
0.62







YGFYTHVFR_397.2_659.4
0.62







AVGYLITGYQR_620.84_737.4
0.61







DPDQTDGLGLSYLSSHIANVER_796.39_456.2
0.61







FNAVLTNPQGDYDTSTGK_964.46_262.1
0.61







SPEQQETVLDGNLIIR_906.48_685.4
0.61







ALNHLPLEYNSALYSR_620.99_538.3
0.61







GGEIEGFR_432.71_508.3
0.61







GIVEECCFR_585.26_900.3
0.61







DAQYAPGYDK_564.25_315.1
0.61







FAFNLYR_465.75_712.4
0.61







YTTEIIK_434.25_603.4
0.61







AVLTIDEK_444.76_605.3
0.61







AITPPHPASQANIIFDITEGNLR_825.77_459.3
0.60







EPGLCTWQSLR_673.83_790.4
0.60







AVYEAVLR_460.76_587.4
0.60







ALQDQLVLVAAK_634.88_956.6
0.60







AWVAWR_394.71_531.3
0.60







TNLESILSYPK_632.84_807.5
0.60







HLSLLTTLSNR_418.91_376.2
0.60







FTFTLHLETPKPSISSSNLNPR_829.44_787.4
0.60







AVGYLITGYQR_620.84_523.3
0.60







FQLPGQK_409.23_429.2
0.60







YGLVTYATYPK_638.33_843.4
0.60







TELRPGETLNVNFLLR_624.68_662.4
0.60







LSSPAVITDK_515.79_830.5
0.60







TATSEYQTFFNPR_781.37_272.2
0.60







LPTAVVPLR_483.31_385.3
0.60







APLTKPLK_289.86_260.2
0.60

















TABLE 5







AUROCs for random forest, boosting, lasso, and logistic regression


models for a specific number of transitions permitted in the model,


as estimated by 100 rounds of bootstrap resampling.











Number of transitions
rf
boosting
logit
lasso














1
0.59
0.67
0.64
0.69


2
0.66
0.70
0.63
0.68


3
0.69
0.70
0.58
0.71


4
0.68
0.72
0.58
0.71


5
0.73
0.71
0.58
0.68


6
0.72
0.72
0.56
0.68


7
0.74
0.70
0.60
0.67


8
0.73
0.72
0.62
0.67


9
0.72
0.72
0.60
0.67


10
0.74
0.71
0.62
0.66


11
0.73
0.69
0.58
0.67


12
0.73
0.69
0.59
0.66


13
0.74
0.71
0.57
0.66


14
0.73
0.70
0.57
0.65


15
0.72
0.70
0.55
0.64
















TABLE 6







Top 15 transitions selected by each multivariate method, ranked by importance for that method.












rf
boosting
lasso
logit















1
ELLESYIDGR_597.8_710.3
AFTECCVVASQL
AFTECCVVASQ
ALQDQLVLVA




R_770.87_574.3
LR_770.87_574.3
AK_634.88_289.2





2
TATSEYQTFF
DPDQTDGLGLSY
ISLLLIESWLEP
AVLTIDEK_444.76_605.3



NPR_781.37_386.2
LSSHIANVER_796.39_328.1
VR_834.49_371.2





3
ITLPDFTGDLR_624.34_920.4
ELLESYIDGR_597.8_710.3
LPTAVVPLR_483.31_385.3
Collection.Window.G






A.in.Days





4
AFTECCVVAS
TATSEYQTFFNPR_781.37_386.2
ALQDQLVLVA
AHYDLR_387.7_566.3



QLR_770.87_574.3

AK_634.88_289.2





5
VEPLYELVTA
ITLPDFTGDLR_624.34_920.4
ETAASLLQAG
AEAQAQYSAAVA



TDFAYSSTVR_754.38_712.4

YK_626.33_679.4
K_654.33_908.5





6
GSFALSFPVES
GGEIEGFR_432.71_379.2
IITGLLEFEVYLEYL
AEAQAQYSAAVA



DVAPIAR_931.99_363.2

QNR_738.4_530.3
K_654.33_709.4





7
VGEYSLYIGR_578.8_871.5
ALQDQLVLVAAK_634.88_289.2
ADSQAQLLLSTVV
ADSQAQLLLSTVV





GVFTAPGLHLK_822.46_983.6
GVFTAPGLHLK_822.46_983.6





8
SFRPFVPR_335.86_635.3
VGEYSLYIGR_578.8_871.5
SLPVSDSVLSGFEQ
AITPPHPASQANIIF





R_810.92_723.3
DITEGNLR_825.77_459.3





9
ALQDQLVLVA
VEPLYELVTATD
SFRPFVPR_335.86_272.2
ADSQAQLLLSTVV



AK_634.88_289.2
FAYSSTVR_754.38_712.4

GVFTAPGLHLK_822.46_664.4





10
EDTPNSVWEP
SPEQQETVLDGN
IIGGSDADIK_494.77_260.2
AYSDLSR_406.2_375.2



AK_686.82_315.2
LIIR_906.48_685.4





11
YGFYTHVFR_397.2_421.3
YEFLNGR_449.72_293.1
NADYSYSVWK_616.78_333.2
DALSSVQESQVAQ






QAR_572.96_672.4





12
DPDQTDGLGL
LEQGENVFLQAT
GSFALSFPVESDVA
ANRPFLVFIR_411.58_435.3



SYLSSHIANVE
DK_796.4_822.4
PIAR_931.99_456.3



R_796.39_328.1





13
LEQGENVFLQ
LQGTLPVEAR_542.31_571.3
LSSPAVITDK_515.79_743.4
DALSSVQESQVAQ



ATDK_796.4_822.4


QAR_572.96_502.3





14
LQGTLPVEAR_542.31_571.3
ISLLLIESWLEP
ELPEHTVK_476.76_347.2
ALEQDLPVNIK_620.35_570.4




VR_834.49_371.2





15
SFRPFVPR_335.86_272.2
TASDFITK_441.73_781.4
EAQLPVIENK_570.82_699.4
AVLTIDEK_444.76_718.4









In yet another aspect, the invention provides kits for determining probability of preterm birth, wherein the kits can be used to detect N of the isolated biomarkers listed in Tables 1 through 63. For example, the kits can be used to detect one or more, two or more, or three of the isolated biomarkers selected from the group consisting of AFTECCVVASQLR, ELLESYIDGR, and ITLPDFTGDLR. For example, the kits can be used to detect one or more, two or more, or three of the isolated biomarkers selected from the group consisting of FLNWIK, FGFGGSTDSGPIR, LLELTGPK, VEHSDLSFSK, IEGNLIFDPNNYLPK, ALVLELAK, TQILEWAAER, DVLLLVHNLPQNLPGYFWYK, SEPRPGVLLR, ITQDAQLK, ALDLSLK, WWGGQPLWITATK, and LSETNR.


In another aspect, the kits can be used to detect one or more, two or more, three or more, four or more, five or more, six or more, seven or more, or eight of the isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G).


In another aspect, the kits can be used to detect one or more, two or more, three or more, four or more, five or more, six or more, seven or more, or eight of the isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


The kit can include one or more agents for detection of biomarkers, a container for holding a biological sample isolated from a pregnant female; and printed instructions for reacting agents with the biological sample or a portion of the biological sample to detect the presence or amount of the isolated biomarkers in the biological sample. The agents can be packaged in separate containers. The kit can further comprise one or more control reference samples and reagents for performing an immunoassay.


In one embodiment, the kit comprises agents for measuring the levels of at least N of the isolated biomarkers listed in Tables 1 through 63. The kit can include antibodies that specifically bind to these biomarkers, for example, the kit can contain at least one of an antibody that specifically binds to lipopolysaccharide-binding protein (LBP), an antibody that specifically binds to prothrombin (THRB), an antibody that specifically binds to complement component C5 (C5 or CO5), an antibody that specifically binds to plasminogen (PLMN), and an antibody that specifically binds to complement component C8 gamma chain (C8G or CO8G).


In one embodiment, the kit comprises agents for measuring the levels of at least N of the isolated biomarkers listed in Tables 1 through 63. The kit can include antibodies that specifically bind to these biomarkers, for example, the kit can contain at least one of an antibody that specifically binds to Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


The kit can comprise one or more containers for compositions contained in the kit. Compositions can be in liquid form or can be lyophilized. Suitable containers for the compositions include, for example, bottles, vials, syringes, and test tubes. Containers can be formed from a variety of materials, including glass or plastic. The kit can also comprise a package insert containing written instructions for methods of determining probability of preterm birth.


From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.


The following examples are provided by way of illustration, not limitation.


EXAMPLES
Example 1
Development of Sample Set for Discovery and Validation of Biomarkers for Preterm Birth

A standard protocol was developed governing conduct of the Proteomic Assessment of Preterm Risk (PAPR) clinical study. This protocol also specified that the samples and clinical information could be used to study other pregnancy complications for some of the subjects. Specimens were obtained from women at 11 Internal Review Board (IRB) approved sites across the United States. After providing informed consent, serum and plasma samples were obtained, as well as pertinent information regarding the patient's demographic characteristics, past medical and pregnancy history, current pregnancy history and concurrent medications. Following delivery, data were collected relating to maternal and infant conditions and complications. Serum and plasma samples were processed according to a protocol that requires standardized refrigerated centrifugation, aliquoting of the samples into 0.5 ml 2-D bar-coded cryovials and subsequent freezing at −80° C.


Following delivery, preterm birth cases were individually reviewed to determine their status as either a spontaneous preterm birth or a medically indicated preterm birth. Only spontaneous preterm birth cases were used for this analysis. For discovery of biomarkers of preterm birth, 80 samples were analyzed in two gestational age groups: a) a late window composed of samples from 23-28 weeks of gestation which included 13 cases, 13 term controls matched within one week of sample collection and 14 term random controls, and, b) an early window composed of samples from 17-22 weeks of gestation included 15 cases, 15 term controls matched within one week of sample collection and 10 random term controls.


The samples were subsequently depleted of high abundance proteins using the Human 14 Multiple Affinity Removal System (MARS 14), which removes 14 of the most abundant proteins that are treated as uninformative with regard to the identification for disease-relevant changes in the serum proteome. To this end, equal volumes of each clinical or a pooled human serum sample (HGS) sample were diluted with column buffer and filtered to remove precipitates. Filtered samples were depleted using a MARS-14 column (4.6×100 mm, Cat. #5188-6558, Agilent Technologies). Samples were chilled to 4° C. in the autosampler, the depletion column was run at room temperature, and collected fractions were kept at 4° C. until further analysis. The unbound fractions were collected for further analysis.


A second aliquot of each clinical serum sample and of each HGS was diluted into ammonium bicarbonate buffer and depleted of the 14 high and approximately 60 additional moderately abundant proteins using an IgY14-SuperMix (Sigma) hand-packed column, comprised of 10 mL of bulk material (50% slurry, Sigma). Shi et al., Methods, 56(2):246-53 (2012). Samples were chilled to 4° C. in the autosampler, the depletion column was run at room temperature, and collected fractions were kept at 4° C. until further analysis. The unbound fractions were collected for further analysis.


Depleted serum samples were denatured with trifluorethanol, reduced with dithiotreitol, alkylated using iodoacetamide, and then digested with trypsin at a 1:10 trypsin: protein ratio. Following trypsin digestion, samples were desalted on a C18 column, and the eluate lyophilized to dryness. The desalted samples were resolubilized in a reconstitution solution containing five internal standard peptides.


Depleted and trypsin digested samples were analyzed using a scheduled Multiple Reaction Monitoring method (sMRM). The peptides were separated on a 150 mm×0.32 mm Bio-Basic C18 column (ThermoFisher) at a flow rate of 5 μl/min using a Waters Nano Acquity UPLC and eluted using an acetonitrile gradient into a AB SCIEX QTRAP 5500 with a Turbo V source (AB SCIEX, Framingham, Mass.). The sMRM assay measured 1708 transitions that correspond to 854 peptides and 236 proteins. Chromatographic peaks were integrated using Rosetta Elucidator software (Ceiba Solutions).


Transitions were excluded from analysis, if their intensity area counts were less than 10000 and if they were missing in more than three samples per batch. Intensity area counts were log transformed and Mass Spectrometry run order trends and depletion batch effects were minimized using a regression analysis.


Example 2
Analysis I of Transitions to Identify Preterm Birth Biomarkers

The objective of these analyses was to examine the data collected in Example 1 to identify transitions and proteins that predict preterm birth. The specific analyses employed were (i) Cox time-to-event analyses and (ii) models with preterm birth as a binary categorical dependent variable. The dependent variable for all the Cox analyses was Gestational Age of time to event (where event is preterm birth). For the purpose of the Cox analyses, preterm birth subjects have the event on the day of birth. Term subjects are censored on the day of birth. Gestational age on the day of specimen collection is a covariate in all Cox analyses.


The assay data were previously adjusted for run order and depletion batch, and log transformed. Values for gestational age at time of sample collection were adjusted as follows. Transition values were regressed on gestational age at time of sample collection using only controls (non-pre-term subjects). The residuals from the regression were designated as adjusted values. The adjusted values were used in the models with pre-term birth as a binary categorical dependent variable. Unadjusted values were used in the Cox analyses.


Univariate Cox Proportional Hazards Analyses


Univariate Cox Proportional Hazards analyses was performed to predict Gestational Age at Birth, including Gestational age on the day of specimen collection as a covariate. Table 1 shows the transitions with p-values less than 0.05. Five proteins have multiple transitions among those with p-value less than 0.05: lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G).


Multivariate Cox Proportional Hazards Analyses: Stepwise AIC Selection


Cox Proportional Hazards analyses was performed to predict Gestational Age at Birth, including Gestational age on the day of specimen collection as a covariate, using stepwise and lasso models for variable selection. These analyses include a total of n=80 subjects, with number of PTB events=28. The stepwise variable selection analysis used the Akaike Information Criterion (AIC) as the stopping criterion. Table 2 shows the transitions selected by the stepwise AIC analysis. The coefficient of determination (R2) for the stepwise AIC model is 0.86 (not corrected for multiple comparisons).


Multivariate Cox Proportional Hazards Analyses: Lasso Selection


Lasso variable selection was used as the second method of multivariate Cox Proportional Hazards analyses to predict Gestational Age at Birth, including Gestational age on the day of specimen collection as a covariate. This analysis uses a lambda penalty for lasso estimated by cross validation. Table 3 shows the results. The lasso variable selection method is considerably more stringent than the stepwise AIC, and selects only 3 transitions for the final model, representing 3 different proteins. These 3 proteins give the top 4 transitions from the univariate analysis; 2 of the top 4 univariate are from the same protein, and hence are not both selected by the lasso method. Lasso tends to select a relatively small number of variables with low mutual correlation. The coefficient of determination (R2) for the lasso model is 0.21 (not corrected for multiple comparisons).


Univariate AUROC Analysis of Preterm Birth as a Binary Categorical Dependent Variable


Univariate analyses was performed to discriminate pre-term subjects from non-pre-term subjects (pre-term as a binary categorical variable) as estimated by area under the receiver operating characteristic (AUROC) curve. These analyses use transition values adjusted for gestational age at time of sample collection, as described above. Table 4 shows the AUROC curve for the 77 transitions with the highest AUROC area of 0.6 or greater.


Multivariate Analysis of Preterm Birth as a Binary Categorical Dependent Variable


Multivariate analyses was performed to predict preterm birth as a binary categorical dependent variable, using random forest, boosting, lasso, and logistic regression models. Random forest and boosting models grow many classification trees. The trees vote on the assignment of each subject to one of the possible classes. The forest chooses the class with the most votes over all the trees.


For each of the four methods (random forest, boosting, lasso, and logistic regression) each method was allowed to select and rank its own best 15 transitions. We then built models with 1 to 15 transitions. Each method sequentially reduces the number of nodes from 15 to 1 independently. A recursive option was used to reduce the number of nodes at each step: To determine which node to remove, the nodes were ranked at each step based on their importance from a nested cross-validation procedure. The least important node was eliminated. The importance measures for lasso and logistic regression are z-values. For random forest and boosting, the variable importance was calculated from permuting out-of-bag data: for each tree, the classification error rate on the out-of-bag portion of the data was recorded; the error rate was then recalculated after permuting the values of each variable (i.e., transition); if the transition was in fact important, there would have been be a big difference between the two error rates; the difference between the two error rates were then averaged over all trees, and normalized by the standard deviation of the differences. The AUCs for these models are shown in Table 5, as estimated by 100 rounds of bootstrap resampling. Table 6 shows the top 15 transitions selected by each multivariate method, ranked by importance for that method. These multivariate analyses suggest that models that combine 3 or more transitions give AUC greater than 0.7, as estimated by bootstrap.


In multivariate models, random forest (rf), boosting, and lasso models gave the best area under the AUROC curve. The following transitions were selected by these models, as significant in Cox univariate models, and/or having high univariate ROC'S:











AFTECCVVASQLR_770.87_574.3







ELLESYIDGR_597.8_710.3







ITLPDFTGDLR_624.34_920.4







TDAPDLPEENQAR_728.34_613.3







SFRPFVPR_335.86_635.3






In summary, univariate and multivariate Cox analyses was performed using transitions to predict Gestational Age at Birth (GAB), including Gestational age on the day of specimen collection as a covariate. In the univariate Cox analysis, five proteins were identified that have multiple transitions among those with p-value less than 0.05: lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G).


In multivariate Cox analyses, stepwise AIC variable analysis selects 24 transitions, while the lasso model selects 3 transitions, which include the 3 top proteins in the univariate analysis. Univariate (AUROC) and multivariate (random forest, boosting, lasso, and logistic regression) analyses were performed to predict pre-term birth as a binary categorical variable. Univariate analyses identified 63 analytes with AUROC of 0.6 or greater. Multivariate analyses suggest that models that combine 3 or more transitions give AUC greater than 0.7, as estimated by bootstrap.


Example 3
Study II to Identify and Confirm Preterm Birth Biomarkers

A further study was performed using essentially the same methods described in the preceding Examples unless noted below. In this study, 2 gestational aged matched controls were used for each case of 28 cases and 56 matched controls, all from the early gestational window only (17-22 weeks).


The samples were processed in 4 batches with each batch composed of 7 cases, 14 matched controls and 3 HGS controls. Serum samples were depleted of the 14 most abundant serum samples by MARS14 as described in Example 1. Depleted serum was then reduced with dithiothreitol, alkylated with iodacetamide, and then digested with trypsin at a 1:20 trypsin to protein ratio overnight at 37° C. Following trypsin digestion, the samples were desalted on an Empore C18 96-well Solid Phase Extraction Plate (3M Company) and lyophilized to dryness. The desalted samples were resolubilized in a reconstitution solution containing five internal standard peptides.


The LC-MS/MS analysis was performed with an Agilent Poroshell 120 EC-C18 column (2.1×50 mm, 2.7 μm) and eluted with an acetonitrile gradient into a Agilent 6490 Triple Quadrapole mass spectrometer.


Data analysis included the use of conditional logistic regression where each matching triplet (case and 2 matched controls) was a stratum. The p-value reported in the table indicates whether there is a significant difference between cases and matched controls.









TABLE 7







Results of Study II










Transition
Protein
Annotation
p-value













DFHINLFQVLPWLK
CFAB_HUMAN
Complement factor B
0.006729512





ITLPDFTGDLR
LBP_HUMAN
Lipopolysaccharide-
0.012907017




binding protein





WWGGQPLWITATK
ENPP2_HUMAN
Ectonucleotide
0.013346




pyrophosphatase/




phosphodiesterase family




member 2





TASDFITK
GELS_HUMAN
Gelsolin
0.013841221





AGLLRPDYALLGHR
PGRP2_HUMAN
N-acetylmuramoyl-L-
0.014241979




alanine amidase





FLQEQGHR
CO8G_HUMAN
Complement
0.014339596




component C8 gamma




chain





FLNWIK
HABP2_HUMAN
Hyaluronan-binding
0.014790418




protein 2





EKPAGGIPVLGSLVNTVLK
BPIB1_HUMAN
BPI fold-containing
0.019027746




family B member 1





ITGFLKPGK
LBP_HUMAN
Lipopolysaccharide-
0.019836986




binding protein





YGLVTYATYPK
CFAB_HUMAN
Complement factor B
0.019927774





SLLQPNK
CO8A_HUMAN
Complement
0.020930939




component C8 alpha




chain





DISEVVTPR
CFAB_HUMAN
Complement factor B
0.021738046





VQEAHLTEDQIFYFPK
CO8G_HUMAN
Complement
0.021924548




component C8 gamma




chain





SPELQAEAK
APOA2_HUMAN
Apolipoprotein A-II
0.025944285





TYLHTYESEI
ENPP2_HUMAN
Ectonucleotide
0.026150038




pyrophosphatase/




phosphodiesterase family




member 2





DSPSVWAAVPGK
PROF1_HUMAN
Profilin-1
0.026607371





HYINLITR
NPY_HUMAN
Pro-neuropeptide Y
0.027432804





SLPVSDSVLSGFEQR
CO8G_HUMAN
Complement
0.029647857




component C8 gamma




chain





IPGIFELGISSQSDR
CO8B_HUMAN
Complement
0.030430996




component C8 beta




chain





IQTHSTTYR
F13B_HUMAN
Coagulation factor XIII
0.031667664




B chain





DGSPDVTTADIGANTPDA
PGRP2_HUMAN
N-acetylmuramoyl-L-
0.034738338


TK

alanine amidase





QLGLPGPPDVPDHAAYHPF
ITIH4_HUMAN
Inter-alpha-trypsin
0.043130591




inhibitor heavy chain




H4





FPLGSYTIQNIVAGSTYLF
LCAP_HUMAN
Leucyl-cystinyl
0.044698045


STK

aminopeptidase





AHYDLR
FETUA_HUMAN
Alpha-2-HS-
0.046259201




glycoprotein





SFRPFVPR
LBP_HUMAN
Lipopolysaccharide-
0.047948847




binding protein









Example 4
Study III Shotgun Identification of Preterm Birth Biomarkers

A further study used a hypothesis-independent shotgun approach to identify and quantify additional biomarkers not present on our multiplexed hypothesis dependent MRM assay. Samples were processed as described in the preceding Examples unless noted below.


Tryptic digests of MARS depleted patient (preterm birth cases and term controls) samples were fractionated by two-dimensional liquid chromatography and analyzed by tandem mass spectrometry. Aliquots of the samples, equivalent to 3-4 μl of serum, were injected onto a 6 cm×75 μm self-packed strong cation exchange (Luna SCX, Phenomenex) column. Peptides were eluded from the SCX column with salt (15, 30, 50, 70, and 100% B, where B=250 mM ammonium acetate, 2% acetonitrile, 0.1% formic acid in water) and consecutively for each salt elution, were bound to a 0.5 μl C18 packed stem trap (Optimize Technologies, Inc.) and further fractionated on a 10 cm×75 μm reversed phase ProteoPep II PicoFrit column (New Objective). Peptides were eluted from the reversed phase column with an acetonitrile gradient containing 0.1% formic acid and directly ionized on an LTQ-Orbitrap (ThermoFisher). For each scan, peptide parent ion masses were obtained in the Orbitrap at 60K resolution and the top seven most abundant ions were fragmented in the LTQ to obtain peptide sequence information.


Parent and fragment ion data were used to search the Human RefSeq database using the Sequest (Eng et al., J. Am. Soc. Mass Spectrom 1994; 5:976-989) and X!Tandem (Craig and Beavis, Bioinformatics 2004; 20:1466-1467) algorithms. For Sequest, data was searched with a 20 ppm tolerance for the parent ion and 1 AMU for the fragment ion. Two missed trypsin cleavages were allowed, and modifications included static cysteine carboxyamidomethylation and methionine oxidation. After searching the data was filtered by charge state vs. Xcorr scores (charge+1≧1.5 Xcorr, charge+2 ≧2.0, charge+3≧2.5). Similar search parameters were used for X!tandem, except the mass tolerance for the fragment ion was 0.8 AMU and there is no Xcorr filtering. Instead, the PeptideProphet algorithm (Keller et al., Anal. Chem 2002;74:5383-5392) was used to validate each X!Tandem peptide-spectrum assignment and Protein assignments were validated using ProteinProphet algorithm (Nesvizhskii et al., Anal. Chem 2002; 74:5383-5392). Data was filtered to include only the peptide-spectrum matches that had PeptideProphet probability of 0.9 or more. After compiling peptide and protein identifications, spectral count data for each peptide were imported into DAnTE software (Polpitiya et al., Bioinformatics. 2008; 24:1556-1558). Log transformed data was mean centered and missing values were filtered, by requiring that a peptide had to be identified in at least 4 cases and 4 controls. To determine the significance of an analyte, Receiver Operating Characteristic (ROC) curves for each analyte were created where the true positive rate (Sensitivity) is plotted as a function of the false positive rate (1-Specificity) for different thresholds that separate the SPTB and Term groups. The area under the ROC curve (AUC) is equal to the probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one. Peptides with AUC greater than or equal to 0.6 found uniquely by Sequest or Xtandem are found in Tables 8 and 9, respectively, and those identified by both approaches are found in Table 10.









TABLE 8







Significant peptides (AUC >0.6) for Sequest only










Protein Description
Uniprot ID (name)
Peptide
S_AUC





5′-AMP-activated
Q9UGI9 (AAKG3_HUMAN)
K.LVIFDTM*LEIK.K
0.78


protein kinase


subunit gamma-3





afamin precursor
P43652 (AFAM_HUMAN)
K. FIEDNIEYITIIAFAQYVQEATFEEME
0.79




K.L





afamin precursor
P43652 (AFAM_HUMAN)
K.IAPQLSTEELVSLGEK.M
0.71





afamin precursor
P43652 (AFAM_HUMAN)
K.LKHELTDEELQSLFTNFANVVDK.C
0.60





afamin precursor
P43652 (AFAM_HUMAN)
K.LPNNVLQEK.I
0.60





afamin precursor
P43652 (AFAM_HUMAN)
K.SDVGFLPPFPTLDPEEK.C
0.71





afamin precursor
P43652 (AFAM_HUMAN)
K.VMNHICSK.Q
0.68





afamin precursor
P43652 (AFAM_HUMAN)
R.ESLLNHFLYEVAR.R
0.69





afamin precursor
P43652 (AFAM_HUMAN)
R.LCFFYNKK.S
0.69





alpha-1-
P01011 (AACT_HUMAN)
K.AVLDVFEEGTEASAATAVK.I
0.72


antichymotrypsin


precursor





alpha-1-
P01011 (AACT_HUMAN)
K.EQLSLLDR.F
0.65


antichymotrypsin


precursor





alpha-1-
P01011 (AACT_HUMAN)
K.EQLSLLDRFTEDAK.R
0.64


antichymotrypsin


precursor





alpha-1-
P01011 (AACT_HUMAN)
K.EQLSLLDRFTEDAKR.L
0.60


antichymotrypsin


precursor





alpha-1-
P01011 (AACT_HUMAN)
K.ITDLIKDLDSQTMM*VLVNYIFFK.A
0.65


antichymotrypsin


precursor





alpha-1-
P01011 (AACT_HUMAN)
K.ITLLSALVETR.T
0.62


antichymotrypsin


precursor





alpha-1-
P01011 (AACT_HUMAN)
K.RLYGSEAFATDFQDSAAAK.K
0.62


antichymotrypsin


precursor





alpha-1-
P01011 (AACT_HUMAN)
R.EIGELYLPK.F
0.65


antichymotrypsin


precursor





alpha-1B-
P04217 (A1BG_HUMAN)
R.CEGPIPDVTFELLR.E
0.67


glycoprotein


precursor





alpha-1B-
P04217 (A1BG_HUMAN)
R.FALVR.E
0.79


glycoprotein


precursor





alpha-2-antiplasmin
P08697 (A2AP_HUMAN)
K.SPPGVCSR.D
0.81


isoform a precursor





alpha-2-antiplasmin
P08697 (A2AP_HUMAN)
R.DSFHLDEQFTVPVEMMQAR.T
0.69


isoform a precursor





alpha-2-HS-
P02765 (FETUA_HUMAN)
K.CNLLAEK.Q
0.67


glycoprotein


preproprotein





alpha-2-HS-
P02765 (FETUA_HUMAN)
K.EHAVEGDCDFQLLK.L
0.67


glycoprotein


preproprotein





alpha-2-HS-
P02765 (FETUA_HUMAN)
K.HTLNQIDEVKVWPQQPSGELFEIEID
0.64


glycoprotein

TLETTCHVLDPTPVAR.C


preproprotein





alpha-2-
P01023 (A2MG_HUMAN)
K.MVSGFIPLKPTVK.M
0.73


macroglobulin


precursor





alpha-2-
P01023 (A2MG_HUMAN)
R.AFQPFFVELTM*PYSVIR.G
0.68


macroglobulin


precursor





alpha-2-
P01023 (A2MG_HUMAN)
R.AFQPFFVELTMPYSVIR.G
0.62


macroglobulin


precursor





alpha-2-
P01023 (A2MG_HUMAN)
R.NQGNTWLTAFVLK.T
0.73


macroglobulin


precursor





angiotensinogen
P01019 (ANGT_HUMAN)
K.IDRFMQAVTGWK.T
0.81


preproprotein





angiotensinogen
P01019 (ANGT_HUMAN)
K.LDTEDKLR.A
0.72


preproprotein





angiotensinogen
P01019 (ANGT_HUMAN)
K.TGCSLMGASVDSTLAFNTYVHFQGK
0.64


preproprotein

.M





angiotensinogen
P01019 (ANGT_HUMAN)
R.AAMVGMLANFLGFR.I
0.62


preproprotein





antithrombin-III
P01008 (ANT3_HUMAN)
K.NDNDNIFLSPLSISTAFAMTK.L
0.64


precursor





antithrombin-III
P01008 (ANT3_HUMAN)
K.SKLPGIVAEGRDDLYVSDAFHK.A
0.81


precursor





antithrombin-III
P01008 (ANT3_HUMAN)
R.EVPLNTIIFMGR.V
0.61


precursor





antithrombin-III
P01008 (ANT3_HUMAN)
R.FATTFYQHLADSKNDNDNIFLSPLSIS
0.66


precursor

TAFAMTK.L





antithrombin-III
P01008 (ANT3_HUMAN)
R.ITDVIPSEAINELTVLVLVNTIYFK.G
0.60


precursor





antithrombin-III
P01008 (ANT3_HUMAN)
R.RVWELSK.A
0.63


precursor





antithrombin-III
P01008 (ANT3_HUMAN)
R.VAEGTQVLELPFKGDDITM*VLILPK
0.62


precursor

PEK.S





antithrombin-III
P01008 (ANT3_HUMAN)
R.VAEGTQVLELPFKGDDITMVLILPKP
0.62


precursor

EK.S





apolipoprotein A-II
P02652 (APOA2_HUMAN)
K.AGTELVNFLSYFVELGTQPATQ.-
0.61


preproprotein





apolipoprotein A-II
P02652 (APOA2_HUMAN)
K.EPCVESLVSQYFQTVTDYGK.D
0.63


preproprotein





apolipoprotein A-IV
P06727 (APOA4_HUMAN)
K.ALVQQMEQLR.Q
0.61


precursor





apolipoprotein A-IV
P06727 (APOA4_HUMAN)
K.LGPHAGDVEGHLSFLEK.D
0.61


precursor





apolipoprotein A-IV
P06727 (APOA4_HUMAN)
K.SELTQQLNALFQDK.L
0.71


precursor





apolipoprotein A-IV
P06727 (APOA4_HUMAN)
K.SLAELGGHLDQQVEEFRR.R
0.61


precursor





apolipoprotein A-IV
P06727 (APOA4_HUMAN)
K.VKIDQTVEELRR.S
0.75


precursor





apolipoprotein A-IV
P06727 (APOA4_HUMAN)
K.VNSFFSTFK.E
0.63


precursor





apolipoprotein B-100
P04114 (APOB_HUMAN)
K.ATFQTPDFIVPLTDLR.I
0.65


precursor





apolipoprotein B-100
P04114 (APOB_HUMAN)
K.AVSM*PSFSILGSDVR.V
0.65


precursor





apolipoprotein B-100
P04114 (APOB_HUMAN)
K.AVSMPSFSILGSDVR.V
0.67


precursor





apolipoprotein B-100
P04114 (APOB_HUMAN)
K.EQHLFLPFSYK.N
0.65


precursor





apolipoprotein B-100
P04114 (APOB_HUMAN)
K.KIISDYHQQFR.Y
0.63


precursor





apolipoprotein B-100
P04114 (APOB_HUMAN)
K.QVFLYPEKDEPTYILNIK.R
0.64


precursor





apolipoprotein B-100
P04114 (APOB_HUMAN)
K.SPAFTDLHLR.Y
0.69


precursor





apolipoprotein B-100
P04114 (APOB_HUMAN)
K.TILGTMPAFEVSLQALQK.A
0.62


precursor





apolipoprotein B-100
P04114 (APOB_HUMAN)
K.VLADKFIIPGLK.L
0.72


precursor





apolipoprotein B-100
P04114 (APOB_HUMAN)
K.YSQPEDSLIPFFEITVPESQLTVSQFTL
0.61


precursor

PK.S





apolipoprotein B-100
P04114 (APOB_HUMAN)
R.DLKVEDIPLAR.I
0.64


precursor





apolipoprotein B-100
P04114 (APOB_HUMAN)
R.GIISALLVPPETEEAK.Q
0.81


precursor





apolipoprotein B-100
P04114 (APOB_HUMAN)
R.ILGEELGFASLHDLQLLGK.L
0.62


precursor





apolipoprotein B-100
P04114 (APOB_HUMAN)
R.LELELRPTGEIEQYSVSATYELQR.E
0.60


precursor





apolipoprotein B-100
P04114 (APOB_HUMAN)
R.NIQEYLSILTDPDGK.G
0.68


precursor





apolipoprotein B-100
P04114 (APOB_HUMAN)
R.TFQIPGYTVPVVNVEVSPFTIEMSAF
0.75


precursor

GYVFPK.A





apolipoprotein B-100
P04114 (APOB_HUMAN)
R.TIDQMLNSELQWPVPDIYLR.D
0.70


precursor





apolipoprotein C-I
P02654 (APOC1_HUMAN)
K.MREWFSETFQK.V
0.61


precursor





apolipoprotein C-II
P02655 (APOC2_HUMAN)
K.STAAMSTYTGIFTDQVLSVLKGEE.-
0.61


precursor





apolipoprotein C-III
P02656 (APOC3_HUMAN)
R.GWVTDGFSSLK.D
0.62


precursor





apolipoprotein E
P02649 (APOE_HUMAN)
R.AATVGSLAGQPLQER.A
0.61


precursor





apolipoprotein E
P02649 (APOE_HUMAN)
R.LKSWFEPLVEDMQR.Q
0.65


precursor





apolipoprotein E
P02649 (APOE_HUMAN)
R.WVQTLSEQVQEELLSSQVTQELR.A
0.64


precursor





ATP-binding cassette
O14678 (ABCD4_HUMAN)
K.LCGGGRWELM*R.I
0.60


sub-family D member 4





ATP-binding cassette
Q9NUQ8 (ABCF3_HUMAN)
K.LPGLLK.R
0.73


sub-family F member 3





beta-2-glycoprotein 1
P02749 (APOH_HUMAN)
K.EHSSLAFWK.T
0.64


precursor





beta-2-glycoprotein 1
P02749 (APOH_HUMAN)
R.TCPKPDDLPFSTVVPLK.T
0.60


precursor





beta-2-glycoprotein 1
P02749 (APOH_HUMAN)
R.VCPFAGILENGAVR.Y
0.68


precursor





beta-Ala-His
Q96KN2 (CNDP1_HUMAN)
K.LFAAFFLEMAQLH.-
0.68


dipeptidase


precursor





biotinidase precursor
P43251 (BTD_HUMAN)
K.SHLIIAQVAK.N
0.62





carboxypeptidase B2
Q96IY4 (CBPB2_HUMAN)
K.NAIWIDCGIHAR.E
0.62


preproprotein





carboxypeptidase N
P15169 (CBPN_HUMAN)
R.EALIQFLEQVHQGIK.G
0.69


catalytic chain


precursor





carboxypeptidase N
P22792 (CPN2_HUMAN)
R.LLNIQTYCAGPAYLK.G
0.62


subunit 2 precursor





catalase
P04040 (CATA_HUMAN)
R.LCENIAGHLKDAQIFIQK.K
0.62





ceruloplasmin
P00450 (CERU_HUMAN)
K.AETGDKVYVHLK.N
0.61


precursor





ceruloplasmin
P00450 (CERU_HUMAN)
K.AGLQAFFQVQECNK.S
0.62


precursor





ceruloplasmin
P00450 (CERU_HUMAN)
K.DIASGLIGPLIICK.K
0.63


precursor





ceruloplasmin
P00450 (CERU_HUMAN)
K.DIFTGLIGPM*K.I
0.63


precursor





ceruloplasmin
P00450 (CERU_HUMAN)
K.DIFTGLIGPMK.I
0.68


precursor





ceruloplasmin
P00450 (CERU_HUMAN)
K.M*YYSAVDPTKDIFTGLIGPMK.I
0.62


precursor





ceruloplasmin
P00450 (CERU_HUMAN)
K.MYYSAVDPTKDIFTGLIGPM*K.I
0.63


precursor





ceruloplasmin
P00450 (CERU_HUMAN)
K.PVWLGFLGPIIK.A
0.63


precursor





ceruloplasmin
P00450 (CERU_HUMAN)
R.ADDKVYPGEQYTYMLLATEEQSPGE
0.64


precursor

GDGNCVTR.I





ceruloplasmin
P00450 (CERU_HUMAN)
R.DTANLFPQTSLTLHM*WPDTEGTF
0.71


precursor

NVECLTTDHYTGGMK.Q





ceruloplasmin
P00450 (CERU_HUMAN)
R.DTANLFPQTSLTLHMWPDTEGTFN
0.68


precursor

VECLTTDHYTGGMK.Q





ceruloplasmin
P00450 (CERU_HUMAN)
R.FNKNNEGTYYSPNYNPQSR.S
0.74


precursor





ceruloplasmin
P00450 (CERU_HUMAN)
R.IDTINLFPATLFDAYM*VAQNPGEW
0.75


precursor

M*LSCQNLNHLK.A





ceruloplasmin
P00450 (CERU_HUMAN)
R.IDTINLFPATLFDAYM*VAQNPGEW
0.86


precursor

MLSCQNLNHLK.A





ceruloplasmin
P00450 (CERU_HUMAN)
R.IDTINLFPATLFDAYMVAQNPGEW
0.60


precursor

M*LSCQNLNHLK.A





ceruloplasmin
P00450 (CERU_HUMAN)
R.KAEEEHLGILGPQLHADVGDKVK.I
0.71


precursor





ceruloplasmin
P00450 (CERU_HUMAN)
R.TTIEKPVWLGFLGPIIK.A
0.63


precursor





cholinesterase
P06276 (CHLE_HUMAN)
R.FWTSFFPK.V
0.76


precursor





clusterin
P10909 (CLUS_HUMAN)
K.LFDSDPITVTVPVEVSR.K
0.78


preproprotein





clusterin
P10909 (CLUS_HUMAN)
R.ASSIIDELFQDR.F
0.68


preproprotein





coagulation factor IX
P00740 (FA9_HUMAN)
K.WIVTAAHCVETGVK.I
0.60


preproprotein





coagulation factor VII
P08709 (FA7_HUMAN)
R.FSLVSGWGQLLDR.G
0.78


isoform a


preproprotein





coagulation factor X
P00742 (FA10_HUMAN)
K.ETYDFDIAVLR.L
0.75


preproprotein





coiled-coil domain-
Q8IYE1 (CCD13_HUMAN)
K.VRQLEMEIGQLNVHYLR.N
0.67


containing protein 13





complement C1q
P02745 (C1QA_HUMAN)
R.PAFSAIR.R
0.66


subcomponent


subunit A precursor





complement C1q
P02746 (C1QB_HUMAN)
K.VVTFCDYAYNTFQVTTGGMVLK.L
0.63


subcomponent


subunit B precursor





complement C1q
P02747 (C1QC_HUMAN)
K.FQSVFTVTR.Q
0.63


subcomponent


subunit C precursor





complement C1r
P00736 (C1R_HUMAN)
K.TLDEFTIIQNLQPQYQFR.D
0.62


subcomponent


precursor





complement C1r
P00736 (C1R_HUMAN)
R.MDVFSQNMFCAGHPSLK.Q
0.68


subcomponent


precursor





complement C1r
P00736 (C1R_HUMAN)
R.WILTAAHTLYPK.E
0.74


subcomponent


precursor





complement C1s
P09871 (C1S_HUMAN)
K.FYAAGLVSWGPQCGTYGLYTR.V
0.68


subcomponent


precursor





complement C1s
P09871 (C1S_HUMAN)
K.GFQVVVTLR.R
0.63


subcomponent


precursor





complement C2
P06681 (CO2_HUMAN)
R.GALISDQWVLTAAHCFR.D
0.61


isoform 3





complement C2
P06681 (CO2_HUMAN)
R.PICLPCTMEANLALR.R
0.66


isoform 3





complement C3
P01024 (CO3_HUMAN)
R.YYGGGYGSTQATFMVFQALAQYQK
0.75


precursor

.D





complement C4-A
P0C0L4 (CO4A_HUMAN)
K.GLCVATPVQLR.V
0.74


isoform 1





complement C4-A
P0C0L4 (CO4A_HUMAN)
K.M*RPSTDTITVM*VENSHGLR.V
0.83


isoform 1





complement C4-A
P0C0L4 (CO4A_HUMAN)
K.MRPSTDTITVM*VENSHGLR.V
0.72


isoform 1





complement C4-A
P0C0L4 (CO4A_HUMAN)
K.VGLSGM*AIADVTLLSGFHALR.A
0.71


isoform 1





complement C4-A
P0C0L4 (CO4A_HUMAN)
K.VLSLAQEQVGGSPEK.L
0.63


isoform 1





complement C4-A
P0C0L4 (CO4A_HUMAN)
R.EMSGSPASGIPVK.V
0.65


isoform 1





complement C4-A
P0C0L4 (CO4A_HUMAN)
R.GCGEQTM*IYLAPTLAASR.Y
0.75


isoform 1





complement C4-A
P0C0L4 (CO4A_HUMAN)
R.GLQDEDGYR.M
0.75


isoform 1





complement C4-A
P0C0L4 (CO4A_HUMAN)
R.GQIVFMNREPK.R
0.93


isoform 1





complement C4-A
P0C0L4 (CO4A_HUMAN)
R.KKEVYM*PSSIFQDDFVIPDISEPGT
0.72


isoform 1

WK.I





complement C4-A
P0C0L4 (CO4A_HUMAN)
R.LPMSVR.R
0.78


isoform 1





complement C4-A
P0C0L4 (CO4A_HUMAN)
R.LTVAAPPSGGPGFLSIER.P
0.84


isoform 1





complement C4-A
P0C0L4 (CO4A_HUMAN)
R.NFLVR.A
0.75


isoform 1





complement C4-A
P0C0L4 (CO4A_HUMAN)
R.NGESVKLHLETDSLALVALGALDTAL
0.88


isoform 1

YAAGSK.S





complement C4-A
P0C0L4 (CO4A_HUMAN)
R.QGSFQGGFR.S
0.60


isoform 1





complement C4-A
P0C0L4 (CO4A_HUMAN)
R.TLEIPGNSDPNMIPDGDFNSYVR.V
0.69


isoform 1





complement C4-A
P0C0L4 (CO4A_HUMAN)
R.VTASDPLDTLGSEGALSPGGVASLLR
0.63


isoform 1

.L





complement C4-A
P0C0L4 (CO4A_HUMAN)
R.YLDKTEQWSTLPPETK.D
0.67


isoform 1





complement C5
P01031 (CO5_HUMAN)
K.ADNFLLENTLPAQSTFTLAISAYALSL
0.63


preproprotein

GDK.T





complement C5
P01031 (CO5_HUMAN)
K.ALVEGVDQLFTDYQIK.D
0.63


preproprotein





complement C5
P01031 (CO5_HUMAN)
K.DGHVILQLNSIPSSDFLCVR.F
0.62


preproprotein





complement C5
P01031 (CO5_HUMAN)
K.DVFLEMNIPYSVVR.G
0.63


preproprotein





complement C5
P01031 (CO5_HUMAN)
K.EFPYRIPLDLVPK.T
0.60


preproprotein





complement C5
P01031 (CO5_HUMAN)
K.FQNSAILTIQPK.Q
0.67


preproprotein





complement C5
P01031 (CO5_HUMAN)
K.VFKDVFLEMNIPYSVVR.G
0.63


preproprotein





complement C5
P01031 (CO5_HUMAN)
R.VFQFLEK.S
0.61


preproprotein





complement
P13671 (CO6_HUMAN)
K.DLHLSDVFLK.A
0.60


component C6


precursor





complement
P13671 (CO6_HUMAN)
R.TECIKPVVQEVLTITPFQR.L
0.62


component C6


precursor





complement
P10643 (CO7_HUMAN)
K.SSGWHFVVK.F
0.61


component C7


precursor





complement
P10643 (CO7_HUMAN)
R.ILPLTVCK.M
0.75


component C7


precursor





complement
P07357 (CO8A_HUMAN)
R.ALDQYLMEFNACR.C
0.65


component C8 alpha


chain precursor





complement
P07360 (CO8G_HUMAN)
K.YGFCEAADQFHVLDEVR.R
0.60


component C8


gamma chain


precursor





complement
P02748 (CO9_HUMAN)
R.AIEDYINEFSVRK.0
0.69


component C9


precursor





complement
P02748 (CO9_HUMAN)
R.TAGYGINILGMDPLSTPFDNEFYNGL
0.69


component C9

CNR.D


precursor





complement factor B
P00751 (CFAB_HUMAN)
K.ALFVSEEEKK.L
0.64


preproprotein





complement factor B
P00751 (CFAB_HUMAN)
K.CLVNLIEK.V
0.70


preproprotein





complement factor B
P00751 (CFAB_HUMAN)
K.EAGIPEFYDYDVALIK.L
0.66


preproprotein





complement factor B
P00751 (CFAB_HUMAN)
K.VSEADSSNADWVTK.Q
0.73


preproprotein





complement factor B
P00751 (CFAB_HUMAN)
K.YGQTIRPICLPCTEGTTR.A
0.67


preproprotein





complement factor B
P00751 (CFAB_HUMAN)
R.DLEIEVVLFHPNYNINGK.K
0.71


preproprotein





complement factor B
P00751 (CFAB_HUMAN)
R.FLCTGGVSPYADPNTCR.G
0.64


preproprotein





complement factor H
P08603 (CFAH_HUMAN)
K.DGWSAQPTCIK.S
0.80


isoform a precursor





complement factor H
P08603 (CFAH_HUMAN)
K.EGWIHTVCINGR.W
0.67


isoform a precursor





complement factor H
P08603 (CFAH_HUMAN)
K.TDCLSLPSFENAIPMGEK.K
0.61


isoform a precursor





complement factor H
P08603 (CFAH_HUMAN)
R.DTSCVNPPTVQNAYIVSR.Q
0.60


isoform a precursor





complement factor H
P08603 (CFAH_HUMAN)
K.CTSTGWIPAPR.0
0.68


isoform b precursor





complement factor H
P08603 (CFAH_HUMAN)
K.IIYKENER.F
0.76


isoform b precursor





complement factor H
P08603 (CFAH_HUMAN)
K.IVSSAM*EPDREYHFGQAVR.F
0.75


isoform b precursor





complement factor H
P08603 (CFAH_HUMAN)
K.IVSSAMEPDREYHFGQAVR.F
0.68


isoform b precursor





complement factor H
P08603 (CFAH_HUMAN)
R.CTLKPCDYPDIK.H
0.81


isoform b precursor





complement factor H
P08603 (CFAH_HUMAN)
R.KGEWVALNPLR.K
0.60


isoform b precursor





complement factor H
P08603 (CFAH_HUMAN)
R.KGEWVALNPLRK.0
0.69


isoform b precursor





complement factor H
P08603 (CFAH_HUMAN)
R.RPYFPVAVGK.Y
0.68


isoform b precursor





complement factor
Q03591 (FHR1_HUMAN)
R.EIMENYNIALR.W
0.64


H-related protein 1


precursor





complement factor I
P05156 (CFAI_HUMAN)
K.DASGITCGGIYIGGCWILTAAHCLR.A
0.71


preproprotein





complement factor I
P05156 (CFAI_HUMAN)
K.VANYFDWISYHVGR.P
0.72


preproprotein





complement factor I
P05156 (CFAI_HUMAN)
R.IIFHENYNAGTYQNDIALIEMK.K
0.63


preproprotein





complement factor I
P05156 (CFAI_HUMAN)
R.YQIWTTVVDWIHPDLK.R
0.63


preproprotein





conserved oligomeric
Q9Y2V7 (COG6_HUMAN)
K.ISNLLK.F
0.65


Golgi complex


subunit 6 isoform





corticosteroid-
P08185 (CBG_HUMAN)
R.WSAGLTSSQVDLYIPK.V
0.62


binding globulin


precursor





C-reactive protein
P02741 (CRP_HUMAN)
K.YEVQGEVFTKPQLWP.-
0.60


precursor





dopamine beta-
P09172 (DOPO_HUMAN)
R.HVLAAWALGAK.A
0.88


hydroxylase


precursor





double-stranded
Q9NS39 (RED2_HUMAN)
R.AGLRYVCLAEPAER.R
0.75


RNA-specific editase


B2





dual oxidase 2
Q9NRD8 (DUOX2_HUMAN)
R.FTQLCVKGGGGGGNGIR.D
0.65


precursor





FERM domain-
Q9BZ67 (FRMD8_HUMAN)
R.VQLGPYQPGRPAACDLR.E
0.65


containing protein 8





fetuin-B precursor
Q9UGM5 (FETUB_HUMAN)
R.GGLGSLFYLTLDVLETDCHVLR.K
0.83





ficolin-3 isoform 1
O75636 (FCN3_HUMAN)
R.ELLSQGATLSGWYHLCLPEGR.A
0.69


precursor





gastric intrinsic factor
P27352 (IF_HUMAN)
K.KTTDM*ILNEIKQGK.F
0.60


precursor





gelsolin isoform d
P06396 (GELS_HUMAN)
K.NWRDPDQTDGLGLSYLSSHIANVER
0.72




.V





gelsolin isoform d
P06396 (GELS_HUMAN)
K.TPSAAYLWVGTGASEAEK.T
0.80





gelsolin isoform d
P06396 (GELS_HUMAN)
R.VEKFDLVPVPTNLYGDFFTGDAYVIL
0.60




K.T





gelsolin isoform d
P06396 (GELS_HUMAN)
R.VPFDAATLHTSTAMAAQHGMDDD
0.67




GTGQK.Q





glutathione
P22352 (GPX3_HUMAN)
K.FYTFLK.N
0.63


peroxidase 3


precursor





hemopexin precursor
P02790 (HEMO_HUMAN)
K.GDKVWVYPPEKK.E
0.65





hemopexin precursor
P02790 (HEMO_HUMAN)
K.LLQDEFPGIPSPLDAAVECHR.G
0.71





hemopexin precursor
P02790 (HEMO_HUMAN)
K.SGAQATWTELPWPHEK.V
0.64





hemopexin precursor
P02790 (HEMO_HUMAN)
K.SGAQATWTELPWPHEKVDGALCM
0.61




EK.S





hemopexin precursor
P02790 (HEMO_HUMAN)
K.VDGALCMEK.S
0.66





hemopexin precursor
P02790 (HEMO_HUMAN)
R.DYFMPCPGR.G
0.68





hemopexin precursor
P02790 (HEMO_HUMAN)
R.EWFWDLATGTM*K.E
0.64





hemopexin precursor
P02790 (HEMO_HUMAN)
R.QGHNSVFLIK.G
0.71





heparin cofactor 2
P05546 (HEP2_HUMAN)
K.HQGTITVNEEGTQATTVTTVGFMPL
0.60


precursor

STQVR.F





heparin cofactor 2
P05546 (HEP2_HUMAN)
K.YEITTIHNLFR.K
0.62


precursor





heparin cofactor 2
P05546 (HEP2_HUMAN)
R.LNILNAK.F
0.68


precursor





heparin cofactor 2
P05546 (HEP2_HUMAN)
R.NFGYTLR.S
0.64


precursor





heparin cofactor 2
P05546 (HEP2_HUMAN)
R.VLKDQVNTFDNIFIAPVGISTAMGM
0.63


precursor

*ISLGLK.G





hepatocyte cell
Q14CZ8 (HECAM_HUMAN)
K.PLLNDSRMLLSPDQK.V
0.61


adhesion molecule


precursor





hepatocyte growth
Q04756 (HGFA_HUMAN)
R.VQLSPDLLATLPEPASPGR.Q
0.82


factor activator


preproprotein





histidine-rich
P04196 (HRG_HUMAN)
R.DGYLFQLLR.I
0.63


glycoprotein


precursor





hyaluronan-binding
Q14520 (HABP2_HUMAN)
K.FLNWIK.A
0.82


protein 2 isoform 1


preproprotein





hyaluronan-binding
Q14520 (HABP2_HUMAN)
K.LKPVDGHCALESK.Y
0.61


protein 2 isoform 1


preproprotein





hyaluronan-binding
Q14520 (HABP2_HUMAN)
K.RPGVYTQVTK.F
0.74


protein 2 isoform 1


preproprotein





inactive caspase-12
Q6UXS9 (CASPC_HUMAN)
K.AGADTHGRLLQGNICNDAVTK.A
0.74





insulin-degrading
P14735 (IDE_HUMAN)
K.KIIEKM*ATFEIDEK.R
0.85


enzyme isoform 1





insulin-like growth
P35858 (ALS_HUMAN)
R.SFEGLGQLEVLTLDHNQLQEVK.A
0.62


factor-binding


protein complex acid


labile subunit isoform


2 precursor





inter-alpha-trypsin
P19827 (ITIH1_HUMAN)
K.ELAAQTIKK.S
0.81


inhibitor heavy chain


H1 isoform a


precursor





inter-alpha-trypsin
P19827 (ITIH1_HUMAN)
K.GSLVQASEANLQAAQDFVR.G
0.71


inhibitor heavy chain


H1 isoform a


precursor





inter-alpha-trypsin
P19827 (ITIH1_HUMAN)
K.QLVHHFEIDVDIFEPQGISK.L
0.70


inhibitor heavy chain


H1 isoform a


precursor





inter-alpha-trypsin
P19827 (ITIH1_HUMAN)
K.QYYEGSEIVVAGR.I
0.83


inhibitor heavy chain


H1 isoform a


precursor





inter-alpha-trypsin
P19827 (ITIH1_HUMAN)
R.EVAFDLEIPKTAFISDFAVTADGNAFI
0.70


inhibitor heavy chain

GDIK.D


H1 isoform a


precursor





inter-alpha-trypsin
P19827 (ITIH1_HUMAN)
R.GMADQDGLKPTIDKPSEDSPPLEM*
0.63


inhibitor heavy chain

LGPR.R


H1 isoform a


precursor





inter-alpha-trypsin
P19827 (ITIH1_HUMAN)
R.GMADQDGLKPTIDKPSEDSPPLEML
0.60


inhibitor heavy chain

GPR.R


H1 isoform a


precursor





inter-alpha-trypsin
P19823 (ITIH2_HUMAN)
K.FDPAKLDQIESVITATSANTQLVLETL
0.80


inhibitor heavy chain

AQM*DDLQDFLSK.D


H2 precursor





inter-alpha-trypsin
P19823 (ITIH2_HUMAN)
K.KFYNQVSTPLLR.N
0.76


inhibitor heavy chain


H2 precursor





inter-alpha-trypsin
P19823 (ITIH2_HUMAN)
K.NILFVIDVSGSM*WGVK.M
0.68


inhibitor heavy chain


H2 precursor





inter-alpha-trypsin
P19823 (ITIH2_HUMAN)
K.NILFVIDVSGSMWGVK.M
0.62


inhibitor heavy chain


H2 precursor





inter-alpha-trypsin
P19823 (ITIH2_HUMAN)
R.KLGSYEHR.I
0.72


inhibitor heavy chain


H2 precursor





inter-alpha-trypsin
P19823 (ITIH2_HUMAN)
R.LSNENHGIAQR.I
0.66


inhibitor heavy chain


H2 precursor





inter-alpha-trypsin
P19823 (ITIH2_HUMAN)
R.MATTMIQSK.V
0.60


inhibitor heavy chain


H2 precursor





inter-alpha-trypsin
P19823 (ITIH2_HUMAN)
R.SILQM*SLDHHIVTPLTSLVIENEAG
0.63


inhibitor heavy chain

DER.M


H2 precursor





inter-alpha-trypsin
P19823 (ITIH2_HUMAN)
R.SILQMSLDHHIVTPLTSLVIENEAGDE
0.65


inhibitor heavy chain

R.M


H2 precursor





inter-alpha-trypsin
P19823 (ITIH2_HUMAN)
R.TEVNVLPGAK.V
0.69


inhibitor heavy chain


H2 precursor





inter-alpha-trypsin
Q14624 (ITIH4_HUMAN)
K.NVVFVIDK.S
0.68


inhibitor heavy chain


H4 isoform 1


precursor





inter-alpha-trypsin
Q14624 (ITIH4_HUMAN)
K.WKETLFSVMPGLK.M
0.65


inhibitor heavy chain


H4 isoform 1


precursor





inter-alpha-trypsin
Q14624 (ITIH4_HUMAN)
K.YIFHNFM*ER.L
0.67


inhibitor heavy chain


H4 isoform 1


precursor





inter-alpha-trypsin
Q14624 (ITIH4_HUMAN)
R.FAHTVVTSR.V
0.63


inhibitor heavy chain


H4 isoform 1


precursor





inter-alpha-trypsin
Q14624 (ITIH4_HUMAN)
R.FKPTLSQQQK.S
0.60


inhibitor heavy chain


H4 isoform 1


precursor





inter-alpha-trypsin
Q14624 (ITIH4_HUMAN)
R.IHEDSDSALQLQDFYQEVANPLLTA
0.64


inhibitor heavy chain

VTFEYPSNAVEEVTQNNFR.L


H4 isoform 1


precursor





inter-alpha-trypsin
Q14624 (ITIH4_HUMAN)
R.MNFRPGVLSSR.Q
0.63


inhibitor heavy chain


H4 isoform 1


precursor





inter-alpha-trypsin
Q14624 (ITIH4_HUMAN)
R.NVHSAGAAGSR.M
0.62


inhibitor heavy chain


H4 isoform 1


precursor





inter-alpha-trypsin
Q14624 (ITIH4_HUMAN)
R.NVHSGSTFFK.Y
0.75


inhibitor heavy chain


H4 isoform 1


precursor





inter-alpha-trypsin
Q14624 (ITIH4_HUMAN)
R.RLGVYELLLK.V
0.66


inhibitor heavy chain


H4 isoform 1


precursor





kallistatin precursor
P29622 (KAIN_HUMAN)
K.KLELHLPK.F
0.78





kallistatin precursor
P29622 (KAIN_HUMAN)
R.EIEEVLTPEMLMR.W
0.60





kininogen-1 isoform 2
P01042 (KNG1_HUMAN)
K.AATGECTATVGKR.S
0.67


precursor





kininogen-1 isoform 2
P01042 (KNG1_HUMAN)
K.LGQSLDCNAEVYVVPWEK.K
0.72


precursor





kininogen-1 isoform 2
P01042 (KNG1_HUMAN)
K.YNSQNQSNNQFVLYR.I
0.62


precursor





kininogen-1 isoform 2
P01042 (KNG1_HUMAN)
R.QVVAGLNFR.I
0.64


precursor





leucine-rich alpha-2-
P02750 (A2GL_HUMAN)
K.DLLLPQPDLR.Y
0.64


glycoprotein


precursor





leucine-rich alpha-2-
P02750 (A2GL_HUMAN)
R.LHLEGNKLQVLGK.D
0.76


glycoprotein


precursor





leucine-rich alpha-2-
P02750 (A2GL_HUMAN)
R.TLDLGENQLETLPPDLLR.G
0.61


glycoprotein


precursor





lipopolysaccharide-
P18428 (LBP_HUMAN)
K.GLQYAAQEGLLALQSELLR.I
0.82


binding protein


precursor





lipopolysaccharide-
P18428 (LBP_HUMAN)
K.LAEGFPLPLLK.R
0.66


binding protein


precursor





lumican precursor
P51884 (LUM_HUMAN)
K.SLEYLDLSFNQIAR.L
0.65





lumican precursor
P51884 (LUM_HUMAN)
R.LKEDAVSAAFK.G
0.74





m7GpppX
Q96C86 (DCPS_HUMAN)
R.IVFENPDPSDGFVLIPDLK.W
0.62


diphosphatase





matrix
Q99542 (MMP19_HUMAN)
R.VYFFK.G
0.63


metalloproteinase-19


isoform 1


preproprotein





MBT domain-
Q05BQ5 (MBTD1_HUMAN)
K.WFDYLR.E
0.65


containing protein 1





monocyte
P08571 (CD14_HUMAN)
R.LTVGAAQVPAQLLVGALR.V
0.66


differentiation


antigen CD14


precursor





pappalysin-1
Q13219 (PAPP1_HUMAN)
R.VSFSSPLVAISGVALR.S
0.66


preproprotein





phosphatidylinositol-
P80108 (PHLD_HUMAN)
K.GIVAAFYSGPSLSDKEK.L
0.71


glycan-specific


phospholipase D


precursor





phosphatidylinositol-
P80108 (PHLD_HUMAN)
R.WYVPVKDLLGIYEK.L
0.71


glycan-specific


phospholipase D


precursor





pigment epithelium-
P36955 (PEDF_HUMAN)
K.LQSLFDSPDFSK.I
0.61


derived factor


precursor





pigment epithelium-
P36955 (PEDF_HUMAN)
R.ALYYDLISSPDIHGTYK.E
0.72


derived factor


precursor





plasma kallikrein
P03952 (KLKB1_HUMAN)
R.CLLFSFLPASSINDMEKR.F
0.60


preproprotein





plasma protease C1
P05155 (IC1_HUMAN)
K.FQPTLLTLPR.I
0.70


inhibitor precursor





plasma protease C1
P05155 (IC1_HUMAN)
K.GVTSVSQIFHSPDLAIR.D
0.66


inhibitor precursor





plasminogen isoform
P00747 (PLMN_HUMAN)
K.VIPACLPSPNYVVADR.T
0.63


1 precursor





plasminogen isoform
P00747 (PLMN_HUMAN)
R.FVTWIEGVMR.N
0.60


1 precursor





plasminogen isoform
P00747 (PLMN_HUMAN)
R.HSIFTPETNPR.A
0.63


1 precursor





platelet basic protein
P02775 (CXCL7_HUMAN)
K.GKEESLDSDLYAELR.C
0.70


preproprotein





platelet glycoprotein
P40197 (GPV_HUMAN)
K.MVLLEQLFLDHNALR.G
0.66


V precursor





platelet glycoprotein
P40197 (GPV_HUMAN)
R.LVSLDSGLLNSLGALTELQFHR.N
0.88


V precursor





pregnancy zone
P20742 (PZP_HUMAN)
K.ALLAYAFSLLGK.Q
0.66


protein precursor





pregnancy zone
P20742 (PZP_HUMAN)
K.DLFHCVSFTLPR.I
0.86


protein precursor





pregnancy zone
P20742 (PZP_HUMAN)
K.MLQITNTGFEMK.L
0.84


protein precursor





pregnancy zone
P20742 (PZP_HUMAN)
R.NELIPLIYLENPRR.N
0.65


protein precursor





pregnancy zone
P20742 (PZP_HUMAN)
R.SYIFIDEAHITQSLTWLSQMQK.D
0.68


protein precursor





pregnancy-specific
P11465 (PSG2_HUMAN)
R.SDPVTLNLLHGPDLPR.I
0.66


beta-1-glycoprotein 2


precursor





pregnancy-specific
Q16557 (PSG3_HUMAN)
R.TLFLFGVTK.Y
0.62


beta-1-glycoprotein 3


precursor





pregnancy-specific
Q15238 (PSG5_HUMAN)
R.ILILPSVTR.N
0.76


beta-1-glycoprotein 5


precursor





pregnancy-specific
Q00889 (PSG6_HUMAN)
R.SDPVTLNLLPK.L
0.63


beta-1-glycoprotein 6


isoform a





progesterone-
Q8WXW3 (PIBF1_HUMAN)
R.VLQLEK.Q
0.71


induced-blocking


factor 1





protein AMBP
P02760 (AMBP_HUMAN)
R.VVAQGVGIPEDSIFTMADR.G
0.60


preproprotein





protein CBFA2T2
O43439 (MTG8R_HUMAN)
R.LTEREWADEWKHLDHALNCIMEM
0.70


isoform MTGR1b

VEK.T





protein FAM98C
Q17RN3 (FA98C_HUMAN)
R.ALCGGDGAAALREPGAGLR.L
0.75





protein NLRC3
Q7RTR2 (NLRC3_HUMAN)
K.ALM*DLLAGKGSQGSQAPQALDR.T
0.92





protein Z-dependent
Q9UK55 (ZPI_HUMAN)
K.MGDHLALEDYLTTDLVETWLR.N
0.60


protease inhibitor


precursor





prothrombin
P00734 (THRB_HUMAN)
K.SPQELLCGASLISDR.W
0.84


preproprotein





prothrombin
P00734 (THRB_HUMAN)
R.LAVTTHGLPCLAWASAQAK.A
0.62


preproprotein





prothrombin
P00734 (THRB_HUMAN)
R.SEGSSVNLSPPLEQCVPDR.G
0.70


preproprotein





prothrombin
P00734 (THRB_HUMAN)
R.SGIECQLWR.S
0.68


preproprotein





prothrombin
P00734 (THRB_HUMAN)
R.TATSEYQTFFNPR.T
0.60


preproprotein





prothrombin
P00734 (THRB_HUMAN)
R.VTGWGNLKETWTANVGK.G
0.69


preproprotein





putative
Q5T013 (HYI_HUMAN)
R.IHLM*AGR.V
0.69


hydroxypyruvate


isomerase isoform 1





putative
Q5T013 (HYI_HUMAN)
R.IHLMAGR.V
0.66


hydroxypyruvate


isomerase isoform 1





ras-like protein family
Q92737 (RSLAA_HUMAN)
R.PAHPALR.L
0.71


member 10A


precursor





ras-related GTP-
Q7L523 (RRAGA_HUMAN)
K.ISNIIK.Q
0.82


binding protein A





retinol-binding
P02753 (RET4_HUMAN)
K.M*KYWGVASFLQK.G
0.73


protein 4 precursor





retinol-binding
P02753 (RET4_HUMAN)
R.FSGTWYAM*AK.K
0.63


protein 4 precursor





retinol-binding
P02753 (RET4_HUMAN)
R.LLNLDGTCADSYSFVFSR.D
0.79


protein 4 precursor





retinol-binding
P02753 (RET4_HUMAN)
R.LLNNWDVCADMVGTFTDTEDPAKF
0.77


protein 4 precursor

K.M





sex hormone-binding
P04278 (SHBG_HUMAN)
R.LFLGALPGEDSSTSFCLNGLWAQGQ
0.66


globulin isoform 1

R.L


precursor





sex hormone-binding
P04278 (SHBG_HUMAN)
K.DDWFMLGLR.D
0.60


globulin isoform 4


precursor





sex hormone-binding
P04278 (SHBG_HUMAN)
R.SCDVESNPGIFLPPGTQAEFNLR.G
0.64


globulin isoform 4


precursor





sex hormone-binding
P04278 (SHBG_HUMAN)
R.TWDPEGVIFYGDTNPKDDWFM*L
0.65


globulin isoform 4

GLR.D


precursor





sex hormone-binding
P04278 (SHBG_HUMAN)
R.TWDPEGVIFYGDTNPKDDWFMLGL
0.66


globulin isoform 4

R.D


precursor





signal transducer and
P52630 (STAT2_HUMAN)
R.KFCRDIQDPTQLAEMIFNLLLEEK.R
0.73


activator of


transcription 2





spectrin beta chain,
Q13813 (SPTN1_HUMAN)
R.NELIRQEKLEQLAR.R
0.60


non-erythrocytic 1





stabilin-1 precursor
Q9NY15 (STAB1_HUMAN)
R.KNLSER.W
0.88





succinate-
P51649 (SSDH_HUMAN)
R.KWYNLMIQNK.D
0.88


semialdehyde


dehydrogenase,


mitochondrial





tetranectin precursor
P05452 (TETN_HUMAN)
K.SRLDTLAQEVALLK.E
0.75





THAP domain-
Q8TBB0 (THAP6_HUMAN)
K.RLDVNAAGIWEPKK.G
0.69


containing protein 6





thyroxine-binding
P05543 (THBG_HUMAN)
R.SILFLGK.V
0.79


globulin precursor





tripartite motif-
Q9C035 (TRIM5_HUMAN)
R.ELISDLEHRLQGSVM*ELLQGVDGVI
0.60


containing protein 5

K.R





vitamin D-binding
P02774 (VTDB_HUMAN)
K.EDFTSLSLVLYSR.K
0.66


protein isoform 1


precursor





vitamin D-binding
P02774 (VTDB_HUMAN)
K.ELSSFIDKGQELCADYSENTFTEYK.K
0.67


protein isoform 1


precursor





vitamin D-binding
P02774 (VTDB_HUMAN)
K.ELSSFIDKGQELCADYSENTFTEYKK.K
0.66


protein isoform 1


precursor





vitamin D-binding
P02774 (VTDB_HUMAN)
K.EVVSLTEACCAEGADPDCYDTR.T
0.65


protein isoform 1


precursor





vitamin D-binding
P02774 (VTDB_HUMAN)
K.TAMDVFVCTYFMPAAQLPELPDVEL
0.84


protein isoform 1

PTNKDVCDPGNTK.V


precursor





vitamin D-binding
P02774 (VTDB_HUMAN)
R.RTHLPEVFLSK.V
0.69


protein isoform 1


precursor





vitamin D-binding
P02774 (VTDB_HUMAN)
R.VCSQYAAYGEK.K
0.66


protein isoform 1


precursor





vitronectin precursor
P04004 (VTNC_HUMAN)
K.LIRDVWGIEGPIDAAFTR.I
0.61





vitronectin precursor
P04004 (VTNC_HUMAN)
R.DVWGIEGPIDAAFTR.I
0.63





vitronectin precursor
P04004 (VTNC_HUMAN)
R.ERVYFFK.G
0.81





vitronectin precursor
P04004 (VTNC_HUMAN)
R.FEDGVLDPDYPR.N
0.64





vitronectin precursor
P04004 (VTNC_HUMAN)
R.IYISGM*APRPSLAK.K
0.75





zinc finger protein
P52746 (ZN142_HUMAN)
K.TRFLLR.T
0.66


142
















TABLE 9







Significant peptides (AUC >0.6) for for X!Tandem only










Protein description
Uniprot ID (name)
Peptide
XT_AUC





afamin precursor
P43652
K.HELTDEELQSLFTNFANVVDK.C
0.65



(AFAM_HUMAN)





afamin precursor
P43652
R.NPFVFAPTLLTVAVHFEEVAK.S
0.91



(AFAM_HUMAN)





alpha-1-
P01011
K.ADLSGITGAR.N
0.67


antichymotrypsin
(AACT_HUMAN)


precursor





alpha-1-
P01011
K.MEEVEAMLLPETLKR.W
0.60


antichymotrypsin
(AACT_HUMAN)


precursor





alpha-1-
P01011
K.WEMPFDPQDTHQSR.F
0.64


antichymotrypsin
(AACT_HUMAN)


precursor





alpha-1-
P01011
R.LYGSEAFATDFQDSAAAK.K
0.62


antichymotrypsin
(AACT_HUMAN)


precursor





alpha-1B-glycoprotein
P04217
K.HQFLLTGDTQGR.Y
0.72


precursor
(A1BG_HUMAN)





alpha-1B-glycoprotein
P04217
K.NGVAQEPVHLDSPAIK.H
0.63


precursor
(A1BG_HUMAN)





alpha-1B-glycoprotein
P04217
K.SLPAPWLSM*APVSWITPGLK.T
0.72


precursor
(A1BG_HUMAN)





alpha-1B-glycoprotein
P04217
K.VTLTCVAPLSGVDFQLRR.G
0.67


precursor
(A1BG_HUMAN)





alpha-1B-glycoprotein
P04217
R.C*EGPIPDVTFELLR.E
0.67


precursor
(A1BG_HUMAN)





alpha-1B-glycoprotein
P04217
R.C*LAPLEGAR.F
0.79


precursor
(A1BG_HUMAN)





alpha-1B-glycoprotein
P04217
R.CLAPLEGAR.F
0.63


precursor
(A1BG_HUMAN)





alpha-1B-glycoprotein
P04217
R.GVTFLLR.R
0.69


precursor
(A1BG_HUMAN)





alpha-1B-glycoprotein
P04217
R.LHDNQNGWSGDSAPVELILSDETL
0.60


precursor
(A1BG_HUMAN)
PAPEFSPEPESGR.A





alpha-1B-glycoprotein
P04217
R.TPGAAANLELIFVGPQHAGNYR.C
0.62


precursor
(A1BG_HUMAN)





alpha-2-antiplasmin
P08697
K.HQM*DLVATLSQLGLQELFQAPDL
0.61


isoform a precursor
(A2AP_HUMAN)
R.G





alpha-2-antiplasmin
P08697
R.LCQDLGPGAFR.L
0.68


isoform a precursor
(A2AP_HUMAN)





alpha-2-antiplasmin
P08697
R.WFLLEQPEIQVAHFPFK.N
0.60


isoform a precursor
(A2AP_HUMAN)





alpha-2-HS-
P02765
K.VWPQQPSGELFEIEIDTLETTCHVL
0.61


glycoprotein
(FETUA_HUMAN)
DPTPVAR.C


preproprotein





alpha-2-HS-
P02765
R.HTFMGVVSLGSPSGEVSHPR.K
0.68


glycoprotein
(FETUA_HUMAN)


preproprotein





alpha-2-HS-
P02765
R.Q*PNCDDPETEEAALVAIDYINQNL
0.69


glycoprotein
(FETUA_HUMAN)
PWGYK.H


preproprotein





alpha-2-HS-
P02765
R.QPNCDDPETEEAALVAIDYINQNLP
0.64


glycoprotein
(FETUA_HUMAN)
WGYK.H


preproprotein





alpha-2-HS-
P02765
R.TVVQPSVGAAAGPVVPPCPGR.I
0.64


glycoprotein
(FETUA_HUMAN)


preproprotein





angiotensinogen
P01019
K.QPFVQGLALYTPVVLPR.S
0.73


preproprotein
(ANGT_HUMAN)





angiotensinogen
P01019
R.AAM*VGM*LANFLGFR.I
0.62


preproprotein
(ANGT_HUMAN)





apolipoprotein A-IV
P06727
K.LVPFATELHER.L
0.64


precursor
(APOA4_HUMAN)





apolipoprotein A-IV
P06727
R.LLPHANEVSQK.I
0.61


precursor
(APOA4_HUMAN)





apolipoprotein A-IV
P06727
R.SLAPYAQDTQEKLNHQLEGLTFQM
0.70


precursor
(APOA4_HUMAN)
K.K





apolipoprotein B-100
P04114
K.FPEVDVLTK.Y
0.61


precursor
(APOB_HUMAN)





apolipoprotein B-100
P04114
K.HINIDQFVR.K
0.70


precursor
(APOB_HUMAN)





apolipoprotein B-100
P04114
K.LLSGGNTLHLVSTTK.T
0.66


precursor
(APOB_HUMAN)





apolipoprotein B-100
P04114
K.Q*VFLYPEKDEPTYILNIKR.G
0.81


precursor
(APOB_HUMAN)





apolipoprotein B-100
P04114
K.QVFLYPEKDEPTYILNIKR.G
0.77


precursor
(APOB_HUMAN)





apolipoprotein B-100
P04114
K.SLHMYANR.L
0.83


precursor
(APOB_HUMAN)





apolipoprotein B-100
P04114
K.SVSDGIAALDLNAVANK.I
0.62


precursor
(APOB_HUMAN)





apolipoprotein B-100
P04114
K.SVSLPSLDPASAKIEGNLIFDPNNYL
0.67


precursor
(APOB_HUMAN)
PK.E





apolipoprotein B-100
P04114
K.TEVIPPLIENR.Q
0.63


precursor
(APOB_HUMAN)





apolipoprotein B-100
P04114
K.VLVDHFGYTK.D
0.76


precursor
(APOB_HUMAN)





apolipoprotein B-100
P04114
R.TSSFALNLPTLPEVKFPEVDVLTK.Y
0.62


precursor
(APOB_HUMAN)





apolipoprotein C-III
P02656
R.GWVTDGFSSLKDYWSTVK.D
0.66


precursor
(APOC3_HUMAN)





apolipoprotein E
P02649
R.GEVQAMLGQSTEELR.V
0.81


precursor
(APOE_HUMAN)





apolipoprotein E
P02649
R.LAVYQAGAR.E
0.63


precursor
(APOE_HUMAN)





apolipoprotein E
P02649
R.LGPLVEQGR.V
0.69


precursor
(APOE_HUMAN)





attractin isoform 2
O75882
K.LTLTPWVGLR.K
0.69


preproprotein
(ATRN_HUMAN)





beta-2-glycoprotein 1
P02749
K.FICPLTGLWPINTLK.C
0.63


precursor
(APOH_HUMAN)





beta-2-glycoprotein 1
P02749
K.TFYEPGEEITYSCKPGYVSR.G
0.62


precursor
(APOH_HUMAN)





beta-Ala-His
Q96KN2
K.MVVSMTLGLHPWIANIDDTQYLA
0.81


dipeptidase precursor
(CNDP1_HUMAN)
AK.R





beta-Ala-His
Q96KN2
K.VFQYIDLHQDEFVQTLK.E
0.65


dipeptidase precursor
(CNDP1_HUMAN)





biotinidase precursor
P43251
R.TSIYPFLDFM*PSPQVVR.W
0.79



(BTD_HUMAN)





carboxypeptidase N
P15169
R.ELMLQLSEFLCEEFR.N
0.61


catalytic chain
(CBPN_HUMAN)


precursor





ceruloplasmin
P00450
K.AEEEHLGILGPQLHADVGDKVK.I
0.73


precursor
(CERU_HUMAN)





ceruloplasmin
P00450
K.ALYLQYTDETFR.T
0.64


precursor
(CERU_HUMAN)





ceruloplasmin
P00450
K.DVDKEFYLFPTVFDENESLLLEDNIR
0.62


precursor
(CERU_HUMAN)
.M





ceruloplasmin
P00450
K.HYYIGIIETTWDYASDHGEK.K
0.61


precursor
(CERU_HUMAN)





ceruloplasmin
P00450
R.EYTDASFTNRK.E
0.67


precursor
(CERU_HUMAN)





ceruloplasmin
P00450
R.HYYIAAEEIIWNYAPSGIDIFTK.E
0.63


precursor
(CERU_HUMAN)





ceruloplasmin
P00450
R.IYHSHIDAPK.D
0.62


precursor
(CERU_HUMAN)





ceruloplasmin
P00450
R.Q*KDVDKEFYLFPTVFDENESLLLE
0.74


precursor
(CERU_HUMAN)
DNIR.M





ceruloplasmin
P00450
R.QKDVDKEFYLFPTVFDENESLLLED
0.65


precursor
(CERU_HUMAN)
NIR.M





ceruloplasmin
P00450
R.TYYIAAVEVEWDYSPQR.E
0.90


precursor
(CERU_HUMAN)





coagulation factor IX
P00740
R.SALVLQYLR.V
0.69


preproprotein
(FA9_HUMAN)





coagulation factor V
P12259
K.EFNPLVIVGLSK.D
0.61


precursor
(FA5_HUMAN)





coagulation factor XII
P00748
R.NPDNDIRPWCFVLNR.D
0.65


precursor
(FA12_HUMAN)





coagulation factor XII
P00748
R.VVGGLVALR.G
0.61


precursor
(FA12_HUMAN)





complement C1q
P02746
K.NSLLGMEGANSIFSGFLLFPDMEA.-
0.64


subcomponent subunit
(C1QB_HUMAN)


B precursor





complement C1q
P02746
K.VPGLYYFTYHASSR.G
0.63


subcomponent subunit
(C1QB_HUMAN)


B precursor





complement C1q
P02747
R.Q*THQPPAPNSLIR.F
0.60


subcomponent subunit
(C1QC_HUMAN)


C precursor





complement C1r
P00736
R.LPVANPQACENWLR.G
0.72


subcomponent
(C1R_HUMAN)


precursor





complement C2
P06681
K.NQGILEFYGDDIALLK.L
0.74


isoform 3
(CO2_HUMAN)





complement C2
P06681
K.RNDYLDIYAIGVGK.L
0.61


isoform 3
(CO2_HUMAN)





complement C2
P06681
R.QPYSYDFPEDVAPALGTSFSHMLG
0.78


isoform 3
(CO2_HUMAN)
ATNPTQK.T





complement C3
P01024
R.IHWESASLLR.S
0.69


precursor
(CO3_HUMAN)





complement C4-A
P0C0L4
K.FACYYPR.V
0.64


isoform 1
(CO4A_HUMAN)





complement C4-A
P0C0L4
K.LHLETDSLALVALGALDTALYAAGS
0.74


isoform 1
(CO4A_HUMAN)
K.S





complement C4-A
P0C0L4
K.LVNGQSHISLSK.A
0.64


isoform 1
(CO4A_HUMAN)





complement C4-A
P0C0L4
K.M*RPSTDTITVMVENSHGLR.V
0.60


isoform 1
(CO4A_HUMAN)





complement C4-A
P0C0L4
K.MRPSTDTITVMVENSHGLR.V
0.65


isoform 1
(CO4A_HUMAN)





complement C4-A
P0C0L4
K.SCGLHQLLR.G
0.74


isoform 1
(CO4A_HUMAN)





complement C4-A
P0C0L4
K.VGLSGMAIADVTLLSGFHALR.A
0.61


isoform 1
(CO4A_HUMAN)





complement C4-A
P0C0L4
K.YVLPNFEVK.I
0.64


isoform 1
(CO4A_HUMAN)





complement C4-A
P0C0L4
R.ALEILQEEDLIDEDDIPVR.S
0.64


isoform 1
(CO4A_HUMAN)





complement C4-A
P0C0L4
R.ECVGFEAVQEVPVGLVQPASATLY
0.62


isoform 1
(CO4A_HUMAN)
DYYNPER.R





complement C4-A
P0C0L4
R.EELVYELNPLDHR.G
0.66


isoform 1
(CO4A_HUMAN)





complement C4-A
P0C0L4
R.STQDTVIALDALSAYWIASHTTEER.G
0.70


isoform 1
(CO4A_HUMAN)





complement C4-A
P0C0L4
R.VGDTLNLNLR.A
0.79


isoform 1
(CO4A_HUMAN)





complement C4-A
P0C0L4
R.VHYTVCIWR.N
0.65


isoform 1
(CO4A_HUMAN)





complement C4-B-like
P0C0L5
K.GLCVATPVQLR.V
1.00


preproprotein
(CO4B_HUMAN)





complement C4-B-like
P0C0L5
K.KYVLPNFEVK.I
0.60


preproprotein
(CO4B_HUMAN)





complement C4-B-like
P0C0L5
K.VDFTLSSERDFALLSLQVPLKDAK.S
0.74


preproprotein
(CO4B_HUMAN)





complement C4-B-like
P0C0L5
R.EMSGSPASGIPVK.V
0.72


preproprotein
(CO4B_HUMAN)





complement C4-B-like
P0C0L5
R.GCGEQTM*IYLAPTLAASR.Y
0.75


preproprotein
(CO4B_HUMAN)





complement C4-B-like
P0C0L5
R.NGESVKLHLETDSLALVALGALDTA
0.85


preproprotein
(CO4B_HUMAN)
LYAAGSK.S





complement C5
P01031
R.IPLDLVPK.T
0.65


preproprotein
(CO5_HUMAN)





complement C5
P01031
R.SYFPESWLWEVHLVPR.R
0.63


preproprotein
(CO5_HUMAN)





complement C5
P01031
R.YGGGFYSTQDTINAIEGLTEYSLLVK
0.62


preproprotein
(CO5_HUMAN)
.Q





complement
P13671
K.ENPAVIDFELAPIVDLVR.N
0.63


component C6
(CO6_HUMAN)


precursor





complement
P07357
K.YNPVVIDFEMQPIHEVLR.H
0.61


component C8 alpha
(CO8A_HUMAN)


chain precursor





complement
P07357
R.HTSLGPLEAK.R
0.65


component C8 alpha
(CO8A_HUMAN)


chain precursor





complement
P07358
K.C*QHEMDQYWGIGSLASGINLFTN
0.61


component C8 beta
(CO8B_HUMAN)
SFEGPVLDHR.Y


chain preproprotein





complement
P07358
K.SGFSFGFK.I
0.64


component C8 beta
(CO8B_HUMAN)


chain preproprotein





complement
P07358
R.DTMVEDLVVLVR.G
0.77


component C8 beta
(CO8B_HUMAN)


chain preproprotein





complement
P07360
K.ANFDAQQFAGTWLLVAVGSACR.F
0.63


component C8 gamma
(CO8G_HUMAN)


chain precursor





complement
P07360
R.AEATTLHVAPQGTAMAVSTFR.K
0.61


component C8 gamma
(CO8G_HUMAN)


chain precursor





complement
P02748
R.DVVLTTTFVDDIK.A
0.73


component C9
(CO9_HUMAN)


precursor





complement
P02748
R.RPWNVASLIYETK.G
0.66


component C9
(CO9_HUMAN)


precursor





complement factor B
P00751
K.ISVIRPSK.G
0.70


preproprotein
(CFAB_HUMAN)





complement factor B
P00751
K.VASYGVKPR.Y
0.63


preproprotein
(CFAB_HUMAN)





complement factor B
P00751
R.DFHINLFQVLPWLK.E
0.68


preproprotein
(CFAB_HUMAN)





complement factor B
P00751
R.DLLYIGK.D
0.63


preproprotein
(CFAB_HUMAN)





complement factor B
P00751
R.GDSGGPLIVHK.R
0.63


preproprotein
(CFAB_HUMAN)





complement factor B
P00751
R.LEDSVTYHCSR.G
0.68


preproprotein
(CFAB_HUMAN)





complement factor B
P00751
R.LPPTTTCQQQK.E
0.68


preproprotein
(CFAB_HUMAN)





complement factor H
P08603
K.CLHPCVISR.E
0.62


isoform a precursor
(CFAH_HUMAN)





complement factor H
P08603
K.CTSTGWIPAPR.C
0.74


isoform a precursor
(CFAH_HUMAN)





complement factor H
P08603
K.IDVHLVPDR.K
0.66


isoform a precursor
(CFAH_HUMAN)





complement factor H
P08603
K.IVSSAMEPDREYHFGQAVR.F
0.67


isoform a precursor
(CFAH_HUMAN)





complement factor H
P08603
K.SIDVACHPGYALPK.A
0.67


isoform a precursor
(CFAH_HUMAN)





complement factor H
P08603
K.VSVLCQENYLIQEGEEITCKDGR.W
0.63


isoform a precursor
(CFAH_HUMAN)





complement factor H
P08603
K.WSSPPQCEGLPCK.S
0.60


isoform a precursor
(CFAH_HUMAN)





complement factor H
P08603
R.EIMENYNIALR.W
0.61


isoform a precursor
(CFAH_HUMAN)





complement factor H
P08603
R.RPYFPVAVGK.Y
0.83


isoform a precursor
(CFAH_HUMAN)





complement factor H
P08603
R.WQSIPLCVEK.I
0.63


isoform a precursor
(CFAH_HUMAN)





complement factor I
P05156
R.YQIWTTVVDWIHPDLKR.I
0.72


preproprotein
(CFAI_HUMAN)





corticosteroid-binding
P08185
K.AVLQLNEEGVDTAGSTGVTLNLTSK
0.61


globulin precursor
(CBG_HUMAN)
PIILR.F





corticosteroid-binding
P08185
R.GLASANVDFAFSLYK.H
0.66


globulin precursor
(CBG_HUMAN)





fibrinogen alpha chain
P02671
K.TFPGFFSPMLGEFVSETESR.G
0.62


isoform alpha-E
(FIBA_HUMAN)


preproprotein





gelsolin isoform b
P06396
K.FDLVPVPTNLYGDFFTGDAYVILK.T
0.66



(GELS_HUMAN)





gelsolin isoform b
P06396
K.QTQVSVLPEGGETPLFK.Q
0.66



(GELS_HUMAN)





gelsolin isoform b
P06396
K.TPSAAYLWVGTGASEAEK.T
0.71



(GELS_HUMAN)





gelsolin isoform b
P06396
R.AQPVQVAEGSEPDGFWEALGGK.A
0.67



(GELS_HUMAN)





gelsolin isoform b
P06396
R.IEGSNKVPVDPATYGQFYGGDSYIIL
0.60



(GELS_HUMAN)
YNYR.H





gelsolin isoform b
P06396
R.VEKFDLVPVPTNLYGDFFTGDAYVI
0.73



(GELS_HUMAN)
LK.T





gelsolin isoform b
P06396
R.VPFDAATLHTSTAMAAQHGMDD
0.63



(GELS_HUMAN)
DGTGQK.Q





glutathione peroxidase
P22352
K.FLVGPDGIPIMR.W
0.60


3 precursor
(GPX3_HUMAN)





hemopexin precursor
P02790
K.ALPQPQNVTSLLGCTH.-
0.63



(HEMO_HUMAN)





hemopexin precursor
P02790
K.SLGPNSCSANGPGLYLIHGPNLYCY
0.68



(HEMO_HUMAN)
SDVEK.L





hemopexin precursor
P02790
R.DGWHSWPIAHQWPQGPSAVDAA
0.63



(HEMO_HUMAN)
FSWEEK.L





hemopexin precursor
P02790
R.GECQAEGVLFFQGDR.E
0.67



(HEMO_HUMAN)





hemopexin precursor
P02790
R.GECQAEGVLFFQGDREWFWDLAT
0.67



(HEMO_HUMAN)
GTM*K.E





hemopexin precursor
P02790
R.LEKEVGTPHGIILDSVDAAFICPGSS
0.75



(HEMO_HUMAN)
R.L





hemopexin precursor
P02790
R.LWWLDLK.S
0.62



(HEMO_HUMAN)





hemopexin precursor
P02790
R.WKNFPSPVDAAFR.Q
0.68



(HEMO_HUMAN)





heparin cofactor 2
P05546
K.DQVNTFDNIFIAPVGISTAMGMISL
0.60


precursor
(HEP2_HUMAN)
GLK.G





insulin-like growth
P35858
K.ANVFVQLPR.L
0.71


factor-binding protein
(ALS_HUMAN)


complex acid labile


subunit isoform 2


precursor





insulin-like growth
P35858
R.LEALPNSLLAPLGR.L
0.61


factor-binding protein
(ALS_HUMAN)


complex acid labile


subunit isoform 2


precursor





insulin-like growth
P35858
R.LFQGLGK.L
0.68


factor-binding protein
(ALS_HUMAN)


complex acid labile


subunit isoform 2


precursor





insulin-like growth
P35858
R.NLIAAVAPGAFLGLK.A
0.76


factor-binding protein
(ALS_HUMAN)


complex acid labile


subunit isoform 2


precursor





insulin-like growth
P35858
R.TFTPQPPGLER.L
0.73


factor-binding protein
(ALS_HUMAN)


complex acid labile


subunit isoform 2


precursor





inter-alpha-trypsin
P19827
K.Q*LVHHFEIDVDIFEPQGISK.L
0.69


inhibitor heavy chain
(ITIH1_HUMAN)


H1 isoform a precursor





inter-alpha-trypsin
P19827
K.VTFQLTYEEVLK.R
0.61


inhibitor heavy chain
(ITIH1_HUMAN)


H1 isoform a precursor





inter-alpha-trypsin
P19827
K.VTFQLTYEEVLKR.N
0.70


inhibitor heavy chain
(ITIH1_HUMAN)


H1 isoform a precursor





inter-alpha-trypsin
P19827
R.GIEILNQVQESLPELSNHASILIMLT
0.62


inhibitor heavy chain
(ITIH1_HUMAN)
DGDPTEGVTDR.S


H1 isoform a precursor





inter-alpha-trypsin
P19827
R.GM*ADQDGLKPTIDKPSEDSPPLE
0.79


inhibitor heavy chain
(ITIH1_HUMAN)
M*LGPR.R


H1 isoform a precursor





inter-alpha-trypsin
P19827
R.KAAISGENAGLVR.A
0.78


inhibitor heavy chain
(ITIH1_HUMAN)


H1 isoform a precursor





inter-alpha-trypsin
P19823
K.AGELEVFNGYFVHFFAPDNLDPIPK
0.64


inhibitor heavy chain
(ITIH2_HUMAN)
.N


H2 precursor





inter-alpha-trypsin
P19823
K.FYNQVSTPLLR.N
0.68


inhibitor heavy chain
(ITIH2_HUMAN)


H2 precursor





inter-alpha-trypsin
P19823
K.VQFELHYQEVK.W
0.68


inhibitor heavy chain
(ITIH2_HUMAN)


H2 precursor





inter-alpha-trypsin
P19823
R.ETAVDGELVVLYDVK.R
0.63


inhibitor heavy chain
(ITIH2_HUMAN)


H2 precursor





inter-alpha-trypsin
P19823
R.IYLQPGR.L
0.75


inhibitor heavy chain
(ITIH2_HUMAN)


H2 precursor





inter-alpha-trypsin
Q06033
R.LWAYLTIEQLLEK.R
0.60


inhibitor heavy chain
(ITIH3_HUMAN)


H3 preproprotein





inter-alpha-trypsin
Q14624
K.ITFELVYEELLK.R
0.60


inhibitor heavy chain
(ITIH4_HUMAN)


H4 isoform 1 precursor





inter-alpha-trypsin
Q14624
K.LQDRGPDVLTATVSGK.L
0.67


inhibitor heavy chain
(ITIH4_HUMAN)


H4 isoform 1 precursor





inter-alpha-trypsin
Q14624
K.TGLLLLSDPDKVTIGLLFWDGRGEG
0.63


inhibitor heavy chain
(ITIH4_HUMAN)
LR.L


H4 isoform 1 precursor





inter-alpha-trypsin
Q14624
K.WKETLFSVM*PGLK.M
0.79


inhibitor heavy chain
(ITIH4_HUMAN)


H4 isoform 1 precursor





inter-alpha-trypsin
Q14624
R.AISGGSIQIENGYFVHYFAPEGLTT
0.60


inhibitor heavy chain
(ITIH4_HUMAN)
M*PK.N


H4 isoform 1 precursor





inter-alpha-trypsin
Q14624
R.AISGGSIQIENGYFVHYFAPEGLTT
0.65


inhibitor heavy chain
(ITIH4_HUMAN)
MPK.N


H4 isoform 1 precursor





inter-alpha-trypsin
Q14624
R.ANTVQEATFQMELPK.K
0.68


inhibitor heavy chain
(ITIH4_HUMAN)


H4 isoform 1 precursor





inter-alpha-trypsin
Q14624
R.SFAAGIQALGGTNINDAMLMAVQ
0.64


inhibitor heavy chain
(ITIH4_HUMAN)
LLDSSNQEER.L


H4 isoform 1 precursor





inter-alpha-trypsin
Q14624
R.VQGNDHSATR.E
0.63


inhibitor heavy chain
(ITIH4_HUMAN)


H4 isoform 1 precursor





inter-alpha-trypsin
Q14624
K.ITFELVYEELLKR.R
0.60


inhibitor heavy chain
(ITIH4_HUMAN)


H4 isoform 2 precursor





inter-alpha-trypsin
Q14624
K.VTIGLLFWDGR.G
0.65


inhibitor heavy chain
(ITIH4_HUMAN)


H4 isoform 2 precursor





inter-alpha-trypsin
Q14624
R.LWAYLTIQQLLEQTVSASDADQQA
0.68


inhibitor heavy chain
(ITIH4_HUMAN)
LR.N


H4 isoform 2 precursor





kallistatin precursor
P29622
K.LFHTNFYDTVGTIQLINDHVK.K
0.73



(KAIN_HUMAN)





kininogen-1 isoform 2
P01042
K.ENFLFLTPDCK.S
0.64


precursor
(KNG1_HUMAN)





kininogen-1 isoform 2
P01042
K.IYPTVNCQPLGMISLMK.R
0.64


precursor
(KNG1_HUMAN)





kininogen-1 isoform 2
P01042
K.KIYPTVNCQPLGMISLMK.R
0.78


precursor
(KNG1_HUMAN)





kininogen-1 isoform 2
P01042
K.SLWNGDTGECTDNAYIDIQLR.I
0.67


precursor
(KNG1_HUMAN)





lumican precursor
P51884
K.ILGPLSYSK.I
0.60



(LUM_HUMAN)





N-acetylmuramoyl-L-
Q96PD5
K.EYGVVLAPDGSTVAVEPLLAGLEAG
0.61


alanine amidase
(PGRP2_HUMAN)
LQGR.R


precursor





N-acetylmuramoyl-L-
Q96PD5
R.EGKEYGVVLAPDGSTVAVEPLLAGL
0.69


alanine amidase
(PGRP2_HUMAN)
EAGLQGR.R


precursor





N-acetylmuramoyl-L-
Q96PD5
R.Q*NGAALTSASILAQQVWGTLVLL
0.60


alanine amidase
(PGRP2_HUMAN)
QR.L


precursor





pigment epithelium-
P36955
K.IAQLPLTGSMSIIFFLPLK.V
0.65


derived factor
(PEDF_HUMAN)


precursor





pigment epithelium-
P36955
R.SSTSPTTNVLLSPLSVATALSALSLG
0.79


derived factor
(PEDF_HUMAN)
AEQR.T


precursor





plasma kallikrein
P03952
K.VAEYMDWILEK.T
0.62


preproprotein
(KLKB1_HUMAN)





plasma kallikrein
P03952
R.C*LLFSFLPASSINDMEKR.F
0.60


preproprotein
(KLKB1_HUMAN)





plasma kallikrein
P03952
R.C*QFFSYATQTFHK.A
0.60


preproprotein
(KLKB1_HUMAN)





plasma kallikrein
P03952
R.CLLFSFLPASSINDMEK.R
0.76


preproprotein
(KLKB1_HUMAN)





plasma protease C1
P05155
R.LVLLNAIYLSAK.W
0.96


inhibitor precursor
(IC1_HUMAN)





pregnancy zone protein
P20742
R.NALFCLESAWNVAK.E
0.67


precursor
(PZP_HUMAN)





pregnancy zone protein
P20742
R.NQGNTWLTAFVLK.T
0.61


precursor
(PZP_HUMAN)





pregnancy-specific
Q00887
R.SNPVILNVLYGPDLPR.I
0.62


beta-1-glycoprotein 9
(PSG9_HUMAN)


precursor





prenylcysteine oxidase
Q9UHG3
K.IAIIGAGIGGTSAAYYLR.Q
0.71


1 precursor
(PCYOX_HUMAN)





protein AMBP
P02760
K.WYNLAIGSTCPWLK.K
0.77


preproprotein
(AMBP_HUMAN)





protein AMBP
P02760
R.TVAACNLPIVR.G
0.66


preproprotein
(AMBP_HUMAN)





prothrombin
P00734
R.IVEGSDAEIGMSPWQVMLFR.K
0.62


preproprotein
(THRB_HUMAN)





prothrombin
P00734
R.RQECSIPVCGQDQVTVAMTPR.S
0.69


preproprotein
(THRB_HUMAN)





prothrombin
P00734
R.TFGSGEADCGLRPLFEK.K
0.61


preproprotein
(THRB_HUMAN)





retinol-binding protein
P02753
R.FSGTWYAMAK.K
0.60


4 precursor
(RET4_HUMAN)





retinol-binding protein
P02753
R.LLNNWDVCADMVGTFTDTEDPAK
0.64


4 precursor
(RET4_HUMAN)
.F





serum amyloid P-
P02743
R.GYVIIKPLVWV.-
0.62


component precursor
(SAMP_HUMAN)





sex hormone-binding
P04278
K.VVLSSGSGPGLDLPLVLGLPLQLK.L
0.60


globulin isoform 1
(SHBG_HUMAN)


precursor





sex hormone-binding
P04278
R.TWDPEGVIFYGDTNPKDDWFM*L
0.75


globulin isoform 1
(SHBG_HUMAN)
GLR.D


precursor





sex hormone-binding
P04278
R.TWDPEGVIFYGDTNPKDDWFMLG
0.74


globulin isoform 1
(SHBG_HUMAN)
LR.D


precursor





thrombospondin-1
P07996
K.GFLLLASLR.Q
0.70


precursor
(TSP1_HUMAN)





thyroxine-binding
P05543
K.AVLHIGEK.G
0.85


globulin precursor
(THBG_HUMAN)





thyroxine-binding
P05543
K.FSISATYDLGATLLK.M
0.65


globulin precursor
(THBG_HUMAN)





thyroxine-binding
P05543
K.KELELQIGNALFIGK.H
0.61


globulin precursor
(THBG_HUMAN)





thyroxine-binding
P05543
K.MSSINADFAFNLYR.R
0.67


globulin precursor
(THBG_HUMAN)





transforming growth
Q15582
R.LTLLAPLNSVFK.D
0.65


factor-beta-induced
(BGH3_HUMAN)


protein ig-h3 precursor





transthyretin precursor
P02766
R.GSPAINVAVHVFR.K
0.67



(TTHY_HUMAN)





uncharacterized
Q8ND61
K.MPSHLMLAR.K
0.64


protein C3orf20
(CC020_HUMAN)


isoform 1





vitamin D-binding
P02774
K.ELPEHTVK.L
0.75


protein isoform 1
(VTDB_HUMAN)


precursor





vitamin D-binding
P02774
K.EYANQFMWEYSTNYGQAPLSLLVS
0.69


protein isoform 1
(VTDB_HUMAN)
YTK.S


precursor





vitamin D-binding
P02774
K.HLSLLTTLSNR.V
0.65


protein isoform 1
(VTDB_HUMAN)


precursor





vitamin D-binding
P02774
K.HQPQEFPTYVEPTNDEICEAFR.K
0.64


protein isoform 1
(VTDB_HUMAN)


precursor





vitamin D-binding
P02774
K.LAQKVPTADLEDVLPLAEDITNILSK.C
0.73


protein isoform 1
(VTDB_HUMAN)


precursor





vitamin D-binding
P02774
K.LCDNLSTK.N
0.70


protein isoform 1
(VTDB_HUMAN)


precursor





vitamin D-binding
P02774
K.LCMAALK.H
0.63


protein isoform 1
(VTDB_HUMAN)


precursor





vitamin D-binding
P02774
K.SCESNSPFPVHPGTAECCTK.E
0.63


protein isoform 1
(VTDB_HUMAN)


precursor





vitamin D-binding
P02774
K.SYLSMVGSCCTSASPTVCFLK.E
0.61


protein isoform 1
(VTDB_HUMAN)


precursor





vitamin D-binding
P02774
K.TAMDVFVCTYFM*PAAQLPELPDV
0.61


protein isoform 1
(VTDB_HUMAN)
ELPTNK.D


precursor





vitamin D-binding
P02774
K.VLEPTLK.S
0.69


protein isoform 1
(VTDB_HUMAN)


precursor





vitamin D-binding
P02774
R.KFPSGTFEQVSQLVK.E
0.66


protein isoform 1
(VTDB_HUMAN)


precursor





vitamin D-binding
P02774
R.THLPEVFLSK.V
0.62


protein isoform 1
(VTDB_HUMAN)


precursor





vitamin D-binding
P02774
R.TSALSAK.S
0.74


protein isoform 1
(VTDB_HUMAN)


precursor





vitronectin precursor
P04004
R.GQYCYELDEK.A
0.73



(VTNC_HUMAN)





vitronectin precursor
P04004
R.M*DWLVPATCEPIQSVFFFSGDK.Y
0.64



(VTNC_HUMAN)





vitronectin precursor
P04004
R.Q*PQFISR.D
0.63



(VTNC_HUMAN)
















TABLE 10







Significant peptides (AUC >0.6) for both X!Tandem and Sequest











Protein description
Uniprot ID (name)
Peptide
XT_AUC
S_AUC





afamin precursor
P43652
K.HFQNLGK.D
0.74
0.61



(AFAM_HUMAN)





afamin precursor
P43652
R.RHPDLSIPELL
0.67
0.63



(AFAM_HUMAN)
R.I





afamin precursor
P43652
R.TINPAVDHCC
0.66
0.86



(AFAM_HUMAN)
K.T





alpha-1-antichymotrypsin
P01011
K.ITDLIKDLDSQ
0.71
0.73


precursor
(AACT_HUMAN)
TMMVLVNYIFF




K.A





alpha-1-antichymotrypsin
P01011
R.DYNLNDILLQ
0.74
0.62


precursor
(AACT_HUMAN)
LGIEEAFTSK.A





alpha-1-antichymotrypsin
P01011
R.GTHVDLGLAS
0.76
0.61


precursor
(AACT_HUMAN)
ANVDFAFSLYK.Q





alpha-1B-glycoprotein
P04217
K.SLPAPWLSMA
0.71
0.65


precursor
(A1BG_HUMAN)
PVSWITPGLK.T





alpha-2-antiplasmin
P08697
K.GFPIKEDFLEQ
0.66
0.69


isoform a precursor
(A2AP_HUMAN)
SEQLFGAKPVSL




TGK.Q





alpha-2-antiplasmin
P08697
K.HQMDLVATL
0.67
0.60


isoform a precursor
(A2AP_HUMAN)
SQLGLQELFQAP




DLR.G





alpha-2-antiplasmin
P08697
R.QLTSGPNQEQ
0.66
0.61


isoform a precursor
(A2AP_HUMAN)
VSPLTLLK.L





alpha-2-HS-glycoprotein
P02765
R.AQLVPLPPST
0.64
0.63


preproprotein
(FETUA_HUMAN)
YVEFTVSGTDC




VAK.E





angiotensinogen
P01019
K.DPTFIPAPIQA
0.69
0.69


preproprotein
(ANGT_HUMAN)
K.T





angiotensinogen
P01019
R.FM*QAVTGW
0.65
0.65


preproprotein
(ANGT_HUMAN)
K.T





antithrombin-III
P01008
K.ANRPFLVFIR.E
0.72
0.60


precursor
(ANT3_HUMAN)





antithrombin-III
P01008
K.GDDITMVLIL
0.69
0.68


precursor
(ANT3_HUMAN)
PKPEK.S





antithrombin-III
P01008
R.DIPMNPMCIY
0.63
0.78


precursor
(ANT3_HUMAN)
R.S





apolipoprotein A-IV
P06727
K.KLVPFATELH
0.65
0.77


precursor
(APOA4_HUMAN)
ER.L





apolipoprotein A-IV
P06727
K.SLAELGGHLD
0.60
0.75


precursor
(APOA4_HUMAN)
QQVEEFR.R





apolipoprotein B-100
P04114
K.ALYWVNGQV
0.61
0.63


precursor
(APOB_HUMAN)
PDGVSK.V





apolipoprotein B-100
P04114
K.FIIPGLK.L
0.64
0.68


precursor
(APOB_HUMAN)





apolipoprotein B-100
P04114
K.FSVPAGIVIPS
0.63
0.63


precursor
(APOB_HUMAN)
FQALTAR.F





apolipoprotein B-100
P04114
K.IEGNLIFDPNN
0.63
0.65


precursor
(APOB_HUMAN)
YLPK.E





apolipoprotein B-100
P04114
K.LNDLNSVLV
0.91
0.88


precursor
(APOB_HUMAN)
MPTFHVPFTDL




QVPSCK.L





apolipoprotein B-100
P04114
K.VELEVPQLCS
0.60
0.61


precursor
(APOB_HUMAN)
FILK.T





apolipoprotein B-100
P04114
K.VNWEEEAAS
0.60
0.73


precursor
(APOB_HUMAN)
GLLTSLK.D





apolipoprotein B-100
P04114
R.ATLYALSHAV
0.78
0.80


precursor
(APOB_HUMAN)
NNYHK.T





apolipoprotein B-100
P04114
R.TGISPLALIK.G
0.64
0.77


precursor
(APOB_HUMAN)





apolipoprotein B-100
P04114
R.TLQGIPQMIG
0.65
0.66


precursor
(APOB_HUMAN)
EVIR.K





apolipoprotein C-III
P02656
K.DALSSVQESQ
0.80
0.69


precursor
(APOC3_HUMAN)
VAQQAR.G





apolipoprotein C-IV
P55056
R.DGWQWFWSP
0.63
0.67


precursor
(APOC4_HUMAN)
STFR.G





apolipoprotein E
P02649
K.VQAAVGTSA
0.70
0.72


precursor
(APOE_HUMAN)
APVPSDNH.-





apolipoprotein E
P02649
R.WELALGR.F
0.88
0.60


precursor
(APOE_HUMAN)





beta-2-microglobulin
P61769
K.SNFLNCYVSG
0.60
0.70


precursor
(B2MG_HUMAN)
FHPSDIEVDLLK.N





bone marrow
P13727
R.GGHCVALCT
0.83
0.86


proteoglycan isoform 1
(PRG2_HUMAN)
R.G


preproprotein





carboxypeptidase B2
Q96IY4
R.LVDFYVMPV
0.61
0.65


preproprotein
(CBPB2_HUMAN)
VNVDGYDYSW




K.K





carboxypeptidase B2
Q96IY4
R.YTHGHGSETL
0.60
0.68


preproprotein
(CBPB2_HUMAN)
YLAPGGGDDWI




YDLGIK.Y





carboxypeptidase N
P22792
K.LSNNALSGLP
0.65
0.67


subunit 2 precursor
(CPN2_HUMAN)
QGVFGK.L





carboxypeptidase N
P22792
K.TLNLAQNLLA
0.67
0.69


subunit 2 precursor
(CPN2_HUMAN)
QLPEELFHPLTS




LQTLK.L





carboxypeptidase N
P22792
R.WLNVQLSPR.Q
0.74
0.67


subunit 2 precursor
(CPN2_HUMAN)





ceruloplasmin precursor
P00450
K.GDSVVWYLF
0.90
0.72



(CERU_HUMAN)
SAGNEADVHGI




YFSGNTYLWR.G





ceruloplasmin precursor
P00450
K.MYYSAVDPT
0.70
0.82



(CERU_HUMAN)
K.D





ceruloplasmin precursor
P00450
R.GPEEEHLGIL
0.60
0.65



(CERU_HUMAN)
GPVIWAEVGDTI




R.V





ceruloplasmin precursor
P00450
R.IDTINLFPATL
0.66
0.70



(CERU_HUMAN)
FDAYMVAQNP




GEWMLSCQNL




NHLK.A





ceruloplasmin precursor
P00450
R.SGAGTEDSAC
0.88
0.92



(CERU_HUMAN)
IPWAYYSTVDQ




VKDLYSGLIGPL




IVCR.R





cholinesterase precursor
P06276
K.IFFPGVSEFGK
0.70
0.63



(CHLE_HUMAN)
.E





cholinesterase precursor
P06276
R.AILQSGSFNAP
0.75
0.77



(CHLE_HUMAN)
WAVTSLYEAR.N





chorionic gonadotropin,
P01233
R.VLQGVLPALP
0.60
0.75


beta polypeptide 8
(CGHB_HUMAN)
QVVCNYR.D


precursor





chorionic
P01243
R.ISLLLIESWLE
0.83
0.63


somatomammotropin
(CSH_HUMAN)
PVR.F


hormone 2 isoform 2


precursor





coagulation factor XII
P00748
R.LHEAFSPVSY
0.60
0.66


precursor
(FA12_HUMAN)
QHDLALLR.L





coagulation factor XII
P00748
R.TTLSGAPCQP
0.69
0.82


precursor
(FA12_HUMAN)
WASEATYR.N





complement C1q
P02745
K.GLFQVVSGG
0.65
0.60


subcomponent subunit A
(C1QA_HUMAN)
MVLQLQQGDQ


precursor

VWVEKDPK.K





complement C1r
P00736
K.VLNYVDWIK
0.80
0.76


subcomponent precursor
(C1R_HUMAN)
K.E





complement C1s
P09871
K.SNALDIIFQTD
0.62
0.77


subcomponent precursor
(C1S_HUMAN)
LTGQK.K





complement C4-A
P0C0L4
K.EGAIHREELV
0.76
0.75


isoform 1
(CO4A_HUMAN)
YELNPLDHR.G





complement C4-A
P0C0L4
K.ITQVLHFTK.D
0.63
0.62


isoform 1
(CO4A_HUMAN)





complement C4-A
P0C0L4
K.SHALQLNNR.Q
0.66
0.71


isoform 1
(CO4A_HUMAN)





complement C4-A
P0C0L4
R.AVGSGATFSH
0.65
0.60


isoform 1
(CO4A_HUMAN)
YYYM*ILSR.G





complement C4-A
P0C0L4
R.EPFLSCCQFA
0.64
0.72


isoform 1
(CO4A_HUMAN)
ESLR.K





complement C4-A
P0C0L4
R.GHLFLQTDQP
0.63
0.76


isoform 1
(CO4A_HUMAN)
IYNPGQR.V





complement C4-A
P0C0L4
R.GLEEELQFSL
0.68
0.68


isoform 1
(CO4A_HUMAN)
GSK.I





complement C4-A
P0C0L4
R.GSFEFPVGDA
0.67
0.70


isoform 1
(CO4A_HUMAN)
VSK.V





complement C4-A
P0C0L4
R.LLATLCSAEV
0.61
0.71


isoform 1
(CO4A_HUMAN)
CQCAEGK.C





complement C4-A
P0C0L4
R.VQQPDCREPF
0.65
0.83


isoform 1
(CO4A_HUMAN)
LSCCQFAESLRK




.K





complement C4-A
P0C0L4
R.YIYGKPVQGV
0.82
0.76


isoform 1
(CO4A_HUMAN)
AYVR.F





complement C5
P01031
K.ITHYNYLILSK
0.66
0.69


preproprotein
(CO5_HUMAN)
.G





complement C5
P01031
R.ENSLYLTAFT
0.60
0.68


preproprotein
(CO5_HUMAN)
VIGIR.K





complement C5
P01031
R.KAFDICPLVK.I
0.77
0.65


preproprotein
(CO5_HUMAN)





complement C5
P01031
R.VDDGVASFVL
0.68
0.61


preproprotein
(CO5_HUMAN)
NLPSGVTVLEFN




VK.T





complement component
P13671
K.TFSEWLESVK
0.94
0.64


C6 precursor
(CO6_HUMAN)
ENPAVIDFELAP




IVDLVR.N





complement component
P13671
R.IFDDFGTHYF
0.78
0.75


C6 precursor
(CO6_HUMAN)
TSGSLGGVYDL




LYQFSSEELK.N





complement component
P10643
K.ELSHLPSLYD
0.69
0.71


C7 precursor
(CO7_HUMAN)
YSAYR.R





complement component
P10643
R.RYSAWAESV
0.71
0.70


C7 precursor
(CO7_HUMAN)
TNLPQVIK.Q





complement component
P07357
K.YNPVVIDFEM
0.68
0.73


C8 alpha chain precursor
(CO8A_HUMAN)
*QPIHEVLR.H





complement component
P07358
K.VEPLYELVTA
0.69
0.70


C8 beta chain
(CO8B_HUMAN)
TDFAYSSTVR.Q


preproprotein





complement component
P07358
R.SLM*LHYEFL
0.61
0.65


C8 beta chain
(CO8B_HUMAN)
QR.V


preproprotein





complement component
P07360
K.YGFCEAADQF
0.78
0.76


C8 gamma chain
(CO8G_HUMAN)
HVLDEVRR.-


precursor





complement component
P07360
R.FLQEQGHR.A
0.63
0.69


C8 gamma chain
(CO8G_HUMAN)


precursor





complement component
P07360
R.KLDGICWQV
0.75
0.70


C8 gamma chain
(CO8G_HUMAN)
R.Q


precursor





complement component
P07360
R.SLPVSDSVLS
0.70
0.60


C8 gamma chain
(CO8G_HUMAN)
GFEQR.V


precursor





complement component
P02748
R.GTVIDVTDFV
0.68
0.69


C9 precursor
(CO9_HUMAN)
NWASSINDAPV




LISQK.L





complement factor B
P00751
K.NPREDYLDV
0.72
0.77


preproprotein
(CFAB_HUMAN)
YVFGVGPLVNQ




VNINALASK.K





complement factor B
P00751
R.GDSGGPLIVH
0.60
0.76


preproprotein
(CFAB_HUMAN)
KR.S





complement factor B
P00751
R.HVIILMTDGL
0.60
0.64


preproprotein
(CFAB_HUMAN)
HNM*GGDPITVI




DEIR.D





complement factor B
P00751
R.KNPREDYLDV
0.63
0.63


preproprotein
(CFAB_HUMAN)
YVFGVGPLVNQ




VNINALASK.K





complement factor H
P08603
K.SCDIPVFMNA
0.62
0.71


isoform a precursor
(CFAH_HUMAN)
R.T





complement factor H
P08603
K.SPPEISHGVV
0.88
0.88


isoform a precursor
(CFAH_HUMAN)
AHMSDSYQYGE




EVTYK.C





complement factor H
P08603
K.TDCLSLPSFE
0.61
0.66


isoform a precursor
(CFAH_HUMAN)
NAIPMGEKK.D





complement factor I
P05156
K.RAQLGDLPW
0.71
0.74


preproprotein
(CFAI_HUMAN)
QVAIK.D





complement factor I
P05156
K.SLECLHPGTK.F
0.64
0.81


preproprotein
(CFAI_HUMAN)





complement factor I
P05156
R.TMGYQDFAD
0.73
0.75


preproprotein
(CFAI_HUMAN)
VVCYTQK.A





extracellular matrix
Q16610
R.ELLALIQLER.E
0.69
0.65


protein 1 isoform 3
(ECM1_HUMAN)


precursor





gelsolin isoform a
P06396
R.VPEARPNSMV
0.76
0.62


precursor
(GELS_HUMAN)
VEHPEFLK.A





glutathione peroxidase 3
P22352
R.LFWEPMK.V
0.69
0.67


precursor
(GPX3_HUMAN)





hemopexin precursor
P02790
R.DVRDYFMPCP
0.70
0.72



(HEMO_HUMAN)
GR.G





heparin cofactor 2
P05546
K.DALENIDPAT
0.61
0.65


precursor
(HEP2_HUMAN)
QMMILNCIYFK.G





heparin cofactor 2
P05546
K.GLIKDALENI
0.64
0.64


precursor
(HEP2_HUMAN)
DPATQMMILNC




IYFK.G





heparin cofactor 2
P05546
K.QFPILLDFK.T
0.61
0.69


precursor
(HEP2_HUMAN)





heparin cofactor 2
P05546
R.VLKDQVNTF
0.88
0.75


precursor
(HEP2_HUMAN)
DNIFIAPVGISTA




MGMISLGLK.G





insulin-like growth
P35858
R.AFWLDVSHN
0.61
0.82


factor-binding protein
(ALS_HUMAN)
R.L


complex acid labile


subunit isoform 2


precursor





inter-alpha-trypsin
P19827
K.ADVQAHGEG
0.61
0.74


inhibitor heavy chain H1
(ITIH1_HUMAN)
QEFSITCLVDEE


isoform a precursor

EMKK.L





inter-alpha-trypsin
P19827
K.ILGDM*QPGD
0.71
0.63


inhibitor heavy chain H1
(ITIH1_HUMAN)
YFDLVLFGTR.V


isoform a precursor





inter-alpha-trypsin
P19827
K.ILGDMQPGDY
0.68
0.60


inhibitor heavy chain H1
(ITIH1_HUMAN)
FDLVLFGTR.V


isoform a precursor





inter-alpha-trypsin
P19827
K.NVVFVIDISGS
0.76
0.83


inhibitor heavy chain H1
(ITIH1_HUMAN)
MR.G


isoform a precursor





inter-alpha-trypsin
P19827
K.TAFISDFAVT
0.74
0.63


inhibitor heavy chain H1
(ITIH1_HUMAN)
ADGNAFIGDIKD


isoform a precursor

K.V





inter-alpha-trypsin
P19827
R.GHMLENHVE
0.78
0.80


inhibitor heavy chain H1
(ITIH1_HUMAN)
R.L


isoform a precursor





inter-alpha-trypsin
P19827
R.GM*ADQDGL
0.61
0.62


inhibitor heavy chain H1
(ITIH1_HUMAN)
KPTIDKPSEDSP


isoform a precursor

PLEMLGPR.R





inter-alpha-trypsin
P19827
R.LWAYLTIQEL
0.68
0.62


inhibitor heavy chain H1
(ITIH1_HUMAN)
LAK.R


isoform a precursor





inter-alpha-trypsin
P19827
R.NHM*QYEIVI
0.67
0.65


inhibitor heavy chain H1
(ITIH1_HUMAN)
K.V


isoform a precursor





inter-alpha-trypsin
P19823
K.AHVSFKPTVA
0.75
0.61


inhibitor heavy chain H2
(ITIH2_HUMAN)
QQR.I


precursor





inter-alpha-trypsin
P19823
K.ENIQDNISLFS
0.80
0.93


inhibitor heavy chain H2
(ITIH2_HUMAN)
LGM*GFDVDYD


precursor

FLKR.L





inter-alpha-trypsin
P19823
K.ENIQDNISLFS
0.63
0.80


inhibitor heavy chain H2
(ITIH2_HUMAN)
LGMGFDVDYDF


precursor

LKR.L





inter-alpha-trypsin
P19823
K.HLEVDVWVIE
0.61
0.61


inhibitor heavy chain H2
(ITIH2_HUMAN)
PQGLR.F


precursor





inter-alpha-trypsin
P19823
K.LWAYLTINQL
0.69
0.62


inhibitor heavy chain H2
(ITIH2_HUMAN)
LAER.S


precursor





inter-alpha-trypsin
P19823
R.AEDHFSVIDF
0.65
0.63


inhibitor heavy chain H2
(ITIH2_HUMAN)
NQNIR.T


precursor





inter-alpha-trypsin
P19823
R.FLHVPDTFEG
0.66
0.62


inhibitor heavy chain H2
(ITIH2_HUMAN)
HFDGVPVISK.G


precursor





inter-alpha-trypsin
Q14624
K.ILDDLSPR.D
0.67
0.65


inhibitor heavy chain H4
(ITIH4_HUMAN)


isoform 1 precursor





inter-alpha-trypsin
Q14624
K.IPKPEASFSPR.R
0.69
0.77


inhibitor heavy chain H4
(ITIH4_HUMAN)


isoform 1 precursor





inter-alpha-trypsin
Q14624
K.SPEQQETVLD
0.63
0.69


inhibitor heavy chain H4
(ITIH4_HUMAN)
GNLIIR.Y


isoform 1 precursor





inter-alpha-trypsin
Q14624
K.YIFHNFMER.L
0.66
0.61


inhibitor heavy chain H4
(ITIH4_HUMAN)


isoform 1 precursor





inter-alpha-trypsin
Q14624
R.FSSHVGGTLG
0.69
0.71


inhibitor heavy chain H4
(ITIH4_HUMAN)
QFYQEVLWGSP


isoform 1 precursor

AASDDGRR.T





inter-alpha-trypsin
Q14624
R.GPDVLTATVS
0.63
0.82


inhibitor heavy chain H4
(ITIH4_HUMAN)
GK.L


isoform 1 precursor





inter-alpha-trypsin
Q14624
R.NMEQFQVSVS
0.78
0.60


inhibitor heavy chain H4
(ITIH4_HUMAN)
VAPNAK.I


isoform 1 precursor





inter-alpha-trypsin
Q14624
R.RLDYQEGPPG
0.68
0.62


inhibitor heavy chain H4
(ITIH4_HUMAN)
VEISCWSVEL.-


isoform 1 precursor





kallistatin precursor
P29622
K.IVDLVSELKK.D
0.75
0.67



(KAIN_HUMAN)





kallistatin precursor
P29622
R.VGSALFLSHN
0.70
0.74



(KAIN_HUMAN)
LK.F





kininogen-1 isoform 2
P01042
K.IYPTVNCQPL
0.89
0.62


precursor
(KNG1_HUMAN)
GM*ISLM*K.R





kininogen-1 isoform 2
P01042
K.TVGSDTFYSF
0.61
0.68


precursor
(KNG1_HUMAN)
K.Y





kininogen-1 isoform 2
P01042
R.DIPTNSPELEE
0.61
0.76


precursor
(KNG1_HUMAN)
TLTHTITK.L





kininogen-1 isoform 2
P01042
R.VQVVAGK.K
0.67
0.71


precursor
(KNG1_HUMAN)





lumican precursor
P51884
R.FNALQYLR.L
0.68
0.76



(LUM_HUMAN)





macrophage colony-
P09603
K.VIPGPPALTLV
0.68
0.60


stimulating factor 1
(CSF1_HUMAN)
PAELVR.I


receptor precursor





monocyte differentiation
P08571
K.ITGTMPPLPLE
0.80
0.67


antigen CD14 precursor
(CD14_HUMAN)
ATGLALSSLR.L





N-acetylmuramoyl-L-
Q96PD5
K.EFTEAFLGCP
0.62
0.64


alanine amidase
(PGRP2_HUMAN)
AIHPR.C


precursor





N-acetylmuramoyl-L-
Q96PD5
R.RVINLPLDSM
0.63
0.62


alanine amidase
(PGRP2_HUMAN)
AAPWETGDTFP


precursor

DVVAIAPDVR.A





phosphatidylinositol-
P80108
R.GVFFSVNSWT
0.67
0.78


glycan-specific
(PHLD_HUMAN)
PDSMSFIYK.A


phospholipase D


precursor





pigment epithelium-
P36955
K.EIPDEISILLLGVAHF
0.63
0.61


derived factor precursor
(PEDF_HUMAN)
K.G





pigment epithelium-
P36955
K.IAQLPLTGSM*SIIF
0.79
0.61


derived factor precursor
(PEDF_HUMAN)
FLPLK.V





pigment epithelium-
P36955
K.TVQAVLTVPK.L
0.75
0.79


derived factor precursor
(PEDF_HUMAN)





pigment epithelium-
P36955
R.ALYYDLISSPDIHGT
0.60
0.73


derived factor precursor
(PEDF_HUMAN)
YKELLDTVTAPQK.N





pigment epithelium-
P36955
R.DTDTGALLFIGK.I
0.85
0.62


derived factor precursor
(PEDF_HUMAN)





plasminogen isoform 1
P00747
R.ELRPWCFTTDPNK
0.70
0.68


precursor
(PLMN_HUMAN)
R.W





plasminogen isoform 1
P00747
R.TECFITGWGETQGT
0.63
0.68


precursor
(PLMN_HUMAN)
FGAGLLK.E





platelet basic protein
P02775
K.GTHCNQVEVIATLK
0.60
0.61


preproprotein
(CXCL7_HUMAN)
.D





pregnancy zone protein
P20742
K.AVGYLITGYQR.Q
0.87
0.73


precursor
(PZP_HUMAN)





pregnancy zone protein
P20742
R.AVDQSVLLM*KPE
0.64
0.62


precursor
(PZP_HUMAN)
AELSVSSVYNLLTVK.D





pregnancy zone protein
P20742
R.IQHPFTVEEFVLPK.F
0.66
0.74


precursor
(PZP_HUMAN)





pregnancy zone protein
P20742
R.NELIPLIYLENPR.R
0.61
0.61


precursor
(PZP_HUMAN)





protein AMBP
P02760
R.AFIQLWAFDAVK.G
0.72
0.67


preproprotein
(AMBP_HUMAN)





proteoglycan 4 isoform B
Q92954
K.GFGGLTGQIVAALS
0.70
0.72


precursor
(PRG4_HUMAN)
TAK.Y





prothrombin preproprotein
P00734
K.YGFYTHVFR.L
0.70
0.63



(THRB_HUMAN)





prothrombin preproprotein
P00734
R.IVEGSDAEIGM*SP
0.63
0.71



(THRB_HUMAN)
WQVMLFR.K





retinol-binding protein 4
P02753
K.KDPEGLFLQDNIVA
0.67
0.67


precursor
(RET4_HUMAN)
EFSVDETGQMSATAK




.G





thyroxine-binding globulin
P05543
K.AQWANPFDPSKTE
0.67
0.80


precursor
(THBG_HUMAN)
DSSSFLIDK.T





thyroxine-binding globulin
P05543
K.GWVDLFVPK.F
0.67
0.64


precursor
(THBG_HUMAN)





thyroxine-binding globulin
P05543
R.SFM*LLILER.S
0.65
0.68


precursor
(THBG_HUMAN)





thyroxine-binding globulin
P05543
R.SFMLLILER.S
0.64
0.62


precursor
(THBG_HUMAN)





vitamin D-binding protein
P02774
K.EFSHLGKEDFTSLSL
0.74
0.61


isoform 1 precursor
(VTDB_HUMAN)
VLYSR.K





vitamin D-binding protein
P02774
K.EYANQFM*WEYST
0.73
0.61


isoform 1 precursor
(VTDB_HUMAN)
NYGQAPLSLLVSYTK.S





vitamin D-binding protein
P02774
K.HQPQEFPTYVEPTN
0.67
0.69


isoform 1 precursor
(VTDB_HUMAN)
DEICEAFRK.D





vitamin D-binding protein
P02774
K.SYLSM*VGSCCTSA
0.63
0.62


isoform 1 precursor
(VTDB_HUMAN)
SPTVCFLK.E





vitamin D-binding protein
P02774
K.TAM*DVFVCTYFM
0.63
0.60


isoform 1 precursor
(VTDB_HUMAN)
PAAQLPELPDVELPT




NK.D





vitamin D-binding protein
P02774
K.VPTADLEDVLPLAE
0.70
0.71


isoform 1 precursor
(VTDB_HUMAN)
DITNILSK.C





vitronectin precursor
P04004
K.AVRPGYPK.L
0.68
0.77



(VTNC_HUMAN)





vitronectin precursor
P04004
R.MDWLVPATCEPIQ
0.67
0.65



(VTNC_HUMAN)
SVFFFSGDK.Y





zinc-alpha-2-glycoprotein
P25311
K.EIPAWVPFDPAAQI
0.63
0.67


precursor
(ZA2G_HUMAN)
TK.Q









The differentially expressed proteins identified by the hypothesis-independent strategy above, not already present in our MRM-MS assay, were candidates for incorporation into the MRM-MS assay. Two additional proteins (AFP, PGH1) of functional interest were also selected for MRM development. Candidates were prioritized by AUC and biological function, with preference give for new pathways. Sequences for each protein of interest, were imported into Skyline software which generated a list of tryptic peptides, m/z values for the parent ions and fragment ions, and an instrument-specific collision energy (McLean et al. Bioinformatics (2010) 26 (7): 966-968; McLean et al. Anal. Chem (2010) 82 (24): 10116-10124).


The list was refined by eliminating peptides containing cysteines and methionies, and by using the shotgun data to select the charge state(s) and a subset of potential fragment ions for each peptide that had already been observed on a mass spectrometer.


After prioritizing parent and fragment ions, a list of transitions was exported with a single predicted collision energy. Approximately 100 transitions were added to a single MRM run. For development, MRM data was collected on either a QTRAP 5500 (AB Sciex) or a 6490 QQQ (Agilent). Commercially available human female serum (from pregnant and non-pregnant donors), was depleted and processed to tryptic peptides, as described above, and used to “scan” for peptides of interest. In some cases, purified synthetic peptides were used for further optimization. For development, digested serum or purified synthetic peptides were separated with a 15 min acetonitrile gradient at 100 ul/min on a 2.1×50 mM Poroshell 120 EC-C18 column (Agilent) at 40° C.


The MS/MS data was imported back into Skyline, where all chromatograms for each peptide were overlayed and used to identify a concensus peak corresponding to the peptide of interest and the transitions with the highest intensities and the least noise. Table 11, contains a list of the most intensely observed candidate transitions and peptides for transfer to the MRM assay.









TABLE 11







Candidate peptides and transitions for transferring to the MRM assay














fragment ion, m/z,



Protein
Peptide
m/z, charge
charge, rank
area














alpha-1-antichymotrypsin
K.ADLSGITGAR.N
480.7591++
S [y7] - 661.3628+[1]
1437602  





G [y6] - 574.3307+[2]
637584 





T [y4] - 404.2252+[3]
350392 





L [y8] - 774.4468+[4]
191870 





G [y3] - 303.1775+[5]
150575 





I [y5] - 517.3093+[6]
97828





alpha-1-antichymotrypsin
K.EQLSLLDR.F
487.2693++
S [y5] - 603.3461+[1]
345602 





L [y6] - 716.4301+[2]
230046 





L [y4] - 516.3140+[3]
143874 





D [y2] - 290.1459+[4]
113381 





D [y2] - 290.1459+[5]
113381 





Q [b2] - 258.1084+[6]
78157





alpha-1-antichymotrypsin
K.ITLLSALVETR.T
608.3690++
S [y7] - 775.4308+[1]
1059034  





L [y8] - 888.5149+[2]
541969 





T [b2] - 215.1390+[3]
408819 





L [y9] - 1001.5990+[4]
438441 





V [y4] - 504.2776+[5]
311293 





L [y5] - 617.3617+[6]
262544 





L [b3] - 328.2231+[7]
197526 





T [y2] - 276.1666+[8]
212816 





E [y3] - 405.2092+[9]
207163 





alpha-1-antichymotrypsin
R.EIGELYLPK.F
531.2975++
G [y7] - 819.4611+[2]
977307 





L [y5] - 633.3970+[3]
820582 





Y [y4] - 520.3130+[4]
400762 





L [y3] - 357.2496+[5]
498958 





P [y2] - 244.1656+[1]
1320591  





I [b2] - 243.1339+[6]
303268 





G [b3] - 300.1554+[7]
305120 





alpha-1-antichymotrypsin
R.GTHVDLGLASA
742.3794+++
D [y8] - 990.4931+[1]
154927 



NVDFAFSLYK.Q

L [b8] - 793.4203+[2]
51068





D [b5] - 510.2307+[3]
45310





F [y7] - 875.4662+[4]
42630





A [b9] - 864.4574+[5]
43355





S [y4] - 510.2922+[6]
45310





F [y5] - 657.3606+[7]
37330





V [y9] - 1089.5615+[8]
32491





G [b7] - 680.3362+[9]
38185





Y [y2] - 310.1761+[10]
36336





N [b12] -
16389





1136.5695+[11]





S [b10] - 951.4894+[12]
16365





L [b6] - 623.3148+[13]
13687





L [y3] - 423.2602+[14]
17156





V [b4] - 395.2037+[15]
10964





alpha-1-antichymotrypsin
R.NLAVSQVVHK.A
547.8195++
A [y8] - 867.5047+[1]
266203 





L [b2] - 228.1343+[2]
314232 





V [y7] - 796.4676+[3]
165231 





A [b3] - 299.1714+[4]
173694 





S [y6] - 697.3991+[5]
158512 





H [y2] - 284.1717+[6]
136431 





V [b4] - 398.2398+[7]
36099





S [b5] - 485.2718+[8]
23836




365.5487+++
S [y6] - 697.3991+[1]
223443 





V [y3] - 383.2401+[2]
112952 





V [y4] - 482.3085+[3]
84872





Q [y5] - 610.3671+[4]
30835





inter-alpha-trypsin
K.AAISGENAGLVR
579.3173++
S [y9] - 902.4690+[1]
518001 


inhibitor heavy chain H1
.A

G [y8] - 815.4370+[2]
326256 





N [y6] - 629.3729+[3]
296670 





S [b4] - 343.1976+[4]
258172 





inter-alpha-trypsin
K.GSLVQASEANL
668.6763+++
A [y7] - 806.4155+[1]
304374 


inhibitor heavy chain H1
QAAQDFVR.G

A [y6] - 735.3784+[2]
193844 





V [b4] - 357.2132+[3]
294094 





F [y3] - 421.2558+[4]
167816 





A [b6] - 556.3089+[5]
149216 





L [b11] - 535.7775++[6]
156882 





A [b13] - 635.3253++[7]
249287 





A [y14] - 760.3786++[8]
123723 





F [b17] - 865.9208++[9]
23057





inter-alpha-trypsin
K.TAFISDFAVTAD
1087.0442++
G [y4] - 432.2453+[1]
22362


inhibitor heavy chain H1
GNAFIGDIK.D

I [y5] - 545.3293+[2]
 8319





A [b8] - 853.4090+[3]
 7006





G [y9] - 934.4993+[4]
 6755





F [y6] - 692.3978+[5]
 6193





V [b9] - 952.4775+[6]
 9508





inter-alpha-trypsin
K.VTYDVSR.D
420.2165++
Y [y5] - 639.3097+[1]
609348 


inhibitor heavy chain H1


T [b2] - 201.1234+[2]
792556 





D [y4] - 476.2463+[3]
169546 





V [y3] - 361.2194+[4]
256946 





Y [y5] - 320.1585++[5]
110608 





S [y2] - 262.1510+[6]
50268





Y [b3] - 182.5970++[7]
10947





D [b4] - 479.2136+[8]
13662





inter-alpha-trypsin
R.EVAFDLEIPK.T
580.8135++
P [y2] - 244.1656+[1]
2032509  


inhibitor heavy chain H1


D [y6] - 714.4032+[2]
672749 





A [y8] - 932.5088+[3]
390837 





L [y5] - 599.3763+[4]
255527 





F [y7] - 861.4716+[5]
305087 





inter-alpha-trypsin
R.LWAYLTIQELLA
781.4531++
W [b2] - 300.1707+[1]
602601 


inhibitor heavy chain H1
K.R

A [b3] - 371.2078+[2]
356967 





T [y8] - 915.5510+[3]
150419 





Y [b4] - 534.2711+[4]
103449 





I [y7] - 814.5033+[5]
72044





Q [y6] - 701.4192+[6]
66989





L [b5] - 647.3552+[7]
99820





E [y5] - 573.3606+[8]
44843





inter-alpha-trypsin
K.FYNQVSTPLLR.N
669.3642++
S [y6] - 686.4196+[1]
367330 


inhibitor heavy chain H2


V [y7] - 785.4880+[2]
182396 





P [y4] - 498.3398+[3]
103638 





Y [b2] - 311.1390+[4]
52172





Q [b4] - 553.2405+[5]
54270





N [b3] - 425.1819+[6]
34567





inter-alpha-trypsin
K.HLEVDVWVIEP
597.3247+++
I [y7] - 812.4625+[1]
206996 


inhibitor heavy chain H2
QGLR.F

P [y5] - 570.3358+[2]
303693 





E [y6] - 699.3784+[3]
126752 





P [y5] - 285.6715++[4]
79841





inter-alpha-trypsin
K.TAGLVR.S
308.6925++
A [b2] - 173.0921+[1]
460019 


inhibitor heavy chain H2


G [y4] - 444.2929+[2]
789068 





V [y2] - 274.1874+[3]
34333





G [b3] - 230.1135+[4]
15169





L [y3] - 387.2714+[5]
29020





inter-alpha-trypsin
R.IYLQPGR.L
423.7452++
L [y5] - 570.3358+[1]
638209 


inhibitor heavy chain H2


P [y3] - 329.1932+[2]
235194 





Y [b2] - 277.1547+[3]
266889 





Q [y4] - 457.2518+[4]
171389 





inter-alpha-trypsin
R.LSNENHGIAQR.I
413.5461+++
N [y9] - 519.7574++[1]
325409 


inhibitor heavy chain H2


N [y7] - 398.2146++[2]
39521





G [y5] - 544.3202+[3]
139598 





S [b2] - 201.1234+[4]
54786





E [y8] - 462.7359++[5]
30623





inter-alpha-trypsin
R.SLAPTAAAKR.R
415.2425++
A [y7] - 629.3617+[1]
582421 


inhibitor heavy chain H2


L [b2] - 201.1234+[2]
430584 





P [y6] - 558.3246+[3]
463815 





A [b3] - 272.1605+[4]
204183 





T [y5] - 461.2718+[5]
47301





inter-alpha-trypsin
K.EVSFDVELPK.T
581.8032++
P [y2] - 244.1656+[1]
132304 


inhibitor heavy chain H3


V [b2] - 229.1183+[2]
48895





L [y3] - 357.2496+[3]
20685





inter-alpha-trypsin
K.IQENVR.N
379.7114++
E [y4] - 517.2729+[1]
190296 


inhibitor heavy chain H3


E [b3] - 371.1925+[2]
51697





Q [b2] - 242.1499+[3]
54241





N [y3] - 388.2303+[4]
21156





V [y2] - 274.1874+[5]
 8309





inter-alpha-trypsin
R.ALDLSLK.Y
380.2342++
D [y5] - 575.3399+[1]
687902 


inhibitor heavy chain H3


L [b2] - 185.1285+[2]
241010 





L [y2] - 260.1969+[3]
29365





inter-alpha-trypsin
R.LIQDAVTGLTVN
972.0258++
V [b6] - 640.3665+[1]
139259 


inhibitor heavy chain H3
GQITGDK.R

G [b8] - 798.4356+[2]
53886





G [y7] - 718.3730+[3]
12518





pigment epithelium-
K.SSFVAPLEK.S
489.2687++
A [y5] - 557.3293+[1]
13436


derived factor precursor


V [y6] - 656.3978+[2]
 9350





F [y7] - 803.4662+[3]
 6672





P [y4] - 486.2922+[4]
 6753





pigment epithelium-
K.TVQAVLTVPK.L
528.3266++
Q [y8] - 855.5298+[1]
26719


derived factor precursor


V [b2] - 201.1234+[2]
21239





Q [y8] - 428.2686++[3]
16900





A [y7] - 727.4713+[4]
 9518





L [y5] - 557.3657+[5]
 5108





Q [b3] - 329.1819+[6]
 5450





V [y6] - 656.4341+[7]
 4391





pigment epithelium-
R.ALYYDLISSPDIH
652.6632+++
Y [y15] - 886.4305++[1]
78073


derived factor precursor
GTYK.E

Y [y14] - 804.8988++[2]
26148





pigment epithelium-
R.DTDTGALLFIGK.I
625.8350++
G [y8] - 818.5135+[1]
25553


derived factor precursor


T [b2] - 217.0819+[2]
22716





T [b4] - 217.0819++[3]
22716





L [y5] - 577.3708+[4]
11600





I [y3] - 317.2183+[5]
11089





A [b6] - 561.2151+[6]
 6956





pigment epithelium-
K.ELLDTVTAPQK.N
607.8350++
T [y5] - 544.3089+[1]
17139


derived factor precursor


D [y8] - 859.4520+[2]
17440





L [y9] - 972.5360+[3]
14344





A [y4] - 443.2613+[4]
11474





T [y7] - 744.4250+[5]
10808





V [y6] - 643.3774+[6]
 9064





pregnancy-specific beta-
K.FQLPGQK.L
409.2320++
L [y5] - 542.3297+[1]
116611 


1-glycoprotein 1


P [y4] - 429.2456+[2]
91769





Q [b2] - 276.1343+[3]
93301





pregnancy-specific beta-
R.DLYHYITSYVVD
955.4762+++
G [y7] - 707.3471+[1]
 5376


1-glycoprotein 1
GEIIIYGPAYSGR.E

Y [y8] - 870.4104+[2]
 3610





P [y6] - 650.3257+[3]
 2770





I [y9] - 983.4945+[4]
 3361





pregnancy-specific beta-
K.LFIPQITPK.H
528.8262++
P [y6] - 683.4087+[1]
39754


1-glycoprotein 11


F [b2] - 261.1598+[2]
29966





I [y7] - 796.4927+[3]
13162





pregnancy-specific beta-
NSATGEESSTSLTIR
776.8761++
E [b7] - 689.2737+[1]
11009


1-glycoprotein 11


T [y6] - 690.4145+[2]
11284





L [y4] - 502.3348+[3]
 2265





S [y7] - 389.2269++[4]
 1200





T [y3] - 389.2507+[5]
 1200





I [y2] - 288.2030+[6]
 2248





pregnancy-specific beta-
K.FQQSGQNLFIP
617.3317+++
F [y8] - 474.2817++[1]
43682


1-glycoprotein 2
QITTK.H

G [y12] - 680.3852++[2]
24166





S [b4] - 491.2249+[3]
23548





Q [b3] - 404.1928+[4]
17499





I [y4] - 462.2922+[5]
17304





F [b9] - 525.7538++[6]
17206





I [b10] - 582.2958++[7]
16718





L [b8] - 452.2196++[8]
16490





P [y6] - 344.2054++[9]
16198





G [b5] - 548.2463+[10]
15320





pregnancy-specific beta-
IHPSYTNYR
575.7856++
N [b7] - 813.3890+[1]
16879


1-glycoprotein 2


Y [b5] - 598.2984+[2]
18087





T [y4] - 553.2729+[3]
 2682





pregnancy-specific beta-
FQLSETNR
497.7513++
L [y6] - 719.3682+[1]
358059 


1-glycoprotein 2


S [y5] - 606.2842+[2]
182330 





Q [b2] - 276.1343+[3]
292482 





pregnancy-specific beta-
VSAPSGTGHLPGL
506.2755+++
T [b7] - 300.6530++[1]
25346


1-glycoprotein 3
NPL

H [y8] - 860.4989+[2]
12159





H [y8] - 430.7531++[3]
15522





pregnancy-specific beta-
EDAGSYTLHIVK
666.8433++
Y [b6] - 623.2307+[1]
23965


1-glycoprotein 3


Y [y7] - 873.5193+[2]
21686





L [b8] - 837.3625+[3]
 4104





A [b3] - 316.1139+[4]
 1987





pregnancy-specific beta-
R.TLFIFGVTK.Y
513.3051++
F [y7] - 811.4713+[1]
62145


1-glycoprotein 4


L [b2] - 215.1390+[2]
31687





F [y5] - 551.3188+[3]
  972





pregnancy-specific beta-
NYTYIWWLNGQS
1097.5576++
W [b6] - 841.3879+[1]
25756


1-glycoprotein 4
LPVSPR

G [y9] - 940.5211+[2]
25018





Y [b4] - 542.2245+[3]
19778





Q [y8] - 883.4996+[4]
 6642





P [y2] - 272.1717+[5]
 5018





pregnancy-specific beta-
GVTGYFTFNLYLK
508.2695+++
L [y2] - 260.1969+[1]
176797 


1-glycoprotein 5


T [y11] - 683.8557++[2]
136231 





F [b6] - 625.2980+[3]
47523





L [y4] - 536.3443+[4]
23513





pregnancy-specific beta-
SNPVTLNVLYGPD
585.6527+++
Y [y7] - 817.4203+[1]
14118


1-glycoprotein 6
LPR

G [y6] - 654.3570+[2]
10433





P [b3] - 299.1350+[3]
 87138*





P [y5] - 299.1714++[4]
 77478*





P [y5] - 597.3355+[5]
 68089*





pregnancy-specific beta-
DVLLLVHNLPQNL
791.7741+++
L [y8] - 1017.5516+[3]
141169 


1-glycoprotein 7
TGHIWYK

G [y6] - 803.4199+[5]
115905 





W [y3] - 496.2554+[6]
108565 





P [y11] - 678.8566++[7]
105493 





V [b2] - 215.1026+[1]
239492 





L [b3] - 328.1867+[2]
204413 





N [b8] - 904.5251+[4]
121880 





pregnancy-specific beta-
YGPAYSGR
435.7089++
A [y5] - 553.2729+[1]
 25743*


1-glycoprotein 7


Y [y4] - 482.2358+[2]
 25580*





P [y6] - 650.3257+[3]
 10831*





S [y3] - 319.1724+[4]
 10559*





G [b2] - 221.0921+[5]
  7837*





pregnancy-specific beta-
LQLSETNR
480.7591++
S [b4] - 442.2660+[1]
18766


1-glycoprotein 8


L [b3] - 355.2340+[2]
12050





Q [b2] - 242.1499+[3]
 1339





T [b6] - 672.3563+[4]
 2489





pregnancy-specific beta-
K.LFIPQITR.N
494.3029++
P [y5] - 614.3620+[1]
53829


1-glycoprotein 9


I [y6] - 727.4461+[2]
13731





I [b3] - 374.2438+[3]
 4178





Q [y4] - 517.3093+[4]
 2984





pregnancy-specific beta-
K.LPIPYITINNLNP
819.4723++
P [b2] - 211.1441+[1]
 18814*


1-glycoprotein 9
R.E

P [b4] - 211.1441++[2]
 18814*





T [b7] - 798.4760+[3]
 17287*





T [y8] - 941.5163+[4]
 10205*





Y [b5] - 584.3443+[5]
 10136*





N [y6] - 727.3846+[6]
  9511*





pregnancy-specific beta-
R.SNPVILNVLYGP
589.6648+++
P [y5] - 597.3355+[1]
 3994


1-glycoprotein 9
DLPR.I

Y [y7] - 817.4203+[2]
 3743





G [y6] - 654.3570+[3]
 3045





pregnancy-specific beta-
DVLLLVHNLPQNL
810.4387+++
P [y7] - 960.4614+[1]
120212 


1-glycoprotein 9
PGYFWYK

V [b2] - 215.1026+[2]
65494





L [b3] - 328.1867+[3]
54798





pregnancy-specific beta-
SENYTYIWWLNG
846.7603+++
W [y15] - 834.4488++[1]
14788


1-glycoprotein 9
QSLPVSPGVK

P [y4] - 200.6314++[2]
19000





Y [y17] - 972.5225++[3]
 4596





L [b10] - 678.8166++[4]
 2660





Y [b6] - 758.2992+[5]
 1705





P [y4] - 400.2554+[6]
 1847





Pan-PSG
ILILPSVTR
506.3317++
P [y5] - 559.3198+[1]
484395 





L [b2] - 227.1754+[2]
102774 





L [b4] - 227.1754++[3]
102774 





I [y7] - 785.4880+[4]
90153





I [b3] - 340.2595+[5]
45515





L [y6] - 672.4039+[6]
40368





thyroxine-binding
K.AQWANPFDPS
630.8040++
A [b4] - 457.2194+[1]
30802


globulin precursor
K.T

S [y2] - 234.1448+[2]
28255





D [y4] - 446.2245+[3]
24933





thyroxine-binding
K.AVLHIGEK.G
289.5080+++
I [y4] - 446.2609+[1]
220841 


globulin precursor


H [y5] - 292.1636++[2]
303815 





H [y5] - 583.3198+[3]
133795 





V [b2] - 171.1128+[4]
166139 





L [y6] - 348.7056++[5]
823533 





thyroxine-binding
K.FLNDVK.T
368.2054++
N [y4] - 475.2511+[1]
296859 


globulin precursor


V [y2] - 246.1812+[2]
219597 





L [b2] - 261.1598+[3]
87504





thyroxine-binding
K.FSISATYDLGATL
800.4351++
Y [y9] - 993.5615+[1]
34111


globulin precursor
LK.M

G [y6] - 602.3872+[2]
17012





D [y8] - 830.4982+
45104





S [b2] - 235.1077+[4]
15480





thyroxine-binding
K.GWVDLFVPK.F
530.7949++
W [b2] - 244.1081+[1]
1261810  


globulin precursor


P [y2] - 244.1656+[2]
1261810  





V [b7] - 817.4243+[3]
517675 





V [y7] - 817.4818+[4]
517675 





D [y6] - 718.4134+[5]
306994 





F [b6] - 718.3559+[6]
306994 





V [y3] - 343.2340+[7]
112565 





V [b3] - 343.1765+[8]
112565 





thyroxine-binding
K.NALALFVLPK.E
543.3395++
A [y7] - 787.5076+[1]
198085 


globulin precursor


L [b3] - 299.1714+[2]
199857 





P [y2] - 244.1656+[3]
129799 





L [y8] - 900.5917+[4]
111572 





L [y6] - 716.4705+[5]
88773





F [y5] - 603.3865+[6]
54020





L [y3] - 357.2496+[7]
43353





thyroxine-binding
R.SILFLGK.V
389.2471++
L [y5] - 577.3708+[1]
1878736  


globulin precursor


I [b2] - 201.1234+[2]
946031 





G [y2] - 204.1343+[3]
424248 





L [y3] - 317.2183+[4]
291162 





F [y4] - 464.2867+[5]
391171 





AFP
R.DFNQFSSGEK.N
386.8402+++
N [b3] - 189.0764++[1]
42543





S [y4] - 210.6081++[2]
21340





G [y3] - 333.1769+[3]
53766





N [b3] - 377.1456+[4]
58644





F [b2] - 263.1026+[5]
 5301





AFP
K.GYQELLEK.C
490.2584++
E [y5] - 631.3661+[1]
110518 





L [y4] - 502.3235+[2]
74844





E [y2] - 276.1554+[3]
42924





E [b4] - 478.1932+[4]
20953





AFP
K.GEEELQK.Y
416.7060++
E [b2] - 187.0713+[1]
37843





E [y4] - 517.2980+[2]
56988





AFP
K.FIYEIAR.R
456.2529++
I [y3] - 359.2401+[1]
34880





I [b2] - 261.1598+[2]
 7931





AFP
R.HPFLYAPTILLW
590.3348+++
I [y7] - 421.7660++[1]
11471



AAR.Y

L [y6] - 365.2239++[2]
 5001





A [b6] - 365.1896++[3]
 5001





L [y6] - 729.4406+[4]
 3218





F [b3] - 382.1874+[5]
 6536





A [b6] - 729.3719+[6]
 3218





AFP
R.TFQAITVTK.L
504.7898++
T [b6] - 662.3508+[1]
11241





T [y4] - 448.2766+[2]
 7541





A [b4] - 448.2191+[3]
 7541





AFP
K.LTTLER.G
366.7162++
T [y4] - 518.2933+[1]
 7836





L [b4] - 215.1390++[2]
 4205





T [b2] - 215.1390+[3]
 4205





AFP
R.HPQLAVSVILR.V

L[y2] - 288.2030+[1]
 3781





I [y3] - 401.2871+[2]
 2924





L [b4] - 476.2616+[3]
 2647





AFP
K.LGEYYLQNAFLV
631.6646+++
G [b2] - 171.1128+[1]
10790



AYTK.K

Y [y3] - 411.2238+[2]
 2303





F [b10] - 600.2902++[3]
 1780





Y [b4] - 463.2187+[4]
 2214





F [y7] - 421.2445++[6]
 3072





PGH1
R.ILPSVPK.D
377.2471++
P [y5] - 527.3188+[1]
5340492  





S [y4] - 430.2660+[5]
419777 





P [y2] - 244.1656+[2]
4198508  





P [y5] - 264.1630++[3]
2771328  





L [b2] - 227.1754+[4]
2331263  





PGH1
K.AEHPTWGDEQL
639.3026+++
E [b9] - 512.2120++[1]
64350



FQTTR.L

P [b4] - 218.1030++[2]
38282





L [b11] - 632.7833++[3]
129128 





G [y10] - 597.7911++[4]
19406





G [b7] - 779.3471+[5]
51467





T [y3] - 189.1108++[6]
10590





D [y9] - 569.2804++[7]
12460





L [y6] - 765.4254+[8]
 6704





D [b8] - 447.6907++[9]
 4893





P [b4] - 435.1987+[10]
 8858





Q [y7] - 893.4839+[11]
 6101





T [b5] - 268.6268++[12]
 5456





T [b5] - 536.2463+[13]
 5549





PGH1
R.LILIGETIK.I
500.3261++
G [y5] - 547.3086+[1]
 7649





T [y3] - 361.2445+[2]
 6680





E [y4] - 490.2871+[3]
 5234





L [y7] - 773.4767+[4]
 3342





PGH1
R.LQPFNEYR.K
533.7694++
N [b5] - 600.3140+[1]
25963





F [b4] - 486.2711+[2]
 6915





E [y3] - 467.2249+[3]
15079





*QTRAP5500 data, all other peak areas are from Agilent 6490






Next, the top 2-10 transitions per peptide and up to 7 peptides per protein were selected for collision energy (CE) optimization on the Agilent 6490. Using Skyline or MassHunter Qual software, the optimized CE value for each transition was determined based on the peak area or signal to noise. The two transitions with the largest peak areas per peptide and at least two peptides per protein were chosen for the final MRM method. Substitutions of transitions with lower peak areas were made when a transition with a larger peak area had a high background level or had a low m/z value that has more potential for interference.


Lastly, the retention times of selected peptides were mapped using the same column and gradient as our established sMRM assay. The newly discovered analytes were subsequently added to the sMRM method and used in a further hypothesis-dependent discovery study described in Example 5 below.


The above method was typical for most proteins. However, in some cases, the differentially expressed peptide identified in the shotgun method did not uniquely identify a protein, for example, in protein families with high sequence identity. In these cases, a MRM method was developed for each family member. Also, let it be noted that, for any given protein, peptides in addition to those found to be significant and fragment ions not observed on the Orbitrap may have been included in MRM optimization and added to the final sMRM method if those yielded the best signal intensities.


Example 5
Study IV to Identify and Confirm Preterm Birth Biomarkers

A further hypothesis-dependent discovery study was performed with the scheduled MRM assay used in Examples 3 but now augmented with newly discovered analytes from the Example 4. Less robust transitions (from the original 1708 described in Example 1) were removed to improve analytical performance and make room for the newly discovered analytes. Samples included approximately 30 cases and 60 matched controls from each of three gestational periods (early, 17-22 weeks, middle, 23-25 weeks and late, 26-28 weeks). Log transformed peak areas for each transition were corrected for run order and batch effects by regression. The ability of each analyte to separate cases and controls was determined by calculating univariate AUC values from ROC curves. Ranked univariate AUC values (0.6 or greater) are reported for individual gestational age window sample sets (Tables 12, 13, 15) and a combination of the middle and late window (Table 14). Multivariate classifiers were built using different subsets of analytes (described below) by Lasso and Random Forest methods. Lasso significant transitions correspond to those with non-zero coefficients and Random Forest analye ranking was determined by the Gini importance values (mean decrease in model accuracy if that variable is removed). We report all analytes with non-zero Lasso coefficients (Tables 16-32) and the top 30 analytes from each Random Forest analysis (Tables 33-49). Models were built considering the top univariate 32 or 100 analytes, the single best univariate analyte for the top 50 proteins or all analytes. Lastly 1000 rounds of bootstrap resampling were performed and the nonzero Lasso coefficients or Random Forest Gini importance values were summed for each analyte amongst panels with AUCs of 0.85 or greater.









TABLE 12







Early Window Individual Stats









Transition
Protein
AUC





ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
0.834





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
0.822





FLNWIK_410.7_560.3
HABP2_HUMAN
0.820





ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
0.808





SFRPFVPR_335.9_635.3
LBP_HUMAN
0.800





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
0.800





FSVVYAK_407.2_579.4
FETUA_HUMAN
0.796





ITGFLKPGK_320.9_429.3
LBP_HUMAN
0.796





AHYDLR_387.7_288.2
FETUA_HUMAN
0.796





FSVVYAK_407.2_381.2
FETUA_HUMAN
0.795





SFRPFVPR_335.9_272.2
LBP_HUMAN
0.795





DVLLLVHNLPQNLPGYFWYK_810.4_967.5
PSG9_HUMAN
0.794





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
0.794





QALEEFQK_496.8_680.3
CO8B_HUMAN
0.792





DAGLSWGSAR_510.3_390.2
NEUR4_HUMAN
0.792





AHYDLR_387.7_566.3
FETUA_HUMAN
0.791





VFQFLEK_455.8_811.4
CO5_HUMAN
0.786





ITGFLKPGK_320.9_301.2
LBP_HUMAN
0.783





VFQFLEK_455.8_276.2
CO5_HUMAN
0.782





SLLQPNK_400.2_599.4
CO8A_HUMAN
0.781





VQTAHFK_277.5_431.2
CO8A_HUMAN
0.780





SDLEVAHYK_531.3_617.3
CO8B_HUMAN
0.777





SLLQPNK_400.2_358.2
CO8A_HUMAN
0.776





TLLPVSKPEIR_418.3_288.2
CO5_HUMAN
0.776





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.774





DISEVVTPR_508.3_787.4
CFAB_HUMAN
0.774





VSEADSSNADWVTK_754.9_533.3
CFAB_HUMAN
0.773





LSSPAVITDK_515.8_743.4
PLMN_HUMAN
0.773





VQEAHLTEDQIFYFPK_655.7_701.4
CO8G_HUMAN
0.772





DVLLLVHNLPQNLPGYFWYK_810.4_594.3
PSG9_HUMAN
0.771





ALVLELAK_428.8_672.4
INHBE_HUMAN
0.770





FLNWIK_410.7_561.3
HABP2_HUMAN
0.770





LSSPAVITDK_515.8_830.5
PLMN_HUMAN
0.769





LPNNVLQEK_527.8_844.5
AFAM_HUMAN
0.769





VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
0.768





HTLNQIDEVK_598.8_951.5
FETUA_HUMAN
0.767





TTSDGGYSFK_531.7_860.4
INHA_HUMAN
0.761





YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
0.760





HTLNQIDEVK_598.8_958.5
FETUA_HUMAN
0.760





DISEVVTPR_508.3_472.3
CFAB_HUMAN
0.760





LIQDAVTGLTVNGQITGDK_972.0_640.4
ITIH3_HUMAN
0.759





EAQLPVIENK_570.8_699.4
PLMN_HUMAN
0.759





SLPVSDSVLSGFEQR_810.9_836.4
CO8G_HUMAN
0.757





AVLHIGEK_289.5_348.7
THBG_HUMAN
0.755





GLQYAAQEGLLALQSELLR_1037.1_929.5
LBP_HUMAN
0.752





FLQEQGHR_338.8_497.3
CO8G_HUMAN
0.750





LPNNVLQEK_527.8_730.4
AFAM_HUMAN
0.750





AVLHIGEK_289.5_292.2
THBG_HUMAN
0.749





QLYGDTGVLGR_589.8_501.3
CO8G_HUMAN
0.748





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.747





NADYSYSVWK_616.8_769.4
CO5_HUMAN
0.746





GLQYAAQEGLLALQSELLR_1037.1_858.5
LBP_HUMAN
0.746





SLPVSDSVLSGFEQR_810.9_723.3
CO8G_HUMAN
0.745





IEEIAAK_387.2_531.3
CO5_HUMAN
0.743





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
0.742





WWGGQPLWITATK_772.4_373.2
ENPP2_HUMAN
0.742





FQLSETNR_497.8_605.3
PSG2_HUMAN
0.741





NIQSVNVK_451.3_674.4
GROA_HUMAN
0.741





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
0.740





LQGTLPVEAR_542.3_571.3
CO5_HUMAN
0.740





SGFSFGFK_438.7_732.4
CO8B_HUMAN
0.740





HELTDEELQSLFTNFANVVDK_817.1_906.5
AFAM_HUMAN
0.740





VQTAHFK_277.5_502.3
CO8A_HUMAN
0.739





YENYTSSFFIR_713.8_293.1
IL12B_HUMAN
0.739





AFTECCVVASQLR_770.9_574.3
CO5_HUMAN
0.736





EAQLPVIENK_570.8_329.2
PLMN_HUMAN
0.734





QALEEFQK_496.8_551.3
CO8B_HUMAN
0.734





DAQYAPGYDK_564.3_813.4
CFAB_HUMAN
0.734





TEFLSNYLTNVDDITLVPGTLGR_846.8_600.3
ENPP2_HUMAN
0.734





IAIDLFK_410.3_635.4
HEP2_HUMAN
0.733





TASDFITK_441.7_781.4
GELS_HUMAN
0.731





YEFLNGR_449.7_606.3
PLMN_HUMAN
0.731





TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
0.731





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
0.730





DALSSVQESQVAQQAR_573.0_672.4
APOC3_HUMAN
0.730





TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
0.730





ALQDQLVLVAAK_634.9_289.2
ANGT_HUMAN
0.727





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.727





SDLEVAHYK_531.3_746.4
CO8B_HUMAN
0.726





FLPCENK_454.2_550.2
IL10_HUMAN
0.725





HPWIVHWDQLPQYQLNR_744.0_1047.0
KS6A3_HUMAN
0.725





AFTECCVVASQLR_770.9_673.4
CO5_HUMAN
0.725





YGLVTYATYPK_638.3_843.4
CFAB_HUMAN
0.724





TLEAQLTPR_514.8_685.4
HEP2_HUMAN
0.724





DAQYAPGYDK_564.3_315.1
CFAB_HUMAN
0.724





QGHNSVFLIK_381.6_260.2
HEMO_HUMAN
0.722





HELTDEELQSLFTNFANVVDK_817.1_854.4
AFAM_HUMAN
0.722





TLEAQLTPR_514.8_814.4
HEP2_HUMAN
0.721





IEEIAAK_387.2_660.4
CO5_HUMAN
0.721





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.721





IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
0.721





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
0.720





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.719





IAIDLFK_410.3_706.4
HEP2_HUMAN
0.719





FLQEQGHR_338.8_369.2
CO8G_HUMAN
0.719





ALQDQLVLVAAK_634.9_956.6
ANGT_HUMAN
0.718





IEGNLIFDPNNYLPK_874.0_414.2
APOB_HUMAN
0.717





YEFLNGR_449.7_293.1
PLMN_HUMAN
0.717





TASDFITK_441.7_710.4
GELS_HUMAN
0.716





DADPDTFFAK_563.8_825.4
AFAM_HUMAN
0.716





TLLPVSKPEIR_418.3_514.3
CO5_HUMAN
0.716





NADYSYSVWK_616.8_333.2
CO5_HUMAN
0.715





YGLVTYATYPK_638.3_334.2
CFAB_HUMAN
0.715





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
0.715





HYGGLTGLNK_530.3_759.4
PGAM1_HUMAN
0.714





DFHINLFQVLPWLK_885.5_400.2
CFAB_HUMAN
0.714





NCSFSIIYPVVIK_770.4_555.4
CRHBP_HUMAN
0.714





HPWIVHWDQLPQYQLNR_744.0_918.5
KS6A3_HUMAN
0.712





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
0.711





ALDLSLK_380.2_185.1
ITIH3_HUMAN
0.711





ALDLSLK_380.2_575.3
ITIH3_HUMAN
0.710





LDFHFSSDR_375.2_611.3
INHBC_HUMAN
0.709





TLNAYDHR_330.5_312.2
PAR3_HUMAN
0.707





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
0.706





IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
0.704





LIENGYFHPVK_439.6_343.2
F13B_HUMAN
0.703





NFPSPVDAAFR_610.8_775.4
HEMO_HUMAN
0.703





QLYGDTGVLGR_589.8_345.2
CO8G_HUMAN
0.702





LYYGDDEK_501.7_563.2
CO8A_HUMAN
0.702





FQLSETNR_497.8_476.3
PSG2_HUMAN
0.701





TGVAVNKPAEFTVDAK_549.6_977.5
FLNA_HUMAN
0.700





IPGIFELGISSQSDR_809.9_679.3
CO8B_HUMAN
0.700





TLFIFGVTK_513.3_215.1
PSG4_HUMAN
0.699





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
0.699





QVFAVQR_424.2_473.3
ELNE_HUMAN
0.699





AQPVQVAEGSEPDGFWEALGGK_758.0_623.4
GELS_HUMAN
0.699





DFNQFSSGEK_386.8_189.1
FETA_HUMAN
0.699





SVSLPSLDPASAK_636.4_473.3
APOB_HUMAN
0.699





GNGLTWAEK_488.3_634.3
C163B_HUMAN
0.698





LYYGDDEK_501.7_726.3
CO8A_HUMAN
0.698





NFPSPVDAAFR_610.8_959.5
HEMO_HUMAN
0.698





FAFNLYR_465.8_565.3
HEP2_HUMAN
0.697





SGFSFGFK_438.7_585.3
CO8B_HUMAN
0.696





DFHINLFQVLPWLK_885.5_543.3
CFAB_HUMAN
0.696





LQGTLPVEAR_542.3_842.5
CO5_HUMAN
0.694





GAVHVVVAETDYQSFAVLYLER_822.8_863.5
CO8G_HUMAN
0.694





TSESTGSLPSPFLR_739.9_716.4
PSMG1_HUMAN
0.694





YISPDQLADLYK_713.4_277.2
ENOA_HUMAN
0.694





ESDTSYVSLK_564.8_347.2
CRP_HUMAN
0.693





ILDDLSPR_464.8_587.3
ITIH4_HUMAN
0.693





VQEAHLTEDQIFYFPK_655.7_391.2
CO8G_HUMAN
0.692





SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
0.692





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
0.692





HFQNLGK_422.2_285.1
AFAM_HUMAN
0.691





NNQLVAGYLQGPNVNLEEK_700.7_999.5
IL1RA_HUMAN
0.691





IPGIFELGISSQSDR_809.9_849.4
CO8B_HUMAN
0.691





ESDTSYVSLK_564.8_696.4
CRP_HUMAN
0.690





GAVHVVVAETDYQSFAVLYLER_822.8_580.3
CO8G_HUMAN
0.690





DADPDTFFAK_563.8_302.1
AFAM_HUMAN
0.690





LDFHFSSDR_375.2_464.2
INHBC_HUMAN
0.689





TLFIFGVTK_513.3_811.5
PSG4_HUMAN
0.688





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.687





IQTHSTTYR_369.5_627.3
F13B_HUMAN
0.686





HYFIAAVER_553.3_658.4
FA8_HUMAN
0.686





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
0.686





DLHLSDVFLK_396.2_366.2
CO6_HUMAN
0.685





DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
0.684





AGITIPR_364.2_272.2
IL17_HUMAN
0.684





IAQYYYTFK_598.8_884.4
F13B_HUMAN
0.684





SGVDLADSNQK_567.3_591.3
VGFR3_HUMAN
0.683





VEPLYELVTATDFAYSSTVR_754.4_549.3
CO8B_HUMAN
0.682





AGITIPR_364.2_486.3
IL17_HUMAN
0.682





YEVQGEVFTKPQLWP_911.0_293.1
CRP_HUMAN
0.681





APLTKPLK_289.9_357.2
CRP_HUMAN
0.681





YNSQLLSFVR_613.8_508.3
TFR1_HUMAN
0.681





ANDQYLTAAALHNLDEAVK_686.4_301.1
IL1A_HUMAN
0.681





IQTHSTTYR_369.5_540.3
F13B_HUMAN
0.681





IHPSYTNYR_575.8_598.3
PSG2_HUMAN
0.681





TEFLSNYLTNVDDITLVPGTLGR_846.8_699.4
ENPP2_HUMAN
0.681





DPTFIPAPIQAK_433.2_461.2
ANGT_HUMAN
0.679





FQSVFTVTR_542.8_623.4
C1QC_HUMAN
0.679





LQVNTPLVGASLLR_741.0_925.6
BPIA1_HUMAN
0.679





DEIPHNDIALLK_459.9_510.8
HABP2_HUMAN
0.678





HATLSLSIPR_365.6_272.2
VGFR3_HUMAN
0.678





EDTPNSVWEPAK_686.8_315.2
C1S_HUMAN
0.678





TGISPLALIK_506.8_741.5
APOB_HUMAN
0.678





ILPSVPK_377.2_244.2
PGH1_HUMAN
0.676





HATLSLSIPR_365.6_472.3
VGFR3_HUMAN
0.676





QGHNSVFLIK_381.6_520.4
HEMO_HUMAN
0.676





LPATEKPVLLSK_432.6_460.3
HYOU1_HUMAN
0.675





APLTKPLK_289.9_398.8
CRP_HUMAN
0.674





GVTGYFTFNLYLK_508.3_683.9
PSG5_HUMAN
0.673





TFLTVYWTPER_706.9_401.2
ICAM1_HUMAN
0.673





GDTYPAELYITGSILR_885.0_274.1
F13B_HUMAN
0.672





EDTPNSVWEPAK_686.8_630.3
C1S_HUMAN
0.672





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
0.672





VELAPLPSWQPVGK_760.9_342.2
ICAM1_HUMAN
0.671





GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.670





TDAPDLPEENQAR_728.3_843.4
CO5_HUMAN
0.670





GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
0.669





FAFNLYR_465.8_712.4
HEP2_HUMAN
0.669





ITENDIQIALDDAK_779.9_873.5
APOB_HUMAN
0.669





ILNIFGVIK_508.8_790.5
TFR1_HUMAN
0.669





ISQGEADINIAFYQR_575.6_684.4
MMP8_HUMAN
0.668





GDTYPAELYITGSILR_885.0_1332.8
F13B_HUMAN
0.668





ELLESYIDGR_597.8_710.4
THRB_HUMAN
0.668





FTITAGSK_412.7_576.3
FABPL_HUMAN
0.667





ILDGGNK_358.7_490.2
CXCL5_HUMAN
0.667





GWVTDGFSSLK_598.8_854.4
APOC3_HUMAN
0.667





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
0.665





IHPSYTNYR_575.8_813.4
PSG2_HUMAN
0.665





ELLESYIDGR_597.8_839.4
THRB_HUMAN
0.665





SDGAKPGPR_442.7_213.6
COLI_HUMAN
0.664





IAQYYYTFK_598.8_395.2
F13B_HUMAN
0.664





SILFLGK_389.2_201.1
THBG_HUMAN
0.664





IEVNESGTVASSSTAVIVSAR_693.0_545.3
PAI1_HUMAN
0.664





VSAPSGTGHLPGLNPL_506.3_300.7
PSG3_HUMAN
0.664





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
0.664





YYGYTGAFR_549.3_771.4
TRFL_HUMAN
0.663





TDAPDLPEENQAR_728.3_613.3
CO5_HUMAN
0.663





IEVIITLK_464.8_815.5
CXL11_HUMAN
0.662





ILPSVPK_377.2_227.2
PGH1_HUMAN
0.662





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.661





DYWSTVK_449.7_347.2
APOC3_HUMAN
0.661





IEGNLIFDPNNYLPK_874.0_845.5
APOB_HUMAN
0.661





WILTAAHTLYPK_471.9_407.2
C1R_HUMAN
0.661





WNFAYWAAHQPWSR_607.3_545.3
PRG2_HUMAN
0.661





SILFLGK_389.2_577.4
THBG_HUMAN
0.661





FSLVSGWGQLLDR_493.3_516.3
FA7_HUMAN
0.661





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
0.661





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.660





LWAYLTIQELLAK_781.5_371.2
ITIH1_HUMAN
0.660





LLEVPEGR_456.8_356.2
C1S_HUMAN
0.659





ITENDIQIALDDAK_779.9_632.3
APOB_HUMAN
0.659





LTTVDIVTLR_565.8_716.4
IL2RB_HUMAN
0.658





IEVIITLK_464.8_587.4
CXL11_HUMAN
0.658





QLGLPGPPDVPDHAAYHPF_676.7_299.2
ITIH4_HUMAN
0.658





TLAFVR_353.7_492.3
FA7_HUMAN
0.656





NSDQEIDFK_548.3_294.2
S10A5_HUMAN
0.656





YHFEALADTGISSEFYDNANDLLSK_940.8_874.5
CO8A_HUMAN
0.656





SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.655





FLPCENK_454.2_390.2
IL10_HUMAN
0.654





NCSFSIIYPVVIK_770.4_831.5
CRHBP_HUMAN
0.654





SLDFTELDVAAEK_719.4_874.5
ANGT_HUMAN
0.654





ILLLGTAVESAWGDEQSAFR_721.7_909.4
CXA1_HUMAN
0.653





SVSLPSLDPASAK_636.4_885.5
APOB_HUMAN
0.653





TGISPLALIK_506.8_654.5
APOB_HUMAN
0.653





YNQLLR_403.7_288.2
ENOA_HUMAN
0.653





YEVQGEVFTKPQLWP_911.0_392.2
CRP_HUMAN
0.652





VPGLYYFTYHASSR_554.3_720.3
C1QB_HUMAN
0.650





SLQNASAIESILK_687.4_589.4
IL3_HUMAN
0.650





WILTAAHTLYPK_471.9_621.4
C1R_HUMAN
0.650





GWVTDGFSSLK_598.8_953.5
APOC3_HUMAN
0.650





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.649





QDLGWK_373.7_503.3
TGFB3_HUMAN
0.649





DYWSTVK_449.7_620.3
APOC3_HUMAN
0.648





ALVLELAK_428.8_331.2
INHBE_HUMAN
0.647





QLGLPGPPDVPDHAAYHPF_676.7_263.1
ITIH4_HUMAN
0.646





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.645





TFLTVYWTPER_706.9_502.3
ICAM1_HUMAN
0.644





FQSVFTVTR_542.8_722.4
C1QC_HUMAN
0.643





DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
0.642





ETLLQDFR_511.3_322.2
AMBP_HUMAN
0.642





IIEVEEEQEDPYLNDR_996.0_777.4
FBLN1_HUMAN
0.641





ELCLDPK_437.7_359.2
IL8_HUMAN
0.641





TPSAAYLWVGTGASEAEK_919.5_849.4
GELS_HUMAN
0.641





NQSPVLEPVGR_598.3_866.5
KS6A3_HUMAN
0.641





FNAVLTNPQGDYDTSTGK_964.5_333.2
C1QC_HUMAN
0.641





LLEVPEGR_456.8_686.4
C1S_HUMAN
0.641





FFQYDTWK_567.8_840.4
IGF2_HUMAN
0.640





SPEAEDPLGVER_649.8_670.4
Z512B_HUMAN
0.639





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.639





SGAQATWTELPWPHEK_613.3_793.4
HEMO_HUMAN
0.638





YSHYNER_323.5_581.3
HABP2_HUMAN
0.638





YHFEALADTGISSEFYDNANDLLSK_940.8_301.1
CO8A_HUMAN
0.637





DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.637





YSHYNER_323.5_418.2
HABP2_HUMAN
0.637





YYLQGAK_421.7_327.1
ITIH4_HUMAN
0.636





EVPLSALTNILSAQLISHWK_740.8_996.6
PAI1_HUMAN
0.636





VPGLYYFTYHASSR_554.3_420.2
C1QB_HUMAN
0.636





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
0.636





ETLLQDFR_511.3_565.3
AMBP_HUMAN
0.635





IVLSLDVPIGLLQILLEQAR_735.1_503.3
UCN2_HUMAN
0.635





ENPAVIDFELAPIVDLVR_670.7_811.5
CO6_HUMAN
0.635





LQLSETNR_480.8_355.2
PSG8_HUMAN
0.635





DPDQTDGLGLSYLSSHIANVER_796.4_456.2
GELS_HUMAN
0.635





NVNQSLLELHK_432.2_656.3
FRIH_HUMAN
0.634





EIGELYLPK_531.3_633.4
AACT_HUMAN
0.634





SPEQQETVLDGNLIIR_906.5_699.3
ITIH4_HUMAN
0.634





NKPGVYTDVAYYLAWIR_677.0_545.3
FA12_HUMAN
0.632





QNYHQDSEAAINR_515.9_544.3
FRIH_HUMAN
0.632





EKPAGGIPVLGSLVNTVLK_631.4_930.6
BPIB1_HUMAN
0.632





VTFEYR_407.7_614.3
CRHBP_HUMAN
0.630





DLPHITVDR_533.3_490.3
MMP7_HUMAN
0.630





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.630





ENPAVIDFELAPIVDLVR_670.7_601.4
CO6_HUMAN
0.630





YGFYTHVFR_397.2_659.4
THRB_HUMAN
0.629





ILDDLSPR_464.8_702.3
ITIH4_HUMAN
0.629





DPNGLPPEAQK_583.3_497.2
RET4_HUMAN
0.629





GSLVQASEANLQAAQDFVR_668.7_806.4
ITIH1_HUMAN
0.629





FLYHK_354.2_447.2
AMBP_HUMAN
0.627





FNAVLTNPQGDYDTSTGK_964.5_262.1
C1QC_HUMAN
0.627





LQDAGVYR_461.2_680.3
PD1L1_HUMAN
0.627





INPASLDK_429.2_630.4
C163A_HUMAN
0.626





LEEHYELR_363.5_580.3
PAI2_HUMAN
0.625





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
0.624





TSDQIHFFFAK_447.6_659.4
ANT3_HUMAN
0.624





ATLSAAPSNPR_542.8_570.3
CXCL2_HUMAN
0.624





YGFYTHVFR_397.2_421.3
THRB_HUMAN
0.624





EANQSTLENFLER_775.9_678.4
IL4_HUMAN
0.623





GQQPADVTGTALPR_705.9_314.2
CSF1_HUMAN
0.623





VELAPLPSWQPVGK_760.9_400.3
ICAM1_HUMAN
0.622





GEVTYTTSQVSK_650.3_750.4
EGLN_HUMAN
0.622





SLQAFVAVAAR_566.8_487.3
IL23A_HUMAN
0.622





HYGGLTGLNK_530.3_301.1
PGAM1_HUMAN
0.622





GPEDQDISISFAWDK_854.4_753.4
DEF4_HUMAN
0.622





YVVISQGLDKPR_458.9_400.3
LRP1_HUMAN
0.621





LWAYLTIQELLAK_781.5_300.2
ITIH1_HUMAN
0.621





SGAQATWTELPWPHEK_613.3_510.3
HEMO_HUMAN
0.621





GTAEWLSFDVTDTVR_848.9_952.5
TGFB3_HUMAN
0.621





FFQYDTWK_567.8_712.3
IGF2_HUMAN
0.621





AHQLAIDTYQEFEETYIPK_766.0_634.4
CSH_HUMAN
0.620





LPATEKPVLLSK_432.6_347.2
HYOU1_HUMAN
0.620





NIQSVNVK_451.3_546.3
GROA_HUMAN
0.620





TAVTANLDIR_537.3_288.2
CHL1_HUMAN
0.619





WSAGLTSSQVDLYIPK_883.0_515.3
CBG_HUMAN
0.616





QINSYVK_426.2_496.3
CBG_HUMAN
0.616





GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
0.615





WNFAYWAAHQPWSR_607.3_673.3
PRG2_HUMAN
0.615





NEIWYR_440.7_357.2
FA12_HUMAN
0.615





VLEPTLK_400.3_587.3
VTDB_HUMAN
0.614





YYLQGAK_421.7_516.3
ITIH4_HUMAN
0.614





ALNSIIDVYHK_424.9_774.4
S10A8_HUMAN
0.614





ETPEGAEAKPWYEPIYLGGVFQLEK_951.1_877.5
TNFA_HUMAN
0.614





LNIGYIEDLK_589.3_837.4
PAI2_HUMAN
0.614





NVNQSLLELHK_432.2_543.3
FRIH_HUMAN
0.613





ILLLGTAVESAWGDEQSAFR_721.7_910.6
CXA1_HUMAN
0.613





AALAAFNAQNNGSNFQLEEISR_789.1_633.3
FETUA_HUMAN
0.613





VLEPTLK_400.3_458.3
VTDB_HUMAN
0.613





VGEYSLYIGR_578.8_708.4
SAMP_HUMAN
0.613





DIPHWLNPTR_416.9_373.2
PAPP1_HUMAN
0.612





NEIVFPAGILQAPFYTR_968.5_357.2
ECE1_HUMAN
0.612





AEHPTWGDEQLFQTTR_639.3_765.4
PGH1_HUMAN
0.612





VEPLYELVTATDFAYSSTVR_754.4_712.4
CO8B_HUMAN
0.611





DEIPHNDIALLK_459.9_260.2
HABP2_HUMAN
0.611





QINSYVK_426.2_610.3
CBG_HUMAN
0.610





SWNEPLYHLVTEVR_581.6_614.3
PRL_HUMAN
0.610





YGIEEHGK_311.5_341.2
CXA1_HUMAN
0.610





FGFGGSTDSGPIR_649.3_946.5
ADA12_HUMAN
0.610





ANDQYLTAAALHNLDEAVK_686.4_317.2
IL1A_HUMAN
0.610





VRPQQLVK_484.3_609.4
ITIH4_HUMAN
0.609





IPKPEASFSPR_410.2_506.3
ITIH4_HUMAN
0.609





SPEQQETVLDGNLIIR_906.5_685.4
ITIH4_HUMAN
0.609





DDLYVSDAFHK_655.3_704.3
ANT3_HUMAN
0.609





ELPEHTVK_476.8_347.2
VTDB_HUMAN
0.609





FLYHK_354.2_284.2
AMBP_HUMAN
0.608





QRPPDLDTSSNAVDLLFFTDESGDSR_961.5_262.2
C1R_HUMAN
0.608





DPDQTDGLGLSYLSSHIANVER_796.4_328.1
GELS_HUMAN
0.608





NEIWYR_440.7_637.4
FA12_HUMAN
0.607





LQLSETNR_480.8_672.4
PSG8_HUMAN
0.606





GQVPENEANVVITTLK_571.3_462.3
CADH1_HUMAN
0.606





FTGSQPFGQGVEHATANK_626.0_521.2
TSP1_HUMAN
0.605





LEPLYSASGPGLRPLVIK_637.4_260.2
CAA60698
0.605





QRPPDLDTSSNAVDLLFFTDESGDSR_961.5_866.3
C1R_HUMAN
0.604





LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.604





TSDQIHFFFAK_447.6_512.3
ANT3_HUMAN
0.604





IQHPFTVEEFVLPK_562.0_861.5
PZP_HUMAN
0.603





NKPGVYTDVAYYLAWIR_677.0_821.5
FA12_HUMAN
0.603





TEQAAVAR_423.2_615.4
FA12_HUMAN
0.603





EIGELYLPK_531.3_819.5
AACT_HUMAN
0.602





LFYADHPFIFLVR_546.6_647.4
SERPH_HUMAN
0.602





AEHPTWGDEQLFQTTR_639.3_569.3
PGH1_HUMAN
0.601





TSYQVYSK_488.2_787.4
C163A_HUMAN
0.601





YTTEIIK_434.2_704.4
C1R_HUMAN
0.601





NVIQISNDLENLR_509.9_402.3
LEP_HUMAN
0.600





AFLEVNEEGSEAAASTAVVIAGR_764.4_685.4
ANT3_HUMAN
0.600
















TABLE 13







Middle Window Individual Stats









Transition
Protein
AUC





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.738





VFQFLEK_455.8_811.4
CO5_HUMAN
0.709





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.705





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
0.692





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.686





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
0.683





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.683





VLEPTLK_400.3_458.3
VTDB_HUMAN
0.681





LHEAFSPVSYQHDLALLR_699.4_251.2
FA12_HUMAN
0.681





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.679





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.677





ALQDQLVLVAAK_634.9_289.2
ANGT_HUMAN
0.675





VLEPTLK_400.3_587.3
VTDB_HUMAN
0.667





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
0.665





IEEIAAK_387.2_660.4
CO5_HUMAN
0.664





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
0.664





TLLPVSKPEIR_418.3_514.3
CO5_HUMAN
0.662





ALQDQLVLVAAK_634.9_956.6
ANGT_HUMAN
0.661





TLAFVR_353.7_492.3
FA7_HUMAN
0.661





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.658





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
0.653





DPTFIPAPIQAK_433.2_461.2
ANGT_HUMAN
0.653





QGHNSVFLIK_381.6_260.2
HEMO_HUMAN
0.650





SLDFTELDVAAEK_719.4_874.5
ANGT_HUMAN
0.650





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.649





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.647





SLQAFVAVAAR_566.8_804.5
IL23A_HUMAN
0.646





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
0.644





QGHNSVFLIK_381.6_520.4
HEMO_HUMAN
0.644





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
0.643





DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.643





TEQAAVAR_423.2_615.4
FA12_HUMAN
0.643





GPITSAAELNDPQSILLR_632.4_826.5
EGLN_HUMAN
0.643





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.642





TEQAAVAR_423.2_487.3
FA12_HUMAN
0.642





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
0.642





TLFIFGVTK_513.3_811.5
PSG4_HUMAN
0.642





DLHLSDVFLK_396.2_366.2
CO6_HUMAN
0.641





AFTECCVVASQLR_770.9_574.3
CO5_HUMAN
0.640





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.639





DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
0.639





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
0.638





HYINLITR_515.3_301.1
NPY_HUMAN
0.637





HFQNLGK_422.2_285.1
AFAM_HUMAN
0.637





VPLALFALNR_557.3_620.4
PEPD_HUMAN
0.636





IHPSYTNYR_575.8_813.4
PSG2_HUMAN
0.635





IEEIAAK_387.2_531.3
CO5_HUMAN
0.635





GEVTYTTSQVSK_650.3_750.4
EGLN_HUMAN
0.634





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.634





VVGGLVALR_442.3_784.5
FA12_HUMAN
0.634





SDGAKPGPR_442.7_459.2
COLI_HUMAN
0.634





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
PSG7_HUMAN
0.634





TLLPVSKPEIR_418.3_288.2
CO5_HUMAN
0.633





NKPGVYTDVAYYLAWIR_677.0_821.5
FA12_HUMAN
0.630





QVFAVQR_424.2_473.3
ELNE_HUMAN
0.630





NHYTESISVAK_624.8_415.2
NEUR1_HUMAN
0.630





IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
0.629





IHPSYTNYR_575.8_598.3
PSG2_HUMAN
0.627





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
0.627





SILFLGK_389.2_201.1
THBG_HUMAN
0.626





IEVIITLK_464.8_587.4
CXL11_HUMAN
0.625





VVGGLVALR_442.3_685.4
FA12_HUMAN
0.624





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
SHBG_HUMAN
0.624





FGFGGSTDSGPIR_649.3_946.5
ADA12_HUMAN
0.623





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_768.5
SHBG_HUMAN
0.622





YGIEEHGK_311.5_341.2
CXA1_HUMAN
0.621





LHEAFSPVSYQHDLALLR_699.4_380.2
FA12_HUMAN
0.621





AHYDLR_387.7_566.3
FETUA_HUMAN
0.620





FSVVYAK_407.2_381.2
FETUA_HUMAN
0.618





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
SHBG_HUMAN
0.618





YENYTSSFFIR_713.8_293.1
IL12B_HUMAN
0.617





VELAPLPSWQPVGK_760.9_342.2
ICAM1_HUMAN
0.617





SILFLGK_389.2_577.4
THBG_HUMAN
0.616





ILPSVPK_377.2_227.2
PGH1_HUMAN
0.615





IPSNPSHR_303.2_496.3
FBLN3_HUMAN
0.615





HYFIAAVER_553.3_301.1
FA8_HUMAN
0.615





FSVVYAK_407.2_579.4
FETUA_HUMAN
0.613





VFQFLEK_455.8_276.2
CO5_HUMAN
0.613





IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
0.613





ILPSVPK_377.2_244.2
PGH1_HUMAN
0.613





NKPGVYTDVAYYLAWIR_677.0_545.3
FA12_HUMAN
0.613





WSAGLTSSQVDLYIPK_883.0_515.3
CBG_HUMAN
0.612





TPSAAYLWVGTGASEAEK_919.5_849.4
GELS_HUMAN
0.612





ALALPPLGLAPLLNLWAKPQGR_770.5_457.3
SHBG_HUMAN
0.612





QLGLPGPPDVPDHAAYHPF_676.7_299.2
ITIH4_HUMAN
0.612





ILDDLSPR_464.8_587.3
ITIH4_HUMAN
0.611





VELAPLPSWQPVGK_760.9_400.3
ICAM1_HUMAN
0.611





DADPDTFFAK_563.8_825.4
AFAM_HUMAN
0.611





NHYTESISVAK_624.8_252.1
NEUR1_HUMAN
0.611





SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.611





LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
0.611





ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
0.609





LTTVDIVTLR_565.8_716.4
IL2RB_HUMAN
0.608





TQILEWAAER_608.8_761.4
EGLN_HUMAN
0.608





NEPEETPSIEK_636.8_573.3
SOX5_HUMAN
0.608





AQPVQVAEGSEPDGFWEALGGK_758.0_623.4
GELS_HUMAN
0.607





LQVNTPLVGASLLR_741.0_925.6
BPIA1_HUMAN
0.607





VPSHAVVAR_312.5_345.2
TRFL_HUMAN
0.607





SLQNASAIESILK_687.4_860.5
IL3_HUMAN
0.607





GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
0.605





DFNQFSSGEK_386.8_189.1
FETA_HUMAN
0.605





QLGLPGPPDVPDHAAYHPF_676.7_263.1
ITIH4_HUMAN
0.605





TLEAQLTPR_514.8_814.4
HEP2_HUMAN
0.604





AFTECCVVASQLR_770.9_673.4
CO5_HUMAN
0.604





LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.604





TLNAYDHR_330.5_312.2
PAR3_HUMAN
0.603





LWAYLTIQELLAK_781.5_300.2
ITIH1_HUMAN
0.603





GGLFADIASHPWQAAIFAK_667.4_375.2
TPA_HUMAN
0.603





IPSNPSHR_303.2_610.3
FBLN3_HUMAN
0.603





TDAPDLPEENQAR_728.3_843.4
CO5_HUMAN
0.603





SPQAFYR_434.7_684.4
REL3_HUMAN
0.602





SSNNPHSPIVEEFQVPYNK_729.4_261.2
C1S_HUMAN
0.601





AHYDLR_387.7_288.2
FETUA_HUMAN
0.600





DGSPDVTTADIGANTPDATK_973.5_844.4
PGRP2_HUMAN
0.600





SPQAFYR_434.7_556.3
REL3_HUMAN
0.600
















TABLE 14







Middle Late Individual Stats









Transition
Protein
AUC





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.656





VPLALFALNR_557.3_620.4
PEPD_HUMAN
0.655





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.652





AVYEAVLR_460.8_587.4
PEPD_HUMAN
0.649





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.644





VFQFLEK_455.8_811.4
CO5_HUMAN
0.643





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
0.640





TLAFVR_353.7_492.3
FA7_HUMAN
0.639





TEQAAVAR_423.2_615.4
FA12_HUMAN
0.637





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.637





TEQAAVAR_423.2_487.3
FA12_HUMAN
0.633





QINSYVK_426.2_496.3
CBG_HUMAN
0.633





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.633





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.633





ALQDQLVLVAAK_634.9_956.6
ANGT_HUMAN
0.628





VLEPTLK_400.3_587.3
VTDB_HUMAN
0.628





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.628





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.628





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
0.626





QINSYVK_426.2_610.3
CBG_HUMAN
0.625





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
0.625





DPTFIPAPIQAK_433.2_461.2
ANGT_HUMAN
0.625





AVYEAVLR_460.8_750.4
PEPD_HUMAN
0.623





YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
0.623





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.623





WSAGLTSSQVDLYIPK_883.0_515.3
CBG_HUMAN
0.622





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
0.622





ALQDQLVLVAAK_634.9_289.2
ANGT_HUMAN
0.621





SLQAFVAVAAR_566.8_804.5
IL23A_HUMAN
0.621





DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
0.620





FGFGGSTDSGPIR_649.3_946.5
ADA12_HUMAN
0.619





VLEPTLK_400.3_458.3
VTDB_HUMAN
0.619





SLDFTELDVAAEK_719.4_874.5
ANGT_HUMAN
0.618





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.618





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.618





TPSAAYLWVGTGASEAEK_919.5_849.4
GELS_HUMAN
0.615





LHEAFSPVSYQHDLALLR_699.4_251.2
FA12_HUMAN
0.615





TLEAQLTPR_514.8_685.4
HEP2_HUMAN
0.613





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.612





GYQELLEK_490.3_631.4
FETA_HUMAN
0.612





VPLALFALNR_557.3_917.6
PEPD_HUMAN
0.611





DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.611





LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.608





WSAGLTSSQVDLYIPK_883.0_357.2
CBG_HUMAN
0.608





ITQDAQLK_458.8_702.4
CBG_HUMAN
0.608





NIQSVNVK_451.3_674.4
GROA_HUMAN
0.607





ALEQDLPVNIK_620.4_570.4
CNDP1_HUMAN
0.607





TLNAYDHR_330.5_312.2
PAR3_HUMAN
0.606





LWAYLTIQELLAK_781.5_300.2
ITIH1_HUMAN
0.606





VVGGLVALR_442.3_784.5
FA12_HUMAN
0.605





AQPVQVAEGSEPDGFWEALGGK_758.0_623.4
GELS_HUMAN
0.603





SVVLIPLGAVDDGEHSQNEK_703.0_798.4
CNDP1_HUMAN
0.603





SETEIHQGFQHLHQLFAK_717.4_318.1
CBG_HUMAN
0.603





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
0.603





IEVIITLK_464.8_587.4
CXL11_HUMAN
0.602





ITQDAQLK_458.8_803.4
CBG_HUMAN
0.602





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
0.601





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
0.601





LTTVDIVTLR_565.8_716.4
IL2RB_HUMAN
0.600





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.600
















TABLE 15







Late Window Individual Stats









Transition
Protein
AUC





AVYEAVLR_460.8_587.4
PEPD_HUMAN
0.724





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
0.703





QINSYVK_426.2_496.3
CBG_HUMAN
0.695





AVYEAVLR_460.8_750.4
PEPD_HUMAN
0.693





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
0.684





QINSYVK_426.2_610.3
CBG_HUMAN
0.681





VPLALFALNR_557.3_620.4
PEPD_HUMAN
0.678





VGVISFAQK_474.8_580.3
TFR2_HUMAN
0.674





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
0.670





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.670





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
0.660





SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
0.660





TSYQVYSK_488.2_787.4
C163A_HUMAN
0.657





ITQDAQLK_458.8_702.4
CBG_HUMAN
0.652





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
0.650





ALEQDLPVNIK_620.4_798.5
CNDP1_HUMAN
0.650





VFQYIDLHQDEFVQTLK_708.4_375.2
CNDP1_HUMAN
0.650





SGVDLADSNQK_567.3_591.3
VGFR3_HUMAN
0.648





YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
0.647





VLSSIEQK_452.3_691.4
1433S_HUMAN
0.647





YSHYNER_323.5_418.2
HABP2_HUMAN
0.646





ILDGGNK_358.7_603.3
CXCL5_HUMAN
0.645





GTYLYNDCPGPGQDTDCR_697.0_666.3
TNR1A_HUMAN
0.645





AEIEYLEK_497.8_389.2
LYAM1_HUMAN
0.645





TLPFSR_360.7_506.3
LYAM1_HUMAN
0.645





DEIPHNDIALLK_459.9_510.8
HABP2_HUMAN
0.644





ALEQDLPVNIK_620.4_570.4
CNDP1_HUMAN
0.644





SPEAEDPLGVER_649.8_314.1
Z512B_HUMAN
0.644





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.642





TASDFITK_441.7_781.4
GELS_HUMAN
0.641





SETEIHQGFQHLHQLFAK_717.4_447.2
CBG_HUMAN
0.640





SPQAFYR_434.7_556.3
REL3_HUMAN
0.639





TAVTANLDIR_537.3_288.2
CHL1_HUMAN
0.636





VPLALFALNR_557.3_917.6
PEPD_HUMAN
0.636





YISPDQLADLYK_713.4_277.2
ENOA_HUMAN
0.633





SETEIHQGFQHLHQLFAK_717.4_318.1
CBG_HUMAN
0.633





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.633





GYQELLEK_490.3_631.4
FETA_HUMAN
0.633





AYSDLSR_406.2_375.2
SAMP_HUMAN
0.633





SVVLIPLGAVDDGEHSQNEK_703.0_798.4
CNDP1_HUMAN
0.632





TLEAQLTPR_514.8_685.4
HEP2_HUMAN
0.631





WSAGLTSSQVDLYIPK_883.0_515.3
CBG_HUMAN
0.631





TEQAAVAR_423.2_615.4
FA12_HUMAN
0.628





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
0.626





AGITIPR_364.2_486.3
IL17_HUMAN
0.626





AEVIWTSSDHQVLSGK_586.3_300.2
PD1L1_HUMAN
0.625





TEQAAVAR_423.2_487.3
FA12_HUMAN
0.625





NHYTESISVAK_624.8_415.2
NEUR1_HUMAN
0.625





WSAGLTSSQVDLYIPK_883.0_357.2
CBG_HUMAN
0.623





YSHYNER_323.5_581.3
HABP2_HUMAN
0.623





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.621





NIQSVNVK_451.3_674.4
GROA_HUMAN
0.620





SVVLIPLGAVDDGEHSQNEK_703.0_286.2
CNDP1_HUMAN
0.620





TLAFVR_353.7_492.3
FA7_HUMAN
0.619





AVDIPGLEAATPYR_736.9_286.1
TENA_HUMAN
0.619





TEFLSNYLTNVDDITLVPGTLGR_846.8_600.3
ENPP2_HUMAN
0.618





YWGVASFLQK_599.8_849.5
RET4_HUMAN
0.618





TPSAAYLWVGTGASEAEK_919.5_428.2
GELS_HUMAN
0.618





DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
0.617





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
0.616





SPQAFYR_434.7_684.4
REL3_HUMAN
0.616





TPSAAYLWVGTGASEAEK_919.5_849.4
GELS_HUMAN
0.615





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.615





IEVNESGTVASSSTAVIVSAR_693.0_545.3
PAI1_HUMAN
0.615





LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.615





LWAYLTIQELLAK_781.5_371.2
ITIH1_HUMAN
0.613





SYTITGLQPGTDYK_772.4_352.2
FINC_HUMAN
0.612





GAVHVVVAETDYQSFAVLYLER_822.8_863.5
CO8G_HUMAN
0.612





FQLPGQK_409.2_276.1
PSG1_HUMAN
0.612





ILDGGNK_358.7_490.2
CXCL5_HUMAN
0.611





DYWSTVK_449.7_620.3
APOC3_HUMAN
0.611





AGLLRPDYALLGHR_518.0_595.4
PGRP2_HUMAN
0.611





ALNFGGIGVVVGHELTHAFDDQGR_837.1_360.2
ECE1_HUMAN
0.611





GYQELLEK_490.3_502.3
FETA_HUMAN
0.611





HATLSLSIPR_365.6_472.3
VGFR3_HUMAN
0.610





SVPVTKPVPVTKPITVTK_631.1_658.4
Z512B_HUMAN
0.610





FQLPGQK_409.2_429.2
PSG1_HUMAN
0.610





IYLQPGR_423.7_329.2
ITIH2_HUMAN
0.610





TLNAYDHR_330.5_312.2
PAR3_HUMAN
0.609





DPNGLPPEAQK_583.3_497.2
RET4_HUMAN
0.609





FGFGGSTDSGPIR_649.3_946.5
ADA12_HUMAN
0.609





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.608





GAVHVVVAETDYQSFAVLYLER_822.8_580.3
CO8G_HUMAN
0.608





VPSHAVVAR_312.5_515.3
TRFL_HUMAN
0.608





YWGVASFLQK_599.8_350.2
RET4_HUMAN
0.608





EWVAIESDSVQPVPR_856.4_468.3
CNDP1_HUMAN
0.607





LQDAGVYR_461.2_680.3
PD1L1_HUMAN
0.607





DLYHYITSYVVDGEIIIYGPAYSGR_955.5_650.3
PSG1_HUMAN
0.607





LWAYLTIQELLAK_781.5_300.2
ITIH1_HUMAN
0.606





ITENDIQIALDDAK_779.9_632.3
APOB_HUMAN
0.606





SYTITGLQPGTDYK_772.4_680.3
FINC_HUMAN
0.606





FFQYDTWK_567.8_712.3
IGF2_HUMAN
0.605





IYLQPGR_423.7_570.3
ITIH2_HUMAN
0.605





YNQLLR_403.7_529.4
ENOA_HUMAN
0.605





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.605





WWGGQPLWITATK_772.4_373.2
ENPP2_HUMAN
0.605





TASDFITK_441.7_710.4
GELS_HUMAN
0.605





EWVAIESDSVQPVPR_856.4_486.2
CNDP1_HUMAN
0.605





YEFLNGR_449.7_606.3
PLMN_HUMAN
0.604





SNPVTLNVLYGPDLPR_585.7_654.4
PSG6_HUMAN
0.604





ITQDAQLK_458.8_803.4
CBG_HUMAN
0.603





LTTVDIVTLR_565.8_716.4
IL2RB_HUMAN
0.602





FNAVLTNPQGDYDTSTGK_964.5_262.1
C1QC_HUMAN
0.602





ITGFLKPGK_320.9_301.2
LBP_HUMAN
0.601





DYWSTVK_449.7_347.2
APOC3_HUMAN
0.601





DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
0.601





GWVTDGFSSLK_598.8_953.5
APOC3_HUMAN
0.601





YYGYTGAFR_549.3_771.4
TRFL_HUMAN
0.601





ELPEHTVK_476.8_347.2
VTDB_HUMAN
0.601





FTFTLHLETPKPSISSSNLNPR_829.4_874.4
PSG1_HUMAN
0.601





DLYHYITSYVVDGEIIIYGPAYSGR_955.5_707.3
PSG1_HUMAN
0.601





SPQAFYR_434.7_684.4
REL3_HUMAN
0.616





TPSAAYLWVGTGASEAEK_919.5_849.4
GELS_HUMAN
0.615





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.615





IEVNESGTVASSSTAVIVSAR_693.0_545.3
PAI1_HUMAN
0.615





LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.615





LWAYLTIQELLAK_781.5_371.2
ITIH1_HUMAN
0.613





SYTITGLQPGTDYK_772.4_352.2
FINC_HUMAN
0.612





GAVHVVVAETDYQSFAVLYLER_822.8_863.5
CO8G_HUMAN
0.612





FQLPGQK_409.2_276.1
PSG1_HUMAN
0.612





DLYHYITSYVVDGEIIIYGPAYSGR_955.5_707.3
PSG1_HUMAN
0.601
















TABLE 16







Lasso Early 32









Variable
Protein
Coefficient












LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
9.53





VQTAHFK_277.5_431.2
CO8A_HUMAN
9.09





FLNWIK_410.7_560.3
HABP2_HUMAN
6.15





ITGFLKPGK_320.9_429.3
LBP_HUMAN
5.29





ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
3.83





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
3.41





DISEVVTPR_508.3_787.4
CFAB_HUMAN
0.44





AHYDLR_387.7_288.2
FETUA_HUMAN
0.1
















TABLE 17







Lasso Early 100









Variable
Protein
Coefficient












LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
6.56





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
6.51





VQTAHFK_277.5_431.2
CO8A_HUMAN
4.51





NIQSVNVK_451.3_674.4
GROA_HUMAN
3.12





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
2.68





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
2.56





AVLHIGEK_289.5_292.2
THBG_HUMAN
2.11





FLNWIK_410.7_560.3
HABP2_HUMAN
1.85





ITGFLKPGK_320.9_429.3
LBP_HUMAN
1.36





DALSSVQESQVAQQAR_573.0_672.4
APOC3_HUMAN
1.3





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
0.83





FLPCENK_454.2_550.2
IL10_HUMAN
0.39





ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
0.3





TEFLSNYLTNVDDITLVPGTLGR_846.8_600.3
ENPP2_HUMAN
0.29





VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
0.27





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
0.13





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
0.04





TASDFITK_441.7_781.4
GELS_HUMAN
−5.91





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
6.56
















TABLE 18







Lasso Protein Early Window









Variable
Protein
Coefficient












ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
7.17





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
6.06





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
3.23





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
2.8





QALEEFQK_496.8_680.3
CO8B_HUMAN
2.73





NIQSVNVK_451.3_674.4
GROA_HUMAN
2.53





DALSSVQESQVAQQAR_573.0_672.4
APOC3_HUMAN
2.51





AVLHIGEK_289.5_348.7
THBG_HUMAN
2.33





FLNWIK_410.7_560.3
HABP2_HUMAN
1.05





FLPCENK_454.2_550.2
IL10_HUMAN
0.74





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
0.7





DISEVVTPR_508.3_787.4
CFAB_HUMAN
0.45





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
0.17





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
0.06





TASDFITK_441.7_781.4
GELS_HUMAN
−7.65
















TABLE 19







Lasso All Early Window









Variable
Protein
Coefficient












FLNWIK_410.7_560.3
HABP2_HUMAN
3.74





AHYDLR_387.7_288.2
FETUA_HUMAN
0.07





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
6.07





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
8.85





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
2.97





VQTAHFK_277.5_431.2
CO8A_HUMAN
3.36





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
11.24





VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
0.63





AVLHIGEK_289.5_292.2
THBG_HUMAN
0.51





TGVAVNKPAEFTVDAK_549.6_977.5
FLNA_HUMAN
0.17





LIENGYFHPVK_439.6_343.2
F13B_HUMAN
1.7





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
−0.93





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
1.4





TASDFITK_441.7_781.4
GELS_HUMAN
−0.07





NIQSVNVK_451.3_674.4
GROA_HUMAN
2.12





DALSSVQESQVAQQAR_573.0_672.4
APOC3_HUMAN
1.15





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
0.09





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
2.45





ALDLSLK_380.2_575.3
ITIH3_HUMAN
2.51





TLFIFGVTK_513.3_811.5
PSG4_HUMAN
4.12





ISQGEADINIAFYQR_575.6_684.4
MMP8_HUMAN
1.29





SGVDLADSNQK_567.3_591.3
VGFR3_HUMAN
0.55





GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.07





DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
1.36





WNFAYWAAHQPWSR_607.3_545.3
PRG2_HUMAN
−1.27





ELCLDPK_437.7_359.2
IL8_HUMAN
0.3





FFQYDTWK_567.8_840.4
IGF2_HUMAN
1.83





IIEVEEEQEDPYLNDR_996.0_777.4
FBLN1_HUMAN
1.14





ECEELEEK_533.2_405.2
IL15_HUMAN
1.78





LEEHYELR_363.5_580.3
PAI2_HUMAN
0.15





LNIGYIEDLK_589.3_837.4
PAI2_HUMAN
0.32





TAVTANLDIR_537.3_288.2
CHL1_HUMAN
−0.98





SWNEPLYHLVTEVR_581.6_716.4
PRL_HUMAN
1.88





ILNIFGVIK_508.8_790.5
TFR1_HUMAN
0.05





TPSAAYLWVGTGASEAEK_919.5_849.4
GELS_HUMAN
−2.69





VGVISFAQK_474.8_693.4
TFR2_HUMAN
−5.68





LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
−1.43





GQVPENEANVVITTLK_571.3_462.3
CADH1_HUMAN
−0.55





STPSLTTK_417.7_549.3
IL6RA_HUMAN
−0.59





ALLLGWVPTR_563.3_373.2
PAR4_HUMAN
−0.97
















TABLE 20







Lasso SummedCoef Early Window









Transition
Protein
SumBestCoefs












LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
1173.723955





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
811.0150364





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
621.9659363





VQTAHFK_277.5_431.2
CO8A_HUMAN
454.178544





NIQSVNVK_451.3_674.4
GROA_HUMAN
355.9550674





TLFIFGVTK_513.3_811.5
PSG4_HUMAN
331.8629189





GPGEDFR_389.2_322.2
PTGDS_HUMAN
305.9079494





FLPCENK_454.2_550.2
IL10_HUMAN
296.9473975





FLNWIK_410.7_560.3
HABP2_HUMAN
282.9841332





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
237.5320227





ECEELEEK_533.2_405.2
IL15_HUMAN
200.38281





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
194.6252869





QALEEFQK_496.8_680.3
CO8B_HUMAN
179.2518843





IIEVEEEQEDPYLNDR_996.0_777.4
FBLN1_HUMAN
177.7534111





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
164.9735228





ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
162.2414693





LEEHYELR_363.5_580.3
PAI2_HUMAN
152.9262386





ISQGEADINIAFYQR_575.6_684.4
MMP8_HUMAN
144.2445011





HPWIVHWDQLPQYQLNR_744.0_918.5
KS6A3_HUMAN
140.2287926





AHYDLR_387.7_288.2
FETUA_HUMAN
137.9737525





GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
130.4945567





SWNEPLYHLVTEVR_581.6_716.4
PRL_HUMAN
127.442646





SGVDLADSNQK_567.3_591.3
VGFR3_HUMAN
120.5149446





YENYTSSFFIR_713.8_293.1
IL12B_HUMAN
117.0947487





FFQYDTWK_567.8_840.4
IGF2_HUMAN
109.8569617





HYFIAAVER_553.3_658.4
FA8_HUMAN
106.9426543





ITGFLKPGK_320.9_429.3
LBP_HUMAN
103.8056505





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
98.50490812





SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
97.19989285





ALDLSLK_380.2_575.3
ITIH3_HUMAN
94.84900337





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
92.52335783





HPWIVHWDQLPQYQLNR_744.0_1047.0
KS6A3_HUMAN
91.77547608





LIQDAVTGLTVNGQITGDK_972.0_640.4
ITIH3_HUMAN
83.6483639





LNIGYIEDLK_589.3_837.4
PAI2_HUMAN
83.50221521





IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
79.33146741





LPATEKPVLLSK_432.6_460.3
HYOU1_HUMAN
78.89429168





FQLSETNR_497.8_605.3
PSG2_HUMAN
78.13445824





NEIVFPAGILQAPFYTR_968.5_357.2
ECE1_HUMAN
75.12145257





ALDLSLK_380.2_185.1
ITIH3_HUMAN
63.05454715





DLHLSDVFLK_396.2_366.2
CO6_HUMAN
58.26831142





TQILEWAAER_608.8_761.4
EGLN_HUMAN
57.29461621





FSVVYAK_407.2_381.2
FETUA_HUMAN
54.78436389





VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
54.40003244





DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
53.89169348





VQEAHLTEDQIFYFPK_655.7_701.4
CO8G_HUMAN
53.33747599





LSSPAVITDK_515.8_830.5
PLMN_HUMAN
53.22513181





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
51.5477235





AVLHIGEK_289.5_292.2
THBG_HUMAN
49.73092632





GEVTYTTSQVSK_650.3_750.4
EGLN_HUMAN
45.14743629





GYVIIKPLVWV_643.9_854.6
SAMP_HUMAN
44.05164273





TGVAVNKPAEFTVDAK_549.6_977.5
FLNA_HUMAN
42.99898046





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
42.90897411





ILDGGNK_358.7_490.2
CXCL5_HUMAN
42.60771281





FLPCENK_454.2_390.2
IL10_HUMAN
42.56799651





GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
38.68456017





SDGAKPGPR_442.7_213.6
COLI_HUMAN
38.47800265





NTGVISVVTTGLDR_716.4_662.4
CADH1_HUMAN
32.62953675





SERPPIFEIR_415.2_288.2
LRP1_HUMAN
31.48248968





DFHINLFQVLPWLK_885.5_400.2
CFAB_HUMAN
31.27286268





DALSSVQESQVAQQAR_573.0_672.4
APOC3_HUMAN
31.26972354





ELCLDPK_437.7_359.2
IL8_HUMAN
29.91108737





ILNIFGVIK_508.8_790.5
TFR1_HUMAN
29.88784921





TEFLSNYLTNVDDITLVPGTLGR_846.8_600.3
ENPP2_HUMAN
29.42327998





GAVHVVVAETDYQSFAVLYLER_822.8_863.5
CO8G_HUMAN
26.70286929





AVLHIGEK_289.5_348.7
THBG_HUMAN
25.78703299





TFLTVYWTPER_706.9_401.2
ICAM1_HUMAN
24.73090242





AGITIPR_364.2_486.3
IL17_HUMAN
23.84580477





GAVHVVVAETDYQSFAVLYLER_822.8_580.3
CO8G_HUMAN
23.81167843





SLQAFVAVAAR_566.8_487.3
IL23A_HUMAN
23.61468839





SWNEPLYHLVTEVR_581.6_614.3
PRL_HUMAN
23.2538221





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
22.70115313





TAHISGLPPSTDFIVYLSGLAPSIR_871.5_800.5
TENA_HUMAN
22.42695892





QNYHQDSEAAINR_515.9_544.3
FRIH_HUMAN
21.96827269





AHQLAIDTYQEFEETYIPK_766.0_634.4
CSH_HUMAN
21.75765717





GDTYPAELYITGSILR_885.0_274.1
F13B_HUMAN
20.89751398





AHYDLR_387.7_566.3
FETUA_HUMAN
20.67629529





IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
19.28973033





ATNATLDPR_479.8_272.2
PAR1_HUMAN
18.77604574





FSVVYAK_407.2_579.4
FETUA_HUMAN
17.81136564





HTLNQIDEVK_598.8_951.5
FETUA_HUMAN
17.29763288





DIPHWLNPTR_416.9_373.2
PAPP1_HUMAN
17.00562521





LYYGDDEK_501.7_563.2
CO8A_HUMAN
16.78897272





AALAAFNAQNNGSNFQLEEISR_789.1_633.3
FETUA_HUMAN
16.41986569





IQTHSTTYR_369.5_627.3
F13B_HUMAN
15.78335174





GPITSAAELNDPQSILLR_632.4_826.5
EGLN_HUMAN
15.3936876





QTLSWTVTPK_580.8_818.4
PZP_HUMAN
14.92509259





AVGYLITGYQR_620.8_737.4
PZP_HUMAN
13.9795325





DIIKPDPPK_511.8_342.2
IL12B_HUMAN
13.76508282





YNQLLR_403.7_288.2
ENOA_HUMAN
12.61733711





GNGLTWAEK_488.3_634.3
C163B_HUMAN
12.5891421





QVFAVQR_424.2_473.3
ELNE_HUMAN
12.57709327





FLQEQGHR_338.8_497.3
CO8G_HUMAN
12.51843475





HVVQLR_376.2_515.3
IL6RA_HUMAN
11.83747559





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
PSG7_HUMAN
11.69074708





TFLTVYWTPER_706.9_502.3
ICAM1_HUMAN
11.63709776





VELAPLPSWQPVGK_760.9_400.3
ICAM1_HUMAN
10.79897269





TLFIFGVTK_513.3_215.1
PSG4_HUMAN
10.2831751





AYSDLSR_406.2_375.2
SAMP_HUMAN
10.00461148





HATLSLSIPR_365.6_472.3
VGFR3_HUMAN
9.967933028





LQGTLPVEAR_542.3_571.3
CO5_HUMAN
9.963760572





NTVISVNPSTK_580.3_732.4
VCAM1_HUMAN
9.124228658





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
8.527980294





SLQNASAIESILK_687.4_860.5
IL3_HUMAN
8.429061621





IQHPFTVEEFVLPK_562.0_861.5
PZP_HUMAN
7.996504258





GVTGYFTFNLYLK_508.3_683.9
PSG5_HUMAN
7.94396229





VFQYIDLHQDEFVQTLK_708.4_361.2
CNDP1_HUMAN
7.860590049





ILDDLSPR_464.8_587.3
ITIH4_HUMAN
7.593889262





LIENGYFHPVK_439.6_343.2
F13B_HUMAN
7.05838337





VFQFLEK_455.8_811.4
CO5_HUMAN
6.976884759





AFTECCVVASQLR_770.9_574.3
CO5_HUMAN
6.847474286





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
6.744837357





IQTHSTTYR_369.5_540.3
F13B_HUMAN
6.71464509





IAQYYYTFK_598.8_395.2
F13B_HUMAN
6.540497911





YGFYTHVFR_397.2_421.3
THRB_HUMAN
6.326347548





YHFEALADTGISSEFYDNANDLLSK_940.8_874.5
CO8A_HUMAN
6.261787525





ANDQYLTAAALHNLDEAVK_686.4_301.1
IL1A_HUMAN
6.217191651





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
6.1038295





GWVTDGFSSLK_598.8_854.4
APOC3_HUMAN
6.053494609





TLEAQLTPR_514.8_814.4
HEP2_HUMAN
5.855967278





VSAPSGTGHLPGLNPL_506.3_300.7
PSG3_HUMAN
5.625944609





EAQLPVIENK_570.8_699.4
PLMN_HUMAN
5.407703773





SPEAEDPLGVER_649.8_670.4
Z512B_HUMAN
5.341420139





IAIDLFK_410.3_635.4
HEP2_HUMAN
4.698739039





YEFLNGR_449.7_293.1
PLMN_HUMAN
4.658286706





VQTAHFK_277.5_502.3
CO8A_HUMAN
4.628247194





IEVIITLK_464.8_815.5
CXL11_HUMAN
4.57198762





ILTPEVR_414.3_601.3
GDF15_HUMAN
4.452884608





LEEHYELR_363.5_288.2
PAI2_HUMAN
4.411983862





HATLSLSIPR_365.6_272.2
VGFR3_HUMAN
4.334242077





NSDQEIDFK_548.3_294.2
S10A5_HUMAN
4.25302369





LPNNVLQEK_527.8_844.5
AFAM_HUMAN
4.183602548





ELANTIK_394.7_475.3
S10AC_HUMAN
4.13558153





LSIPQITTK_500.8_687.4
PSG5_HUMAN
3.966238797





TLNAYDHR_330.5_312.2
PAR3_HUMAN
3.961140111





WWGGQPLWITATK_772.4_373.2
ENPP2_HUMAN
3.941476057





ELLESYIDGR_597.8_710.4
THRB_HUMAN
3.832723338





ATLSAAPSNPR_542.8_570.3
CXCL2_HUMAN
3.82834767





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
SHBG_HUMAN
3.80737887





NADYSYSVWK_616.8_333.2
CO5_HUMAN
3.56404167





ILILPSVTR_506.3_559.3
PSGx_HUMAN
3.526998593





ALEQDLPVNIK_620.4_798.5
CNDP1_HUMAN
3.410412424





QVCADPSEEWVQK_788.4_275.2
CCL3_HUMAN
3.30795151





SVQNDSQAIAEVLNQLK_619.7_914.5
DESP_HUMAN
3.259270741





QVFAVQR_424.2_620.4
ELNE_HUMAN
3.211482663





ALPGEQQPLHALTR_511.0_807.5
IBP1_HUMAN
3.211207158





LEPLYSASGPGLRPLVIK_637.4_260.2
CAA60698
3.203088951





GTYLYNDCPGPGQDTDCR_697.0_666.3
TNR1A_HUMAN
3.139418139





DAGLSWGSAR_510.2_576.3
NEUR4_HUMAN
3.005197927





YGFYTHVFR_397.2_659.4
THRB_HUMAN
2.985663918





NNQLVAGYLQGPNVNLEEK_700.7_357.2
IL1RA_HUMAN
2.866983196





EKPAGGIPVLGSLVNTVLK_631.4_930.6
BPIB1_HUMAN
2.798965142





FGSDDEGR_441.7_735.3
PTHR_HUMAN
2.743283546





IEVNESGTVASSSTAVIVSAR_693.0_545.3
PAI1_HUMAN
2.699725572





FATTFYQHLADSK_510.3_533.3
ANT3_HUMAN
2.615073729





DYWSTVK_449.7_347.2
APOC3_HUMAN
2.525459346





QLGLPGPPDVPDHAAYHPF_676.7_263.1
ITIH4_HUMAN
2.525383799





LSSPAVITDK_515.8_743.4
PLMN_HUMAN
2.522306831





TEFLSNYLTNVDDITLVPGTLGR_846.8_699.4
ENPP2_HUMAN
2.473366805





SILFLGK_389.2_201.1
THBG_HUMAN
2.472413913





VTFEYR_407.7_614.3
CRHBP_HUMAN
2.425338167





SVVLIPLGAVDDGEHSQNEK_703.0_798.4
CNDP1_HUMAN
2.421340244





HTLNQIDEVK_598.8_958.5
FETUA_HUMAN
2.419851187





ALNSIIDVYHK_424.9_661.3
S10A8_HUMAN
2.367904596





ETLALLSTHR_570.8_500.3
IL5_HUMAN
2.230076769





GLQYAAQEGLLALQSELLR_1037.1_858.5
LBP_HUMAN
2.205949216





TYNVDK_370.2_262.1
PPB1_HUMAN
2.11849772





FTITAGSK_412.7_576.3
FABPL_HUMAN
2.098589805





GIVEECCFR_585.3_900.3
IGF2_HUMAN
2.059942995





YGIEEHGK_311.5_599.3
CXA1_HUMAN
2.033828589





ALVLELAK_428.8_331.2
INHBE_HUMAN
1.993820617





ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
1.968753183





HELTDEELQSLFTNFANVVDK_817.1_906.5
AFAM_HUMAN
1.916438806





EANQSTLENFLER_775.9_678.4
IL4_HUMAN
1.902033355





DADPDTFFAK_563.8_825.4
AFAM_HUMAN
1.882254674





LFIPQITR_494.3_727.4
PSG9_HUMAN
1.860649392





DPNGLPPEAQK_583.3_497.2
RET4_HUMAN
1.847702127





VEPLYELVTATDFAYSSTVR_754.4_549.3
CO8B_HUMAN
1.842159131





FQLSETNR_497.8_476.3
PSG2_HUMAN
1.834693717





FSLVSGWGQLLDR_493.3_516.3
FA7_HUMAN
1.790582748





NKPGVYTDVAYYLAWIR_677.0_545.3
FA12_HUMAN
1.777303353





FTGSQPFGQGVEHATANK_626.0_521.2
TSP1_HUMAN
1.736517431





DDLYVSDAFHK_655.3_704.3
ANT3_HUMAN
1.717534082





AFLEVNEEGSEAAASTAVVIAGR_764.4_685.4
ANT3_HUMAN
1.679420475





LPNNVLQEK_527.8_730.4
AFAM_HUMAN
1.66321148





IVLSLDVPIGLLQILLEQAR_735.1_503.3
UCN2_HUMAN
1.644983604





DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
1.625411496





SDLEVAHYK_531.3_617.3
CO8B_HUMAN
1.543640117





QLYGDTGVLGR_589.8_501.3
CO8G_HUMAN
1.505242962





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
1.48233058





TLLPVSKPEIR_418.3_288.2
CO5_HUMAN
1.439531341





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
1.424401638





YGIEEHGK_311.5_341.2
CXA1_HUMAN
1.379872204





DAGLSWGSAR_510.3_390.2
NEUR4_HUMAN
1.334272677





AEHPTWGDEQLFQTTR_639.3_569.3
PGH1_HUMAN
1.30549273





FQSVFTVTR_542.8_623.4
C1QC_HUMAN
1.302847429





VPGLYYFTYHASSR_554.3_420.2
C1QB_HUMAN
1.245565877





AYSDLSR_406.2_577.3
SAMP_HUMAN
1.220777002





ALEQDLPVNIK_620.4_570.4
CNDP1_HUMAN
1.216612522





NAVVQGLEQPHGLVVHPLR_688.4_890.6
LRP1_HUMAN
1.212935735





TSDQIHFFFAK_447.6_659.4
ANT3_HUMAN
1.176238265





GTYLYNDCPGPGQDTDCR_697.0_335.2
TNR1A_HUMAN
1.1455649





TSYQVYSK_488.2_787.4
C163A_HUMAN
1.048896429





ALNSIIDVYHK_424.9_774.4
S10A8_HUMAN
1.028522516





VELAPLPSWQPVGK_760.9_342.2
ICAM1_HUMAN
0.995831393





LSETNR_360.2_330.2
PSG1_HUMAN
0.976094717





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.956286531





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.947931674





LPATEKPVLLSK_432.6_347.2
HYOU1_HUMAN
0.932537153





SPEAEDPLGVER_649.8_314.1
Z512B_HUMAN
0.905955419





DEIPHNDIALLK_459.9_510.8
HABP2_HUMAN
0.9032484





FFQYDTWK_567.8_712.3
IGF2_HUMAN
0.884340285





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
0.881493383





AGFAGDDAPR_488.7_701.3
ACTB_HUMAN
0.814836556





YEFLNGR_449.7_606.3
PLMN_HUMAN
0.767373087





VIAVNEVGR_478.8_284.2
CHL1_HUMAN
0.721519592





SLSQQIENIR_594.3_531.3
CO1A1_HUMAN
0.712051082





EWVAIESDSVQPVPR_856.4_486.2
CNDP1_HUMAN
0.647712421





YGLVTYATYPK_638.3_843.4
CFAB_HUMAN
0.618499569





SVVLIPLGAVDDGEHSQNEK_703.0_286.2
CNDP1_HUMAN
0.606626346





NSDQEIDFK_548.3_409.2
S10A5_HUMAN
0.601928175





NVNQSLLELHK_432.2_543.3
FRIH_HUMAN
0.572008792





IAQYYYTFK_598.8_884.4
F13B_HUMAN
0.495062844





GPITSAAELNDPQSILLR_632.4_601.4
EGLN_HUMAN
0.47565795





YTTEIIK_434.2_704.4
C1R_HUMAN
0.433318952





GYVIIKPLVWV_643.9_304.2
SAMP_HUMAN
0.427905264





LDFHFSSDR_375.2_464.2
INHBC_HUMAN
0.411898116





IPSNPSHR_303.2_496.3
FBLN3_HUMAN
0.390037291





APLTKPLK_289.9_357.2
CRP_HUMAN
0.38859469





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.371359974





YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
0.346336267





SPQAFYR_434.7_556.3
REL3_HUMAN
0.345901234





SVDEALR_395.2_488.3
PRDX2_HUMAN
0.307518869





FVFGTTPEDILR_697.9_742.4
TSP1_HUMAN
0.302313589





FTFTLHLETPKPSISSSNLNPR_829.4_787.4
PSG1_HUMAN
0.269826678





VGEYSLYIGR_578.8_708.4
SAMP_HUMAN
0.226573173





ILPSVPK_377.2_244.2
PGH1_HUMAN
0.225429414





LFIPQITR_494.3_614.4
PSG9_HUMAN
0.18285533





TGYYFDGISR_589.8_857.4
FBLN1_HUMAN
0.182474114





HYGGLTGLNK_530.3_759.4
PGAM1_HUMAN
0.152397007





NQSPVLEPVGR_598.3_866.5
KS6A3_HUMAN
0.128963949





IGKPAPDFK_324.9_294.2
PRDX2_HUMAN
0.113383235





TSESTGSLPSPFLR_739.9_716.4
PSMG1_HUMAN
0.108159874





ESDTSYVSLK_564.8_347.2
CRP_HUMAN
0.08569303





ETPEGAEAKPWYEPIYLGGVFQLEK_951.1_877.5
TNFA_HUMAN
0.039781728





TSDQIHFFFAK_447.6_512.3
ANT3_HUMAN
0.008064465
















TABLE 21







Lasso32 Middle Window











Co-




effi-


Variable
UniProt_ID
cient












SEYGAALAWEK_612.8_788.4
CO6_HUMAN
6.99





VFQFLEK_455.8_811.4
CO5_HUMAN
6.43





VLEPTLK_400.3_458.3
VTDB_HUMAN
3.99





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
3.33





TLAFVR_353.7_492.3
FA7_HUMAN
2.44





YGIEEHGK_311.5_599.3
CXA1_HUMAN
2.27





LHEAFSPVSYQHDLALLR_699.4_251.2
FA12_HUMAN
2.14





QGHNSVFLIK_381.6_520.4
HEMO_HUMAN
0.25





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
−2.81





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
−3.46





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
−6.61
















TABLE 22







Lasso100 Middle Window











Co-




effi-


Variable
UniProt_ID
cient












VFQFLEK_455.8_811.4
CO5_HUMAN
6.89





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
4.67





GEVTYTTSQVSK_650.3_750.4
EGLN_HUMAN
3.4





QVFAVQR_424.2_473.3
ELNE_HUMAN
1.94





VELAPLPSWQPVGK_760.9_342.2
ICAM1_HUMAN
1.91





LHEAFSPVSYQHDLALLR_699.4_251.2
FA12_HUMAN
1.8





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
1.67





YGIEEHGK_311.5_599.3
CXA1_HUMAN
1.53





YGIEEHGK_311.5_341.2
CXA1_HUMAN
1.51





HYINLITR_515.3_301.1
NPY_HUMAN
1.47





TLAFVR_353.7_492.3
FA7_HUMAN
1.46





GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
1.28





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
0.84





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
0.41





VELAPLPSWQPVGK_760.9_400.3
ICAM1_HUMAN
0.3





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
−0.95





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
−1.54





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
PSG7_HUMAN
−1.54





VPLALFALNR_557.3_620.4
PEPD_HUMAN
−1.91





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
−2.3





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
−3.6





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
−3.96
















TABLE 23







Lasso Protein Middle Window











Co-




effi-


Variable
UniProt_ID
cient












SEYGAALAWEK_612.8_788.4
CO6_HUMAN
5.84





VFQFLEK_455.8_811.4
CO5_HUMAN
5.58





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
2.11





TLAFVR_353.7_492.3
FA7_HUMAN
1.83





LHEAFSPVSYQHDLALLR_699.4_251.2
FA12_HUMAN
1.62





HYINLITR_515.3_301.1
NPY_HUMAN
1.39





VLEPTLK_400.3_458.3
VTDB_HUMAN
1.37





YGIEEHGK_311.5_599.3
CXA1_HUMAN
1.17





VELAPLPSWQPVGK_760.9_342.2
ICAM1_HUMAN
1.13





QVFAVQR_424.2_473.3
ELNE_HUMAN
0.79





ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
0.23





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
PSG7_HUMAN
−0.61





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
−0.69





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
−0.85





VPLALFALNR_557.3_620.4
PEPD_HUMAN
−1.45





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
−1.9





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
−2.07





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
−2.32
















TABLE 24







Lasso All Middle Window











Co-




effi-


Variable
UniProt_ID
cient












SEYGAALAWEK_612.8_788.4
CO6_HUMAN
2.48





VFQFLEK_455.8_811.4
CO5_HUMAN
2.41





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
1.07





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.64





VLEPTLK_400.3_458.3
VTDB_HUMAN
0.58





LHEAFSPVSYQHDLALLR_699.4_251.2
FA12_HUMAN
0.21





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
−0.62





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
−1.28
















TABLE 25







Lasso32 Middle-Late Window









Variable
UniProt_ID
Coefficient












SEYGAALAWEK_612.8_845.5
CO6_HUMAN
4.35





TLAFVR_353.7_492.3
FA7_HUMAN
2.42





YGIEEHGK_311.5_599.3
CXA1_HUMAN
1.46





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
1.37





VFQFLEK_455.8_811.4
CO5_HUMAN
0.89





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.85





QINSYVK_426.2_496.3
CBG_HUMAN
0.56





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.53





SLQAFVAVAAR_566.8_804.5
IL23A_HUMAN
0.39





TEQAAVAR_423.2_615.4
FA12_HUMAN
0.26





VLEPTLK_400.3_587.3
VTDB_HUMAN
0.24





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
−2.08





VPLALFALNR_557.3_620.4
PEPD_HUMAN
−2.09





AVYEAVLR_460.8_587.4
PEPD_HUMAN
−3.37
















TABLE 26







Lasso100 Middle-Late Window









Variable
UniProt_ID
Coefficient












VFQFLEK_455.8_811.4
CO5_HUMAN
3.82





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
2.94





YGIEEHGK_311.5_599.3
CXA1_HUMAN
2.39





DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
2.05





TLAFVR_353.7_492.3
FA7_HUMAN
1.9





NQSPVLEPVGR_598.3_866.5
KS6A3_HUMAN
1.87





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
1.4





TQILEWAAER_608.8_761.4
EGLN_HUMAN
1.29





VVGGLVALR_442.3_784.5
FA12_HUMAN
1.24





QINSYVK_426.2_496.3
CBG_HUMAN
1.14





YGIEEHGK_311.5_341.2
CXA1_HUMAN
0.84





ALEQDLPVNIK_620.4_570.4
CNDP1_HUMAN
0.74





GTYLYNDCPGPGQDTDCR_697.0_666.3
TNR1A_HUMAN
0.51





SLQNASAIESILK_687.4_860.5
IL3_HUMAN
0.44





DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.38





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.37





NIQSVNVK_451.3_674.4
GROA_HUMAN
0.3





FFQYDTWK_567.8_712.3
IGF2_HUMAN
0.19





ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
0.19





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.15





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
−0.09





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
−0.52





TSYQVYSK_488.2_787.4
C163A_HUMAN
−0.62





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
−1.29





TAHISGLPPSTDFIVYLSGLAPSIR_871.5_472.3
TENA_HUMAN
−1.53





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
−1.73





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
−1.95





VPLALFALNR_557.3_620.4
PEPD_HUMAN
−2.9





AVYEAVLR_460.8_587.4
PEPD_HUMAN
−3.04





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
−3.49





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
−3.71
















TABLE 27







Lasso Protein Middle-LateWindow









Variable
UniProt_ID
Coefficient












VFQFLEK_455.8_811.4
CO5_HUMAN
4.25





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
3.06





YGIEEHGK_311.5_599.3
CXA1_HUMAN
2.36





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
2.11





TQILEWAAER_608.8_761.4
EGLN_HUMAN
1.81





NQSPVLEPVGR_598.3_866.5
KS6A3_HUMAN
1.79





TEQAAVAR_423.2_615.4
FA12_HUMAN
1.72





QINSYVK_426.2_496.3
CBG_HUMAN
0.98





ALEQDLPVNIK_620.4_570.4
CNDP1_HUMAN
0.98





NCSFSIIYPVVIK_770.4_555.4
CRHBP_HUMAN
0.76





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.63





SLQNASAIESILK_687.4_860.5
IL3_HUMAN
0.59





ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
0.55





GTYLYNDCPGPGQDTDCR_697.0_666.3
TNR1A_HUMAN
0.55





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.46





NIQSVNVK_451.3_674.4
GROA_HUMAN
0.22





LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.11





FFQYDTWK_567.8_712.3
IGF2_HUMAN
0.01





TSYQVYSK_488.2_787.4
C163A_HUMAN
−0.76





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
−1.31





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
−1.59





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
−1.73





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
−2.02





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
−3





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
−3.15





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
−3.49





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
−3.82





VPLALFALNR_557.3_620.4
PEPD_HUMAN
−4.94
















TABLE 28







Lasso All Middle-LateWindow









Variable
UniProt_ID
Coefficient












ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
2.38





TLAFVR_353.7_492.3
FA7_HUMAN
0.96





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.34





DPTFIPAPIQAK_433.2_461.2
ANGT_HUMAN
0.33





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.13





QINSYVK_426.2_496.3
CBG_HUMAN
0.03





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
−0.02





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
−0.05





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
−0.12





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
−0.17





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
−0.31





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
−0.35





VPLALFALNR_557.3_620.4
PEPD_HUMAN
−0.43





AVYEAVLR_460.8_587.4
PEPD_HUMAN
−2.33
















TABLE 29







Lasso 32 LateWindow









Variable
UniProt_ID
Coefficient












QINSYVK_426.2_610.3
CBG_HUMAN
3.24





ILDGGNK_358.7_603.3
CXCL5_HUMAN
2.65





VFQYIDLHQDEFVQTLK_708.4_375.2
CNDP1_HUMAN
2.55





SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
2.12





YSHYNER_323.5_418.2
HABP2_HUMAN
1.63





DEIPHNDIALLK_459.9_510.8
HABP2_HUMAN
1.22





SGVDLADSNQK_567.3_591.3
VGFR3_HUMAN
0.96





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.86





GTYLYNDCPGPGQDTDCR_697.0_666.3
TNR1A_HUMAN
0.45





TSYQVYSK_488.2_787.4
C163A_HUMAN
−1.73





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
−2.56





SPEAEDPLGVER_649.8_314.1
Z512B_HUMAN
−3.04





VPLALFALNR_557.3_620.4
PEPD_HUMAN
−3.33





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
−4.24





AVYEAVLR_460.8_587.4
PEPD_HUMAN
−5.83





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
−6.52





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
−6.55
















TABLE 30







Lasso 100 Late Window









Variable
UniProt_ID
Coefficient












SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
4.13





ILDGGNK_358.7_603.3
CXCL5_HUMAN
3.57





QINSYVK_426.2_610.3
CBG_HUMAN
3.41





DEIPHNDIALLK_459.9_510.8
HABP2_HUMAN
1.64





VFQYIDLHQDEFVQTLK_708.4_375.2
CNDP1_HUMAN
1.57





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
1.45





LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.71





YSHYNER_323.5_418.2
HABP2_HUMAN
0.68





FFQYDTWK_567.8_712.3
IGF2_HUMAN
0.42





IEVNESGTVASSSTAVIVSAR_693.0_545.3
PAI1_HUMAN
0.36





GTYLYNDCPGPGQDTDCR_697.0_666.3
TNR1A_HUMAN
0.21





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.1





VGVISFAQK_474.8_580.3
TFR2_HUMAN
0.08





TSYQVYSK_488.2_787.4
C163A_HUMAN
−0.36





ALNFGGIGVVVGHELTHAFDDQGR_837.1_360.2
ECE1_HUMAN
−0.65





AYSDLSR_406.2_375.2
SAMP_HUMAN
−1.23





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
−1.63





SPEAEDPLGVER_649.8_314.1
Z512B_HUMAN
−2.29





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
−2.58





VPLALFALNR_557.3_620.4
PEPD_HUMAN
−2.73





YISPDQLADLYK_713.4_277.2
ENOA_HUMAN
−2.87





AVDIPGLEAATPYR_736.9_286.1
TENA_HUMAN
−3.9





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
−5.29





AVYEAVLR_460.8_587.4
PEPD_HUMAN
−5.51





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
−6.49
















TABLE 31







Lasso Protein Late Window









Variable
UniProt_ID
Coefficient












SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
3.33





ILDGGNK_358.7_603.3
CXCL5_HUMAN
3.25





QINSYVK_426.2_496.3
CBG_HUMAN
2.41





YSHYNER_323.5_418.2
HABP2_HUMAN
1.82





ALEQDLPVNIK_620.4_798.5
CNDP1_HUMAN
1.32





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
1.27





GTYLYNDCPGPGQDTDCR_697.0_666.3
TNR1A_HUMAN
0.26





IEVNESGTVASSSTAVIVSAR_693.0_545.3
PAI1_HUMAN
0.18





LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.18





TSYQVYSK_488.2_787.4
C163A_HUMAN
−0.11





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
−0.89





AYSDLSR_406.2_375.2
SAMP_HUMAN
−1.47





SPEAEDPLGVER_649.8_314.1
Z512B_HUMAN
−1.79





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
−2.22





YISPDQLADLYK_713.4_277.2
ENOA_HUMAN
−2.41





AVDIPGLEAATPYR_736.9_286.1
TENA_HUMAN
−2.94





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
−5.18





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
−5.71





AVYEAVLR_460.8_587.4
PEPD_HUMAN
−7.33
















TABLE 32







Lasso All Late Window









Variable
UniProt_ID
Coefficient












QINSYVK_426.2_496.3
CBG_HUMAN
0.5





DEIPHNDIALLK_459.9_510.8
HABP2_HUMAN
0.15





ALEQDLPVNIK_620.4_570.4
CNDP1_HUMAN
0.11





ILDGGNK_358.7_603.3
CXCL5_HUMAN
0.08





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.06





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
−0.39





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
−1.57





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
−2.46





AVYEAVLR_460.8_587.4
PEPD_HUMAN
−2.92
















TABLE 33







Random Forest 32 Early Window









Variable
Protein
MeanDecreaseGini












ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
3.224369171





AHYDLR_387.7_288.2
FETUA_HUMAN
1.869007658





FSVVYAK_407.2_381.2
FETUA_HUMAN
1.770198171





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
1.710936472





ITGFLKPGK_320.9_301.2
LBP_HUMAN
1.623922439





ITGFLKPGK_320.9_429.3
LBP_HUMAN
1.408035272





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
1.345412168





VFQFLEK_455.8_811.4
CO5_HUMAN
1.311332013





VQTAHFK_277.5_431.2
CO8A_HUMAN
1.308902373





FLNWIK_410.7_560.3
HABP2_HUMAN
1.308093745





DAGLSWGSAR_510.3_390.2
NEUR4_HUMAN
1.297033607





TLLPVSKPEIR_418.3_288.2
CO5_HUMAN
1.291280928





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
1.28622301





QALEEFQK_496.8_680.3
CO8B_HUMAN
1.191731825





FSVVYAK_407.2_579.4
FETUA_HUMAN
1.078909138





ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
1.072613747





AHYDLR_387.7_566.3
FETUA_HUMAN
1.029562263





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
1.00992071





DVLLLVHNLPQNLPGYFWYK_810.4_967.5
PSG9_HUMAN
1.007095529





SFRPFVPR_335.9_635.3
LBP_HUMAN
0.970312536





SDLEVAHYK_531.3_617.3
CO8B_HUMAN
0.967904893





VQEAHLTEDQIFYFPK_655.7_701.4
CO8G_HUMAN
0.960398254





VFQFLEK_455.8_276.2
CO5_HUMAN
0.931652095





SLLQPNK_400.2_599.4
CO8A_HUMAN
0.926470249





SFRPFVPR_335.9_272.2
LBP_HUMAN
0.911599611





FLNWIK_410.7_561.3
HABP2_HUMAN
0.852022868





LSSPAVITDK_515.8_743.4
PLMN_HUMAN
0.825455824





DVLLLVHNLPQNLPGYFWYK_810.4_594.3
PSG9_HUMAN
0.756797142





ALVLELAK_428.8_672.4
INHBE_HUMAN
0.748802555





DISEVVTPR_508.3_787.4
CFAB_HUMAN
0.733731518
















TABLE 34







Random Forest 100 Early Window









Variable
Protein
MeanDecreaseGini












ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
1.709778508





LPNNVLQEK_527.8_844.5
AFAM_HUMAN
0.961692716





AHYDLR_387.7_288.2
FETUA_HUMAN
0.901586746





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
0.879119498





IEGNLIFDPNNYLPK_874.0_414.2
APOB_HUMAN
0.842483095





ITGFLKPGK_320.9_301.2
LBP_HUMAN
0.806905233





FSVVYAK_407.2_381.2
FETUA_HUMAN
0.790429706





ITGFLKPGK_320.9_429.3
LBP_HUMAN
0.710312386





VFQFLEK_455.8_811.4
CO5_HUMAN
0.709531553





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
0.624325189





DADPDTFFAK_563.8_825.4
AFAM_HUMAN
0.618684313





FLNWIK_410.7_560.3
HABP2_HUMAN
0.617501242





TASDFITK_441.7_781.4
GELS_HUMAN
0.609275999





DAGLSWGSAR_510.3_390.2
NEUR4_HUMAN
0.588718595





VQTAHFK_277.5_431.2
CO8A_HUMAN
0.58669845





TLLPVSKPEIR_418.3_288.2
CO5_HUMAN
0.5670608





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
0.555624783





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
0.537678415





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.535543137





TASDFITK_441.7_710.4
GELS_HUMAN
0.532743323





ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
0.51667902





QALEEFQK_496.8_680.3
CO8B_HUMAN
0.511314017





AVLHIGEK_289.5_348.7
THBG_HUMAN
0.510284122





FSVVYAK_407.2_579.4
FETUA_HUMAN
0.503907813





LPNNVLQEK_527.8_730.4
AFAM_HUMAN
0.501281631





AHYDLR_387.7_566.3
FETUA_HUMAN
0.474166711





IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
0.459595701





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.44680777





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.434157773





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
0.432484862
















TABLE 35







Random Forest Protein Early Window









Variable
Protein
MeanDecreaseGini












ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
2.881452809





LPNNVLQEK_527.8_844.5
AFAM_HUMAN
1.833987752





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
1.608843881





IEGNLIFDPNNYLPK_874.0_414.2
APOB_HUMAN
1.594658208





VFQFLEK_455.8_811.4
CO5_HUMAN
1.290134412





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
1.167981736





TASDFITK_441.7_781.4
GELS_HUMAN
1.152847453





DAGLSWGSAR_510.3_390.2
NEUR4_HUMAN
1.146752656





FSVVYAK_407.2_579.4
FETUA_HUMAN
1.060168583





AVLHIGEK_289.5_348.7
THBG_HUMAN
1.033625773





FLNWIK_410.7_560.3
HABP2_HUMAN
1.022356789





QALEEFQK_496.8_680.3
CO8B_HUMAN
0.990074129





DVLLLVHNLPQNLPGYFWYK_810.4_967.5
PSG9_HUMAN
0.929633865





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.905895642





VQEAHLTEDQIFYFPK_655.7_701.4
CO8G_HUMAN
0.883887371





NNQLVAGYLQGPNVNLEEK_700.7_999.5
IL1RA_HUMAN
0.806472085





SLLQPNK_400.2_599.4
CO8A_HUMAN
0.783623222





DALSSVQESQVAQQAR_573.0_672.4
APOC3_HUMAN
0.774365756





NIQSVNVK_451.3_674.4
GROA_HUMAN
0.767963386





HPWIVHWDQLPQYQLNR_744.0_1047.0
KS6A3_HUMAN
0.759960139





TTSDGGYSFK_531.7_860.4
INHA_HUMAN
0.732813448





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.718779092





LSSPAVITDK_515.8_743.4
PLMN_HUMAN
0.699547739





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
0.693159192





TLNAYDHR_330.5_312.2
PAR3_HUMAN
0.647300964





DISEVVTPR_508.3_787.4
CFAB_HUMAN
0.609165621





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
0.60043345





SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
0.596079858





ALQDQLVLVAAK_634.9_289.2
ANGT_HUMAN
0.579034994





ALVLELAK_428.8_672.4
INHBE_HUMAN
0.573458483
















TABLE 36







Random Forest All Early Window









Variable
Protein
MeanDecreaseGini












ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
0.730972421





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
0.409808774





AHYDLR_387.7_288.2
FETUA_HUMAN
0.409298983





FSVVYAK_407.2_381.2
FETUA_HUMAN
0.367730833





ITGFLKPGK_320.9_301.2
LBP_HUMAN
0.350485117





VFQFLEK_455.8_811.4
CO5_HUMAN
0.339289475





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
0.334303166





LPNNVLQEK_527.8_844.5
AFAM_HUMAN
0.329800706





IEGNLIFDPNNYLPK_874.0_414.2
APOB_HUMAN
0.325596677





ITGFLKPGK_320.9_429.3
LBP_HUMAN
0.31473104





FLNWIK_410.7_560.3
HABP2_HUMAN
0.299810081





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
0.295613448





ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
0.292212699





DAGLSWGSAR_510.3_390.2
NEUR4_HUMAN
0.285812225





TLLPVSKPEIR_418.3_288.2
CO5_HUMAN
0.280857718





FSVVYAK_407.2_579.4
FETUA_HUMAN
0.278531322





DADPDTFFAK_563.8_825.4
AFAM_HUMAN
0.258938798





AHYDLR_387.7_566.3
FETUA_HUMAN
0.256160046





QALEEFQK_496.8_680.3
CO8B_HUMAN
0.245543641





HTLNQIDEVK_598.8_951.5
FETUA_HUMAN
0.239528081





TASDFITK_441.7_781.4
GELS_HUMAN
0.227485958





VFQFLEK_455.8_276.2
CO5_HUMAN
0.226172392





DVLLLVHNLPQNLPGYFWYK_810.4_967.5
PSG9_HUMAN
0.218613384





VQTAHFK_277.5_431.2
CO8A_HUMAN
0.217171548





SFRPFVPR_335.9_635.3
LBP_HUMAN
0.214798112





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.211756476





SVSLPSLDPASAK_636.4_473.3
APOB_HUMAN
0.211319422





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.206574494





HFQNLGK_422.2_285.1
AFAM_HUMAN
0.204024196





AVLHIGEK_289.5_348.7
THBG_HUMAN
0.201102917
















TABLE 37







Random Forest SummedGini Early Window









Transition
Protein
SumBestGini












ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
242.5373659





VFQFLEK_455.8_811.4
CO5_HUMAN
115.1113943





FLNWIK_410.7_560.3
HABP2_HUMAN
107.4572447





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
104.0742727





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
103.3238077





DAGLSWGSAR_510.3_390.2
NEUR4_HUMAN
70.4151533





AHYDLR_387.7_288.2
FETUA_HUMAN
140.2670822





FSVVYAK_407.2_381.2
FETUA_HUMAN
121.3664352





LPNNVLQEK_527.8_844.5
AFAM_HUMAN
115.5211679





ITGFLKPGK_320.9_429.3
LBP_HUMAN
114.9512704





ITGFLKPGK_320.9_301.2
LBP_HUMAN
112.916627





IEGNLIFDPNNYLPK_874.0_414.2
APOB_HUMAN
52.21169288





VQTAHFK_277.5_431.2
CO8A_HUMAN
144.5237215





TLLPVSKPEIR_418.3_288.2
CO5_HUMAN
96.16982897





QALEEFQK_496.8_680.3
CO8B_HUMAN
85.35050759





FSVVYAK_407.2_579.4
FETUA_HUMAN
73.23969945





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
61.61450671





TASDFITK_441.7_781.4
GELS_HUMAN
61.32155633





DVLLLVHNLPQNLPGYFWYK_810.4_967.5
PSG9_HUMAN
99.68404123





AVLHIGEK_289.5_348.7
THBG_HUMAN
69.96748485





ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
56.66810872





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
56.54173176





VQEAHLTEDQIFYFPK_655.7_701.4
CO8G_HUMAN
47.92505575





DADPDTFFAK_563.8_825.4
AFAM_HUMAN
40.34147696





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
145.0311483





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
109.4072996





FLPCENK_454.2_550.2
IL10_HUMAN
105.7756691





VQTAHFK_277.5_502.3
CO8A_HUMAN
101.5877845





VFQFLEK_455.8_276.2
CO5_HUMAN
95.71159157





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
94.92157517





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
90.67568777





NKPGVYTDVAYYLAWIR_677.0_545.3
FA12_HUMAN
90.35890105





LEEHYELR_363.5_580.3
PAI2_HUMAN
88.44833508





HPWIVHWDQLPQYQLNR_744.0_1047.0
KS6A3_HUMAN
88.37680942





HTLNQIDEVK_598.8_951.5
FETUA_HUMAN
87.63064143





LPNNVLQEK_527.8_730.4
AFAM_HUMAN
86.64484642





ALDLSLK_380.2_575.3
ITIH3_HUMAN
83.51201287





YGIEEHGK_311.5_599.3
CXA1_HUMAN
82.47620831





LSSPAVITDK_515.8_830.5
PLMN_HUMAN
81.5433587





LEEHYELR_363.5_288.2
PAI2_HUMAN
79.01571985





NVIQISNDLENLR_509.9_402.3
LEP_HUMAN
78.86670236





SGFSFGFK_438.7_732.4
CO8B_HUMAN
78.71961929





SDLEVAHYK_531.3_617.3
CO8B_HUMAN
78.24005567





NADYSYSVWK_616.8_333.2
CO5_HUMAN
76.07974354





AHYDLR_387.7_566.3
FETUA_HUMAN
74.68253347





GAVHVVVAETDYQSFAVLYLER_822.8_580.3
CO8G_HUMAN
73.75860248





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
73.74965194





ALDLSLK_380.2_185.1
ITIH3_HUMAN
72.760739





WWGGQPLWITATK_772.4_373.2
ENPP2_HUMAN
72.51936706





FGFGGSTDSGPIR_649.3_946.5
ADA12_HUMAN
72.49183198





GLQYAAQEGLLALQSELLR_1037.1_929.5
LBP_HUMAN
67.17588648





HFQNLGK_422.2_527.2
AFAM_HUMAN
66.11702719





YSHYNER_323.5_581.3
HABP2_HUMAN
65.56238612





ISQGEADINIAFYQR_575.6_684.4
MMP8_HUMAN
65.50301246





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
64.85259525





NIQSVNVK_451.3_674.4
GROA_HUMAN
64.53010225





DALSSVQESQVAQQAR_573.0_672.4
APOC3_HUMAN
64.12149927





SLLQPNK_400.2_599.4
CO8A_HUMAN
62.68167847





SFRPFVPR_335.9_635.3
LBP_HUMAN
61.90157662





NNQLVAGYLQGPNVNLEEK_700.7_999.5
IL1RA_HUMAN
61.54435815





LYYGDDEK_501.7_563.2
CO8A_HUMAN
60.16700473





SWNEPLYHLVTEVR_581.6_716.4
PRL_HUMAN
59.78209065





SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
58.93982896





GTYLYNDCPGPGQDTDCR_697.0_335.2
TNR1A_HUMAN
58.72963941





HATLSLSIPR_365.6_472.3
VGFR3_HUMAN
57.98669834





FIVGFTR_420.2_261.2
CCL20_HUMAN
57.23165578





QNYHQDSEAAINR_515.9_544.3
FRIH_HUMAN
57.21116697





DVLLLVHNLPQNLPGYFWYK_810.4_594.3
PSG9_HUMAN
56.84150484





FLNWIK_410.7_561.3
HABP2_HUMAN
56.37258274





SLQAFVAVAAR_566.8_487.3
IL23A_HUMAN
56.09012981





HFQNLGK_422.2_285.1
AFAM_HUMAN
56.04480022





GPGEDFR_389.2_322.2
PTGDS_HUMAN
55.7583763





NKPGVYTDVAYYLAWIR_677.0_821.5
FA12_HUMAN
55.53857645





LIQDAVTGLTVNGQITGDK_972.0_640.4
ITIH3_HUMAN
55.52577583





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
54.27147366





TLNAYDHR_330.5_312.2
PAR3_HUMAN
54.19190934





IQTHSTTYR_369.5_627.3
F13B_HUMAN
54.18950583





TASDFITK_441.7_710.4
GELS_HUMAN
54.1056456





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
53.8997252





DADPDTFFAK_563.8_302.1
AFAM_HUMAN
53.85914848





SVSLPSLDPASAK_636.4_473.3
APOB_HUMAN
53.41996191





TTSDGGYSFK_531.7_860.4
INHA_HUMAN
52.24655536





AFTECCVVASQLR_770.9_574.3
CO5_HUMAN
51.67853429





ELPQSIVYK_538.8_409.2
FBLN3_HUMAN
51.35853002





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
51.23842124





FQLSETNR_497.8_605.3
PSG2_HUMAN
51.01576848





GSLVQASEANLQAAQDFVR_668.7_806.4
ITIH1_HUMAN
50.81923338





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
50.54425114





ECEELEEK_533.2_405.2
IL15_HUMAN
50.41977421





NADYSYSVWK_616.8_769.4
CO5_HUMAN
50.36434595





SLLQPNK_400.2_358.2
CO8A_HUMAN
49.75593162





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
49.43389721





DISEVVTPR_508.3_787.4
CFAB_HUMAN
49.00234897





AEVIWTSSDHQVLSGK_586.3_300.2
PD1L1_HUMAN
48.79028835





SGVDLADSNQK_567.3_591.3
VGFR3_HUMAN
48.70665587





SILFLGK_389.2_201.1
THBG_HUMAN
48.5997957





AVLHIGEK_289.5_292.2
THBG_HUMAN
48.4605866





QLYGDTGVLGR_589.8_501.3
CO8G_HUMAN
48.11414904





FSLVSGWGQLLDR_493.3_516.3
FA7_HUMAN
47.59635333





DSPVLIDFFEDTER_841.9_399.2
HRG_HUMAN
46.83840473





INPASLDK_429.2_630.4
C163A_HUMAN
46.78947931





GAVHVVVAETDYQSFAVLYLER_822.8_863.5
CO8G_HUMAN
46.66185339





FLQEQGHR_338.8_497.3
CO8G_HUMAN
46.64415952





LNIGYIEDLK_589.3_837.4
PAI2_HUMAN
46.5879123





LSSPAVITDK_515.8_743.4
PLMN_HUMAN
46.2857838





GLQYAAQEGLLALQSELLR_1037.1_858.5
LBP_HUMAN
45.7427767





SDGAKPGPR_442.7_213.6
COLI_HUMAN
45.27828366





GYQELLEK_490.3_502.3
FETA_HUMAN
43.52928868





GGEGTGYFVDFSVR_745.9_869.5
HRG_HUMAN
43.24514327





ADLFYDVEALDLESPK_913.0_447.2
HRG_HUMAN
42.56268679





ADLFYDVEALDLESPK_913.0_331.2
HRG_HUMAN
42.48967422





EAQLPVIENK_570.8_699.4
PLMN_HUMAN
42.21213429





SILFLGK_389.2_577.4
THBG_HUMAN
42.03379581





HTLNQIDEVK_598.8_958.5
FETUA_HUMAN
41.98377176





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
41.89547273





FLPCENK_454.2_390.2
IL10_HUMAN
41.66612478





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
41.50878046





DEIPHNDIALLK_459.9_510.8
HABP2_HUMAN
41.27830935





SLQAFVAVAAR_566.8_804.5
IL23A_HUMAN
41.00430596





YISPDQLADLYK_713.4_277.2
ENOA_HUMAN
40.90053801





SLPVSDSVLSGFEQR_810.9_836.4
CO8G_HUMAN
40.62020941





DGSPDVTTADIGANTPDATK_973.5_531.3
PGRP2_HUMAN
40.33913091





NTGVISVVTTGLDR_716.4_662.4
CADH1_HUMAN
40.05291612





ALVLELAK_428.8_672.4
INHBE_HUMAN
40.01646465





YEFLNGR_449.7_293.1
PLMN_HUMAN
39.83344278





WGAAPYR_410.7_577.3
PGRP2_HUMAN
39.52766213





TFLTVYWTPER_706.9_401.2
ICAM1_HUMAN
39.13662034





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
38.77511119





VGVISFAQK_474.8_693.4
TFR2_HUMAN
38.5823457





IIEVEEEQEDPYLNDR_996.0_777.4
FBLN1_HUMAN
38.30913304





TGYYFDGISR_589.8_694.4
FBLN1_HUMAN
38.30617106





LQGTLPVEAR_542.3_571.3
CO5_HUMAN
37.93064544





DSPVLIDFFEDTER_841.9_512.3
HRG_HUMAN
37.4447737





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
37.02483715





DGSPDVTTADIGANTPDATK_973.5_844.4
PGRP2_HUMAN
36.59864788





ILILPSVTR_506.3_785.5
PSGx_HUMAN
36.43814815





SVSLPSLDPASAK_636.4_885.5
APOB_HUMAN
36.27689491





TLAFVR_353.7_492.3
FA7_HUMAN
36.18771771





VAPGVANPGTPLA_582.3_555.3
A6NIT4_HUMAN
35.70677357





HELTDEELQSLFTNFANVVDK_817.1_906.5
AFAM_HUMAN
35.14441609





AGLLRPDYALLGHR_518.0_369.2
PGRP2_HUMAN
35.13047098





GDTYPAELYITGSILR_885.0_1332.8
F13B_HUMAN
34.97832404





LFIPQITR_494.3_727.4
PSG9_HUMAN
34.76811249





GYQELLEK_490.3_631.4
FETA_HUMAN
34.76117605





VSEADSSNADWVTK_754.9_533.3
CFAB_HUMAN
34.49787512





LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
34.48448691





SFRPFVPR_335.9_272.2
LBP_HUMAN
34.27529415





ILDGGNK_358.7_490.2
CXCL5_HUMAN
34.2331388





EANQSTLENFLER_775.9_678.4
IL4_HUMAN
34.14295797





DFNQFSSGEK_386.8_189.1
FETA_HUMAN
34.05459951





IEEIAAK_387.2_660.4
CO5_HUMAN
33.93778148





TEFLSNYLTNVDDITLVPGTLGR_846.8_600.3
ENPP2_HUMAN
33.87864446





LPATEKPVLLSK_432.6_347.2
HYOU1_HUMAN
33.69005522





FLQEQGHR_338.8_369.2
CO8G_HUMAN
33.61179024





APLTKPLK_289.9_357.2
CRP_HUMAN
33.59900279





YSHYNER_323.5_418.2
HABP2_HUMAN
33.50888447





TSYQVYSK_488.2_787.4
C163A_HUMAN
33.11650018





IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
33.02974341





TGISPLALIK_506.8_741.5
APOB_HUMAN
32.64471573





LYYGDDEK_501.7_726.3
CO8A_HUMAN
32.60782458





IVLSLDVPIGLLQILLEQAR_735.1_503.3
UCN2_HUMAN
32.37907686





EAQLPVIENK_570.8_329.2
PLMN_HUMAN
32.34049256





TGYYFDGISR_589.8_857.4
FBLN1_HUMAN
32.14526507





VGVISFAQK_474.8_580.3
TFR2_HUMAN
32.11753213





FQSVFTVTR_542.8_623.4
C1QC_HUMAN
32.11360444





TSDQIHFFFAK_447.6_659.4
ANT3_HUMAN
31.95867038





IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
31.81531364





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
31.36698726





DEIPHNDIALLK_459.9_260.2
HABP2_HUMAN
31.1839869





NYFTSVAHPNLFIATK_608.3_319.2
IL1A_HUMAN
31.09867061





ITENDIQIALDDAK_779.9_632.3
APOB_HUMAN
30.77026845





DTYVSSFPR_357.8_272.2
TCEA1_HUMAN
30.67784731





TDAPDLPEENQAR_728.3_843.4
CO5_HUMAN
30.66251941





LFYADHPFIFLVR_546.6_647.4
SERPH_HUMAN
30.65831566





TEQAAVAR_423.2_487.3
FA12_HUMAN
30.44356842





AVGYLITGYQR_620.8_737.4
PZP_HUMAN
30.36425528





HSHESQDLR_370.2_288.2
HRG_HUMAN
30.34684703





IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
30.34101643





IAQYYYTFK_598.8_884.4
F13B_HUMAN
30.23453833





SLPVSDSVLSGFEQR_810.9_723.3
CO8G_HUMAN
30.11396489





IIGGSDADIK_494.8_762.4
C1S_HUMAN
30.06572687





QTLSWTVTPK_580.8_545.3
PZP_HUMAN
30.04139865





HYFIAAVER_553.3_658.4
FA8_HUMAN
29.80239884





QVCADPSEEWVQK_788.4_374.2
CCL3_HUMAN
29.61435573





DLHLSDVFLK_396.2_366.2
CO6_HUMAN
29.60077507





NIQSVNVK_451.3_546.3
GROA_HUMAN
29.47619619





QTLSWTVTPK_580.8_818.4
PZP_HUMAN
29.40047934





HSHESQDLR_370.2_403.2
HRG_HUMAN
29.32242262





LLEVPEGR_456.8_356.2
C1S_HUMAN
29.14169137





LIENGYFHPVK_439.6_343.2
F13B_HUMAN
28.63056809





EDTPNSVWEPAK_686.8_630.3
C1S_HUMAN
28.61352686





AFTECCVVASQLR_770.9_673.4
CO5_HUMAN
28.57830281





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
28.27203693





VSFSSPLVAISGVALR_802.0_715.4
PAPP1_HUMAN
28.13008712





DPDQTDGLGLSYLSSHIANVER_796.4_456.2
GELS_HUMAN
28.06549895





VVGGLVALR_442.3_784.5
FA12_HUMAN
28.00684006





NEIVFPAGILQAPFYTR_968.5_357.2
ECE1_HUMAN
27.97758456





QVCADPSEEWVQK_788.4_275.2
CCL3_HUMAN
27.94276837





LQDAGVYR_461.2_680.3
PD1L1_HUMAN
27.88063261





IQTHSTTYR_369.5_540.3
F13B_HUMAN
27.68873826





TPSAAYLWVGTGASEAEK_919.5_849.4
GELS_HUMAN
27.66889639





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
SHBG_HUMAN
27.63105727





ALQDQLVLVAAK_634.9_289.2
ANGT_HUMAN
27.63097319





IEEIAAK_387.2_531.3
CO5_HUMAN
27.52427934





TAVTANLDIR_537.3_288.2
CHL1_HUMAN
27.44246841





VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
27.43976782





ITENDIQIALDDAK_779.9_873.5
APOB_HUMAN
27.39263522





SSNNPHSPIVEEFQVPYNK_729.4_521.3
C1S_HUMAN
27.34493617





HPWIVHWDQLPQYQLNR_744.0_918.5
KS6A3_HUMAN
27.19681613





TPSAAYLWVGTGASEAEK_919.5_428.2
GELS_HUMAN
27.17319953





AFLEVNEEGSEAAASTAVVIAGR_764.4_614.4
ANT3_HUMAN
27.10487351





WGAAPYR_410.7_634.3
PGRP2_HUMAN
27.09930054





IEVNESGTVASSSTAVIVSAR_693.0_545.3
PAI1_HUMAN
27.02567296





AEAQAQYSAAVAK_654.3_908.5
ITIH4_HUMAN
26.98305259





VPLALFALNR_557.3_917.6
PEPD_HUMAN
26.96988826





TLEAQLTPR_514.8_685.4
HEP2_HUMAN
26.94672621





QALEEFQK_496.8_551.3
CO8B_HUMAN
26.67037155





WNFAYWAAHQPWSR_607.3_545.3
PRG2_HUMAN
26.62600679





IYLQPGR_423.7_570.3
ITIH2_HUMAN
26.58752589





FFQYDTWK_567.8_840.4
IGF2_HUMAN
26.39942037





NEIWYR_440.7_357.2
FA12_HUMAN
26.35177282





GGEGTGYFVDFSVR_745.9_722.4
HRG_HUMAN
26.31688167





VGEYSLYIGR_578.8_708.4
SAMP_HUMAN
26.17367498





TAHISGLPPSTDFIVYLSGLAPSIR_871.5_800.5
TENA_HUMAN
26.13688183





GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
26.06007032





DYWSTVK_449.7_620.3
APOC3_HUMAN
26.03765187





YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
25.9096605





YGLVTYATYPK_638.3_334.2
CFAB_HUMAN
25.84440452





LFIPQITR_494.3_614.4
PSG9_HUMAN
25.78081129





YEFLNGR_449.7_606.3
PLMN_HUMAN
25.17159874





SEPRPGVLLR_375.2_454.3
FA7_HUMAN
25.16444381





NSDQEIDFK_548.3_294.2
S10A5_HUMAN
25.12266401





YEVQGEVFTKPQLWP_911.0_293.1
CRP_HUMAN
24.77595195





GVTGYFTFNLYLK_508.3_683.9
PSG5_HUMAN
24.75289081





ISLLLIESWLEPVR_834.5_371.2
CSH_HUMAN
24.72379326





ALLLGWVPTR_563.3_373.2
PAR4_HUMAN
24.68096599





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
24.53420489





SGAQATWTELPWPHEK_613.3_793.4
HEMO_HUMAN
24.25610995





AQPVQVAEGSEPDGFWEALGGK_758.0_623.4
GELS_HUMAN
24.18769142





DLPHITVDR_533.3_490.3
MMP7_HUMAN
24.02606052





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
24.00163743





AVGYLITGYQR_620.8_523.3
PZP_HUMAN
23.93958524





GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
23.69249513





YEVQGEVFTKPQLWP_911.0_392.2
CRP_HUMAN
23.67764212





SDGAKPGPR_442.7_459.2
COLI_HUMAN
23.63551614





GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
23.55832742





IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
23.38139357





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
23.33375418





LHEAFSPVSYQHDLALLR_699.4_380.2
FA12_HUMAN
23.27455931





IYLQPGR_423.7_329.2
ITIH2_HUMAN
23.19122626
















TABLE 38







Random Forest 32 Middle Window









Variable
UniProt_ID
MeanDecreaseGini












SEYGAALAWEK_612.8_788.4
CO6_HUMAN
2.27812193





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
2.080133179





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
1.952233942





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
1.518833357





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
1.482593086





VFQFLEK_455.8_811.4
CO5_HUMAN
1.448810425





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
1.389922815





YGIEEHGK_311.5_599.3
CXA1_HUMAN
1.386794676





TLAFVR_353.7_492.3
FA7_HUMAN
1.371530925





VLEPTLK_400.3_587.3
VTDB_HUMAN
1.368583173





VLEPTLK_400.3_458.3
VTDB_HUMAN
1.336029064





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
1.307024357





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
1.282930911





LHEAFSPVSYQHDLALLR_699.4_251.2
FA12_HUMAN
1.25362163





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
1.205539225





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
1.201047302





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
1.189617326





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
1.120706696





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
1.107036657





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
1.083264902





IEEIAAK_387.2_660.4
CO5_HUMAN
1.043635292





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.962643698





TLLPVSKPEIR_418.3_514.3
CO5_HUMAN
0.933440467





TEQAAVAR_423.2_615.4
FA12_HUMAN
0.878933553





DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.816855601





ALQDQLVLVAAK_634.9_289.2
ANGT_HUMAN
0.812620232





SLQAFVAVAAR_566.8_804.5
IL23A_HUMAN
0.792274782





QGHNSVFLIK_381.6_260.2
HEMO_HUMAN
0.770830031





ALQDQLVLVAAK_634.9_956.6
ANGT_HUMAN
0.767468246





SLDFTELDVAAEK_719.4_874.5
ANGT_HUMAN
0.745827911
















TABLE 39







Random Forest 100 Middle Window









Variable
UniProt_ID
MeanDecreaseGini












SEYGAALAWEK_612.8_788.4
CO6_HUMAN
1.241568411





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.903126414





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
0.846216563





ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
0.748261193





VFQFLEK_455.8_811.4
CO5_HUMAN
0.717545171





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.683219617





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.671091545





LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
0.652293621





VLEPTLK_400.3_587.3
VTDB_HUMAN
0.627095631





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
0.625773888





VLEPTLK_400.3_458.3
VTDB_HUMAN
0.613655529





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
0.576305627





TLFIFGVTK_513.3_811.5
PSG4_HUMAN
0.574056825





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.570270447





VPLALFALNR_557.3_620.4
PEPD_HUMAN
0.556087614





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.531461012





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
0.531214597





TLAFVR_353.7_492.3
FA7_HUMAN
0.53070743





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
0.521633041





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.514509661





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
0.50489698





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.4824926





LHEAFSPVSYQHDLALLR_699.4_251.2
FA12_HUMAN
0.48217238





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.472286273





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
0.470892051





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
0.465839813





GEVTYTTSQVSK_650.3_750.4
EGLN_HUMAN
0.458736205





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
0.454348892





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.45127405





YGIEEHGK_311.5_341.2
CXA1_HUMAN
0.430641646
















TABLE 40







Random Forest Protein Middle Window









Variable
UniProt_ID
MeanDecreaseGini












SEYGAALAWEK_612.8_788.4
CO6_HUMAN
2.09649626





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
1.27664656





VFQFLEK_455.8_811.4
CO5_HUMAN
1.243884833





ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
1.231814882





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
1.188808078





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
1.185075445





LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
1.122351536





VLEPTLK_400.3_458.3
VTDB_HUMAN
1.062664798





VPLALFALNR_557.3_620.4
PEPD_HUMAN
1.019466776





TLAFVR_353.7_492.3
FA7_HUMAN
0.98797064





TLFIFGVTK_513.3_811.5
PSG4_HUMAN
0.980159531





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
0.960286027





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
0.947091926





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.946937719





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.916262164





LHEAFSPVSYQHDLALLR_699.4_251.2
FA12_HUMAN
0.891310053





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
0.884498494





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.869043942





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.865435217





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
0.844842109





TLNAYDHR_330.5_312.2
PAR3_HUMAN
0.792615068





DVLLLVHNLPQNLTGHIWYK_791.8_310.2
PSG7_HUMAN
0.763629346





GPITSAAELNDPQSILLR_632.4_826.5
EGLN_HUMAN
0.762305265





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
SHBG_HUMAN
0.706312721





SLQNASAIESILK_687.4_860.5
IL3_HUMAN
0.645503581





HYINLITR_515.3_301.1
NPY_HUMAN
0.62631682





VELAPLPSWQPVGK_760.9_342.2
ICAM1_HUMAN
0.608991877





LQVNTPLVGASLLR_741.0_925.6
BPIA1_HUMAN
0.607801279





TLEAQLTPR_514.8_814.4
HEP2_HUMAN
0.597771074





SDGAKPGPR_442.7_459.2
COLI_HUMAN
0.582773073
















TABLE 41







Random Forest All Middle Window









Variable
UniProt_ID
MeanDecreaseGini












SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.493373282





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.382180772





VFQFLEK_455.8_811.4
CO5_HUMAN
0.260292083





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
0.243156718





NADYSYSVWK_616.8_769.4
CO5_HUMAN
0.242388196





VLEPTLK_400.3_458.3
VTDB_HUMAN
0.238171849





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.236873731





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.224727161





VLEPTLK_400.3_587.3
VTDB_HUMAN
0.222105614





TLFIFGVTK_513.3_811.5
PSG4_HUMAN
0.210807574





ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
0.208714978





LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
0.208027555





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.197362212





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
0.195728091





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.189969499





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.189572857





AGITIPR_364.2_486.3
IL17_HUMAN
0.188351054





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
0.185069517





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
0.173688295





TLAFVR_353.7_492.3
FA7_HUMAN
0.170636045





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.170608352





TLLIANETLR_572.3_703.4
IL5_HUMAN
0.16745571





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.161514946





LHEAFSPVSYQHDLALLR_699.4_251.2
FA12_HUMAN
0.15852146





DGSPDVTTADIGANTPDATK_973.5_844.4
PGRP2_HUMAN
0.154028378





VPLALFALNR_557.3_620.4
PEPD_HUMAN
0.153725879





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
0.150920884





YGIEEHGK_311.5_341.2
CXA1_HUMAN
0.150319671





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
0.144781622





IEEIAAK_387.2_660.4
CO5_HUMAN
0.141983196
















TABLE 42







Random Forest 32 Middle-Late Window









Variable
UniProt_ID
MeanDecreaseGini












VPLALFALNR_557.3_620.4
PEPD_HUMAN
4.566619475





VFQFLEK_455.8_811.4
CO5_HUMAN
3.062474666





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
3.033740627





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
2.825082394





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
2.787777983





TLAFVR_353.7_492.3
FA7_HUMAN
2.730532075





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
2.671290375





AVYEAVLR_460.8_587.4
PEPD_HUMAN
2.621357053





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
2.57568964





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
2.516708906





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
2.497348374





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
2.457401462





YGIEEHGK_311.5_599.3
CXA1_HUMAN
2.396824268





VLEPTLK_400.3_587.3
VTDB_HUMAN
2.388105564





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
2.340473883





WSAGLTSSQVDLYIPK_883.0_515.3
CBG_HUMAN
2.332007976





FGFGGSTDSGPIR_649.3_946.5
ADA12_HUMAN
2.325669514





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
2.31761671





QINSYVK_426.2_496.3
CBG_HUMAN
2.245221163





QINSYVK_426.2_610.3
CBG_HUMAN
2.212307699





TEQAAVAR_423.2_615.4
FA12_HUMAN
2.105860336





AVYEAVLR_460.8_750.4
PEPD_HUMAN
2.098321893





TEQAAVAR_423.2_487.3
FA12_HUMAN
2.062684763





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
2.05160689





SLQAFVAVAAR_566.8_804.5
IL23A_HUMAN
1.989521006





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
1.820628782





DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
1.763514326





DPTFIPAPIQAK_433.2_461.2
ANGT_HUMAN
1.760870392





VLEPTLK_400.3_458.3
VTDB_HUMAN
1.723389354





YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
1.63355187
















TABLE 43







Random Forest 100 Middle-Late Window









Variable
UniProt_ID
MeanDecreaseGini












VPLALFALNR_557.3_620.4
PEPD_HUMAN
1.995805024





VFQFLEK_455.8_811.4
CO5_HUMAN
1.235926416





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
1.187464899





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
1.166642578





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
1.146077071





TLAFVR_353.7_492.3
FA7_HUMAN
1.143038275





ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
1.130656591





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
1.098305298





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
1.096715712





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
1.086171713





YGIEEHGK_311.5_341.2
CXA1_HUMAN
1.071880823





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
1.062278869





TQILEWAAER_608.8_761.4
EGLN_HUMAN
1.059019017





AVYEAVLR_460.8_587.4
PEPD_HUMAN
1.057920661





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
1.038388955





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
1.028275728





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
1.026032369





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
1.015065282





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.98667651





VLEPTLK_400.3_587.3
VTDB_HUMAN
0.970330675





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
PSG7_HUMAN
0.934747674





TAHISGLPPSTDFIVYLSGLAPSIR_871.5_472.3
TENA_HUMAN
0.889111923





TLNAYDHR_330.5_312.2
PAR3_HUMAN
0.887605636





FGFGGSTDSGPIR_649.3_946.5
ADA12_HUMAN
0.884305889





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.880889836





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.863585472





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.849232356





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.843334824





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.842319271





TPSAAYLWVGTGASEAEK_919.5_849.4
GELS_HUMAN
0.828959173
















TABLE 44







Random Forest Protein Middle-Late Window









Variable
UniProt_ID
MeanDecreaseGini












VPLALFALNR_557.3_620.4
PEPD_HUMAN
3.202123047





ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
2.100447309





VFQFLEK_455.8_811.4
CO5_HUMAN
2.096157529





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
2.052960939





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
2.046139797





TQILEWAAER_608.8_761.4
EGLN_HUMAN
1.99287941





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
1.920894959





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
1.917665697





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
1.883557705





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
1.870232155





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
1.869000136





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
1.825457092





VLEPTLK_400.3_587.3
VTDB_HUMAN
1.695327774





TEQAAVAR_423.2_615.4
FA12_HUMAN
1.685013152





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
1.684068039





TLNAYDHR_330.5_312.2
PAR3_HUMAN
1.673758239





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
1.648896853





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
PSG7_HUMAN
1.648146088





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
1.645833005





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
1.639121965





AGLLRPDYALLGHR_518.0_595.4
PGRP2_HUMAN
1.610227875





YGIEEHGK_311.5_599.3
CXA1_HUMAN
1.606978339





QINSYVK_426.2_496.3
CBG_HUMAN
1.554905578





LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
1.484081016





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
1.43173022





AEVIWTSSDHQVLSGK_586.3_300.2
PD1L1_HUMAN
1.394857397





ALEQDLPVNIK_620.4_570.4
CNDP1_HUMAN
1.393464547





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
1.374296237





TSYQVYSK_488.2_787.4
C163A_HUMAN
1.36141387





TLEAQLTPR_514.8_685.4
HEP2_HUMAN
1.311118611
















TABLE 45







Random Forest All Middle-Late Window









Variable
UniProt_ID
MeanDecreaseGini












VPLALFALNR_557.3_620.4
PEPD_HUMAN
0.685165163





VFQFLEK_455.8_811.4
CO5_HUMAN
0.426827804





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.409942379





YGIEEHGK_311.5_341.2
CXA1_HUMAN
0.406589512





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.402152062





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
0.374861014





ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
0.367089422





TQILEWAAER_608.8_761.4
EGLN_HUMAN
0.353757524





AVYEAVLR_460.8_587.4
PEPD_HUMAN
0.350518668





TLAFVR_353.7_492.3
FA7_HUMAN
0.344669505





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.338752336





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.321850027





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.301819017





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.299561811





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
0.298253589





VLEPTLK_400.3_587.3
VTDB_HUMAN
0.296206088





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.295621408





DVLLLVHNLPQNLTGHIWYK_791.8_883.0
PSG7_HUMAN
0.292937475





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.275902848





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
0.275664578





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.27120436





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
0.266568271





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
0.262537889





TLNAYDHR_330.5_312.2
PAR3_HUMAN
0.259901193





IYLQPGR_423.7_329.2
ITIH2_HUMAN
0.259086112





AEVIWTSSDHQVLSGK_586.3_300.2
PD1L1_HUMAN
0.25722354





VPSHAVVAR_312.5_515.3
TRFL_HUMAN
0.256151812





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.251704855





FGFGGSTDSGPIR_649.3_946.5
ADA12_HUMAN
0.249400642





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.245930393
















TABLE 46







Random Forest 32 Late Window









Variable
UniProt_ID
MeanDecreaseGini












AVYEAVLR_460.8_587.4
PEPD_HUMAN
1.889521223





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
1.75233545





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
1.676813493





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
1.600684153





AVYEAVLR_460.8_750.4
PEPD_HUMAN
1.462889662





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
1.364115361





VPLALFALNR_557.3_620.4
PEPD_HUMAN
1.324317148





QINSYVK_426.2_610.3
CBG_HUMAN
1.305932064





ITQDAQLK_458.8_702.4
CBG_HUMAN
1.263533228





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
1.245153376





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
1.236529173





QINSYVK_426.2_496.3
CBG_HUMAN
1.221866266





YSHYNER_323.5_418.2
HABP2_HUMAN
1.169575572





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
1.126684146





VGVISFAQK_474.8_580.3
TFR2_HUMAN
1.075283855





VFQYIDLHQDEFVQTLK_708.4_375.2
CNDP1_HUMAN
1.07279097





SPEAEDPLGVER_649.8_314.1
Z512B_HUMAN
1.05759256





DEIPHNDIALLK_459.9_510.8
HABP2_HUMAN
1.028933332





ALEQDLPVNIK_620.4_798.5
CNDP1_HUMAN
1.014443799





ALEQDLPVNIK_620.4_570.4
CNDP1_HUMAN
1.010573267





ILDGGNK_358.7_603.3
CXCL5_HUMAN
0.992175141





TSYQVYSK_488.2_787.4
C163A_HUMAN
0.95649585





YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
0.955085198





SETEIHQGFQHLHQLFAK_717.4_447.2
CBG_HUMAN
0.944726739





TLPFSR_360.7_506.3
LYAM1_HUMAN
0.944426109





VLSSIEQK_452.3_691.4
1433S_HUMAN
0.933902495





AEIEYLEK_497.8_389.2
LYAM1_HUMAN
0.891235263





GTYLYNDCPGPGQDTDCR_697.0_666.3
TNR1A_HUMAN
0.87187037





SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
0.869821307





SGVDLADSNQK_567.3_591.3
VGFR3_HUMAN
0.839946466
















TABLE 47







Random Forest 100 Late Window









Variable
UniProt_ID
MeanDecreaseGini












AVYEAVLR_460.8_587.4
PEPD_HUMAN
0.971695767





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
0.920098693





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
0.786924487





AVYEAVLR_460.8_750.4
PEPD_HUMAN
0.772867983





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
0.744138513





AYSDLSR_406.2_375.2
SAMP_HUMAN
0.736078079





VPLALFALNR_557.3_620.4
PEPD_HUMAN
0.681784822





QINSYVK_426.2_610.3
CBG_HUMAN
0.585819307





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
0.577161158





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.573055613





WSAGLTSSQVDLYIPK_883.0_515.3
CBG_HUMAN
0.569156128





ITQDAQLK_458.8_702.4
CBG_HUMAN
0.551017844





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.539330047





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
0.527652175





VFQYIDLHQDEFVQTLK_708.4_375.2
CNDP1_HUMAN
0.484155289





FQLPGQK_409.2_429.2
PSG1_HUMAN
0.480394031





AVDIPGLEAATPYR_736.9_286.1
TENA_HUMAN
0.475252565





QINSYVK_426.2_496.3
CBG_HUMAN
0.4728541





YISPDQLADLYK_713.4_277.2
ENOA_HUMAN
0.470079977





TLPFSR_360.7_506.3
LYAM1_HUMAN
0.46881451





SPEAEDPLGVER_649.8_314.1
Z512B_HUMAN
0.4658941





ALEQDLPVNIK_620.4_798.5
CNDP1_HUMAN
0.463604174





YSHYNER_323.5_418.2
HABP2_HUMAN
0.453076307





VGVISFAQK_474.8_580.3
TFR2_HUMAN
0.437768219





LQDAGVYR_461.2_680.3
PD1L1_HUMAN
0.428524689





AEIEYLEK_497.8_389.2
LYAM1_HUMAN
0.42041448





TSYQVYSK_488.2_787.4
C163A_HUMAN
0.419411932





SVVLIPLGAVDDGEHSQNEK_703.0_798.4
CNDP1_HUMAN
0.415325735





ALEQDLPVNIK_620.4_570.4
CNDP1_HUMAN
0.407951733





ILDGGNK_358.7_603.3
CXCL5_HUMAN
0.401059572
















TABLE 48







Random Forest Protein Late Window









Variable
UniProt_ID
MeanDecreaseGini












AVYEAVLR_460.8_587.4
PEPD_HUMAN
1.836010146





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
1.739802548





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
1.455337749





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
1.395043941





AYSDLSR_406.2_375.2
SAMP_HUMAN
1.177349958





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
1.14243936





QINSYVK_426.2_496.3
CBG_HUMAN
1.05284482





ALEQDLPVNIK_620.4_798.5
CNDP1_HUMAN
0.971678206





YISPDQLADLYK_713.4_277.2
ENOA_HUMAN
0.902293734





AVDIPGLEAATPYR_736.9_286.1
TENA_HUMAN
0.893163413





SPEAEDPLGVER_649.8_314.1
Z512B_HUMAN
0.856551531





ILDGGNK_358.7_603.3
CXCL5_HUMAN
0.841485153





VGVISFAQK_474.8_580.3
TFR2_HUMAN
0.835256078





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
0.831195917





YSHYNER_323.5_418.2
HABP2_HUMAN
0.814479968





FQLPGQK_409.2_276.1
PSG1_HUMAN
0.77635168





YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
0.761241391





TEQAAVAR_423.2_615.4
FA12_HUMAN
0.73195592





SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
0.72504131





VLSSIEQK_452.3_691.4
1433S_HUMAN
0.713380314





GTYLYNDCPGPGQDTDCR_697.0_666.3
TNR1A_HUMAN
0.704248586





TSYQVYSK_488.2_787.4
C163A_HUMAN
0.69026345





TLEAQLTPR_514.8_685.4
HEP2_HUMAN
0.654641588





AEVIWTSSDHQVLSGK_586.3_300.2
PD1L1_HUMAN
0.634751081





TAVTANLDIR_537.3_288.2
CHL1_HUMAN
0.619871203





ITENDIQIALDDAK_779.9_632.3
APOB_HUMAN
0.606313398





TASDFITK_441.7_781.4
GELS_HUMAN
0.593535076





SPQAFYR_434.7_556.3
REL3_HUMAN
0.592004045





NHYTESISVAK_624.8_415.2
NEUR1_HUMAN
0.588383911





LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.587343951
















TABLE 49







Random Forest All Late Window









Variable
UniProt_ID
MeanDecreaseGini












AVYEAVLR_460.8_587.4
PEPD_HUMAN
0.437300283





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
0.371624293





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
0.304039734





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
0.280588526





AVYEAVLR_460.8_750.4
PEPD_HUMAN
0.266788699





AYSDLSR_406.2_375.2
SAMP_HUMAN
0.247412666





VPLALFALNR_557.3_620.4
PEPD_HUMAN
0.229955358





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.218186524





ITQDAQLK_458.8_702.4
CBG_HUMAN
0.217646659





WSAGLTSSQVDLYIPK_883.0_515.3
CBG_HUMAN
0.213840705





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.212794469





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
0.208620264





QINSYVK_426.2_610.3
CBG_HUMAN
0.202054546





QINSYVK_426.2_496.3
CBG_HUMAN
0.197235139





FQLPGQK_409.2_429.2
PSG1_HUMAN
0.188311102





VFQYIDLHQDEFVQTLK_708.4_375.2
CNDP1_HUMAN
0.180534913





ALEQDLPVNIK_620.4_798.5
CNDP1_HUMAN
0.178464358





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
0.176050092





ALFLDALGPPAVTR_720.9_640.4
INHA_HUMAN
0.171492975





FQLPGQK_409.2_276.1
PSG1_HUMAN
0.167576198





SETEIHQGFQHLHQLFAK_717.4_447.2
CBG_HUMAN
0.162231844





ALEQDLPVNIK_620.4_570.4
CNDP1_HUMAN
0.162165399





VPSHAVVAR_312.5_515.3
TRFL_HUMAN
0.156742065





AVDIPGLEAATPYR_736.9_286.1
TENA_HUMAN
0.153681405





FTFTLHLETPKPSISSSNLNPR_829.4_874.4
PSG1_HUMAN
0.152042057





VGVISFAQK_474.8_580.3
TFR2_HUMAN
0.149034355





TLPFSR_360.7_506.3
LYAM1_HUMAN
0.143223501





SLDFTELDVAAEK_719.4_874.5
ANGT_HUMAN
0.141216186





SPEAEDPLGVER_649.8_314.1
Z512B_HUMAN
0.139843479





YGIEEHGK_311.5_341.2
CXA1_HUMAN
0.135236953
















TABLE 50







Selected Transitions for Early Window








Transition
Parent Protein





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN





VQTAHFK_277.5_431.2
CO8A_HUMAN





FLNWIK_410.7_560.3
HABP2_HUMAN





ITGFLKPGK_320.9_429.3
LBP_HUMAN





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN





LIENGYFHPVK_439.6_627.4
F13B_HUMAN





AVLHIGEK_289.5_292.2
THBG_HUMAN





QALEEFQK_496.8_680.3
CO8B_HUMAN





TEFLSNYLTNVDDITLVPGTLGR_846.8_600.3
ENPP2_HUMAN





TASDFITK_441.7_781.4
GELS_HUMAN





LPNNVLQEK_527.8_844.5
AFAM_HUMAN





AHYDLR_387.7_288.2
FETUA_HUMAN





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN





IEGNLIFDPNNYLPK_874.0_414.2
APOB_HUMAN





ITGFLKPGK_320.9_301.2
LBP_HUMAN





FSVVYAK_407.2_381.2
FETUA_HUMAN





ITGFLKPGK_320.9_429.3
LBP_HUMAN





VFQFLEK_455.8_811.4
CO5_HUMAN





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN





DADPDTFFAK_563.8_825.4
AFAM_HUMAN
















TABLE 51







Selected Proteins for Early Window







Protein











complement component C6 precursor
CO6_HUMAN


inter-alpha-trypsin inhibitor heavy chain H3
ITIH3_HUMAN


preproprotein


Coagulation factor XIII B chain
F13B_HUMAN


Ectonucleotide pyrophosphatase/phosphodiesterase
ENPP2_HUMAN


family member 2


Complement component C8 beta chain
CO8B_HUMAN


thyroxine-binding globulin precursor
THBG_HUMAN


Hyaluronan-binding protein 2
HABP2_HUMAN


lipopolysaccharide-binding protein
LBP_HUMAN


Complement factor B
CFAB_HUMAN


Gelsolin
GELS_HUMAN


afamin precursor
AFAM_HUMAN


apolipoprotein B-100 precursor
APOB_HUMAN


complement component C5
CO5_HUMAN


Alpha-2-HS-glycoprotein
FETUA_HUMAN


complement component C8 gamma chain
CO8G_HUMAN
















TABLE 52







Selected Transitions for Middle-Late Window








Transition
Patent Protein





VPLALFALNR_557.3_620.4
PEPD_HUMAN





VFQFLEK_455.8_811.4
CO5_HUMAN





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN





LIEIANHVDK_384.6_498.3
ADA12_HUMAN





TLAFVR_353.7_492.3
FA7_HUMAN





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN





AVYEAVLR_460.8_587.4
PEPD_HUMAN





SEPRPGVLLR_375.2_654.4
FA7_HUMAN





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
















TABLE 53







Selected Proteins for Middle-Late Window







Protein











Xaa-Pro dipeptidase
PEPD_HUMAN


Leucyl-cystinyl aminopeptidase
LCAP_HUMAN


complement component C5
CO5_HUMAN


Gelsolin
GELS_HUMAN


complement component C6 precursor
CO6_HUMAN


Endoglin precursor
EGLN_HUMAN


EGF-containing fibulin-like extracellular matrix
FBLN3_HUMAN


protein 1


coagulation factor VII isoform a
FA7_HUMAN


Disintegrin and metalloproteinase domain-
ADA12_HUMAN


containing protein 12


vitamin D-binding protein isoform 1 precursor
VTDB_HUMAN


coagulation factor XII precursor
FA12_HUMAN


Corticosteroid-binding globulin
CBG_HUMAN









Example 6
Study V to Further Refine Preterm Birth Biomarkers

A additional hypothesis-dependent discovery study was performed with a further refined scheduled MRM assay. Less robust transitions were again removed to improve analytical performance and make room for the inclusion of stable-isotope labeled standards (SIS) corresponding to 79 analytes of interest identified in previous studies. SIS peptides have identical amino acid sequence, chromatographic and MS fragmentation behaviour as their endogenous peptide counterparts, but differ in mass. Therefore they can be used to reduce LC-MS analytical variability and confirm analyte identity. Samples included approximately 60 spontaneous PTB cases (delivery at less than 37 weeks, 0 days), and 180 term controls (delivery at greater than or equal to 37 weeks, 0 days). Each case was designated a “matched” control to within one day of blood draw and two “random” controls matched to the same 3 week blood draw window (17-19, 20-22 or 23-25 weeks gestation). For the purposes of analysis these three blood draw windows were combined. Samples were processed essentially as described previously, except that in this study, tryptic digests were reconstituted in a solution containing SIS standards. Raw analyte peak areas were Box-Cox transformed, corrected for run order and batch effects by regression and used for univariate and multivariate statistical analyses. Univariate analysis included determination of p-values for adjusted peak areas for all analytes from t-tests considering cases vs controls defined as either deliveries at >37 weeks (Table 54) or deliveries at >40 weeks (Table 55). Univariate analysis also included the determination of p-values for a linear model that evaluates the dependence of each analyte's adjusted peak area on the time to birth (gestational age at birth minus the gestational age at blood draw) (Table 56) and the gestational age at birth (Table 57). Additionally raw peak area ratios were calculated for endogenous analytes and their corresponding SIS counterparts, Box-Cox transformed and then used for univariate and multivariate statistical analyses. The above univariate analysis was repeated for analyte/SIS peak area ratio values, summarized in Tables 58-61, respectively.


Multivariate random forest regression models were built using analyte values and clinical variables (e.g. Maternal age, (MAGE), Body mass index, (BMI)) to predict Gestational Age at Birth (GAB). The accuracy of the random forest was evaluated with respect to correlation of the predicted and actual GAB, and with respect to the mean absolute deviation (MAD) of the predicted from actual GAB. The accuracy was further evaluated by determining the area under the receiver operating characteristic curve (AUC) when using the predicted GAB as a quantitative variable to classify subjects as full term or pre-term. Random Forest Importance Values were fit to an Empirical Cumulative Disribution Function and probabilities (P) were calculated. We report the analytes by importance ranking (P>0.7) in the random forest models, using adjusted analyte peak area values (Table 62) and analyte/SIS peak area ratio values (Table 63).


The probability of pre-term birth, p(PTB), may be estimated using the predicted gestational age at birth (GAB) as follows. The estimate will be based on women enrolled in the Sera PAPR clinical trial, which provided the subjects used to develop the PTB prediction methods.


Among women with a predicted GAB of j days plus or minus k days, p(PTB) was estimated as the proportion of women in the PAPR clinical trial with a predicted GAB of j days plus or minus k days who actually deliver before 37 weeks gestational age.


More generally, for women with a predicted GAB of j days plus or minus k days, the probability that the actual gestational age at birth will be less than a specified gestational age, p(actual GAB <specified GAB), was estimated as the proportion of women in the PAPR clinical trial with a predicted GAB of j days plus or minus k days who actually deliver before the specified gestational age. FIG. 1 depicts a scatterplot of actual gestational age at birth versus predicted gestational age from random forest regression model. FIG. 2 shows the distribution of predicted gestational age from random forest regression model versus actual gestational age at birth (GAB), where actual GAB was given in categories of (i) less than 37 weeks, (ii) 37 to 39 weeks, and (iii) 40 weeks or greater.









TABLE 54







Univariate p-values for Adjusted Peak Areas


(<37 vs >37 weeks)









Transition
Protein
pvalue












SPELQAEAK_486.8_659.4
APOA2_HUMAN
0.00246566





ALALPPLGLAPLLNLWAKPQGR_770.5_457.3
SHBG_HUMAN
0.002623332





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
SHBG_HUMAN
0.002822593





SPELQAEAK_486.8_788.4
APOA2_HUMAN
0.003183869





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_768.5
SHBG_HUMAN
0.004936049





VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
SHBG_HUMAN
0.005598977





DYWSTVK_449.7_347.2
APOC3_HUMAN
0.005680405





DYWSTVK_449.7_620.3
APOC3_HUMAN
0.006288693





WGAAPYR_410.7_634.3
PGRP2_HUMAN
0.006505238





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
0.007626246





DALSSVQESQVAQQAR_573.0_672.4
APOC3_HUMAN
0.008149335





LSIPQITTK_500.8_687.4
PSG5_HUMAN
0.009943955





GWVTDGFSSLK_598.8_854.4
APOC3_HUMAN
0.010175055





IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
0.010784167





AKPALEDLR_506.8_813.5
APOA1_HUMAN
0.011331968





WGAAPYR_410.7_577.3
PGRP2_HUMAN
0.011761088





VPLALFALNR_557.3_620.4
PEPD_HUMAN
0.014050395





FSLVSGWGQLLDR_493.3_447.3
FA7_HUMAN
0.014271151





LSIPQITTK_500.8_800.5
PSG5_HUMAN
0.014339942





TLAFVR_353.7_274.2
FA7_HUMAN
0.014459876





DVLLLVHNLPQNLPGYFWYK_810.4_960.5
PSG9_HUMAN
0.016720007





FSVVYAK_407.2_381.2
FETUA_HUMAN
0.016792786





DVLLLVHNLPQNLPGYFWYK_810.4_215.1
PSG9_HUMAN
0.017335929





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.018147773





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.019056484





WNFAYWAAHQPWSR_607.3_545.3
PRG2_HUMAN
0.019190043





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.020218682





AQPVQVAEGSEPDGFWEALGGK_758.0_623.4
GELS_HUMAN
0.020226218





GWVTDGFSSLK_598.8_953.5
APOC3_HUMAN
0.023192703





IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
0.023916911





WNFAYWAAHQPWSR_607.3_673.3
PRG2_HUMAN
0.026026975





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.027731407





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.031865281





DADPDTFFAK_563.8_302.1
AFAM_HUMAN
0.0335897





LFIPQITR_494.3_614.4
PSG9_HUMAN
0.034140767





DVLLLVHNLPQNLPGYFWYK_810.4_328.2
PSG9_HUMAN
0.034653304





TLAFVR_353.7_492.3
FA7_HUMAN
0.036441189





AVLHIGEK_289.5_292.2
THBG_HUMAN
0.038539433





IHPSYTNYR_384.2_452.2
PSG2_HUMAN
0.039733019





AGLLRPDYALLGHR_518.0_369.2
PGRP2_HUMAN
0.040916226





ILILPSVTR_506.3_559.3
PSGx_HUMAN
0.042460036





YYLQGAK_421.7_516.3
ITIH4_HUMAN
0.044511962





TPSAAYLWVGTGASEAEK_919.5_849.4
GELS_HUMAN
0.046362381





AGLLRPDYALLGHR_518.0_595.4
PGRP2_HUMAN
0.046572355





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
0.04754503





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
0.048642964





VNFTEIQK_489.8_765.4
FETA_HUMAN
0.04871392





LFIPQITR_494.3_727.4
PSG9_HUMAN
0.049288923





DISEVVTPR_508.3_787.4
CFAB_HUMAN
0.049458374





SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.049567047
















TABLE 55







Univariate p-values for Adjusted Peak Areas


(<37 vs >40 weeks)









Transition
Protein
pvalue












SPELQAEAK_486.8_659.4
APOA2_HUMAN
0.001457796





DYWSTVK_449.7_347.2
APOC3_HUMAN
0.001619622





DYWSTVK_449.7_620.3
APOC3_HUMAN
0.002068704





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
0.00250563





GWVTDGFSSLK_598.8_854.4
APOC3_HUMAN
0.002543943





SPELQAEAK_486.8_788.4
APOA2_HUMAN
0.003108814





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.004035832





DALSSVQESQVAQQAR_573.0_672.4
APOC3_HUMAN
0.00434652





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.005306924





GWVTDGFSSLK_598.8_953.5
APOC3_HUMAN
0.005685534





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.005770384





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.005798991





ENPAVIDFELAPIVDLVR_670.7_601.4
CO6_HUMAN
0.006248095





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.006735817





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
0.007351774





AGLLRPDYALLGHR_518.0_369.2
PGRP2_HUMAN
0.009541521





AKPALEDLR_506.8_813.5
APOA1_HUMAN
0.009780371





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.010085363





FSLVSGWGQLLDR_493.3_447.3
FA7_HUMAN
0.010401836





WGAAPYR_410.7_634.3
PGRP2_HUMAN
0.011233623





ENPAVIDFELAPIVDLVR_670.7_811.5
CO6_HUMAN
0.012029564





DVLLLVHNLPQNLPGYFWYK_810.4_215.1
PSG9_HUMAN
0.014808277





LFIPQITR_494.3_614.4
PSG9_HUMAN
0.015879755





WGAAPYR_410.7_577.3
PGRP2_HUMAN
0.016562435





AGLLRPDYALLGHR_518.0_595.4
PGRP2_HUMAN
0.016793521





TLAFVR_353.7_492.3
FA7_HUMAN
0.016919708





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
0.016937583





WWGGQPLWITATK_772.4_373.2
ENPP2_HUMAN
0.019050115





GYVIIKPLVWV_643.9_304.2
SAMP_HUMAN
0.019675317





DVLLLVHNLPQNLPGYFWYK_810.4_960.5
PSG9_HUMAN
0.020387647





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.020458335





DVLLLVHNLPQNLPGYFWYK_810.4_328.2
PSG9_HUMAN
0.021488084





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.021709354





LDFHFSSDR_375.2_448.2
INHBC_HUMAN
0.022403383





LFIPQITR_494.3_727.4
PSG9_HUMAN
0.025561103





TEFLSNYLTNVDDITLVPGTLGR_846.8_600.3
ENPP2_HUMAN
0.029344366





LSIPQITTK_500.8_800.5
PSG5_HUMAN
0.031361776





ALVLELAK_428.8_672.4
INHBE_HUMAN
0.031690737





SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.033067953





LSIPQITTK_500.8_687.4
PSG5_HUMAN
0.033972449





LDFHFSSDR_375.2_611.3
INHBC_HUMAN
0.034500249





LDFHFSSDR_375.2_464.2
INHBC_HUMAN
0.035166664





GAVHVVVAETDYQSFAVLYLER_822.8_580.3
CO8G_HUMAN
0.037334975





HELTDEELQSLFTNFANVVDK_817.1_854.4
AFAM_HUMAN
0.039258528





AYSDLSR_406.2_375.2
SAMP_HUMAN
0.04036485





YYLQGAK_421.7_516.3
ITIH4_HUMAN
0.042204165





ILPSVPK_377.2_264.2
PGH1_HUMAN
0.042397885





ELLESYIDGR_597.8_710.4
THRB_HUMAN
0.043053589





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
SHBG_HUMAN
0.045692283





VGEYSLYIGR_578.8_871.5
SAMP_HUMAN
0.04765767





ANDQYLTAAALHNLDEAVK_686.4_317.2
IL1A_HUMAN
0.048928376





YYGYTGAFR_549.3_551.3
TRFL_HUMAN
0.049568351
















TABLE 56







Univariate p-values for Adjusted Peak


Areas in Time to Birth Linear Model










Protein
pvalue














ADA12_HUMAN
0.003412707



ENPP2_HUMAN
0.003767393



ADA12_HUMAN
0.004194234



ENPP2_HUMAN
0.004298493



ADA12_HUMAN
0.004627197



ADA12_HUMAN
0.004918852



ENPP2_HUMAN
0.005792374



CO6_HUMAN
0.005858282



ENPP2_HUMAN
0.007123606



CO6_HUMAN
0.007162317



ENPP2_HUMAN
0.008228726



ENPP2_HUMAN
0.009168492



PSG9_HUMAN
0.011531192



PSG9_HUMAN
0.019389627



PSG9_HUMAN
0.023680865



INHBE_HUMAN
0.02581564



B2MG_HUMAN
0.026544689



LBP_HUMAN
0.031068274



PSG9_HUMAN
0.031091843



APOA2_HUMAN
0.033130498



INHBC_HUMAN
0.03395215



CBG_HUMAN
0.034710348



PSGx_HUMAN
0.035719227



CBG_HUMAN
0.036331871



CSH_HUMAN
0.039896611



CSH_HUMAN
0.04244001



SAMP_HUMAN
0.047112128



LBP_HUMAN
0.048141371



LBP_HUMAN
0.048433174



CO6_HUMAN
0.04850949



PSGx_HUMAN
0.049640167

















TABLE 57







Univariate p-values for Adjusted Peak Areas in Gestation


Age at Birth Linear Model









Transition
Protein
pvalue












ENPAVIDFELAPIVDLVR_670.7_811.5
CO6_HUMAN
0.000117239





ENPAVIDFELAPIVDLVR_670.7_601.4
CO6_HUMAN
0.000130113





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
0.000160472





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.000175167





TEFLSNYLTNVDDITLVPGTLGR_846.8_600.3
ENPP2_HUMAN
0.000219886





TEFLSNYLTNVDDITLVPGTLGR_846.8_699.4
ENPP2_HUMAN
0.000328416





WWGGQPLWITATK_772.4_373.2
ENPP2_HUMAN
0.000354644





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.000390821





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.000511882





LDFHFSSDR_375.2_448.2
INHBC_HUMAN
0.000600637





ALVLELAK_428.8_672.4
INHBE_HUMAN
0.000732445





GLQYAAQEGLLALQSELLR_1037.1_929.5
LBP_HUMAN
0.000743924





DVLLLVHNLPQNLPGYFWYK_810.4_960.5
PSG9_HUMAN
0.000759173





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.001224347





DVLLLVHNLPQNLPGYFWYK_810.4_328.2
PSG9_HUMAN
0.001241329





GYVIIKPLVWV_643.9_304.2
SAMP_HUMAN
0.001853785





SPELQAEAK_486.8_659.4
APOA2_HUMAN
0.001856303





GLQYAAQEGLLALQSELLR_1037.1_858.5
LBP_HUMAN
0.001978165





LDFHFSSDR_375.2_611.3
INHBC_HUMAN
0.002098948





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.002212096





SFRPFVPR_335.9_272.2
LBP_HUMAN
0.002545286





SFRPFVPR_335.9_635.3
LBP_HUMAN
0.002620268





WSAGLTSSQVDLYIPK_883.0_515.3
CBG_HUMAN
0.002787272





DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.002954612





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
0.002955081





DVLLLVHNLPQNLPGYFWYK_810.4_215.1
PSG9_HUMAN
0.003541011





LFIPQITR_494.3_614.4
PSG9_HUMAN
0.003750666





FGFGGSTDSGPIR_649.3_946.5
ADA12_HUMAN
0.003773696





YYLQGAK_421.7_516.3
ITIH4_HUMAN
0.004064026





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.004208136





AITPPHPASQANIIFDITEGNLR_825.8_459.3
FBLN1_HUMAN
0.004709104





LDFHFSSDR_375.2_464.2
INHBC_HUMAN
0.005355741





HELTDEELQSLFTNFANVVDK_817.1_854.4
AFAM_HUMAN
0.005370567





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.005705922





ITQDAQLK_458.8_702.4
CBG_HUMAN
0.006762484





ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
0.006993268





SILFLGK_389.2_577.4
THBG_HUMAN
0.007134146





WSAGLTSSQVDLYIPK_883.0_357.2
CBG_HUMAN
0.007670388





GVTSVSQIFHSPDLAIR_609.7_472.3
IC1_HUMAN
0.007742729





VGEYSLYIGR_578.8_871.5
SAMP_HUMAN
0.007778691





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
0.008179918





YYLQGAK_421.7_327.1
ITIH4_HUMAN
0.008404686





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.008601162





DYWSTVK_449.7_620.3
APOC3_HUMAN
0.008626786





TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
0.008907523





ITGFLKPGK_320.9_301.2
LBP_HUMAN
0.009155417





LFIPQITR_494.3_727.4
PSG9_HUMAN
0.009571006





SPELQAEAK_486.8_788.4
APOA2_HUMAN
0.009776508





DYWSTVK_449.7_347.2
APOC3_HUMAN
0.00998356





ITGFLKPGK_320.9_429.3
LBP_HUMAN
0.010050264





FLNWIK_410.7_560.3
HABP2_HUMAN
0.010372454





DLHLSDVFLK_396.2_366.2
CO6_HUMAN
0.010806378





GVTSVSQIFHSPDLAIR_609.7_908.5
IC1_HUMAN
0.011035991





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
0.011113172





LLDSLPSDTR_558.8_276.2
IC1_HUMAN
0.011589013





LLDSLPSDTR_558.8_890.4
IC1_HUMAN
0.011629438





QALEEFQK_496.8_551.3
CO8B_HUMAN
0.011693839





LLDSLPSDTR_558.8_575.3
IC1_HUMAN
0.012159314





IIGGSDADIK_494.8_762.4
C1S_HUMAN
0.013080243





AFIQLWAFDAVK_704.9_650.4
AMBP_HUMAN
0.013462234





GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
0.014370997





LPNNVLQEK_527.8_730.4
AFAM_HUMAN
0.014424891





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
0.014967952





VQTAHFK_277.5_502.3
CO8A_HUMAN
0.01524844





ILILPSVTR_506.3_559.3
PSGx_HUMAN
0.015263132





SILFLGK_389.2_201.1
THBG_HUMAN
0.015265233





TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
0.015344052





VEPLYELVTATDFAYSSTVR_754.4_712.4
CO8B_HUMAN
0.015451068





FSLVSGWGQLLDR_493.3_447.3
FA7_HUMAN
0.015510454





GWVTDGFSSLK_598.8_854.4
APOC3_HUMAN
0.01610797





LSETNR_360.2_519.3
PSG1_HUMAN
0.016433362





TQILEWAAER_608.8_632.3
EGLN_HUMAN
0.01644844





SETEIHQGFQHLHQLFAK_717.4_318.1
CBG_HUMAN
0.016720367





TNLESILSYPK_632.8_936.5
IC1_HUMAN
0.017314185





TNLESILSYPK_632.8_807.5
IC1_HUMAN
0.017593786





AYSDLSR_406.2_375.2
SAMP_HUMAN
0.018531348





YEVQGEVFTKPQLWP_911.0_392.2
CRP_HUMAN
0.019111323





AYSDLSR_406.2_577.3
SAMP_HUMAN
0.019271266





QALEEFQK_496.8_680.3
CO8B_HUMAN
0.019429489





APLTKPLK_289.9_398.8
CRP_HUMAN
0.020110081





FQPTLLTLPR_593.4_276.1
IC1_HUMAN
0.020114306





ITQDAQLK_458.8_803.4
CBG_HUMAN
0.020401782





AVLHIGEK_289.5_292.2
THBG_HUMAN
0.02056597





ANDQYLTAAALHNLDEAVK_686.4_317.2
IL1A_HUMAN
0.020770124





VGEYSLYIGR_578.8_708.4
SAMP_HUMAN
0.021126414





TLYSSSPR_455.7_533.3
IC1_HUMAN
0.021306106





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.021640643





HELTDEELQSLFTNFANVVDK_817.1_906.5
AFAM_HUMAN
0.021921609





TLYSSSPR_455.7_696.3
IC1_HUMAN
0.022196181





GYVIIKPLVWV_643.9_854.6
SAMP_HUMAN
0.023126336





DEIPHNDIALLK_459.9_260.2
HABP2_HUMAN
0.023232158





ILILPSVTR_506.3_785.5
PSGx_HUMAN
0.023519909





WNFAYWAAHQPWSR_607.3_545.3
PRG2_HUMAN
0.023697087





FQPTLLTLPR_593.4_712.5
IC1_HUMAN
0.023751959





AQPVQVAEGSEPDGFWEALGGK_758.0_623.4
GELS_HUMAN
0.024262721





DEIPHNDIALLK_459.9_510.8
HABP2_HUMAN
0.024414348





GDSGGAFAVQDPNDK_739.3_716.3
C1S_HUMAN
0.025075028





FLNWIK_410.7_561.3
HABP2_HUMAN
0.025649617





APLTKPLK_289.9_357.2
CRP_HUMAN
0.025961162





ALDLSLK_380.2_185.1
ITIH3_HUMAN
0.026233504





GWVTDGFSSLK_598.8_953.5
APOC3_HUMAN
0.026291884





SETEIHQGFQHLHQLFAK_717.4_447.2
CBG_HUMAN
0.026457136





GDSGGAFAVQDPNDK_739.3_473.2
C1S_HUMAN
0.02727457





YEVQGEVFTKPQLWP_911.0_293.1
CRP_HUMAN
0.028244448





HVVQLR_376.2_614.4
IL6RA_HUMAN
0.028428028





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
0.028773557





EVPLSALTNILSAQLISHWK_740.8_996.6
PAI1_HUMAN
0.029150774





AFTECCVVASQLR_770.9_574.3
CO5_HUMAN
0.029993325





TLAFVR_353.7_492.3
FA7_HUMAN
0.030064307





LWAYLTIQELLAK_781.5_300.2
ITIH1_HUMAN
0.030368674





DEIPHNDIALLK_459.9_245.1
HABP2_HUMAN
0.031972082





AGLLRPDYALLGHR_518.0_369.2
PGRP2_HUMAN
0.032057409





AVYEAVLR_460.8_587.4
PEPD_HUMAN
0.032527521





LPNNVLQEK_527.8_844.5
AFAM_HUMAN
0.033807082





GAVHVVVAETDYQSFAVLYLER_822.8_580.3
CO8G_HUMAN
0.034370139





WNFAYWAAHQPWSR_607.3_673.3
PRG2_HUMAN
0.0349737





EAQLPVIENK_570.8_329.2
PLMN_HUMAN
0.035304322





VQEAHLTEDQIFYFPK_655.7_701.4
CO8G_HUMAN
0.035704382





AFIQLWAFDAVK_704.9_836.4
AMBP_HUMAN
0.035914532





SGFSFGFK_438.7_585.3
CO8B_HUMAN
0.037168221





SGFSFGFK_438.7_732.4
CO8B_HUMAN
0.040182596





DADPDTFFAK_563.8_302.1
AFAM_HUMAN
0.041439744





EAQLPVIENK_570.8_699.4
PLMN_HUMAN
0.041447675





IIGGSDADIK_494.8_260.2
C1S_HUMAN
0.041683256





AVLTIDEK_444.8_718.4
A1AT_HUMAN
0.043221658





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.044079127





YHFEALADTGISSEFYDNANDLLSK_940.8_874.5
CO8A_HUMAN
0.045313634





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.047118971





LEQGENVFLQATDK_796.4_822.4
C1QB_HUMAN
0.047818928





NTVISVNPSTK_580.3_732.4
VCAM1_HUMAN
0.048102262





YYGYTGAFR_549.3_551.3
TRFL_HUMAN
0.048331316





ISLLLIESWLEPVR_834.5_500.3
CSH_HUMAN
0.049561581





LQVLGK_329.2_416.3
A2GL_HUMAN
0.049738493
















TABLE 58







1/38 Univariate p-values for Peak Area Ratios (<37 vs >37 weeks)









UniProt_ID
Transition
pvalue












SHBG_HUMAN
IALGGLLFPASNLR_481.3_657.4
0.006134652





SHBG_HUMAN
IALGGLLFPASNLR_481.3_412.3
0.019049498





APOC3_HUMAN
DALSSVQESQVAQQAR_573.0_672.4
0.020688543





THBG_HUMAN
AVLHIGEK_289.5_292.2
0.0291698





PSG9_HUMAN
DVLLLVHNLPQNLPGYFWYK_810.4_960.5
0.033518454





APOC3_HUMAN
DALSSVQESQVAQQAR_573.0_502.3
0.043103265





PSG9_HUMAN
LFIPQITR_494.3_614.4
0.04655948
















TABLE 59







Univariate p-values for Peak Area Ratios (<37 vs >40 weeks)









UniProt_ID
Transition
pvalue





APOC3_HUMAN
DALSSVQESQVAQQAR_573.0_672.4
0.011174438





APOC3_HUMAN
DALSSVQESQVAQQAR_573.0_502.3
0.015231617





PSG9_HUMAN
LFIPQITR_494.3_614.4
0.018308413





PSG9_HUMAN
LFIPQITR_494.3_727.4
0.027616871





PSG9_HUMAN
DVLLLVHNLPQNLPGYFWYK_810.4_960.5
0.028117582





THBG_HUMAN
AVLHIGEK_289.5_292.2
0.038899107





CO6_HUMAN
ALNHLPLEYNSALYSR_621.0_696.4
0.040662269





ENPP2_HUMAN
TYLHTYESEI_628.3_908.4
0.044545826
















TABLE 60







Univariate p-values for Peak Area Ratios


in Time to Birth Linear Model









UniProt_ID
Transition
pvalue












ADA12_HUMAN
FGFGGSTDSGPIR_649.3_946.5
5.85E−27





ADA12_HUMAN
FGFGGSTDSGPIR_649.3_745.4
2.65E−24





PSG4_HUMAN
TLFIFGVTK_513.3_215.1
1.07E−20





PSG4_HUMAN
TLFIFGVTK_513.3_811.5
2.32E−20





PSGx_HUMAN
ILILPSVTR_506.3_785.5
8.25E−16





PSGx_HUMAN
ILILPSVTR_506.3_559.3
9.72E−16





PSG1_HUMAN
FQLPGQK_409.2_429.2
1.29E−12





PSG11_HUMAN
LFIPQITPK_528.8_261.2
2.11E−12





PSG1_HUMAN
FQLPGQK_409.2_276.1
2.33E−12





PSG11_HUMAN
LFIPQITPK_528.8_683.4
3.90E−12





PSG6_HUMAN
SNPVTLNVLYGPDLPR_585.7_817.4
5.71E−12





PSG6_HUMAN
SNPVTLNVLYGPDLPR_585.7_654.4
1.82E−11





VGFR3_HUMAN
SGVDLADSNQK_567.3_662.3
4.57E−11





INHBE_HUMAN
ALVLELAK_428.8_331.2
1.04E−08





PSG2_HUMAN
IHPSYTNYR_384.2_452.2
6.27E−08





PSG9_HUMAN
LFIPQITR_494.3_727.4
1.50E−07





VGFR3_HUMAN
SGVDLADSNQK_567.3_591.3
2.09E−07





PSG9_HUMAN
LFIPQITR_494.3_614.4
2.71E−07





PSG9_HUMAN
DVLLLVHNLPQNLPGYFWYK_810.4_960.5
3.10E−07





PSG2_HUMAN
IHPSYTNYR_384.2_338.2
2.55E−06





ITIH3_HUMAN
LIQDAVTGLTVNGQITGDK_972.0_640.4
2.76E−06





ENPP2_HUMAN
TYLHTYESEI_628.3_908.4
2.82E−06





ENPP2_HUMAN
WWGGQPLWITATK_772.4_373.2
3.75E−06





PSG9_HUMAN
DVLLLVHNLPQNLPGYFWYK_810.4_328.2
3.94E−06





B2MG_HUMAN
VEHSDLSFSK_383.5_468.2
5.42E−06





ENPP2_HUMAN
WWGGQPLWITATK_772.4_929.5
7.93E−06





ANGT_HUMAN
ALQDQLVLVAAK_634.9_289.2
1.04E−05





B2MG_HUMAN
VNHVTLSQPK_374.9_244.2
1.46E−05





AFAM_HUMAN
LPNNVLQEK_527.8_730.4
1.50E−05





AFAM_HUMAN
LPNNVLQEK_527.8_844.5
1.98E−05





THBG_HUMAN
AVLHIGEK_289.5_292.2
2.15E−05





ENPP2_HUMAN
TYLHTYESEI_628.3_515.3
2.17E−05





IL12B_HUMAN
DIIKPDPPK_511.8_342.2
3.31E−05





AFAM_HUMAN
DADPDTFFAK_563.8_302.1
6.16E−05





THBG_HUMAN
AVLHIGEK_289.5_348.7
8.34E−05





PSG9_HUMAN
DVLLLVHNLPQNLPGYFWYK_810.4_215.1
0.000104442





B2MG_HUMAN
VEHSDLSFSK_383.5_234.1
0.000140786





TRFL_HUMAN
YYGYTGAFR_549.3_450.3
0.000156543





HEMO_HUMAN
QGHNSVFLIK_381.6_260.2
0.000164578





A1BG_HUMAN
LLELTGPK_435.8_227.2
0.000171113





CO6_HUMAN
ALNHLPLEYNSALYSR_621.0_696.4
0.000242116





CO6_HUMAN
ALNHLPLEYNSALYSR_621.0_538.3
0.00024681





ALS_HUMAN
IRPHTFTGLSGLR_485.6_432.3
0.000314359





ITIH2_HUMAN
LSNENHGIAQR_413.5_544.3
0.0004877





PEDF_HUMAN
TVQAVLTVPK_528.3_855.5
0.000508174





AFAM_HUMAN
HFQNLGK_422.2_527.2
0.000522139





FLNA_HUMAN
TGVAVNKPAEFTVDAK_549.6_258.1
0.000594403





ANGT_HUMAN
ALQDQLVLVAAK_634.9_956.6
0.000640673





AFAM_HUMAN
HFQNLGK_422.2_285.1
0.000718763





HGFA_HUMAN
LHKPGVYTR_357.5_692.4
0.000753293





HGFA_HUMAN
LHKPGVYTR_357.5_479.3
0.000909298





HABP2_HUMAN
FLNWIK_410.7_561.3
0.001282014





FETUA_HUMAN
HTLNQIDEVK_598.8_951.5
0.001389792





AFAM_HUMAN
DADPDTFFAK_563.8_825.4
0.001498237





B2MG_HUMAN
VNHVTLSQPK_374.9_459.3
0.001559862





ALS_HUMAN
IRPHTFTGLSGLR_485.6_545.3
0.001612361





A1BG_HUMAN
LLELTGPK_435.8_644.4
0.002012656





F13B_HUMAN
LIENGYFHPVK_439.6_343.2
0.00275216





ITIH2_HUMAN
LSNENHGIAQR_413.5_519.8
0.00356561





APOC3_HUMAN
DALSSVQESQVAQQAR_573.0_672.4
0.00392745





F13B_HUMAN
LIENGYFHPVK_439.6_627.4
0.00434836





PEDF_HUMAN
TVQAVLTVPK_528.3_428.3
0.00482765





PLMN_HUMAN
YEFLNGR_449.7_293.1
0.007325436





HEMO_HUMAN
QGHNSVFLIK_381.6_520.4
0.009508516





FETUA_HUMAN
HTLNQIDEVK_598.8_958.5
0.010018936





CO5_HUMAN
LQGTLPVEAR_542.3_842.5
0.011140661





PLMN_HUMAN
YEFLNGR_449.7_606.3
0.01135322





CO5_HUMAN
TLLPVSKPEIR_418.3_288.2
0.015045275





HABP2_HUMAN
FLNWIK_410.7_560.3
0.01523134





APOC3_HUMAN
DALSSVQESQVAQQAR_573.0_502.3
0.01584708





CO5_HUMAN
LQGTLPVEAR_542.3_571.3
0.017298064





CFAB_HUMAN
DISEVVTPR_508.3_472.3
0.021743221





CERU_HUMAN
TTIEKPVWLGFLGPIIK_638.0_640.4
0.02376225





CO8G_HUMAN
SLPVSDSVLSGFEQR_810.9_723.3
0.041150397





CO8G_HUMAN
FLQEQGHR_338.8_497.3
0.042038143





CO5_HUMAN
VFQFLEK_455.8_811.4
0.043651929





CO8B_HUMAN
QALEEFQK_496.8_680.3
0.04761631
















TABLE 61







Univariate p-values for Peak Area Ratios in Gestation


Age at Birth Linear Model









UniProt_ID
Transition
pvalue












PSG9_HUMAN
DVLLLVHNLPQNLPGYFWYK_810.4_960.5
0.000431547





B2MG_HUMAN
VEHSDLSFSK_383.5_468.2
0.000561148





PSG9_HUMAN
DVLLLVHNLPQNLPGYFWYK_810.4_328.2
0.000957509





ENPP2_HUMAN
TYLHTYESEI_628.3_908.4
0.001058809





THBG_HUMAN
AVLHIGEK_289.5_292.2
0.001180484





ENPP2_HUMAN
WWGGQPLWITATK_772.4_373.2
0.001524983





PSG9_HUMAN
LFIPQITR_494.3_614.4
0.001542932





ENPP2_HUMAN
WWGGQPLWITATK_772.4_929.5
0.002047607





ENPP2_HUMAN
TYLHTYESEI_628.3_515.3
0.003087492





PSG9_HUMAN
LFIPQITR_494.3_727.4
0.00477154





PSG9_HUMAN
DVLLLVHNLPQNLPGYFWYK_810.4_215.1
0.004824351





THBG_HUMAN
AVLHIGEK_289.5_348.7
0.006668084





AFAM_HUMAN
LPNNVLQEK_527.8_730.4
0.006877647





ADA12_HUMAN
FGFGGSTDSGPIR_649.3_745.4
0.011738104





PEDF_HUMAN
TVQAVLTVPK_528.3_855.5
0.013349511





A1BG_HUMAN
LLELTGPK_435.8_227.2
0.015793885





ITIH3_HUMAN
ALDLSLK_380.2_185.1
0.016080436





ADA12_HUMAN
FGFGGSTDSGPIR_649.3_946.5
0.017037089





B2MG_HUMAN
VEHSDLSFSK_383.5_234.1
0.017072093





CO6_HUMAN
ALNHLPLEYNSALYSR_621.0_696.4
0.024592775





TRFL_HUMAN
YYGYTGAFR_549.3_450.3
0.030890831





AFAM_HUMAN
DADPDTFFAK_563.8_302.1
0.033791429





CO6_HUMAN
ALNHLPLEYNSALYSR_621.0_538.3
0.034865341





AFAM_HUMAN
LPNNVLQEK_527.8_844.5
0.039880594





PEDF_HUMAN
TVQAVLTVPK_528.3_428.3
0.040854402





PLMN_HUMAN
EAQLPVIENK_570.8_329.2
0.041023812





LBP_HUMAN
ITLPDFTGDLR_624.3_920.5
0.042276813





CO8G_HUMAN
VQEAHLTEDQIFYFPK_655.7_701.4
0.042353851





PLMN_HUMAN
YEFLNGR_449.7_606.3
0.04416504





B2MG_HUMAN
VNHVTLSQPK_374.9_459.3
0.045458409





CFAB_HUMAN
DISEVVTPR_508.3_472.3
0.046493405





INHBE_HUMAN
ALVLELAK_428.8_331.2
0.04789353
















TABLE 62







Random Forest Importance Values Using Adjusted Peak Areas









Transition
Rank
Importance












INHBE_ALVLELAK_428.8_672.4
1
2964.951571





EGLN_TQILEWAAER_608.8_761.4
2
1218.3406





FA7_SEPRPGVLLR_375.2_654.4
3
998.92897





CBG_ITQDAQLK_458.8_702.4
4
930.9931102





ITIH3_ALDLSLK_380.2_185.1
5
869.6315408





ENPP2_WWGGQPLWITATK_772.4_929.5
6
768.9182114





CBG_ITQDAQLK_458.8_803.4
7
767.8940452





PSG1_LSETNR_360.2_519.3
8
714.6160065





CAA60698_LEPLYSASGPGLRPLVIK_637.4_834.5
9
713.4086612





INHBC_LDFHFSSDR_375.2_611.3
11
681.2442909





CBG_QINSYVK_426.2_610.3
12
674.3363415





LBP_GLQYAAQEGLLALQSELLR_1037.1_858.5
13
603.197751





A1BG_LLELTGPK_435.8_644.4
14
600.9902818





CO6_DLHLSDVFLK_396.2_366.2
15
598.8214342





VCAM1_TQIDSPLSGK_523.3_816.5
16
597.4038769





LRP1_NAVVQGLEQPHGLVVHPLR_688.4_285.2
17
532.0500081





CBG_QINSYVK_426.2_496.3
18
516.5575201





CO6_ENPAVIDFELAPIVDLVR_670.7_811.5
19
501.4669261





ADA12_FGFGGSTDSGPIR_649.3_745.4
20
473.5510333





CO6_DLHLSDVFLK_396.2_260.2
21
470.5473702





ENPP2_TYLHTYESEI_628.3_908.4
22
444.7580726





A1BG_LLELTGPK_435.8_227.2
23
444.696292





FRIH_QNYHQDSEAAINR_515.9_544.3
24
439.2648872





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_846.8_600.3
25
389.3769604





CBG_WSAGLTSSQVDLYIPK_883.0_515.3
26
374.0749768





C1QC_FQSVFTVTR_542.8_623.4
27
370.6957977





GELS_DPDQTDGLGLSYLSSHIANVER_796.4_456.2
28
353.1176588





A1BG_ATWSGAVLAGR_544.8_643.4
29
337.4580124





APOA1_AKPALEDLR_506.8_813.5
30
333.5742035





ENPP2_TYLHTYESEI_628.3_515.3
31
322.6339162





PEPD_AVYEAVLR_460.8_750.4
32
321.4377907





TIMP1_GFQALGDAADIR_617.3_717.4
33
310.0997949





ADA12_LIEIANHVDK_384.6_498.3
34
305.8803542





PGRP2_WGAAPYR_410.7_577.3
35
303.5539874





PSG9_LFIPQITR_494.3_614.4
36
300.7877317





HABP2_FLNWIK_410.7_560.3
37
298.3363186





CBG_WSAGLTSSQVDLYIPK_883.0_357.2
38
297.2474385





PSG2_IHPSYTNYR_384.2_452.2
39
292.6203405





PSG5_LSIPQITTK_500.8_800.5
40
290.2023364





HABP2_FLNWIK_410.7_561.3
41
289.5092933





CO6_SEYGAALAWEK_612.8_788.4
42
287.7634114





ADA12_LIEIANHVDK_384.6_683.4
43
286.5047372





EGLN_TQILEWAAER_608.8_632.3
44
284.5138846





CO6_ENPAVIDFELAPIVDLVR_670.7_601.4
45
273.5146272





FA7_FSLVSGWGQLLDR_493.3_447.3
46
271.7850098





ITIH3_ALDLSLK_380.2_575.3
47
269.9425709





ADA12_FGFGGSTDSGPIR_649.3_946.5
48
264.5698225





FETUA_AALAAFNAQNNGSNFQLEEISR_789.1_746.4
49
247.4728828





FBLN1_AITPPHPASQANIIFDITEGNLR_825.8_459.3
50
246.572102





TSP1_FVFGTTPEDILR_697.9_843.5
51
245.0459575





VCAM1_NTVISVNPSTK_580.3_732.4
52
240.576729





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_846.8_699.4
53
240.1949512





FBLN3_ELPQSIVYK_538.8_409.2
55
233.6825304





ACTB_VAPEEHPVLLTEAPLNPK_652.0_892.5
56
226.9772749





TSP1_FVFGTTPEDILR_697.9_742.4
57
224.4627393





PLMN_EAQLPVIENK_570.8_699.4
58
221.4663735





C1S_IIGGSDADIK_494.8_260.2
59
218.069476





IL1A_ANDQYLTAAALHNLDEAVK_686.4_317.2
60
216.5531949





PGRP2_WGAAPYR_410.7_634.3
61
211.0918302





PSG5_LSIPQITTK_500.8_687.4
62
208.7871461





PSG6_SNPVTLNVLYGPDLPR_585.7_654.4
63
207.9294937





PRG2_WNFAYWAAHQPWSR_607.3_545.3
64
202.9494031





CXCL2_CQCLQTLQGIHLK_13p8RT_533.6_567.4
65
202.9051326





CXCL2_CQCLQTLQGIHLK_13p48RT_533.6_695.4
66
202.6561548





G6PE_LLDFEFSSGR_585.8_553.3
67
201.004611





GELS_TASDFITK_441.7_710.4
68
200.2704809





B2MG_VEHSDLSFSK_383.5_468.2
69
199.880987





CO8B_IPGIFELGISSQSDR_809.9_849.4
70
198.7563875





PSG8_LQLSETNR_480.8_606.3
71
197.6739966





LBP_GLQYAAQEGLLALQSELLR_1037.1_929.5
72
197.4094851





AFAM_LPNNVLQEK_527.8_844.5
73
196.8123228





MAGE
74
196.2410502





PSG2_IHPSYTNYR_384.2_338.2
75
196.2410458





PSG9_LFIPQITR_494.3_727.4
76
193.5329266





TFR1_YNSQLLSFVR_613.8_734.5
77
193.2711994





C1R_QRPPDLDTSSNAVDLLFFTDESGDSR_961.5_866.3
78
193.0625419





PGH1_ILPSVPK_377.2_264.2
79
190.0504508





FA7_SEPRPGVLLR_375.2_454.3
80
188.2718422





FA7_TLAFVR_353.7_274.2
81
187.6895294





PGRP2_DGSPDVTTADIGANTPDATK_973.5_844.4
82
185.6017519





C1S_IIGGSDADIK_494.8_762.4
83
184.5985543





PEPD_VPLALFALNR_557.3_620.4
84
184.3962957





C1S_EDTPNSVWEPAK_686.8_630.3
85
179.2043504





CHL1_TAVTANLDIR_537.3_802.4
86
174.9866792





CHL1_VIAVNEVGR_478.8_744.4
88
172.2053147





SDF1_ILNTPNCALQIVAR_791.9_341.2
89
171.4604557





PAI1_EVPLSALTNILSAQLISHWK_740.8_996.6
90
169.5635635





AMBP_AFIQLWAFDAVK_704.9_650.4
91
169.2124477





G6PE_LLDFEFSSGR_585.8_944.4
92
168.2398598





THBG_SILFLGK_389.2_577.4
93
166.3110206





PRDX2_GLFIIDGK_431.8_545.3
94
164.3125132





ENPP2_WWGGQPLWITATK_772.4_373.2
95
163.4011689





VGFR3_SGVDLADSNQK_567.3_662.3
96
162.8822352





C1S_EDTPNSVWEPAK_686.8_315.2
97
161.6140915





AFAM_DADPDTFFAK_563.8_302.1
98
159.5917449





CBG_SETEIHQGFQHLHQLFAK_717.4_447.2
99
156.1357404





C1S_LLEVPEGR_456.8_686.4
100
155.1763293





PTGDS_GPGEDFR_389.2_623.3
101
154.9205208





ITIH2_IYLQPGR_423.7_329.2
102
154.6552717





FA7_TLAFVR_353.7_492.3
103
152.5009422





FA7_FSLVSGWGQLLDR_493.3_403.2
104
151.9971204





SAMP_VGEYSLYIGR_578.8_871.5
105
151.4738449





APOH_EHSSLAFWK_552.8_267.1
106
151.0052645





PGRP2_AGLLRPDYALLGHR_518.0_595.4
107
150.4149907





C1QC_FNAVLTNPQGDYDTSTGK_964.5_333.2
108
149.2592827





PGRP2_AGLLRPDYALLGHR_518.0_369.2
109
147.3609354





PGRP2_TFTLLDPK_467.8_686.4
111
145.2145223





CO5_TDAPDLPEENQAR_728.3_843.4
112
144.5213118





THRB_ELLESYIDGR_597.8_839.4
113
143.924639





GELS_DPDQTDGLGLSYLSSHIANVER_796.4_328.1
114
142.8936101





TRFL_YYGYTGAFR_549.3_450.3
115
142.8651352





HEMO_QGHNSVFLIK_381.6_260.2
116
142.703845





C1S_GDSGGAFAVQDPNDK_739.3_716.3
117
142.2799122





B1A4H9_AHQLAIDTYQEFR_531.3_450.3
118
138.196407





C1S_SSNNPHSPIVEEFQVPYNK_729.4_261.2
119
136.7868935





HYOU1_LPATEKPVLLSK_432.6_347.2
120
136.1146437





FETA_GYQELLEK_490.3_502.3
121
135.2890322





LRP1_SERPPIFEIR_415.2_288.2
122
134.6569527





CO6_SEYGAALAWEK_612.8_845.5
124
132.8634704





CERU_TTIEKPVWLGFLGPIIK_638.0_844.5
125
132.1047746





IBP1_AQETSGEEISK_589.8_850.4
126
130.934446





SHBG_VVLSSGSGPGLDLPLVLGLPLQLK_791.5_768.5
127
128.2052287





CBG_SETEIHQGFQHLHQLFAK_717.4_318.1
128
127.9873837





A1AT_LSITGTYDLK_555.8_696.4
129
127.658818





PGRP2_DGSPDVTTADIGANTPDATK_973.5_531.3
130
126.5775806





C1QB_LEQGENVFLQATDK_796.4_675.4
131
126.1762726





EGLN_GPITSAAELNDPQSILLR_632.4_826.5
132
125.7658253





IL12B_YENYTSSFFIR_713.8_293.1
133
125.0476631





B2MG_VEHSDLSFSK_383.5_234.1
134
124.9154706





PGH1_AEHPTWGDEQLFQTTR_639.3_765.4
135
124.8913193





INHBE_ALVLELAK_428.8_331.2
136
124.0109276





HYOU1_LPATEKPVLLSK_432.6_460.3
137
123.1900369





CXCL2_CQCLQTLQGIHLK_13p48RT_533.6_567.4
138
122.8800873





PZP_AVGYLITGYQR_620.8_523.3
139
122.4733204





AFAM_IAPQLSTEELVSLGEK_857.5_333.2
140
122.4707849





ICAM1_VELAPLPSWQPVGK_760.9_400.3
141
121.5494206





CHL1_VIAVNEVGR_478.8_284.2
142
119.0877137





APOB_ITENDIQIALDDAK_779.9_632.3
143
118.0222045





SAMP_AYSDLSR_406.2_577.3
144
116.409429





AMBP_AFIQLWAFDAVK_704.9_836.4
145
116.1900846





EGLN_GPITSAAELNDPQSILLR_632.4_601.4
146
115.8438804





LRP1_NAVVQGLEQPHGLVVHPLR_688.4_890.6
147
114.539707





SHBG_VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
148
113.1931134





IBP1_AQETSGEEISK_589.8_979.5
149
112.9902709





PSG6_SNPVTLNVLYGPDLPR_585.7_817.4
150
112.7910917





APOC3_DYWSTVK_449.7_347.2
151
112.544736





C1R_WILTAAHTLYPK_471.9_621.4
152
112.2199708





ANGT_ADSQAQLLLSTVVGVFTAPGLHLK_822.5_983.6
153
111.9634671





PSG9_DVLLLVHNLPQNLPGYFWYK_810.4_328.2
154
111.5743214





A1AT_AVLTIDEK_444.8_605.3
155
111.216651





PSGx_ILILPSVTR_506.3_785.5
156
110.8482935





THRB_ELLESYIDGR_597.8_710.4
157
110.7496103





SHBG_ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
158
110.5091269





PZP_QTLSWTVTPK_580.8_545.3
159
110.4675104





SHBG_ALALPPLGLAPLLNLWAKPQGR_770.5_457.3
160
110.089808





PSG4_TLFIFGVTK_513.3_811.5
161
109.9039967





PLMN_YEFLNGR_449.7_293.1
162
109.6880397





PEPD_AVYEAVLR_460.8_587.4
163
109.3697285





PLMN_LSSPAVITDK_515.8_830.5
164
108.963353





FINC_SYTITGLQPGTDYK_772.4_352.2
165
108.452612





C1R_WILTAAHTLYPK_471.9_407.2
166
107.8348417





CHL1_TAVTANLDIR_537.3_288.2
167
107.7278897





TENA_AVDIPGLEAATPYR_736.9_286.1
168
107.6166195





CRP_YEVQGEVFTKPQLWP_911.0_293.1
169
106.9739589





APOB_SVSLPSLDPASAK_636.4_885.5
170
106.5901668





PRDX2_SVDEALR_395.2_488.3
171
106.2325046





CO8A_YHFEALADTGISSEFYDNANDLLSK_940.8_301.1
172
105.8963287





C1QC_FQSVFTVTR_542.8_722.4
173
105.4338742





PSGx_ILILPSVTR_506.3_559.3
174
105.1942655





VCAM1_TQIDSPLSGK_523.3_703.4
175
105.0091767





VCAM1_NTVISVNPSTK_580.3_845.5
176
104.8754444





CSH_ISLLLIESWLEPVR_834.5_500.3
177
104.6158295





HGFA_EALVPLVADHK_397.9_439.8
178
104.3383142





CGB1_CRPINATLAVEK_457.9_660.4
179
104.3378072





APOB_IEGNLIFDPNNYLPK_874.0_414.2
180
103.9849346





C1QB_LEQGENVFLQATDK_796.4_822.4
181
103.9153207





APOH_EHSSLAFWK_552.8_838.4
182
103.9052103





CO5_LQGTLPVEAR_542.3_842.5
183
103.1061869





SHBG_IALGGLLFPASNLR_481.3_412.3
184
102.2490294





B2MG_VNHVTLSQPK_374.9_459.3
185
102.1204362





APOA2_SPELQAEAK_486.8_659.4
186
101.9166647





FLNA_TGVAVNKPAEFTVDAK_549.6_258.1
187
101.5207852





PLMN_YEFLNGR_449.7_606.3
188
101.2531011
















TABLE 63







Random Forest Importance Values Using Peak Area Ratios









Variable
Rank
Importance












HABP2_FLNWIK_410.7_561.3
1
3501.905733





ADA12_FGFGGSTDSGPIR_649.3_946.5
2
3136.589992





A1BG_LLELTGPK_435.8_227.2
3
2387.891934





B2MG_VEHSDLSFSK_383.5_234.1
4
1431.31771





ADA12_FGFGGSTDSGPIR_649.3_745.4
5
1400.917331





B2MG_VEHSDLSFSK_383.5_468.2
6
1374.453629





APOB_IEGNLIFDPNNYLPK_874.0_414.2
7
1357.812445





PSG9_DVLLLVHNLPQNLPGYFWYK_810.4_960.5
8
1291.934596





A1BG_LLELTGPK_435.8_644.4
9
1138.712941





ITIH3_ALDLSLK_380.2_185.1
10
1137.127027





ENPP2_TYLHTYESEI_628.3_908.4
11
1041.036693





IL12B_YENYTSSFFIR_713.8_293.1
12
970.1662913





ENPP2_WWGGQPLWITATK_772.4_373.2
13
953.0631062





ENPP2_TYLHTYESEI_628.3_515.3
14
927.3512901





PSG9_LFIPQITR_494.3_614.4
15
813.9965357





MAGE
16
742.2425022





ENPP2_WWGGQPLWITATK_772.4_929.5
17
731.5206413





CERU_TTIEKPVWLGFLGPIIK_638.0_640.4
18
724.7745695





ITIH3_ALDLSLK_380.2_575.3
19
710.1982467





PSG2_IHPSYTNYR_384.2_452.2
20
697.4750893





ITIH1_LWAYLTIQELLAK_781.5_371.2
21
644.7416886





INHBE_ALVLELAK_428.8_331.2
22
643.008853





HGFA_LHKPGVYTR_357.5_692.4
23
630.8698445





TRFL_YYGYTGAFR_549.3_450.3
24
609.5866675





THBG_AVLHIGEK_289.5_348.7
25
573.9320948





GELS_TASDFITK_441.7_710.4
26
564.3288862





PSG9_LFIPQITR_494.3_727.4
27
564.1749327





VGFR3_SGVDLADSNQK_567.3_662.3
28
563.8087791





INHA_TTSDGGYSFK_531.7_860.4
29
554.210214





PSG9_DVLLLVHNLPQNLPGYFWYK_810.4_328.2
30
545.1743627





HYOU1_LPATEKPVLLSK_432.6_347.2
31
541.6208032





CO8G_VQEAHLTEDQIFYFPK_655.7_701.4
32
541.3193428





BMI
33
540.5028818





HGFA_LHKPGVYTR_357.5_479.3
34
536.6051948





PSG2_IHPSYTNYR_384.2_338.2
35
536.5363489





GELS_AQPVQVAEGSEPDGFWEALGGK_758.0_623.4
36
536.524931





PSG6_SNPVTLNVLYGPDLPR_585.7_654.4
37
520.108646





HABP2_FLNWIK_410.7_560.3
38
509.0707814





PGH1_ILPSVPK_377.2_527.3
39
503.593718





HYOU1_LPATEKPVLLSK_432.6_460.3
40
484.047422





CO6_ALNHLPLEYNSALYSR_621.0_696.4
41
477.8773179





INHBE_ALVLELAK_428.8_672.4
42
459.1998276





PLMN_LSSPAVITDK_515.8_743.4
43
452.9466414





PSG9_DVLLLVHNLPQNLPGYFWYK_810.4_215.1
44
431.8528248





BGH3_LTLLAPLNSVFK_658.4_875.5
45
424.2540315





AFAM_LPNNVLQEK_527.8_730.4
46
421.4953221





ITIH2_LSNENHGIAQR_413.5_519.8
47
413.1231437





GELS_TASDFITK_441.7_781.4
48
404.2679723





FETUA_AHYDLR_387.7_566.3
49
400.4711207





CERU_TTIEKPVWLGFLGPIIK_638.0_844.5
50
396.2873451





PSGx_ILILPSVTR_506.3_785.5
51
374.5672526





APOB_SVSLPSLDPASAK_636.4_885.5
52
371.1416438





FLNA_TGVAVNKPAEFTVDAK_549.6_258.1
53
370.4175588





PLMN_YEFLNGR_449.7_606.3
54
367.2768078





PSGx_ILILPSVTR_506.3_559.3
55
365.7704321









From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.

Claims
  • 1-6. (canceled)
  • 7. A method of determining probability for preterm birth in a pregnant female, the method comprising detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in a biological sample obtained from said pregnant female, and analyzing said measurable feature to determine the probability for preterm birth in said pregnant female.
  • 8. The method of claim 7, wherein said measurable feature comprises fragments or derivatives of each of said N biomarkers selected from the biomarkers listed in Tables 1 through 63.
  • 9. The method of claim 7, wherein said detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63, combinations or portions and/or derivatives thereof in a biological sample obtained from said pregnant female.
  • 10. The method of claim 9, further comprising calculating the probability for preterm birth in said pregnant female based on said quantified amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63.
  • 11. The method of claim 7, further comprising an initial step of providing a biomarker panel comprising N of the biomarkers listed in Tables 1 through 63.
  • 12. The method of claim 7, further comprising an initial step of providing a biological sample from the pregnant female.
  • 13. The method of claim 7, further comprising communicating said probability to a health care provider.
  • 14. The method of claim 13, wherein said communication informs a subsequent treatment decision for said pregnant female.
  • 15. The method of claim 7, wherein N is a number selected from the group consisting of 2 to 24.
  • 16. The method of claim 15, wherein said N biomarkers comprise at least two of the isolated biomarkers selected from the group consisting of AFTECCVVASQLR, ELLESYIDGR, ITLPDFTGDLR, the biomarkers set forth in Table 50, and the biomarkers set forth in Table 52.
  • 17-23. (canceled)
  • 24. The method of claim 7, wherein said quantifying comprises mass spectrometry (MS).
  • 25. The method of claim 24, wherein said MS comprises liquid chromatography-mass spectrometry (LC-MS).
  • 26. The method of claim 24, wherein said MS comprises multiple reaction monitoring (MRM) or selected reaction monitoring (SRM).
  • 27. The method of claim 26, wherein said MRM (or SRM) comprises scheduled MRM (SRM).
  • 28. The method of claim 7, wherein said quantifying comprises an assay that utilizes a capture agent.
  • 29-65. (canceled)
  • 66. A method of prediciting GAB, the method comprising: (a) quantifying in a biological sample obtained from said pregnant female an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63; (b) multiplying and/or thresholding said amount by a predetermined coefficient, (c) determining the predicted GAB birth in said pregnant female comprising adding said individual products to obtain a total risk score that corresponds to said predicted GAB.
  • 67. A method of prediciting time to birth in a pregnant female, the method comprising: (a) obtaining a biological sample from said pregnant female; (b) quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in said biological sample; (c) multiplying and/or thresholding said amount by a predetermined coefficient, (d) determining predicted GAB in said pregnant female comprising adding said individual products to obtain a total risk score that corresponds to said predicted GAB; and (e) substracting the estimated GA at time biological sample was obtained from the predicted GAB to predict time to birth in said pregnant female.
  • 68-79. (canceled)
Parent Case Info

This application is a continuation of application Ser. No. 14/213,861, filed Mar. 14, 2014, which claims the benefit of U.S. provisional patent application No. 61/919,586, filed Dec. 20, 2013, and U.S. provisional application No. 61/798,504, filed Mar. 15, 2013, each of which is incorporated herein by reference in its entirety. This application incorporates by reference a Sequence Listing submitted herewith as an ASCII text file entitled 13271-021-999_SL.txt created on Oct. 5, 2016, and having a size of 216,321 bytes. The invention relates generally to the field of personalized medicine and, more specifically to compositions and methods for determining the probability for preterm birth in a pregnant female.

Provisional Applications (2)
Number Date Country
61919586 Dec 2013 US
61798504 Mar 2013 US
Continuations (1)
Number Date Country
Parent 14213861 Mar 2014 US
Child 15286486 US