BIOMARKERS AND METHODS FOR PREDICTING PRETERM BIRTH

Information

  • Patent Application
  • 20220178938
  • Publication Number
    20220178938
  • Date Filed
    June 21, 2021
    3 years ago
  • Date Published
    June 09, 2022
    2 years ago
Abstract
The disclosure provides biomarker panels, methods and kits for determining the probability for preterm birth in a pregnant female. The present disclosure is based, in part, on the discovery that certain proteins and peptides in biological samples obtained from a pregnant female are differentially expressed in pregnant females that have an increased risk of developing in the future or presently suffering from preterm birth relative to matched controls. The present disclosure is further based, in part, on the unexpected discovery that panels combining one or more of these proteins and peptides can be utilized in methods of determining the probability for preterm birth in a pregnant female with relatively high sensitivity and specificity. These proteins and peptides disclosed herein serve as biomarkers for classifying test samples, predicting a probability of preterm birth, monitoring of progress of preterm birth in a pregnant female, either individually or in a panel of biomarkers.
Description

This application incorporates by reference a Sequence Listing submitted herewith as an ASCII text file entitled 13271-060-999_SL.txt created on Jun. 19, 2021, and having a size of 216,425 bytes.


The invention relates generally to the field of personalized medicine and, more specifically to compositions and methods for determining the probability for preterm birth in a pregnant female.


BACKGROUND

According to the World Health Organization, an estimated 15 million babies are born preterm (before 37 completed weeks of gestation) every year. In almost all countries with reliable data, preterm birth rates are increasing. See, World Health Organization; March of Dimes; The Partnership for Maternal, Newborn & Child Health; Save the Children, Born too soon: the global action report on preterm birth, ISBN 9789241503433(2012). An estimated 1 million babies die annually from preterm birth complications. Globally, preterm birth is the leading cause of newborn deaths (babies in the first four weeks of life) and the second leading cause of death after pneumonia in children under five years. Many survivors face a lifetime of disability, including learning disabilities and visual and hearing problems.


Across 184 countries with reliable data, the rate of preterm birth ranges from 5% to 18% of babies born. Blencowe et al., “National, regional and worldwide estimates of preterm birth.” The Lancet, 9; 379(9832):2162-72 (2012). While over 60% of preterm births occur in Africa and south Asia, preterm birth is nevertheless a global problem. Countries with the highest numbers include Brazil, India, Nigeria and the United States of America. Of the 11 countries with preterm birth rates over 15%, all but two are in sub-Saharan Africa. In the poorest countries, on average, 12% of babies are born too soon compared with 9% in higher-income countries. Within countries, poorer families are at higher risk. More than three-quarters of premature babies can be saved with feasible, cost-effective care, for example, antenatal steroid injections given to pregnant women at risk of preterm labour to strengthen the babies' lungs.


Infants born preterm are at greater risk than infants born at term for mortality and a variety of health and developmental problems. Complications include acute respiratory, gastrointestinal, immunologic, central nervous system, hearing, and vision problems, as well as longer-term motor, cognitive, visual, hearing, behavioral, social-emotional, health, and growth problems. The birth of a preterm infant can also bring considerable emotional and economic costs to families and have implications for public-sector services, such as health insurance, educational, and other social support systems. The greatest risk of mortality and morbidity is for those infants born at the earliest gestational ages. However, those infants born nearer to term represent the greatest number of infants born preterm and also experience more complications than infants born at term.


To prevent preterm birth in women who are less than 24 weeks pregnant with an ultrasound showing cervical opening, a surgical procedure known as cervical cerclage can be employed in which the cervix is stitched closed with strong sutures. For women less than 34 weeks pregnant and in active preterm labor, hospitalization may be necessary as well as the administration of medications to temporarily halt preterm labor and/or promote the fetal lung development. If a pregnant women is determined to be at risk for preterm birth, health care providers can implement various clinical strategies that may include preventive medications, for example, hydroxyprogesterone caproate (Makena) injections and/or vaginal progesterone gel, cervical pessaries, restrictions on sexual activity and/or other physical activities, and alterations of treatments for chronic conditions, such as diabetes and high blood pressure, that increase the risk of preterm labor.


There is a great need to identify and provide women at risk for preterm birth with proper antenatal care. Women identified as high-risk can be scheduled for more intensive antenatal surveillance and prophylactic interventions. Current strategies for risk assessment are based on the obstetric and medical history and clinical examination, but these strategies are only able to identify a small percentage of women who are at risk for preterm delivery. Reliable early identification of risk for preterm birth would enable planning appropriate monitoring and clinical management to prevent preterm delivery. Such monitoring and management might include: more frequent prenatal care visits, serial cervical length measurements, enhanced education regarding signs and symptoms of early preterm labor, lifestyle interventions for modifiable risk behaviors, cervical pessaries and progesterone treatment. Finally, reliable antenatal identification of risk for preterm birth also is crucial to cost-effective allocation of monitoring resources.


The present invention addresses this need by providing compositions and methods for determining whether a pregnant woman is at risk for preterm birth. Related advantages are provided as well.


SUMMARY

The present invention provides compositions and methods for predicting the probability of preterm birth in a pregnant female.


In one aspect, the invention provides a panel of isolated biomarkers comprising N of the biomarkers listed in Tables 1 through 63. In some embodiments, N is a number selected from the group consisting of 2 to 24. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of AFTECCVVASQLR, ELLESYIDGR, and ITLPDFTGDLR. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of FLNWIK, FGFGGSTDSGPIR, LLELTGPK, VEHSDLSFSK, IEGNLIFDPNNYLPK, ALVLELAK, TQILEWAAER, DVLLLVHNLPQNLPGYFWYK, SEPRPGVLLR, ITQDAQLK, ALDLSLK, WWGGQPLWITATK, and LSETNR


In further embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 50 and the biomarkers set forth in Table 52.


In a further aspect, the invention provides a panel of isolated biomarkers comprising N of the biomarkers listed in Tables 1 through 63. In some embodiments, N is a number selected from the group consisting of 2 to 24. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 50 and the biomarkers set forth in Table 52.


In some embodiments, the invention provides a biomarker panel comprising at least two of the isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G).


In some embodiments, the invention provides a biomarker panel comprising at least two of the isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In other embodiments, the invention provides a biomarker panel comprising lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), complement component C8 gamma chain (C8G or CO8G), complement component 1, q subcomponent, B chain (C1QB), fibrinogen beta chain (FIBB or FIB), C-reactive protein (CRP), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), chorionic somatomammotropin hormone (CSH), and angiotensinogen (ANG or ANGT).


In other embodiments, the invention provides a biomarker panel comprising Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In additional embodiments, the invention provides a biomarker panel comprising at least two of the isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 51 and the biomarkers set forth in Table 53.


Also provided by the invention is a method of determining probability for preterm birth in a pregnant female comprising detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in a biological sample obtained from the pregnant female, and analyzing the measurable feature to determine the probability for preterm birth in the pregnant female. In some embodiments, the invention provides a method of predicting GAB, the method encompassing detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in a biological sample obtained from a pregnant female, and analyzing said measurable feature to predict GAB.


In some embodiments, a measurable feature comprises fragments or derivatives of each of the N biomarkers selected from the biomarkers listed in Tables 1 through 63. In some embodiments of the disclosed methods detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63, combinations or portions and/or derivatives thereof in a biological sample obtained from the pregnant female. In additional embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female further encompass detecting a measurable feature for one or more risk indicia associated with preterm birth.


In some embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of N biomarkers, wherein N is selected from the group consisting of 2 to 24. In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of AFTECCVVASQLR, ELLESYIDGR, and ITLPDFTGDLR. In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FLNWIK, FGFGGSTDSGPIR, LLELTGPK, VEHSDLSFSK, IEGNLIFDPNNYLPK, ALVLELAK, TQILEWAAER, DVLLLVHNLPQNLPGYFWYK, SEPRPGVLLR, ITQDAQLK, ALDLSLK, WWGGQPLWITATK, and LSETNR. In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 50 and the biomarkers set forth in Table 52.


In other embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G).


In other embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), complement component C8 gamma chain (C8G or CO8G), complement component 1, q subcomponent, B chain (C1QB), fibrinogen beta chain (FIBB or FIB), C-reactive protein (CRP), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), chorionic somatomammotropin hormone (CSH), and angiotensinogen (ANG or ANGT).


In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 51 and the biomarkers set forth in Table 53.


In some embodiments of the methods of determining probability for preterm birth in a pregnant female, the probability for preterm birth in the pregnant female is calculated based on the quantified amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63. In some embodiments, the disclosed methods for determining the probability of preterm birth encompass detecting and/or quantifying one or more biomarkers using mass spectrometry, a capture agent or a combination thereof.


In some embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass an initial step of providing a biomarker panel comprising N of the biomarkers listed in Tables 1 through 63. In additional embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass an initial step of providing a biological sample from the pregnant female.


In some embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass communicating the probability to a health care provider. In additional embodiments, the communication informs a subsequent treatment decision for the pregnant female. In further embodiments, the treatment decision of one or more selected from the group of consisting of more frequent prenatal care visits, serial cervical length measurements, enhanced education regarding signs and symptoms of early preterm labor, lifestyle interventions for modifiable risk behaviors and progesterone treatment.


In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass analyzing the measurable feature of one or more isolated biomarkers using a predictive model. In some embodiments of the disclosed methods, a measurable feature of one or more isolated biomarkers is compared with a reference feature.


In additional embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass using one or more analyses selected from a linear discriminant analysis model, a support vector machine classification algorithm, a recursive feature elimination model, a prediction analysis of microarray model, a logistic regression model, a CART algorithm, a flex tree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, a machine learning algorithm, a penalized regression method, and a combination thereof. In one embodiment, the disclosed methods of determining probability for preterm birth in a pregnant female encompass logistic regression.


In some embodiments, the invention provides a method of determining probability for preterm birth in a pregnant female, the method encompassing quantifying in a biological sample obtained from the pregnant female an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63; multiplying the amount by a predetermined coefficient, and determining the probability for preterm birth in the pregnant female comprising adding the individual products to obtain a total risk score that corresponds to the probability


In additional embodiments, the invention provides a method of predicting GAB, the method comprising: (a) quantifying in a biological sample obtained from said pregnant female an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63; (b) multiplying or thresholding said amount by a predetermined coefficient, (c) determining the predicted GAB birth in said pregnant female comprising adding said individual products to obtain a total risk score that corresponds to said predicted GAB.


In further embodiments, the invention provides a method of predicting time to birth in a pregnant female, the method comprising: (a) obtaining a biological sample from said pregnant female; (b) quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in said biological sample; (c) multiplying or thresholding said amount by a predetermined coefficient, (d) determining predicted GAB in said pregnant female comprising adding said individual products to obtain a total risk score that corresponds to said predicted GAB; and (e) subtracting the estimated gestational age (GA) at time biological sample was obtained from the predicted GAB to predict time to birth in said pregnant female.


Other features and advantages of the invention will be apparent from the detailed description, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1. Scatterplot of actual gestational age at birth versus predicted gestational age from random forest regression model.



FIG. 2. Distribution of predicted gestational age from random forest regression model versus actual gestational age at birth (GAB), where actual GAB is given in categories of (i) less than 37 weeks, (ii) 37 to 39 weeks, and (iii) 40 weeks or greater (peaks left to right, respectively).





DETAILED DESCRIPTION

The present disclosure is based, in part, on the discovery that certain proteins and peptides in biological samples obtained from a pregnant female are differentially expressed in pregnant females that have an increased risk of preterm birth relative to controls. The present disclosure is further based, in part, on the unexpected discovery that panels combining one or more of these proteins and peptides can be utilized in methods of determining the probability for preterm birth in a pregnant female with high sensitivity and specificity. These proteins and peptides disclosed herein serve as biomarkers for classifying test samples, predicting probability of preterm birth, predicting probability of term birth, predicting gestational age at birth (GAB), predicting time to birth and/or monitoring of progress of preventative therapy in a pregnant female, either individually or in a panel of biomarkers.


The disclosure provides biomarker panels, methods and kits for determining the probability for preterm birth in a pregnant female. One major advantage of the present disclosure is that risk of developing preterm birth can be assessed early during pregnancy so that appropriate monitoring and clinical management to prevent preterm delivery can be initiated in a timely fashion. The present invention is of particular benefit to females lacking any risk factors for preterm birth and who would not otherwise be identified and treated.


By way of example, the present disclosure includes methods for generating a result useful in determining probability for preterm birth in a pregnant female by obtaining a dataset associated with a sample, where the dataset at least includes quantitative data about biomarkers and panels of biomarkers that have been identified as predictive of preterm birth, and inputting the dataset into an analytic process that uses the dataset to generate a result useful in determining probability for preterm birth in a pregnant female. As described further below, this quantitative data can include amino acids, peptides, polypeptides, proteins, nucleotides, nucleic acids, nucleosides, sugars, fatty acids, steroids, metabolites, carbohydrates, lipids, hormones, antibodies, regions of interest that serve as surrogates for biological macromolecules and combinations thereof.


In addition to the specific biomarkers identified in this disclosure, for example, by accession number in a public database, sequence, or reference, the invention also contemplates use of biomarker variants that are at least 90% or at least 95% or at least 97% identical to the exemplified sequences and that are now known or later discovered and that have utility for the methods of the invention. These variants may represent polymorphisms, splice variants, mutations, and the like. In this regard, the instant specification discloses multiple art-known proteins in the context of the invention and provides exemplary accession numbers associated with one or more public databases as well as exemplary references to published journal articles relating to these art-known proteins. However, those skilled in the art appreciate that additional accession numbers and journal articles can easily be identified that can provide additional characteristics of the disclosed biomarkers and that the exemplified references are in no way limiting with regard to the disclosed biomarkers. As described herein, various techniques and reagents find use in the methods of the present invention. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. In a particular embodiment, the biological sample is serum. As described herein, biomarkers can be detected through a variety of assays and techniques known in the art. As further described herein, such assays include, without limitation, mass spectrometry (MS)-based assays, antibody-based assays as well as assays that combine aspects of the two.


Protein biomarkers associated with the probability for preterm birth in a pregnant female include, but are not limited to, one or more of the isolated biomarkers listed in Tables 1 through 63. In addition to the specific biomarkers, the disclosure further includes biomarker variants that are about 90%, about 95%, or about 97% identical to the exemplified sequences. Variants, as used herein, include polymorphisms, splice variants, mutations, and the like.


Additional markers can be selected from one or more risk indicia, including but not limited to, maternal characteristics, medical history, past pregnancy history, and obstetrical history. Such additional markers can include, for example, previous low birth weight or preterm delivery, multiple 2nd trimester spontaneous abortions, prior first trimester induced abortion, familial and intergenerational factors, history of infertility, nulliparity, placental abnormalities, cervical and uterine anomalies, short cervical length measurements, gestational bleeding, intrauterine growth restriction, in utero diethylstilbestrol exposure, multiple gestations, infant sex, short stature, low prepregnancy weight, low or high body mass index, diabetes, hypertension, urogenital infections (i.e. urinary tract infection), asthma, anxiety and depression, asthma, hypertension, hypothyroidism. Demographic risk indicia for preterm birth can include, for example, maternal age, race/ethnicity, single marital status, low socioeconomic status, maternal age, employment-related physical activity, occupational exposures and environment exposures and stress. Further risk indicia can include, inadequate prenatal care, cigarette smoking, use of marijuana and other illicit drugs, cocaine use, alcohol consumption, caffeine intake, maternal weight gain, dietary intake, sexual activity during late pregnancy and leisure-time physical activities. (Preterm Birth: Causes, Consequences, and Prevention, Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy Outcomes; Behrman RE, Butler AS, editors. Washington (DC): National Academies Press (US); 2007). Additional risk indicia useful for as markers can be identified using learning algorithms known in the art, such as linear discriminant analysis, support vector machine classification, recursive feature elimination, prediction analysis of microarray, logistic regression, CART, FlexTree, LART, random forest, MART, and/or survival analysis regression, which are known to those of skill in the art and are further described herein.


Provided herein are panels of isolated biomarkers comprising N of the biomarkers selected from the group listed in Tables 1 through 63. In the disclosed panels of biomarkers N can be a number selected from the group consisting of 2 to 24. In the disclosed methods, the number of biomarkers that are detected and whose levels are determined, can be 1, or more than 1, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more. In certain embodiments, the number of biomarkers that are detected, and whose levels are determined, can be 1, or more than 1, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, or more. The methods of this disclosure are useful for determining the probability for preterm birth in a pregnant female.


While certain of the biomarkers listed in Tables 1 through 63 are useful alone for determining the probability for preterm birth in a pregnant female, methods are also described herein for the grouping of multiple subsets of the biomarkers that are each useful as a panel of three or more biomarkers. In some embodiments, the invention provides panels comprising N biomarkers, wherein N is at least three biomarkers. In other embodiments, N is selected to be any number from 3-23 biomarkers.


In yet other embodiments, N is selected to be any number from 2-5, 2-10, 2-15, 2-20, or 2-23. In other embodiments, N is selected to be any number from 3-5, 3-10, 3-15, 3-20, or 3-23. In other embodiments, N is selected to be any number from 4-5, 4-10, 4-15, 4-20, or 4-23. In other embodiments, N is selected to be any number from 5-10, 5-15, 5-20, or 5-23. In other embodiments, N is selected to be any number from 6-10, 6-15, 6-20, or 6-23. In other embodiments, N is selected to be any number from 7-10, 7-15, 7-20, or 7-23. In other embodiments, N is selected to be any number from 8-10, 8-15, 8-20, or 8-23. In other embodiments, N is selected to be any number from 9-10, 9-15, 9-20, or 9-23. In other embodiments, N is selected to be any number from 10-15, 10-20, or 10-23. It will be appreciated that N can be selected to encompass similar, but higher order, ranges.


In certain embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, or five isolated biomarkers comprising an amino acid sequence selected from AFTECCVVASQLR, ELLESYIDGR, ITLPDFTGDLR, TDAPDLPEENQAR and SFRPFVPR. In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, three or more, four or more, or five isolated biomarkers comprising an amino acid sequence selected from FLNWIK, FGFGGSTDSGPIR, LLELTGPK, VEHSDLSFSK, IEGNLIFDPNNYLPK, ALVLELAK, TQILEWAAER, DVLLLVHNLPQNLPGYFWYK, SEPRPGVLLR, ITQDAQLK, ALDLSLK, WWGGQPLWITATK, and LSETNR.


In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, or three of the isolated biomarkers consisting of an amino acid sequence selected from AFTECCVVASQLR, ELLESYIDGR, and ITLPDFTGDLR. In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, or three of the isolated biomarkers consisting of an amino acid sequence selected from FLNWIK, FGFGGSTDSGPIR, LLELTGPK, VEHSDLSFSK, IEGNLIFDPNNYLPK, ALVLELAK, TQILEWAAER, DVLLLVHNLPQNLPGYFWYK, SEPRPGVLLR, ITQDAQLK, ALDLSLK, WWGGQPLWITATK, and LSETNR.


In some embodiments, the panel of isolated biomarkers comprises one or more, two or more, or three of the isolated biomarkers consisting of an amino acid sequence selected from the biomarkers set forth in Table 50 and the biomarkers set forth in Table 52.


In some embodiments, the panel of isolated biomarkers comprises one or more peptides comprising a fragment from lipopolysaccharide-binding protein (LBP), Schumann et al., Science 249 (4975), 1429-1431 (1990) (UniProtKB/Swiss-Prot: P18428.3); prothrombin (THRB), Walz et al., Proc. Natl. Acad. Sci. U.S.A. 74 (5), 1969-1972(1977) (NCBI Reference Sequence: NP_000497.1); complement component C5 (C5 or CO5) Haviland, J. Immunol. 146 (1), 362-368 (1991) (GenBank: AAA51925.1); plasminogen (PLMN) Petersen et al., J. Biol. Chem. 265 (11), 6104-6111(1990) (NCBI Reference Sequences: NP_000292.1 NP_001161810.1); and complement component C8 gamma chain (C8G or CO8G), Haefliger et al., Mol. Immunol. 28 (1-2), 123-131 (1991) (NCBI Reference Sequence: NP_000597.2).


In some embodiments, the panel of isolated biomarkers comprises one or more peptides comprising a fragment from cell adhesion molecule with homology to complement component 1, q subcomponent, B chain (C1QB), Reid, Biochem. J. 179 (2), 367-371 (1979) (NCBI Reference Sequence: NP_000482.3); fibrinogen beta chain (FIBB or FIB); Watt et al., Biochemistry 18 (1), 68-76 (1979) (NCBI Reference Sequences: NP_001171670.1 and NP_005132.2); C-reactive protein (CRP), Oliveira et al., J. Biol. Chem. 254 (2), 489-502 (1979) (NCBI Reference Sequence: NP_000558.2); inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) Kim et al., Mol. Biosyst. 7 (5), 1430-1440 (2011) (NCBI Reference Sequences: NP_001159921.1 and NP_002209.2); chorionic somatomammotropin hormone (CSH) Selby et al., J. Biol. Chem. 259 (21), 13131-13138 (1984) (NCBI Reference Sequence: NP_001308.1); and angiotensinogen (ANG or ANGT) Underwood et al., Metabolism 60(8):1150-7 (2011) (NCBI Reference Sequence: NP_000020.1).


In additional embodiments, the invention provides a panel of isolated biomarkers comprising N of the biomarkers listed in Tables 1 through 63. In some embodiments, N is a number selected from the group consisting of 2 to 24. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of AFTECCVVASQLR, ELLESYIDGR, and ITLPDFTGDLR. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of AFTECCVVASQLR, ELLESYIDGR, ITLPDFTGDLR, TDAPDLPEENQAR and SFRPFVPR. In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of FLNWIK, FGFGGSTDSGPIR, LLELTGPK, VEHSDLSFSK, IEGNLIFDPNNYLPK, ALVLELAK, TQILEWAAER, DVLLLVHNLPQNLPGYFWYK, SEPRPGVLLR, ITQDAQLK, ALDLSLK, WWGGQPLWITATK, and LSETNR.


In additional embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 50 and the biomarkers set forth in Table 52.


In further embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G). In another embodiment, the invention provides a biomarker panel comprising at least three isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G).


In further embodiments, the biomarker panel comprises at least two of the isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In some embodiments, the invention provides a biomarker panel comprising lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), complement component C8 gamma chain (C8G or CO8G), complement component 1, q subcomponent, B chain (C1QB), fibrinogen beta chain (FIBB or FIB), C-reactive protein (CRP), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), chorionic somatomammotropin hormone (CSH), and angiotensinogen (ANG or ANGT). In some embodiments, the invention provides a biomarker panel comprising Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In another aspect, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), complement component C8 gamma chain (C8G or CO8G), complement component 1, q subcomponent, B chain (C1QB), fibrinogen beta chain (FIBB or FIB), C-reactive protein (CRP), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), chorionic somatomammotropin hormone (CSH), and angiotensinogen (ANG or ANGT) and the biomarkers set forth in Tables 51 and 53.


In another aspect, the invention provides a biomarker panel comprising at least two isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


It must be noted that, as used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “a biomarker” includes a mixture of two or more biomarkers, and the like.


The term “about,” particularly in reference to a given quantity, is meant to encompass deviations of plus or minus five percent.


As used in this application, including the appended claims, the singular forms “a,” “an,” and “the” include plural references, unless the content clearly dictates otherwise, and are used interchangeably with “at least one” and “one or more.”


As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “contains,” “containing,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, product-by-process, or composition of matter that comprises, includes, or contains an element or list of elements does not include only those elements but can include other elements not expressly listed or inherent to such process, method, product-by-process, or composition of matter.


As used herein, the term “panel” refers to a composition, such as an array or a collection, comprising one or more biomarkers. The term can also refer to a profile or index of expression patterns of one or more biomarkers described herein. The number of biomarkers useful for a biomarker panel is based on the sensitivity and specificity value for the particular combination of biomarker values.


As used herein, and unless otherwise specified, the terms “isolated” and “purified” generally describes a composition of matter that has been removed from its native environment (e.g., the natural environment if it is naturally occurring), and thus is altered by the hand of man from its natural state. An isolated protein or nucleic acid is distinct from the way it exists in nature.


The term “biomarker” refers to a biological molecule, or a fragment of a biological molecule, the change and/or the detection of which can be correlated with a particular physical condition or state. The terms “marker” and “biomarker” are used interchangeably throughout the disclosure. For example, the biomarkers of the present invention are correlated with an increased likelihood of preterm birth. Such biomarkers include, but are not limited to, biological molecules comprising nucleotides, nucleic acids, nucleosides, amino acids, sugars, fatty acids, steroids, metabolites, peptides, polypeptides, proteins, carbohydrates, lipids, hormones, antibodies, regions of interest that serve as surrogates for biological macromolecules and combinations thereof (e.g., glycoproteins, ribonucleoproteins, lipoproteins). The term also encompasses portions or fragments of a biological molecule, for example, peptide fragment of a protein or polypeptide that comprises at least 5 consecutive amino acid residues, at least 6 consecutive amino acid residues, at least 7 consecutive amino acid residues, at least 8 consecutive amino acid residues, at least 9 consecutive amino acid residues, at least 10 consecutive amino acid residues, at least 11 consecutive amino acid residues, at least 12 consecutive amino acid residues, at least 13 consecutive amino acid residues, at least 14 consecutive amino acid residues, at least 15 consecutive amino acid residues, at least 5 consecutive amino acid residues, at least 16 consecutive amino acid residues, at least 17 consecutive amino acid residues, at least 18 consecutive amino acid residues, at least 19 consecutive amino acid residues, at least 20 consecutive amino acid residues, at least 21 consecutive amino acid residues, at least 22 consecutive amino acid residues, at least 23 consecutive amino acid residues, at least 24 consecutive amino acid residues, at least 25 consecutive amino acid residues, or more consecutive amino acid residues.


The invention also provides a method of determining probability for preterm birth in a pregnant female, the method comprising detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in a biological sample obtained from the pregnant female, and analyzing the measurable feature to determine the probability for preterm birth in the pregnant female. As disclosed herein, a measurable feature comprises fragments or derivatives of each of said N biomarkers selected from the biomarkers listed in Tables 1 through 63. In some embodiments of the disclosed methods detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63, combinations or portions and/or derivatives thereof in a biological sample obtained from said pregnant female.


The invention further provides a method of predicting GAB, the method encompassing detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in a biological sample obtained from a pregnant female, and analyzing the measurable feature to predict GAB.


The invention also provides a method of predicting GAB, the method comprising: (a) quantifying in a biological sample obtained from the pregnant female an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63; (b) multiplying or thresholding the amount by a predetermined coefficient, (c) determining the predicted GAB birth in the pregnant female comprising adding the individual products to obtain a total risk score that corresponds to the predicted GAB.


The invention further provides a method of predicting time to birth in a pregnant female, the method comprising: (a) obtaining a biological sample from the pregnant female; (b) quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in the biological sample; (c) multiplying or thresholding the amount by a predetermined coefficient, (d) determining predicted GAB in the pregnant female comprising adding the individual products to obtain a total risk score that corresponds to the predicted GAB; and (e) subtracting the estimated gestational age (GA) at time biological sample was obtained from the predicted GAB to predict time to birth in said pregnant female. For methods directed to predicting time to birth, it is understood that “birth” means birth following spontaneous onset of labor, with or without rupture of membranes.


Although described and exemplified with reference to methods of determining probability for preterm birth in a pregnant female, the present disclosure is similarly applicable to the methods of predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of predicting time to birth in a pregnant female. It will be apparent to one skilled in the art that each of the aforementioned methods has specific and substantial utilities and benefits with regard maternal-fetal health considerations.


In some embodiments, the method of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of N biomarkers, wherein N is selected from the group consisting of 2 to 24. In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of AFTECCVVASQLR, ELLESYIDGR, and ITLPDFTGDLR. In further embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of FLNWIK, FGFGGSTDSGPIR, LLELTGPK, VEHSDLSFSK, IEGNLIFDPNNYLPK, ALVLELAK, TQILEWAAER, DVLLLVHNLPQNLPGYFWYK, SEPRPGVLLR, ITQDAQLK, ALDLSLK, WWGGQPLWITATK, and LSETNR.


In additional embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 50 and the biomarkers set forth in Table 52.


In additional embodiments, the method of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G).


In additional embodiments, the method of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In further embodiments, the disclosed method of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), complement component C8 gamma chain (C8G or CO8G), complement component 1, q subcomponent, B chain (C1QB), fibrinogen beta chain (FIBB or FIB), C-reactive protein (CRP), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), chorionic somatomammotropin hormone (CSH), and angiotensinogen (ANG or ANGT).


In further embodiments, the disclosed method of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In further embodiments, the disclosed method of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


In further embodiments, the disclosed method of determining probability for preterm birth in a pregnant female and related methods disclosed herein comprise detecting a measurable feature of each of at least two isolated biomarkers selected from the group consisting of the biomarkers set forth in Table 51 and the biomarkers set forth in Table 53.


In additional embodiments, the methods of determining probability for preterm birth in a pregnant female further encompass detecting a measurable feature for one or more risk indicia associated with preterm birth. In additional embodiments the risk indicia are selected form the group consisting of previous low birth weight or preterm delivery, multiple 2nd trimester spontaneous abortions, prior first trimester induced abortion, familial and intergenerational factors, history of infertility, nulliparity, placental abnormalities, cervical and uterine anomalies, gestational bleeding, intrauterine growth restriction, in utero diethylstilbestrol exposure, multiple gestations, infant sex, short stature, low prepregnancy weight, low or high body mass index, diabetes, hypertension, and urogenital infections.


A “measurable feature” is any property, characteristic or aspect that can be determined and correlated with the probability for preterm birth in a subject. The term further encompasses any property, characteristic or aspect that can be determined and correlated in connection with a prediction of GAB, a prediction of term birth, or a prediction of time to birth in a pregnant female. For a biomarker, such a measurable feature can include, for example, the presence, absence, or concentration of the biomarker, or a fragment thereof, in the biological sample, an altered structure, such as, for example, the presence or amount of a post-translational modification, such as oxidation at one or more positions on the amino acid sequence of the biomarker or, for example, the presence of an altered conformation in comparison to the conformation of the biomarker in normal control subjects, and/or the presence, amount, or altered structure of the biomarker as a part of a profile of more than one biomarker. In addition to biomarkers, measurable features can further include risk indicia including, for example, maternal characteristics, age, race, ethnicity, medical history, past pregnancy history, obstetrical history. For a risk indicium, a measurable feature can include, for example, previous low birth weight or preterm delivery, multiple 2nd trimester spontaneous abortions, prior first trimester induced abortion, familial and intergenerational factors, history of infertility, nulliparity, placental abnormalities, cervical and uterine anomalies, short cervical length measurements, gestational bleeding, intrauterine growth restriction, in utero diethylstilbestrol exposure, multiple gestations, infant sex, short stature, low prepregnancy weight/low body mass index, diabetes, hypertension, urogenital infections, hypothyroidism, asthma, low educational attainment, cigarette smoking, drug use and alcohol consumption.


In some embodiments of the disclosed methods of determining probability for preterm birth in a pregnant female, the probability for preterm birth in the pregnant female is calculated based on the quantified amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63. In some embodiments, the disclosed methods for determining the probability of preterm birth encompass detecting and/or quantifying one or more biomarkers using mass spectrometry, a capture agent or a combination thereof.


In some embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass an initial step of providing a biomarker panel comprising N of the biomarkers listed in Tables 1 through 63. In additional embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass an initial step of providing a biological sample from the pregnant female.


In some embodiments, the disclosed methods of determining probability for preterm birth in a pregnant female encompass communicating the probability to a health care provider. The disclosed of predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of predicting time to birth in a pregnant female similarly encompass communicating the probability to a health care provider. As stated above, although described and exemplified with reference to determining probability for preterm birth in a pregnant female, all embodiments described throughout this disclosure are similarly applicable to the methods of predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of predicting time to birth in a pregnant female. Specifically, the biomarkers and panels recited throughout this application with express reference to methods for preterm birth can also be used in methods for predicting GAB, the methods for predicting term birth, methods for determining the probability of term birth in a pregnant female as well methods of predicting time to birth in a pregnant female. It will be apparent to one skilled in the art that each of the aforementioned methods have specific and substantial utilities and benefits with regard maternal-fetal health considerations.


In additional embodiments, the communication informs a subsequent treatment decision for the pregnant female. In some embodiments, the method of determining probability for preterm birth in a pregnant female encompasses the additional feature of expressing the probability as a risk score.


As used herein, the term “risk score” refers to a score that can be assigned based on comparing the amount of one or more biomarkers in a biological sample obtained from a pregnant female to a standard or reference score that represents an average amount of the one or more biomarkers calculated from biological samples obtained from a random pool of pregnant females. Because the level of a biomarker may not be static throughout pregnancy, a standard or reference score has to have been obtained for the gestational time point that corresponds to that of the pregnant female at the time the sample was taken. The standard or reference score can be predetermined and built into a predictor model such that the comparison is indirect rather than actually performed every time the probability is determined for a subject. A risk score can be a standard (e.g., a number) or a threshold (e.g., a line on a graph). The value of the risk score correlates to the deviation, upwards or downwards, from the average amount of the one or more biomarkers calculated from biological samples obtained from a random pool of pregnant females. In certain embodiments, if a risk score is greater than a standard or reference risk score, the pregnant female can have an increased likelihood of preterm birth. In some embodiments, the magnitude of a pregnant female's risk score, or the amount by which it exceeds a reference risk score, can be indicative of or correlated to that pregnant female's level of risk.


In the context of the present invention, the term “biological sample,” encompasses any sample that is taken from pregnant female and contains one or more of the biomarkers listed in Tables 1 through 63. Suitable samples in the context of the present invention include, for example, blood, plasma, serum, amniotic fluid, vaginal secretions, saliva, and urine. In some embodiments, the biological sample is selected from the group consisting of whole blood, plasma, and serum. In a particular embodiment, the biological sample is serum. As will be appreciated by those skilled in the art, a biological sample can include any fraction or component of blood, without limitation, T cells, monocytes, neutrophils, erythrocytes, platelets and microvesicles such as exosomes and exosome-like vesicles. In a particular embodiment, the biological sample is serum.


Preterm birth refers to delivery or birth at a gestational age less than 37 completed weeks. Other commonly used subcategories of preterm birth have been established and delineate moderately preterm (birth at 33 to 36 weeks of gestation), very preterm (birth at <33 weeks of gestation), and extremely preterm (birth at ≤28 weeks of gestation). With regard to the methods disclosed herein, those skilled in the art understand that the cut-offs that delineate preterm birth and term birth as well as the cut-offs that delineate subcategories of preterm birth can be adjusted in practicing the methods disclosed herein, for example, to maximize a particular health benefit. It is further understood that such adjustments are well within the skill set of individuals considered skilled in the art and encompassed within the scope of the inventions disclosed herein. Gestational age is a proxy for the extent of fetal development and the fetus's readiness for birth. Gestational age has typically been defined as the length of time from the date of the last normal menses to the date of birth. However, obstetric measures and ultrasound estimates also can aid in estimating gestational age. Preterm births have generally been classified into two separate subgroups. One, spontaneous preterm births are those occurring subsequent to spontaneous onset of preterm labor or preterm premature rupture of membranes regardless of subsequent labor augmentation or cesarean delivery. Two, indicated preterm births are those occurring following induction or cesarean section for one or more conditions that the woman's caregiver determines to threaten the health or life of the mother and/or fetus. In some embodiments, the methods disclosed herein are directed to determining the probability for spontaneous preterm birth. In additional embodiments, the methods disclosed herein are directed to predicting gestational birth.


As used herein, the term “estimated gestational age” or “estimated GA” refers to the GA determined based on the date of the last normal menses and additional obstetric measures, ultrasound estimates or other clinical parameters including, without limitation, those described in the preceding paragraph. In contrast the term “predicted gestational age at birth” or “predicted GAB” refers to the GAB determined based on the methods of the invention as disclosed herein. As used herein, “term birth” refers to birth at a gestational age equal or more than 37 completed weeks.


In some embodiments, the pregnant female is between 17 and 28 weeks of gestation at the time the biological sample is collected. In other embodiments, the pregnant female is between 16 and 29 weeks, between 17 and 28 weeks, between 18 and 27 weeks, between 19 and 26 weeks, between 20 and 25 weeks, between 21 and 24 weeks, or between 22 and 23 weeks of gestation at the time the biological sample is collected. In further embodiments, the pregnant female is between about 17 and 22 weeks, between about 16 and 22 weeks between about 22 and 25 weeks, between about 13 and 25 weeks, between about 26 and 28, or between about 26 and 29 weeks of gestation at the time the biological sample is collected. Accordingly, the gestational age of a pregnant female at the time the biological sample is collected can be 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 weeks.


In some embodiments of the claimed methods the measurable feature comprises fragments or derivatives of each of the N biomarkers selected from the biomarkers listed in Tables 1 through 63. In additional embodiments of the claimed methods, detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63, combinations or portions and/or derivatives thereof in a biological sample obtained from said pregnant female.


The term “amount” or “level” as used herein refers to a quantity of a biomarker that is detectable or measurable in a biological sample and/or control. The quantity of a biomarker can be, for example, a quantity of polypeptide, the quantity of nucleic acid, or the quantity of a fragment or surrogate. The term can alternatively include combinations thereof. The term “amount” or “level” of a biomarker is a measurable feature of that biomarker.


In some embodiments, calculating the probability for preterm birth in a pregnant female is based on the quantified amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63. Any existing, available or conventional separation, detection and quantification methods can be used herein to measure the presence or absence (e.g., readout being present vs. absent; or detectable amount vs. undetectable amount) and/or quantity (e.g., readout being an absolute or relative quantity, such as, for example, absolute or relative concentration) of biomarkers, peptides, polypeptides, proteins and/or fragments thereof and optionally of the one or more other biomarkers or fragments thereof in samples. In some embodiments, detection and/or quantification of one or more biomarkers comprises an assay that utilizes a capture agent. In further embodiments, the capture agent is an antibody, antibody fragment, nucleic acid-based protein binding reagent, small molecule or variant thereof. In additional embodiments, the assay is an enzyme immunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (MA). In some embodiments, detection and/or quantification of one or more biomarkers further comprises mass spectrometry (MS). In yet further embodiments, the mass spectrometry is co-immunoprecipitation-mass spectrometry (co-IP MS), where coimmunoprecipitation, a technique suitable for the isolation of whole protein complexes is followed by mass spectrometric analysis.


As used herein, the term “mass spectrometer” refers to a device able to volatilize/ionize analytes to form gas-phase ions and determine their absolute or relative molecular masses. Suitable methods of volatilization/ionization are matrix-assisted laser desorption ionization (MALDI), electrospray, laser/light, thermal, electrical, atomized/sprayed and the like, or combinations thereof. Suitable forms of mass spectrometry include, but are not limited to, ion trap instruments, quadrupole instruments, electrostatic and magnetic sector instruments, time of flight instruments, time of flight tandem mass spectrometer (TOF MS/MS), Fourier-transform mass spectrometers, Orbitraps and hybrid instruments composed of various combinations of these types of mass analyzers. These instruments can, in turn, be interfaced with a variety of other instruments that fractionate the samples (for example, liquid chromatography or solid-phase adsorption techniques based on chemical, or biological properties) and that ionize the samples for introduction into the mass spectrometer, including matrix-assisted laser desorption (MALDI), electrospray, or nanospray ionization (ESI) or combinations thereof.


Generally, any mass spectrometric (MS) technique that can provide precise information on the mass of peptides, and preferably also on fragmentation and/or (partial) amino acid sequence of selected peptides (e.g., in tandem mass spectrometry, MS/MS; or in post source decay, TOF MS), can be used in the methods disclosed herein. Suitable peptide MS and MS/MS techniques and systems are well-known per se (see, e.g., Methods in Molecular Biology, vol. 146: “Mass Spectrometry of Proteins and Peptides”, by Chapman, ed., Humana Press 2000; Biemann 1990. Methods Enzymol 193: 455-79; or Methods in Enzymology, vol. 402: “Biological Mass Spectrometry”, by Burlingame, ed., Academic Press 2005) and can be used in practicing the methods disclosed herein. Accordingly, in some embodiments, the disclosed methods comprise performing quantitative MS to measure one or more biomarkers. Such quantitative methods can be performed in an automated (Villanueva, et al., Nature Protocols (2006) 1(2):880-891) or semi-automated format. In particular embodiments, MS can be operably linked to a liquid chromatography device (LC-MS/MS or LC-MS) or gas chromatography device (GC-MS or GC-MS/MS). Other methods useful in this context include isotope-coded affinity tag (ICAT), tandem mass tags (TMT), or stable isotope labeling by amino acids in cell culture (SILAC), followed by chromatography and MS/MS.


As used herein, the terms “multiple reaction monitoring (MRM)” or “selected reaction monitoring (SRM)” refer to an MS-based quantification method that is particularly useful for quantifying analytes that are in low abundance. In an SRM experiment, a predefined precursor ion and one or more of its fragments are selected by the two mass filters of a triple quadrupole instrument and monitored over time for precise quantification. Multiple SRM precursor and fragment ion pairs can be measured within the same experiment on the chromatographic time scale by rapidly toggling between the different precursor/fragment pairs to perform an MRM experiment. A series of transitions (precursor/fragment ion pairs) in combination with the retention time of the targeted analyte (e.g., peptide or small molecule such as chemical entity, steroid, hormone) can constitute a definitive assay. A large number of analytes can be quantified during a single LC-MS experiment. The term “scheduled,” or “dynamic” in reference to MRM or SRM, refers to a variation of the assay wherein the transitions for a particular analyte are only acquired in a time window around the expected retention time, significantly increasing the number of analytes that can be detected and quantified in a single LC-MS experiment and contributing to the selectivity of the test, as retention time is a property dependent on the physical nature of the analyte. A single analyte can also be monitored with more than one transition. Finally, included in the assay can be standards that correspond to the analytes of interest (e.g., same amino acid sequence), but differ by the inclusion of stable isotopes. Stable isotopic standards (SIS) can be incorporated into the assay at precise levels and used to quantify the corresponding unknown analyte. An additional level of specificity is contributed by the co-elution of the unknown analyte and its corresponding SIS and properties of their transitions (e.g., the similarity in the ratio of the level of two transitions of the unknown and the ratio of the two transitions of its corresponding SIS).


Mass spectrometry assays, instruments and systems suitable for biomarker peptide analysis can include, without limitation, matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) MS; MALDI-TOF post-source-decay (PSD); MALDI-TOF/TOF; surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF) MS; electrospray ionization mass spectrometry (ESI-MS); ESI-MS/MS; ESI-MS/(MS)n (n is an integer greater than zero); ESI 3D or linear (2D) ion trap MS; ESI triple quadrupole MS; ESI quadrupole orthogonal TOF (Q-TOF); ESI Fourier transform MS systems; desorption/ionization on silicon (DIOS); secondary ion mass spectrometry (SIMS); atmospheric pressure chemical ionization mass spectrometry (APCI-MS); APCI-MS/MS; APCI-(MS)n; ion mobility spectrometry (IMS); inductively coupled plasma mass spectrometry (ICP-MS) atmospheric pressure photoionization mass spectrometry (APPI-MS); APPI-MS/MS; and APPI-(MS)n. Peptide ion fragmentation in tandem MS (MS/MS) arrangements can be achieved using manners established in the art, such as, e.g., collision induced dissociation (CID). As described herein, detection and quantification of biomarkers by mass spectrometry can involve multiple reaction monitoring (MRM), such as described among others by Kuhn et al. Proteomics 4: 1175-86 (2004). Scheduled multiple-reaction-monitoring (Scheduled MRM) mode acquisition during LC-MS/MS analysis enhances the sensitivity and accuracy of peptide quantitation. Anderson and Hunter, Molecular and Cellular Proteomics 5(4):573 (2006). As described herein, mass spectrometry-based assays can be advantageously combined with upstream peptide or protein separation or fractionation methods, such as for example with the chromatographic and other methods described herein below. As further described herein, shotgun quantitative proteomics can be combined with SRM/MRM-based assays for high-throughput identification and verification of prognostic biomarkers of preterm birth.


A person skilled in the art will appreciate that a number of methods can be used to determine the amount of a biomarker, including mass spectrometry approaches, such as MS/MS, LC-MS/MS, multiple reaction monitoring (MRM) or SRM and product-ion monitoring (PIM) and also including antibody based methods such as immunoassays such as Western blots, enzyme-linked immunosorbant assay (ELISA), immunoprecipitation, immunohistochemistry, immunofluorescence, radioimmunoassay, dot blotting, and FACS. Accordingly, in some embodiments, determining the level of the at least one biomarker comprises using an immunoassay and/or mass spectrometric methods. In additional embodiments, the mass spectrometric methods are selected from MS, MS/MS, LC-MS/MS, SRM, PIM, and other such methods that are known in the art. In other embodiments, LC-MS/MS further comprises 1D LC-MS/MS, 2D LC-MS/MS or 3D LC-MS/MS. Immunoassay techniques and protocols are generally known to those skilled in the art (Price and Newman, Principles and Practice of Immunoassay, 2nd Edition, Grove's Dictionaries, 1997; and Gosling, Immunoassays: A Practical Approach, Oxford University Press, 2000.) A variety of immunoassay techniques, including competitive and non-competitive immunoassays, can be used (Self et al., Curr. Opin. Biotechnol., 7:60-65 (1996).


In further embodiments, the immunoassay is selected from Western blot, ELISA, immunoprecipitation, immunohistochemistry, immunofluorescence, radioimmunoassay (MA), dot blotting, and FACS. In certain embodiments, the immunoassay is an ELISA. In yet a further embodiment, the ELISA is direct ELISA (enzyme-linked immunosorbent assay), indirect ELISA, sandwich ELISA, competitive ELISA, multiplex ELISA, ELISPOT technologies, and other similar techniques known in the art. Principles of these immunoassay methods are known in the art, for example John R. Crowther, The ELISA Guidebook, 1st ed., Humana Press 2000, ISBN 0896037282. Typically ELISAs are performed with antibodies but they can be performed with any capture agents that bind specifically to one or more biomarkers of the invention and that can be detected. Multiplex ELISA allows simultaneous detection of two or more analytes within a single compartment (e.g., microplate well) usually at a plurality of array addresses (Nielsen and Geierstanger 2004. J Immunol Methods 290: 107-20 (2004) and Ling et al. 2007. Expert Rev Mol Diagn 7: 87-98 (2007)).


In some embodiments, Radioimmunoassay (RIA) can be used to detect one or more biomarkers in the methods of the invention. RIA is a competition-based assay that is well known in the art and involves mixing known quantities of radioactively-labelled (e.g., 125I or 131I-labelled) target analyte with antibody specific for the analyte, then adding non-labelled analyte from a sample and measuring the amount of labelled analyte that is displaced (see, e.g., An Introduction to Radioimmunoassay and Related Techniques, by Chard T, ed., Elsevier Science 1995, ISBN 0444821198 for guidance).


A detectable label can be used in the assays described herein for direct or indirect detection of the biomarkers in the methods of the invention. A wide variety of detectable labels can be used, with the choice of label depending on the sensitivity required, ease of conjugation with the antibody, stability requirements, and available instrumentation and disposal provisions. Those skilled in the art are familiar with selection of a suitable detectable label based on the assay detection of the biomarkers in the methods of the invention. Suitable detectable labels include, but are not limited to, fluorescent dyes (e.g., fluorescein, fluorescein isothiocyanate (FITC), Oregon Green™, rhodamine, Texas red, tetrarhodimine isothiocynate (TRITC), Cy3, Cy5, etc.), fluorescent markers (e.g., green fluorescent protein (GFP), phycoerythrin, etc.), enzymes (e.g., luciferase, horseradish peroxidase, alkaline phosphatase, etc.), nanoparticles, biotin, digoxigenin, metals, and the like.


For mass-spectrometry based analysis, differential tagging with isotopic reagents, e.g., isotope-coded affinity tags (ICAT) or the more recent variation that uses isobaric tagging reagents, iTRAQ (Applied Biosystems, Foster City, Calif.), or tandem mass tags, TMT, (Thermo Scientific, Rockford, Ill.), followed by multidimensional liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis can provide a further methodology in practicing the methods of the invention.


A chemiluminescence assay using a chemiluminescent antibody can be used for sensitive, non-radioactive detection of protein levels. An antibody labeled with fluorochrome also can be suitable. Examples of fluorochromes include, without limitation, DAPI, fluorescein, Hoechst 33258, R-phycocyanin, B-phycoerythrin, R-phycoerythrin, rhodamine, Texas red, and lissamine. Indirect labels include various enzymes well known in the art, such as horseradish peroxidase (HRP), alkaline phosphatase (AP), beta-galactosidase, urease, and the like. Detection systems using suitable substrates for horseradish-peroxidase, alkaline phosphatase, beta-galactosidase are well known in the art.


A signal from the direct or indirect label can be analyzed, for example, using a spectrophotometer to detect color from a chromogenic substrate; a radiation counter to detect radiation such as a gamma counter for detection of 125I; or a fluorometer to detect fluorescence in the presence of light of a certain wavelength. For detection of enzyme-linked antibodies, a quantitative analysis can be made using a spectrophotometer such as an EMAX Microplate Reader (Molecular Devices; Menlo Park, Calif.) in accordance with the manufacturer's instructions. If desired, assays used to practice the invention can be automated or performed robotically, and the signal from multiple samples can be detected simultaneously.


In some embodiments, the methods described herein encompass quantification of the biomarkers using mass spectrometry (MS). In further embodiments, the mass spectrometry can be liquid chromatography-mass spectrometry (LC-MS), multiple reaction monitoring (MRM) or selected reaction monitoring (SRM). In additional embodiments, the MRM or SRM can further encompass scheduled MRM or scheduled SRM.


As described above, chromatography can also be used in practicing the methods of the invention. Chromatography encompasses methods for separating chemical substances and generally involves a process in which a mixture of analytes is carried by a moving stream of liquid or gas (“mobile phase”) and separated into components as a result of differential distribution of the analytes as they flow around or over a stationary liquid or solid phase (“stationary phase”), between the mobile phase and said stationary phase. The stationary phase can be usually a finely divided solid, a sheet of filter material, or a thin film of a liquid on the surface of a solid, or the like. Chromatography is well understood by those skilled in the art as a technique applicable for the separation of chemical compounds of biological origin, such as, e.g., amino acids, proteins, fragments of proteins or peptides, etc.


Chromatography can be columnar (i.e., wherein the stationary phase is deposited or packed in a column), preferably liquid chromatography, and yet more preferably high-performance liquid chromatography (HPLC), or ultra high performance/pressure liquid chromatography (UHPLC). Particulars of chromatography are well known in the art (Bidlingmeyer, Practical HPLC Methodology and Applications, John Wiley & Sons Inc., 1993). Exemplary types of chromatography include, without limitation, high-performance liquid chromatography (HPLC), UHPLC, normal phase HPLC (NP-HPLC), reversed phase HPLC (RP-HPLC), ion exchange chromatography (IEC), such as cation or anion exchange chromatography, hydrophilic interaction chromatography (HILIC), hydrophobic interaction chromatography (HIC), size exclusion chromatography (SEC) including gel filtration chromatography or gel permeation chromatography, chromatofocusing, affinity chromatography such as immuno-affinity, immobilised metal affinity chromatography, and the like. Chromatography, including single-, two- or more-dimensional chromatography, can be used as a peptide fractionation method in conjunction with a further peptide analysis method, such as for example, with a downstream mass spectrometry analysis as described elsewhere in this specification.


Further peptide or polypeptide separation, identification or quantification methods can be used, optionally in conjunction with any of the above described analysis methods, for measuring biomarkers in the present disclosure. Such methods include, without limitation, chemical extraction partitioning, isoelectric focusing (IEF) including capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITP), capillary electrochromatography (CEC), and the like, one-dimensional polyacrylamide gel electrophoresis (PAGE), two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), capillary gel electrophoresis (CGE), capillary zone electrophoresis (CZE), micellar electrokinetic chromatography (MEKC), free flow electrophoresis (FFE), etc.


In the context of the invention, the term “capture agent” refers to a compound that can specifically bind to a target, in particular a biomarker. The term includes antibodies, antibody fragments, nucleic acid-based protein binding reagents (e.g. aptamers, Slow Off-rate Modified Aptamers (SOMAmer™)), protein-capture agents, natural ligands (i.e. a hormone for its receptor or vice versa), small molecules or variants thereof.


Capture agents can be configured to specifically bind to a target, in particular a biomarker. Capture agents can include but are not limited to organic molecules, such as polypeptides, polynucleotides and other non polymeric molecules that are identifiable to a skilled person. In the embodiments disclosed herein, capture agents include any agent that can be used to detect, purify, isolate, or enrich a target, in particular a biomarker. Any art-known affinity capture technologies can be used to selectively isolate and enrich/concentrate biomarkers that are components of complex mixtures of biological media for use in the disclosed methods.


Antibody capture agents that specifically bind to a biomarker can be prepared using any suitable methods known in the art. See, e.g., Coligan, Current Protocols in Immunology (1991); Harlow & Lane, Antibodies: A Laboratory Manual (1988); Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986). Antibody capture agents can be any immunoglobulin or derivative thereof, whether natural or wholly or partially synthetically produced. All derivatives thereof which maintain specific binding ability are also included in the term. Antibody capture agents have a binding domain that is homologous or largely homologous to an immunoglobulin binding domain and can be derived from natural sources, or partly or wholly synthetically produced. Antibody capture agents can be monoclonal or polyclonal antibodies. In some embodiments, an antibody is a single chain antibody. Those of ordinary skill in the art will appreciate that antibodies can be provided in any of a variety of forms including, for example, humanized, partially humanized, chimeric, chimeric humanized, etc. Antibody capture agents can be antibody fragments including, but not limited to, Fab, Fab′, F(ab′)2, scFv, Fv, dsFv diabody, and Fd fragments. An antibody capture agent can be produced by any means. For example, an antibody capture agent can be enzymatically or chemically produced by fragmentation of an intact antibody and/or it can be recombinantly produced from a gene encoding the partial antibody sequence. An antibody capture agent can comprise a single chain antibody fragment. Alternatively or additionally, antibody capture agent can comprise multiple chains which are linked together, for example, by disulfide linkages; and, any functional fragments obtained from such molecules, wherein such fragments retain specific-binding properties of the parent antibody molecule. Because of their smaller size as functional components of the whole molecule, antibody fragments can offer advantages over intact antibodies for use in certain immunochemical techniques and experimental applications.


Suitable capture agents useful for practicing the invention also include aptamers. Aptamers are oligonucleotide sequences that can bind to their targets specifically via unique three dimensional (3-D) structures. An aptamer can include any suitable number of nucleotides and different aptamers can have either the same or different numbers of nucleotides. Aptamers can be DNA or RNA or chemically modified nucleic acids and can be single stranded, double stranded, or contain double stranded regions, and can include higher ordered structures. An aptamer can also be a photoaptamer, where a photoreactive or chemically reactive functional group is included in the aptamer to allow it to be covalently linked to its corresponding target. Use of an aptamer capture agent can include the use of two or more aptamers that specifically bind the same biomarker. An aptamer can include a tag. An aptamer can be identified using any known method, including the SELEX (systematic evolution of ligands by exponential enrichment), process. Once identified, an aptamer can be prepared or synthesized in accordance with any known method, including chemical synthetic methods and enzymatic synthetic methods and used in a variety of applications for biomarker detection. Liu et al., Curr Med Chem. 18(27):4117-25 (2011). Capture agents useful in practicing the methods of the invention also include SOMAmers (Slow Off-Rate Modified Aptamers) known in the art to have improved off-rate characteristics. Brody et al., J Mol Biol. 422(5):595-606 (2012). SOMAmers can be generated using any known method, including the SELEX method.


It is understood by those skilled in the art that biomarkers can be modified prior to analysis to improve their resolution or to determine their identity. For example, the biomarkers can be subject to proteolytic digestion before analysis. Any protease can be used. Proteases, such as trypsin, that are likely to cleave the biomarkers into a discrete number of fragments are particularly useful. The fragments that result from digestion function as a fingerprint for the biomarkers, thereby enabling their detection indirectly. This is particularly useful where there are biomarkers with similar molecular masses that might be confused for the biomarker in question. Also, proteolytic fragmentation is useful for high molecular weight biomarkers because smaller biomarkers are more easily resolved by mass spectrometry. In another example, biomarkers can be modified to improve detection resolution. For instance, neuraminidase can be used to remove terminal sialic acid residues from glycoproteins to improve binding to an anionic adsorbent and to improve detection resolution. In another example, the biomarkers can be modified by the attachment of a tag of particular molecular weight that specifically binds to molecular biomarkers, further distinguishing them. Optionally, after detecting such modified biomarkers, the identity of the biomarkers can be further determined by matching the physical and chemical characteristics of the modified biomarkers in a protein database (e.g., SwissProt).


It is further appreciated in the art that biomarkers in a sample can be captured on a substrate for detection. Traditional substrates include antibody-coated 96-well plates or nitrocellulose membranes that are subsequently probed for the presence of the proteins. Alternatively, protein-binding molecules attached to microspheres, microparticles, microbeads, beads, or other particles can be used for capture and detection of biomarkers. The protein-binding molecules can be antibodies, peptides, peptoids, aptamers, small molecule ligands or other protein-binding capture agents attached to the surface of particles. Each protein-binding molecule can include unique detectable label that is coded such that it can be distinguished from other detectable labels attached to other protein-binding molecules to allow detection of biomarkers in multiplex assays. Examples include, but are not limited to, color-coded microspheres with known fluorescent light intensities (see e.g., microspheres with xMAP technology produced by Luminex (Austin, Tex.); microspheres containing quantum dot nanocrystals, for example, having different ratios and combinations of quantum dot colors (e.g., Qdot nanocrystals produced by Life Technologies (Carlsbad, Calif.); glass coated metal nanoparticles (see e.g., SERS nanotags produced by Nanoplex Technologies, Inc. (Mountain View, Calif.); barcode materials (see e.g., sub-micron sized striped metallic rods such as Nanobarcodes produced by Nanoplex Technologies, Inc.), encoded microparticles with colored bar codes (see e.g., CellCard produced by Vitra Bioscience, vitrabio.com), glass microparticles with digital holographic code images (see e.g., CyVera microbeads produced by Illumina (San Diego, Calif.); chemiluminescent dyes, combinations of dye compounds; and beads of detectably different sizes.


In another aspect, biochips can be used for capture and detection of the biomarkers of the invention. Many protein biochips are known in the art. These include, for example, protein biochips produced by Packard BioScience Company (Meriden Conn.), Zyomyx (Hayward, Calif.) and Phylos (Lexington, Mass.). In general, protein biochips comprise a substrate having a surface. A capture reagent or adsorbent is attached to the surface of the substrate. Frequently, the surface comprises a plurality of addressable locations, each of which location has the capture agent bound there. The capture agent can be a biological molecule, such as a polypeptide or a nucleic acid, which captures other biomarkers in a specific manner. Alternatively, the capture agent can be a chromatographic material, such as an anion exchange material or a hydrophilic material. Examples of protein biochips are well known in the art.


Measuring mRNA in a biological sample can be used as a surrogate for detection of the level of the corresponding protein biomarker in a biological sample. Thus, any of the biomarkers or biomarker panels described herein can also be detected by detecting the appropriate RNA. Levels of mRNA can measured by reverse transcription quantitative polymerase chain reaction (RT-PCR followed with qPCR). RT-PCR is used to create a cDNA from the mRNA. The cDNA can be used in a qPCR assay to produce fluorescence as the DNA amplification process progresses. By comparison to a standard curve, qPCR can produce an absolute measurement such as number of copies of mRNA per cell. Northern blots, microarrays, Invader assays, and RT-PCR combined with capillary electrophoresis have all been used to measure expression levels of mRNA in a sample. See Gene Expression Profiling: Methods and Protocols, Richard A. Shimkets, editor, Humana Press, 2004.


Some embodiments disclosed herein relate to diagnostic and prognostic methods of determining the probability for preterm birth in a pregnant female. The detection of the level of expression of one or more biomarkers and/or the determination of a ratio of biomarkers can be used to determine the probability for preterm birth in a pregnant female. Such detection methods can be used, for example, for early diagnosis of the condition, to determine whether a subject is predisposed to preterm birth, to monitor the progress of preterm birth or the progress of treatment protocols, to assess the severity of preterm birth, to forecast the outcome of preterm birth and/or prospects of recovery or birth at full term, or to aid in the determination of a suitable treatment for preterm birth.


The quantitation of biomarkers in a biological sample can be determined, without limitation, by the methods described above as well as any other method known in the art. The quantitative data thus obtained is then subjected to an analytic classification process. In such a process, the raw data is manipulated according to an algorithm, where the algorithm has been pre-defined by a training set of data, for example as described in the examples provided herein. An algorithm can utilize the training set of data provided herein, or can utilize the guidelines provided herein to generate an algorithm with a different set of data.


In some embodiments, analyzing a measurable feature to determine the probability for preterm birth in a pregnant female encompasses the use of a predictive model. In further embodiments, analyzing a measurable feature to determine the probability for preterm birth in a pregnant female encompasses comparing said measurable feature with a reference feature. As those skilled in the art can appreciate, such comparison can be a direct comparison to the reference feature or an indirect comparison where the reference feature has been incorporated into the predictive model. In further embodiments, analyzing a measurable feature to determine the probability for preterm birth in a pregnant female encompasses one or more of a linear discriminant analysis model, a support vector machine classification algorithm, a recursive feature elimination model, a prediction analysis of microarray model, a logistic regression model, a CART algorithm, a flex tree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, a machine learning algorithm, a penalized regression method, or a combination thereof. In particular embodiments, the analysis comprises logistic regression.


An analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, machine learning algorithms; etc.


For creation of a random forest for prediction of GAB one skilled in the art can consider a set of k subjects (pregnant women) for whom the gestational age at birth (GAB) is known, and for whom N analytes (transitions) have been measured in a blood specimen taken several weeks prior to birth. A regression tree begins with a root node that contains all the subjects. The average GAB for all subjects can be calculated in the root node. The variance of the GAB within the root node will be high, because there is a mixture of women with different GAB's. The root node is then divided (partitioned) into two branches, so that each branch contains women with a similar GAB. The average GAB for subjects in each branch is again calculated. The variance of the GAB within each branch will be lower than in the root node, because the subset of women within each branch has relatively more similar GAB's than those in the root node. The two branches are created by selecting an analyte and a threshold value for the analyte that creates branches with similar GAB. The analyte and threshold value are chosen from among the set of all analytes and threshold values, usually with a random subset of the analytes at each node. The procedure continues recursively producing branches to create leaves (terminal nodes) in which the subjects have very similar GAB's. The predicted GAB in each terminal node is the average GAB for subjects in that terminal node. This procedure creates a single regression tree. A random forest can consist of several hundred or several thousand such trees.


Classification can be made according to predictive modeling methods that set a threshold for determining the probability that a sample belongs to a given class. The probability preferably is at least 50%, or at least 60%, or at least 70%, or at least 80% or higher. Classifications also can be made by determining whether a comparison between an obtained dataset and a reference dataset yields a statistically significant difference. If so, then the sample from which the dataset was obtained is classified as not belonging to the reference dataset class. Conversely, if such a comparison is not statistically significantly different from the reference dataset, then the sample from which the dataset was obtained is classified as belonging to the reference dataset class.


The predictive ability of a model can be evaluated according to its ability to provide a quality metric, e.g. AUROC (area under the ROC curve) or accuracy, of a particular value, or range of values. Area under the curve measures are useful for comparing the accuracy of a classifier across the complete data range. Classifiers with a greater AUC have a greater capacity to classify unknowns correctly between two groups of interest. In some embodiments, a desired quality threshold is a predictive model that will classify a sample with an accuracy of at least about 0.5, at least about 0.55, at least about 0.6, at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, at least about 0.95, or higher. As an alternative measure, a desired quality threshold can refer to a predictive model that will classify a sample with an AUC of at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.


As is known in the art, the relative sensitivity and specificity of a predictive model can be adjusted to favor either the selectivity metric or the sensitivity metric, where the two metrics have an inverse relationship. The limits in a model as described above can be adjusted to provide a selected sensitivity or specificity level, depending on the particular requirements of the test being performed. One or both of sensitivity and specificity can be at least about 0.7, at least about 0.75, at least about 0.8, at least about 0.85, at least about 0.9, or higher.


The raw data can be initially analyzed by measuring the values for each biomarker, usually in triplicate or in multiple triplicates. The data can be manipulated, for example, raw data can be transformed using standard curves, and the average of triplicate measurements used to calculate the average and standard deviation for each patient. These values can be transformed before being used in the models, e.g. log-transformed, Box-Cox transformed (Box and Cox, Royal Stat. Soc., Series B, 26:211-246(1964). The data are then input into a predictive model, which will classify the sample according to the state. The resulting information can be communicated to a patient or health care provider.


To generate a predictive model for preterm birth, a robust data set, comprising known control samples and samples corresponding to the preterm birth classification of interest is used in a training set. A sample size can be selected using generally accepted criteria. As discussed above, different statistical methods can be used to obtain a highly accurate predictive model. Examples of such analysis are provided in Example 2.


In one embodiment, hierarchical clustering is performed in the derivation of a predictive model, where the Pearson correlation is employed as the clustering metric. One approach is to consider a preterm birth dataset as a “learning sample” in a problem of “supervised learning.” CART is a standard in applications to medicine (Singer, Recursive Partitioning in the Health Sciences, Springer (1999)) and can be modified by transforming any qualitative features to quantitative features; sorting them by attained significance levels, evaluated by sample reuse methods for Hotelling's T2 statistic; and suitable application of the lasso method. Problems in prediction are turned into problems in regression without losing sight of prediction, indeed by making suitable use of the Gini criterion for classification in evaluating the quality of regressions.


This approach led to what is termed FlexTree (Huang, Proc. Nat. Acad. Sci. U.S.A 101:10529-10534(2004)). FlexTree performs very well in simulations and when applied to multiple forms of data and is useful for practicing the claimed methods. Software automating FlexTree has been developed. Alternatively, LARTree or LART can be used (Turnbull (2005) Classification Trees with Subset Analysis Selection by the Lasso, Stanford University). The name reflects binary trees, as in CART and FlexTree; the lasso, as has been noted; and the implementation of the lasso through what is termed LARS by Efron et al. (2004) Annals of Statistics 32:407-451 (2004). See, also, Huang et al., Proc. Natl. Acad. Sci. USA. 101(29):10529-34 (2004). Other methods of analysis that can be used include logic regression. One method of logic regression Ruczinski, Journal of Computational and Graphical Statistics 12:475-512 (2003). Logic regression resembles CART in that its classifier can be displayed as a binary tree. It is different in that each node has Boolean statements about features that are more general than the simple “and” statements produced by CART.


Another approach is that of nearest shrunken centroids (Tibshirani, Proc. Natl. Acad. Sci. U.S.A 99:6567-72(2002)). The technology is k-means-like, but has the advantage that by shrinking cluster centers, one automatically selects features, as is the case in the lasso, to focus attention on small numbers of those that are informative. The approach is available as PAM software and is widely used. Two further sets of algorithms that can be used are random forests (Breiman, Machine Learning 45:5-32 (2001)) and MART (Hastie, The Elements of Statistical Learning, Springer (2001)). These two methods are known in the art as “committee methods,” that involve predictors that “vote” on outcome.


To provide significance ordering, the false discovery rate (FDR) can be determined. First, a set of null distributions of dissimilarity values is generated. In one embodiment, the values of observed profiles are permuted to create a sequence of distributions of correlation coefficients obtained out of chance, thereby creating an appropriate set of null distributions of correlation coefficients (Tusher et al., Proc. Natl. Acad. Sci. U.S.A 98, 5116-21 (2001)). The set of null distribution is obtained by: permuting the values of each profile for all available profiles; calculating the pair-wise correlation coefficients for all profile; calculating the probability density function of the correlation coefficients for this permutation; and repeating the procedure for N times, where N is a large number, usually 300. Using the N distributions, one calculates an appropriate measure (mean, median, etc.) of the count of correlation coefficient values that their values exceed the value (of similarity) that is obtained from the distribution of experimentally observed similarity values at given significance level.


The FDR is the ratio of the number of the expected falsely significant correlations (estimated from the correlations greater than this selected Pearson correlation in the set of randomized data) to the number of correlations greater than this selected Pearson correlation in the empirical data (significant correlations). This cut-off correlation value can be applied to the correlations between experimental profiles. Using the aforementioned distribution, a level of confidence is chosen for significance. This is used to determine the lowest value of the correlation coefficient that exceeds the result that would have obtained by chance. Using this method, one obtains thresholds for positive correlation, negative correlation or both. Using this threshold(s), the user can filter the observed values of the pair wise correlation coefficients and eliminate those that do not exceed the threshold(s). Furthermore, an estimate of the false positive rate can be obtained for a given threshold. For each of the individual “random correlation” distributions, one can find how many observations fall outside the threshold range. This procedure provides a sequence of counts. The mean and the standard deviation of the sequence provide the average number of potential false positives and its standard deviation.


In an alternative analytical approach, variables chosen in the cross-sectional analysis are separately employed as predictors in a time-to-event analysis (survival analysis), where the event is the occurrence of preterm birth, and subjects with no event are considered censored at the time of giving birth. Given the specific pregnancy outcome (preterm birth event or no event), the random lengths of time each patient will be observed, and selection of proteomic and other features, a parametric approach to analyzing survival can be better than the widely applied semi-parametric Cox model. A Weibull parametric fit of survival permits the hazard rate to be monotonically increasing, decreasing, or constant, and also has a proportional hazards representation (as does the Cox model) and an accelerated failure-time representation. All the standard tools available in obtaining approximate maximum likelihood estimators of regression coefficients and corresponding functions are available with this model.


In addition the Cox models can be used, especially since reductions of numbers of covariates to manageable size with the lasso will significantly simplify the analysis, allowing the possibility of a nonparametric or semi-parametric approach to prediction of time to preterm birth. These statistical tools are known in the art and applicable to all manner of proteomic data. A set of biomarker, clinical and genetic data that can be easily determined, and that is highly informative regarding the probability for preterm birth and predicted time to a preterm birth event in said pregnant female is provided. Also, algorithms provide information regarding the probability for preterm birth in the pregnant female.


Accordingly, one skilled in the art understands that the probability for preterm birth according to the invention can be determined using either a quantitative or a categorical variable. For example, in practicing the methods of the invention the measurable feature of each of N biomarkers can be subjected to categorical data analysis to determine the probability for preterm birth as a binary categorical outcome. Alternatively, the methods of the invention may analyze the measurable feature of each of N biomarkers by initially calculating quantitative variables, in particular, predicted gestational age at birth. The predicted gestational age at birth can subsequently be used as a basis to predict risk of preterm birth. By initially using a quantitative variable and subsequently converting the quantitative variable into a categorical variable the methods of the invention take into account the continuum of measurements detected for the measurable features. For example, by predicting the gestational age at birth rather than making a binary prediction of preterm birth versus term birth, it is possible to tailor the treatment for the pregnant female. For example, an earlier predicted gestational age at birth will result in more intensive prenatal intervention, i.e. monitoring and treatment, than a predicted gestational age that approaches full term.


Among women with a predicted GAB of j days plus or minus k days, p(PTB) can estimated as the proportion of women in the PAPR clinical trial (see Example 1) with a predicted GAB of j days plus or minus k days who actually deliver before 37 weeks gestational age. More generally, for women with a predicted GAB of j days plus or minus k days, the probability that the actual gestational age at birth will be less than a specified gestational age, p(actual GAB<specified GAB), was estimated as the proportion of women in the PAPR clinical trial with a predicted GAB of j days plus or minus k days who actually deliver before the specified gestational age.


In the development of a predictive model, it can be desirable to select a subset of markers, i.e. at least 3, at least 4, at least 5, at least 6, up to the complete set of markers. Usually a subset of markers will be chosen that provides for the needs of the quantitative sample analysis, e.g. availability of reagents, convenience of quantitation, etc., while maintaining a highly accurate predictive model. The selection of a number of informative markers for building classification models requires the definition of a performance metric and a user-defined threshold for producing a model with useful predictive ability based on this metric. For example, the performance metric can be the AUC, the sensitivity and/or specificity of the prediction as well as the overall accuracy of the prediction model.


As will be understood by those skilled in the art, an analytic classification process can use any one of a variety of statistical analytic methods to manipulate the quantitative data and provide for classification of the sample. Examples of useful methods include, without limitation, linear discriminant analysis, recursive feature elimination, a prediction analysis of microarray, a logistic regression, a CART algorithm, a FlexTree algorithm, a LART algorithm, a random forest algorithm, a MART algorithm, and machine learning algorithms.


As described in Example 2, various methods are used in a training model. The selection of a subset of markers can be for a forward selection or a backward selection of a marker subset. The number of markers can be selected that will optimize the performance of a model without the use of all the markers. One way to define the optimum number of terms is to choose the number of terms that produce a model with desired predictive ability (e.g. an AUC>0.75, or equivalent measures of sensitivity/specificity) that lies no more than one standard error from the maximum value obtained for this metric using any combination and number of terms used for the given algorithm.









TABLE 1







Transitions with p-values less than 0.05


in univariate Cox Proportional Hazards


analyses to predict Gestational Age


at Birth













p-value





Cox



Transition
Protein
univariate






ITLPDFTGDLR_
LBP_HUMAN
0.006



624.34_920.4








ELLESYIDGR_
THRB_HUMAN
0.006



597.8_710.3








TDAPDLPEENQAR_
CO5_HUMAN
0.007



728.34_613.3








AFTECCVVASQLR_
CO5_HUMAN
0.009



770.87_574.3








SFRPFVPR_
LBP_HUMAN
0.011



335.86_272.2








ITLPDFTGDLR_
LBP_HUMAN
0.012



624.34_288.2








SFRPF_
LBP_HUMAN
0.015



VPR_





335.86_63_5.3








ELLESYIDGR_
THRB_HUMAN
0.018



597.8_839.4








LEQGENVFLQATDK_
C1QB_HUMAN
0.019



796.4_822.4








ETAASLLQAGYK_
THRB_HUMAN
0.021



626.33_679.4








VTGWGNLK_
THRB_HUMAN
0.021



437.74_617.3








EAQLPV1ENK_
PLMN_HUMAN
0.023



570.82_699.4








EAQLP_
PLMN_HUMAN
0.023



VIENK_





570.82_329.1








FLQEQGHR_
CO8G_HUMAN
0.025



338.84_497.3








IRPFFPQQ_
FIBB_HUMAN
0.028



516.79_661.4








ETAASLLQAGYK_
THRB_HUMAN
0.029



626.33_879.5








AFTECCVVASQLR_
CO5_HUMAN
0.030



770.87_673.4








TLLPVSKPEIR_
CO5_HUMAN
0.030



418.26_288.2








LSSPAVITDK_
PLMN_HUMAN
0.033



515.79_743.4








YEVQGEVFTKPQLWP_
CRP_HUMAN
0.036



910.96_392.2








LQGTLPVEAR_
CO5_HUMAN
0.036



542.31_571.3








VRPQQLVK_
ITIH4_HUMAN
0.036



484.31_609.3








IEEIAAK_
CO5_HUMAN
0.041



387.22_531.3








TLLPVSKPEIR_
CO5__HUMAN
0.042



418.26_514.3








VQEAHLTEDQIFYFPK_
CO8G_HUMAN
0.047



655.66_701.4








ISLLLIESWLEPVR_
CSH_HUMAN
0.048



834.49_371.2








ALQDQLVLVAAK_
ANGT_HUMAN
0.048



634.88_289.2








YEFLNGR_
PLMN_HUMAN
0.049



449.72_293.1
















TABLE 2







Transitions selected by the Cox stepwise AIC analysis












Transition
coef
exp(coef)
se(coef)
z
Pr(>|z|)















Collection.Window.
 1.28E−01
1.14E+00
2.44E−02
5.26
1.40E−07


GA.in.Days










ITLPDFTGDLR_
 2.02E+00
7.52E+00
1.14E+00
1.77
0.07667


624.34_920.4










TPSAAYLWVGTGASEAEK
 2.85E+01
2.44E+12
3.06E+00
9.31
<2e−16


919.45_849.4










TATSEYQTFFNPR_
 5.14E+00
1.70E+02
6.26E−01
8.21
2.20E−16


781.37_386.2










TASDFITK_
−1.25E+00
2.86E−01
1.58E+00
−0.79
0.42856


441.73_781.4










IITGLLEFEVYLEYLQNR_
 1.30E+01
4.49E+05
1.45E+00
9
<2e−16


738.4_530.3










IIGGSDADIK_
−6.43E+01
1.16E−28
6.64E+00
−9.68
<2e−16


494.77_762.4










YTTEIIK_
 6.96E+01
1.75E+30
7.06E+00
9.86
<2e−16


434.25_603.4










EDTPNSVWEPAK_
 7.91E+00
2.73E+03
2.66E+00
2.98
0.00293


686.82_3







15.2










LYYGDDEK_
 8.74E+00
6.23E+03
1.57E+00
5.57
2.50E−08


501.72_726.3










VRPQQLVK_
 4.64E+01
1.36E+20
3.97E+00
11.66
<2e−16


484.31_609.3










GGEIEGFR_
−3.33E+00
3.57E−02
2.19E+00
−1.52
0.12792


432.71_379.2










DGSPDVTTADIGANTP
−1.52E+01
2.51E−07
1.41E+00
−10.8
<2e−16


DATK_973.45_844.4










VQEAHLTEDQIFYFPK_
−2.02E+01
1.77E−09
2.45E+00
−8.22
2.20E−16


655.66_391.2










VEIDTK_
 7.06E+00
1.17E+03
1.45E+00
4.86
1.20E−06


352.7_476.3










AVLTIDEK_
 7.85E+00
2.56E+03
9.46E−01
8.29
<2e−16


444.76_605.3










FSVVYAK_
−2.44E+01
2.42E−11
3.08E+00
−7.93
2.20E−15


407.23_579.4










YYLQGAK_
−1.82E+01
1.22E−08
2.45E+00
−7.44
1.00E−13


421.72_516.3










EENFYVDETTVVK_
−1.90E+01
5.36E−09
2.71E+00
−7.03
2.00E−12


786.88_259.1










YGFYTHVFR_
 1.90E+01
1.71E+08
2.73E+00
6.93
4.20E−12


397.2_421.3










HTLNQIDEVK_
 1.03E+01
3.04E+04
2.11E+00
4.89
9.90E−07


598.82_951.5










AFIQLWAFDAVK_
 1.08E+01
4.72E+04
2.59E+00
4.16
3.20E−05


704.89_836.4










SGFSFGFK43_8.72_
 1.35E+01
7.32E+05
2.56E+00
5.27
1.40E−07


585.3










GWVTDGFSSLK_
−3.12E+00
4.42E−02
9.16E−01
−3.4
0.00066


598.8_854.4










ITENDIQIALDDAK_
 1.91E+00
6.78E+00
1.36E+00
1.4
0.16036


779.9_632.3
















TABLE 3







Transitions selected by Cox lasso model














exp
se

Pr


Transition
coef
(coef)
(coef)
z
(>|z|)





Collection.
0.0233
1.02357
0.00928
2.51
0.012


Window.GA.







in.Days










AFTECCVVAS
1.07568
2.93198
0.84554
1.27
0.203


QLR_







770.87_574.3










ELLESYIDGR_
1.3847
3.99365
0.70784
1.96
0.05


597.8_710.3










ITLPDFTGDLR_
0.814
2.25691
0.40652
2
0.045


624.34_920.4
















TABLE 4







Area under the ROC (AUROC) curve


for individual analytes to pre-term


 birth subjects from non-pre-term


 birth subjects. The 77 transitions


discriminate with the highest


 AUROC are aare shown.










Transition
AUROC






ELLES_YIDGR_597.8_710.3
0.71






AFTECCWASQLR_770.87_574.3
0.70






ITLPDFTGDLR_624.34_920.4
0.70






IRPFFPQQ_516.79_661.4
0.68






TDAPDLPEENQ_AR_728.34_613.3
0.67






ITLPDFTGDLR_624.34_288.2
0.67






ELLESYIDGR_597.8_839.4
0.67






SFRPFVPR_3_35.86_635.3
0.67






ETAASLLQAGYK_626.33_879.5
0.67






TLLPVSKPEIR_418.26_288.2
0.66






ETAASLLQAGYK_626.33_679.4
0.66






SFRPFVPR_335.86_272.2
0.66






LQGTLP_VEAR542.31_571.3
0.66






VEPLYELVTATDFAYSSTV
0.66



R_754.38_712.4







DPDQTDGLGLSYLSSHIANVE
0.66



R_796.39_328.1







VTGWGNLK_437.74_617.3
0.65






ALQDQLVLVAAK_634.88_289.2
0.65






EAQLPVTENK_570.82_329.1
0.65






VRPQQLVK_484.31_609.3
0.65






AFTECCWASQLR_770.87_673.4
0.65






YEFLNGR_449.72_293.1
0.65






VGEYSLYIGR_578.8_871.5
0.64






EAQLPVIENK_570.82_699.4
0.64






TLLPVSKPEIR_418.26_514.3
0.64






IEEIAAK_387.22_531.3
0.64






LEQGENVFLQATDK_796.4_822.4
0.64






LQGTLPVEAR_542.31_842.5
0.64






FLQEQGHR_338.84_497.3
0.63






ISLLLIESWLEPVR_834.49_371.2
0.63






IITGLLEFEVYLEYLQNR_738.4_530.3
0.63






LSSPAVITDK515.79_743.4
0.63






VRPQQLVK_484.31_722.4
0.63






SLPVSDSVLSGFEQR_810.92_723.3
0.63






VQEAHLTEDQIFYFPK_655.66_701.4
0.63






NADYSYSVWK_616.78_333.2
0.63






DAQYAPGYDK_564.25_813.4
0.62






FQLPGQK_409.23_276.1
0.62






TASDFITK_441.73_781.4
0.62






YGLVTYATYPK_638.33_334.2
0.62






GSFALSFPVESDVAPIAR_931.99_363.2
0.62






TLLIANETLR_572.34_703.4
0.62






VILGAHQEVNLEPFIVQEIEVS
0.62



R_832.78_860.4







TATSEYQTFFNPR_781.37_386.2
0.62






YEVQGEVFTKPQLWP_910.96_392.2
0.62






DISEVVTPR_508.27_472.3
0.62






GSFALSFPVESDVAPIAR_931.99_456.3
0.62






YGFYTHVFR_397.2_421.3
0.62






TLEAQLTPR_514.79_685.4
0.62






YGFYTHVFR_397.2_659.4
0.62






AVGYLITGYQR_620.84_737.4
0.61






DPDQTDGLGLSYLSSHIAN
0.61



VER_796.39_456.2







FNAVLTNPQGDYDTSTGK_964.46_262.1
0.61






SPEQQETVLDGNLIIR_906.48_685.4
0.61






ALNFELPLEYNSALYSR_620.99_538.3
0.61






GGEIEGFR_432.71_508.3
0.61






GIVEECCFR_585.26_900.3
0.61






DAQYAPGYDK_564.25_315.1
0.61






FAFNLYR_465.75_712.4
0.61






YTTEIIK_434.25_603.4
0.61






AVLTIDEK_444.76_605.3
0.61






AITPPHPASQANIIFDITEG
0.60



NLR_825.77_459.3







EPGLCTWQSLR_673.83_790.4
0.60






AVYEAVLR_460.76_587.4
0.60






ALQDQLVLVAAK_634.88_956.6
0.60






AWVAWR_394.71_531.3
0.60






TNLESILSYPK_632.84_807.5
0.60






HLSLLTTLSNR_418.91_376.2
0.60






FTFTLHLETPKPSISSSNLNP
0.60



R_829.44_787.4







AVGYLITGYQR_620.84_523.3
0.60






FQLPGQK_409.23_429.2
0.60






YGLVTYATYPK_638.33_843.4
0.60






TELRPGETLNVNFLLR_624.68_662.4
0.60






LSSPAVITDK_515.79_830.5
0.60






TATSEYQTFFNPR_781.37_272.2
0.60






LPTAVVPLR_483.31_385.3
0.60






APLTKPLK_289.86_260.2
0.60
















TABLE 5







AUROCs for random forest, boosting, lasso,


and logistic regression models for a


specific number of transitions permitted


in the model, as estimated by 100 rounds


of bootstrap resampling.











Number of






transitions
rf
boosting
logit
lasso














1
0.59
0.67
0.64
0.69


2
0.66
0.70
0.63
0.68


3
0.69
0.70
0.58
0.71


4
0.68
0.72
0.58
0.71


5
0.73
0.71
0.58
0.68


6
0.72
0.72
0.56
0.68


7
0.74
0.70
0.60
0.67


8
0.73
0.72
0.62
0.67


9
0.72
0.72
0.60
0.67


10
0.74
0.71
0.62
0.66


11
0.73
0.69
0.58
0.67


12
0.73
0.69
0.59
0.66


13
0.74
0.71
0.57
0.66


14
0.73
0.70
0.57
0.65


15
0.72
0.70
0.55
0.64
















TABLE 6







Top 15 transitions selected by each


multivariate method, ranked by


importance for that method.














rf
boosting
lasso
logit
















1
ELLES
AFTEC
AFTEC
ALQDQ




YIDGR_
CVVAS
CVVAS
LVLVA




597.8_
QLR_
QLR_
AK_




710.3
770.87_
770.87_
634.88_





574.3
574.3
289.2






2
TATSE
DPDQT
ISLLL
AVLTI




YQTFF
DGLGL
IESWL
DEK_




NPR_
SYLSS
EPVR_
444.76_




781.37_
HIANV
834.49_
605.3




386.2
ER_
371.2






796.39_







328.1








3
ITLPD
ELLES
LPTAV
Collection.




FTGDL
YIDGR_
VPLR_
Window.




R_
597.8_
483.31_
GA.in.Days




624.34_
710.3
385.3





920.4









4
AFTEC
TATSE
ALQDQ
AHYDL




CVVAS
YQTFF
LVLVA
R_




QLR_
NPR_
AK_
387.7_




770.87_
781.37_
634.88_
566.3




574.3
386.2
289.2







5
VEPLY
ITLPD
ETAAS
AEAQA




ELVTA
FTGDL
LLQAG
QYSAA




TDFAY
R_
YK_
VAK_




SSTVR_
624.34_
626.33_
654.33_




754.38_
920.4
679.4
908.5




712.4









6
GSFAL
GGEIE
IITGL
AEAQA




SFPVE
GFR_
LEFEV
QYSAA




SDVAP
432.71_
YLEYL
VAK_




IAR_
379.2
QNR_
654.33_




931.99_

738.4_
709.4




363.2

530.3







7
VGEYS
ALQDQ
ADSQA
ADSQA




LYIGR_
LVLVA
QLLLS
QLLLS




578.8_
AK_
TVVGV
TVVGV




871.5
634.88_
FTAPG
FTAPG





289.2
LHLK_
LHLK_






822.46_
822.46_






983.6
983.6






8
SFRPF
VGEYS
SLPVS
AITPP




VPR_
LYIGR_
DSVLS
HPASQ




33586_
578.8_
GFEQR_
ANIIF




635.3
871.5
810.92_
DITEG






723.3
NLR_







825.77_







459.3






9
ALQDQ
VEPLY
SFRPF
ADSQA




LVLVA
ELVTA
VPR_
QLLLS




AK_
TDFAY
335.86_
TVVGV




634.88_
SSTVR_
272.2
FTAPG




289.2
754.38_

LHLK_





712.4

822.46_







664.4






10
EDTPN
SPEQQ
IIGGS
AYSDL




SVWEP
ETVLD
DADIK_
SR_




AK_
GNLII
494.77_
406.2_




686.82_
R_
260.2
375.2




315.2
906.48_







685.4








11
YGFYT
YEFLN
NADYS
DALSS




HVFR_
GR_
YSVWK_
VQESQ




397.2_
449.72_
616.78_
VAQQA




421.3
293.1
333.2
R_







572.96_







672.4






12
DPDQT
LEQGE
GSFAL
ANRPF




DGLGL
NVFLQ
SFPVE
LVFIR_




SYLSS
ATDK_
SDVAP
411.58_




HIANV
796.4_
IAR_
435.3




ER_
822.4
931_





796.39_

99_





328.1

456.3







13
LEQGE
LQGTL
LSSPA
DALSS




NVFLQ
PVEAR_
VITDK_
VQESQ




ATDK_
542.31_
515.79_
VAQQA




796.4_
571.3
743.4
R_




822.4


572.96_







502.3






14
LQGTL
ISLLL
ELPEH
ALEQD




PVEAR_
IESWL
TVK_
LPVNI




542.31_
EPVR_
476.76_
K_




571.3
834.49_
347.2
620.35_





371.2

570.4






15
SFRPF
TASDF
EAQLP
AVLTI




VPR_
ITK_
VIENK_
DEK_




335.86_
441.73_
570.82_
444.76_




272.2
781.4
699.4
718.4









In yet another aspect, the invention provides kits for determining probability of preterm birth, wherein the kits can be used to detect N of the isolated biomarkers listed in Tables 1 through 63. For example, the kits can be used to detect one or more, two or more, or three of the isolated biomarkers selected from the group consisting of AFTECCVVASQLR, ELLESYIDGR, and ITLPDFTGDLR. For example, the kits can be used to detect one or more, two or more, or three of the isolated biomarkers selected from the group consisting of FLNWIK, FGFGGSTDSGPIR, LLELTGPK, VEHSDLSFSK, IEGNLIFDPNNYLPK, ALVLELAK, TQILEWAAER, DVLLLVHNLPQNLPGYFWYK, SEPRPGVLLR, ITQDAQLK, ALDLSLK, WWGGQPLWITATK, and LSETNR.


In another aspect, the kits can be used to detect one or more, two or more, three or more, four or more, five or more, six or more, seven or more, or eight of the isolated biomarkers selected from the group consisting of lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G).


In another aspect, the kits can be used to detect one or more, two or more, three or more, four or more, five or more, six or more, seven or more, or eight of the isolated biomarkers selected from the group consisting of Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


The kit can include one or more agents for detection of biomarkers, a container for holding a biological sample isolated from a pregnant female; and printed instructions for reacting agents with the biological sample or a portion of the biological sample to detect the presence or amount of the isolated biomarkers in the biological sample. The agents can be packaged in separate containers. The kit can further comprise one or more control reference samples and reagents for performing an immunoassay.


In one embodiment, the kit comprises agents for measuring the levels of at least N of the isolated biomarkers listed in Tables 1 through 63. The kit can include antibodies that specifically bind to these biomarkers, for example, the kit can contain at least one of an antibody that specifically binds to lipopolysaccharide-binding protein (LBP), an antibody that specifically binds to prothrombin (THRB), an antibody that specifically binds to complement component C5 (C5 or CO5), an antibody that specifically binds to plasminogen (PLMN), and an antibody that specifically binds to complement component C8 gamma chain (C8G or CO8G).


In one embodiment, the kit comprises agents for measuring the levels of at least N of the isolated biomarkers listed in Tables 1 through 63. The kit can include antibodies that specifically bind to these biomarkers, for example, the kit can contain at least one of an antibody that specifically binds to Alpha-1B-glycoprotein (A1BG), Disintegrin and metalloproteinase domain-containing protein 12 (ADA12), Apolipoprotein B-100 (APOB), Beta-2-microglobulin (B2MG), CCAAT/enhancer-binding protein alpha/beta (HP8 Peptide), Corticosteroid-binding globulin (CBG), Complement component C6, Endoglin (EGLN), Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (ENPP2), Coagulation factor VII (FA7), Hyaluronan-binding protein 2 (HABP2), Pregnancy-specific beta-1-glycoprotein 9 (PSG9), Inhibin beta E chain (INHBE).


The kit can comprise one or more containers for compositions contained in the kit. Compositions can be in liquid form or can be lyophilized. Suitable containers for the compositions include, for example, bottles, vials, syringes, and test tubes. Containers can be formed from a variety of materials, including glass or plastic. The kit can also comprise a package insert containing written instructions for methods of determining probability of preterm birth.


From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.


The following examples are provided by way of illustration, not limitation.


EXAMPLES
Example 1. Development of Sample Set for Discovery and Validation of Biomarkers for Preterm Birth

A standard protocol was developed governing conduct of the Proteomic Assessment of Preterm Risk (PAPR) clinical study. This protocol also specified that the samples and clinical information could be used to study other pregnancy complications for some of the subjects. Specimens were obtained from women at 11 Internal Review Board (IRB) approved sites across the United States. After providing informed consent, serum and plasma samples were obtained, as well as pertinent information regarding the patient's demographic characteristics, past medical and pregnancy history, current pregnancy history and concurrent medications. Following delivery, data were collected relating to maternal and infant conditions and complications. Serum and plasma samples were processed according to a protocol that requires standardized refrigerated centrifugation, aliquoting of the samples into 0.5 ml 2-D bar-coded cryovials and subsequent freezing at −80° C.


Following delivery, preterm birth cases were individually reviewed to determine their status as either a spontaneous preterm birth or a medically indicated preterm birth. Only spontaneous preterm birth cases were used for this analysis. For discovery of biomarkers of preterm birth, 80 samples were analyzed in two gestational age groups: a) a late window composed of samples from 23-28 weeks of gestation which included 13 cases, 13 term controls matched within one week of sample collection and 14 term random controls, and, b) an early window composed of samples from 17-22 weeks of gestation included 15 cases, 15 term controls matched within one week of sample collection and 10 random term controls.


The samples were subsequently depleted of high abundance proteins using the Human 14 Multiple Affinity Removal System (MARS 14), which removes 14 of the most abundant proteins that are treated as uninformative with regard to the identification for disease-relevant changes in the serum proteome. To this end, equal volumes of each clinical or a pooled human serum sample (HGS) sample were diluted with column buffer and filtered to remove precipitates. Filtered samples were depleted using a MARS-14 column (4.6×100 mm, Cat. #5188-6558, Agilent Technologies). Samples were chilled to 4° C. in the autosampler, the depletion column was run at room temperature, and collected fractions were kept at 4° C. until further analysis. The unbound fractions were collected for further analysis.


A second aliquot of each clinical serum sample and of each HGS was diluted into ammonium bicarbonate buffer and depleted of the 14 high and approximately 60 additional moderately abundant proteins using an IgY14-SuperMix (Sigma) hand-packed column, comprised of 10 mL of bulk material (50% slurry, Sigma). Shi et al., Methods, 56(2):246-53 (2012). Samples were chilled to 4° C. in the autosampler, the depletion column was run at room temperature, and collected fractions were kept at 4° C. until further analysis. The unbound fractions were collected for further analysis.


Depleted serum samples were denatured with trifluorethanol, reduced with dithiotreitol, alkylated using iodoacetamide, and then digested with trypsin at a 1:10 trypsin: protein ratio. Following trypsin digestion, samples were desalted on a C18 column, and the eluate lyophilized to dryness. The desalted samples were resolubilized in a reconstitution solution containing five internal standard peptides.


Depleted and trypsin digested samples were analyzed using a scheduled Multiple Reaction Monitoring method (sMRM). The peptides were separated on a 150 mm×0.32 mm Bio-Basic C18 column (ThermoFisher) at a flow rate of 5 μl/min using a Waters Nano Acquity UPLC and eluted using an acetonitrile gradient into a AB SCIEX QTRAP 5500 with a Turbo V source (AB SCIEX, Framingham, Mass.). The sMRM assay measured 1708 transitions that correspond to 854 peptides and 236 proteins. Chromatographic peaks were integrated using Rosetta Elucidator software (Ceiba Solutions).


Transitions were excluded from analysis, if their intensity area counts were less than 10000 and if they were missing in more than three samples per batch. Intensity area counts were log transformed and Mass Spectrometry run order trends and depletion batch effects were minimized using a regression analysis.


Example 2. Analysis I of Transitions to Identify Preterm Birth Biomarkers

The objective of these analyses was to examine the data collected in Example 1 to identify transitions and proteins that predict preterm birth. The specific analyses employed were (i) Cox time-to-event analyses and (ii) models with preterm birth as a binary categorical dependent variable. The dependent variable for all the Cox analyses was Gestational Age of time to event (where event is preterm birth). For the purpose of the Cox analyses, preterm birth subjects have the event on the day of birth. Term subjects are censored on the day of birth. Gestational age on the day of specimen collection is a covariate in all Cox analyses.


The assay data were previously adjusted for run order and depletion batch, and log transformed. Values for gestational age at time of sample collection were adjusted as follows. Transition values were regressed on gestational age at time of sample collection using only controls (non-pre-term subjects). The residuals from the regression were designated as adjusted values. The adjusted values were used in the models with pre-term birth as a binary categorical dependent variable. Unadjusted values were used in the Cox analyses.


Univariate Cox Proportional Hazards Analyses


Univariate Cox Proportional Hazards analyses was performed to predict Gestational Age at Birth, including Gestational age on the day of specimen collection as a covariate. Table 1 shows the transitions with p-values less than 0.05. Five proteins have multiple transitions among those with p-value less than 0.05: lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G).


Multivariate Cox Proportional Hazards Analyses: Stepwise AIC selection


Cox Proportional Hazards analyses was performed to predict Gestational Age at Birth, including Gestational age on the day of specimen collection as a covariate, using stepwise and lasso models for variable selection. These analyses include a total of n=80 subjects, with number of PTB events=28. The stepwise variable selection analysis used the Akaike Information Criterion (AIC) as the stopping criterion. Table 2 shows the transitions selected by the stepwise AIC analysis. The coefficient of determination (R2) for the stepwise AIC model is 0.86 (not corrected for multiple comparisons).


Multivariate Cox Proportional Hazards Analyses: Lasso Selection


Lasso variable selection was used as the second method of multivariate Cox Proportional Hazards analyses to predict Gestational Age at Birth, including Gestational age on the day of specimen collection as a covariate. This analysis uses a lambda penalty for lasso estimated by cross validation. Table 3 shows the results. The lasso variable selection method is considerably more stringent than the stepwise AIC, and selects only 3 transitions for the final model, representing 3 different proteins. These 3 proteins give the top 4 transitions from the univariate analysis; 2 of the top 4 univariate are from the same protein, and hence are not both selected by the lasso method. Lasso tends to select a relatively small number of variables with low mutual correlation. The coefficient of determination (R2) for the lasso model is 0.21 (not corrected for multiple comparisons).


Univariate AUROC Analysis of Preterm Birth as a Binary Categorical Dependent Variable


Univariate analyses was performed to discriminate pre-term subjects from non-pre-term subjects (pre-term as a binary categorical variable) as estimated by area under the receiver operating characteristic (AUROC) curve. These analyses use transition values adjusted for gestational age at time of sample collection, as described above. Table 4 shows the AUROC curve for the 77 transitions with the highest AUROC area of 0.6 or greater.


Multivariate Analysis of Preterm Birth as a Binary Categorical Dependent Variable


Multivariate analyses was performed to predict preterm birth as a binary categorical dependent variable, using random forest, boosting, lasso, and logistic regression models. Random forest and boosting models grow many classification trees. The trees vote on the assignment of each subject to one of the possible classes. The forest chooses the class with the most votes over all the trees.


For each of the four methods (random forest, boosting, lasso, and logistic regression) each method was allowed to select and rank its own best 15 transitions. We then built models with 1 to 15 transitions. Each method sequentially reduces the number of nodes from 15 to 1 independently. A recursive option was used to reduce the number of nodes at each step: To determine which node to remove, the nodes were ranked at each step based on their importance from a nested cross-validation procedure. The least important node was eliminated. The importance measures for lasso and logistic regression are z-values. For random forest and boosting, the variable importance was calculated from permuting out-of-bag data: for each tree, the classification error rate on the out-of-bag portion of the data was recorded; the error rate was then recalculated after permuting the values of each variable (i.e., transition); if the transition was in fact important, there would have been be a big difference between the two error rates; the difference between the two error rates were then averaged over all trees, and normalized by the standard deviation of the differences. The AUCs for these models are shown in Table 5, as estimated by 100 rounds of bootstrap resampling. Table 6 shows the top 15 transitions selected by each multivariate method, ranked by importance for that method. These multivariate analyses suggest that models that combine 3 or more transitions give AUC greater than 0.7, as estimated by bootstrap.


In multivariate models, random forest (rf), boosting, and lasso models gave the best area under the AUROC curve. The following transitions were selected by these models, as significant in Cox univariate models, and/or having high univariate ROC'S:











AFTECCVVASQLR770.87_574.3






ELLESYIDGR_597.8_710.3






ITLPDFTGDLR_624.34920.4






TDAPDLPEENQAR_728.34613.3






SFRPFVPR_335.86_635.3






In summary, univariate and multivariate Cox analyses was performed using transitions to predict Gestational Age at Birth (GAB), including Gestational age on the day of specimen collection as a covariate. In the univariate Cox analysis, five proteins were identified that have multiple transitions among those with p-value less than 0.05: lipopolysaccharide-binding protein (LBP), prothrombin (THRB), complement component C5 (C5 or CO5), plasminogen (PLMN), and complement component C8 gamma chain (C8G or CO8G).


In multivariate Cox analyses, stepwise AIC variable analysis selects 24 transitions, while the lasso model selects 3 transitions, which include the 3 top proteins in the univariate analysis. Univariate (AUROC) and multivariate (random forest, boosting, lasso, and logistic regression) analyses were performed to predict pre-term birth as a binary categorical variable. Univariate analyses identified 63 analytes with AUROC of 0.6 or greater. Multivariate analyses suggest that models that combine 3 or more transitions give AUC greater than 0.7, as estimated by bootstrap.


Example 3. Study II to Identify and Confirm Preterm Birth Biomarkers

A further study was performed using essentially the same methods described in the preceding Examples unless noted below. In this study, 2 gestational aged matched controls were used for each case of 28 cases and 56 matched controls, all from the early gestational window only (17-22 weeks).


The samples were processed in 4 batches with each batch composed of 7 cases, 14 matched controls and 3 HGS controls. Serum samples were depleted of the 14 most abundant serum samples by MARS14 as described in Example 1. Depleted serum was then reduced with dithiothreitol, alkylated with iodacetamide, and then digested with trypsin at a 1:20 trypsin to protein ratio overnight at 37° C. Following trypsin digestion, the samples were desalted on an Empore C18 96-well Solid Phase Extraction Plate (3M Company) and lyophilized to dryness. The desalted samples were resolubilized in a reconstitution solution containing five internal standard peptides.


The LC-MS/MS analysis was performed with an Agilent Poroshell 120 EC-C18 column (2.1×50 mm, 2.7 μm) and eluted with an acetonitrile gradient into a Agilent 6490 Triple Quadrapole mass spectrometer.


Data analysis included the use of conditional logistic regression where each matching triplet (case and 2 matched controls) was a stratum. The p-value reported in the table indicates whether there is a significant difference between cases and matched controls.









TABLE 7







Results of Study II










Transi-





tion
Protein
Annotation
p-value





DFHIN
CFAB_
Complement
0.006729512


LFQVL
HUMAN
factor B



PWLK








ITLPD
LBP_
Lipopolysaccharide-
0.012907017


FTGDL
HUMAN
binding



R

protein






WWGGQ
ENPP2_
Ectonucleotide
0.013346


PLWIT
HUMAN
pyrophosphatase/



ATK

Phosphodiesterase





family





member 2






TASDF
GELS_
Gelsolin
0.013841221


ITK
HUMAN







AGLLR
PGRP2_
N-acetylmuramoyl-
0.014241979


PDYAL
HUMAN
L-alanine



LGHR

amidase






FLQEQ
CO8G_
Complement
0.014339596


GHR
HUMAN
component C8 gamma





chain






FLNWI
HABP2_
Hyaluronan-binding
0.014790418


K
HUMAN
protein 2






EKPAG
BPIB1_
BPI fold-
0.019027746


GIPVL
HUMAN
containing



GSLVN

family B



TVLK

member 1






ITGFL
LBP_
Lipopolysaccharide-
0.019836986


KPGK
HUMAN
binding protein






YGLVT
CFAB_
Complement
0.019927774


YATYP
HUMAN
factor B



K








SLLQP
CO8A_
Complement
0.020930939


NK
HUMAN
component C8





alpha chain






DISEV
CFAB_
Complement
0.021738046


VTPR
HUMAN
factor B






VQEAH
CO8G_
Complement
0.021924548


LTEDQ
HUMAN
component C8



IFYFP

gamma chain



K








SPELQ
APOA2_
Apolipoprotein
0.025944285


AEAK
HUMAN
A-II






TYLHT
ENPP2_
Ectonucleotide
0.026150038


YESEI
HUMAN
pyrophosphatase/





phosphodiesterase





family





member 2






DSPSV
PROF1_
Profilin-1
0.026607371


WAAVP
HUMAN




GK








HYINL
NPY_
Pro-neuropeptide
0.027432804


ITR
HUMAN
Y






SLPVS
CO8G_
Complement
0.029647857


DSVLS
HUMAN
component C8



GFEQR

gamma chain






IPGIF
CO8B_
Complement
0.030430996


ELGIS
HUMAN
component



SQSDR

C8 beta





chain






IQTHS
F13B_
Coagulation
0.031667664


TTYR
HUMAN
factor XIII





B chain






DGSPD
PGRP2_
N-acetylmuramoyl-
0.034738338


VTTAD
HUMAN
L-alanine amidase



IGANT





PDATK








QLGLP
ITIH4_
Inter-alpha-
0.043130591


GPPDV
HUMAN
trypsin



PDHAA

inhibitor



YHPF

heavy





chain H4






FPLGS
LCAP_
Leucyl-cystinyl
0.044698045


YTIQN
HUMAN
aminopeptidase



IVAGS





TYLFS





TK








AHYDL
FETUA_
Alpha-2-HS-
0.046259201


R
HUMAN
glycoprotein






SFRPF
LBP_
Lipopolysaccharide-
0.047948847


VPR
HUMAN
binding protein









Example 4. Study III Shotgun Identification of Preterm Birth Biomarkers

A further study used a hypothesis-independent shotgun approach to identify and quantify additional biomarkers not present on our multiplexed hypothesis dependent MRM assay. Samples were processed as described in the preceding Examples unless noted below.


Tryptic digests of MARS depleted patient (preterm birth cases and term controls) samples were fractionated by two-dimensional liquid chromatography and analyzed by tandem mass spectrometry. Aliquots of the samples, equivalent to 3-4 μl of serum, were injected onto a 6 cm×75 μm self-packed strong cation exchange (Luna SCX, Phenomenex) column. Peptides were eluded from the SCX column with salt (15, 30, 50, 70, and 100% B, where B=250 mM ammonium acetate, 2% acetonitrile, 0.1% formic acid in water) and consecutively for each salt elution, were bound to a 0.5 μl C18 packed stem trap (Optimize Technologies, Inc.) and further fractionated on a 10 cm×75 μm reversed phase ProteoPep II PicoFrit column (New Objective). Peptides were eluted from the reversed phase column with an acetonitrile gradient containing 0.1% formic acid and directly ionized on an LTQ-Orbitrap (ThermoFisher). For each scan, peptide parent ion masses were obtained in the Orbitrap at 60K resolution and the top seven most abundant ions were fragmented in the LTQ to obtain peptide sequence information.


Parent and fragment ion data were used to search the Human RefSeq database using the Sequest (Eng et al., J. Am. Soc. Mass Spectrom 1994; 5:976-989) and X! Tandem (Craig and Beavis, Bioinformatics 2004; 20:1466-1467) algorithms. For Sequest, data was searched with a 20 ppm tolerance for the parent ion and 1 AMU for the fragment ion. Two missed trypsin cleavages were allowed, and modifications included static cysteine carboxyamidomethylation and methionine oxidation. After searching the data was filtered by charge state vs. Xcorr scores (charge+1≥1.5 Xcorr, charge+2≥2.0, charge+3≥2.5). Similar search parameters were used for X!tandem, except the mass tolerance for the fragment ion was 0.8 AMU and there is no Xcorr filtering. Instead, the PeptideProphet algorithm (Keller et al., Anal. Chem 2002; 74:5383-5392) was used to validate each X!Tandem peptide-spectrum assignment and Protein assignments were validated using ProteinProphet algorithm (Nesvizhskii et al., Anal. Chem 2002; 74:5383-5392). Data was filtered to include only the peptide-spectrum matches that had PeptideProphet probability of 0.9 or more. After compiling peptide and protein identifications, spectral count data for each peptide were imported into DAnTE software (Polpitiya et al., Bioinformatics. 2008; 24:1556-1558). Log transformed data was mean centered and missing values were filtered, by requiring that a peptide had to be identified in at least 4 cases and 4 controls. To determine the significance of an analyte, Receiver Operating Characteristic (ROC) curves for each analyte were created where the true positive rate (Sensitivity) is plotted as a function of the false positive rate (1-Specificity) for different thresholds that separate the SPTB and Term groups. The area under the ROC curve (AUC) is equal to the probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one. Peptides with AUC greater than or equal to 0.6 found uniquely by Sequest or Xtandem are found in Tables 8 and 9, respectively, and those identified by both approaches are found in Table 10.









TABLE 8







Significant peptides (AUC > 0.6)


for Sequest only











Uniprot





ID

S_


Protein Description
(name)
Peptide
AUC





5'-AMP-activated
Q9UGI9
K.LVIFDTM*L
0.78


protein kinase
(AAKG3_
EIK.K



subunit gamma-3
HUMAN)







afamin precursor
P43652
K.FIEDNIEYIT
0.79



(AFAM_
IIAFAQYVQEAT




HUMAN)
FEEMEK.L






afamin precursor
P43652
K.IAPQLSTEEL
0.71



(AFAM_
VSLGEK.M




HUMAN)







afamin precursor
P43652
K.LKHELTDEE
0.60



(AFAM_
LQSLFTNFANV




HUMAN)
VDK.C






afamin precursor
P43652
K.LPNNVLQEK.I
0.60



(AFAM_





HUMAN)







afamin precursor
P43652
K.SDVGFLPPFPT
0.71



(AFAM_
LDPEEK.C




HUMAN)







afamin precursor
P43652
K.VMNHICSK.Q
0.68



(AFAM_





HUMAN)







afamin precursor
P43652
R.ESLLNHFLY
0.69



(AFAM_
EVAR.R




HUMAN)







afamin precursor
P43652
R.LCFFYNKK.S
0.69



(AFAM_





HUMAN)







alpha-1-
P01011
K.AVLDVFEEGT
0.72


antichymotrypsin
(AACT_
EASAATAVK.I




HUMAN)







alpha-1-
P01011
K.EQLSLLDR.F
0.65


antichymotrypsin
(AACT_




precursor
HUMAN)







alpha-1-
P01011
K.EQLSLLDRFTE
0.64


antichymotrypsin
(AACT_
DAK.R



precursor
HUMAN)







alpha-1-
P01011
K.EQLSLLDRFT
0.60


antichymotrypsin
(AACT_
EDAKR.L



precursor
HUMAN)







alpha-1-
P01011
K.ITDLIKDLDSQT
0.65


antichymotrypsin
(AACT_
MM*VLVNYIFFK.A



precursor
HUMAN)







alpha-1-
P01011
K.ITLLSALVET
0.62


antichymotrypsin
(AACT_
R.T



precursor
HUMAN)







alpha-1-
P01011
K.RLYGSEAFATDF
0.62


antichymotrypsin
(AACT_
QDSAAAK.K



precursor
HUMAN)







alpha-1-
P01011
R.EIGELYLPK.F
0.65


antichymotrypsin
(AACT_




precursor
HUMAN)







alpha-lB-
P04217
R.CEGPIPDVTFE
0.67


glycoprotein
(A1BG_
LLR.E



precursor
HUMAN)







alpha-lB-
P04217
R.FALVR.E
0.79


glycoprotein
(A1BG_




precursor
HUMAN)







alpha-2-
P08697
K.SPPGVCSR.D
0.81


antiplasmin
(A2AP_




isoform a
HUMAN)




precursor








alpha-2-
P08697
R.DSFHLDEQFTV
0.69


antiplasmin
(A2AP_
PVEMMQAR.T



isoform a
HUMAN)




precursor








alpha-2-HS-
P02765
K.CNLLAEK.Q
0.67


glycoprotein
(FETUA_




preproprotein
HUMAN)







alpha-2-HS-
P02765
K.EHAVEGDCDFQ
0.67


glycoprotein
(FETUA_
LLK.L



preproprotein
HUMAN)







alpha-2-HS-
P02765
K.HTLNQIDEVKV
0.64


glycoprotein
(FETUA_
WPQQPSGELFEIE



preproprotein
HUMAN)
IDTLETTCHVLDP





TPVAR.C






alpha-2-
P01023
K.MVSGFIPLK
0.73


macroglobulin
(A2MG_
PTVK.M



precursor
HUMAN)







alpha-2-
P01023
R.AFQPFFVELT
0.68


macroglobulin
(A2MG_
M*PYSVIR.G



precursor
HUMAN)







alpha-2-
P01023
R.AFQPFFVEL
0.62


macroglobulin
(A2MG_
TMPYSVIR.G



precursor
HUMAN)







alpha-2-
P01023
R.NQGNTWLTA
0.73


macroglobulin
(A2MG_
FVLK.T



precursor
HUMAN)







angiotensinogen
P01019
K.IDRFMQAVT
0.81


preproprotein
(ANGT_
GWK.T




HUMAN)







angiotensinogen
P01019
K.LDTEDKLR.A
0.72


preproprotein
(ANGT_





HUMAN)







angiotensinogen
P01019
K.TGCSLMGASV
0.64


preproprotein
(ANGT_
DSTLAF




HUMAN)
NTYVHFQGK.M






angiotensinogen
P01019
R.AAMVGMLANF
0.62


preproprotein
(ANGT_
LGFR.I




HUMAN)







antithrombin-III
P01008
K.NDNDNIFLS
0.64


precursor
(ANT3_
PLSIST




HUMAN)
AFAMTK.L






antithrombin-III
P01008
K.SKLPGIVA
0.81


precursor
(ANT3_
EGRDDLY




HUMAN)
VSDAFHK.A






antithrombin-III
P01008
R.EVPLNTIIF
0.61


precursor
(ANT3_
MGR.V




HUMAN)







antithrombin-III
P01008
R.FATTFYQHL
0.66


precursor
(ANT3_
ADSKNDNDNIF




HUMAN)
LSPLSISTAFA





MTK.L






antithrombin-III
P01008
R.ITDVIPSE
0.60


precursor
(ANT3_
AINELTVL




HUMAN)
VLVNTIYFK.G






antithrombin-III
P01008
R.RVWELSK.A
0.63


precursor
(ANT3_





HUMAN)







antithrombin-III
P01008
R.VAEGTQVLELP
0.62


precursor
(ANT3_
FKGDDITM*VLIL




HUMAN)
PKPEK.S






antithrombin-III
P01008
R.VAEGTQVLELP
0.62


precursor
(ANT3_
FKGDDITMVLILP




HUMAN)
KPEK.S






apolipoprotein A-II
P02652
K.AGTELVNFLSY
0.61


preproprotein
(APOA2_
FVELGTQPATQ.-




HUMAN)







apolipoprotein A-II
P02652
K.EPCVESLVSQY
0.63


preproprotein
(APOA2_
FQTVTDYGK.D




HUMAN)







apolipoprotein A-IV
P06727
K. ALVQQMEQLR.Q
0.61


precursor
(APOA4_





HUMAN)







apolipoprotein A-IV
P06727
K.LGPHAGDVEGH
0.61


precursor
(APOA4_
LSFLEK.D




HUMAN)







apolipoprotein A-IV
P06727
K.SELTQQLNAL
0.71


precursor
(APOA4_
FQDK.L




HUMAN)







apolipoprotein A-IV
P06727
K.SLAELGGHLD
0.61


precursor
(APOA4_
QQVEEFRR.R




HUMAN)







apolipoprotein A-IV
P06727
K.VKIDQTVEEL
0.75


precursor
(APOA4_
RR.S




HUMAN)







apolipoprotein A-IV
P06727
K.VNSFFSTFK.E
0.63


precursor
(APOA4_





HUMAN)







apolipoprotein
P04114
K.ATFQTPDFIVP
0.65


B-100
(APOB_
LTDLR.I



precursor
HUMAN)







apolipoprotein
P04114
K.AVSM*PSFSIL
0.65


B-100
(APOB_
GSDVR.V



precursor
HUMAN)







apolipoprotein
P04114
K.AVSMPSFSILG
0.67


B-100
(APOB_
SDVR.V



precursor
HUMAN)







apolipoprotein
P04114
K.EQHLFLPFSY
0.65


B-100
(APOB_
K.N



precursor
HUMAN)







apolipoprotein
P04114
K.KIISDYHQQF
0.63


B-100
(APOB_
R.Y



precursor
HUMAN)







apolipoprotein
P04114
K.QVFLYPEKDEPT
0.64


B-100
(APOB_
YILNIK.R



precursor
HUMAN)







apolipoprotein
P04114
K.SPAFTDLHLR.Y
0.69


B-100
(APOB_




precursor
HUMAN)







apolipoprotein
P04114
K.TILGTMPAFEVS
0.62


B-100
(APOB_
LQALQK.A



precursor
HUMAN)







apolipoprotein
P04114
K.VLADKFIIPGL
0.72


B-100
(APOB_
K.L



precursor
HUMAN)







apolipoprotein
P04114
K.YSQPEDSLIPFF
0.61


B-100
(APOB_
EITVPESQLTVSQF



precursor
HUMAN)
TLPK.S






apolipoprotein
P04114
R.DLKVEDIPLA
0.64


B-100
(APOB_
R.I



precursor
HUMAN)







apolipoprotein
P04114
R.GIISALLVPPE
0.81


B-100
(APOB_
TEEAK.Q



precursor
HUMAN)







apolipoprotein
P04114
R.ILGEELGFASL
0.62


B-100
(APOB_
HDLQLLGK.L



precursor
HUMAN)







apolipoprotein
P04114
R.LELELRPTGEI
0.60


B-100
(APOB_
EQYSVSATYELQ



precursor
HUMAN)
R.E






apolipoprotein
P04114
R.NIQEYLSILT
0.68


B-100
(APOB_
DPDGK.G



precursor
HUMAN)







apolipoprotein
P04114
R.TFQIPGYTVPV
0.75


B-100
(APOB_
VNVEVSPFTIEMS



precursor
HUMAN)
AFGYVFPK.A






apolipoprotein
P04114
R.TIDQMLNSELQ
0.70


B-100
(APOB_
WPVPDIYLR.D



precursor
HUMAN)







apolipoprotein
P02654
K.MREWFSETFQ
0.61


C-I
(APOC1_
K.V



precursor
HUMAN)







apolipoprotein
P02655
K.STAAMSTYTGI
0.61


C-II
(APOC2_
FTDQVLSVLKGE



precursor
HUMAN)
E.-






apolipoprotein
P02656
R.GWVTDGFSSL
0.62


C-III
(APOC3_
K.D



precursor
HUMAN)







apolipoprotein
P02649
R.AATVGSLAGQP
0.61


E
(APOE_
LQER.A



precursor
HUMAN)







apolipoprotein
P02649
R.LKSWFEPLVED
0.65


E
(APOE_
MQR.Q



precursor
HUMAN)







apolipoprotein
P02649
R.WVQTLSEQVQE
0.64


E
(APOE_
ELLSSQVTQELR.A



precursor
HUMAN)







ATP-binding
O14678
K.LCGGGRWELM*
0.60


cassette
(ABCD4_
R.I



sub-family
HUMAN)




D member





4








ATP-binding
Q9NUQ8
K.LPGLLK.R
0.73


cassette
(ABCF3_




sub-family
HUMAN)




F member 3








beta-2-
P02749
K.EHSSLAFWK.T
0.64


glycoprotein 1
(APOH_




precursor
HUMAN)







beta-2-
P02749
R.TCPKPDDLPFS
0.60


glycoprotein
(APOH_
TVVPLK.T



1
HUMAN)




precursor








beta-2-
P02749
R.VCPFAGILENG
0.68


glycoprotein
(APOH_
AVR.Y



1
HUMAN)




precursor








beta-Ala-Flis
Q96KN2
K.LFAAFFLEMAQ
0.68


dipeptidase
(CNDP1_
LH.-



precursor
HUMAN)







biotinidase
P43251
K.SHLIIAQVAK.
0.62


precursor
(BTD_
N




HUMAN)







carboxypeptidase
Q96IY4
K.NAIWIDCGIHA
0.62


B2
(CBPB2_
R.E



preproprotein
HUMAN)







carboxypeptidase
P15169
R.EALIQFLEQVH
0.69


N
(CBPN_
QGIK.G



catalytic
HUMAN)




chain





precursor








carboxypeptidase N
P22792
R.LLNIQTYCAGP
0.62


subunit 2
(CPN2_
AYLK.G



precursor
HUMAN)







catalase
P04040
R.LCENIAGHLKD
0.62



(CATA_
AQIFIQK.K




HUMAN)







ceruloplasmin
P00450
K.AETGDKVYVHL
0.61


precursor
(CERU_
K.N




HUMAN)







ceruloplasmin
P00450
K.AGLQAFFQVQE
0.62


precursor
(CERU_
CNK.S




HUMAN)







ceruloplasmin
P00450
K.DIASGLIGPLI
0.63


precursor
(CERU_
ICK.K




HUMAN)







ceruloplasmin
P00450
K.DIFTGLIGPM*
0.63


precursor
(CERU_
K.I




HUMAN)







ceruloplasmin
P00450
K.DIFTGLIGPM
0.68


precursor
(CERU_
K.I




HUMAN)







ceruloplasmin
P00450
K.M*YYSAVDPTK
0.62


precursor
(CERU_
DIFTGLIGPMK.I




HUMAN)







ceruloplasmin
P00450
K.MYYSAVDPTKD
0.63


precursor
(CERU_
IFTGLIGPM*K.I




HUMAN)







ceruloplasmin
P00450
K.PVWLGFLGPII
0.63


precursor
(CERU_
K.A




HUMAN)







ceruloplasmin
P00450
R.ADDKVYPGEQY
0.64


precursor
(CERU_
TYMLLATEEQSPG




HUMAN)
EGDGNCVTR.I






ceruloplasmin
P00450
R.DTANLFPQTSL
0.71


precursor
(CERU_
TLHM*WPDTEGTF




HUMAN)
NVECLTTDHYTGG





MK.Q






ceruloplasmin
P00450
R.DTANLFPQTSL
0.68


precursor
(CERU_
TLHMWPDTEGTFN




HUMAN)
VECLTTDHYTGGM





K.Q






ceruloplasmin
P00450
R.FNKNNEGTYYS
0.74


precursor
(CERU_
PNYNPQSR.S




HUMAN)







ceruloplasmin
P00450
R.IDTINLFPATL
0.75


precursor
(CERU_
FDAYM*VAQNPGE




HUMAN)
WM*LSCQNLNHLK





.A






ceruloplasmin
P00450
R.IDTINLFPATL
0.86


precursor
(CERU_
FDAYM*VAQNPGE




HUMAN)
WMLSCQNLNHLK.





A






ceruloplasmin
P00450
R.IDTINLFPATL
0.60


precursor
(CERU_
FDAYMVAQNPGEW




HUMAN)
M*LSCQNLNHLK.





A






ceruloplasmin
P00450
R.KAEEEHLGILG
0.71


precursor
(CERU_
PQLHADVGDKVK.




HUMAN)
I






ceruloplasmin
P00450
R.TTIEKPVWLGF
0.63


precursor
(CERU_
LGPIIK.A




HUMAN)







cholinesterase
P06276
R.FWTSFFPK.V
0.76


precursor
(CHLE_





HUMAN)







clusterin
P10909
K.LFDSDPITVTV
0.78


preproprotein
(CLUS_
PVEVSR.K




HUMAN)







clusterin
P10909
R.ASSIIDELFQD
0.68


preproprotein
(CLUS_
R.F




HUMAN)







coagulation
P00740
K.WIVTAAHCVET
0.60


factor
(FA9_
GVK.I



IX
HUMAN)




preproprotein








coagulation
P08709
R.FSLVSGWGQLL
0.78


factor
(FA7_
DR.G



VII
HUMAN)




isoform





a





preproprotein








coagulation
P00742
K.ETYDFDIAVLR
0.75


factor
(FA10_
.L



X
HUMAN)




preproprotein








coiled-coil
Q8IYE1
K.VRQLEMEIGQ.
0.67


domain-
(CCD13_
LNVHYLR.N



containing
HUMAN)




protein





13








complement
P02745
R.PAFSAIR.R
0.66


C1q
(C1QA_




subcomponent
HUMAN)




subunit





A





precursor








complement
P02746
K.VVTFCDYAYNT
0.63


C1q
(C1QB_
FQVTTGGMVLK.L



subcomponent
HUMAN)




subunit





B





precursor








complement
P02747
K.FQSVFTVTR.Q
0.63


C1q
(C1QC_




subcomponent
HUMAN)




subunit





C





precursor








complement
P00736
K.TLDEFTIIQNL
0.62


C1r
(C1R_
QPQYQFR.D



subcomponent
HUMAN)




precursor








complement
P00736
R.MDVFSQNMFCA
0.68


C1r
(C1R_
GHPSLK.Q



subcomponent
HUMAN)




precursor








complement
P00736
R.WILTAAHTLYP
0.74


C1r
(C1R_
K.E



subcomponent
HUMAN)




precursor








complement C1s
P09871
K.FYAAGLVSWGP
0.68


subcomponent
(C1S_
Q.CGTYGLYTR.V



precursor
HUMAN)







complement C1s
P09871
K.GFQVVVTLR.R
0.63


subcomponent
(C1S_




precursor
HUMAN)







complement C2
P06681
R.GALISDQWVLT
0.61


isoform 3
(CO2_
AAHCFR.D




HUMAN)







complement C2
P06681
R.PICLPCTMEAN
0.66


isoform 3
(CO2_
LALR.R




HUMAN)







complement C3
P01024
R.YYGGGYGSTQA
0.75


precursor
(CO3_
TFMVFQALAQYQK




HUMAN)
.D






complement C4-A
P0COL4
K.GLCVATPVQLR
0.74


isoform 1
(CO4A_
.V




HUMAN)







complement C4-A
P0COL4
K.M*RPSTDTITV
0.83


isoform 1
(CO4A_
M*VENSHGLR.V




HUMAN)







complement C4-A
P0COL4
K.MRPSTDTITVM
0.72


isoform 1
(CO4A_
*VENSHGLR.V




HUMAN)







complement C4-A
P0COL4
K.VGLSGM*AIAD
0.71


isoform 1
(CO4A_
VTLLSGFHALR.A




HUMAN)







complement C4-A
P0COL4
K.VLSLAQEQVGG
0.63


isoform 1
(CO4A_
SPEK.L




HUMAN)







complement C4-A
P0COL4
R.EMSGSPASGIP
0.65


isoform 1
(CO4A_
VK.V




HUMAN)







complement C4-A
P0COL4
R.GCGEQTM*IYL
0.75


isoform 1
(CO4A_
APTLAASR.Y




HUMAN)







complement C4-A
P0COL4
R.GLQDEDGYR.M
0.75


isoform 1
(CO4A_





HUMAN)







complement C4-A
P0COL4
R.GQIVFMNREP
0.93


isoform 1
(CO4A_
K.R




HUMAN)







complement C4-A
P0COL4
R.KKEVYM*PSSI
0.72


isoform 1
(CO4A_
FQDDFVIPDISEP




HUMAN)
GTWK.I






complement C4-A
P0COL4
R.LPMSVR.R
0.78


isoform 1
(CO4A_





HUMAN)







complement C4-A
P0COL4
R.LTVAAPPSGGP
0.84


isoform 1
(CO4A_
GFLSIER.P




HUMAN)







complement C4-A
P0COL4
R.NFLVR.A
0.75


isoform 1
(CO4A_





HUMAN)







complement C4-A
P0COL4
R.NGESVKLHLET
0.88


isoform 1
(CO4A_
DSLALVALGALDT




HUMAN)
ALYAAGSK.S






complement C4-A
P0COL4
R.QGSFQ.GGFR.
0.60


isoform 1
(CO4A_
S




HUMAN)







complement C4-A
P0COL4
R.TLEIPGNSDPN
0.69


isoform 1
(CO4A_
MIPDGDFNSYVR.




HUMAN)
V






complement C4-A
P0COL4
R.VTASDPLDTLG
0.63


isoform 1
(CO4A_
SEGALSPGGVASL




HUMAN)
LR.L






complement C4-A
P0COL4
R.YLDKTEQWSTL
0.67


isoform 1
(CO4A_
PPETK.D




HUMAN)







complement C5
P01031
K.ADNFLLENTLP
0.63


preproprotein
(CO5_
AQSTFTLAISAYA




HUMAN)
LSLGDK.T






complement C5
P01031
K.ALVEGVDQLFT
0.63


preproprotein
(CO5_
DYQIK.D




HUMAN)







complement C5
P01031
K.DGHVILQLNSI
0.62


preproprotein
(CO5_
PSSDFLCVR.F




HUMAN)







complement C5
P01031
K.DVFLEMNIPYS
0.63


preproprotein
(CO5_
VVR.G




HUMAN)







complement C5
P01031
K.EFPYRIPLDLV
0.60


preproprotein
(CO5_
PK.T




HUMAN)







complement C5
P01031
K.FQNSAILTIQP
0.67


preproprotein
(CO5_
K.Q




HUMAN)







complement C5
P01031
K.VFKDVFLEMNI
0.63


preproprotein
(CO5_
PYSVVR.G




HUMAN)







complement C5
P01031
R.VFQFLEK.S
0.61


preproprotein
(CO5_





HUMAN)







complement
P13671
K.DLHLSDVFLK.
0.60


component C6
(CO6_
A



precursor
HUMAN)







complement
P13671
R.TECIKPVVQEV
0.62


component C6
(CO6_
LTITPFQR.L



precursor
HUMAN)







complement
P10643
K.SSGWHFVVK.F
0.61


component C7
(CO7_




precursor
HUMAN)







complement
P10643
R.ILPLTVCK.M
0.75


component C7
(CO7_




precursor
HUMAN)







complement
P07357
R.ALDQYLMEFNA
0.65


component
(CO8A_
CR.C



C8 alpha
HUMAN)




chain





precursor








complement
P07360
K.YGFCEAADQFH
0.60


component C8
(CO8G_
VLDEVR.R



gamma chain
HUMAN)




precursor








complement
P02748
R.AIEDYINEFSV
0.69


component C9
(CO9_
RK.C



precursor
HUMAN)







complement
P02748
R.TAGYGINILGM
0.69


component C9
(CO9_
DPLSTPFDNEFYN



precursor
HUMAN)
GLCNR.D






complement
P00751
K.ALFVSEEEKK.
0.64


factor B
(CFAB_
L



preproprotein
HUMAN)







complement
P00751
K.CLVNLIEK.V
0.70


factor B
(CFAB_





HUMAN)







preproprotein








complement
P00751
K.EAGIPEFYDYD
0.66


factor B
(CFAB_
VALIK.L



preproprotein
HUMAN)







complement
P00751
K.VSEADSSNADW
0.73


factor B
(CFAB_
VTK.Q



preproprotein
HUMAN)







complement
P00751
K.YGQTIRPICLP
0.67


factor B
(CFAB_
CTEGTTR.A



preproprotein
HUMAN)







complement
P00751
R.DLEIEVVLFHP
0.71


factor B
(CFAB_
NYNINGK.K



preproprotein
HUMAN)







complement
P00751
R.FLCTGGVSPYA
0.64


factor B
(CFAB_
DPNTCR.G



preproprotein
HUMAN)







complement
P08603
K.DGWSAQPTCI
0.80


factor H
(CFAH_
K.S



isoform a
HUMAN)




precursor








complement
P08603
K.EGWIHTVCING
0.67


factor H
(CFAH_
R.W



isoform a
HUMAN)




precursor








complement
P08603
K.TDCLSLPSFEN
0.61


factor H
(CFAH_
AIPMGEK.K



isoform a
HUMAN)




precursor








complement
P08603
R.DTSCVNPPTVQ
0.60


factor H
(CFAH_
NAYIVSR.Q



isoform a
HUMAN)




precursor








complement
P08603
K.CTSTGWIPAP
0.68


factor H
(CFAH_
R.C



isoform b
HUMAN)




precursor








complement
P08603
K.IIYKENER.F
0.76


factor H
(CFAH_




isoform b
HUMAN)




precursor








complement
P08603
K.IVSSAM*EPDR
0.75


factor H
(CFAH_
EYHFGQAVR.F



isoform b
HUMAN)




precursor








complement
P08603
K.IVSSAMEPDRE
0.68


factor H
(CFAH_
YHFGQAVR.F



isoform b
HUMAN)




precursor








complement
P08603
R.CTLKPCDYPDI
0.81


factor H
(CFAH_
K.H



isoform b
HUMAN)




precursor








complement
P08603
R.KGEWVALNPL
0.60


factor H
(CFAH_
R.K



isoform b
HUMAN)




precursor








complement
P08603
R.KGEWVALNPLR
0.69


factor H
(CFAH_
K.C



isoform b
HUMAN)




precursor








complement
P08603
R.RPYFPVAVGK.
0.68


factor H
(CFAH_
Y



isoform b
HUMAN)




precursor








complement
Q03591
R.EIMENYNIAL
0.64


factor
(FHR1_
R.W



H-related
HUMAN)




protein 1





precursor








complement
P05156
K.DASGITCGGIY
0.71


factor 1
(CFAI_
IGGCWILTAAHCL



preproprotein
HUMAN)
R.A






complement
P05156
K.VANYFDWISYH
0.72


factor 1
(CFAI_
VGR.P



preproprotein
HUMAN)







complement
P05156
R.IIFHENYNAGT
0.63


factor 1
(CFAI_
YQNDIALIEMK.K



preproprotein
HUMAN)







complement
P05156
R.YQIWTTVVDWI
0.63


factor 1
(CFAI_
HPDLK.R



preproprotein
HUMAN)







conserved
Q9Y2V7
K.ISNLLK.F
0.65


oligomeric
(COG6_




Golgi complex
HUMAN)




subunit 6





isoform








corticosteroid-
P08185
R.WSAGLTSSQVD
0.62


binding
(CBG_
LYIPK.V



globulin
HUMAN)




precursor








C-reactive
P02741
K.YEVQGEVFTKP
0.60


protein
(CRP_
QLWP.-



precursor
HUMAN)







dopamine
P09172
R.HVLAAWALG
0.88


beta-
(DOPO_
AK.A



hydroxylase
HUMAN)




precursor








double-
Q9INS39
R.AGLRYVCLAEP
0.75


stranded
(RED2_
AER.R



RNA-specific
HUMAN)




editase





B2








dual
Q9NRD8
R.FTQLCVKGGGG
0.65


oxidase 2
(DUOX2_
GGNGIR.D



precursor
HUMAN)







FERM domain-
Q9BZ67
R.VQLGPYQPGRP
0.65


containing
(FRMD8_
AACDLR.E



protein 8
HUMAN)







fetuin-B
Q9UGM5
R.GGLGSLFYLTL
0.83


precursor
(FETUB_
DVLETDCHVLR.K




HUMAN)







ficolin-3
075636
R.ELLSQGATLSG
0.69


isoform 1
(FCN3_
WYHLCLPEGR.A



precursor
HUMAN)







gastric
P27352
K.KTTDM*ILNEI
0.60


intrinsic
(IF_
KQGK.F



factor
HUMAN)




precursor








gelsolin
P06396
K.NWRDPDQTDGL
0.72


isoform d
(GELS_
GLSYLSSHIANVE




HUMAN)
R.V






gelsolin
P06396
K.TPSAAYLWVGT
0.80


isoform d
(GELS_
GASEAEK.T




HUMAN)







gelsolin
P06396
R.VEKFDLVPVPT
0.60


isoform d
(GELS_
NLYGDFFTGDAYV




HUMAN)
ILK.T






gelsolin
P06396
R.VPFDAATLHT
0.67


isoform d
(GELS_
STAM AAQHGM D




HUMAN)
DDGTGQK.Q






glutathione
P22352
K.FYTFLK.N
0.63


peroxidase 3
(GPX3_




precursor
HUMAN)







hemopexin
P02790
K.GDKVWVYPPEK
0.65


precursor
(HEMO_
K.E




HUMAN)







hemopexin
P02790
K.LLQDEFPGIPS
0.71


precursor
(HEMO_
PLDAAVECHR.G




HUMAN)







hemopexin
P02790
K.SGAQATWTELP
0.64


precursor
(HEMO_
WPHEK.V




HUMAN)







hemopexin
P02790
K.SGAQATWTELP
0.61


precursor
(HEMO_
WPHEKVDGALCME




HUMAN)
K.S






hemopexin
P02790
K.VDGALCMEK.S
0.66


precursor
(HEMO_





HUMAN)







hemopexin
P02790
R.DYFMPCPGR.G
0.68


precursor
(HEMO_





HUMAN)







hemopexin
P02790
R.EWFWDLATGTM
0.64


precursor
(HEMO_
*K.E




HUMAN)







hemopexin
P02790
R.QGHNSVFLIK.
0.71


precursor
(HEMO_
G




HUMAN)







heparin
P05546
K.HQGTITVN E
0.60


cofactor 2
(HEP2_
EGTQATTVTTVG



precursor
HUMAN)
FMPLSTQVR.F






heparin
P05546
K.YEITTIHNLF
0.62


cofactor 2
(HEP2_
R.K



precursor
HUMAN)







heparin cofactor 2
P05546
R.LNILNAK.F
0.68


precursor
(HEP2_





HUMAN)







heparin cofactor 2
P05546
R.NFGYTLR.S
0.64


precursor
(HEP2_





HUMAN)







heparin cofactor 2
P05546
R.VLKDQVNTFDN
0.63


precursor
(HEP2_
IFIAPVGISTAMG




HUMAN)
M*ISLGLK.G






hepatocyte cell
Q14CZ8
K.PLLNDSRMLLS
0.61


adhesion molecule
(HECAM_
PDQK.V



precursor
HUMAN)







hepatocyte growth
Q04756
R.VQLSPDLLATL
0.82


factor activator
(HGFA_
PEPASPGR.Q



preproprotein
HUMAN)







histidine-rich
P04196
R.DGYLFQLLR.I
0.63


glycoprotein
(HRG_




precursor
HUMAN)







hyaluronan-binding
Q14520
K.FLNWIK.A
0.82


protein 2 isoform 1
(HABP2_




preproprotein
HUMAN)







hyaluronan-binding
Q14520
K.LKPVDGHCALE
0.61


protein 2 isoform 1
(HABP2_
SK.Y



preproprotein
HUMAN)







hyaluronan-binding
Q14520
K.RPGVYTQVTK.
0.74


protein 2 isoform 1
(HABP2_
F



preproprotein
HUMAN)







inactive caspase-12
Q6UXS9
K.AGADTHGRLLQ
0.74



(CASPC_
GNICNDAVTK.A




HUMAN)







insulin-degrading
P14735
K.KIIEKM*ATFE
0.85


enzyme isoform 1
(IDE_
IDEK.R




HUMAN)







insulin-like growth
P35858
R.SFEGLGQLEVL
0.62


factor-binding
(ALS_
TLDHNQ.LQEVK.



protein
HUMAN)
A



complex acid





labile subunit





isoform





2 precursor








inter-alpha-
P19827
K.ELAAQTIKK.S
0.81


trypsin
(ITIH1_




inhibitor
HUMAN)




heavy chain





HI isoform a





precursor








inter-alpha-trypsin
P19827
K.GSLVQASEANL
0.71


inhibitor heavy chain
(IT1H1__
QAAQDFVR.G



HI isoform a
HUMAN)




precursor








inter-alpha-trypsin
P19827
K.QLVHHFEIDVD
0.70


inhibitor heavy chain
(ITIH1_
IFEPQGISK.L



HI isoform a
HUMAN)




precursor








inter-alpha-
P19827
K.QYYEGSEIVVA
0.83


trypsin
(ITIH1_
GR.I



inhibitor
HUMAN)




heavy chain








heparin cofactor 2
P05546
R.LNILNAK.F
0.68


precursor
(HEP2_





HUMAN)







heparin cofactor 2
P05546
R.NFGYTLR.S
0.64


precursor
(HEP2_





HUMAN)







heparin cofactor 2
P05546
R.VLKDQVNTFDN
0.63


precursor
(HEP2_
IFIAPVGISTAMG




HUMAN)
M*ISLGLK.G






hepatocyte cell
Q14CZ8
K.PLLNDSRMLLS
0.61


adhesion molecule
(HECAM_
PDQK.V



precursor
HUMAN)







hepatocyte growth
Q04756
R.VQLSPDLLATL
0.82


factor activator
(HGFA_
PEPASPGR.Q



preproprotein
HUMAN)







histidine-rich
P04196
R.DGYLFQLLR.I
0.63


glycoprotein
(HRG_




precursor
HUMAN)







hyaluronan-binding
Q14520
K.FLNWIK.A
0.82


protein 2 isoform 1
(HABP2_




preproprotein
HUMAN)







hyaluronan-binding
Q14520
K.LKPVDGHCALE
0.61


protein 2 isoform 1
(HABP2_
SK.Y



preproprotein
HUMAN)







hyaluronan-binding
Q14520
K.RPGVYTQVTK.
0.74


protein 2 isoform 1
(HABP2_
F



preproprotein
HUMAN)







inactive caspase-12
Q6UXS9
K.AGADTHGRLLQ
0.74



(CASPC_
GNICNDAVTK.A




HUMAN)







insulin-degrading
P14735
K.KIIEKM*ATFE
0.85


enzyme isoform 1
(IDE_
IDEK.R




HUMAN)







insulin-like
P35858
R.SFEGLGQLEVL
0.62


growth
(ALS_
TLDHNQ.LQEVK.



factor-binding
HUMAN)
A



protein complex





acid





labile subunit





isoform





2 precursor








inter-alpha-
P19827
K.ELAAQTIKK.S
0.81


trypsin
(ITIH1_




inhibitor
HUMAN)




heavy chain





HI isoform a





precursor








inter-alpha-
P19827
K.GSLVQASEANL
0.71


trypsin
(ITIH1_
QAAQDFVR.G



inhibitor
HUMAN)




heavy chain





HI isoform a





precursor








inter-alpha-
P19827
K.QLVHHFEIDVD
0.70


trypsin
(ITIH1_
IFEPQGISK.L



inhibitor
HUMAN)




heavy chain





HI isoform a





precursor








inter-alpha-
P19827
K.QYYEGSEIVVA
0.83


trypsin
(ITIH1_
GR.I



inhibitor
HUMAN)




heavy chain





H1 isoform a





precursor








inter-alpha-trypsin
P19827
R.EVAFDLEIPKT
0.70


inhibitor heavy chain
(ITIH1_
AFISDFAVTADGN



HI isoform a
HUMAN)
AFIGDIK.D



precursor








inter-alpha-trypsin
P19827
R.GMADQDGLKPT
0.63


inhibitor heavy chain
(ITIH1_
IDKPSEDSPPLEM



HI isoform a
HUMAN)
*LGPR.R



precursor








inter-alpha-trypsin
P19827
R.GMADQDGLKPT
0.60


inhibitor heavy chain
(ITIH1_
IDKPSEDSPPLEM



HI isoform a
HUMAN)
LGPR.R



precursor








inter-alpha-trypsin
P19823
K.FDPAKLDQIES
0.80


inhibitor heavy chain
(ITIH2_
VITATSANTQLVL



H2 precursor
HUMAN)
ETLAQM*DDLQDF





LSK.D






inter-alpha-trypsin
P19823
K.KFYNQVSTPLL
0.76


inhibitor heavy chain
(ITIH2_
R.N



H2 precursor
HUMAN)







inter-alpha-trypsin
P19823
K.NILFVIDVSGS
0.68


inhibitor heavy chain
(ITIH2_
M*WGVK.M



H2 precursor
HUMAN)







inter-alpha-trypsin
P19823
K.NILFVIDVSGS
0.62


inhibitor heavy chain
(ITIH2_
MWGVK.M



H2 precursor
HUMAN)







inter-alpha-trypsin
P19823
R.KLGSYEHR.I
0.72


inhibitor heavy chain
(ITIH2_




H2 precursor
HUMAN)







inter-alpha-trypsin
P19823
R.LSNENHGIAQ
0.66


inhibitor heavy chain
(ITIH2_
R.I



H2 precursor
HUMAN)







inter-alpha-trypsin
P19823
R.MATTMIQSK.V
0.60


inhibitor heavy chain
(ITIH2_




H2 precursor
HUMAN)







inter-alpha-trypsin
P19823
R.SILQ.M*SLDH
0.63


inhibitor heavy chain
(ITIH2_
HIVTPLTSLVIEN



H2 precursor
HUMAN)
EAGDER.M






inter-alpha-trypsin
P19823
R.SILQMSLDHHI
0.65


inhibitor heavy chain
(ITIH2_
VTPLTSLVIENEA



H2 precursor
HUMAN)
GDER.M






inter-alpha-trypsin
P19823
R.TEVNVLPGAK.
0.69


inhibitor heavy chain
(ITIH2_
V



H2 precursor
HUMAN)







inter-alpha-trypsin
Q14624
K.NWFVIDK.S
0.68


inhibitor heavy chain
(ITIH4_




H4 isoform 1
HUMAN)




precursor








inter-alpha-trypsin
Q14624
K.WKETLFSVMPG
0.65


inhibitor heavy chain
(ITIH4_
LK.M



H4 isoform 1
HUMAN)




precursor








inter-alpha-trypsin
Q14624
K.YIFHNFM*ER.
0.67


inhibitor heavy chain
(ITIH4_
L



H4 isoform 1
HUMAN)




precursor








inter-alpha-trypsin
Q14624
R.FAHTVVTSR.V
0.63


inhibitor heavy chain
(ITIH4_




H4 isoform 1
HUMAN)




precursor








inter-alpha-trypsin
Q14624
R.FKPTLSQQQK.
0.60


inhibitor heavy chain
(ITIH4_
S



H4 isoform 1
HUMAN)




precursor








inter-alpha-trypsin
Q14624
R.IHEDSDSALQL
0.64


inhibitor heavy chain
(ITIH4_
QDFYQEVANPLLT



H4 isoform 1
HUMAN)
AVTFEYPSNAVEE



precursor

VTQNNFR.L






inter-alpha-trypsin
Q14624
R.MNFRPGVLSS
0.63


inhibitor heavy chain
(ITIH4_
R.Q



H4 isoform 1
HUMAN)




precursor








inter-alpha-trypsin
Q14624
R.NVHSAGAAGS
0.62


inhibitor heavy chain
(ITIH4_
R.M



H4 isoform 1
HUMAN)




precursor








inter-alpha-trypsin
Q14624
R.NVHSGSTFFK.
0.75


inhibitor heavy chain
(IT1H4_
Y



H4 isoform 1
HUMAN)




precursor








inter-alpha-trypsin
Q14624
R.RLGVYELLLK.
0.66


inhibitor heavy chain
(ITIH4_
V



H4 isoform 1
HUMAN)




precursor








kallistatin
P29622
K.KLELHLPK.F
0.78


precursor
(KAIN_





HUMAN)







kallistatin
P29622
R.EIEEVLTPEML
0.60


precursor
(KAIN_
MR.W




HUMAN)







kininogen-1 isoform 2
P01042
K.AATGECTATVG
0.67


precursor
(KNG1_
KR.S




HUMAN)







kininogen-1 isoform 2
P01042
K.LGQSLDCNAEV
0.72


precursor
(KNG1_
YWPWEK.K




HUMAN)







kininogen-1 isoform 2
P01042
K.YNSQNQSNNQF
0.62


precursor
(KNG1_
VLYR.I




HUMAN)







kininogen-1 isoform 2
P01042
R.QVVAGLNFR.I
0.64


precursor
(KNG1_





HUMAN)







leucine-rich alpha-2-
P02750
K.DLLLPQPDLR.
0.64


glycoprotein
(A2GL_
Y



precursor
HUMAN)







leucine-rich alpha-2-
P02750
R.LHLEGNKLQVL
0.76


glycoprotein
(A2GL_
GK.D



precursor
HUMAN)







leucine-rich alpha-2-
P02750
R.TLDLGENQLET
0.61


glycoprotein
(A2GL_
LPPDLLR.G



precursor
HUMAN)







lipopolysaccharide-
P18428
K.GLQYAAQEGLL
0.82


binding protein
(LBP_
ALQSELLR.I



precursor
HUMAN)







lipopolysaccharide-
P18428
K.LAEGFPLPLL
0.66


binding protein
(LBP_
K.R



precursor
HUMAN)







lumican precursor
P51884
K.SLEYLDLSFN
0.65



(LUM_
Q.IAR.L




HUMAN)







lumican precursor
P51884
R.LKEDAVSAAF
0.74



(LUM_
K.G




HUMAN)







m7GpppX
Q96C86
R.IVFENPDPSDG
0.62


diphosphatase
(DCPS_
FVLIPDLK.W




HUMAN)







matrix
Q99542
R.VYFFK.G
0.63


metalloproteinase-19
(MMP19_




isoform 1
HUMAN)




preproprotein








MBT domain-
Q05BQ5
K.WFDYLR.E
0.65


containing protein 1
(MBTD1_





HUMAN)







monocyte
P08571
R.LTVGAAQVPAQ
0.66


differentiation
(CD14_
LLVGALR.V



antigen CD14
HUMAN)




precursor








pappalysin-1
Q13219
R.VSFSSPLVAIS
0.66


preproprotein
(PAPP1_
GVALR.S




HUMAN)







phosphatidylinositol-
P80108
K.GIVAAFYSGPS
0.71


glycan-specific
(PHLD_
LSDKEK.L



phospholipase D
HUMAN)




precursor








phosphatidylinositol-
P80108
R.WYVPVKDLLGI
0.71


glycan-specific
(PHLD_
YEK.L



phospholipase D
HUMAN)




precursor








pigment epithelium-
P36955
K.LQSLFDSPDFS
0.61


derived factor
(PEDF_
K.I



precursor
HUMAN)







pigment epithelium-
P36955
R.ALYYDLISSPD
0.72


derived factor
(PEDF_
IHGTYK.E



precursor
HUMAN)







plasma kallikrein
P03952
R.CLLFSFLPASS
0.60


preproprotein
(KLKB1_
INDMEKR.F




HUMAN)







plasma protease Cl
P05155
K.FQPTLLTLPR.
0.70


inhibitor precursor
(IC1_
I




HUMAN)







plasma protease Cl
P05155
K.GVTSVSQ.IFH
0.66


inhibitor precursor
(IC1_
SPDLAIR.D




HUMAN)







plasminogen isoform
P00747
K.VIPACLPSPNY
0.63


1 precursor
(PLMN_
VVADR.T




HUMAN)







plasminogen isoform
P00747
R.FVTWIEGVMR.
0.60


1 precursor
(PLMN_
N




HUMAN)







plasminogen isoform
P00747
R.HSIFTPETNP
0.63


1 precursor
(PLMN_
R.A




HUMAN)







platelet basic
P02775
K.GKEESLDSDLY
0.70


protein
(CXCL7_
AELR.C



preproprotein
HUMAN)







platelet
P40197
K.MVLLEQLFLDH
0.66


glycoprotein
(GPV_
NALR.G



V precursor
HUMAN)







platelet
P40197
R.LVSLDSGLLNS
0.88


glycoprotein
(GPV_
LGALTELQFHR.N



V precursor
HUMAN)







pregnancy zone
P20742
K.ALLAYAFSLLG
0.66


protein precursor
(PZP_
K.Q




HUMAN)







pregnancy zone
P20742
K.DLFHCVSFTLP
0.86


protein precursor
(PZP_
R.I




HUMAN)







pregnancy zone
P20742
K.MLQ.ITNTGFE
0.84


protein precursor
(PZP_
MK.L




HUMAN)







pregnancy zone
P20742
R.NELIPLIYLEN
0.65


protein precursor
(PZP_
PRR.N




HUMAN)







pregnancy zone
P20742
R.SYIFIDEAHIT
0.68


protein precursor
(PZP_
QSLTWLSQMQK.D




HUMAN)







pregnancy-specific
P11465
R.SDPVTLNLLHG
0.66


beta-l-glycoprotein 2
(PSG2_
PDLPR.I



precursor
HUMAN)







pregnancy-specific
Q16557
R.TLFLFGVTK.Y
0.62


beta-l-glycoprotein 3
(PSG3_




precursor
HUMAN)







pregnancy-specific
Q15238
R.ILILPSVTR.N
0.76


beta-l-glycoprotein 5
(PSG5_




precursor
HUMAN)







pregnancy-specific
Q00889
R.SDPVTLNLLP
0.63


beta-l-glycoprotein 6
(PSG6_
K.L



isoform a
HUMAN)







progesterone-
Q8WXW3
R.VLQLEK.Q
0.71


induced-blocking
(PIBF1_




factor 1
HUMAN)







protein AMBP
P02760
R.VVAQGVGIPED
0.60


preproprotein
(AMBP_
SIFTMADR.G




HUMAN)







protein CBFA2T2
043439
R.LTEREWADEWK
0.70


isoform MTGRlb
(MTG8R _
HLDHALNCIMEMV




HUMAN)
EK.T






protein FAM98C
Q17RN3
R.ALCGGDGAAAL
0.75



(FA98C_
REPGAGLR.L




HUMAN)







protein NLRC3
Q7RTR2
K.ALM*DLLAGKG
0.92



(NLRC3_
SQGSQAPQALDR.




HUMAN)
T






protein Z-dependent
Q9UK55
K.MGDHLALEDYL
0.60


protease inhibitor
(ZPI_
TTDLVETWLR.N



precursor
HUMAN)







prothrombin
P00734
K.SPQELLCGASL
0.84


preproprotein
(THRB_
ISDR.W




HUMAN)







prothrombin
P00734
R.LAVTTHGLPCL
0.62


preproprotein
(THRB_
AWASAQAK.A




HUMAN)







prothrombin
P00734
R.SEGSSVNLSPP
0.70


preproprotein
(THRB_
LEQCVPDR.G




HUMAN)







prothrombin
P00734
R.SGIECQLWR.S
0.68


preproprotein
(THRB_





HUMAN)







prothrombin
P00734
R.TATSEYQTFFN
0.60


preproprotein
(THRB_
PR.T




HUMAN)







prothrombin
P00734
R.VTGWGNLKETW
0.69


preproprotein
(THRB_
TANVGK.G




HUMAN)







putative
Q5T013
R.IHLM*AGR.V
0.69


hydroxypyruvate
(HYI_




isomerase isoform 1
HUMAN)







putative
Q5T013
R.IHLMAGR.V
0.66


hydroxypyruvate
(HYI _




isomerase isoform 1
HUMAN)







ras-like
Q92737
R.PAHPALR.L
0.71


protein family
(RSLAA_




member 10A
HUMAN)




precursor








ras-related GTP-
Q7L523
K.ISNIIK.Q
0.82


binding protein A
(RRAGA_





HUMAN)







retinol-binding
P02753
K.M*KYWGVASFL
0.73


protein 4 precursor
(RET4_
QK.G




HUMAN)







retinol-binding
P02753
R.FSGTWYAM*AK
0.63


protein 4 precursor
(RET4_
.K




HUMAN)







retinol-binding
P02753
R.LLNLDGTCADS
0.79


protein 4 precursor
(RET4_
YSFVFSR.D




HUMAN)







retinol-binding
P02753
R.LLNNWDVCADM
0.77


protein 4 precursor
(RET4_
VGTFTDTEDPAKF




HUMAN)
K.M






sex hormone-binding
P04278
R.LFLGALPGEDS
0.66


globulin isoform 1
(SHBG _
STSFCLNGLWAQG



precursor
HUMAN)
QR.L






sex hormone-binding
P04278
K.DDWFMLGLR.D
0.60


globulin isoform 4
(SHBG _




precursor
HUMAN)







sex hormone-binding
P04278
R.SCDVESNPGIF
0.64


globulin isoform 4
(SHBG _
LPPGTQAEFNLR.




HUMAN)
G



precursor








sex hormone-binding
P04278
R.TWDPEGVIFYG
0.65


globulin isoform 4
(SHBG_
DTNPKDDWFM*LG



precursor
HUMAN)
LR.D






sex hormone-binding
P04278
R.TWDPEGVIFYG
0.66


globulin isoform 4
(SHBG_
DTNPKDDWFMLGL



precursor
HUMAN)
R.D






signal transducer
P52630
R.KFCRDIQDPTQ
0.73


and activator of
(STAT2_
LAEMIFNLLLEEK



transcription 2
HUMAN)
.R






spectrin beta chain,
Q13813
R.NELIRQEKLEQ
0.60


non-erythrocytic 1
(SPTN1_
LAR.R




HUMAN)







stabilin-1
Q9NY15
R.KNLSER.W
0.88


precursor
(STAB1_





HUMAN)







succinate-
P51649
R.KWYNLMIQNK.
0.88


semialdehyde
(SSDH_
D



dehydrogenase,
HUMAN)




mitochondrial








tetranectin
P05452
K.SRLDTLAQEVA
0.75


precursor
(TETN_
LLK.E




HUMAN)







THAP domain-
Q8TBB0
K.RLDVNAAGIWE
0.69


containing
(THAP6_
PKK.G



protein
HUMAN)







thyroxine-binding
P05543
R.SILFLGK.V
0.79


globulin precursor
(THBG_





HUMAN)







tripartite motif-
Q9C035
R.ELISDLEHRLQ
0.60


containing protein 5
(TRIM5_
GSVM*ELLQGVD




HUMAN)
GVIK.R






vitamin D-binding
P02774
K.EDFTSLSLVLY
0.66


protein isoform 1
(VTDB_
SR.K



precursor
HUMAN)







vitamin D-binding
P02774
K.ELSSFIDKGQE
0.67


protein isoform 1
(VTDB_
LCADYSENTFTEY



precursor
HUMAN)
K.K






vitamin D-binding
P02774
K.ELSSFIDKGQE
0.66


protein isoform 1
(VTDB_
LCADYSENTFTEY



precursor
HUMAN)
KK.K






vitamin D-binding
P02774
K.EVVSLTEACCA
0.65


protein isoform 1
(VTDB_
EGADPDCYDTR.T



precursor
HUMAN)







vitamin D-binding
P02774
K.TAMDVFVCTYF
0.84


protein isoform 1
(VTDB_
MPAAQLPELPDVE



precursor
HUMAN)
LPTNKDVCDPGNT





K.V






vitamin D-binding
P02774
R.RTHLPEVFLS
0.69


protein isoform 1
(VTDB_
.KV



precursor
HUMAN)







vitamin D-binding
P02774
R.VCSQYAAYGE
0.66


protein isoform 1
(VTDB_
K.K



precursor
HUMAN)







vitronectin precursor
P04004
K.LIRDVWGIEGP
0.61



(VTNC_
IDAAFTR.I




HUMAN)







vitronectin precursor
P04004
R.DVWGIEGPIDA
0.63



(VTNC_
AFTR.I




HUMAN)







vitronectin precursor
P04004
R.ERVYFFK.G
0.81



(VTNC_





HUMAN)







vitronectin precursor
P04004
R.FEDGVLDPDYP
0.64



(VTNC_
R.N




HUMAN)







vitronectin precursor
P04004
R.IYISGM*APRP
0.75



(VTNC_
SLAK.K




HUMAN)







zinc finger protein
P52746
K.TRFLLR.T
0.66


142
(ZN142_





HUMAN)
















TABLE 9







Significant peptides (AUC > 0.6) for X!Tandem only










Protein description
Uniprot ID (name)
Peptide
XT_AUC





afamin precursor

P43652

K.HELTDEELQSLFTNFANVVDK.C
0.65



(AFAM_HUMAN)







afamin precursor

P43652

R.NPFVFAPTLLTVAVHFEEVAK.S
0.91



(AFAM_HUMAN)







alpha-1-

P01011

K.ADLSGITGAR.N
0.67


antichymotrypsin
(AACT_HUMAN)




precursor








alpha-1-

P01011

K.MEEVEAMLLPETLKR.W
0.60


antichymotrypsin
(AACT_HUMAN)




precursor








alpha-1-

P01011

K.WEMPFDPQDTHQSR.F
0.64


antichymotrypsin
(AACT_HUMAN)




precursor








alpha-1-

P01011

R.LYGSEAFATDFQDSAAAK.K
0.62


antichymotrypsin
(AACT_HUMAN)




precursor








alpha-1B-glycoprotein

P04217

K.HQFLLTGDTQGR.Y
0.72


precursor
(A1BG_HUMAN)







alpha-1B-glycoprotein

P04217

K.NGVAQEPVHLDSPAIK.H
0.63


precursor
(A1BG_HUMAN)







alpha-1B-glycoprotein

P04217

K.SLPAPWLSM*APVSWITPGLK.T
0.72


precursor
(A1BG_HUMAN)







alpha-1B-glycoprotein

P04217

K.VTLTCVAPLSGVDFQLRR.G
0.67


precursor
(A1BG_HUMAN)







alpha-1B-glycoprotein

P04217

R.C*EGPIPDVTFELLR.E
0.67


precursor
(A1BG_HUMAN)







alpha-1B-glycoprotein

P04217

R.C*LAPLEGAR.F
0.79


precursor
(A1BG_HUMAN)







alpha-1B-glycoprotein

P04217

R.CLAPLEGAR.F
0.63


precursor
(A1BG_HUMAN)







alpha-1B-glycoprotein

P04217

R.GVTFLLR.R
0.69


precursor
(A1BG_HUMAN)







alpha-1B-glycoprotein

P04217

R.LHDNQNGWSGDSAPVELILSDETL
0.60


precursor
(A1BG_HUMAN)
PAPEFSPEPESGR.A






alpha-1B-glycoprotein

P04217

R.TPGAAANLELIFVGPQHAGNYR.C
0.62


precursor
(A1BG_HUMAN)







alpha-2-antiplasmin

P08697

K.HQM*DLVATLSQLGLQELFQAPDL
0.61


isoform a precursor
(A2AP_HUMAN)
R.G






alpha-2-antiplasmin

P08697

R.LCQDLGPGAFR.L
0.68


isoform a precursor
(A2AP_HUMAN)







alpha-2-antiplasmin

P08697

R.WFLLEQPEIQVAHFPFK.N
0.60


isoform a precursor
(A2AP_HUMAN)







alpha-2-HS-glycoprotein

P02765

K.VWPQQPSGELFEIEIDTLETTCHVL
0.61


preproprotein
(FETUA_HUMAN)
DPTPVAR.C






alpha-2-HS-glycoprotein

P02765

R.HTFMGVVSLGSPSGEVSHPR.K
0.68


preproprotein
(FETUA_HUMAN)







alpha-2-HS-glycoprotein

P02765

R.Q*PNCDDPETEEAALVAIDYINQNL
0.69


preproprotein
(FETUA_HUMAN)
PWGYK.H






alpha-2-HS-glycoprotein

P02765

R.QPNCDDPETEEAALVAIDYINQNLP
0.64


preproprotein
(FETUA_HUMAN)
WGYK.H






alpha-2-HS-glycoprotein

P02765

R.TVVQPSVGAAAGPVVPPCPGR.I
0.64


preproprotein
(FETUA_HUMAN)







angiotensinogen

P01019

K.QPFVQGLALYTPVVLPR.S
0.73


preproprotein
(ANGT_HUMAN)







angiotensinogen

P01019

R.AAM*VGM*LANFLGFR.I
0.62


preproprotein
(ANGT_HUMAN)







apolipoprotein A-IV

P06727

K.LVPFATELHER.L
0.64


precursor
(APOA4_HUMAN)







apolipoprotein A-IV

P06727

R.LLPHANEVSQK.I
0.61


precursor
(APOA4_HUMAN)







apolipoprotein A-IV

P06727

R.SLAPYAQDTQEKLNHQLEGLTFQM
0.70


precursor
(APOA4_HUMAN)
K.K






apolipoprotein B-100

P04114

K.FPEVDVLTK.Y
0.61


precursor
(APOB_HUMAN)







apolipoprotein B-100

P04114

K.HINIDQFVR.K
0.70


precursor
(APOB_HUMAN)







apolipoprotein B-100

P04114

K.LLSGGNTLHLVSTTK.T
0.66


precursor
(APOB_HUMAN)







apolipoprotein B-100

P04114

K.Q*VFLYPEKDEPTYILNIKR.G
0.81


precursor
(APOB_HUMAN)







apolipoprotein B-100

P04114

K.QVFLYPEKDEPTYILNIKR.G
0.77


precursor
(APOB_HUMAN)







apolipoprotein B-100

P04114

K.SLHMYANR.L
0.83


precursor
(APOB_HUMAN)







apolipoprotein B-100

P04114

K.SVSDGIAALDLNAVANK.I
0.62


precursor
(APOB_HUMAN)







apolipoprotein B-100

P04114

K.SVSLPSLDPASAKIEGNLIFDPNNYL
0.67


precursor
(APOB_HUMAN)
PK.E






apolipoprotein B-100

P04114

K.TEVIPPLIENR.Q
0.63


precursor
(APOB_HUMAN)







apolipoprotein B-100

P04114

K.VLVDHFGYTK.D
0.76


precursor
(APOB_HUMAN)







apolipoprotein B-100

P04114

R.TSSFALNLPTLPEVKFPEVDVLTK.Y
0.62


precursor
(APOB_HUMAN)







apolipoprotein C-III

P02656

R.GWVTDGFSSLKDYWSTVK.D
0.66


precursor
(APOC3_HUMAN)







apolipoprotein E

P02649

R.GEVQAMLGQSTEELR.V
0.81


precursor
(APOE_HUMAN)







apolipoprotein E

P02649

R.LAVYQAGAR.E
0.63


precursor
(APOE_HUMAN)







apolipoprotein E

P02649

R.LGPLVEQGR.V
0.69


precursor
(APOE_HUMAN)







attractin isoform 2

O75882

K.LTLTPWVGLR.K
0.69


preproprotein
(ATRN_HUMAN)







beta-2-glycoprotein 1

P02749

K.FICPLTGLWPINTLK.C
0.63


precursor
(APOH_HUMAN)







beta-2-glycoprotein 1

P02749

K.TFYEPGEEITYSCKPGYVSR.G
0.62


precursor
(APOH_HUMAN)







beta-Ala-His

Q96KN2

K.MVVSMTLGLHPWIANIDDTQYLA
0.81


dipeptidase precursor
(CNDP1_HUMAN)
AK.R






beta-Ala-His

Q96KN2

K.VFQYIDLHQDEFVQTLK.E
0.65


dipeptidase precursor
(CNDP1_HUMAN)







biotinidase precursor

P43251

R.TSIYPFLDFM*PSPQVVR.W
0.79



(BTD_HUMAN)







carboxypeptidase N

P15169

R.ELMLQLSEFLCEEFR.N
0.61


catalytic chain
(CBPN_HUMAN)




precursor








ceruloplasmin

P00450

K.AEEEHLGILGPQLHADVGDKVK.I
0.73


precursor
(CERU_HUMAN)







ceruloplasmin

P00450

K.ALYLQYTDETFR.T
0.64


precursor
(CERU_HUMAN)







ceruloplasmin

P00450

K.DVDKEFYLFPTVFDENESLLLEDN
0.62


precursor
(CERU_HUMAN)
IR.M






ceruloplasmin

P00450

K.HYYIGIIETTWDYASDHGEK.K
0.61


precursor
(CERU_HUMAN)







ceruloplasmin

P00450

R.EYTDASFTNRK.E
0.67


precursor
(CERU_HUMAN)







ceruloplasmin

P00450

R.HYYIAAEEIIWNYAPSGIDIFTK.E
0.63


precursor
(CERU_HUMAN)







ceruloplasmin

P00450

R.IYHSHIDAPK.D
0.62


precursor
(CERU_HUMAN)







ceruloplasmin

P00450

R.Q*KDVDKEFYLFPTVFDENESLLLE
0.74


precursor
(CERU_HUMAN)
DNIR.M






ceruloplasmin

P00450

R.QKDVDKEFYLFPTVFDENESLLLED
0.65


precursor
(CERU_HUMAN)
NIR.M






ceruloplasmin

P00450

R.TYYIAAVEVEWDYSPQR.E
0.90


precursor
(CERU_HUMAN)







coagulation factor IX

P00740

R.SALVLQYLR.V
0.69


preproprotein
(FA9_HUMAN)







coagulation factor V

P12259

K.EFNPLVIVGLSK.D
0.61


precursor
(FA5_HUMAN)







coagulation factor XII

P00748

R.NPDNDIRPWCFVLNR.D
0.65


precursor
(FA12_HUMAN)







coagulation factor XII

P00748

R.VVGGLVALR.G
0.61


precursor
(FA12_HUMAN)







complement C1q

P02746

K.NSLLGMEGANSIFSGFLLFPDMEA.-
0.64


subcomponent subunit
(C1QB_HUMAN)




B precursor








complement C1q

P02746

K.VPGLYYFTYHASSR.G
0.63


subcomponent subunit
(C1QB_HUMAN)




B precursor








complement C1q

P02747

R.Q*THQPPAPNSLIR.F
0.60


subcomponent subunit
(C1QC_HUMAN)




C precursor








complement C1r

P00736

R.LPVANPQACENWLR.G
0.72


subcomponent
(C1R_HUMAN)




precursor








complement C2

P06681

K.NQGILEFYGDDIALLK.L
0.74


isoform 3
(CO2_HUMAN)







complement C2

P06681

K.RNDYLDIYAIGVGK.L
0.61


isoform 3
(CO2_HUMAN)







complement C2

P06681

R.QPYSYDFPEDVAPALGTSFSHMLG
0.78


isoform 3
(CO2_HUMAN)
ATNPTQK.T






complement C3

P01024

R.IHWESASLLR.S
0.69


precursor
(CO3_HUMAN)







complement C4-A

P0C0L4

K.FACYYPR.V
0.64


isoform 1
(CO4A_HUMAN)







complement C4-A

P0C0L4

K.LHLETDSLALVALGALDTALYAAGS
0.74


isoform 1
(CO4A_HUMAN)
K.S






complement C4-A

P0C0L4

K.LVNGQSHISLSK.A
0.64


isoform 1
(CO4A_HUMAN)







complement C4-A

P0C0L4

K.M*RPSTDTITVMVENSHGLR.V
0.60


isoform 1
(CO4A_HUMAN)







complement C4-A

P0C0L4

K.MRPSTDTITVMVENSHGLR.V
0.65


isoform 1
(CO4A_HUMAN)







complement C4-A

P0C0L4

K.SCGLHQLLR.G
0.74


isoform 1
(CO4A_HUMAN)







complement C4-A

P0C0L4

K.VGLSGMAIADVTLLSGFHALR.A
0.61


isoform 1
(CO4A_HUMAN)







complement C4-A

P0C0L4

K.YVLPNFEVK.I
0.64


isoform 1
(CO4A_HUMAN)







complement C4-A

P0C0L4

R.ALEILQEEDLIDEDDIPVR.S
0.64


isoform 1
(CO4A_HUMAN)







complement C4-A

P0C0L4

R.ECVGFEAVQEVPVGLVQPASATLY
0.62


isoform 1
(CO4A_HUMAN)
DYYNPER.R






complement C4-A

P0C0L4

R.EELVYELNPLDHR.G
0.66


isoform 1
(CO4A_HUMAN)







complement C4-A

P0C0L4

R.STQDTVIALDALSAYWIASHTTE
0.70


isoform 1
(CO4A_HUMAN)
ER.G






complement C4-A

P0C0L4

R.VGDTLNLNLR.A
0.79


isoform 1
(CO4A_HUMAN)







complement C4-A

P0C0L4

R.VHYTVCIWR.N
0.65


isoform 1
(CO4A_HUMAN)







complement C4-B-like

P0C0L5

K.GLCVATPVQLR.V
1.00


preproprotein
(CO4B_HUMAN)







complement C4-B-like

P0C0L5

K.KYVLPNFEVK.I
0.60


preproprotein
(CO4B_HUMAN)







complement C4-B-like

P0C0L5

K.VDFTLSSERDFALLSLQVPLKDAK.S
0.74


preproprotein
(CO4B_HUMAN)







complement C4-B-like

P0C0L5

R.EMSGSPASGIPVK.V
0.72


preproprotein
(CO4B_HUMAN)







complement C4-B-like

P0C0L5

R.GCGEQTM*IYLAPTLAASR.Y
0.75


preproprotein
(CO4B_HUMAN)







complement C4-B-like

P0C0L5

R.NGESVKLHLETDSLALVALGALDTA
0.85


preproprotein
(CO4B_HUMAN)
LYAAGSK.S






complement C5

P01031

R.IPLDLVPK.T
0.65


preproprotein
(CO5_HUMAN)







complement C5

P01031

R.SYFPESWLWEVHLVPR.R
0.63


preproprotein
(CO5_HUMAN)







complement C5

P01031

R.YGGGFYSTQDTINAIEGLTEYSLL
0.62


preproprotein
(CO5_HUMAN)
VK.Q






complement

P13671

K.ENPAVIDFELAPIVDLVR.N
0.63


component C6
(CO6_HUMAN)




precursor








complement

P07357

K.YNPVVIDFEMQPIHEVLR.H
0.61


component C8 alpha
(CO8A_HUMAN)




chain precursor








complement

P07357

R.HTSLGPLEAK.R
0.65


component C8 alpha
(CO8A_HUMAN)




chain precursor








complement

P07358

K.C*QHEMDQYWGIGSLASGINLFTN
0.61


component C8 beta
(CO8B_HUMAN)
SFEGPVLDHR.Y



chain preproprotein








complement

P07358

K.SGFSFGFK.I
0.64


component C8 beta
(CO8B_HUMAN)




chain preproprotein








complement

P07358

R.DTMVEDLVVLVR.G
0.77


component C8 beta
(CO8B_HUMAN)




chain preproprotein








complement

P07360

K.ANFDAQQFAGTWLLVAVGSACR.F
0.63


component C8 gamma
(CO8G_HUMAN)




chain precursor








complement

P07360

R.AEATTLHVAPQGTAMAVSTFR.K
0.61


component C8 gamma
(CO8G_HUMAN)




chain precursor








complement

P02748

R.DVVLTTTFVDDIK.A
0.73


component C9
(CO9_HUMAN)




precursor








complement

P02748

R.RPWNVASLIYETK.G
0.66


component C9
(CO9_HUMAN)




precursor








complement factor B

P00751

K.ISVIRPSK.G
0.70


preproprotein
(CFAB_HUMAN)







complement factor B

P00751

K.VASYGVKPR.Y
0.63


preproprotein
(CFAB_HUMAN)







complement factor B

P00751

R.DFHINLFQVLPWLK.E
0.68


preproprotein
(CFAB_HUMAN)







complement factor B

P00751

R.DLLYIGK.D
0.63


preproprotein
(CFAB_HUMAN)







complement factor B

P00751

R.GDSGGPLIVHK.R
0.63


preproprotein
(CFAB_HUMAN)







complement factor B

P00751

R.LEDSVTYHCSR.G
0.68


preproprotein
(CFAB_HUMAN)







complement factor B

P00751

R.LPPTTTCQQQK.E
0.68


preproprotein
(CFAB_HUMAN)







complement factor H

P08603

K.CLHPCVISR.E
0.62


isoform a precursor
(CFAH_HUMAN)







complement factor H

P08603

K.CTSTGWIPAPR.C
0.74


isoform a precursor
(CFAH_HUMAN)







complement factor H

P08603

K.IDVHLVPDR.K
0.66


isoform a precursor
(CFAH_HUMAN)







complement factor H

P08603

K.IVSSAMEPDREYHFGQAVR.F
0.67


isoform a precursor
(CFAH_HUMAN)







complement factor H

P08603

K.SIDVACHPGYALPK.A
0.67


isoform a precursor
(CFAH_HUMAN)







complement factor H

P08603

K.VSVLCQENYLIQEGEEITCKDGR.W
0.63


isoform a precursor
(CFAH_HUMAN)







complement factor H

P08603

K.WSSPPQCEGLPCK.S
0.60


isoform a precursor
(CFAH_HUMAN)







complement factor H

P08603

R.EIMENYNIALR.W
0.61


isoform a precursor
(CFAH_HUMAN)







complement factor H

P08603

R.RPYFPVAVGK.Y
0.83


isoform a precursor
(CFAH_HUMAN)







complement factor H

P08603

R.WQSIPLCVEK.I
0.63


isoform a precursor
(CFAH_HUMAN)







complement factor I

P05156

R.YQIWTTVVDWIHPDLKR.I
0.72


preproprotein
(CFAI_HUMAN)







corticosteroid-binding

P08185

K.AVLQLNEEGVDTAGSTGVTLNLTSK
0.61


globulin precursor
(CBG_HUMAN)
PIILR.F






corticosteroid-binding

P08185

R.GLASANVDFAFSLYK.H
0.66


globulin precursor
(CBG_HUMAN)







fibrinogen alpha chain

P02671

K.TFPGFFSPMLGEFVSETESR.G
0.62


isoform alpha-E
(FIBA_HUMAN)




preproprotein








gelsolin isoform b

P06396

K.FDLVPVPTNLYGDFFTGDAYVILK.T
0.66



(GELS_HUMAN)







gelsolin isoform b

P06396

K.QTQVSVLPEGGETPLFK.Q
0.66



(GELS_HUMAN)







gelsolin isoform b

P06396

K.TPSAAYLWVGTGASEAEK.T
0.71



(GELS_HUMAN)







gelsolin isoform b

P06396

R.AQPVQVAEGSEPDGFWEALGGK.A
0.67



(GELS_HUMAN)







gelsolin isoform b

P06396

R.IEGSNKVPVDPATYGQFYGGDSYIIL
0.60



(GELS_HUMAN)
YNYR.H






gelsolin isoform b

P06396

R.VEKFDLVPVPTNLYGDFFTGDAYVI
0.73



(GELS_HUMAN)
LK.T






gelsolin isoform b

P06396

R.VPFDAATLHTSTAMAAQHGMDD
0.63



(GELS_HUMAN)
DGTGQK.Q






glutathione peroxidase

P22352

K.FLVGPDGIPIMR.W
0.60


3 precursor
(GPX3_HUMAN)







hemopexin precursor

P02790

K.ALPQPQNVTSLLGCTH.-
0.63



(HEMO_HUMAN)







hemopexin precursor

P02790

K.SLGPNSCSANGPGLYLIHGPNLYCY
0.68



(HEMO_HUMAN)
SDVEK.L






hemopexin precursor

P02790

R.DGWHSWPIAHQWPQGPSAVDAA
0.63



(HEMO_HUMAN)
FSWEEK.L






hemopexin precursor

P02790

R.GECQAEGVLFFQGDR.E
0.67



(HEMO_HUMAN)







hemopexin precursor

P02790

R.GECQAEGVLFFQGDREWFWDLAT
0.67



(HEMO_HUMAN)
GTM*K.E






hemopexin precursor

P02790

R.LEKEVGTPHGIILDSVDAAFICPGSS
0.75



(HEMO_HUMAN)
R.L






hemopexin precursor

P02790

R.LWWLDLK.S
0.62



(HEMO_HUMAN)







hemopexin precursor

P02790

R.WKNFPSPVDAAFR.Q
0.68



(HEMO_HUMAN)







heparin cofactor 2

P05546

K.DQVNTFDNIFIAPVGISTAMGMISL
0.60


precursor
(HEP2_HUMAN)
GLK.G






insulin-like growth

P35858

K.ANVFVQLPR.L
0.71


factor-binding protein
(ALS_HUMAN)




complex acid labile





subunit isoform 2





precursor








insulin-like growth

P35858

R.LEALPNSLLAPLGR.L
0.61


factor-binding protein
(ALS_HUMAN)




complex acid labile





subunit isoform 2





precursor








insulin-like growth

P35858

R.LFQGLGK.L
0.68


factor-binding protein
(ALS_HUMAN)




complex acid labile





subunit isoform 2





precursor








insulin-like growth

P35858

R.NLIAAVAPGAFLGLK.A
0.76


factor-binding protein
(ALS_HUMAN)




complex acid labile





subunit isoform 2





precursor








insulin-like growth

P35858

R.TFTPQPPGLER.L
0.73


factor-binding protein
(ALS_HUMAN)




complex acid labile





subunit isoform 2





precursor








inter-alpha-trypsin

P19827

K.Q*LVHHFEIDVDIFEPQGISK.L
0.69


inhibitor heavy chain
(ITIH1_HUMAN)




H1 isoform a precursor








inter-alpha-trypsin

P19827

K.VTFQLTYEEVLK.R
0.61


inhibitor heavy chain
(ITIH1_HUMAN)




H1 isoform a precursor








inter-alpha-trypsin

P19827

K.VTFQLTYEEVLKR.N
0.70


inhibitor heavy chain
(ITIH1_HUMAN)




H1 isoform a precursor








inter-alpha-trypsin

P19827

R.GIEILNQVQESLPELSNHASILIMLT
0.62


inhibitor heavy chain
(ITIH1_HUMAN)
DGDPTEGVTDR.S



H1 isoform a precursor








inter-alpha-trypsin

P19827

R.GM*ADQDGLKPTIDKPSEDSPPLE
0.79


inhibitor heavy chain
(ITIH1_HUMAN)
M*LGPR.R



H1 isoform a precursor








inter-alpha-trypsin

P19827

R.KAAISGENAGLVR.A
0.78


inhibitor heavy chain
(ITIH1_HUMAN)




H1 isoform a precursor








inter-alpha-trypsin

P19823

K.AGELEVFNGYFVHFFAPDNLDPI
0.64


inhibitor heavy chain
(ITIH2_HUMAN)
PK.N



H2 precursor








inter-alpha-trypsin

P19823

K.FYNQVSTPLLR.N
0.68


inhibitor heavy chain
(ITIH2_HUMAN)




H2 precursor








inter-alpha-trypsin

P19823

K.VQFELHYQEVK.W
0.68


inhibitor heavy chain
(ITIH2_HUMAN)




H2 precursor








inter-alpha-trypsin

P19823

R.ETAVDGELVVLYDVK.R
0.63


inhibitor heavy chain
(ITIH2_HUMAN)




H2 precursor








inter-alpha-trypsin

P19823

R.IYLQPGR.L
0.75


inhibitor heavy chain
(ITIH2_HUMAN)




H2 precursor








inter-alpha-trypsin

Q06033

R.LWAYLTIEQLLEK.R
0.60


inhibitor heavy chain
(ITIH3_HUMAN)




H3 preproprotein








inter-alpha-trypsin

Q14624

K.ITFELVYEELLK.R
0.60


inhibitor heavy chain
(ITIH4_HUMAN)




H4 isoform 1 precursor








inter-alpha-trypsin

Q14624

K.LQDRGPDVLTATVSGK.L
0.67


inhibitor heavy chain
(ITIH4_HUMAN)




H4 isoform 1 precursor








inter-alpha-trypsin

Q14624

K.TGLLLLSDPDKVTIGLLFWDGRGEG
0.63


inhibitor heavy chain
(ITIH4_HUMAN)
LR.L



H4 isoform 1 precursor








inter-alpha-trypsin

Q14624

K.WKETLFSVM*PGLK.M
0.79


inhibitor heavy chain
(ITIH4_HUMAN)




H4 isoform 1 precursor








inter-alpha-trypsin

Q14624

R.AISGGSIQIENGYFVHYFAPEGLTT
0.60


inhibitor heavy chain
(ITIH4_HUMAN)
M*PK.N



H4 isoform 1 precursor








inter-alpha-trypsin

Q14624

R.AISGGSIQIENGYFVHYFAPEGLTT
0.65


inhibitor heavy chain
(ITIH4_HUMAN)
MPK.N



H4 isoform 1 precursor








inter-alpha-trypsin

Q14624

R.ANTVQEATFQMELPK.K
0.68


inhibitor heavy chain
(ITIH4_HUMAN)




H4 isoform 1 precursor








inter-alpha-trypsin

Q14624

R.SFAAGIQALGGTNINDAMLMAVQ
0.64


inhibitor heavy chain
(ITIH4_HUMAN)
LLDSSNQEER.L



H4 isoform 1 precursor








inter-alpha-trypsin

Q14624

R.VQGNDHSATR.E
0.63


inhibitor heavy chain
(ITIH4_HUMAN)




H4 isoform 1 precursor








inter-alpha-trypsin

Q14624

K.ITFELVYEELLKR.R
0.60


inhibitor heavy chain
(ITIH4_HUMAN)




H4 isoform 2 precursor








inter-alpha-trypsin

Q14624

K.VTIGLLFWDGR.G
0.65


inhibitor heavy chain
(ITIH4_HUMAN)




H4 isoform 2 precursor








inter-alpha-trypsin

Q14624

R.LWAYLTIQQLLEQTVSASDADQQA
0.68


inhibitor heavy chain
(ITIH4_HUMAN)
LR.N



H4 isoform 2 precursor








kallistatin precursor

P29622

K.LFHTNFYDTVGTIQLINDHVK.K
0.73



(KAIN_HUMAN)







kininogen-1 isoform 2

P01042

K.ENFLFLTPDCK.S
0.64


precursor
(KNG1_HUMAN)







kininogen-1 isoform 2

P01042

K.IYPTVNCQPLGMISLMK.R
0.64


precursor
(KNG1_HUMAN)







kininogen-1 isoform 2

P01042

K.KIYPTVNCQPLGMISLMK.R
0.78


precursor
(KNG1_HUMAN)







kininogen-1 isoform 2

P01042

K.SLWNGDTGECTDNAYIDIQLR.I
0.67


precursor
(KNG1_HUMAN)







lumican precursor

P51884

K.ILGPLSYSK.I
0.60



(LUM_HUMAN)







N-acetylmuramoyl-L-

Q96PD5

K.EYGVVLAPDGSTVAVEPLLAGLEAG
0.61


alanine amidase
(PGRP2_HUMAN)
LQGR.R



precursor








N-acetylmuramoyl-L-

Q96PD5

R.EGKEYGVVLAPDGSTVAVEPLLAGL
0.69


alanine amidase
(PGRP2_HUMAN)
EAGLQGR.R



precursor








N-acetylmuramoyl-L-

Q96PD5

R.Q*NGAALTSASILAQQVWGTLVLL
0.60


alanine amidase
(PGRP2_HUMAN)
QR.L



precursor








pigment epithelium-

P36955

K.IAQLPLTGSMSIIFFLPLK.V
0.65


derived factor
(PEDF_HUMAN)




precursor








pigment epithelium-

P36955

R.SSTSPTTNVLLSPLSVATALSALSLG
0.79


derived factor
(PEDF_HUMAN)
AEQR.T



precursor








plasma kallikrein

P03952

K.VAEYMDWILEK.T
0.62


preproprotein
(KLKB1_HUMAN)







plasma kallikrein

P03952

R.C*LLFSFLPASSINDMEKR.F
0.60


preproprotein
(KLKB1_HUMAN)







plasma kallikrein

P03952

R.C*QFFSYATQTFHK.A
0.60


preproprotein
(KLKB1_HUMAN)







plasma kallikrein

P03952

R.CLLFSFLPASSINDMEK.R
0.76


preproprotein
(KLKB1_HUMAN)







plasma protease C1

P05155

R.LVLLNAIYLSAK.W
0.96


inhibitor precursor
(IC1_HUMAN)







pregnancy zone protein

P20742

R.NALFCLESAWNVAK.E
0.67


precursor
(PZP_HUMAN)







pregnancy zone protein

P20742

R.NQGNTWLTAFVLK.T
0.61


precursor
(PZP_HUMAN)







pregnancy-specific

Q00887

R.SNPVILNVLYGPDLPR.I
0.62


beta-1-glycoprotein 9
(PSG9_HUMAN)




precursor








prenylcysteine oxidase

Q9UHG3

K.IAIIGAGIGGTSAAYYLR.Q
0.71


1 precursor
(PCYOX_HUMAN)







protein AMBP

P02760

K.WYNLAIGSTCPWLK.K
0.77


preproprotein
(AMBP_HUMAN)







protein AMBP

P02760

R.TVAACNLPIVR.G
0.66


preproprotein
(AMBP_HUMAN)







prothrombin

P00734

R.IVEGSDAEIGMSPWQVMLFR.K
0.62


preproprotein
(THRB_HUMAN)







prothrombin

P00734

R.RQECSIPVCGQDQVTVAMTPR.S
0.69


preproprotein
(THRB_HUMAN)







prothrombin

P00734

R.TFGSGEADCGLRPLFEK.K
0.61


preproprotein
(THRB_HUMAN)







retinol-binding protein

P02753

R.FSGTWYAMAK.K
0.60


4 precursor
(RET4_HUMAN)







retinol-binding protein

P02753

R.LLNNWDVCADMVGTFTDTEDPAK.F
0.64


4 precursor
(RET4_HUMAN)







serum amyloid P-

P02743

R.GYVIIKPLVWV.-
0.62


component precursor
(SAMP_HUMAN)







sex hormone-binding

P04278

K.VVLSSGSGPGLDLPLVLGLPLQLK.L
0.60


globulin isoform 1
(SHBG_HUMAN)




precursor








sex hormone-binding

P04278

R.TWDPEGVIFYGDTNPKDDWFM*L
0.75


globulin isoform 1
(SHBG_HUMAN)
GLR.D



precursor








sex hormone-binding

P04278

R.TWDPEGVIFYGDTNPKDDWFMLG
0.74


globulin isoform 1
(SHBG_HUMAN)
LR.D



precursor








thrombospondin-1

P07996

K.GFLLLASLR.Q
0.70


precursor
(TSP1_HUMAN)







thyroxine-binding

P05543

K.AVLHIGEK.G
0.85


globulin precursor
(THBG_HUMAN)







thyroxine-binding

P05543

K.FSISATYDLGATLLK.M
0.65


globulin precursor
(THBG_HUMAN)







thyroxine-binding

P05543

K.KELELQIGNALFIGK.H
0.61


globulin precursor
(THBG_HUMAN)







thyroxine-binding

P05543

K.MSSINADFAFNLYR.R
0.67


globulin precursor
(THBG_HUMAN)







transforming growth

Q15582

R.LTLLAPLNSVFK.D
0.65


factor-beta-induced
(BGH3_HUMAN)




protein ig-h3 precursor








transthyretin precursor

P02766

R.GSPAINVAVHVFR.K
0.67



(TTHY_HUMAN)







uncharacterized

Q8ND61

K.MPSHLMLAR.K
0.64


protein C3orf20
(CC020_HUMAN)




isoform 1








vitamin D-binding

P02774

K.ELPEHTVK.L
0.75


protein isoform 1
(VTDB_HUMAN)




precursor








vitamin D-binding

P02774

K.EYANQFMWEYSTNYGQAPLSLLVS
0.69


protein isoform 1
(VTDB_HUMAN)
YTK.S



precursor








vitamin D-binding

P02774

K.HLSLLTTLSNR.V
0.65


protein isoform 1
(VTDB_HUMAN)




precursor








vitamin D-binding

P02774

K.HQPQEFPTYVEPTNDEICEAFR.K
0.64


protein isoform 1
(VTDB_HUMAN)




precursor








vitamin D-binding

P02774

K.LAQKVPTADLEDVLPLAEDITNIL
0.73


protein isoform 1
(VTDB_HUMAN)
SK.C



precursor








vitamin D-binding

P02774

K.LCDNLSTK.N
0.70


protein isoform 1
(VTDB_HUMAN)




precursor








vitamin D-binding

P02774

K.LCMAALK.H
0.63


protein isoform 1
(VTDB_HUMAN)




precursor








vitamin D-binding

P02774

K.SCESNSPFPVHPGTAECCTK.E
0.63


protein isoform 1
(VTDB_HUMAN)




precursor








vitamin D-binding

P02774

K.SYLSMVGSCCTSASPTVCFLK.E
0.61


protein isoform 1
(VTDB_HUMAN)




precursor








vitamin D-binding

P02774

K.TAMDVFVCTYFM*PAAQLPELPDV
0.61


protein isoform 1
(VTDB_HUMAN)
ELPTNK.D



precursor








vitamin D-binding

P02774

K.VLEPTLK.S
0.69


protein isoform 1
(VTDB_HUMAN)




precursor








vitamin D-binding

P02774

R.KFPSGTFEQVSQLVK.E
0.66


protein isoform 1
(VTDB_HUMAN)




precursor








vitamin D-binding

P02774

R.THLPEVFLSK.V
0.62


protein isoform 1
(VTDB_HUMAN)




precursor








vitamin D-binding

P02774

R.TSALSAK.S
0.74


protein isoform 1
(VTDB_HUMAN)




precursor








vitronectin precursor

P04004

R.GQYCYELDEK.A
0.73



(VTNC_HUMAN)







vitronectin precursor

P04004

R.M*DWLVPATCEPIQSVFFFSGDK.Y
0.64



(VTNC_HUMAN)







vitronectin precursor

P04004

R.Q*PQFISR.D
0.63



(VTNC_HUMAN)
















TABLE 10







Significant peptides (AUC > 0.6) for both X!Tandem and Sequest












Uniprot ID





Protein description
(name)
Peptide
XT_AUC
S_AUC





afamin precursor
P43652
K.HFQNLGK.D
0.74
0.61



(AFAM_HUMAN)








afamin precursor
P43652
R.RHPDLSIPELL
0.67
0.63



(AFAM_HUMAN)
R.I







afamin precursor
P43652
R.TINPAVDHCC
0.66
0.86



(AFAM_HUMAN)
K.T







alpha-1-antichymotrypsin
P01011
KITDLIKDLDSQ
0.71
0.73


precursor
(AACT_HUMAN)
TMMVLVNYIFF






K.A







alpha-1-antichymotrypsin
P01011
R.DYNLNDILLQ
0.74
0.62


precursor
(AACT_HUMAN)
LGIEEAFTSK.A







alpha-1-antichymotrypsin
P01011
R.GTHVDLGLAS
0.76
0.61


precursor
(AACT_HUMAN)
ANVDFAFSLYK.Q







alpha-1B-glycoprotein
P04217
K.SLPAPWLSMA
0.71
0.65


precursor
(A1BG_HUMAN)
PVSWITPGLK.T







alpha-2-antiplasmin
P08697
K.GFPIKEDFLEQ
0.66
0.69


isoform a precursor
(A2AP_HUMAN)
SEQLFGAKPVSL






TGK.Q







alpha-2-antiplasmin
P08697
K.HQMDLVATL
0.67
0.60


isoform a precursor
(A2AP_HUMAN)
SQLGLQELFQAP






DLR.G







alpha-2-antiplasmin
P08697
R.QLTSGPNQEQ
0.66
0.61


isoform a precursor
(A2AP_HUMAN)
VSPLTLLK.L







alpha-2-HS-glycoprotein
P02765
R.AQLVPLPPST
0.64
0.63


preproprotein
(FETUA_HUMAN)
YVEFTVSGTDC






VAK.E







angiotensinogen
P01019
K.DPTFIPAPIQA
0.69
0.69


preproprotein
(ANGT_HUMAN)
K.T







angiotensinogen
P01019
R.FM*QAVTGW
0.65
0.65


preproprotein
(ANGT_HUMAN)
K.T







antithrombin-III
P01008
K.ANRPFLVFI
0.72
0.60


precursor
(ANT3_HUMAN)
R.E







antithrombin-III
P01008
K.GDDITMVLIL
0.69
0.68


precursor
(ANT3_HUMAN)
PKPEK.S







antithrombin-III
P01008
R.DIPMNPMCIY
0.63
0.78


precursor
(ANT3_HUMAN)
R.S







apolipoprotein A-IV
P06727
K.KLVPFATELH
0.65
0.77


precursor
(APOA4_HUMAN)
ER.L







apolipoprotein A-IV
P06727
K.SLAELGGHLD
0.60
0.75


precursor
(APOA4_HUMAN)
QQVEEFR.R







apolipoprotein B-100
P04114
K.ALYWVNGQV
0.61
0.63


precursor
(APOB_HUMAN)
PDGVSK.V







apolipoprotein B-100
P04114
K.FIIPGLK.L
0.64
0.68


precursor
(APOB_HUMAN)








apolipoprotein B-100
P04114
K.FSVPAGIVIPS
0.63
0.63


precursor
(APOB_HUMAN)
FQALTAR.F







apolipoprotein B-100
P04114
K.IEGNLIFDPNN
0.63
0.65


precursor
(APOB_HUMAN)
YLPK.E







apolipoprotein B-100
P04114
K.LNDLNSVLV
0.91
0.88


precursor
(APOB_HUMAN)
MPTFHVPFTDL






QVPSCK.L







apolipoprotein B-100
P04114
K.VELEVPQLCS
0.60
0.61


precursor
(APOB_HUMAN)
FILK.T







apolipoprotein B-100
P04114
K.VNWEEEAAS
0.60
0.73


precursor
(APOB_HUMAN)
GLLTSLK.D







apolipoprotein B-100
P04114
R.ATLYALSHAV
0.78
0.80


precursor
(APOB_HUMAN)
NNYHK.T







apolipoprotein B-100
P04114
R.TGISPLALIK.G
0.64
0.77


precursor
(APOB_HUMAN)








apolipoprotein B-100
P04114
R.TLQGIPQMIG
0.65
0.66


precursor
(APOB_HUMAN)
EVIR.K







apolipoprotein C-III
P02656
K.DALSSVQESQ
0.80
0.69


precursor
(APOC3_HUMAN)
VAQQAR.G







apolipoprotein C-IV
P55056
R.DGWQWFWSP
0.63
0.67


precursor
(APOC4_HUMAN)
STFR.G







apolipoprotein E
P02649
K.VQAAVGTSA
0.70
0.72


precursor
(APOE_HUMAN)
APVPSDNH.-







apolipoprotein E
P02649
R.WELALGR.F
0.88
0.60


precursor
(APOE_HUMAN)








beta-2-microglobulin
P61769
K.SNFLNCYVSG
0.60
0.70


precursor
(B2MG_HUMAN)
FHPSDIEVDLLK.N







bone marrow
P13727
R.GGHCVALCT
0.83
0.86


proteoglycan isoform 1
(PRG2_HUMAN)
R.G




preproprotein









carboxypeptidase B2
Q96IY4
R.LVDFYVMPV
0.61
0.65


preproprotein
(CBPB2_HUMAN)
VNVDGYDYSW






K.K







carboxypeptidase B2
Q96IY4
R.YTHGHGSETL
0.60
0.68


preproprotein
(CBPB2_HUMAN)
YLAPGGGDDWI






YDLGIK.Y







carboxypeptidase N
P22792
K.LSNNALSGLP
0.65
0.67


subunit 2 precursor
(CPN2_HUMAN)
QGVFGK.L







carboxypeptidase N
P22792
K.TLNLAQNLLA
0.67
0.69


subunit 2 precursor
(CPN2_HUMAN)
QLPEELFHPLTS






LQTLK.L







carboxypeptidase N
P22792
R.WLNVQLSP
0.74
0.67


subunit 2 precursor
(CPN2_HUMAN)
R.Q







ceruloplasmin precursor
P00450
K.GDSVVWYLF
0.90
0.72



(CERU_HUMAN)
SAGNEADVHGI






YFSGNTYLWR.G







ceruloplasmin precursor
P00450
K.MYYSAVDPT
0.70
0.82



(CERU_HUMAN)
K.D







ceruloplasmin precursor
P00450
R.GPEEEHLGIL
0.60
0.65



(CERU_HUMAN)
GPVIWAEVGDTI






R.V







ceruloplasmin precursor
P00450
R.IDTINLFPATL
0.66
0.70



(CERU_HUMAN)
FDAYMVAQNP






GEWMLSCQNL






NHLK.A







ceruloplasmin precursor
P00450
R.SGAGTEDSAC
0.88
0.92



(CERU_HUMAN)
IPWAYYSTVDQ






VKDLYSGLIGPL






IVCR.R







cholinesterase precursor
P06276
K.IFFPGVSEFG
0.70
0.63



(CHLE_HUMAN)
K.E







cholinesterase precursor
P06276
R.AILQSGSFNAP
0.75
0.77



(CHLE_HUMAN)
WAVTSLYEAR.N







chorionic gonadotropin,
P01233
R.VLQGVLPALP
0.60
0.75


beta polypeptide 8
(CGHB_HUMAN)
QVVCNYR.D




precursor









chorionic
P01243
R.ISLLLIESWLE
0.83
0.63


somatomammotropin
(CSH_HUMAN)
PVR.F




hormone 2 isoform 2






precursor









coagulation factor XII
P00748
R.LHEAFSPVSY
0.60
0.66


precursor
(FA12_HUMAN)
QHDLALLR.L







coagulation factor XII
P00748
R.TTLSGAPCQP
0.69
0.82


precursor
(FA12_HUMAN)
WASEATYR.N







complement C1q
P02745
K.GLFQVVSGG
0.65
0.60


subcomponent subunit A
(C1QA_HUMAN)
MVLQLQQGDQ




precursor

VWVEKDPK.K







complement C1r
P00736
K.VLNYVDWIK
0.80
0.76


subcomponent precursor
(C1R_HUMAN)
K.E







complement C1s
P09871
K.SNALDIIFQTD
0.62
0.77


subcomponent precursor
(C1S_HUMAN)
LTGQK.K







complement C4-A
P0C0L4
K.EGAIHREELV
0.76
0.75


isoform 1
(CO4A_HUMAN)
YELNPLDHR.G







complement C4-A
P0C0L4
K.ITQVLHFTK.D
0.63
0.62


isoform 1
(CO4A_HUMAN)








complement C4-A
P0C0L4
K.SHALQLNNR.Q
0.66
0.71


isoform 1
(CO4A_HUMAN)








complement C4-A
P0C0L4
R.AVGSGATFSH
0.65
0.60


isoform 1
(CO4A_HUMAN)
YYYM*ILSR.G







complement C4-A
P0C0L4
R.EPFLSCCQFA
0.64
0.72


isoform 1
(CO4A_HUMAN)
ESLR.K







complement C4-A
P0C0L4
R.GHLFLQTDQP
0.63
0.76


isoform 1
(CO4A_HUMAN)
IYNPGQR.V







complement C4-A
P0C0L4
R.GLEEELQFSL
0.68
0.68


isoform 1
(CO4A_HUMAN)
GSK.I







complement C4-A
P0C0L4
R.GSFEFPVGDA
0.67
0.70


isoform 1
(CO4A_HUMAN)
VSK.V







complement C4-A
P0C0L4
R.LLATLCSAEV
0.61
0.71


isoform 1
(CO4A_HUMAN)
CQCAEGK.C







complement C4-A
P0C0L4
R.VQQPDCREPF
0.65
0.83


isoform 1
(CO4A_HUMAN)
LSCCQFAESLRK.K







complement C4-A
P0C0L4
R.YIYGKPVQGV
0.82
0.76


isoform 1
(CO4A_HUMAN)
AYVR.F







complement C5
P01031
K.ITHYNYLILS
0.66
0.69


preproprotein
(CO5_HUMAN)
K.G







complement C5
P01031
R.ENSLYLTAFT
0.60
0.68


preproprotein
(CO5_HUMAN)
VIGIR.K







complement C5
P01031
R.KAFDICPLVK.I
0.77
0.65


preproprotein
(CO5_HUMAN)








complement C5
P01031
R.VDDGVASFVL
0.68
0.61


preproprotein
(CO5_HUMAN)
NLPSGVTVLEFN






VK.T







complement component
P13671
K.TFSEWLESVK
0.94
0.64


C6 precursor
(CO6_HUMAN)
ENPAVIDFELAP






IVDLVR.N







complement component
P13671
R.IFDDFGTHYF
0.78
0.75


C6 precursor
(CO6_HUMAN)
TSGSLGGVYDL






LYQFSSEELK.N







complement component
P10643
K.ELSHLPSLYD
0.69
0.71


C7 precursor
(CO7_HUMAN)
YSAYR.R







complement component
P10643
R.RYSAWAESV
0.71
0.70


C7 precursor
(CO7_HUMAN)
TNLPQVIK.Q







complement component
P07357
K.YNPVVIDFEM*
0.68
0.73


C8 alpha chain precursor
(CO8A_HUMAN)
QPIHEVLR.H







complement component
P07358
K.VEPLYELVTA
0.69
0.70


C8 beta chain
(CO8B_HUMAN)
TDFAYSSTVR.Q




preproprotein









complement component
P07358
R.SLM*LHYEFL
0.61
0.65


C8 beta chain
(CO8B_HUMAN)
QR.V




preproprotein









complement component
P07360
K.YGFCEAADQF
0.78
0.76


C8 gamma chain
(CO8G_HUMAN)
HVLDEVRR.-




precursor









complement component
P07360
R.FLQEQGHR.A
0.63
0.69


C8 gamma chain
(CO8G_HUMAN)





precursor









complement component
P07360
R.KLDGICWQV
0.75
0.70


C8 gamma chain
(CO8G_HUMAN)
R.Q




precursor









complement component
P07360
R.SLPVSDSVLS
0.70
0.60


C8 gamma chain
(CO8G_HUMAN)
GFEQR.V




precursor









complement component
P02748
R.GTVIDVTDFV
0.68
0.69


C9 precursor
(CO9_HUMAN)
NWASSINDAPV






LISQK.L







complement factor B
P00751
K.NPREDYLDV
0.72
0.77


preproprotein
(CFAB_HUMAN)
YVFGVGPLVNQ






VNINALASK.K







complement factor B
P00751
R.GDSGGPLIVH
0.60
0.76


preproprotein
(CFAB_HUMAN)
KR.S







complement factor B
P00751
R.HVIILMTDGL
0.60
0.64


preproprotein
(CFAB_HUMAN)
HNM*GGDPITVI






DEIR.D







complement factor B
P00751
R.KNPREDYLDV
0.63
0.63


preproprotein
(CFAB_HUMAN)
YVFGVGPLVNQ






VNINALASK.K







complement factor H
P08603
K.SCDIPVFMNA
0.62
0.71


isoform a precursor
(CFAH_HUMAN)
R.T







complement factor H
P08603
K.SPPEISHGVV
0.88
0.88


isoform a precursor
(CFAH_HUMAN)
AHMSDSYQYGE






EVTYK.C







complement factor H
P08603
K.TDCLSLPSFE
0.61
0.66


isoform a precursor
(CFAH_HUMAN)
NAIPMGEKK.D







complement factor I
P05156
K.RAQLGDLPW
0.71
0.74


preproprotein
(CFAI_HUMAN)
QVAIK.D







complement factor I
P05156
K.SLECLHPGT
0.64
0.81


preproprotein
(CFAI_HUMAN)
K.F







complement factor I
P05156
R.TMGYQDFAD
0.73
0.75


preproprotein
(CFAI_HUMAN)
VVCYTQK.A







extracellular matrix
Q16610
R.ELLALIQLE
0.69
0.65


protein 1 isoform 3
(ECM1_HUMAN)
R.E




precursor









gelsolin isoform a
P06396
R.VPEARPNSMV
0.76
0.62


precursor
(GELS_HUMAN)
VEHPEFLK.A







glutathione peroxidase 3
P22352
R.LFWEPMK.V
0.69
0.67


precursor
(GPX3_HUMAN)








hemopexin precursor
P02790
R.DVRDYFMPCP
0.70
0.72



(HEMO_HUMAN)
GR.G







heparin cofactor 2
P05546
K.DALENIDPAT
0.61
0.65


precursor
(HEP2_HUMAN)
QMMILNCIYFK.G







heparin cofactor 2
P05546
K.GLIKDALENI
0.64
0.64


precursor
(HEP2_HUMAN)
DPATQMMILNC






IYFK.G







heparin cofactor 2
P05546
K.QFPILLDFK.T
0.61
0.69


precursor
(HEP2_HUMAN)








heparin cofactor 2
P05546
R.VLKDQVNTF
0.88
0.75


precursor
(HEP2_HUMAN)
DNIFIAPVGISTA






MGMISLGLK.G







insulin-like growth
P35858
R.AFWLDVSHN
0.61
0.82


factor-binding protein
(ALS_HUMAN)
R.L




complex acid labile






subunit isoform 2






precursor









inter-alpha-trypsin
P19827
K.ADVQAHGEG
0.61
0.74


inhibitor heavy chain H1
(ITIH1_HUMAN)
QEFSITCLVDEE




isoform a precursor

EMKK.L







inter-alpha-trypsin
P19827
K.ILGDM*QPGD
0.71
0.63


inhibitor heavy chain H1
(ITIH1_HUMAN)
YFDLVLFGTR.V




isoform a precursor









inter-alpha-trypsin
P19827
K.ILGDMQPGDY
0.68
0.60


inhibitor heavy chain H1
(ITIH1_HUMAN)
FDLVLFGTR.V




isoform a precursor









inter-alpha-trypsin
P19827
K.NVVFVIDISGS
0.76
0.83


inhibitor heavy chain H1
(ITIH1_HUMAN)
MR.G




isoform a precursor









inter-alpha-trypsin
P19827
K.TAFISDFAVT
0.74
0.63


inhibitor heavy chain H1
(ITIH1_HUMAN)
ADGNAFIGDIKD




isoform a precursor

K.V







inter-alpha-trypsin
P19827
R.GHMLENHVE
0.78
0.80


inhibitor heavy chain H1
(ITIH1_HUMAN)
R.L




isoform a precursor









inter-alpha-trypsin
P19827
R.GM*ADQDGL
0.61
0.62


inhibitor heavy chain H1
(ITIH1_HUMAN)
KPTIDKPSEDSP




isoform a precursor

PLEMLGPR.R







inter-alpha-trypsin
P19827
R.LWAYLTIQEL
0.68
0.62


inhibitor heavy chain H1
(ITIH1_HUMAN)
LAK.R




isoform a precursor









inter-alpha-trypsin
P19827
R.NHM*QYEIVI
0.67
0.65


inhibitor heavy chain H1
(ITIH1_HUMAN)
K.V




isoform a precursor









inter-alpha-trypsin
P19823
K.AHVSFKPTVA
0.75
0.61


inhibitor heavy chain H2
(ITIH2_HUMAN)
QQR.I




precursor









inter-alpha-trypsin
P19823
K.ENIQDNISLFS
0.80
0.93


inhibitor heavy chain H2
(ITIH2_HUMAN)
LGM*GFDVDYD




precursor

FLKR.L







inter-alpha-trypsin
P19823
K.ENIQDNISLFS
0.63
0.80


inhibitor heavy chain H2
(ITIH2_HUMAN)
LGMGFDVDYDF




precursor

LKR.L







inter-alpha-trypsin
P19823
K.HLEVDVWVIE
0.61
0.61


inhibitor heavy chain H2
(ITIH2_HUMAN)
PQGLR.F




precursor









inter-alpha-trypsin
P19823
K.LWAYLTINQL
0.69
0.62


inhibitor heavy chain H2
(ITIH2_HUMAN)
LAER.S




precursor









inter-alpha-trypsin
P19823
R.AEDHFSVIDF
0.65
0.63


inhibitor heavy chain H2
(ITIH2_HUMAN)
NQNIR.T




precursor









inter-alpha-trypsin
P19823
R.FLHVPDTFEG
0.66
0.62


inhibitor heavy chain H2
(ITIH2_HUMAN)
HFDGVPVISK.G




precursor









inter-alpha-trypsin
Q14624
K.ILDDLSPR.D
0.67
0.65


inhibitor heavy chain H4
(ITIH4_HUMAN)





isoform 1 precursor









inter-alpha-trypsin
Q14624
K.IPKPEASFSP
0.69
0.77


inhibitor heavy chain H4
(ITIH4_HUMAN)
R.R




isoform 1 precursor









inter-alpha-trypsin
Q14624
K.SPEQQETVLD
0.63
0.69


inhibitor heavy chain H4
(ITIH4_HUMAN)
GNLIIR.Y




isoform 1 precursor









inter-alpha-trypsin
Q14624
K.YIFHNFMER.L
0.66
0.61


inhibitor heavy chain H4
(ITIH4_HUMAN)





isoform 1 precursor









inter-alpha-trypsin
Q14624
R.FSSHVGGTLG
0.69
0.71


inhibitor heavy chain H4
(ITIH4_HUMAN)
QFYQEVLWGSP




isoform 1 precursor

AASDDGRR.T







inter-alpha-trypsin
Q14624
R.GPDVLTATVS
0.63
0.82


inhibitor heavy chain H4
(ITIH4_HUMAN)
GK.L




isoform 1 precursor









inter-alpha-trypsin
Q14624
R.NMEQFQVSVS
0.78
0.60


inhibitor heavy chain H4
(ITIH4_HUMAN)
VAPNAK.I




isoform 1 precursor









inter-alpha-trypsin
Q14624
R.RLDYQEGPPG
0.68
0.62


inhibitor heavy chain H4
(ITIH4_HUMAN)
VEISCWSVEL.-




isoform 1 precursor









kallistatin precursor
P29622
K.IVDLVSELKK.D
0.75
0.67



(KAIN_HUMAN)








kallistatin precursor
P29622
R.VGSALFLSHN
0.70
0.74



(KAIN_HUMAN)
LK.F







kininogen-1 isoform 2
P01042
K.IYPTVNCQPL
0.89
0.62


precursor
(KNG1_HUMAN)
GM*ISLM*K.R







kininogen-1 isoform 2
P01042
K.TVGSDTFYSF
0.61
0.68


precursor
(KNG1_HUMAN)
K.Y







kininogen-1 isoform 2
P01042
R.DIPTNSPELEE
0.61
0.76


precursor
(KNG1_HUMAN)
TLTHTITK.L







kininogen-1 isoform 2
P01042
R.VQVVAGK.K
0.67
0.71


precursor
(KNG1_HUMAN)








lumican precursor
P51884
R.FNALQYLR.L
0.68
0.76



(LUM_HUMAN)








macrophage colony-
P09603
K.VIPGPPALTLV
0.68
0.60


stimulating factor 1
(CSF1_HUMAN)
PAELVR.I




receptor precursor









monocyte differentiation
P08571
K.ITGTMPPLPLE
0.80
0.67


antigen CD14 precursor
(CD14_HUMAN)
ATGLALSSLR.L







N-acetylmuramoyl-L-
Q96PD5
K.EFTEAFLGCP
0.62
0.64


alanine amidase
(PGRP2_HUMAN)
AIHPR.C




precursor









N-acetylmuramoyl-L-
Q96PD5
R.RVINLPLDSM
0.63
0.62


alanine amidase
(PGRP2_HUMAN)
AAPWETGDTFP




precursor

DVVAIAPDVR.A







phosphatidylinositol-
P80108
R.GVFFSVNSWT
0.67
0.78


glycan-specific
(PHLD_HUMAN)
PDSMSFIYK.A




phospholipase D






precursor









pigment epithelium-

P36955

K.EIPDEISILLLGVAHF
0.63
0.61


derived factor precursor
(PEDF_HUMAN)
K.G







pigment epithelium-

P36955

K.IAQLPLTGSM*SIIF
0.79
0.61


derived factor precursor
(PEDF_HUMAN)
FLPLK.V







pigment epithelium-

P36955

K.TVQAVLTVPK.L
0.75
0.79


derived factor precursor
(PEDF_HUMAN)








pigment epithelium-

P36955

R.ALYYDLISSPDIHGT
0.60
0.73


derived factor precursor
(PEDF_HUMAN)
YKELLDTVTAPQK.N







pigment epithelium-

P36955

R.DTDTGALLFIGK.I
0.85
0.62


derived factor precursor
(PEDF_HUMAN)








plasminogen isoform 1

P00747

R.ELRPWCFTTDPNK
0.70
0.68


precursor
(PLMN_HUMAN)
R.W







plasminogen isoform 1

P00747

R.TECFITGWGETQGT
0.63
0.68


precursor
(PLMN_HUMAN)
FGAGLLK.E







platelet basic protein

P02775

K.GTHCNQVEVIATL
0.60
0.61


preproprotein
(CXCL7_HUMAN)
K.D







pregnancy zone protein

P20742

K.AVGYLITGYQR.Q
0.87
0.73


precursor
(PZP_HUMAN)








pregnancy zone protein

P20742

R.AVDQSVLLM*KPE
0.64
0.62


precursor
(PZP_HUMAN)
AELSVSSVYNLLTVK.D







pregnancy zone protein

P20742

R.IQHPFTVEEFVLP
0.66
0.74


precursor
(PZP_HUMAN)
K.F







pregnancy zone protein

P20742

R.NELIPLIYLENPR.R
0.61
0.61


precursor
(PZP_HUMAN)








protein AMBP

P02760

R.AFIQLWAFDAVK.G
0.72
0.67


preproprotein
(AMBP_HUMAN)








proteoglycan 4 isoform B

Q92954

K.GFGGLTGQIVAALS
0.70
0.72


precursor
(PRG4_HUMAN)
TAK.Y







prothrombin preproprotein

P00734

K.YGFYTHVFR.L
0.70
0.63



(THRB_HUMAN)








prothrombin preproprotein

P00734

R.IVEGSDAEIGM*SP
0.63
0.71



(THRB_HUMAN)
WQVMLFR.K







retinol-binding protein 4

P02753

K.KDPEGLFLQDNIVA
0.67
0.67


precursor
(RET4_HUMAN)
EFSVDETGQMSATAK.G







thyroxine-binding globulin

P05543

K.AQWANPFDPSKTE
0.67
0.80


precursor
(THBG_HUMAN)
DSSSFLIDK.T







thyroxine-binding globulin

P05543

K.GWVDLFVPK.F
0.67
0.64


precursor
(THBG_HUMAN)








thyroxine-binding globulin

P05543

R.SFM*LLILER.S
0.65
0.68


precursor
(THBG_HUMAN)








thyroxine-binding globulin

P05543

R.SFMLLILER.S
0.64
0.62


precursor
(THBG_HUMAN)








vitamin D-binding protein

P02774

K.EFSHLGKEDFTSLSL
0.74
0.61


isoform 1 precursor
(VTDB_HUMAN)
VLYSR.K







vitamin D-binding protein

P02774

K.EYANQFM*WEYST
0.73
0.61


isoform 1 precursor
(VTDB_HUMAN)
NYGQAPLSLLVSYTK.S







vitamin D-binding protein

P02774

K.HQPQEFPTYVEPTN
0.67
0.69


isoform 1 precursor
(VTDB_HUMAN)
DEICEAFRK.D







vitamin D-binding protein

P02774

K.SYLSM*VGSCCTSA
0.63
0.62


isoform 1 precursor
(VTDB_HUMAN)
SPTVCFLK.E







vitamin D-binding protein

P02774

K.TAM*DVFVCTYFM
0.63
0.60


isoform 1 precursor
(VTDB_HUMAN)
PAAQLPELPDVELPT






NK.D







vitamin D-binding protein

P02774

K.VPTADLEDVLPLAE
0.70
0.71


isoform 1 precursor
(VTDB_HUMAN)
DITNILSK.C







vitronectin precursor

P04004

K.AVRPGYPK.L
0.68
0.77



(VTNC_HUMAN)








vitronectin precursor

P04004

R.MDWLVPATCEPIQ
0.67
0.65



(VTNC_HUMAN)
SVFFFSGDK.Y

















zinc-alpha-2-glycoprotein

P25311

K.EIPAWVPFDPAAQI
0.63
0.67



precursor
(ZA2G_HUMAN)
TK.Q









The differentially expressed proteins identified by the hypothesis-independent strategy above, not already present in our MRM-MS assay, were candidates for incorporation into the MRM-MS assay. Two additional proteins (AFP, PGH1) of functional interest were also selected for MRM development. Candidates were prioritized by AUC and biological function, with preference give for new pathways. Sequences for each protein of interest, were imported into Skyline software which generated a list of tryptic peptides, m/z values for the parent ions and fragment ions, and an instrument-specific collision energy (McLean et al. Bioinformatics (2010) 26 (7): 966-968; McLean et al. Anal. Chem (2010) 82 (24): 10116-10124).


The list was refined by eliminating peptides containing cysteines and methionines, and by using the shotgun data to select the charge state(s) and a subset of potential fragment ions for each peptide that had already been observed on a mass spectrometer.


After prioritizing parent and fragment ions, a list of transitions was exported with a single predicted collision energy. Approximately 100 transitions were added to a single MRM run. For development, MRM data was collected on either a QTRAP 5500 (AB Sciex) or a 6490 QQQ (Agilent). Commercially available human female serum (from pregnant and non-pregnant donors), was depleted and processed to tryptic peptides, as described above, and used to “scan” for peptides of interest. In some cases, purified synthetic peptides were used for further optimization. For development, digested serum or purified synthetic peptides were separated with a 15 min acetonitrile gradient at 100 ul/min on a 2.1×50 mM Poroshell 120 EC-C18 column (Agilent) at 40° C.


The MS/MS data was imported back into Skyline, where all chromatograms for each peptide were overlayed and used to identify a consensus peak corresponding to the peptide of interest and the transitions with the highest intensities and the least noise. Table 11, contains a list of the most intensely observed candidate transitions and peptides for transfer to the MRM assay.









TABLE 11







Candidate peptides and transitions for transferring to the MRM assay














fragment ion, m/z,



Protein
Peptide
m/z, charge
charge, rank
area





alpha-1-antichymotrypsin
K.ADLSGITGAR.N
 480.7591++
S[y7]-661.3628+[1]
1437602





G[y6]-574.3307+[2]
 637584





T[y4]-404.2252+[3]
 350392





L[y8]-774.4468+[4]
 191870





G[y3]-303.1775+[5]
 150575





I[y5]-517.3093+[6]
  97828





alpha-1-antichymotrypsin
K.EQLSLLDR.F
 487.2693++
S[y5]-603.3461[1]
 345602





L[y6]-716.4301[2]
 230046





L[y4]-516.3140[3]
 143874





D[y2]-290.1459[4]
 113381





D[y2]-290.1459[5]
 113381





Q[b2]-258.1084[6]
  78157





alpha-1-antichymotrypsin
K.ITLLSALVETR.T
 608.3690++
S[y7]-775.4308+[1]
1059034





L[y8]-888.5149+[2]
 541969





T[b2]-215.1390+[3]
 408819





L[y9]-1001.5990+[4]
 438441





V[y4]-504.2776+[5]
 311293





L[y5]-617.3617+[6]
 262544





L[b3]-328.2231+[7]
 197526





T[y2]-276.1666+[8]
 212816





E[y3]-405.2092+[9]
 207163





alpha-1-antichymotrypsin
R.EIGELYLPK.F
 531.2975++
G[y7]-819.4611+[2]
 977307





L[y5]-633.3970+[3]
 820582





Y[y4]-520.3130+[4]
 400762





L[y3]-357.2496+[5]
 498958





P[y2]-244.1656+[1]
1320591





I[b2]-243.1339+[6]
 303268





G[b3]-300.1554+[7]
 305120





alpha-1-antichymotrypsin
R.GTHVDLGLASA
 742.3794+++
D[y8]-990.4931+[1]
 154927



NVDFAFSLYK.Q

L[b8]-793.4203+[2]
  51068





D[b5]-510.2307+[3]
  45310





F[y7]-875.4662+[4]
  42630





A[b9]-864.4574+[5]
  43355





S[y4]-510.2922+[6]
  45310





F[y5]-657.3606+[7]
  37330





V[y9]-1089.5615+[8]
  32491





G[b7]-680.3362+[9]
  38185





Y[y2]-310.1761+[10]
  36336





N[b12]-1136.5695+[11]
  16389





S[b10]-951.4894+[12]
  16365





L[b6]-623.3148+[13]
  13687





L[y3]-423.2602+[14]
  17156





V[b4]-395.2037+[15]
  10964





alpha-1-antichymotrypsin
R.NLAVSQVVHK.A
 547.8195++
A[y8]-867.5047+[1]
 266203




 365.5487+++
L[b2]-228.1343+[2]
 314232





V[y7]-796.4676+[3]
 165231





A[b3]-299.1714+[4]
 173694





S[y6]-697.3991+[5]
 158512





H[y2]-284.1717+[6]
 136431





V[b4]-398.2398+[7]
  36099





S[b5]-485.2718+[8]
  23836





S[y6]-697.3991+[1]
 223443





V[y3]-383.2401+[2]
 112952





V[y4]-482.3085+[3]
  84872





Q[y5]-610.3671+[4]
  30835





inter-alpha-trypsin
K.AAISGENAGLVR.A
 579.3173++
S[y9]-902.4690+[1]
 518001


inhibitor heavy chain H1


G[y8]-815.4370+[2]
 326256





N[y6]-629.3729+[3]
 296670





S[b4]-343.1976+[4]
 258172





inter-alpha-trypsin
K.GSLVQASEANL
 668.6763+++
A[y7]-806.4155+[1]
 304374


inhibitor heavy chain H1
QAAQDFVR.G

A[y6]-735.3784+[2]
 193844





V[b4]-357.2132+[3]
 294094





F[y3]-421.2558+[4]
 167816





A[b6]-556.3089+[5]
 149216





L[b11]-535.7775++[6]
 156882





A[b13]-635.3253++[7]
 249287





A[y14]-760.3786++[8]
 123723





F[b17]-865.9208++[9]
  23057





inter-alpha-trypsin
K.TAFISDFAVTAD
1087.0442++
G[y4]-432.2453+[1]
  22362


inhibitor heavy chain H1
GNAFIGDIK.D

I[y5]-545.3293+[2]
   8319





A[b8]-853.4090+[3]
   7006





G[y9]-934.4993+[4]
   6755





F[y6]-692.3978+[5]
   6193





V[b9]-952.4775+[6]
   9508





inter-alpha-trypsin
K.VTYDVSR.D
 420.2165++
Y[y5]-639.3097+[1]
 609348


inhibitor heavy chain H1


T[b2]-201.1234+[2]
 792556





D[y4]-476.2463+[3]
 169546





V[y3]-361.2194+[4]
 256946





Y[y5]-320.1585++[5]
 110608





S[y2]-262.1510+[6]
  50268





Y[b3]-182.5970++[7]
  10947





D[b4]-479.2136+[8]
  13662





inter-alpha-trypsin
R.EVAFDLEIPK.T
 580.8135++
P[y2]-244.1656+[1]
2032509


inhibitor heavy chain H1


D[y6]-714.4032+[2]
 672749





A[y8]-932.5088+[3]
 390837





L[y5]-599.3763+[4]
 255527





F[y7]-861.4716+[5]
 305087





inter-alpha-trypsin
R.LWAYLTIQELLAK.R
 781.4531++
W[b2]-300.1707+[1]
 602601


inhibitor heavy chain H1


A[b3]-371.2078+[2]
 356967





T[y8]-915.5510+[3]
 150419





Y[b4]-534.2711+[4]
 103449





I[y7]-814.5033+[5]
  72044





Q[y6]-701.4192+[6]
  66989





L[b5]-647.3552+[7]
  99820





E[y5]-573.3606+[8]
  44843





inter-alpha-trypsin
K.FYNQVSTPLLR.N
 669.3642++
S[y6]-686.4196+[1]
 367330


inhibitor heavy chain H2


V[y7]-785.4880+[2]
 182396





P[y4]-498.3398+[3]
 103638





Y[b2]-311.1390+[4]
  52172





Q[b4]-553.2405+[5]
  54270





N[b3]-425.1819+[6]
  34567





inter-alpha-trypsin
K.HLEVDVWVIEPQGLR.F
 597.3247+++
I[y7]-812.4625+[1]
 206996


inhibitor heavy chain H2


P[y5]-570.3358+[2]
 303693





E[y6]-699.3784+[3]
 126752





P[y5]-285.6715++[4]
  79841





inter-alpha-trypsin
K.TAGLVR.S
 308.6925++
A[b2]-173.0921+[1]
 460019


inhibitor heavy chain H2


G[y4]-444.2929+[2]
 789068





V[y2]-274.1874+[3]
  34333





G[b3]-230.1135+[4]
  15169





L[y3]-387.2714+[5]
  29020





inter-alpha-trypsin
R.IYLQPGR.L
 423.7452++
L[y5]-570.3358+[1]
 638209


inhibitor heavy chain H2


P[y3]-329.1932+[2]
 235194





Y[b2]-277.1547+[3]
 266889





Q[y4]-457.2518+[4]
 171389





inter-alpha-trypsin
R.LSNENHGIAQR.I
 413.5461+++
N[y9]-519.7574++[1]
 325409


inhibitor heavy chain H2


N[y7]-398.2146++[2]
  39521





G[y5]-544.3202+[3]
 139598





S[b2]-201.1234+[4]
  54786





E[y8]-462.7359++[5]
  30623





inter-alpha-trypsin
R.SLAPTAAAKR.R
 415.2425++
A[y7]-629.3617+[1]
 582421


inhibitor heavy chain H2


L[b2]-201.1234+[2]
 430584





P[y6]-558.3246+[3]
 463815





A[b3]-272.1605+[4]
 204183





T[y5]-461.2718+[5]
  47301





inter-alpha-trypsin
K.EVSFDVELPK.T
 581.8032++
P[y2]-244.1656+[1]
 132304


inhibitor heavy chain H3


V[b2]-229.1183+[2]
  48895





L[y3]-357.2496+[3]
  20685





inter-alpha-trypsin
K.IQENVR.N
 379.7114++
E[y4]-517.2729+[1]
 190296


inhibitor heavy chain H3


E[b3]-371.1925+[2]
  51697





Q[b2]-242.1499+[3]
  54241





N[y3]-388.2303+[4]
  21156





V[y2]-274.1874+[5]
   8309





inter-alpha-trypsin
R.ALDLSLK.Y
 380.2342++
D[y5]-575.3399+[1]
 687902


inhibitor heavy chain H3


L[b2]-185.1285+[2]
 241010





L[y2]-260.1969+[3]
  29365





inter-alpha-trypsin
R.LIQDAVTGLTVN
 972.0258++
V[b6]-640.3665+[1]
 139259


inhibitor heavy chain H3
GQITGDK.R

G[b8]-798.4356+[2]
  53886





G[y7]-718.3730+[3]
  12518





pigment epithelium-
K.SSFVAPLEK.S
 489.2687++
A[y5]-557.3293+[1]
  13436


derived factor precursor


V[y6]-656.3978+[2]
   9350





F[y7]-803.4662+[3]
   6672





P[y4]-486.2922+[4]
   6753





pigment epithelium-
K.TVQAVLTVPK.L
 528.3266++
Q[y8]-855.5298+[1]
  26719


derived factor precursor


V[b2]-201.1234+[2]
  21239





Q[y8]-428.2686++[3]
  16900





A[y7]-727.4713+[4]
   9518





L[y5]-557.3657+[5]
   5108





Q[b3]-329.1819+[6]
   5450





V[y6]-656.4341+[7]
   4391





pigment epithelium-
R.ALYYDLISSPDIH
 652.6632+++
Y[y15]-886.4305++[1]
  78073


derived factor precursor
GTYK.E

Y[y14]-804.8988++[2]
  26148





pigment epithelium-
R.DTDTGALLFIGK.I
 625.8350++
G[y8]-818.5135+[1]
  25553


derived factor precursor


T[b2]-217.0819+[2]
  22716





T[b4]-217.0819++[3]
  22716





L[y5]-577.3708+[4]
  11600





I[y3]-317.2183+[5]
  11089





A[b6]-561.2151+[6]
   6956





pigment epithelium-
K.ELLDTVTAPQK.N
 607.8350++
T[y5]-544.3089+[1]
  17139


derived factor precursor


D[y8]-859.4520+[2]
  17440





L[y9]-972.5360+[3]
  14344





A[y4]-443.2613+[4]
  11474





T[y7]-744.4250+[5]
  10808





V[y6]-643.3774+[6]
   9064





pregnancy-specific beta-
K.FQLPGQK.L
 409.2320++
L[y5]-542.3297+[1]
 116611


1-glycoprotein 1


P[y4]-429.2456+[2]
  91769





Q[b2]-276.1343+[3]
  93301





pregnancy-specific beta-
R.DLYHYITSYVVD
 955.4762+++
G[y7]-707.3471+[1]
   5376


1-glycoprotein 1
GEIIIYGPAYSGR.E 

Y[y8]-870.4104+[2]
   3610





P[y6]-650.3257+[3]
   2770





I[y9]-983.4945+[4]
   3361





pregnancy-specific beta-
K.LFIPQITPK.H
 528.8262++ 
P[y6]-683.4087+[1]
  39754


1-glycoprotein 11


F[b2]-261.1598+[2]
  29966





I[y7]-796.4927+[3]
  13162





pregnancy-specific beta-
NSATGEESSTSLTIR
 776.8761++ 
E[b7]-689.2737+[1]
  11009


1-glycoprotein 11


T[y6]-690.4145+[2]
  11284





L[y4]-502.3348+[3]
   2265





S[y7]-389.2269++[4]
   1200





T[y3]-389.2507+[5]
   1200





I[y2]-288.2030+[6]
   2248





pregnancy-specific beta-
K.FQQSGQNLFIP
 617.3317+++ 
F[y8]-474.2817++[1]
  43682


1-glycoprotein 2
QITTK.H

G[y12]-680.3852++[2]
  24166





S[b4]-491.2249+[3]
  23548





Q[b3]-404.1928+[4]
  17499





I[y4]-462.2922+[5]
  17304





F[b9]-525.7538++[6]
  17206





I[b10]-582.2958++[7]
  16718





L[b8]-452.2196++[8]
  16490





P[y6]-344.2054++[9]
  16198





G[b5]-548.2463+[10]
  15320





pregnancy-specific beta-
IHPSYTNYR
 575.7856++
N[b7]-813.3890+[1]
  16879


1-glycoprotein 2


Y[b5]-598.2984+[2]
  18087





T[y4]-553.2729+[3]
   2682





pregnancy-specific beta-
FQLSETNR
 497.7513++
L[y6]-719.3682+[1]
 358059


1-glycoprotein 2


S[y5]-606.2842+[2]
 182330





Q[b2]-276.1343+[3]
 292482





pregnancy-specific beta-
VSAPSGTGHLPGLNPL
 506.2755+++
T[b7]-300.6530++[1]
  25346


1-glycoprotein 3


H[y8]-860.4989+[2]
  12159





H[y8]-430.7531++[3]
  15522





pregnancy-specific beta-
EDAGSYTLHIVK
 666.8433++
Y[b6]-623.2307+[1]
  23965


1-glycoprotein 3


Y[y7]-873.5193+[2]
  21686





L[b8]-837.3625+[3]
   4104





A[b3]-316.1139+[4]
   1987





pregnancy-specific beta-
R.TLFIFGVTK.Y
 513.3051++
F[y7]-811.4713+[1]
  62145


1-glycoprotein 4


L[b2]-215.1390+[2]
  31687





F[y5]-551.3188+[3]
    972





pregnancy-specific beta-
NYTYIWWLNGQS
1097.5576++
W[b6]-841.3879+[1]
  25756


1-glycoprotein 4
LPVSPR

G[y9]-940.5211+[2]
  25018





Y[b4]-542.2245+[3]
  19778





Q[y8]-883.4996+[4]
   6642





P[y2]-272.1717+[5]
   5018





pregnancy-specific beta-
GVTGYFTFNLYLK
 508.2695+++
L[y2]-260.1969+[1]
 176797


1-glycoprotein 5


T[y11]-683.8557++[2]
 136231





F[b6]-625.2980+[3]
  47523





L[y4]-536.3443+[4]
  23513





pregnancy-specific beta-
SNPVTLNVLYGPD
 585.6527+++
Y[y7]-817.4203+[1]
  14118


1-glycoprotein 6
LPR

G[y6]-654.3570+[2]
  10433





P[b3]-299.1350+[3]
  87138*





P[y5]-299.1714++[4]
  77478*





P[y5]-597.3355+[5]
  68089*





pregnancy-specific beta-
DVLLLVHNLPQNL
 791.7741+++
L[y8]-1017.5516+[3]
 141169


1-glycoprotein 7
TGHIWYK

G[y6]-803.4199+[5]
 115905





W[y3]-496.2554+[6]
 108565





P[y11]-678.8566++[7]
 105493





V[b2]-215.1026+[1]
 239492





L[b3]-328.1867+[2]
 204413





N[b8]-904.5251+[4]
 121880





pregnancy-specific beta-
YGPAYSGR
 435.7089++
A[y5]-553.2729+[1]
  25743*


1-glycoprotein 7


Y[y4]-482.2358+[2]
  25580*





P[y6]-650.3257+[3]
  10831*





S[y3]-319.1724+[4]
  10559*





G[b2]-221.0921+[5]
   7837*





pregnancy-specific beta-
LQLSETNR
 480.7591++
S[b4]-442.2660+[1]
  18766


1-glycoprotein 8


L[b3]-355.2340+[2]
  12050





Q[b2]-242.1499+[3]
   1339





T[b6]-672.3563+[4]
   2489





pregnancy-specific beta-
K.LFIPQITR.N
 494.3029++
P[y5]-614.3620+[1]
  53829


1-glycoprotein 9


I[y6]-727.4461+[2]
  13731





I[b3]-374.2438+[3]
   4178





Q[y4]-517.3093+[4]
   2984





pregnancy-specific beta-
K.LPIPYITINNLNPR.E
 819.4723++
P[b2]-211.1441+[1]
  18814*


1-glycoprotein 9


P[b4]-211.1441++[2]
  18814*





T[b7]-798.4760+[3]
  17287*





T[y8]-941.5163+[4]
  10205*





Y[b5]-584.3443+[5]
  10136*





N[y6]-727.3846+[6]
   9511*





pregnancy-specific beta-
R.SNPVILNVLYGP
 589.6648+++
P[y5]-597.3355+[1]
   3994


1-glycoprotein 9
DLPR.I

Y[y7]-817.4203+[2]
   3743





G[y6]-654.3570+[3]
   3045





pregnancy-specific beta-
DVLLLVHNLPQNL
 810.4387+++
P[y7]-960.4614+[1]
 120212


1-glycoprotein 9
PGYFWYK

V[b2]-215.1026+[2]
  65494





L[b3]-328.1867+[3]
  54798





pregnancy-specific beta-
SENYTYIWWLNG
 846.7603+++
W[y15]-834.4488++[1]
  14788


1-glycoprotein 9
QSLPVSPGVK

P[y4]-200.6314++[2]
  19000





Y[y17]-972.5225++[3]
   4596





L[b10]-678.8166++[4]
   2660





Y[b6]-758.2992+[5]
   1705





P[y4]-400.2554+[6]
   1847





Pan-PSG
ILILPSVTR
 506.3317++
P[y5]-559.3198+[1]
 484395





L[b2]-227.1754+[2]
 102774





L[b4]-227.1754++[3]
 102774





I[y7]-785.4880+[4]
  90153





I[b3]-340.2595+[5]
  45515





L[y6]-672.4039+[6]
  40368





thyroxine-binding
K.AQWANPFDPSK.T
 630.8040++
A[b4]-457.2194+[1]
  30802


globulin precursor


S[y2]-234.1448+[2]
  28255





D[y4]-446.2245+[3]
  24933





thyroxine-binding
K.AVLHIGEK.G
 289.5080+++
I[y4]-446.2609+[1]
 220841


globulin precursor


H[y5]-292.1636++[2]
 303815





H[y5]-583.3198+[3]
 133795





V[b2]-171.1128+[4]
 166139





L[y6]-348.7056++[5]
 823533





thyroxine-binding
K.FLNDVK.T
 368.2054++
N[y4]-475.2511+[1]
 296859


globulin precursor


V[y2]-246.1812+[2]
 219597





L[b2]-261.1598+[3]
  87504





thyroxine-binding
K.FSISATYDLGATL
 800.4351++
Y[y9]-993.5615+[1]
  34111


globulin precursor
LK.M

G[y6]-602.3872+[2]
  17012





D[y8]-830.4982+
  45104





S[b2]-235.1077+[4]
  15480





thyroxine-binding
K.GWVDLFVPK.F
 530.7949++
W[b2]-244.1081+[1]
1261810


globulin precursor


P[y2]-244.1656+[2]
1261810





V[b7]-817.4243+[3]
 517675





V[y7]-817.4818+[4]
 517675





D[y6]-718.4134+[5]
 306994





F[b6]-718.3559+[6]
 306994





V[y3]-343.2340+[7]
 112565





V[b3]-343.1765+[8]
 112565





thyroxine-binding
K.NALALFVLPK.E
 543.3395++
A[y7]-787.5076+[1]
 198085


globulin precursor


L[b3]-299.1714+[2]
 199857





P[y2]-244.1656+[3]
 129799





L[y8]-900.5917+[4]
 111572





L[y6]-716.4705+[5]
  88773





F[y5]-603.3865+[6]
  54020





L[y3]-357.2496+[7]
  43353





thyroxine-binding
R.SILFLGK.V
 389.2471++
L[y5]-577.3708+[1]
1878736


globulin precursor


I[b2]-201.1234+[2]
 946031





G[y2]-204.1343+[3]
 424248





L[y3]-317.2183+[4]
 291162





F[y4]-464.2867+[5]
 391171





AFP
R.DFNQFSSGEK.N
 386.8402+++
N[b3]-189.0764++[1]
  42543





S[y4]-210.6081++[2]
  21340





G[y3]-333.1769+[3]
  53766





N[b3]-377.1456+[4]
  58644





F[b2]-263.1026+[5]
   5301





AFP
K.GYQELLEK.C
 490.2584++
E[y5]-631.3661+[1]
 110518





L[y4]-502.3235+[2]
  74844





E[y2]-276.1554+[3]
  42924





E[b4]-478.1932+[4]
  20953





AFP
K.GEEELQK.Y
 416.7060++
E[b2]-187.0713+[1]
  37843





E[y4]-517.2980+[2]
  56988





AFP
K.FIYEIAR.R
 456.2529++
I[y3]-359.2401+[1]
  34880





I[b2]-261.1598+[2]
   7931





AFP
R.HPFLYAPTILL
 590.3348+++
I[y7]-421.7660++[1]
  11471



WAAR.Y

L[y6]-365.2239++[2]
   5001





A[b6]-365.1896++[3]
   5001





L[y6]-729.4406+[4]
   3218





F[b3]-382.1874+[5]
   6536





A[b6]-729.3719+[6]
   3218





AFP
R.TFQAITVTK.L
 504.7898++
T[b6]-662.3508+[1]
  11241





T[y4]-448.2766+[2]
   7541





A[b4]-448.2191+[3]
   7541





AFP
K.LTTLER.G
 366.7162++
T[y4]-518.2933+[1]
   7836





L[b4]-215.1390++[2]
   4205





T[b2]-215.1390+[3]
   4205





AFP
R.HPQLAVSVILR.V

L[y2]-288.2030+[1]
   3781





I[y3]-401.2871+[2]
   2924





L[b4]-476.2616+[3]
   2647





AFP
K.LGEYYLQNAFLV
 631.6646+++
G[b2]-171.1128+[1]
  10790



AYTK.K

Y[y3]-411.2238+[2]
   2303





F[b10]-600.2902++[3]
   1780





Y[b4]-463.2187+[4]
   2214





F[y7]-421.2445++[6]
   3072





PGH1
R.ILPSVPK.D
 377.2471++
P[y5]-527.3188+[1]
5340492





S[y4]-430.2660+[5]
 419777





P[y2]-244.1656+[2]
4198508





P[y5]-264.1630++[3]
2771328





L[b2]-227.1754+[4]
2331263





PGH1
K.AEHPTWGDEQL
 639.3026+++
E[b9]-512.2120++[1]
  64350



FQTTR.L

P[b4]-218.1030++[2]
  38282





L[b11]-632.7833++[3]
 129128





G[y10]-597.7911++[4]
  19406





G[b7]-779.3471+[5]
  51467





T[y3]-189.1108++[6]
  10590





D[y9]-569.2804++[7]
  12460





L[y6]-765.4254+[8]
   6704





D[b8]-447.6907++[9]
   4893





P[b4]-435.1987+[10]
   8858





Q[y7]-893.4839+[11]
   6101





T[b5]-268.6268++[12]
   5456





T[b5]-536.2463+[13]
   5549





PGH1
R.LILIGETIK.I
 500.3261++
G[y5]-547.3086+[1]
   7649





T[y3]-361.2445+[2]
   6680





E[y4]-490.2871+[3]
   5234





L[y7]-773.4767+[4]
   3342





PGH1
R.LQPFNEYR.K
 533.7694++
N[b5]-600.3140+[1]
  25963





F[b4]-486.2711+[2]
   6915





E[y3]-467.2249+[3]
  15079





*QTRAP5500 data, all other peak areas are from Agilent 6490






Next, the top 2-10 transitions per peptide and up to 7 peptides per protein were selected for collision energy (CE) optimization on the Agilent 6490. Using Skyline or MassHunter Qual software, the optimized CE value for each transition was determined based on the peak area or signal to noise. The two transitions with the largest peak areas per peptide and at least two peptides per protein were chosen for the final MRM method. Substitutions of transitions with lower peak areas were made when a transition with a larger peak area had a high background level or had a low m/z value that has more potential for interference.


Lastly, the retention times of selected peptides were mapped using the same column and gradient as our established sMRM assay. The newly discovered analytes were subsequently added to the sMRM method and used in a further hypothesis-dependent discovery study described in Example 5 below.


The above method was typical for most proteins. However, in some cases, the differentially expressed peptide identified in the shotgun method did not uniquely identify a protein, for example, in protein families with high sequence identity. In these cases, a MRM method was developed for each family member. Also, let it be noted that, for any given protein, peptides in addition to those found to be significant and fragment ions not observed on the Orbitrap may have been included in MRM optimization and added to the final sMRM method if those yielded the best signal intensities.


Example 5. Study IV to Identify and Confirm Preterm Birth Biomarkers

A further hypothesis-dependent discovery study was performed with the scheduled MRM assay used in Examples 3 but now augmented with newly discovered analytes from the Example 4. Less robust transitions (from the original 1708 described in Example 1) were removed to improve analytical performance and make room for the newly discovered analytes. Samples included approximately 30 cases and 60 matched controls from each of three gestational periods (early, 17-22 weeks, middle, 23-25 weeks and late, 26-28 weeks). Log transformed peak areas for each transition were corrected for run order and batch effects by regression. The ability of each analyte to separate cases and controls was determined by calculating univariate AUC values from ROC curves. Ranked univariate AUC values (0.6 or greater) are reported for individual gestational age window sample sets (Tables 12, 13, 15) and a combination of the middle and late window (Table 14). Multivariate classifiers were built using different subsets of analytes (described below) by Lasso and Random Forest methods. Lasso significant transitions correspond to those with non-zero coefficients and Random Forest analyze ranking was determined by the Gini importance values (mean decrease in model accuracy if that variable is removed). We report all analytes with non-zero Lasso coefficients (Tables 16-32) and the top 30 analytes from each Random Forest analysis (Tables 33-49). Models were built considering the top univariate 32 or 100 analytes, the single best univariate analyte for the top 50 proteins or all analytes. Lastly 1000 rounds of bootstrap resampling were performed and the nonzero Lasso coefficients or Random Forest Gini importance values were summed for each analyte amongst panels with AUCs of 0.85 or greater.









TABLE 12







Early Window Individual Stats









Transition
Protein
AUC





ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
0.834





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
0.822





FLNWIK_410.7_560.3
HABP2_HUMAN
0.820





ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
0.808





SFRPFVPR_335.9_635.3
LBP_HUMAN
0.800





LIQDAVTGLTVNGQITGDK_972.0_
ITIH3_HUMAN
0.800


798.4







FSVVYAK_407.2_579.4
FETUA_HUMAN
0.796





ITGFLKPGK_320.9_429.3
LBP_HUMAN
0.796





AHYDLR_387.7_288.2
FETUA_HUMAN
0.796





FSVVYAK_407.2_381.2
FETUA_HUMAN
0.795





SFRPFVPR_335.9_272.2
LBP_HUMAN
0.795





DVLLLVHNLPQNLPGYFWYK_810.4_
PSG9_HUMAN
0.794


967.5







ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
0.794





QALEEFQK_496.8_680.3
CO8B_HUMAN
0.792





DAGLSWGSAR_510.3_390.2
NEUR4_HUMAN
0.792





AHYDLR_387.7_566.3
FETUA_HUMAN
0.791





VFQFLEK_455.8_811.4
CO5_HUMAN
0.786





ITGFLKPGK_320.9_301.2
LBP_HUMAN
0.783





VFQFLEK_455.8_276.2
CO5_HUMAN
0.782





SLLQPNK_400.2_599.4
CO8A_HUMAN
0.781





VQTAHFK_277.5_431.2
CO8A_HUMAN
0.780





SDLEVAHYK_531.3_617.3
CO8B_HUMAN
0.777





SLLQPNK_400.2_358.2
CO8A_HUMAN
0.776





TLLPVSKPEIR_418.3_288.2
CO5_HUMAN
0.776





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.774





DISEVVTPR_508.3_787.4
CFAB_HUMAN
0.774





VSEADSSNADWVTK_754.9_533.3
CFAB_HUMAN
0.773





LSSPAVITDK_515.8_743.4
PLMN_HUMAN
0.773





VQEAHLTEDQIFYFPK_655.7_701.4
CO8G_HUMAN
0.772





DVLLLVHNLPQNLPGYFWYK_810.4_
PSG9_HUMAN
0.771


594.3







ALVLELAK_428.8_672.4
INHBE_HUMAN
0.770





FLNWIK_410.7_561.3
HABP2_HUMAN
0.770





LSSPAVITDK_515.8_830.5
PLMN_HUMAN
0.769





LPNNVLQEK_527.8_844.5
AFAM_HUMAN
0.769





VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
0.768





HTLNQIDEVK_598.8_951.5
FETUA_HUMAN
0.767





TTSDGGYSFK_531.7_860.4
INHA_HUMAN
0.761





YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
0.760





HTLNQIDEVK_598.8_958.5
FETUA_HUMAN
0.760





DISEVVTPR_508.3_472.3
CFAB_HUMAN
0.760





LIQDAVTGLTVNGQITGDK_972.0_
ITIH3_HUMAN
0.759


640.4







EAQLPVIENK_570.8_699.4
PLMN_HUMAN
0.759





SLPVSDSVLSGFEQR_810.9_836.4
CO8G_HUMAN
0.757





AVLHIGEK_289.5_348.7
THBG_HUMAN
0.755





GLQYAAQEGLLALQSELLR_1037.1_
LBP_HUMAN
0.752


929.5







FLQEQGHR_338.8_497.3
CO8G_HUMAN
0.750





LPNNVLQEK_527.8_730.4
AFAM_HUMAN
0.750





AVLHIGEK_289.5_292.2
THBG_HUMAN
0.749





QLYGDTGVLGR_589.8_501.3
CO8G_HUMAN
0.748





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.747





NADYSYSVWK_616.8_769.4
CO5_HUMAN
0.746





GLQYAAQEGLLALQSELLR_1037.1_
LBP_HUMAN
0.746


858.5







SLPVSDSVLSGFEQR_810.9_723.3
CO8G_HUMAN
0.745





IEEIAAK_387.2_531.3
CO5_HUMAN
0.743





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
0.742





WWGGQPLWITATK_772.4_373.2
ENPP2_HUMAN
0.742





FQLSETNR_497.8_605.3
PSG2_HUMAN
0.741





NIQSVNVK_451.3_674.4
GROA_HUMAN
0.741





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
0.740





LQGTLPVEAR_542.3_571.3
CO5_HUMAN
0.740





SGFSFGFK_438.7_732.4
CO8B_HUMAN
0.740





HELTDEELQSLFTNFANVVDK_817.1_
AFAM_HUMAN
0.740


906.5







VQTAHFK_277.5_502.3
CO8A_HUMAN
0.739





YENYTSSFFIR_713.8_293.1
IL12B_HUMAN
0.739





AFTECCVVASQLR_770.9_574.3
CO5_HUMAN
0.736





EAQLPVIENK_570.8_329.2
PLMN_HUMAN
0.734





QALEEFQK_496.8_551.3
CO8B_HUMAN
0.734





DAQYAPGYDK_564.3_813.4
CFAB_HUMAN
0.734





TEFLSNYLTNVDDITLVPGTLGR_
ENPP2_HUMAN
0.734


846.8_600.3







IAIDLFK_410.3_635.4
HEP2_HUMAN
0.733





TASDFITK_441.7_781.4
GELS_HUMAN
0.731





YEFLNGR_449.7_606.3
PLMN_HUMAN
0.731





TVQAVLTVPK_528.3_428.3
PEDF_HUMAN
0.731





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
0.730





DALSSVQESQVAQQAR_573.0_672.4
APOC3_HUMAN
0.730





TVQAVLTVPK_528.3_855.5
PEDF_HUMAN
0.730





ALQDQLVLVAAK_634.9_289.2
ANGT_HUMAN
0.727





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.727





SDLEVAHYK_531.3_746.4
CO8B_HUMAN
0.726





FLPCENK_454.2_550.2
IL10_HUMAN
0.725





HPWIVHWDQLPQYQLNR_744.0_
KS6A3_HUMAN
0.725


1047.0







AFTECCVVASQLR_770.9_673.4
CO5_HUMAN
0.725





YGLVTYATYPK_638.3_843.4
CFAB_HUMAN
0.724





TLEAQLTPR_514.8_685.4
HEP2_HUMAN
0.724





DAQYAPGYDK_564.3_315.1
CFAB_HUMAN
0.724





QGHNSVFLIK_381.6_260.2
HEMO_HUMAN
0.722





HELTDEELQSLFTNFANVVDK_817.1_
AFAM_HUMAN
0.722


854.4







TLEAQLTPR_514.8_814.4
HEP2_HUMAN
0.721





IEEIAAK_387.2_660.4
CO5_HUMAN
0.721





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.721





IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
0.721





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
0.720





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.719





IAIDLFK_410.3_706.4
HEP2_HUMAN
0.719





FLQEQGHR_338.8_369.2
CO8G_HUMAN
0.719





ALQDQLVLVAAK_634.9_956.6
ANGT_HUMAN
0.718





IEGNLIFDPNNYLPK_874.0_414.2
APOB_HUMAN
0.717





YEFLNGR_449.7_293.1
PLMN_HUMAN
0.717





TASDFITK_441.7_710.4
GELS_HUMAN
0.716





DADPDTFFAK_563.8_825.4
AFAM_HUMAN
0.716





TLLPVSKPEIR_418.3_514.3
CO5_HUMAN
0.716





NADYSYSVWK_616.8_333.2
CO5_HUMAN
0.715





YGLVTYATYPK_638.3_334.2
CFAB_HUMAN
0.715





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
0.715





HYGGLTGLNK_530.3_759.4
PGAM1_HUMAN
0.714





DFHINLFQVLPWLK_885.5_400.2
CFAB_HUMAN
0.714





NCSFSIIYPVVIK_770.4_555.4
CRHBP_HUMAN
0.714





HPWIVHWDQLPQYQLNR_744.0_
KS6A3_HUMAN
0.712


918.5







AQPVQVAEGSEPDGFWEALGGK_
GELS_HUMAN
0.711


758.0_574.3







ALDLSLK_380.2_185.1
ITIH3_HUMAN
0.711





ALDLSLK_380.2_575.3
ITIH3_HUMAN
0.710





LDFHFSSDR_375.2_611.3
INHBC_HUMAN
0.709





TLNAYDHR_330.5_312.2
PAR3_HUMAN
0.707





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
0.706





IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
0.704





LIENGYFHPVK_439.6_343.2
F13B_HUMAN
0.703





NFPSPVDAAFR_610.8_775.4
HEMO_HUMAN
0.703





QLYGDTGVLGR_589.8_345.2
CO8G_HUMAN
0.702





LYYGDDEK_501.7_563.2
CO8A_HUMAN
0.702





FQLSETNR_497.8_476.3
PSG2_HUMAN
0.701





TGVAVNKPAEFTVDAK_549.6_977.5
FLNA_HUMAN
0.700





IPGIFELGISSQSDR_809.9_679.3
CO8B_HUMAN
0.700





TLFIFGVTK_513.3_215.1
PSG4_HUMAN
0.699





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
0.699





QVFAVQR_424.2_473.3
ELNE_HUMAN
0.699





AQPVQVAEGSEPDGFWEALGGK_
GELS_HUMAN
0.699


758.0_623.4







DFNQFSSGEK_386.8_189.1
FETA_HUMAN
0.699





SVSLPSLDPASAK_636.4_473.3
APOB_HUMAN
0.699





GNGLTWAEK_488.3_634.3
C163B_HUMAN
0.698





LYYGDDEK_501.7_726.3
CO8A_HUMAN
0.698





NFPSPVDAAFR_610.8_959.5
HEMO_HUMAN
0.698





FAFNLYR_465.8_565.3
HEP2_HUMAN
0.697





SGFSFGFK_438.7_585.3
CO8B_HUMAN
0.696





DFHINLFQVLPWLK_885.5_543.3
CFAB_HUMAN
0.696





LQGTLPVEAR_542.3_842.5
CO5_HUMAN
0.694





GAVHVVVAETDYQSFAVLYLER_
CO8G_HUMAN
0.694


822.8_863.5







TSESTGSLPSPFLR_739.9_716.4
PSMG1_HUMAN
0.694





YISPDQLADLYK_713.4_277.2
ENOA_HUMAN
0.694





ESDTSYVSLK_564.8_347.2
CRP_HUMAN
0.693





ILDDLSPR_464.8_587.3
ITIH4_HUMAN
0.693





VQEAHLTEDQIFYFPK_655.7_
CO8G_HUMAN
0.692


391.2







SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
0.692





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
0.692





HFQNLGK_422.2_285.1
AFAM_HUMAN
0.691





NNQLVAGYLQGPNVNLEEK_700.7_
IL1RA_HUMAN
0.691


999.5







IPGIFELGISSQSDR_809.9_849.4
CO8B_HUMAN
0.691





ESDTSYVSLK_564.8_696.4
CRP_HUMAN
0.690





GAVHVVVAETDYQSFAVLYLER_
CO8G_HUMAN
0.690


822.8_580.3







DADPDTFFAK_563.8_302.1
AFAM_HUMAN
0.690





LDFHFSSDR_375.2_464.2
INHBC_HUMAN
0.689





TLFIFGVTK_513.3_811.5
PSG4_HUMAN
0.688





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.687





IQTHSTTYR_369.5_627.3
F13B_HUMAN
0.686





HYFIAAVER_553.3_658.4
FA8_HUMAN
0.686





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
0.686





DLHLSDVFLK_396.2_366.2
CO6_HUMAN
0.685





DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
0.684





AGITIPR_364.2_272.2
IL17_HUMAN
0.684





IAQYYYTFK_598.8_884.4
F13B_HUMAN
0.684





SGVDLADSNQK_567.3_591.3
VGFR3_HUMAN
0.683





VEPLYELVTATDFAYSSTVR_754.4_
CO8B_HUMAN
0.682


549.3







AGITIPR_364.2_486.3
IL17_HUMAN
0.682





YEVQGEVFTKPQLWP_911.0_293.1
CRP_HUMAN
0.681





APLTKPLK_289.9_357.2
CRP_HUMAN
0.681





YNSQLLSFVR_613.8_508.3
TFR1_HUMAN
0.681





ANDQYLTAAALHNLDEAVK_686.4_
IL1A_HUMAN
0.681


301.1







IQTHSTTYR_369.5_540.3
F13B_HUMAN
0.681





IHPSYTNYR_575.8_598.3
PSG2_HUMAN
0.681





TEFLSNYLTNVDDITLVPGTLGR_
ENPP2_HUMAN
0.681


846.8_699.4







DPTFIPAPIQAK_433.2_461.2
ANGT_HUMAN
0.679





FQSVFTVTR_542.8_623.4
C1QC_HUMAN
0.679





LQVNTPLVGASLLR_741.0_925.6
BPIA1_HUMAN
0.679





DEIPHNDIALLK_459.9_510.8
HABP2_HUMAN
0.678





HATLSLSIPR_365.6_272.2
VGFR3_HUMAN
0.678





EDTPNSVWEPAK_686.8_315.2
C1S_HUMAN
0.678





TGISPLALIK_506.8_741.5
APOB_HUMAN
0.678





ILPSVPK_377.2_244.2
PGH1_HUMAN
0.676





HATLSLSIPR_365.6_472.3
VGFR3_HUMAN
0.676





QGHNSVFLIK_381.6_520.4
HEMO_HUMAN
0.676





LPATEKPVLLSK_432.6_460.3
HYOU1_HUMAN
0.675





APLTKPLK_289.9_398.8
CRP_HUMAN
0.674





GVTGYFTFNLYLK_508.3_683.9
PSG5_HUMAN
0.673





TFLTVYWTPER_706.9_401.2
ICAM1_HUMAN
0.673





GDTYPAELYITGSILR_885.0_274.1
F13B_HUMAN
0.672





EDTPNSVWEPAK_686.8_630.3
C1S_HUMAN
0.672





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
0.672





VELAPLPSWQPVGK_760.9_342.2
ICAM1_HUMAN
0.671





GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.670





TDAPDLPEENQAR_728.3_843.4
CO5_HUMAN
0.670





GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
0.669





FAFNLYR_465.8_712.4
HEP2_HUMAN
0.669





ITENDIQIALDDAK_779.9_873.5
APOB_HUMAN
0.669





ILNIFGVIK_508.8_790.5
TFR1_HUMAN
0.669





ISQGEADINIAFYQR_575.6_684.4
MMP8_HUMAN
0.668





GDTYPAELYITGSILR_885.0_
F13B_HUMAN
0.668


1332.8







ELLESYIDGR_597.8_710.4
THRB_HUMAN
0.668





FTITAGSK_412.7_576.3
FABPL_HUMAN
0.667





ILDGGNK_358.7_490.2
CXCL5_HUMAN
0.667





GWVTDGFSSLK_598.8_854.4
APOC3_HUMAN
0.667





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
0.665





IHPSYTNYR_575.8_813.4
PSG2_HUMAN
0.665





ELLESYIDGR_597.8_839.4
THRB_HUMAN
0.665





SDGAKPGPR_442.7_213.6
COLI_HUMAN
0.664





IAQYYYTFK_598.8_395.2
F13B_HUMAN
0.664





SILFLGK_389.2_201.1
THBG_HUMAN
0.664





IEVNESGTVASSSTAVIVSAR_693.0_
PAI1_HUMAN
0.664


545.3







VSAPSGTGHLPGLNPL_506.3_300.7
PSG3_HUMAN
0.664





LLAPSDSPEWLSFDVTGVVR_730.1_
TGFB1_HUMAN
0.664


430.3







YYGYTGAFR_549.3_771.4
TRFL_HUMAN
0.663





TDAPDLPEENQAR_728.3_613.3
CO5_HUMAN
0.663





IEVIITLK_464.8_815.5
CXL11_HUMAN
0.662





ILPSVPK_377.2_227.2
PGH1_HUMAN
0.662





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.661





DYWSTVK_449.7_347.2
APOC3_HUMAN
0.661





IEGNLIFDPNNYLPK_874.0_845.5
APOB_HUMAN
0.661





WILTAAHTLYPK_471.9_407.2
C1R_HUMAN
0.661





WNFAYWAAHQPWSR_607.3_545.3
PRG2_HUMAN
0.661





SILFLGK_389.2_577.4
THBG_HUMAN
0.661





FSLVSGWGQLLDR_493.3_516.3
FA7_HUMAN
0.661





DTDTGALLFIGK_625.8_818.5
PEDF_HUMAN
0.661





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.660





LWAYLTIQELLAK_781.5_371.2
ITIH1_HUMAN
0.660





LLEVPEGR_456.8_356.2
C1S_HUMAN
0.659





ITENDIQIALDDAK_779.9_632.3
APOB_HUMAN
0.659





LTTVDIVTLR_565.8_716.4
IL2RB_HUMAN
0.658





IEVIITLK_464.8_587.4
CXL11_HUMAN
0.658





QLGLPGPPDVPDHAAYHPF_676.7_
ITIH4_HUMAN
0.658


299.2







TLAFVR_353.7_492.3
FA7_HUMAN
0.656





NSDQEIDFK_548.3_294.2
S10A5_HUMAN
0.656





YHFEALADTGISSEFYDNANDLLSK_
CO8A_HUMAN
0.656


940.8_874.5







SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.655





FLPCENK_454.2_390.2
IL10_HUMAN
0.654





NCSFSIIYPVVIK_770.4_831.5
CRHBP_HUMAN
0.654





SLDFTELDVAAEK_719.4_874.5
ANGT_HUMAN
0.654





ILLLGTAVESAWGDEQSAFR_721.7_
CXA1_HUMAN
0.653


909.4







SVSLPSLDPASAK_636.4_885.5
APOB_HUMAN
0.653





TGISPLALIK_506.8_654.5
APOB_HUMAN
0.653





YNQLLR_403.7_288.2
ENOA_HUMAN
0.653





YEVQGEVFTKPQLWP_911.0_392.2
CRP_HUMAN
0.652





VPGLYYFTYHASSR_554.3_720.3
C1QB_HUMAN
0.650





SLQNASAIESILK_687.4_589.4
IL3_HUMAN
0.650





WILTAAHTLYPK_471.9_621.4
C1R_HUMAN
0.650





GWVTDGFSSLK_598.8_953.5
APOC3_HUMAN
0.650





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.649





QDLGWK_373.7_503.3
TGFB3_HUMAN
0.649





DYWSTVK_449.7_620.3
APOC3_HUMAN
0.648





ALVLELAK_428.8_331.2
INHBE_HUMAN
0.647





QLGLPGPPDVPDHAAYHPF_676.7_
ITIH4_HUMAN
0.646


263.1







SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.645





TFLTVYWTPER_706.9_502.3
ICAM1_HUMAN
0.644





FQSVFTVTR_542.8_722.4
C1QC_HUMAN
0.643





DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
0.642





ETLLQDFR_511.3_322.2
AMBP_HUMAN
0.642





IIEVEEEQEDPYLNDR_996.0_777.4
FBLN1_HUMAN
0.641





ELCLDPK_437.7_359.2
IL8_HUMAN
0.641





TPSAAYLWVGTGASEAEK_919.5_
GELS_HUMAN
0.641


849.4







NQSPVLEPVGR_598.3_866.5
KS6A3_HUMAN
0.641





FNAVLTNPQGDYDTSTGK_964.5_
C1QC_HUMAN
0.641


333.2







LLEVPEGR_456.8_686.4
C1S_HUMAN
0.641





FFQYDTWK_567.8_840.4
IGF2_HUMAN
0.640





SPEAEDPLGVER_649.8_670.4
Z512B_HUMAN
0.639





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.639





SGAQATWTELPWPHEK_613.3_793.4
HEMO_HUMAN
0.638





YSHYNER_323.5_581.3
HABP2_HUMAN
0.638





YHFEALADTGISSEFYDNANDLLSK_
CO8A_HUMAN
0.637


940.8_301.1







DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.637





YSHYNER_323.5_418.2
HABP2_HUMAN
0.637





YYLQGAK_421.7_327.1
ITIH4_HUMAN
0.636





EVPLSALTNILSAQLISHWK_740.8_
PAI1_HUMAN
0.636


996.6







VPGLYYFTYHASSR_554.3_420.2
C1QB_HUMAN
0.636





AALAAFNAQNNGSNFQLEEISR_789.1_
FETUA_HUMAN
0.636


746.4







ETLLQDFR_511.3_565.3
AMBP_HUMAN
0.635





IVLSLDVPIGLLQILLEQAR_735.1_
UCN2_HUMAN
0.635


503.3







ENPAVIDFELAPIVDLVR_670.7_
CO6_HUMAN
0.635


811.5







LQLSETNR_480.8_355.2
PSG8_HUMAN
0.635





DPDQTDGLGLSYLSSHIANVER_796.4_
GELS_HUMAN
0.635


456.2







NVNQSLLELHK_432.2_656.3
FRIH_HUMAN
0.634





EIGELYLPK_531.3_633.4
AACT_HUMAN
0.634





SPEQQETVLDGNLIIR_906.5_699.3
ITIH4_HUMAN
0.634





NKPGVYTDVAYYLAWIR_677.0_
FA12_HUMAN
0.632


545.3







QNYHQDSEAAINR_515.9_544.3
FRIH_HUMAN
0.632





EKPAGGIPVLGSLVNTVLK_631.4_
BPIB1_HUMAN
0.632


930.6







VTFEYR_407.7_614.3
CRHBP_HUMAN
0.630





DLPHITVDR_533.3_490.3
MMP7_HUMAN
0.630





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.630





ENPAVIDFELAPIVDLVR_670.7_
CO6_HUMAN
0.630


601.4







YGFYTHVFR_397.2_659.4
THRB_HUMAN
0.629





ILDDLSPR_464.8_702.3
ITIH4_HUMAN
0.629





DPNGLPPEAQK_583.3_497.2
RET4_HUMAN
0.629





GSLVQASEANLQAAQDFVR_668.7_
ITIH1_HUMAN
0.629


806.4







FLYHK_354.2_447.2
AMBP_HUMAN
0.627





FNAVLTNPQGDYDTSTGK_964.5_
C1QC_HUMAN
0.627


262.1







LQDAGVYR_461.2_680.3
PD1L1_HUMAN
0.627





INPASLDK_429.2_630.4
C163A_HUMAN
0.626





LEEHYELR_363.5_580.3
PAI2_HUMAN
0.625





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
0.624





TSDQIHFFFAK_447.6_659.4
ANT3_HUMAN
0.624





ATLSAAPSNPR_542.8_570.3
CXCL2_HUMAN
0.624





YGFYTHVFR_397.2_421.3
THRB_HUMAN
0.624





EANQSTLENFLER_775.9_678.4
IL4_HUMAN
0.623





GQQPADVTGTALPR_705.9_314.2
CSF1_HUMAN
0.623





VELAPLPSWQPVGK_760.9_400.3
ICAM1_HUMAN
0.622





GEVTYTTSQVSK_650.3_750.4
EGLN_HUMAN
0.622





SLQAFVAVAAR_566.8_487.3
IL23A_HUMAN
0.622





HYGGLTGLNK_530.3_301.1
PGAM1_HUMAN
0.622





GPEDQDISISFAWDK_854.4_753.4
DEF4_HUMAN
0.622





YVVISQGLDKPR_458.9_400.3
LRP1_HUMAN
0.621





LWAYLTIQELLAK_781.5_300.2
ITIH1_HUMAN
0.621





SGAQATWTELPWPHEK_613.3_510.3
HEMO_HUMAN
0.621





GTAEWLSFDVTDTVR_848.9_952.5
TGFB3_HUMAN
0.621





FFQYDTWK_567.8_712.3
IGF2_HUMAN
0.621





AHQLAIDTYQEFEETYIPK_766.0_
CSH_HUMAN
0.620


634.4







LPATEKPVLLSK_432.6_347.2
HYOU1_HUMAN
0.620





NIQSVNVK_451.3_546.3
GROA_HUMAN
0.620





TAVTANLDIR_537.3_288.2
CHL1_HUMAN
0.619





WSAGLTSSQVDLYIPK_883.0_515.3
CBG_HUMAN
0.616





QINSYVK_426.2_496.3
CBG_HUMAN
0.616





GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
0.615





WNFAYWAAHQPWSR_607.3_673.3
PRG2_HUMAN
0.615





NEIWYR_440.7_357.2
FA12_HUMAN
0.615





VLEPTLK_400.3_587.3
VTDB_HUMAN
0.614





YYLQGAK_421.7_516.3
ITIH4_HUMAN
0.614





ALNSIIDVYHK_424.9_774.4
S10A8_HUMAN
0.614





ETPEGAEAKPWYEPIYLGGVFQLEK_
TNFA_HUMAN
0.614


951.1_877.5







LNIGYIEDLK_589.3_837.4
PAI2_HUMAN
0.614





NVNQSLLELHK_432.2_543.3
FRIH_HUMAN
0.613





ILLLGTAVESAWGDEQSAFR_721.7_
CXA1_HUMAN
0.613


910.6







AALAAFNAQNNGSNFQLEEISR_789.1_
FETUA_HUMAN
0.613


633.3







VLEPTLK_400.3_458.3
VTDB_HUMAN
0.613





VGEYSLYIGR_578.8_708.4
SAMP_HUMAN
0.613





DIPHWLNPTR_416.9_373.2
PAPP1_HUMAN
0.612





NEIVFPAGILQAPFYTR_968.5_
ECE1_HUMAN
0.612


357.2







AEHPTWGDEQLFQTTR_639.3_765.4
PGH1_HUMAN
0.612





VEPLYELVTATDFAYSSTVR_754.4_
CO8B_HUMAN
0.611


712.4







DEIPHNDIALLK_459.9_260.2
HABP2_HUMAN
0.611





QINSYVK_426.2_610.3
CBG_HUMAN
0.610





SWNEPLYHLVTEVR_581.6_614.3
PRL_HUMAN
0.610





YGIEEHGK_311.5_341.2
CXA1_HUMAN
0.610





FGFGGSTDSGPIR_649.3_946.5
ADA12_HUMAN
0.610





ANDQYLTAAALHNLDEAVK_686.4_
IL1A_HUMAN
0.610


317.2







VRPQQLVK_484.3_609.4
ITIH4_HUMAN
0.609





IPKPEASFSPR_410.2_506.3
ITIH4_HUMAN
0.609





SPEQQETVLDGNLIIR_906.5_685.4
ITIH4_HUMAN
0.609





DDLYVSDAFHK_655.3_704.3
ANT3_HUMAN
0.609





ELPEHTVK_476.8_347.2
VTDB_HUMAN
0.609





FLYHK_354.2_284.2
AMBP_HUMAN
0.608





QRPPDLDTSSNAVDLLFFTDESGDSR_
C1R_HUMAN
0.608


961.5_262.2







DPDQTDGLGLSYLSSHIANVER_796.4_
GELS_HUMAN
0.608


328.1







NEIWYR_440.7_637.4
FA12_HUMAN
0.607





LQLSETNR_480.8_672.4
PSG8_HUMAN
0.606





GQVPENEANVVITTLK_571.3_462.3
CADH1_HUMAN
0.606





FTGSQPFGQGVEHATANK_626.0_
TSP1_HUMAN
0.605


521.2







LEPLYSASGPGLRPLVIK_637.4_
CAA60698
0.605


260.2







QRPPDLDTSSNAVDLLFFTDESGDSR_
C1R_HUMAN
0.604


961.5_866.3







LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.604





TSDQIHFFFAK_447.6_512.3
ANT3_HUMAN
0.604





IQHPFTVEEFVLPK_562.0_861.5
PZP_HUMAN
0.603





NKPGVYTDVAYYLAWIR_677.0_
FA12_HUMAN
0.603


821.5







TEQAAVAR_423.2_615.4
FA12_HUMAN
0.603





EIGELYLPK_531.3_819.5
AACT_HUMAN
0.602





LFYADHPFIFLVR_546.6_647.4
SERPH_HUMAN
0.602





AEHPTWGDEQLFQTTR_639.3_569.3
PGH1_HUMAN
0.601





TSYQVYSK_488.2_787.4
C163A_HUMAN
0.601





YTTEIIK_434.2_704.4
C1R_HUMAN
0.601





NVIQISNDLENLR_509.9_402.3
LEP_HUMAN
0.600





AFLEVNEEGSEAAASTAVVIAGR_
ANT3_HUMAN
0.600


764.4_685.4
















TABLE 13







Middle Window Individual Stats









Transition
Protein
AUC





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.738





VFQFLEK_455.8_811.4
CO5_HUMAN
0.709





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.705





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
0.692





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
0.686





LLAPSDSPEWLSFDVTGVVR_730.1_
TGFB1_HUMAN
0.683


430.3







ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.683





VLEPTLK_400.3_458.3
VTDB_HUMAN
0.681





LHEAFSPVSYQHDLALLR_699.4_
FA12_HUMAN
0.681


251.2







SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.679





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.677





ALQDQLVLVAAK_634.9_289.2
ANGT_HUMAN
0.675





VLEPTLK_400.3_587.3
VTDB_HUMAN
0.667





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
0.665





IEEIAAK_387.2_660.4
CO5_HUMAN
0.664





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
0.664





TLLPVSKPEIR_418.3_514.3
CO5_HUMAN
0.662





ALQDQLVLVAAK_634.9_956.6
ANGT_HUMAN
0.661





TLAFVR_353.7_492.3
FA7_HUMAN
0.661





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.658





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
0.653





DPTFIPAPIQAK_433.2_461.2
ANGT_HUMAN
0.653





QGHNSVFLIK_381.6_260.2
HEMO_HUMAN
0.650





SLDFTELDVAAEK_719.4_874.5
ANGT_HUMAN
0.650





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.649





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.647





SLQAFVAVAAR_566.8_804.5
IL23A_HUMAN
0.646





AQPVQVAEGSEPDGFWEALGGK_
GELS_HUMAN
0.644


758.0_574.3







QGHNSVFLIK_381.6_520.4
HEMO_HUMAN
0.644





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
0.643





DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.643





TEQAAVAR_423.2_615.4
FA12_HUMAN
0.643





GPITSAAELNDPQSILLR_632.4_
EGLN_HUMAN
0.643


826.5







HFQNLGK_422.2_527.2
AFAM_HUMAN
0.642





TEQAAVAR_423.2_487.3
FA12_HUMAN
0.642





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
0.642





TLFIFGVTK_513.3_811.5
PSG4_HUMAN
0.642





DLHLSDVFLK_396.2_366.2
CO6_HUMAN
0.641





AFTECCVVASQLR_770.9_574.3
CO5_HUMAN
0.640





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.639





DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
0.639





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
0.638





HYINLITR_515.3_301.1
NPY_HUMAN
0.637





HFQNLGK_422.2_285.1
AFAM_HUMAN
0.637





VPLALFALNR_557.3_620.4
PEPD_HUMAN
0.636





IHPSYTNYR_575.8_813.4
PSG2_HUMAN
0.635





IEEIAAK_387.2_531.3
CO5_HUMAN
0.635





GEVTYTTSQVSK_650.3_750.4
EGLN_HUMAN
0.634





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.634





VVGGLVALR_442.3_784.5
FA12_HUMAN
0.634





SDGAKPGPR_442.7_459.2
COLI_HUMAN
0.634





DVLLLVHNLPQNLTGHIWYK_791.8_
PSG7_HUMAN
0.634


310.2







TLLPVSKPEIR_418.3_288.2
CO5_HUMAN
0.633





NKPGVYTDVAYYLAWIR_677.0_
FA12_HUMAN
0.630


821.5







QVFAVQR_424.2_473.3
ELNE_HUMAN
0.630





NHYTESISVAK_624.8_415.2
NEUR1_HUMAN
0.630





IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
0.629





IHPSYTNYR_575.8_598.3
PSG2_HUMAN
0.627





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
0.627





SILFLGK_389.2_201.1
THBG_HUMAN
0.626





IEVIITLK_464.8_587.4
CXL11_HUMAN
0.625





VVGGLVALR_442.3_685.4
FA12_HUMAN
0.624





VVLSSGSGPGLDLPLVLGLPLQLK_
SHBG_HUMAN
0.624


791.5_598.4







FGFGGSTDSGPIR_649.3_946.5
ADA12_HUMAN
0.623





VVLSSGSGPGLDLPLVLGLPLQLK_
SHBG_HUMAN
0.622


791.5_768.5







YGIEEHGK_311.5_341.2
CXA1_HUMAN
0.621





LHEAFSPVSYQHDLALLR_699.4_
FA12_HUMAN
0.621


380.2







AHYDLR_387.7_566.3
FETUA_HUMAN
0.620





FSVVYAK_407.2_381.2
FETUA_HUMAN
0.618





ALALPPLGLAPLLNLWAKPQGR_
SHBG_HUMAN
0.618


770.5_256.2







YENYTSSFFIR_713.8_293.1
IL12B_HUMAN
0.617





VELAPLPSWQPVGK_760.9_342.2
ICAM1_HUMAN
0.617





SILFLGK_389.2_577.4
THBG_HUMAN
0.616





ILPSVPK_377.2_227.2
PGH1_HUMAN
0.615





IPSNPSHR_303.2_496.3
FBLN3_HUMAN
0.615





HYFIAAVER_553.3_301.1
FA8_HUMAN
0.615





FSVVYAK_407.2_579.4
FETUA_HUMAN
0.613





VFQFLEK_455.8_276.2
CO5_HUMAN
0.613





IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
0.613





ILPSVPK_377.2_244.2
PGH1_HUMAN
0.613





NKPGVYTDVAYYLAWIR_677.0_
FA12_HUMAN
0.613


545.3







WSAGLTSSQVDLYIPK_883.0_515.3
CBG_HUMAN
0.612





TPSAAYLWVGTGASEAEK_919.5_
GELS_HUMAN
0.612


849.4







ALALPPLGLAPLLNLWAKPQGR_
SHBG_HUMAN
0.612


770.5_457.3







QLGLPGPPDVPDHAAYHPF_676.7_
ITIH4_HUMAN
0.612


299.2







ILDDLSPR_464.8_587.3
ITIH4_HUMAN
0.611





VELAPLPSWQPVGK_760.9_400.3
ICAM1_HUMAN
0.611





DADPDTFFAK_563.8_825.4
AFAM_HUMAN
0.611





NHYTESISVAK_624.8_252.1
NEUR1_HUMAN
0.611





SEPRPGVLLR_375.2_454.3
FA7_HUMAN
0.611





LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
0.611





ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
0.609





LTTVDIVTLR_565.8_716.4
IL2RB_HUMAN
0.608





TQILEWAAER_608.8_761.4
EGLN_HUMAN
0.608





NEPEETPSIEK_636.8_573.3
SOX5_HUMAN
0.608





AQPVQVAEGSEPDGFWEALGGK_
GELS_HUMAN
0.607


758.0_623.4







LQVNTPLVGASLLR_741.0_925.6
BPIA1_HUMAN
0.607





VPSHAVVAR_312.5_345.2
TRFL_HUMAN
0.607





SLCINASAIESILK_687.4_860.5
IL3_HUMAN
0.607





GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
0.605





DFNQFSSGEK_386.8_189.1
FETA_HUMAN
0.605





QLGLPGPPDVPDHAAYHPF_676.7_
ITIH4_HUMAN
0.605


263.1







TLEAQLTPR_514.8_814.4
HEP2_HUMAN
0.604





AFTECCVVASQLR_770.9_673.4
CO5_HUMAN
0.604





LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.604





TLNAYDHR_330.5_312.2
PAR3_HUMAN
0.603





LWAYLTIQELLAK_781.5_300.2
ITIH1_HUMAN
0.603





GGLFADIASHPWQAAIFAK_667.4_
TPA_HUMAN
0.603


375.2







IPSNPSHR_303.2_610.3
FBLN3_HUMAN
0.603





TDAPDLPEENQAR_728.3_843.4
CO5_HUMAN
0.603





SPQAFYR_434.7_684.4
REL3_HUMAN
0.602





SSNNPHSPIVEEFQVPYNK_729.4_
C1S_HUMAN
0.601


261.2







AHYDLR_387.7_288.2
FETUA_HUMAN
0.600





DGSPDVTTADIGANTPDATK_973.5_
PGRP2_HUMAN
0.600


844.4







SPQAFYR_434.7_556.3
REL3_HUMAN
0.600
















TABLE 14







Middle Late Individual Stats









Transition
Protein
AUC





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
0.656





VPLALFALNR_557.3_620.4
PEPD_HUMAN
0.655





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.652





AVYEAVLR_460.8_587.4
PEPD_HUMAN
0.649





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.644





VFQFLEK_455.8_811.4
CO5_HUMAN
0.643





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
0.640





TLAFVR_353.7_492.3
FA7_HUMAN
0.639





TEQAAVAR_423.2_615.4
FA12_HUMAN
0.637





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.637





TEQAAVAR_423.2_487.3
FA12_HUMAN
0.633





QINSYVK_426.2_496.3
CBG_HUMAN
0.633





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.633





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
0.633





ALQDQLVLVAAK_634.9_956.6
ANGT_HUMAN
0.628





VLEPTLK_400.3_587.3
VTDB_HUMAN
0.628





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.628





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.628





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
0.626





QINSYVK_426.2_610.3
CBG_HUMAN
0.625





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
0.625





DPTFIPAPIQAK_433.2_461.2
ANGT_HUMAN
0.625





AVYEAVLR_460.8_750.4
PEPD_HUMAN
0.623





YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
0.623





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
0.623





WSAGLTSSQVDLYIPK_883.0_515.3
CBG_HUMAN
0.622





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
0.622





ALQDQLVLVAAK_634.9_289.2
ANGT_HUMAN
0.621





SLQAFVAVAAR_566.8_804.5
IL23A_HUMAN
0.621





DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
0.620





FGFGGSTDSGPIR_649.3_946.5
ADA12_HUMAN
0.619





VLEPTLK_400.3_458.3
VTDB_HUMAN
0.619





SLDFTELDVAAEK_719.4_874.5
ANGT_HUMAN
0.618





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
0.618





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.618





TPSAAYLWVGTGASEAEK_919.5_849.4
GELS_HUMAN
0.615





LHEAFSPVSYQHDLALLR_699.4_251.2
FA12_HUMAN
0.615





TLEAQLTPR_514.8_685.4
HEP2_HUMAN
0.613





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
0.612





GYQELLEK_490.3_631.4
FETA_HUMAN
0.612





VPLALFALNR_557.3_917.6
PEPD_HUMAN
0.611





DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.611





LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.608





WSAGLTSSQVDLYIPK_883.0_357.2
CBG_HUMAN
0.608





ITQDAQLK_458.8_702.4
CBG_HUMAN
0.608





NIQSVNVK_451.3_674.4
GROA_HUMAN
0.607





ALEQDLPVNIK_620.4_570.4
CNDP1_HUMAN
0.607





TLNAYDHR_330.5_312.2
PAR3_HUMAN
0.606





LWAYLTIQELLAK_781.5_300.2
ITIH1_HUMAN
0.606





VVGGLVALR_442.3_784.5
FA12_HUMAN
0.605





AQPVQVAEGSEPDGFWEALGGK_758.0_623.4
GELS_HUMAN
0.603





SVVLIPLGAVDDGEHSCINEK_703.0_798.4
CNDP1_HUMAN
0.603





SETEIHQGFQHLHQLFAK_717.4_318.1
CBG_HUMAN
0.603





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
0.603





IEVIITLK_464.8_587.4
CXL11_HUMAN
0.602





ITQDAQLK_458.8_803.4
CBG_HUMAN
0.602





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
0.601





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
0.601





LTTVDIVTLR_565.8_716.4
IL2RB_HUMAN
0.600





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.600
















TABLE 15







Late Window Individual Stats









Transition
Protein
AUC





AVYEAVLR_460.8_587.4
PEPD_HUMAN
0.724





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
0.703





QINSYVK_426.2_496.3
CBG_HUMAN
0.695





AVYEAVLR_460.8_750.4
PEPD_HUMAN
0.693





AALAAFNAQNNGSNFQLEEISR_
FETUA_HUMAN
0.684


789.1_746.4







QINSYVK_426.2_610.3
CBG_HUMAN
0.681





VPLALFALNR_557.3_620.4
PEPD_HUMAN
0.678





VGVISFAQK_474.8_580.3
TFR2_HUMAN
0.674





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
0.670





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.670





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
0.660





SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
0.660





TSYQVYSK_488.2_787.4
C163A_HUMAN
0.657





ITQDAQLK_458.8_702.4
CBG_HUMAN
0.652





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
0.650





ALEQDLPVNIK_620.4_798.5
CNDP1_HUMAN
0.650





VFQYIDLHQDEFVQTLK_708.4_375.2
CNDP1_HUMAN
0.650





SGVDLADSNQK_567.3_591.3
VGFR3_HUMAN
0.648





YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
0.647





VLSSIEQK_452.3_691.4
1433S_HUMAN
0.647





YSHYNER_323.5_418.2
HABP2_HUMAN
0.646





ILDGGNK_358.7_603.3
CXCL5_HUMAN
0.645





GTYLYNDCPGPGQDTDCR_697.0_666.3
TNR1A_HUMAN
0.645





AEIEYLEK_497.8_389.2
LYAM1_HUMAN
0.645





TLPFSR_360.7_506.3
LYAM1_HUMAN
0.645





DEIPHNDIALLK_459.9_510.8
HABP2_HUMAN
0.644





ALEQDLPVNIK_620.4_570.4
CNDP1_HUMAN
0.644





SPEAEDPLGVER_649.8_314.1
Z512B_HUMAN
0.644





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.642





TASDFITK_441.7_781.4
GELS_HUMAN
0.641





SETEIHQGFQHLHQLFAK_717.4_447.2
CBG_HUMAN
0.640





SPQAFYR_434.7_556.3
REL3_HUMAN
0.639





TAVTANLDIR_537.3_288.2
CHL1_HUMAN
0.636





VPLALFALNR_557.3_917.6
PEPD_HUMAN
0.636





YISPDQLADLYK_713.4_277.2
ENOA_HUMAN
0.633





SETEIHQGFQHLHQLFAK_717.4_318.1
CBG_HUMAN
0.633





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.633





GYQELLEK_490.3_631.4
FETA_HUMAN
0.633





AYSDLSR_406.2_375.2
SAMP_HUMAN
0.633





SVVLIPLGAVDDGEHSCINEK_
CNDP1_HUMAN
0.632


703.0_798.4







TLEAQLTPR_514.8_685.4
HEP2_HUMAN
0.631





WSAGLTSSQVDLYIPK_883.0_515.3
CBG_HUMAN
0.631





TEQAAVAR_423.2_615.4
FA12_HUMAN
0.628





AQPVQVAEGSEPDGFWEALGGK_
GELS_HUMAN
0.626


758.0_574.3







AGITIPR_364.2_486.3
IL17_HUMAN
0.626





AEVIWTSSDHQVLSGK_586.3_300.2
PD1L1_HUMAN
0.625





TEQAAVAR_423.2_487.3
FA12_HUMAN
0.625





NHYTESISVAK_624.8_415.2
NEUR1_HUMAN
0.625





WSAGLTSSQVDLYIPK_883.0_357.2
CBG_HUMAN
0.623





YSHYNER_323.5_581.3
HABP2_HUMAN
0.623





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.621





NIQSVNVK_451.3_674.4
GROA_HUMAN
0.620





SVVLIPLGAVDDGEHSCINEK_
CNDP1_HUMAN
0.620


703.0_286.2







TLAFVR_353.7_492.3
FA7_HUMAN
0.619





AVDIPGLEAATPYR_736.9_286.1
TENA_HUMAN
0.619





TEFLSNYLTNVDDITLVPGTLGR_
ENPP2_HUMAN
0.618


846.8_600.3







YWGVASFLQK_599.8_849.5
RET4_HUMAN
0.618





TPSAAYLWVGTGASEAEK_919.5_428.2
GELS_HUMAN
0.618





DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
0.617





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
0.616





SPQAFYR_434.7_684.4
REL3_HUMAN
0.616





TPSAAYLWVGTGASEAEK_919.5_849.4
GELS_HUMAN
0.615





ALNHLPLEYNSALYSR_621.0_538.3
C06_HUMAN
0.615





IEVNESGTVASSSTAVIVSAR_
PAI1_HUMAN
0.615


693.0_545.3







LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.615





LWAYLTIQELLAK_781.5_371.2
ITIH1_HUMAN
0.613





SYTITGLQPGTDYK_772.4_352.2
FINC_HUMAN
0.612





GAVHVVVAETDYQSFAVLYLER_
CO8G_HUMAN
0.612


822.8_863.5







FQLPGQK_409.2_276.1
PSG1_HUMAN
0.612





ILDGGNK_358.7_490.2
CXCL5_HUMAN
0.611





DYWSTVK_449.7_620.3
APOC3_HUMAN
0.611





AGLLRPDYALLGHR_518.0_595.4
PGRP2_HUMAN
0.611





ALNFGGIGVVVGHELTHAFDDQGR_
ECE1_HUMAN
0.611


837.1_360.2







GYQELLEK_490.3_502.3
FETA_HUMAN
0.611





HATLSLSIPR_365.6_472.3
VGFR3_HUMAN
0.610





SVPVTKPVPVTKPITVTK_631.1_658.4
Z512B_HUMAN
0.610





FQLPGQK_409.2_429.2
PSG1_HUMAN
0.610





IYLQPGR_423.7_329.2
ITIH2_HUMAN
0.610





TLNAYDHR_330.5_312.2
PAR3_HUMAN
0.609





DPNGLPPEAQK_583.3_497.2
RET4_HUMAN
0.609





FGFGGSTDSGPIR_649.3_946.5
ADA12_HUMAN
0.609





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.608





GAVHVVVAETDYQSFAVLYLER_
CO8G_HUMAN
0.608


822.8_580.3







VPSHAVVAR_312.5_515.3
TRFL_HUMAN
0.608





YWGVASFLQK_599.8_350.2
RET4_HUMAN
0.608





EWVAIESDSVQPVPR_856.4_468.3
CNDP1_HUMAN
0.607





LQDAGVYR_461.2_680.3
PD1L1_HUMAN
0.607





DLYHYITSYVVDGEIIIYGPAYSGR_
PSG1_HUMAN
0.607


955.5_650.3







LWAYLTIQELLAK_781.5_300.2
ITIH1_HUMAN
0.606





ITENDIQIALDDAK_779.9_632.3
APOB_HUMAN
0.606





SYTITGLQPGTDYK_772.4_680.3
FINC_HUMAN
0.606





FFQYDTWK_567.8_712.3
IGF2_HUMAN
0.605





IYLQPGR_423.7_570.3
ITIH2_HUMAN
0.605





YNCILLR_403.7_529.4
ENOA_HUMAN
0.605





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
0.605





WWGGQPLWITATK_772.4_373.2
ENPP2_HUMAN
0.605





TASDFITK_441.7_710.4
GELS_HUMAN
0.605





EWVAIESDSVQPVPR_856.4_486.2
CNDP1_HUMAN
0.605





YEFLNGR_449.7_606.3
PLMN_HUMAN
0.604





SNPVTLNVLYGPDLPR_585.7_654.4
PSG6_HUMAN
0.604





ITQDAQLK_458.8_803.4
CBG_HUMAN
0.603





LTTVDIVTLR_565.8_716.4
IL2RB_HUMAN
0.602





FNAVLTNPQGDYDTSTGK_
C1QC_HUMAN
0.602


964.5_262.1







ITGFLKPGK_320.9_301.2
LBP_HUMAN
0.601





DYWSTVK_449.7_347.2
APOC3_HUMAN
0.601





DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
0.601





GWVTDGFSSLK_598.8_953.5
APOC3_HUMAN
0.601





YYGYTGAFR_549.3_771.4
TRFL_HUMAN
0.601





ELPEHTVK_476.8_347.2
VTDB_HUMAN
0.601





FTFTLHLETPKPSISSSNLNPR_
PSG1_HUMAN
0.601


829.4_874.4







DLYHYITSYVVDGEIIIYGPAYSGR_
PSG1_HUMAN
0.601


955.5_707.3







SPQAFYR_434.7_684.4
REL3_HUMAN
0.616





TPSAAYLWVGTGASEAEK_
GELS_HUMAN
0.615


919.5_849.4







ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
0.615





IEVNESGTVASSSTAVIVSAR_
PAI1_HUMAN
0.615


693.0_545.3







LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.615





LWAYLTIQELLAK_781.5_371.2
ITIH1_HUMAN
0.613





SYTITGLQPGTDYK_772.4_352.2
FINC_HUMAN
0.612





GAVHVVVAETDYQSFAVLYLER_
CO8G_HUMAN
0.612


822.8_863.5







FQLPGQK_409.2_276.1
PSG1_HUMAN
0.612





DLYHYITSYVVDGEIIIYGPAYSGR_
PSG1_HUMAN
0.601


955.5_707.3
















TABLE 16







Lasso Early 32











Coef-


Variable
Protein
ficient












LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
9.53





VQTAHFK_277.5_431.2
CO8A_HUMAN
9.09





FLNWIK_410.7_560.3
HABP2_HUMAN
6.15





ITGFLKPGK_320.9_429.3
LBP_HUMAN
5.29





ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
3.83





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
3.41





DISEVVTPR_508.3_787.4
CFAB_HUMAN
0.44





AHYDLR_387.7_288.2
FETUA_HUMAN
0.1
















TABLE 17







Lasso Early 100











Coef-


Variable
Protein
ficient












LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
6.56


972.0_798.4







ALNHLPLEYNSALYSR_
CO6_HUMAN
6.51


621.0_538.3







VQTAHFK_277.5_431.2
CO8A_HUMAN
4.51





NIQSVNVK_451.3_674.4
GROA_HUMAN
3.12





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
2.68





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
2.56





AVLHIGEK_289.5_292.2
THBG_HUMAN
2.11





FLNWIK_410.7_560.3
HABP2_HUMAN
1.85





ITGFLKPGK_320.9_429.3
LBP_HUMAN
1.36





DALSSVQESQVAQQAR_
APOC3_HUMAN
1.3


573.0_672.4







DALSSVQESQVAQQAR_
APOC3_HUMAN
0.83


573.0_502.3







FLPCENK_454.2_550.2
IL10_HUMAN
0.39





ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
0.3





TEFLSNYLTNVDDITLVPGTLGR_
ENPP2_HUMAN
0.29


846.8_600.3







VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
0.27





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
0.13





TGVAVNKPAEFTVDAK_
FLNA_HUMAN
0.04


549.6_258.1







TASDFITK_441.7_781.4
GELS_HUMAN
−5.91





LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
6.56


972.0_798.4
















TABLE 18







Lasso Protein Early Window











Coef-


Variable
Protein
ficient












ALNHLPLEYNSALYSR_
CO6_HUMAN
7.17


621.0_538.3







LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
6.06


972.0_798.4







LIENGYFHPVK_439.6_627.4
F13B_HUMAN
3.23





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
2.8





QALEEFQK_496.8_680.3
CO8B_HUMAN
2.73





NIQSVNVK_451.3_674.4
GROA_HUMAN
2.53





DALSSVQESQVAQQAR_
APOC3_HUMAN
2.51


573.0_672.4







AVLHIGEK_289.5_348.7
THBG_HUMAN
2.33





FLNWIK_410.7_560.3
HABP2_HUMAN
1.05





FLPCENK_454.2_550.2
IL10_HUMAN
0.74





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
0.7





DISEVVTPR_508.3_787.4
CFAB_HUMAN
0.45





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
0.17





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
0.06





TASDFITK_441.7_781.4
GELS_HUMAN
−7.65
















TABLE 19







Lasso All Early Window











Coef-


Variable
Protein
ficient












FLNWIK_410.7_560.3
HABP2_HUMAN
3.74





AHYDLR_387.7_288.2
FETUA_HUMAN
0.07





ALNHLPLEYNSALYSR_
CO6_HUMAN
6.07


621.0_538.3







LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
8.85


972.0_798.4







TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
2.97





VQTAHFK_277.5_431.2
CO8A_HUMAN
3.36





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
11.24





VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
0.63





AVLHIGEK_289.5_292.2
THBG_HUMAN
0.51





TGVAVNKPAEFTVDAK_
FLNA_HUMAN
0.17


549.6_977.5







LIENGYFHPVK_439.6_343.2
F13B_HUMAN
1.7





AQPVQVAEGSEPDGFWEALGGK_
GELS_HUMAN
−0.93


758.0_574.3







YYGYTGAFR_549.3_450.3
TRFL_HUMAN
1.4





TASDFITK_441.7_781.4
GELS_HUMAN
−0.07





NIQSVNVK_451.3_674.4
GROA_HUMAN
2.12





DALSSVQESQVAQQAR_
APOC3_HUMAN
1.15


573.0_672.4







DALSSVQESQVAQQAR_
APOC3_HUMAN
0.09


573.0_502.3







FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
2.45





ALDLSLK_380.2_575.3
ITIH3_HUMAN
2.51





TLFIFGVTK_513.3_811.5
PSG4_HUMAN
4.12





ISQGEADINIAFYQR_575.6_684.4
MMP8_HUMAN
1.29





SGVDLADSNQK_567.3_591.3
VGFR3_HUMAN
0.55





GPGEDFR_389.2_322.2
PTGDS_HUMAN
0.07





DPNGLPPEAQK_583.3_669.4
RET4_HUMAN
1.36





WNFAYWAAHQPWSR_607.3_545.3
PRG2_HUMAN
−1.27





ELCLDPK_437.7_359.2
IL8_HUMAN
0.3





FFQYDTWK_567.8_840.4
IGF2_HUMAN
1.83





IIEVEEEQEDPYLNDR_
FBLN1_HUMAN
1.14


996.0_777.4







ECEELEEK_533.2_405.2
IL15_HUMAN
1.78





LEEHYELR_363.5_580.3
PAI2_HUMAN
0.15





LNIGYIEDLK_589.3_837.4
PAI2_HUMAN
0.32





TAVTANLDIR_537.3_288.2
CHL1_HUMAN
−0.98





SWNEPLYHLVTEVR_581.6_716.4
PRL_HUMAN
1.88





ILNIFGVIK_508.8_790.5
TFR1_HUMAN
0.05





TPSAAYLWVGTGASEAEK_
GELS_HUMAN
−2.69


919.5_849.4







VGVISFAQK_474.8_693.4
TFR2_HUMAN
−5.68





LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
−1.43





GQVPENEANVVITTLK_571.3_462.3
CADH1_HUMAN
−0.55





STPSLTTK_417.7_549.3
IL6RA_HUMAN
−0.59





ALLLGWVPTR_563.3_373.2
PAR4_HUMAN
−0.97
















TABLE 20







Lasso SummedCoef Early Window











SumBest


Transition
Protein
Coefs












LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
1173.723955


972.0_798.4







ALNHLPLEYNSALYSR_
CO6_HUMAN
811.0150364


621.0_538.3







ELIEELVNITQNQK_
IL13_HUMAN
621.9659363


557.6_618.3







VQTAHFK_277.5_431.2
CO8A_HUMAN
454.178544





NIQSVNVK_451.3_674.4
GROA_HUMAN
355.9550674





TLFIFGVTK_
PSG4_HUMAN
331.8629189


513.3_811.5







GPGEDFR_389.2_322.2
PTGDS_HUMAN
305.9079494





FLPCENK_454.2_550.2
IL10_HUMAN
296.9473975





FLNWIK_410.7_560.3
HABP2_HUMAN
282.9841332





LIENGYFHPVK_
F13B_HUMAN
237.5320227


439.6_627.4







ECEELEEK_533.2_405.2
IL15_HUMAN
200.38281





FGFGGSTDSGPIR_
ADA12_HUMAN
194.6252869


649.3_745.4







QALEEFQK_496.8_680.3
CO8B_HUMAN
179.2518843





IIEVEEEQEDPYLNDR_
FBLN1_HUMAN
177.7534111


996.0_777.4







TYLHTYESEI_
ENPP2_HUMAN
164.9735228


628.3_908.4







ELIEELVNITQNQK_
IL13_HUMAN
162.2414693


557.6_517.3







LEEHYELR_363.5_580.3
PAI2_HUMAN
152.9262386





ISQGEADINIAFYQR_
MMP8_HUMAN
144.2445011


575.6_684.4







HPWIVHWDQLPQYQLNR_
KS6A3_HUMAN
140.2287926


744.0_918.5







AHYDLR_387.7_288.2
FETUA_HUMAN
137.9737525





GFQALGDAADIR_
TIMP1_HUMAN
130.4945567


617.3_288.2







SWNEPLYHLVTEVR_
PRL_HUMAN
127.442646


581.6_716.4







SGVDLADSNQK_
VGFR3_HUMAN
120.5149446


567.3_591.3







YENYTSSFFIR_
IL12B_HUMAN
117.0947487


713.8_293.1







FFQYDTWK_567.8_840.4
IGF2_HUMAN
109.8569617





HYFIAAVER_
FA8_HUMAN
106.9426543


553.3_658.4







ITGFLKPGK_
LBP_HUMAN
103.8056505


320.9_429.3







DALSSVQESQVAQQAR_
APOC3_HUMAN
98.50490812


573.0_502.3







SGVDLADSNQK_
VGFR3_HUMAN
97.19989285


567.3_662.3







ALDLSLK_380.2_575.3
ITIH3_HUMAN
94.84900337





TGVAVNKPAEFTVDAK_
FLNA_HUMAN
92.52335783


549.6_258.1







HPWIVHWDQLPQYQLNR_
KS6A3_HUMAN
91.77547608


744.0_1047.0







LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
83.6483639


972.0_640.4







LNIGYIEDLK_
PAI2_HUMAN
83.50221521


589.3_837.4







IALGGLLFPASNLR_
SHBG_HUMAN
79.33146741


481.3_657.4







LPATEKPVLLSK_
HYOU1_HUMAN
78.89429168


432.6_460.3







FQLSETNR_497.8_605.3
PSG2_HUMAN
78.13445824





NEIVFPAGILQAPFYTR_
ECE1_HUMAN
75.12145257


968.5_357.2







ALDLSLK_380.2_185.1
ITIH3_HUMAN
63.05454715





DLHLSDVFLK_
CO6_HUMAN
58.26831142


396.2_366.2







TQILEWAAER_
EGLN_HUMAN
57.29461621


608.8_761.4







FSVVYAK_407.2_381.2
FETUA_HUMAN
54.78436389





VSEADSSNADWVTK_
CFAB_HUMAN
54.40003244


754.9_347.2







DPNGLPPEAQK_
RET4_HUMAN
53.89169348


583.3_669.4







VQEAHLTEDQIFYFPK_
CO8G_HUMAN
53.33747599


655.7_701.4







LSSPAVITDK_
PLMN_HUMAN
53.22513181


515.8_830.5







ITLPDFTGDLR_
LBP_HUMAN
51.5477235


624.3_288.2







AVLHIGEK_
THBG_HUMAN
49.73092632


289.5_292.2







GEVTYTTSQVSK_
EGLN_HUMAN
45.14743629


650.3_750.4







GYVIIKPLVWV_
SAMP_HUMAN
44.05164273


643.9_854.6







TGVAVNKPAEFTVDAK_
FLNA_HUMAN
42.99898046


549.6_977.5







YYGYTGAFR_
TRFL_HUMAN
42.90897411


549.3_450.3







ILDGGNK_358.7_490.2
CXCL5_HUMAN
42.60771281





FLPCENK_454.2_390.2
IL10_HUMAN
42.56799651





GFQALGDAADIR_
TIMP1_HUMAN
38.68456017


617.3_717.4







SDGAKPGPR_
COLI_HUMAN
38.47800265


442.7_213.6







NTGVISVVTTGLDR_
CADH1_HUMAN
32.62953675


716.4_662.4







SERPPIFEIR_
LRP1_HUMAN
31.48248968


415.2_288.2







DFHINLFQVLPWLK_
CFAB_HUMAN
31.27286268


885.5_400.2







DALSSVQESQVAQQAR_
APOC3_HUMAN
31.26972354


573.0_672.4







ELCLDPK_
IL8_HUMAN
29.91108737


437.7_359.2







ILNIFGVIK_
TFR1_HUMAN
29.88784921


508.8_790.5







TEFLSNYLTNVDDITLVPGT
ENPP2_HUMAN
29.42327998


LGR_846.8_600.3







GAVHVVVAETDYQSFAVLYL
CO8G_HUMAN
26.70286929


ER_822.8_863.5







AVLHIGEK_289.5_348.7
THBG_HUMAN
25.78703299





TFLTVYWTPER_
ICAM1_HUMAN
24.73090242


706.9_401.2







AGITIPR_364.2_486.3
IL17_HUMAN
23.84580477





GAVHVVVAETDYQSFAVLYL
CO8G_HUMAN
23.81167843


ER_822.8_580.3







SLQAFVAVAAR_
IL23A_HUMAN
23.61468839


566.8_487.3







SWNEPLYHLVTEVR_
PRL_HUMAN
23.2538221


581.6_614.3







TYLHTYESEI_
ENPP2_HUMAN
22.70115313


628.3_515.3







TAHISGLPPSTDFIVYLSGL
TENA_HUMAN
22.42695892


APSIR_871.5_800.5







QNYHQDSEAAINR_
FRIH_HUMAN
21.96827269


515.9_544.3







AHQLAIDTYQEFEETYIPK_
CSH_HUMAN
21.75765717


766.0_634.4







GDTYPAELYITGSILR_
F13B_HUMAN
20.89751398


885.0_274.1







AHYDLR_387.7_566.3
FETUA_HUMAN
20.67629529





IALGGLLFPASNLR_
SHBG_HUMAN
19.28973033


481.3_412.3







ATNATLDPR_
PAR1_HUMAN
18.77604574


479.8_272.2







FSVVYAK_407.2_579.4
FETUA_HUMAN
17.81136564





HTLNQIDEVK_
FETUA_HUMAN
17.29763288


598.8_951.5







DIPHWLNPTR_
PAPP1_HUMAN
17.00562521


416.9_373.2







LYYGDDEK_
CO8A_HUMAN
16.78897272


501.7_563.2







AALAAFNAQNNGSNFQLEE
FETUA_HUMAN
16.41986569


ISR_789.1_633.3







IQTHSTTYR_
F13B_HUMAN
15.78335174


369.5_627.3







GPITSAAELNDPQSILLR_
EGLN_HUMAN
15.3936876


632.4_826.5







QTLSWTVTPK_
PZP_HUMAN
14.92509259


580.8_818.4







AVGYLITGYQR_
PZP_HUMAN
13.9795325


620.8_737.4







DIIKPDPPK_
IL12B_HUMAN
13.76508282


511.8_342.2







YNCILLR_403.7_288.2
ENOA_HUMAN
12.61733711





GNGLTWAEK_
C163B_HUMAN
12.5891421


488.3_634.3







QVFAVQR_424.2_473.3
ELNE_HUMAN
12.57709327





FLQEQGHR_
CO8G_HUMAN
12.51843475


338.8_497.3







HVVQLR_376.2_515.3
IL6RA_HUMAN
11.83747559





DVLLLVHNLPQNLTGHIW
PSG7_HUMAN
11.69074708


YK_791.8_883.0







TFLTVYWTPER_
ICAM1_HUMAN
11.63709776


706.9_502.3







VELAPLPSWQPVGK_
ICAM1_HUMAN
10.79897269


760.9_400.3







TLFIFGVTK_
PSG4_HUMAN
10.2831751


513.3_215.1







AYSDLSR_406.2_375.2
SAMP_HUMAN
10.00461148





HATLSLSIPR_
VGFR3_HUMAN
9.967933028


365.6_472.3







LQGTLPVEAR_
CO5_HUMAN
9.963760572


542.3_571.3







NTVISVNPSTK_
VCAM1_HUMAN
9.124228658


580.3_732.4







EVFSKPISWEELLQ_
FA40A-HUMAN
8.527980294


852.9_260.2







SLCINASAIESILK_
IL3_HUMAN
8.429061621


687.4_860.5







IQHPFTVEEFVLPK_
PZP_HUMAN
7.996504258


562.0_861.5







GVTGYFTFNLYLK_
PSG5_HUMAN
7.94396229


508.3_683.9







VFQYIDLHQDEFVQTLK_
CNDP1_HUMAN
7.860590049


708.4_361.2







ILDDLSPR_464.8_587.3
ITIH4_HUMAN
7.593889262





LIENGYFHPVK_
F13B_HUMAN
7.05838337


439.6_343.2







VFQFLEK_455.8_811.4
CO5_HUMAN
6.976884759





AFTECCVVASQLR_
CO5_HUMAN
6.847474286


770.9_574.3







WWGGQPLWITATK_
ENPP2_HUMAN
6.744837357


772.4_929.5







IQTHSTTYR_
F13B_HUMAN
6.71464509


369.5_540.3







IAQYYYTFK_
F13B_HUMAN
6.540497911


598.8_395.2







YGFYTHVFR_
THRB_HUMAN
6.326347548


397.2_421.3







YHFEALADTGISSEFYDNAN
CO8A_HUMAN
6.261787525


DLLSK_940.8_874.5







ANDQYLTAAALHNLDEAVK_
IL1A_HUMAN
6.217191651


686.4_301.1







FSLVSGWGQLLDR_
FA7-HUMAN
6.1038295


493.3_403.2







GWVTDGFSSLK_
APOC3_HUMAN
6.053494609


598.8_854.4







TLEAQLTPR_514.8_814.4
HEP2_HUMAN
5.855967278





VSAPSGTGHLPGLNPL_
PSG3_HUMAN
5.625944609


506.3_300.7







EAQLPVIENK_
PLMN_HUMAN
5.407703773


570.8_699.4







SPEAEDPLGVER_
Z512B_HUMAN
5.341420139


649.8_670.4







IAIDLFK_410.3_635.4
HEP2_HUMAN
4.698739039





YEFLNGR_449.7_293.1
PLMN_HUMAN
4.658286706





VQTAHFK_277.5_502.3
CO8A_HUMAN
4.628247194





IEVIITLK_464.8_815.5
CXL11_HUMAN
4.57198762





ILTPEVR_414.3_601.3
GDF15_HUMAN
4.452884608





LEEHYELR_363.5_288.2
PAI2_HUMAN
4.411983862





HATLSLSIPR_
VGFR3_HUMAN
4.334242077


365.6_272.2







NSDQEIDFK_
S10A5_HUMAN
4.25302369


548.3_294.2







LPNNVLQEK_
AFAM-HUMAN
4.183602548


527.8_844.5







ELANTIK_394.7_475.3
S10AC_HUMAN
4.13558153





LSIPQITTK_
PSG5_HUMAN
3.966238797


500.8_687.4







TLNAYDHR_
PAR3_HUMAN
3.961140111


330.5_312.2







WWGGQPLWITATK_
ENPP2_HUMAN
3.941476057


772.4_373.2







ELLESYIDGR_
THRB_HUMAN
3.832723338


597.8_710.4







ATLSAAPSNPR_
CXCL2_HUMAN
3.82834767


542.8_570.3







VVLSSGSGPGLDLPLVLGLP
SHBG_HUMAN
3.80737887


LQLK_791.5_598.4







NADYSYSVWK_
CO5_HUMAN
3.56404167


616.8_333.2







ILILPSVTR_
PSGx_HUMAN
3.526998593


506.3_559.3







ALEQDLPVNIK_
CNDP1_HUMAN
3.410412424


620.4_798.5







QVCADPSEEWVQK_
CCL3_HUMAN
3.30795151


788.4_275.2







SVCINDSQAIAEVLNQLK_
DESP_HUMAN
3.259270741


619.7_914.5







QVFAVQR_424.2_620.4
ELNE_HUMAN
3.211482663





ALPGEQQPLHALTR_
IBP1_HUMAN
3.211207158


511.0_807.5







LEPLYSASGPGLRPLVIK_
CAA60698
3.203088951


637.4_260.2







GTYLYNDCPGPGQDTDCR_
TNR1A_HUMAN
3.139418139


697.0_666.3







DAGLSWGSAR_
NEUR4_HUMAN
3.005197927


510.2_576.3







YGFYTHVFR_
THRB_HUMAN
2.985663918


397.2_659.4







NNQLVAGYLQGPNVNLEEK_
IL1RA_HUMAN
2.866983196


700.7_357.2







EKPAGGIPVLGSLVNTVLK_
BPIB1_HUMAN
2.798965142


631.4_930.6







FGSDDEGR_441.7_735.3
PTHR_HUMAN
2.743283546





IEVNESGTVASSSTAVIVSAR_
PAI1_HUMAN
2.699725572


693.0_545.3







FATTFYQHLADSK_
ANT3_HUMAN
2.615073729


510.3_533.3







DYWSTVK_449.7_347.2
APOC3_HUMAN
2.525459346





QLGLPGPPDVPDHAAYHPF_
ITIH4_HUMAN
2.525383799


676.7_263.1







LSSPAVITDK_
PLMN_HUMAN
2.522306831


515.8_743.4







TEFLSNYLTNVDDITLVPG
ENPP2_HUMAN
2.473366805


TLGR_846.8_699.4







SILFLGK_389.2_201.1
THBG_HUMAN
2.472413913





VTFEYR_407.7_614.3
CRHBP_HUMAN
2.425338167





SVVLIPLGAVDDGEHSCIN
CNDP1_HUMAN
2.421340244


EK_703.0_798.4







HTLNQIDEVK_
FETUA_HUMAN
2.419851187


598.8_958.5







ALNSIIDVYHK_
S10A8_HUMAN
2.367904596


424.9_661.3







ETLALLSTHR_
IL5_HUMAN
2.230076769


570.8_500.3







GLQYAAQEGLLALQSELLR_
LBP_HUMAN
2.205949216


1037.1_858.5







TYNVDK_370.2_262.1
PPB1_HUMAN
2.11849772





FTITAGSK_412.7_576.3
FABPL_HUMAN
2.098589805





GIVEECCFR_
IGF2_HUMAN
2.059942995


585.3_900.3







YGIEEHGK_
CXA1_HUMAN
2.033828589


311.5_599.3







ALVLELAK_
INHBE_HUMAN
1.993820617


428.8_331.2







ITLPDFTGDLR_
LBP_HUMAN
1.968753183


624.3_920.5







HELTDEELQSLFTNFANVV
AFAM_HUMAN
1.916438806


DK_817.1_906.5







EANQSTLENFLER_
IL4_HUMAN
1.902033355


775.9_678.4







DADPDTFFAK_
AFAM_HUMAN
1.882254674


563.8_825.4







LFIPQITR_
PSG9_HUMAN
1.860649392


494.3_727.4







DPNGLPPEAQK_
RET4_HUMAN
1.847702127


583.3_497.2







VEPLYELVTATDFAYSSTV
CO8B_HUMAN
1.842159131


R_754.4_549.3







FQLSETNR_497.8_476.3
PSG2_HUMAN
1.834693717





FSLVSGWGQLLDR_
FA7_HUMAN
1.790582748


493.3_516.3







NKPGVYTDVAYYLAWIR_
FA12_HUMAN
1.777303353


677.0_545.3







FTGSQPFGQGVEHATANK_
TSP1_HUMAN
1.736517431


626.0_521.2







DDLYVSDAFHK_
ANT3_HUMAN
1.717534082


655.3_704.3







AFLEVNEEGSEAAASTAVVI
ANT3_HUMAN
1.679420475


AGR_764.4_685.4







LPNNVLQEK_
AFAM_HUMAN
1.66321148


527.8_730.4







IVLSLDVPIGLLQILLEQA
UCN2_HUMAN
1.644983604


R_735.1_503.3







DPTFIPAPIQAK_
ANGT_HUMAN
1.625411496


433.2_556.3







SDLEVAHYK_
CO8B_HUMAN
1.543640117


531.3_617.3







QLYGDTGVLGR_
CO8G_HUMAN
1.505242962


589.8_501.3







VNHVTLSQPK_
B2MG_HUMAN
1.48233058


374.9_459.3







TLLPVSKPEIR_
CO5_HUMAN
1.439531341


418.3_288.2







SEYGAALAWEK_
CO6_HUMAN
1.424401638


612.8_845.5







YGIEEHGK_311.5_341.2
CXA1_HUMAN
1.379872204





DAGLSWGSAR_
NEUR4_HUMAN
1.334272677


510.3_390.2







AEHPTWGDEQLFQTTR_
PGH1_HUMAN
1.30549273


639.3_569.3







FQSVFTVTR_
C1QC_HUMAN
1.302847429


542.8_623.4







VPGLYYFTYHASSR_
C1QB_HUMAN
1.245565877


554.3_420.2







AYSDLSR_406.2_577.3
SAMP_HUMAN
1.220777002





ALEQDLPVNIK_
CNDP1_HUMAN
1.216612522


620.4_570.4







NAVVQGLEQPHGLVVHPLR_
LRP1_HUMAN
1.212935735


688.4_890.6







TSDQIHFFFAK_
ANT3_HUMAN
1.176238265


447.6_659.4







GTYLYNDCPGPGQDTDCR_
TNR1A_HUMAN
1.1455649


697.0_335.2







TSYQVYSK_488.2_787.4
C163A_HUMAN
1.048896429





ALNSIIDVYHK_
S10A8_HUMAN
1.028522516


424.9_774.4







VELAPLPSWQPVGK_
ICAM1_HUMAN
0.995831393


760.9_342.2







LSETNR_360.2_330.2
PSG1_HUMAN
0.976094717





HFQNLGK_422.2_527.2
AFAM_HUMAN
0.956286531





ELPQSIVYK_
FBLN3_HUMAN
0.947931674


538.8_417.7







LPATEKPVLLSK_
HYOU1_HUMAN
0.932537153


432.6_347.2







SPEAEDPLGVER_
Z512B_HUMAN
0.905955419


649.8_314.1







DEIPHNDIALLK_
HABP2_HUMAN
0.9032484


459.9_510.8







FFQYDTWK_567.8_712.3
IGF2_HUMAN
0.884340285





LIEIANHVDK_
ADA12_HUMAN
0.881493383


384.6_498.3







AGFAGDDAPR_
ACTB_HUMAN
0.814836556


488.7_701.3







YEFLNGR_449.7_606.3
PLMN_HUMAN
0.767373087





VIAVNEVGR_
CHL1_HUMAN
0.721519592


478.8_284.2







SLSQQIENIR_
CO1A1_HUMAN
0.712051082


594.3_531.3







EWVAIESDSVQPVPR_
CNDP1_HUMAN
0.647712421


856.4_486.2







YGLVTYATYPK_
CFAB_HUMAN
0.618499569


638.3_843.4







SVVLIPLGAVDDGEHSCINE
CNDP1_HUMAN
0.606626346


K_703.0_286.2







NSDQEIDFK_
S10A5_HUMAN
0.601928175


548.3_409.2







NVNQSLLELHK_
FRIH_HUMAN
0.572008792


432.2_543.3







IAQYYYTFK_5
F13B_HUMAN
0.495062844


98.8_884.4







GPITSAAELNDPQSILLR_
EGLN_HUMAN
0.47565795


632.4_601.4







YTTEIIK_434.2_704.4
C1R_HUMAN
0.433318952





GYVIIKPLVWV_
SAMP_HUMAN
0.427905264


643.9_304.2







LDFHFSSDR_
INHBC_HUMAN
0.411898116


375.2_464.2







IPSNPSHR_
FBLN3_HUMAN
0.390037291


303.2_496.3







APLTKPLK_
CRP_HUMAN
0.38859469


289.9_357.2







EVFSKPISWEELLQ_
FA40A_HUMAN
0.371359974


852.9_376.2







YENYTSSFFIR_
IL12B_HUMAN
0.346336267


713.8_756.4







SPQAFYR_434.7_556.3
REL3_HUMAN
0.345901234





SVDEALR_395.2_488.3
PRDX2_HUMAN
0.307518869





FVFGTTPEDILR_
TSP1_HUMAN
0.302313589


697.9_742.4







FTFTLHLETPKPSISSSNLN
PSG1_HUMAN
0.269826678


PR_829.4_787.4







VGEYSLYIGR_
SAMP_HUMAN
0.226573173


578.8_708.4







ILPSVPK_377.2_244.2
PGH1_HUMAN
0.225429414





LFIPQITR_494.3_614.4
PSG9_HUMAN
0.18285533





TGYYFDGISR_
FBLN1_HUMAN
0.182474114


589.8_857.4







HYGGLTGLNK_
PGAM1_HUMAN
0.152397007


530.3_759.4







NQSPVLEPVGR_
KS6A3_HUMAN
0.128963949


598.3_866.5







IGKPAPDFK_
PRDX2_HUMAN
0.113383235


324.9_294.2







TSESTGSLPSPFLR_
PSMG1_HUMAN
0.108159874


739.9_716.4







ESDTSYVSLK_
CRP_HUMAN
0.08569303


564.8_347.2







ETPEGAEAKPWYEPIYLGGV
TNFA_HUMAN
0.039781728


FQLEK_951.1_877.5







TSDQIHFFFAK_
ANT3_HUMAN
0.008064465


447.6_512.3
















TABLE 21







Lasso32 Middle Window











Coef-


Variable
UniProt_ID
ficient












SEYGAALAWEK_612.8_788.4
CO6_HUMAN
6.99





VFQFLEK_455.8_811.4
CO5_HUMAN
6.43





VLEPTLK_400.3_458.3
VTDB_HUMAN
3.99





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
3.33





TLAFVR_353.7_492.3
FA7_HUMAN
2.44





YGIEEHGK_311.5_599.3
CXA1_HUMAN
2.27





LHEAFSPVSYQHDLALLR_
FA12_HUMAN
2.14


699.4_251.2







QGHNSVFLIK_381.6_520.4
HEMO_HUMAN
0.25





LLAPSDSPEWLSFDVTGVVR_
TGFB1_HUMAN
−2.81


730.1_430.3







ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
−3.46





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
−6.61
















TABLE 22







Lasso100 Middle Window











Coef-


Variable
UniProt_ID
ficient












VFQFLEK_455.8_811.4
CO5_HUMAN
6.89





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
4.67





GEVTYTTSQVSK_650.3_750.4
EGLN_HUMAN
3.4





QVFAVQR_424.2_473.3
ELNE_HUMAN
1.94





VELAPLPSWQPVGK_760.9_342.2
ICAM1_HUMAN
1.91





LHEAFSPVSYQHDLALLR_
FA12_HUMAN
1.8


699.4_251.2







SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
1.67





YGIEEHGK_311.5_599.3
CXA1_HUMAN
1.53





YGIEEHGK_311.5_341.2
CXA1_HUMAN
1.51





HYINLITR_515.3_301.1
NPY_HUMAN
1.47





TLAFVR_353.7_492.3
FA7_HUMAN
1.46





GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
1.28





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
0.84





DALSSVQESQVAQQAR_
APOC3_HUMAN
0.41


573.0_502.3







VELAPLPSWQPVGK_760.9_400.3
ICAM1_HUMAN
0.3





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
−0.95





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
−1.54





DVLLLVHNLPQNLTGHIWYK_
PSG7_HUMAN
−1.54


791.8_310.2







VPLALFALNR_557.3_620.4
PEPD_HUMAN
−1.91





LLAPSDSPEWLSFDVTGVVR_
TGFB1_HUMAN
−2.3


730.1_430.3







VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
−3.6





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
−3.96
















TABLE 23







Lasso Protein Middle Window











Coef-


Variable
UniProt_ID
ficient












SEYGAALAWEK_612.8_788.4
CO6_HUMAN
5.84





VFQFLEK_455.8_811.4
CO5_HUMAN
5.58





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
2.11





TLAFVR_353.7_492.3
FA7_HUMAN
1.83





LHEAFSPVSYQHDLALLR_
FA12_HUMAN
1.62


699.4_251.2







HYINLITR_515.3_301.1
NPY_HUMAN
1.39





VLEPTLK_400.3_458.3
VTDB_HUMAN
1.37





YGIEEHGK_311.5_599.3
CXA1_HUMAN
1.17





VELAPLPSWQPVGK_
ICAM1_HUMAN
1.13


760.9_342.2







QVFAVQR_424.2_473.3
ELNE_HUMAN
0.79





ANLINNIFELAGLGK_
LCAP_HUMAN
0.23


793.9_299.2







DVLLLVHNLPQNLTGHIWYK_
PSG7_HUMAN
−0.61


791.8_310.2







VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
−0.69





AVDIPGLEAATPYR_
TENA_HUMAN
−0.85


736.9_399.2







VPLALFALNR_557.3_620.4
PEPD_HUMAN
−1.45





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
−1.9





LLAPSDSPEWLSFDVTGVVR_
TGFB1_HUMAN
−2.07


730.1_430.3







EVFSKPISWEELLQ_
FA40A_HUMAN
−2.32


852.9_376.2
















TABLE 24







Lasso All Middle Window











Coef-


Variable
UniProt_ID
ficient












SEYGAALAWEK_612.8_788.4
CO6_HUMAN
2.48





VFQFLEK_455.8_811.4
CO5_HUMAN
2.41





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
1.07





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.64





VLEPTLK_400.3_458.3
VTDB_HUMAN
0.58





LHEAFSPVSYQHDLALLR_
FA12_HUMAN
0.21


699.4_251.2







LLAPSDSPEWLSFDVTGVVR_
TGFB1_HUMAN
−0.62


730.1_430.3







VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
−1.28
















TABLE 25







Lasso32 Middle-Late Window













Coef-



Variable
UniProt_ID
ficient















SEYGAALAWEK_612.8_845.5
CO6_HUMAN
4.35







TLAFVR_353.7_492.3
FA7_HUMAN
2.42







YGIEEHGK_311.5_599.3
CXA1_HUMAN
1.46







DFNQFSSGEK_386.8_333.2
FETA_HUMAN
1.37







VFQFLEK_455.8_811.4
CO5_HUMAN
0.89







LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.85







QINSYVK_426.2_496.3
CBG_HUMAN
0.56







TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.53







SLQAFVAVAAR_566.8_804.5
IL23A_HUMAN
0.39







TEQAAVAR_423.2_615.4
FA12_HUMAN
0.26







VLEPTLK_400.3_587.3
VTDB_HUMAN
0.24







AQPVQVAEGSEPDGFWEALGGK_
GELS_HUMAN
−2.08



758.0_574.3









VPLALFALNR_557.3_620.4
PEPD_HUMAN
−2.09







AVYEAVLR_460.8_587.4
PEPD_HUMAN
−3.37

















TABLE 26







Lasso100 Middle-Late Window









Variable
UniProt_ID
Coefficient












VFQFLEK_455.8_811.4
CO5_HUMAN
3.82





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
2.94





YGIEEHGK_311.5_599.3
CXA1_HUMAN
2.39





DPTFIPAPIQAK_433.2_556.3
ANGT_HUMAN
2.05





TLAFVR_353.7_492.3
FA7_HUMAN
1.9





NQSPVLEPVGR_598.3_866.5
KS6A3_HUMAN
1.87





ALNHLPLEYNSALYSR_621.0_
CO6_HUMAN
1.4


538.3







TQILEWAAER_608.8_761.4
EGLN_HUMAN
1.29





VVGGLVALR_442.3_784.5
FA12_HUMAN
1.24





QINSYVK_426.2_496.3
CBG_HUMAN
1.14





YGIEEHGK_311.5_341.2
CXA1_HUMAN
0.84





ALEQDLPVNIK_620.4_570.4
CNDP1_HUMAN
0.74





GTYLYNDCPGPGQDTDCR_697.0_
TNR1A_HUMAN
0.51


666.3







SLCINASAIESILK_687.4_860.5
IL3_HUMAN
0.44





DLHLSDVFLK_396.2_260.2
CO6_HUMAN
0.38





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.37





NIQSVNVK_451.3_674.4
GROA_HUMAN
0.3





FFQYDTWK_567.8_712.3
IGF2_HUMAN
0.19





ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
0.19





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.15





AALAAFNAQNNGSNFQLEEISR_
FETUA_HUMAN
−0.09


789.1_746.4







AQPVQVAEGSEPDGFWEALGGK_
GELS_HUMAN
−0.52


758.0_574.3







TSYQVYSK_488.2_787.4
C163A_HUMAN
−0.62





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
−1.29





TAHISGLPPSTDFIVYLSGLAPSIR_
TENA_HUMAN
−1.53


871.5_472.3







AEIEYLEK_497.8_552.3
LYAM1_HUMAN
−1.73





LLAPSDSPEWLSFDVTGVVR_730.1_
TGFB1_HUMAN
−1.95


430.3







VPLALFALNR_557.3_620.4
PEPD_HUMAN
−2.9





AVYEAVLR_460.8_587.4
PEPD_HUMAN
−3.04





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
−3.49





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
−3.71
















TABLE 27







Lasso Protein Middle-LateWindow









Variable
UniProt_ID
Coefficient












VFQFLEK_455.8_811.4
CO5_HUMAN
4.25





ALNHLPLEYNSALYSR_621.0_
CO6_HUMAN
3.06


696.4







YGIEEHGK_311.5_599.3
CXA1_HUMAN
2.36





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
2.11





TQILEWAAER_608.8_761.4
EGLN_HUMAN
1.81





NQSPVLEPVGR_598.3_866.5
KS6A3_HUMAN
1.79





TEQAAVAR_423.2_615.4
FA12_HUMAN
1.72





QINSYVK_426.2_496.3
CBG_HUMAN
0.98





ALEQDLPVNIK_620.4_570.4
CNDP1_HUMAN
0.98





NCSFSIIYPVVIK_770.4_555.4
CRHBP_HUMAN
0.76





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.63





SLCINASAIESILK_687.4_860.5
IL3_HUMAN
0.59





ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
0.55





GTYLYNDCPGPGQDTDCR_697.0_
TNR1A_HUMAN
0.55


666.3







TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0.46





NIQSVNVK_451.3_674.4
GROA_HUMAN
0.22





LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.11





FFQYDTWK_567.8_712.3
IGF2_HUMAN
0.01





TSYQVYSK_488.2_787.4
C163A_HUMAN
−0.76





AQPVQVAEGSEPDGFWEALGGK_
GELS_HUMAN
−1.31


758.0_574.3







AEIEYLEK_497.8_552.3
LYAM1_HUMAN
−1.59













LLAPSDSPEWLSFDVTGVVR_
TGFB1_HUMAN
−1.73






730.1_430.3















AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
−2.02





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
−3





TGVAVNKPAEFTVDAK_549.6_
FLNA_HUMAN
−3.15


258.1







ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
−3.49





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
−3.82





VPLALFALNR_557.3_620.4
PEPD_HUMAN
−4.94
















TABLE 28







Lasso All Middle-LateWindow









Variable
UniProt_ID
Coefficient












ALNHLPLEYNSALYSR_621.0_
CO6_HUMAN
2.38


538.3







TLAFVR_353.7_492.3
FA7_HUMAN
0.96





YGIEEHGK_311.5_599.3
CXA1_HUMAN
0.34





DPTFIPAPIQAK_433.2_461.2
ANGT_HUMAN
0.33





DFNQFSSGEK_386.8_333.2
FETA_HUMAN
0.13





QINSYVK_426.2_496.3
CBG_HUMAN
0.03





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
0





AQPVQVAEGSEPDGFWEALGGK_
GELS_HUMAN
−0.02


758.0_574.3







AEIEYLEK_497.8_552.3
LYAM1_HUMAN
−0.05





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
−0.12





LLAPSDSPEWLSFDVTGVVR_730._
TGFB1_HUMAN
−0.17


1430.3







EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
−0.31





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
−0.35





VPLALFALNR_557.3_620.4
PEPD_HUMAN
−0.43





AVYEAVLR_460.8_587.4
PEPD_HUMAN
−2.33
















TABLE 29







Lasso 32 LateWindow









Variable
UniProt_ID
Coefficient












QINSYVK_426.2_610.3
CBG_HUMAN
3.24





ILDGGNK_358.7_603.3
CXCL5_HUMAN
2.65





VFQYIDLHQDEFVQTLK_708.4_
CNDP1_HUMAN
2.55


375.2







SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
2.12





YSHYNER_323.5_418.2
HABP2_HUMAN
1.63





DEIPHNDIALLK_459.9_510.8
HABP2_HUMAN
1.22





SGVDLADSNQK_567.3_591.3
VGFR3_HUMAN
0.96





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
0.86





GTYLYNDCPGPGQDTDCR_697.0_
TNR1A_HUMAN
0.45


666.3







TSYQVYSK_488.2_787.4
C163A_HUMAN
−1.73





TGVAVNKPAEFTVDAK_549.6_
FLNA_HUMAN
−2.56


258.1







SPEAEDPLGVER_649.8_314.1
Z512B_HUMAN
−3.04





VPLALFALNR_557.3_620.4
PEPD_HUMAN
−3.33





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
−4.24





AVYEAVLR_460.8_587.4
PEPD_HUMAN
−5.83





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
−6.52





AALAAFNAQNNGSNFQLEEISR_
FETUA_HUMAN
−6.55


789.1_746.4


















TABLE 30







Lasso 100 Late Window









Variable
UniProt_ID
Coefficient












SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
4.13





ILDGGNK_358.7_603.3
CXCL5_HUMAN
3.57





QINSYVK_426.2_610.3
CBG_HUMAN
3.41





DEIPHNDIALLK_459.9_510.8
HABP2_HUMAN
1.64





VFQYIDLHQDEFVQTLK_708.4_
CNDP1_HUMAN
1.57


375.2







FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
1.45





LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.71





YSHYNER_323.5_418.2
HABP2_HUMAN
0.68





FFQYDTWK_567.8_712.3
IGF2_HUMAN
0.42





IEVNESGTVASSSTAVIVSAR_
PAI1_HUMAN
0.36


693.0_545.3







GTYLYNDCPGPGQDTDCR_697.0_
TNR1A_HUMAN
0.21


666.3







LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.1





VGVISFAQK_474.8_580.3
TFR2_HUMAN
0.08





TSYQVYSK_488.2_787.4
C163A_HUMAN
−0.36





ALNFGGIGVVVGHELTHAFDDQGR_
ECE1_HUMAN
−0.65


837.1_360.2







AYSDLSR_406.2_375.2
SAMP_HUMAN
−1.23





TGVAVNKPAEFTVDAK_549.6_
FLNA_HUMAN
−1.63


258.1







SPEAEDPLGVER_649.8_314.1
Z512B_HUMAN
−2.29





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
−2.58





VPLALFALNR_557.3_620.4
PEPD_HUMAN
−2.73





YISPDQLADLYK_713.4_277.2
ENOA_HUMAN
−2.87





AVDIPGLEAATPYR_736.9_286.1
TENA_HUMAN
−3.9





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
−5.29





AVYEAVLR_460.8_587.4
PEPD_HUMAN
−5.51





AALAAFNACINNGSNFQLEEISR_
FETUA_HUMAN
−6.49


789.1_746.4


















TABLE 31







Lasso Protein Late Window









Variable
UniProt_ID
Coefficient












SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
3.33





ILDGGNK_358.7_603.3
CXCL5_HUMAN
3.25





QINSYVK_426.2_496.3
CBG_HUMAN
2.41





YSHYNER_323.5_418.2
HABP2_HUMAN
1.82





ALEQDLPVNIK_620.4_798.5
CNDP1_HUMAN
1.32





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
1.27





GTYLYNDCPGPGQDTDCR_
TNR1A_HUMAN
0.26


697.0_666.3







IEVNESGTVASSSTAVIVSAR_
PAI1_HUMAN
0.18


693.0_545.3







LTTVDIVTLR_565.8_815.5
IL2RB_HUMAN
0.18





TSYQVYSK_488.2_787.4
C163A_HUMAN
−0.11





TGVAVNKPAEFTVDAK_549.6_
FLNA_HUMAN
−0.89


258.1







AYSDLSR_406.2_375.2
SAMP_HUMAN
−1.47





SPEAEDPLGVER_649.8_314.1
Z512B_HUMAN
−1.79





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
−2.22





YISPDQLADLYK_713.4_277.2
ENOA_HUMAN
−2.41





AVDIPGLEAATPYR_736.9_286.1
TENA_HUMAN
−2.94





AEIEYLEK_497.8_552.3
LYAM1_HUMAN
−5.18





AALAAFNAQNNGSNFQLEEISR_
FETUA_HUMAN
−5.71


789.1_746.4







AVYEAVLR_460.8_587.4
PEPD_HUMAN
−7.33
















TABLE 32







Lasso All Late Window









Variable
UniProt_ID
Coefficient












QINSYVK_426.2_496.3
CBG_HUMAN
0.5





DEIPHNDIALLK_459.9_510.8
HABP2_HUMAN
0.15





ALEQDLPVNIK_620.4_570.4
CNDP1_HUMAN
0.11





ILDGGNK_358.7_603.3
CXCL5_HUMAN
0.08





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
0.06





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
−0.39





AALAAFNACINNGSNFQLEEISR_
FETUA_HUMAN
−1.57


789.1_746.4







AEIEYLEK_497.8_552.3
LYAM1_HUMAN
−2.46





AVYEAVLR_460.8_587.4
PEPD_HUMAN
−2.92
















TABLE 33







Random Forest 32 Early Window









Variable
Protein
MeanDecreaseGini





ELIEELVNITQNQK_557.6_
IL13_HUMAN
 3.224369171


517.3







AHYDLR_387.7_288.2
FETUA_HUMAN
 1.869007658





FSVVYAK_407.2_381.2
FETUA_HUMAN
 1.770198171





ITLPDFTGDLR_624.3_
LBP_HUMAN
 1.710936472


288.2







ITGFLKPGK_320.9_301.2
LBP_HUMAN
 1.623922439





ITGFLKPGK_320.9_429.3
LBP_HUMAN
 1.408035272





ELIEELVNITQNQK_557.6_
IL13_HUMAN
 1.345412168


618.3







VFQFLEK_455.8_811.4
CO5_HUMAN
 1.311332013





VQTAHFK_277.5_431.2
CO8A_HUMAN
 1.308902373





FLNWIK_410.7_560.3
HABP2_HUMAN
 1.308093745





DAGLSWGSAR_510.3_390.2
NEUR4_HUMAN
 1.297033607





TLLPVSKPEIR_418.3_
CO5_HUMAN
 1.291280928


288.2







LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
1.28622301


972.0_798.4







QALEEFQK_496.8_680.3
CO8B_HUMAN
 1.191731825





FSVVYAK_407.2_579.4
FETUA_HUMAN
 1.078909138





ITLPDFTGDLR_624.3_
LBP_HUMAN
 1.072613747


920.5







AHYDLR_387.7_566.3
FETUA_HUMAN
 1.029562263





ALNHLPLEYNSALYSR_
CO6_HUMAN
1.00992071


621.0_538.3







DVLLLVHNLPQNLPGYFWYK_
PSG9_HUMAN
 1.007095529


810.4_967.5







SFRPFVPR_335.9_635.3
LBP_HUMAN
 0.970312536





SDLEVAHYK_531.3_617.3
CO8B_HUMAN
 0.967904893





VQEAHLTEDQIFYFPK_
CO8G_HUMAN
 0.960398254


655.7_701.4







VFQFLEK_455.8_276.2
CO5_HUMAN
 0.931652095





SLLQPNK_400.2_599.4
CO8A_HUMAN
 0.926470249





SFRPFVPR_335.9_272.2
LBP_HUMAN
 0.911599611





FLNWIK_410.7_561.3
HABP2_HUMAN
 0.852022868





LSSPAVITDK_515.8_743.4
PLMN_HUMAN
 0.825455824





DVLLLVHNLPQNLPGYFWYK_
PSG9_HUMAN
 0.756797142


810.4_594.3







ALVLELAK_428.8_672.4
INHBE_HUMAN
 0.748802555





DISEVVTPR_508.3_787.4
CFAB_HUMAN
 0.733731518
















TABLE 34







Random Forest 100 Early Window









Variable
Protein
MeanDecreaseGini












ELIEELVNITQNQK_557.6_
IL13_HUMAN
  1.709778508


517.3







LPNNVLQEK_527.8_844.5
AFAM_HUMAN
  0.961692716





AHYDLR_387.7_288.2
FETUA_HUMAN
  0.901586746





ITLPDFTGDLR_624.3_
LBP_HUMAN
  0.879119498


288.2







IEGNLIFDPNNYLPK_874.0_
APOB_HUMAN
  0.842483095


414.2







ITGFLKPGK_320.9_301.2
LBP_HUMAN
  0.806905233





FSVVYAK_407.2_381.2
FETUA_HUMAN
  0.790429706





ITGFLKPGK_320.9_429.3
LBP_HUMAN
  0.710312386





VFQFLEK_455.8_811.4
CO5_HUMAN
  0.709531553





LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
  0.624325189


972.0_798.4







DADPDTFFAK_563.8_825.4
AFAM_HUMAN
  0.618684313





FLNWIK_410.7_560.3
HABP2_HUMAN
  0.617501242





TASDFITK_441.7_781.4
GELS_HUMAN
  0.609275999





DAGLSWGSAR_510.3_390.2
NEUR4_HUMAN
  0.588718595





VQTAHFK_277.5_431.2
CO8A_HUMAN
 0.58669845





TLLPVSKPEIR_418.3_
COS_HUMAN
0.5670608


288.2







ELIEELVNITQNQK_557.6_
IL13_HUMAN
  0.555624783


618.3







TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
  0.537678415





HFQNLGK_422.2_527.2
AFAM_HUMAN
  0.535543137





TASDFITK_441.7_710.4
GELS_HUMAN
  0.532743323





ITLPDFTGDLR_624.3_
LBP_HUMAN
 0.51667902


920.5







QALEEFQK_496.8_680.3
CO8B_HUMAN
  0.511314017





AVLHIGEK_289.5_348.7
THBG_HUMAN
  0.510284122





FSVVYAK_407.2_579.4
FETUA_HUMAN
  0.503907813





LPNNVLQEK_527.8_730.4
AFAM_HUMAN
  0.501281631





AHYDLR_387.7_566.3
FETUA_HUMAN
  0.474166711





IAPQLSTEELVSLGEK_
AFAM_HUMAN
  0.459595701


857.5_333.2







WWGGQPLWITATK_772.4_
ENPP2_HUMAN
 0.44680777


929.5







TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
  0.434157773





DALSSVQESQVAQQAR_
APOC3_HUMAN
  0.432484862


573.0_502.3
















TABLE 35







Random Forest Protein Early Window









Variable
Protein
MeanDecreaseGini





ELIEELVNITQNQK_557.6_
IL13_HUMAN
 2.881452809


517.3







LPNNVLQEK_527.8_844.5
AFAM_HUMAN
 1.833987752





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
 1.608843881





IEGNLIFDPNNYLPK_874.0_
APOB_HUMAN
 1.594658208


414.2







VFQFLEK_455.8_811.4
CO5_HUMAN
 1.290134412





LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
 1.167981736


972.0_798.4







TASDFITK_441.7_781.4
GELS_HUMAN
 1.152847453





DAGLSWGSAR_510.3_390.2
NEUR4_HUMAN
 1.146752656





FSVVYAK_407.2_579.4
FETUA_HUMAN
 1.060168583





AVLHIGEK_289.5_348.7
THBG_HUMAN
 1.033625773





FLNWIK_410.7_560.3
HABP2_HUMAN
 1.022356789





QALEEFQK_496.8_680.3
CO8B_HUMAN
 0.990074129





DVLLLVHNLPQNLPGYFWYK_
PSG9_HUMAN
 0.929633865


810.4_967.5







WWGGQPLWITATK_772.4_
ENPP2_HUMAN
 0.905895642


929.5







VQEAHLTEDQIFYFPK_
CO8G_HUMAN
 0.883887371


655.7_701.4







NNQLVAGYLQGPNVNLEEK_
IL1RA_HUMAN
 0.806472085


700.7_999.5







SLLQPNK_400.2_599.4
CO8A_HUMAN
 0.783623222





DALSSVQESQVAQQAR_
APOC3_HUMAN
 0.774365756


573.0_672.4







NIQSVNVK_451.3_674.4
GROA_HUMAN
 0.767963386





HPWIVHWDQLPQYQLNR_
KS6A3_HUMAN
 0.759960139


744.0_1047.0







TTSDGGYSFK_531.7_860.4
INHA_HUMAN
 0.732813448





ALNHLPLEYNSALYSR_
CO6_HUMAN
 0.718779092


621.0_538.3







LSSPAVITDK_515.8_743.4
PLMN_HUMAN
 0.699547739





TGVAVNKPAEFTVDAK_
FLNA_HUMAN
 0.693159192


549.6_258.1







TLNAYDHR_330.5_312.2
PAR3_HUMAN
 0.647300964





DISEVVTPR_508.3_787.4
CFAB_HUMAN
 0.609165621





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
0.60043345





SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
 0.596079858





ALQDQLVLVAAK_634.9_
ANGT_HUMAN
 0.579034994


289.2







ALVLELAK_428.8_672.4
INHBE_HUMAN
 0.573458483
















TABLE 36







Random Forest All Early Window









Variable
Protein
MeanDecreaseGini





ELIEELVNITQNQK_557.6_
IL13_HUMAN
 0.730972421


517.3







ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
 0.409808774





AHYDLR_387.7_288.2
FETUA_HUMAN
 0.409298983





FSVVYAK_407.2_381.2
FETUA_HUMAN
 0.367730833





ITGFLKPGK_320.9_301.2
LBP_HUMAN
 0.350485117





VFQFLEK_455.8_811.4
CO5_HUMAN
 0.339289475





ELIEELVNITQNQK_557.6_
IL13_HUMAN
 0.334303166


618.3







LPNNVLQEK_527.8_844.5
AFAM_HUMAN
 0.329800706





IEGNLIFDPNNYLPK_
APOB_HUMAN
 0.325596677


874.0_414.2







ITGFLKPGK_320.9_429.3
LBP_HUMAN
0.31473104





FLNWIK_410.7_560.3
HABP2_HUMAN
 0.299810081





LIQDAVTGLTVNGQITGDK_
ITIH3_HUMAN
 0.295613448


972.0_798.4







ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
 0.292212699





DAGLSWGSAR_510.3_390.2
NEUR4_HUMAN
 0.285812225





TLLPVSKPEIR_418.3_288.2
CO5_HUMAN
 0.280857718





FSVVYAK_407.2_579.4
FETUA_HUMAN
 0.278531322





DADPDTFFAK_563.8_825.4
AFAM_HUMAN
 0.258938798





AHYDLR_387.7_566.3
FETUA_HUMAN
 0.256160046





QALEEFQK_496.8_680.3
CO8B_HUMAN
 0.245543641





HTLNQIDEVK_598.8_951.5
FETUA_HUMAN
 0.239528081





TASDFITK_441.7_781.4
GELS_HUMAN
 0.227485958





VFQFLEK_455.8_276.2
CO5_HUMAN
 0.226172392





DVLLLVHNLPQNLPGYFWYK_
PSG9_HUMAN
 0.218613384


810.4_967.5







VQTAHFK_277.5_431.2
CO8A_HUMAN
 0.217171548





SFRPFVPR_335.9_635.3
LBP_HUMAN
 0.214798112





HFQNLGK_422.2_527.2
AFAM_HUMAN
 0.211756476





SVSLPSLDPASAK_636.4_
APOB_HUMAN
 0.211319422


473.3







FGFGGSTDSGPIR_649.3_
ADA12_HUMAN
 0.206574494


745.4







HFQNLGK_422.2_285.1
AFAM_HUMAN
 0.204024196





AVLHIGEK_289.5_348.7
THBG_HUMAN
 0.201102917
















TABLE 37







Random Forest SummedGini Early Window









Transition
Protein
SumBestGini












ELIEELVNITQNQK_557.6_517.3
IL13_HUMAN
242.5373659





VFQFLEK_455.8_811.4
CO5_HUMAN
115.1113943





FLNWIK_410.7_560.3
HABP2_HUMAN
107.4572447





ITLPDFTGDLR_624.3_288.2
LBP_HUMAN
104.0742727





LIQDAVTGLTVNGQITGDK_972.0_798.4
ITIH3_HUMAN
103.3238077





DAGLSWGSAR_510.3_390.2
NEUR4_HUMAN
70.4151533





AHYDLR_387.7_288.2
FETUA_HUMAN
140.2670822





FSVVYAK_407.2_381.2
FETUA_HUMAN
121.3664352





LPNNVLQEK_527.8_844.5
AFAM_HUMAN
115.5211679





ITGFLKPGK_320.9_429.3
LBP_HUMAN
114.9512704





ITGFLKPGK_320.9_301.2
LBP_HUMAN
112.916627





IEGNLIFDPNNYLPK_874.0_414.2
APOB_HUMAN
52.21169288





VQTAHFK_277.5_431.2
CO8A_HUMAN
144.5237215





TLLPVSKPEIR_418.3_288.2
CO5_HUMAN
96.16982897





QALEEFQK_496.8_680.3
CO8B_HUMAN
85.35050759





FSVVYAK_407.2_579.4
FETUA_HUMAN
73.23969945





ELIEELVNITQNQK_557.6_618.3
IL13_HUMAN
61.61450671





TASDFITK_441.7_781.4
GELS_HUMAN
61.32155633





DVLLLVHNLPQNLPGYFWYK_810.4_967.5
PSG9_HUMAN
99.68404123





AVLHIGEK_289.5_348.7
THBG_HUMAN
69.96748485





ITLPDFTGDLR_624.3_920.5
LBP_HUMAN
56.66810872





WWGGQPLWITATK_772.4_929.5
ENPP2_HUMAN
56.54173176





VQEAHLTEDQIFYFPK_655.7_701.4
CO8G_HUMAN
47.92505575





DADPDTFFAK_563.8_825.4
AFAM_HUMAN
40.34147696





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
145.0311483





FGFGGSTDSGPIR_649.3_745.4
ADA12_HUMAN
109.4072996





FLPCENK_454.2_550.2
IL10_HUMAN
105.7756691





VQTAHFK_277.5_502.3
CO8A_HUMAN
101.5877845





VFQFLEK_455.8_276.2
CO5_HUMAN
95.71159157





TYLHTYESEI_628.3_908.4
ENPP2_HUMAN
94.92157517





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
90.67568777





NKPGVYTDVAYYLAWIR_677.0_545.3
FA12_HUMAN
90.35890105





LEEHYELR_363.5_580.3
PAI2_HUMAN
88.44833508





HPWIVHWDQLPQYQLNR_744.0_1047.0
KS6A3_HUMAN
88.37680942





HTLNQIDEVK_598.8_951.5
FETUA_HUMAN
87.63064143





LPNNVLQEK_527.8_730.4
AFAM_HUMAN
86.64484642





ALDLSLK_380.2_575.3
ITIH3_HUMAN
83.51201287





YGIEEHGK_311.5_599.3
CXA1_HUMAN
82.47620831





LSSPAVITDK_515.8_830.5
PLMN_HUMAN
81.5433587





LEEHYELR_363.5_288.2
PAI2_HUMAN
79.01571985





NVIQISNDLENLR_509.9_402.3
LEP_HUMAN
78.86670236





SGFSFGFK_438.7_732.4
CO8B_HUMAN
78.71961929





SDLEVAHYK_531.3_617.3
CO8B_HUMAN
78.24005567





NADYSYSVWK_616.8_333.2
CO5_HUMAN
76.07974354





AHYDLR_387.7_566.3
FETUA_HUMAN
74.68253347





GAVHVVVAETDYQSFAVLYLER_822.8_580.3
CO8G_HUMAN
73.75860248





LIENGYFHPVK_439.6_627.4
F13B_HUMAN
73.74965194





ALDLSLK_380.2_185.1
ITIH3_HUMAN
72.760739





WWGGQPLWITATK_772.4_373.2
ENPP2_HUMAN
72.51936706





FGFGGSTDSGPIR_649.3_946.5
ADA12_HUMAN
72.49183198





GLQYAAQEGLLALQSELLR_1037.1_929.5
LBP_HUMAN
67.17588648





HFQNLGK_422.2_527.2
AFAM_HUMAN
66.11702719





YSHYNER_323.5_581.3
HABP2_HUMAN
65.56238612





ISQGEADINIAFYQR_575.6_684.4
MMP8_HUMAN
65.50301246





TGVAVNKPAEFTVDAK_549.6_258.1
FLNA_HUMAN
64.85259525





NIQSVNVK_451.3_674.4
GROA_HUMAN
64.53010225





DALSSVQESQVAQQAR_573.0_672.4
APOC3_HUMAN
64.12149927





SLLQPNK_400.2_599.4
CO8A_HUMAN
62.68167847





SFRPFVPR_335.9_635.3
LBP_HUMAN
61.90157662





NNQLVAGYLQGPNVNLEEK_700.7_999.5
IL1RA_HUMAN
61.54435815





LYYGDDEK_501.7_563.2
CO8A_HUMAN
60.16700473





SWNEPLYHLVTEVR_581.6_716.4
PRL_HUMAN
59.78209065





SGVDLADSNQK_567.3_662.3
VGFR3_HUMAN
58.93982896





GTYLYNDCPGPGQDTDCR_697.0_335.2
TNR1A_HUMAN
58.72963941





HATLSLSIPR_365.6_472.3
VGFR3_HUMAN
57.98669834





FIVGFTR_420.2_261.2
CCL20_HUMAN
57.23165578





QNYHQDSEAAINR_515.9_544.3
FRIH_HUMAN
57.21116697





DVLLLVHNLPQNLPGYFWYK_810.4_594.3
PSG9_HUMAN
56.84150484





FLNWIK_410.7_561.3
HABP2_HUMAN
56.37258274





SLQAFVAVAAR_566.8_487.3
IL23A_HUMAN
56.09012981





HFQNLGK_422.2_285.1
AFAM_HUMAN
56.04480022





GPGEDFR_389.2_322.2
PTGDS_HUMAN
55.7583763





NKPGVYTDVAYYLAWIR_677.0_821.5
FA12_HUMAN
55.53857645





LIQDAVTGLTVNGQITGDK_972.0_640.4
ITIH3_HUMAN
55.52577583





YYGYTGAFR_549.3_450.3
TRFL_HUMAN
54.27147366





TLNAYDHR_330.5_312.2
PAR3_HUMAN
54.19190934





IQTHSTTYR_369.5_627.3
F13B_HUMAN
54.18950583





TASDFITK_441.7_710.4
GELS_HUMAN
54.1056456





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
53.8997252





DADPDTFFAK_563.8_302.1
AFAM_HUMAN
53.85914848





SVSLPSLDPASAK_636.4_473.3
APOB_HUMAN
53.41996191





TTSDGGYSFK_531.7_860.4
INHA_HUMAN
52.24655536





AFTECCVVASQLR_770.9_574.3
CO5_HUMAN
51.67853429





ELPQSIVYK_538.8_409.2
FBLN3_HUMAN
51.35853002





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
51.23842124





FQLSETNR_497.8_605.3
PSG2_HUMAN
51.01576848





GSLVQASEANLQAAQDFVR_668.7_806.4
ITIH1_HUMAN
50.81923338





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
50.54425114





ECEELEEK_533.2_405.2
IL15_HUMAN
50.41977421





NADYSYSVWK_616.8_769.4
CO5_HUMAN
50.36434595





SLLQPNK_400.2_358.2
CO8A_HUMAN
49.75593162





LIEIANHVDK_384.6_683.4
ADA12_HUMAN
49.43389721





DISEVVTPR_508.3_787.4
CFAB_HUMAN
49.00234897





AEVIWTSSDHQVLSGK_586.3_300.2
PD1L1_HUMAN
48.79028835





SGVDLADSNQK_567.3_591.3
VGFR3_HUMAN
48.70665587





SILFLGK_389.2_201.1
THBG_HUMAN
48.5997957





AVLHIGEK_289.5_292.2
THBG_HUMAN
48.4605866





QLYGDTGVLGR_589.8_501.3
CO8G_HUMAN
48.11414904





FSLVSGWGQLLDR_493.3_516.3
FA7_HUMAN
47.59635333





DSPVLIDFFEDTER_841.9_399.2
HRG_HUMAN
46.83840473





INPASLDK_429.2_630.4
C163A_HUMAN
46.78947931





GAVHVVVAETDYQSFAVLYLER_822.8_863.5
CO8G_HUMAN
46.66185339





FLQEQGHR_338.8_497.3
CO8G_HUMAN
46.64415952





LNIGYIEDLK_589.3_837.4
PAI2_HUMAN
46.5879123





LSSPAVITDK_515.8_743.4
PLMN_HUMAN
46.2857838





GLQYAAQEGLLALQSELLR_1037.1_858.5
LBP_HUMAN
45.7427767





SDGAKPGPR_442.7_213.6
COLI_HUMAN
45.27828366





GYQELLEK_490.3_502.3
FETA_HUMAN
43.52928868





GGEGTGYFVDFSVR_745.9_869.5
HRG_HUMAN
43.24514327





ADLFYDVEALDLESPK_913.0_447.2
HRG_HUMAN
42.56268679





ADLFYDVEALDLESPK_913.0_331.2
HRG_HUMAN
42.48967422





EAQLPVIENK_570.8_699.4
PLMN_HUMAN
42.21213429





SILFLGK_389.2_577.4
THBG_HUMAN
42.03379581





HTLNQIDEVK_598.8_958.5
FETUA_HUMAN
41.98377176





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
41.89547273





FLPCENK_454.2_390.2
IL10_HUMAN
41.66612478





LIEIANHVDK_384.6_498.3
ADA12_HUMAN
41.50878046





DEIPHNDIALLK_459.9_510.8
HABP2_HUMAN
41.27830935





SLQAFVAVAAR_566.8_804.5
IL23A_HUMAN
41.00430596





YISPDQLADLYK_713.4_277.2
ENOA_HUMAN
40.90053801





SLPVSDSVLSGFEQR_810.9_836.4
CO8G_HUMAN
40.62020941





DGSPDVTTADIGANTPDATK_973.5_531.3
PGRP2_HUMAN
40.33913091





NTGVISVVTTGLDR_716.4_662.4
CADH1_HUMAN
40.05291612





ALVLELAK_428.8_672.4
INHBE_HUMAN
40.01646465





YEFLNGR_449.7_293.1
PLMN_HUMAN
39.83344278





WGAAPYR_410.7_577.3
PGRP2_HUMAN
39.52766213





TFLTVYWTPER_706.9_401.2
ICAM1_HUMAN
39.13662034





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
38.77511119





VGVISFAQK_474.8_693.4
TFR2_HUMAN
38.5823457





IIEVEEEQEDPYLNDR_996.0_777.4
FBLN1_HUMAN
38.30913304





TGYYFDGISR_589.8_694.4
FBLN1_HUMAN
38.30617106





LQGTLPVEAR_542.3_571.3
CO5_HUMAN
37.93064544





DSPVLIDFFEDTER_841.9_512.3
HRG_HUMAN
37.4447737





AALAAFNAQNNGSNFQLEEISR_789.1_746.4
FETUA_HUMAN
37.02483715





DGSPDVTTADIGANTPDATK_973.5_844.4
PGRP2_HUMAN
36.59864788





ILILPSVTR_506.3_785.5
PSGx_HUMAN
36.43814815





SVSLPSLDPASAK_636.4_885.5
APOB_HUMAN
36.27689491





TLAFVR_353.7_492.3
FA7_HUMAN
36.18771771





VAPGVANPGTPLA_582.3_555.3
A6NIT4_HUMAN
35.70677357





HELTDEELQSLFTNFANVVDK_817.1_906.5
AFAM_HUMAN
35.14441609





AGLLRPDYALLGHR_518.0_369.2
PGRP2_HUMAN
35.13047098





GDTYPAELYITGSILR_885.0_1332.8
F13B_HUMAN
34.97832404





LFIPQITR_494.3_727.4
PSG9_HUMAN
34.76811249





GYQELLEK_490.3_631.4
FETA_HUMAN
34.76117605





VSEADSSNADWVTK_754.9_533.3
CFAB_HUMAN
34.49787512





LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
34.48448691





SFRPFVPR_335.9_272.2
LBP_HUMAN
34.27529415





ILDGGNK_358.7_490.2
CXCL5_HUMAN
34.2331388





EANQSTLENFLER_775.9_678.4
IL4_HUMAN
34.14295797





DFNQFSSGEK_386.8_189.1
FETA_HUMAN
34.05459951





IEEIAAK_387.2_660.4
CO5_HUMAN
33.93778148





TEFLSNYLTNVDDITLVPGTLGR_846.8_600.3
ENPP2_HUMAN
33.87864446





LPATEKPVLLSK_432.6_347.2
HYOU1_HUMAN
33.69005522





FLQEQGHR_338.8_369.2
CO8G_HUMAN
33.61179024





APLTKPLK_289.9_357.2
CRP_HUMAN
33.59900279





YSHYNER_323.5_418.2
HABP2_HUMAN
33.50888447





TSYQVYSK_488.2_787.4
C163A_HUMAN
33.11650018





IALGGLLFPASNLR_481.3_657.4
SHBG_HUMAN
33.02974341





TGISPLALIK_506.8_741.5
APOB_HUMAN
32.64471573





LYYGDDEK_501.7_726.3
CO8A_HUMAN
32.60782458





IVLSLDVPIGLLQILLEQAR_735.1_503.3
UCN2_HUMAN
32.37907686





EAQLPVIENK_570.8_329.2
PLMN_HUMAN
32.34049256





TGYYFDGISR_589.8_857.4
FBLN1_HUMAN
32.14526507





VGVISFAQK_474.8_580.3
TFR2_HUMAN
32.11753213





FQSVFTVTR_542.8_623.4
C1QC_HUMAN
32.11360444





TSDQIHFFFAK_447.6_659.4
ANT3_HUMAN
31.95867038





IAPQLSTEELVSLGEK_857.5_333.2
AFAM_HUMAN
31.81531364





EVFSKPISWEELLQ_852.9_260.2
FA40A_HUMAN
31.36698726





DEIPHNDIALLK_459.9_260.2
HABP2_HUMAN
31.1839869





NYFTSVAHPNLFIATK_608.3_319.2
ILIA_HUMAN
31.09867061





ITENDIQIALDDAK_779.9_632.3
APOB_HUMAN
30.77026845





DTYVSSFPR_357.8_272.2
TCEA1_HUMAN
30.67784731





TDAPDLPEENQAR_728.3_843.4
CO5_HUMAN
30.66251941





LFYADHPFIFLVR_546.6_647.4
SERPH_HUMAN
30.65831566





TEQAAVAR_423.2_487.3
FA12_HUMAN
30.44356842





AVGYLITGYQR_620.8_737.4
PZP_HUMAN
30.36425528





HSHESQDLR_370.2_288.2
HRG_HUMAN
30.34684703





IALGGLLFPASNLR_481.3_412.3
SHBG_HUMAN
30.34101643





IAQYYYTFK_598.8_884.4
F13B_HUMAN
30.23453833





SLPVSDSVLSGFEQR_810.9_723.3
CO8G_HUMAN
30.11396489





IIGGSDADIK_494.8_762.4
C1S_HUMAN
30.06572687





QTLSWTVTPK_580.8_545.3
PZP_HUMAN
30.04139865





HYFIAAVER_553.3_658.4
FA8_HUMAN
29.80239884





QVCADPSEEWVQK_788.4_374.2
CCL3_HUMAN
29.61435573





DLHLSDVFLK_396.2_366.2
CO6_HUMAN
29.60077507





NIQSVNVK_451.3_546.3
GROA_HUMAN
29.47619619





QTLSWTVTPK_580.8_818.4
PZP_HUMAN
29.40047934





HSHESQDLR_370.2_403.2
HRG_HUMAN
29.32242262





LLEVPEGR_456.8_356.2
C1S_HUMAN
29.14169137





LIENGYFHPVK_439.6_343.2
F13B_HUMAN
28.63056809





EDTPNSVWEPAK_686.8_630.3
C1S_HUMAN
28.61352686





AFTECCVVASQLR_770.9_673.4
CO5_HUMAN
28.57830281





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
28.27203693





VSFSSPLVAISGVALR_802.0_715.4
PAPP1_HUMAN
28.13008712





DPDQTDGLGLSYLSSHIANVER_796.4_456.2
GELS_HUMAN
28.06549895





VVGGLVALR_442.3_784.5
FA12_HUMAN
28.00684006





NEIVFPAGILQAPFYTR_968.5_357.2
ECE1_HUMAN
27.97758456





QVCADPSEEWVQK_788.4_275.2
CCL3_HUMAN
27.94276837





LQDAGVYR_461.2_680.3
PD1L1_HUMAN
27.88063261





IQTHSTTYR_369.5_540.3
F13B_HUMAN
27.68873826





TPSAAYLWVGTGASEAEK_919.5_849.4
GELS_HUMAN
27.66889639





ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
SHBG_HUMAN
27.63105727





ALQDQLVLVAAK_634.9_289.2
ANGT_HUMAN
27.63097319





IEEIAAK_387.2_531.3
CO5_HUMAN
27.52427934





TAVTANLDIR_537.3_288.2
CHL1_HUMAN
27.44246841





VSEADSSNADWVTK_754.9_347.2
CFAB_HUMAN
27.43976782





ITENDIQIALDDAK_779.9_873.5
APOB_HUMAN
27.39263522





SSNNPHSPIVEEFQVPYNK_729.4_521.3
C15_HUMAN
27.34493617





HPWIVHWDQLPQYQLNR_744.0_918.5
K56A3_HUMAN
27.19681613





TPSAAYLWVGTGASEAEK_919.5_428.2
GELS_HUMAN
27.17319953





AFLEVNEEGSEAAASTAVVIAGR_764.4_614.4
ANT3_HUMAN
27.10487351





WGAAPYR_410.7_634.3
PGRP2_HUMAN
27.09930054





IEVNESGTVASSSTAVIVSAR_693.0_545.3
PAI1_HUMAN
27.02567296





AEAQAQYSAAVAK_654.3_908.5
ITIH4_HUMAN
26.98305259





VPLALFALNR_557.3_917.6
PEPD_HUMAN
26.96988826





TLEAQLTPR_514.8_685.4
HEP2_HUMAN
26.94672621





QALEEFQK_496.8_551.3
CO8B_HUMAN
26.67037155





WNFAYWAAHQPWSR_607.3_545.3
PRG2_HUMAN
26.62600679





IYLQPGR_423.7_570.3
ITIH2_HUMAN
26.58752589





FFQYDTWK_567.8_840.4
IGF2_HUMAN
26.39942037





NEIWYR_440.7_357.2
FA12_HUMAN
26.35177282





GGEGTGYFVDFSVR_745.9_722.4
HRG_HUMAN
26.31688167





VGEYSLYIGR_578.8_708.4
SAMP_HUMAN
26.17367498





TAHISGLPPSTDFIVYLSGLAPSIR_871.5_800.5
TENA_HUMAN
26.13688183





GVTGYFTFNLYLK_508.3_260.2
PSG5_HUMAN
26.06007032





DYWSTVK_449.7_620.3
APOC3_HUMAN
26.03765187





YENYTSSFFIR_713.8_756.4
IL12B_HUMAN
25.9096605





YGLVTYATYPK_638.3_334.2
CFAB_HUMAN
25.84440452





LFIPQITR_494.3_614.4
PSG9_HUMAN
25.78081129





YEFLNGR_449.7_606.3
PLMN_HUMAN
25.17159874





SEPRPGVLLR_375.2_454.3
FA7_HUMAN
25.16444381





NSDQEIDFK_548.3_294.2
S10A5_HUMAN
25.12266401





YEVQGEVFTKPQLWP_911.0_293.1
CRP_HUMAN
24.77595195





GVTGYFTFNLYLK_508.3_683.9
PSG5_HUMAN
24.75289081





ISLLLIESWLEPVR_834.5_371.2
CSH_HUMAN
24.72379326





ALLLGWVPTR_563.3_373.2
PAR4_HUMAN
24.68096599





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
24.53420489





SGAQATWTELPWPHEK_613.3_793.4
HEMO_HUMAN
24.25610995





AQPVQVAEGSEPDGFWEALGGK_758.0_623.4
GELS_HUMAN
24.18769142





DLPHITVDR_533.3_490.3
MMP7_HUMAN
24.02606052





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
24.00163743





AVGYLITGYQR_620.8_523.3
PZP_HUMAN
23.93958524





GFQALGDAADIR_617.3_717.4
TIMP1_HUMAN
23.69249513





YEVQGEVFTKPQLWP_911.0_392.2
CRP_HUMAN
23.67764212





SDGAKPGPR_442.7_459.2
COLI_HUMAN
23.63551614





GFQALGDAADIR_617.3_288.2
TIMP1_HUMAN
23.55832742





IAPQLSTEELVSLGEK_857.5_533.3
AFAM_HUMAN
23.38139357





DTDTGALLFIGK_625.8_217.1
PEDF_HUMAN
23.33375418





LHEAFSPVSYQHDLALLR_699.4_380.2
FA12_HUMAN
23.27455931





IYLQPGR_423.7_329.2
ITIH2_HUMAN
23.19122626
















TABLE 38







Random Forest 32 Middle Window









Variable
UniProt_ID
MeanDecreaseGini





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
2.27812193





LLAPSDSPEWLSFDVTGVVR_730.1_430.3
TGFB1_HUMAN
 2.080133179





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
 1.952233942





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
 1.518833357





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
 1.482593086





VFQFLEK_455.8_811.4
CO5_HUMAN
 1.448810425





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
 1.389922815





YGIEEHGK_311.5_599.3
CXA1_HUMAN
 1.386794676





TLAFVR_353.7_492.3
FA7_HUMAN
 1.371530925





VLEPTLK_400.3_587.3
VTDB_HUMAN
 1.368583173





VLEPTLK_400.3_458.3
VTDB_HUMAN
 1.336029064





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
 1.307024357





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
 1.282930911





LHEAFSPVSYQHDLALLR_699.4_251.2
FA12_HUMAN
1.25362163





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
 1.205539225





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
 1.201047302





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
 1.189617326





SEYGAALAWEK_612.8_845.5
CO6_HUMAN
 1.120706696





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
 1.107036657





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
 1.083264902





IEEIAAK_387.2_660.4
CO5_HUMAN
 1.043635292





ALNHLPLEYNSALYSR_621.0_538.3
CO6_HUMAN
 0.962643698





TLLPVSKPEIR_418.3_514.3
CO5_HUMAN
 0.933440467





TEQAAVAR_423.2_615.4
FA12_HUMAN
 0.878933553





DLHLSDVFLK_396.2_260.2
CO6_HUMAN
 0.816855601





ALQDQLVLVAAK_634.9_289.2
ANGT_HUMAN
 0.812620232





SLQAFVAVAAR_566.8_804.5
IL23A_HUMAN
 0.792274782





QGHNSVFLIK_381.6_260.2
HEMO_HUMAN
 0.770830031





ALQDQLVLVAAK_634.9_956.6
ANGT_HUMAN
 0.767468246





SLDFTELDVAAEK_719.4_874.5
ANGT_HUMAN
 0.745827911
















TABLE 39







Random Forest 100 Middle Window









Variable
UniProt_ID
MeanDecreaseGini





SEYGAALAWEK_612.8_788.4
CO6_HUMAN
  1.241568411





ALNHLPLEYNSALYSR_621.0_696.4
CO6_HUMAN
  0.903126414





LLAPSDSPEWLSFDVTGVVR_730._1430.3
TGFB1_HUMAN
  0.846216563





ANLINNIFELAGLGK_793.9_299.2
LCAP_HUMAN
  0.748261193





VFQFLEK_455.8_811.4
CO5_HUMAN
  0.717545171





VEHSDLSFSK_383.5_234.1
B2MG_HUMAN
  0.683219617





ELPQSIVYK_538.8_417.7
FBLN3_HUMAN
  0.671091545





LNIGYIEDLK_589.3_950.5
PAI2_HUMAN
  0.652293621





VLEPTLK_400.3_587.3
VTDB_HUMAN
  0.627095631





VNHVTLSQPK_374.9_244.2
B2MG_HUMAN
  0.625773888





VLEPTLK_400.3_458.3
VTDB_HUMAN
  0.613655529





AQPVQVAEGSEPDGFWEALGGK_758.0_574.3
GELS_HUMAN
  0.576305627





TLFIFGVTK_513.3_811.5
PSG4_HUMAN
  0.574056825





YGIEEHGK_311.5_599.3
CXA1_HUMAN
  0.570270447





VPLALFALNR_557.3_620.4
PEPD_HUMAN
  0.556087614





EVFSKPISWEELLQ_852.9_376.2
FA40A_HUMAN
  0.531461012





VEHSDLSFSK_383.5_468.2
B2MG_HUMAN
  0.531214597





TLAFVR_353.7_492.3
FA7_HUMAN
 0.53070743





DALSSVQESQVAQQAR_573.0_502.3
APOC3_HUMAN
  0.521633041





SEYGAALAWEK__612.8_845.5
CO6_HUMAN
  0.514509661





SLDFTELDVAAEK_719.4_316.2
ANGT_HUMAN
 0.50489698





SEPRPGVLLR_375.2_654.4
FA7_HUMAN
0.4824926





LHEAFSPVSYQHDLALLR_699.4_251.2
FA12_HUMAN
 0.48217238





TYLHTYESEI_628.3_515.3
ENPP2_HUMAN
  0.472286273





AVDIPGLEAATPYR_736.9_399.2
TENA_HUMAN
  0.470892051





FSLVSGWGQLLDR_493.3_403.2
FA7_HUMAN
  0.465839813





GEVTYTTSQVSK_650.3_750.4
EGLN_HUMAN
  0.458736205





VNHVTLSQPK_374.9_459.3
B2MG_HUMAN
  0.454348892





HFQNLGK_422.2_527.2
AFAM_HUMAN
 0.45127405





YGIEEHGK_311.5_341.2
CXA1_HUMAN
  0.430641646
















TABLE 40







Random Forest Protein Middle Window











Variable
UniProt_ID
MeanDecreaseGini







SEYGAALAWEK_
CO6_HUMAN
2.09649626



612.8_788.4









LLAPSDSPEWLSF
TGFB1_HUMAN
1.27664656



DVTGVVR_





730.1_430.3









VFQFLEK_
CO5_HUMAN
1.243884833



455.8_811.4









ANLINNIFELAG
LCAP_HUMAN
1.231814882



LGK_





793.9_299.2









VEHSDLSFSK_
B2MG_HUMAN
1.188808078



383.5_234.1









ELPQSIVYK_
FBLN3_HUMAN
1.185075445



538.8_417.7









LNIGYIEDLK_
PAI2_HUMAN
1.122351536



589.3_950.5









VLEPTLK_
VTDB_HUMAN
1.062664798



400.3_458.3









VPLALFALNR_
PEPD_HUMAN
1.019466776



557.3_620.4









TLAFVR_
FA7_HUMAN
0.98797064



353.7_492.3









TLFIFGVTK_
PSG4_HUMAN
0.980159531



513.3_811.5









AQPVQVAEGSEP
GELS_HUMAN
0.960286027



DGFWEALGGK









758.0_574.3





DALSSVQESQVA
APOC3_HUMAN
0.947091926



QQAR_





573.0_502.3









YGIEEHGK_
CXA1_HUMAN
0.946937719



311.5_599.3









EVFSKPISWEELLQ_
FA40A_HUMAN
0.916262164



852.9_376.2









LHEAFSPVSYQ
FA12_HUMAN
0.891310053



HDLALLR_





699.4_251.2









SLDFTELDVAAEK_
ANGT_HUMAN
0.884498494



719.4_316.2









TYLHTYESEI_
ENPP2_HUMAN
0.869043942



628.3_515.3









HFQNLGK_
AFAM_HUMAN
0.865435217



422.2_527.2









AVDIPGLEAATPYR_
TENA_HUMAN
0.844842109



736.9_399.2









TLNAYDHR_
PAR3_HUMAN
0.792615068



330.5_312.2









DVLLLVHNLPQNL
PSG7_HUMAN
0.763629346



TGHIWYK_





791.8_310.2









GPITSAAELNDPQ
EGLN_HUMAN
0.762305265



SILLR_





632.4_826.5









VVLSSGSGPGLDL
SHBG_HUMAN
0.706312721



PLVLGLPLQLK_





791.5_598.4









SLQNASAIESILK_
IL3_HUMAN
0.645503581



687.4_860.5









HYINLITR_
NPY_HUMAN
0.62631682



515.3_301.1









VELAPLPSWQPVGK_
ICAM1_HUMAN
0.608991877



760.9_342.2









LQVNTPLVGASLLR_
BPIA1_HUMAN
0.607801279



741.0_925.6









TLEAQLTPR_
HEP2_HUMAN
0.597771074



514.8_814.4









SDGAKPGPR_
COLI_HUMAN
0.582773073



442.7_459.2

















TABLE 41 







Random Forest All Middle Window









Variable
UniProt ID
MeanDecreaseGini





SEYGAALAWEK_
CO6_HUMAN
0.493373282


612.8_788.4







ALNHLPLEYNSAL
CO6_HUMAN
0.382180772


YSR_




621.0_696.4







VFQFLEK_
CO5_HUMAN
0.260292083


455.8_811.4







LLAPSDSPEWLSFD
TGFB1_HUMAN
0.243156718


VTGWR_




730.1_430.3







NADYSYSVWK_
CO5_HUMAN
0.242388196


616.8_769.4







VLEPTLK_
VTDB_HUMAN
0.238171849


400.3_458.3







VEHSDLSFSK_
B2MG_HUMAN
0.236873731


383.5_234.1







ELPQSIVYK_
FBLN3_HUMAN
0.224727161


538.8_417.7







VLEPTLK_
VTDB_HUMAN
0.222105614


400.3_587.3







TLFIFGVTK_
PSG4_HUMAN
0.210807574


513.3_811.5







ANLINNIFELAGLGK_
LCAP_HUMAN
0.208714978


793.9_299.2







LNIGYIEDLK_
PAI2_HUMAN
0.208027555


589.3_950.5







SEYGAALAWEK_
CO6_HUMAN
0.197362212


612.8_845.5







VNHVTLSQPK_
B2MG_HUMAN
0.195728091


374.9_244.2







YGIEEHGK_
CXA1_HUMAN
0.189969499


311.5_599.3







HFQNLGK_
AFAM_HUMAN
0.189572857


422.2_527.2







AGITIPR_
IL17_HUMAN
0.188351054


364.2_486.3







AQPVQVAEGSE
GELS_HUMAN
0.185069517


PDGFWEALGGK_




758.0_574.3







SLDFTELDVAAEK_
ANGT_HUMAN
0.173688295


719.4_316.2







TLAFVR_
FA7_HUMAN
0.170636045


353.7_492.3







SEPRPGVLLR_
FA7_HUMAN
0.170608352


375.2_654.4







TLLIANETLR_
IL5_HUMAN
0.16745571


572.3_703.4







ALNHLPLEYNS
CO6_HUMAN
0.161514946


ALYSR_




621.0_538.3







LHEAFSPVSYQ
FA12_HUMAN
0.15852146


HDLALLR_




699.4_251.2







DGSPDVTTADI
PGRP2_HUMAN
0.154028378


GANTPDATK_




973.5_844.4







VPLALFALNR_
PEPD_HUMAN
0.153725879


557.3_620.4







AVDIPGLEAATPYR_
TENA_HUMAN
0.150920884


736.9_399.2







YGIEEHGK_
CXA1_HUMAN
0.150319671


311.5_341.2







FSLVSGWGQLLDR_
FA7_HUMAN
0.144781622


493.3_403.2







IEEIAAK_
CO5_HUMAN
0.141983196


387.2_660.4
















TABLE 42







Random Forest 32 Middle-Late Window











Variable
UniProt_ID
MeanDecreaseGini







VPLALFALNR_
PEPD_HUMAN
4.566619475



557.3_620.4









VFQFLEK_
CO5_HUMAN
3.062474666



455.8_811.4









AQPVQVAEGSEP
GELS_HUMAN
3.033740627



DGFWEALGGK_





758.0_574.3









LIEIANHVDK_
ADA12_HUMAN
2.825082394



384.6_498.3









DALSSVQESQVA
APOC3_HUMAN
2.787777983



QQAR_





573.0_502.3









TLAFVR_
FA7_HUMAN
2.730532075



353.7_492.3









ALNHLPLEYNSA
CO6_HUMAN
2.671290375



LYSR_





621.0_696.4









AVYEAVLR_
PEPD_HUMAN
2.621357053



460.8_587.4









SEPRPGVLLR_
FA7_HUMAN
2.57568964



375.2_654.4









TYLHTYESEI_
ENPP2_HUMAN
2.516708906



628.3_515.3









ALNHLPLEYNS
CO6_HUMAN
2.497348374



ALYSR_





621.0_538.3









LIEIANHVDK_
ADA12_HUMAN
2.457401462



384.6_683.4









YGIEEHGK_
CXA1_HUMAN
2.396824268



311.5_599.3









VLEPTLK_
VTDB_HUMAN
2.388105564



400.3_587.3









SEYGAALAWEK_
CO6_HUMAN
2.340473883



612.8_788.4









WSAGLTSSQVD
CBG_HUMAN
2.332007976



LYIPK_





883.0_515.3









FGFGGSTDSGPIR_
ADA12_HUMAN
2.325669514



649.3_946.5









SEYGAALAWEK_
CO6_HUMAN
2.31761671



612.8_845.5









QINSYVK_
CBG_HUMAN
2.245221163



426.2_496.3









QINSYVK_
CBG_HUMAN
2.212307699



426.2_610.3









TEQAAVAR_
FA12_HUMAN
2.105860336



423.2_615.4









AVYEAVLR_
PEPD_HUMAN
2.098321893



460.8_750.4









TEQAAVAR_
FA12_HUMAN
2.062684763



423.2_487.3









DFNQFSSGEK_
FETA_HUMAN
2.05160689



386.8_333.2









SLQAFVAVAAR_
IL23A_HUMAN
1.989521006



566.8_804.5









SLDFTELDVAAEK_
ANGT_HUMAN
1.820628782



719.4_316.2









DPTFIPAPIQAK_
ANGT_HUMAN
1.763514326



433.2_556.3









DPTFIPAPIQAK_
ANGT_HUMAN
1.760870392



433.2_461.2









VLEPTLK_
VTDB_HUMAN
1.723389354



400.3_458.3









YENYTSSFFIR_
IL12B_HUMAN
1.63355187



713.8_756.4

















TABLE 43







Random Forest 100 Middle-Late Window









Variable
UniProt_ID
MeanDecreaseGini





VPLALFALNR_
PEPD_HUMAN
1.995805024


557.3_620.4







VFQFLEK_
CO5_HUMAN
1.235926416


455.8_811.4







DALSSVQESQVAQQAR_
APOC3_HUMAN
1.187464899


573.0_502.3







EVFSKPISWEELLQ_
FA40A_HUMAN
1.166642578


852.9_376.2







AQPVQVAEGSEPDGFW
GELS_HUMAN
1.146077071


EALGGK_




758.0_574.3







TLAFVR_
FA7_HUMAN
1.143038275


353.7_492.3







ANLINNIFELAGLGK_
LCAP_HUMAN
1.130656591


793.9_299.2







ALNHLPLEYNSALYSR_
CO6_HUMAN
1.098305298


621.0_538.3







ELPQSIVYK_
FBLN3_HUMAN
1.096715712


538.8_417.7







LLAPSDSPEWLSFDV
TGFB1_HUMAN
1.086171713


TGWR_




730.1_430.3







YGIEEHGK_
CXA1_HUMAN
1.071880823


311.5_341.2







ALNHLPLEYNSALY
CO6_HUMAN
1.062278869


SR_




621.0_696.4







TQILEWAAER_
EGLN_HUMAN
1.059019017


608.8_761.4







AVYEAVLR_
PEPD_HUMAN
1.057920661


460.8_587.4







AEIEYLEK_
LYAM1_HUMAN
1.038388955


497.8_552.3







SEPRPGVLLR_
FA7_HUMAN
1.028275728


375.2_654.4







AVDIPGLEAATPYR_
TENA_HUMAN
1.026032369


736.9_399.2







LIEIANHVDK_
ADA12_HUMAN
1.015065282


384.6_498.3







YGIEEHGK_
CXA1_HUMAN
0.98667651


311.5_599.3







VLEPTLK_
VTDB_HUMAN
0.970330675


400.3_587.3







DVLLLVHNLPQNLT
PSG7_HUMAN
0.934747674


GHIWYK_




791.8_883.0







TAHISGLPPSTDFI
TENA_HUMAN
0.889111923


VYLSGLAPSIR_




871.5_472.3







TLNAYDHR_
PAR3_HUMAN
0.887605636


330.5_312.2







FGFGGSTDSGPIR_
ADA12_HUMAN
0.884305889


649.3_946.5







LIEIANHVDK_
ADA12_HUMAN
0.880889836


384.6_683.4







SEYGAALAWEK_
CO6_HUMAN
0.863585472


612.8_788.4







TYLHTYESEI_
ENPP2_HUMAN
0.849232356


628.3_515.3







FGFGGSTDSGPIR_
ADA12_HUMAN
0.843334824


649.3_745.4







SEYGAALAWEK_
CO6_HUMAN
0.842319271


612.8_845.5







TPSAAYLWVGTGA
GELS_HUMAN
0.828959173


SEAEK_




919.5_849.4
















TABLE 44







Random Forest Protein Middle-Late Window











Variable
UniProt_ID
MeanDecreaseGini







VPLALFALNR_
PEPD_HUMAN
3.202123047



557.3_620.4









ANUNNIFELAGLGK_
LCAP_HUMAN
2.100447309



793.9_299.2









VFQFLEK_
CO5_HUMAN
2.096157529



455.8_811.4









AQPVQVAEGSEP
GELS_HUMAN
2.052960939



DGFWEALGGK_





758.0_574.3









ALNHLPLEYNSAL
CO6_HUMAN
2.046139797



YSR_





621.0_696.4









TQILEWAAER_
EGLN_HUMAN
1.99287941



608.8_761.4









ELPQSIVYK_
FBLN3_HUMAN
1.920894959



538.8_417.7









TGVAVNKPAEFTV
FLNA_HUMAN
1.917665697



DAK_





549.6_258.1









SEPRPGVLLR_
FA7_HUMAN
1.883557705



375.2_654.4









DALSSVQESQVAQ
APOC3_HUMAN
1.870232155



QAR_





573.0_502.3









EVFSKPISWEELL
FA40A_HUMAN
1.869000136



Q_852.9_376.2









LIEIANHVDK_
ADA12_HUMAN
1.825457092



384.6_683.4









VLEPTLK_
VTDB_HUMAN
1.695327774



400.3_587.3









TEQAAVAR_
FA12_HUMAN
1.685013152



423.2_615.4









LLAPSDSPEWLS
TGFB1_HUMAN
1.684068039



FDVTGWR_





730.1_430.3









TLNAYDHR_
PAR3_HUMAN
1.673758239



330.5_312.2









AVDIPGLEAATP
TENA_HUMAN
1.648896853



YR_





736.9_399.2









DVLLLVHNLPQN
PSG7_HUMAN
1.648146088



LTGHIWYK_





791.8_883.0









AEIEYLEK_
LYAM1_HUMAN
1.645833005



497.8_552.3









TYLHTYESEI_
ENPP2_HUMAN
1.639121965



628.3_515.3









AGLLRPDYALLG
PGRP2_HUMAN
1.610227875



HR_





518.0_595.4









YGIEEHGK_
CXA1_HUMAN
1.606978339



311.5_599.3









QINSYVK_
CBG_HUMAN
1.554905578



426.2_496.3









LTTVDIVTLR_
IL2RB_HUMAN
1.484081016



565.8_815.5









AALAAFNAQNNGS
FETUA_HUMAN
1.43173022



NFQLEEISR_





789.1_746.4









AEVIWTSSDHQVL
PD1L1_HUMAN
1.394857397



SGK_





586.3_300.2









ALEQDLPVNIK_
CNDP1_HUMAN
1.393464547



620.4_570.4









DFNQFSSGEK_
FETA_HUMAN
1.374296237



386.8_333.2









TSYQVYSK_
C163A_HUMAN
1.36141387



488.2_787.4









TLEAQLTPR_
HEP2_HUMAN
1.311118611



514.8_685.4

















TABLE 45







Random Forest All Middle-Late Window











Variable
UniProt_ID
MeanDecreaseGini







VPLALFALNR_
PEPD_HUMAN
0.685165163



557.3_620.4









VFQFLEK_
CO5_HUMAN
0.426827804



455.8_811.4









ALNHLPLEYNSA
CO6_HUMAN
0.409942379



LYSR_





621.0_538.3









YGIEEHGK_
CXA1_HUMAN
0.406589512



311.5_341.2









ALNHLPLEYNSA
CO6_HUMAN
0.402152062



LYSR_





621.0_696.4









AQPVQVAEGSEP
GELS_HUMAN
0.374861014



DGFWEALGGK_





758.0_574.3









ANLINNIFELAG
LCAP_HUMAN
0.367089422



LGK_





793.9_299.2









TQILEWAAER_
EGLN_HUMAN
0.353757524



608.8_761.4









AVYEAVLR_
PEPD_HUMAN
0.350518668



460.8_587.4









TLAFVR_
FA7_HUMAN
0.344669505



353.7_492.3









SEPRPGVLLR_
FA7_HUMAN
0.338752336



375.2_654.4









LIEIANHVDK_
ADA12_HUMAN
0.321850027



384.6_683.4









ELPQSIVYK_
FBLN3_HUMAN
0.301819017



538.8_417.7









EVFSKPISWEEL
FA40A_HUMAN
0.299561811



LQ_





852.9_376.2









LIEIANHVDK_
ADA12_HUMAN
0.298253589



384.6_498.3









VLEPTLK_
VTDB_HUMAN
0.296206088



400.3_587.3









YGIEEHGK_
CXA1_HUMAN
0.295621408



311.5_599.3









DVLLLVHNLPQN
PSG7_HUMAN
0.292937475



LTGHIWYK_





791.8_883.0









TYLHTYESEI_
ENPP2_HUMAN
0.275902848



628.3_515.3









DALSSVQESQVA
APOC3_HUMAN
0.275664578



QQAR_





573.0_502.3









FGFGGSTDSG
ADA12_HUMAN
0.27120436



PIR_





649.3_745.4









AVDIPGLEAAT
TENA_HUMAN
0.266568271



PYR_





736.9_399.2









TGVAVNKPAEFT
FLNA_HUMAN
0.262537889



VDAK_





549.6_258.1









TLNAYDHR_
PAR3_HUMAN
0.259901193



330.5_312.2









IYLQPGR_
ITIH2_HUMAN
0.259086112



423.7_329.2









AEVIWTSSDHQV
PD1L1_HUMAN
0.25722354



LSGK_





586.3_300.2









VPSHAVVAR_
TRFL_HUMAN
0.256151812



312.5_515.3









SEYGAALAWEK_
CO6_HUMAN
0.251704855



612.8_845.5









FGFGGSTDSGPIR_
ADA12_HUMAN
0.249400642



649.3_946.5









SEYGAALAWEK_
CO6_HUMAN
0.245930393



612.8_788.4

















TABLE 46







Random Forest 32 Late Window











Variable
UniProt_D
MeanDecreaseGini







AVYEAVLR_
PEPD_HUMAN
1.889521223



460.8_587.4









AEIEYLEK_
LYAM1_HUMAN
1.75233545



497.8_552.3









AALAAFNAQNNGS
FETUA_HUMAN
1.676813493



NFQLEEISR_





789.1_746.4









TGVAVNKPAEFTV
FLNA_HUMAN
1.600684153



DAK_





549.6_258.1









AVYEAVLR_
PEPD_HUMAN
1.462889662



460.8_750.4









LIEIANHVDK_
ADA12_HUMAN
1.364115361



384.6_683.4









VPLALFALNR_
PEPD_HUMAN
1.324317148



557.3_620.4









QINSYVK_
CBG_HUMAN
1.305932064



426.2_610.3









ITQDAQLK_
CBG_HUMAN
1.263533228



458.8_702.4









FGFGGSTDSGPIR_
ADA12_HUMAN
1.245153376



649.3_745.4









LIEIANHVDK_
ADA12_HUMAN
1.236529173



384.6_498.3









QINSYVK_
CBG_HUMAN
1.221866266



426.2_496.3









YSHYNER_
HABP2_HUMAN
1.169575572



323.5_418.2









YYGYTGAFR_
TRFL_HUMAN
1.126684146



549.3_450.3









VGVISFAQK_
TFR2_HUMAN
1.075283855



474.8_580.3









VFQYIDLHQDEFV
CNDP1_HUMAN
1.07279097



QTLK_





708.4_375.2









SPEAEDPLGVER_
Z512B_HUMAN
1.05759256



649.8_314.1









DEIPHNDIALLK_
HABP2_HUMAN
1.028933332



459.9_510.8









ALEQDLPVNIK_
CNDP1_HUMAN
1.014443799



620.4_798.5









ALEQDLPVNIK_
CNDP1_HUMAN
1.010573267



620.4_570.4









ILDGGNK_
CXCL5_HUMAN
0.992175141



358.7_603.3









TSYQVYSK_
C163A_HUMAN
0.95649585



488.2_787.4









YENYTSSFFIR_
IL12B_HUMAN
0.955085198



713.8_756.4









SETEIHQGFQHL
CBG_HUMAN
0.944726739



HQLFAK_





717.4_447.2









TLPFSR_
LYAM1_HUMAN
0.944426109



360.7_506.3









VLSSIEQK_
1433S_HUMAN
0.933902495



452.3_691.4









AEIEYLEK_
LYAM1_HUMAN
0.891235263



497.8_389.2









GTYLYNDCPGPG
TNR1A_HUMAN
0.87187037



QDTDCR_





697.0_666.3









SGVDLADSNQK_
VGFR3_HUMAN
0.869821307



567.3_662.3









SGVDLADSNQK_
VGFR3_HUMAN
0.839946466



567.3_591.3

















TABLE 47







Random Forest 100 Late Window









Variable
UniProt_ID
MeanDecreaseGini





AVYEAVLR_
PEPD_HUMAN
0.971695767


460.8_587.4







AEIEYLEK_
LYAM1_HUMAN
0.920098693


497.8_552.3







TGVAVNKPAEFTVDAK_
FLNA_HUMAN
0.786924487


549.6_258.1







AVYEAVLR_
PEPD_HUMAN
0.772867983


460.8_750.4







AALAAFNAQNNGSNFQ
FETUA_HUMAN
0.744138513


LEEISR_




789.1_746.4







AYSDLSR_
SAMP_HUMAN
0.736078079


406.2_375.2







VPLALFALNR_
PEPD_HUMAN
0.681784822


557.3_620.4







QINSYVK_
CBG_HUMAN
0.585819307


426.2_610.3







LIEIANHVDK_
ADA12_HUMAN
0.577161158


384.6_498.3







FGFGGSTDSGPIR_
ADA12_HUMAN
0.573055613


649.3_745.4







WSAGLTSSQVDLY
CBG_HUMAN
0.569156128


IPK_




883.0_515.3







ITQDAQLK_
CBG_HUMAN
0.551017844


458.8_702.4







LIEIANHVDK_
ADA12_HUMAN
0.539330047


384.6_683.4







YYGYTGAFR_
TRFL_HUMAN
0.527652175


549.3_450.3







VFQYIDLHQDEFV
CNDP1_HUMAN
0.484155289


QTLK_




708.4_375.2







FQLPGQK_
PSG1_HUMAN
0.480394031


409.2_429.2







AVDIPGLEAATPYR_
TENA_HUMAN
0.475252565


736.9_286.1







QINSYVK_
CBG_HUMAN
0.4728541


426.2_496.3







YISPDQLADLYK_
ENOAHUMAN
0.470079977


713.4_277.2







TLPFSR_
LYAM1_HUMAN
0.46881451


360.7_506.3







SPEAEDPLGVER_
Z512B_HUMAN
0.4658941


649.8_314.1







ALEQDLPVNIK_
CNDP1_HUMAN
0.463604174


620.4_798.5







YSHYNER_
HABP2_HUMAN
0.453076307


323.5_418.2







VGVISFAQK_
TFR2_HUMAN
0.437768219


474.8_580.3







LQDAGVYR_
PD1L1_HUMAN
0.428524689


461.2_680.3







AEIEYLEK_
LYAM1_HUMAN
0.42041448


497.8_389.2







TSYQVYSK_
C163A_HUMAN
0.419411932


488.2_787.4







SVVLIPLGAVDD
CNDP1_HUMAN
0.415325735


GEHSQNEK_




703.0_798.4







ALEQDLPVNIK_
CNDP1_HUMAN
0.407951733


620.4_570.4







ILDGGNK_
CXCL5_HUMAN
0.401059572


358.7_603.3
















TABLE 48







Random Forest Protein Late Window











Variable
UniProt_D
MeanDecreaseGini







AVYEAVLR_
PEPD_HUMAN
1.836010146



460.8_587.4









AEIEYLEK_
LYAM1_HUMAN
1.739802548



497.8_552.3









AALAAFNAQNNG
FETUA_HUMAN
1.455337749



SNFQ





LEEISR_





789.1_746.4









TGVAVNKPAEFT
FLNA_HUMAN
1.395043941



VDAK_





549.6_258.1









AYSDLSR_
SAMP_HUMAN
1.177349958



406.2_375.2









LIEIANHVDK_
ADA12_HUMAN
1.14243936



384.6_683.4









QINSYVK_
CBG_HUMAN
1.05284482



426.2_496.3









ALEQDLPVNIK_
CNDP1_HUMAN
0.971678206



620.4_798.5









YISPDQLADLYK_
ENOA_HUMAN
0.902293734



713.4_277.2









AVDIPGLEAATP
TENA_HUMAN
0.893163413



YR_





736.9_286.1









SPEAEDPLGVER_
Z512B_HUMAN
0.856551531



649.8_314.1









ILDGGNK_
CXCL5_HUMAN
0.841485153



358.7_603.3









VGVISFAQK_
TFR2_HUMAN
0.835256078



474.8_580.3









YYGYTGAFR_
TRFL_HUMAN
0.831195917



549.3_450.3









YSHYNER_
HABP2_HUMAN
0.814479968



323.5_418.2









FQLPGQK_
PSG1_HUMAN
0.77635168



409.2_276.1









YENYTSSFFIR_
IL12B_HUMAN
0.761241391



713.8_756.4









TEQAAVAR_
FA12_HUMAN
0.73195592



423.2_615.4









SGVDLADSNQK_
VGFR3_HUMAN
0.72504131



567.3_662.3









VLSSIEQK_
1433S_HUMAN
0.713380314



452.3_691.4









GTYLYNDCPGPGQ
TNR1A_HUMAN
0.704248586



DTDCR_





697.0_666.3









TSYQVYSK_
C163A_HUMAN
0.69026345



488.2_787.4









TLEAQLTPR_
HEP2_HUMAN
0.654641588



514.8_685.4









AEVIWTSSDHQV
PD1L1_HUMAN
0.634751081



LSGK_





586.3_300.2









TAVTANLDIR_
CHL1_HUMAN
0.619871203



537.3_288.2









ITENDIQIALDDAK_
APOB_HUMAN
0.606313398



779.9_632.3









TASDFITK_
GELS_HUMAN
0.593535076



441.7_781.4









SPQAFYR_
REL3_HUMAN
0.592004045



434.7_556.3









NHYTESISVAK_
NEUR1_HUMAN
0.588383911



624.8_415.2









LTTVDIVTLR_
IL2RB_HUMAN
0.587343951



565.8_815.5




















Random Forest All Late Window











Variable
UniProt_ID
MeanDecreaseGini







AVYEAVLR_
PEPD_HUMAN
0.437300283



460.8_587.4









AEIEYLEK_
LYAM1_HUMAN
0.371624293



497.8_552.3









AALAAFNAQNNG
FETUA_HUMAN
0.304039734



SNFQLEEISR_





789.1_746.4









TGVAVNKPAEFT
FLNA_HUMAN
0.280588526



VDAK_





549.6_258.1









AVYEAVLR_
PEPD_HUMAN
0.266788699



460.8_750.4









AYSDLSR_
SAMP_HUMAN
0.247412666



406.2_375.2









VPLALFALNR_
PEPD_HUMAN
0.229955358



557.3_620.4









LIEIANHVDK_
ADA12_HUMAN
0.218186524



384.6_683.4









ITQDAQLK_
CBG_HUMAN
0.217646659



458.8_702.4









WSAGLTSSQVD_
CBG_HUMAN
0.213840705



LYIPK_





883.0_515.3









FGFGGSTDSGPIR_
ADA12_HUMAN
0.212794469



649.3_745.4









LIEIANHVDK_
ADA12_HUMAN
0.208620264



384.6_498.3









QINSYVK_
CBG_HUMAN
0.202054546



426.2_610.3









QINSYVK_
CBG_HUMAN
0.197235139



426.2_496.3









FQLPGQK_
PSG1_HUMAN
0.188311102



409.2_429.2









VFQYIDLHQDEFVQ
CNDP1_HUMAN
0.180534913



TLK_





708.4_375.2









ALEQDLPVNIK_
CNDP1_HUMAN
0.178464358



620.4_798.5









YYGYTGAFR_
TRFL_HUMAN
0.176050092



549.3_450.3









ALFLDALGPPAVTR_
INHA_HUMAN
0.171492975



720.9_640.4









FQLPGQK_
PSG1_HUMAN
0.167576198



409.2_276.1









SETEIHQGFQHL
CBG_HUMAN
0.162231844



HQLFAK_





717.4_447.2









ALEQDLPVNIK_
CNDP1_HUMAN
0.162165399



620.4_570.4









VPSHAVVAR_
TRFL_HUMAN
0.156742065



312.5_515.3









AVDIPGLEAATPYR_
TENA_HUMAN
0.153681405



736.9_286.1









FTFTLHLETPKPS
PSG1_HUMAN
0.152042057



ISSSNLNPR_





829.4_874.4









VGVISFAQK_
TFR2_HUMAN
0.149034355



474.8_580.3









TLPFSR_
LYAM1_HUMAN
0.143223501



360.7_506.3









SLDFTELDVAAEK_
ANGT_HUMAN
0.141216186



719.4_874.5









SPEAEDPLGVER_
Z512B_HUMAN
0.139843479



649.8_314.1









YGIEEHGK_
CXA1_HUMAN
0.135236953



311.5_341.2

















TABLE 50







Selected Transitions for Early Window










Transition
Parent Protein







LIQDAVTGLTVNGQI
ITIH3_HUMAN



TGDK_




972.0_798.4








VQTAHFK_
CO8A_HUMAN



277.5_431.2








FLNWIK_
HABP2_HUMAN



410.7_560.3








ITGFLKPGK_
LBP_HUMAN



320.9_429.3








ALNHLPLEYNSALYSR_
CO6_HUMAN



621.0_538.3








TYLHTYESEI_
ENPP2_HUMAN



628.3_908.4








LIENGYFHPVK_
F13B_HUMAN



439.6_627.4








AVLH1GEK_
THBG_HUMAN



289.5_292.2








QALEEFQK_
CO8B_HUMAN



496.8_680.3








TEFLSNYLTNVDDITL
ENPP2_HUMAN



VPGTLGR_




846.8_600.3








TASDFITK_
GELS_HUMAN



441.7_781.4








LPNNVLQEK_
AFAM_HUMAN



527.8_844.5








AHYDLR_
FETUA_HUMAN



387.7_288.2








ITLPDFTGDLR_
LBP_HUMAN



624.3_288.2








IEGNLIFDPNNYLPK_
APOB_HUMAN



874.0_414.2








ITGFLKPGK_
LBP_HUMAN



320.9_301.2








FSVVYAK_
FETUA_HUMAN



407.2_381.2








ITGFLKPGK_
LBP_HUMAN



320.9_429.3








VFQFLEK_
CO5_HUMAN



455.8_811.4








LIQDAVTGLTVNGQI
ITIH3_HUMAN



TGDK_




972.0_798.4








DADPDTFFAK_
AFAM_HUMAN



563.8_825.4

















TABLE 51







Selected Proteins for Early Window








Protein






complement component C6 precursor
CO6_HUMAN


inter-alpha-trypsin inhibitor heavy chain H3
ITIH3_HUMAN


preproprotein



Coagulation factor XIII B chain
F13B_HUMAN


Ectonucleotide pyrophosphatase/phosphodiesterase
ENPP2_HUMAN


family member 2



Complement component C8 beta chain
CO8B_HUMAN


thyroxine-binding globulin precursor
THBG_HUMAN


Hyaluronan-binding protein 2
HABP2_HUMAN


lipopolysaccharide-binding protein
LBP_HUMAN


Complement factor B
CFAB_HUMAN


Gelsolin
GELS_HUMAN


afamin precursor
AFAM_HUMAN


apolipoprotein B-100 precursor
APOB_HUMAN


complement component C5
CO5_HUMAN


Alpha-2-HS-glycoprotein
FETUA_HUMAN


complement component C8 gamma chain
CO8G_HUMAN
















TABLE 52







Selected Transitions for Middle-Late Window








Transition
Patent Protein





VPLALFALNR_
PEPD_HUMAN


557.3_620.4






VFQFLEK_
CO5_HUMAN


455.8_811.4






AQPVQVAEGSEPDGF
GELS_HUMAN


WEALGGK_



758.0_574.3






LIEIANHVDK_
ADA12_HUMAN


384.6_498.3






TLAFVR_
FA7_HUMAN


353.7_492.3






ALNHLPLEYNSALYSR_
CO6_HUMAN


621.0_696.4






AVYEAVLR_
PEPD_HUMAN


460.8_587.4






SEPRPGVLLR_
FA7_HUMAN


375.2_654.4






TYLHTYESEI_
ENPP2_HUMAN


628.3_515.3






ALNHLPLEYNSALYSR_
CO6_HUMAN


621.0_538.3
















TABLE 53





Selected Proteins for Middle-Late Window


Protein
















Xaa-Pro dipeptidase
PEPD_HUMAN


Leucyl-cystinyl aminopeptidase
LCAP_HUMAN


complement component C5
CO5__HUMAN


Gelsolin
GELS_HUMAN


complement component C6 precursor
CO6_HUMAN


Endoglin precursor
EGLN_HUMAN


EGF-containing fibulin-like extracellular matrix
FBLN3_HUMAN


protein 1



coagulation factor VII isoform a
FA7_HUMAN


Disintegrin and metalloproteinase domain-containing
ADA12_HUMAN


protein 12



vitamin D-binding protein isoform 1 precursor
VTDB_HUMAN


coagulation factor XII precursor
FA12_HUMAN


Corticosteroid-binding globulin
CBG_HUMAN









Example 6. Study V to Further Refine Preterm Birth Biomarkers

A additional hypothesis-dependent discovery study was performed with a further refined scheduled MRM assay. Less robust transitions were again removed to improve analytical performance and make room for the inclusion of stable-isotope labeled standards (SIS) corresponding to 79 analytes of interest identified in previous studies. SIS peptides have identical amino acid sequence, chromatographic and MS fragmentation behaviour as their endogenous peptide counterparts, but differ in mass. Therefore they can be used to reduce LC-MS analytical variability and confirm analyte identity. Samples included approximately 60 spontaneous PTB cases (delivery at less than 37 weeks, 0 days), and 180 term controls (delivery at greater than or equal to 37 weeks, 0 days). Each case was designated a “matched” control to within one day of blood draw and two “random” controls matched to the same 3 week blood draw window (17-19, 20-22 or 23-25 weeks gestation). For the purposes of analysis these three blood draw windows were combined. Samples were processed essentially as described previously, except that in this study, tryptic digests were reconstituted in a solution containing SIS standards. Raw analyte peak areas were Box-Cox transformed, corrected for run order and batch effects by regression and used for univariate and multivariate statistical analyses. Univariate analysis included determination of p-values for adjusted peak areas for all analytes from t-tests considering cases vs controls defined as either deliveries at >37 weeks (Table 54) or deliveries at >40 weeks (Table 55). Univariate analysis also included the determination of p-values for a linear model that evaluates the dependence of each analyte's adjusted peak area on the time to birth (gestational age at birth minus the gestational age at blood draw) (Table 56) and the gestational age at birth (Table 57). Additionally raw peak area ratios were calculated for endogenous analytes and their corresponding SIS counterparts, Box-Cox transformed and then used for univariate and multivariate statistical analyses. The above univariate analysis was repeated for analyte/SIS peak area ratio values, summarized in Tables 58-61, respectively.


Multivariate random forest regression models were built using analyte values and clinical variables (e.g. Maternal age, (MAGE), Body mass index, (BMI)) to predict Gestational Age at Birth (GAB). The accuracy of the random forest was evaluated with respect to correlation of the predicted and actual GAB, and with respect to the mean absolute deviation (MAD) of the predicted from actual GAB. The accuracy was further evaluated by determining the area under the receiver operating characteristic curve (AUC) when using the predicted GAB as a quantitative variable to classify subjects as full term or pre-term. Random Forest Importance Values were fit to an Empirical Cumulative Distribution Function and probabilities (P) were calculated. We report the analytes by importance ranking (P>0.7) in the random forest models, using adjusted analyte peak area values (Table 62) and analyte/SIS peak area ratio values (Table 63).


The probability of pre-term birth, p(PTB), may be estimated using the predicted gestational age at birth (GAB) as follows. The estimate will be based on women enrolled in the Sera PAPR clinical trial, which provided the subjects used to develop the PTB prediction methods.


Among women with a predicted GAB of j days plus or minus k days, p(PTB) was estimated as the proportion of women in the PAPR clinical trial with a predicted GAB of j days plus or minus k days who actually deliver before 37 weeks gestational age.


More generally, for women with a predicted GAB of j days plus or minus k days, the probability that the actual gestational age at birth will be less than a specified gestational age, p(actual GAB<specified GAB), was estimated as the proportion of women in the PAPR clinical trial with a predicted GAB of j days plus or minus k days who actually deliver before the specified gestational age. FIG. 1 depicts a scatterplot of actual gestational age at birth versus predicted gestational age from random forest regression model. FIG. 2 shows the distribution of predicted gestational age from random forest regression model versus actual gestational age at birth (GAB), where actual GAB was given in categories of (i) less than 37 weeks, (ii) 37 to 39 weeks, and (iii) 40 weeks or greater.









TABLE 54







Univariate p-values for Ad_usted Peak Areas


(<37 vs >37 weeks)









Transition
Protein
pvalue





SPELQAEAK_
APOA2_HUMAN
0.00246566


486.8_659.4







ALALPPLGLAPLLNLW
SHBG_HUMAN
0.002623332


AKPQGR_




770.5_457.3







ALALPPLGLAPLLNLW
SHBG_HUMAN
0.002822593


AKPQGR_




770.5_256.2







SPELQAEAK_
APOA2_HUMAN
0.003183869


486.8_788.4







VVLSSGSGPGLDLPLVL
SHBG_HUMAN
0.004936049


GLPLQLK_




791.5_768.5







VVLSSGSGPGLDLPLVL
SHBG_HUMAN
0.005598977


GLPLQLK_




791.5_598.4







DYWSTVK_
APOC3_HUMAN
0.005680405


449.7_347.2







DYWSTVK_
APOC3_HUMAN
0.006288693


449.7_620.3







WGAAPYR_
PGRP2_HUMAN
0.006505238


410.7_634.3







DALSSVQESQVAQQAR_
APOC3_HUMAN
0.007626246


573.0_502.3







DALSSVQESQVAQQAR_
APOC3_HUMAN
0.008149335


573.0_672.4







LSIPQITTK_
PSG5_HUMAN
0.009943955


500.8_687.4







GWVTDGFSSLK_
APOC3_HUMAN
0.010175055


598.8_854.4







IALGGLLFPASNLR_
SHBG_HUMAN
0.010784167


481.3_657_4







AKPALEDLR_
APOA1_HUMAN
0.011331968


506.8_813.5







WGAAPYR_
PGRP2_HUMAN
0.011761088


410.7_577.3







VPLALFALNR_
PEPD_HUMAN
0.014050395


557.3_620.4







FSLVSGWGQLLDR_
FA7_HUMAN
0.014271151


493.3_447.3







LSIPQITTK_
PSG5_HUMAN
0.014339942


500.8_800.5







TLAFVR_
FA7_HUMAN
0.014459876


353.7_274_2







DVLLLVHNLPQNLPGY
PSG9_HUMAN
0.016720007


FWYK_




810.4_960.5







FSVVYAK_
FETUA_HUMAN
0.016792786


407.2_381.2







DVLLLVHNLPQNLPGY
PSG9_HUMAN
0.017335929


FWYK_




810.4_215.1







SEPRPGVLLR_
FA7_HUMAN
0.018147773


375.2_654.4







ALNHLPLEYNSALYSR_
CO6_HUMAN
0.019056484


621.0_538.3







WNFAYWAAHQPWSR_
PRG2_HUMAN
0.019190043


607.3_545.3







ALNHLPLEYNSALYSR_
CO6_HUMAN
0.020218682


621.0_696.4







AQPVQVAEGSEPDGFW
GELS_HUMAN
0.020226218


EALGGK_




758.0_623.4







GWVTDGFSSLK_
APOC3_HUMAN
0.023192703


598.8_953.5







IALGGLLFPASNLR_
SHBG_HUMAN
0.02391691


481.3_412.3







WNFAYWAAHQPWSR_
PRG2_HUMAN
0.026026975


607.3_673.3







FGFGGSTDSGPIR_
ADA12_HUMAN
0.027731407


649.3_745.4







SEYGAALAWEK_
CO6_HUMAN
0.031865281


612.8_788.4







DADPDTFFAK_
AFAM_HUMAN
0.0335897


563.8_302.1







LFIPQITR_
PSG9_HUMAN
0.034140767


494.3_614.4







DVLLLVHNLPQNLP
PSG9_HUMAN
0.034653304


GYFWYK_




810.4_328.2







TLAFVR_
FA7_HUMAN
0.036441189


353.7_492.3







AVLHIGEK_
THBG_HUMAN
0.038539433


289.5_292.2







IHPSYTNYR_
PSG2_HUMAN
0.039733019


384.2_452.2







AGLLRPDYALLGHR_
PGRP2_HUMAN
0.040916226


518.0_369.2







ILILPSVTR_
PSGx_HUMAN
0.042460036


506.3_559.3







YYLQGAK_
ITIH4_HUMAN
0.044511962


421.7_516.3







TPSAAYLWVGTGAS
GELS_HUMAN
0.046362381


EAEK_




919.5_849.4







AGLLRPDYALLGHR_
PGRP2_HUMAN
0.046572355


518.0_595.4







TYLHTYESEI_
ENPP2_HUMAN
0.04754503


628.3_908.4







FSLVSGWGQLLDR_
FA7_HUMAN
0.048642964


493.3_403_2







VNFTEIQK_
FETA_HUMAN
0.04871392


489.8_765.4







LFIPQITR_
PSG9_HUMAN
0.040288923


494.3_727.4







DISEVVTPR_
CFAB_HUMAN
0.049458374


508.3_787.4







SEPRPGVLLR_
FA7_HUMAN
0.049567047


375.2_454_3



















Univariate p-values for Ad_usted Peak


Areas (<37 vs >40 weeks)









Transition
Protein
pvalue





SPELQAEAK_
APOA2_HUMAN
0.001457796


486.8_659.4







DYWSTVK_
APOC3_HUMAN
0.001619622


449.7_347.2







DYWSTVK_
APOC3_HUMAN
0.002068704


449.7_620.3







DALSSVQESQVAQQAR_
APOC3_HUMAN
0.00250563


573.0_502.3







GWVTDGFSSLK_
APOC3_HUMAN
0.002543943


598.8_854.4







SPELQAEAK_
APOA2_HUMAN
0.003108814


486.8_788.4







SEPRPGVLLR_
FA7_HUMAN
0.004035832


375.2_654.4







DALSSVQESQVAQQAR_
APOC3_HUMAN
0.00434652


573.0_672.4







SEYGAALAWEK_
CO6_HUMAN
0.005306924


612.8_788.4







GWVTDGFSSLK_
APOC3_HUMAN
0.005685534


598.8_953.5







ALNHLPLEYNSALYSR_
CO6_HUMAN
0.005770384


621.0_696.4







TYLHTYESEI_
ENPP2_HUMAN
0.005798991


628.3_515.3







ENPAVIDFELAPIVDLVR_
CO6_HUMAN
0.006248095


670.7_601.4







ALNHLPLEYNSALYSR_
CO6_HUMAN
0.006735817


621.0_538.3







TYLHTYESEI_
ENPP2_HUMAN
0.007351774


628.3_908.4







AGLLRPDYALLGF1R_
PGRP2_HUMAN
0.009541521


518_0_369.2







AKPALEDLR_
APOA1_HUMAN
0.009780371


506.8_813.5







SEYGAALAWEK_
CO6_HUMAN
0.010085363


612.8_845.5







FSLVSGWGQLLDR_
FA7_HUMAN
0.010401836


493.3_447.3







WGAAPYR_
PGRP2_HUMAN
0.011233623


410.7_634.3







ENPAVIDFELAPIVDLVR_
CO6_HUMAN
0.012029564


670.7_811.5







DVLLLVHNLPQNLPGYFWYK_
PSG9_HUMAN
0.014808277


810_4_215.1







LFIPQITR_
PSG9_HUMAN
0.015879755


494.3_614.4







WGAAPYR_
PGRP2_HUMAN
0.016562435


410.7_577.3







AGLLRPDYALLGHR_
PGRP2_HUMAN
0.016793521


518_0_595.4







TLAFVR_
FA7_HUMAN
0.016919708


353.7_492.3







FSLVSGWGQLLDR_
FA7_HUMAN
0.016937583


493.3_403.2







WWGGQPLWITATK_
ENPP2_HUMAN
0.019050115


772.4_373.2







GYVIIKPLVWV_
SAMP_HUMAN
0.019675317


643.9_304.2







DVLLLVHNLPQNLPG
PSG9_HUMAN
0.020387647


YFWYK_




810.4_960.5







FGFGGSTDSGPIR_
ADA12_HUMAN
0.020458335


649.3_745.4







DVLLLVHNLPQNLP
PSG9_HUMAN
0.021488084


GYFWYK_




810.4_328.2







WWGGQPLWITATK_
ENPP2_HUMAN
0.021709354


772.4_929.5







LDFHFSSDR_
INHBC_HUMAN
0.022403383


375.2_448.2







LFIPQITR_
PSG9_HUMAN
0.025561103


494.3_727.4







TEFLSNYLTNVDDI
ENPP2_HUMAN
0.029344366


TLVPGTLGR_




846.8_600.3







LSIPQITTK_
PSG5_HUMAN
0.031361776


500.8_800.5







ALVLELAK_
INHBE_HUMAN
0.031690737


428.8_672.4







SEPRPGVLLR_
FA7_HUMAN
0.033067953


375.2_454.3







LSIPQITTK_
PSG5_HUMAN
0.033972449


500.8_687.4







LDFHFSSDR_
INHBC_HUMAN
0.034500249


375.2_611.3







LDFHFSSDR_
INHBC_HUMAN
0.035166664


375.2_464.2







GAVHVVVAETDYQS
CO8G_HUMAN
0.037334975


FAVLYLER_




822.8_580.3







HELTDEELQSLFTN
AFAM_HUMAN
0.039258528


FANVVDK_




817.1_854_4







AYSDLSR_
SAMP_HUMAN
0.04036485


406.2_375.2







YYLQGAK_
ITIH4_HUMAN
0.042204165


421.7_516.3







ILPSVPK_
PGH1_HUMAN
0.042397885


377.2_264.2







ELLESYIDGR_
THRB_HUMAN
0.043053589


597.8_710.4







ALALPPLGLAPLLN
SHBG_HUMAN
0.045692283


LWAKPQGR_




770.5_256.2







VGEYSLYIGR_
SAMP_HUMAN
0.04765767


578.8_871.5







ANDQYLTAAALHNL
ILIA_HUMAN
0.048928376


DEAVK_




686.4_317.2







YYGYTGAFR_
TRFL_HUMAN
0.049568351


549.3_551.3
















TABLE 56







Univariate p-values for Adjusted Peak Areas in Time to Birth Linear


Model








Protein
pvalue





ADA12_HUMAN
0.003412707


ENPP2_HUMAN
0.003767393


ADA12_HUMAN
0.004194234


ENPP2_HUMAN
0.004298493


ADA12_HUMAN
0.004627197


ADA12_HUMAN
0.004918852


ENPP2_HUMAN
0.005792374


CO6_HUMAN
0.005858282


ENPP2_HUMAN
0.007123606


CO6_HUMAN
0.007162317


ENPP2_HUMAN
0.008228726


ENPP2_HUMAN
0.009168492


PSG9_HUMAN
0.011531192


PSG9_HUMAN
0.019389627


PSG9_HUMAN
0.023680865


INHBE_HUMAN
0.02581564


B2MG_HUMAN
0.026544689


LBP_HUMAN
0.031068274


PSG9_HUMAN
0.031091843


APOA2_HUMAN
0.033130498


INHBC_HUMAN
0.03395215


CBG_HUMAN
0.034710348


PSGx_HUMAN
0.035719227


CBG_HUMAN
0.036331871


CSH_HUMAN
0.039896611


CSH_HUMAN
0.04244001


SAMP_HUMAN
0.047112128


LBP_HUMAN
0.048141371


LBP_HUMAN
0.048433174


CO6_HUMAN
0.04850949


PSGx_HUMAN
0.049640167
















TABLE 57







Univariate p-values for Ad_usted Peak Areas 


in Gestation Age at Birth Linear Model









Transition
Protein
pvalue





ENPAVIDFELAPIVDLVR_
CO6_HUMAN
0.000117239


670.7_811.5







ENPAVIDFELAPIVDLVR_
CO6_HUMAN
0.000130113


670.7_601.4







TYLHTYESEI_
ENPP2_HUMAN
0.000160472


628.3_908.4







TYLHTYESEI_
ENPP2_HUMAN
0.000175167


628.3_515.3







TEFLSNYLTNVDDITLV
ENPP2_HUMAN
0.000219886


PGTLGR_




846.8_600.3







TEFLSNYLTNVDDITLV
ENPP2_HUMAN
0.000328416


PGTLGR_




846.8_699.4







WWGGQPLWITATK_
ENPP2_HUMAN
0.000354644


772.4_373.2







WWGGQPLWITATK_
ENPP2_HUMAN
0.000390821


772.4_929.5







SEYGAALAWEK_
CO6_HUMAN
0.000511882


612_8_788.4







LDFHFSSDR_
INHBC_HUMAN
0.000600637


375.2_448.2







ALVLELAK_
INHBE_HUMAN
0.000732445


428.8_672.4







GLQYAAQEGLLALQSE
LBP_HUMAN
0.000743924


LLR_




1037_1_929_5







DVLLLVHNLPQNLPGY
PSG9_HUMAN
0.000759173


FWYK_




810.4_960.5







FGFGGSTDSGPIR_
ADA12_HUMAN
0.001224347


649.3_745.4







DVLLLVHNLPQNLPGY
PSG9_HUMAN
0.001241526


FWYK_




810.4_328.2







GYVIIKPLVWV_
SAMP_HUMAN
0.001853785


643.9_304.2







SPELQAEAK_
APOA2_HUMAN
0.001856303


486.8_659.4







GLQYAAQEGLLALQSE
LBP_HUMAN
0.001978165


LLR_




1037.1_858_5







LDFHFSSDR_
INHBC_HUMAN
0.002098948


375.2_61_F3







LIEIANHVDK_
ADA12_HUMAN
0.002212096


384.6_683.4







SFRPFVPR_
LBP_HUMAN
0.002545286


335.9_272.2







SFRPFVPR_
LBP_HUMAN
0.002620268


335.9_635.3







WSAGLTSSQVDLYIPK_
CBG_HUMAN
0.002787272


883.0_515_3







DLHLSDVFLK_
CO6_HUMAN
0.002954612


396.2_260.2







LIEIANHVDK_
ADA12_HUMAN
0.002955081


384.6_498.3







DVLLLVHNLPQNLPG
PSG9_HUMAN
0.003541011


YFWYK_




810.4_215.1







LFIPQITR_
PSG9_HUMAN
0.003750666


494.3_614.4







FGFGGSTDSGPIR_
ADA12_HUMAN
0.003773696


649.3_946.5







YYLQGAK_
ITIH4_HUMAN
0.004064026


421.7_516.3







SEYGAALAWEK_
CO6_HUMAN
0.004208136


612.8_845.5







AITPPHPASQANIIF
FBLN1_HUMAN
0.004709104


DITEGNLR_




825.8_459.3







LDFHFSSDR_
INHBC_HUMAN
0.005355741


375.2_464.2







HELTDEELQSLFTNFA
AFAM_HUMAN
0.005370567


NVVDK_




817.1_854.4







ALNHLPLEYNSALYSR_
CO6_HUMAN
0.005705922


621.0_696.4







ITQDAQLK_
CBG_HUMAN
0.006762484


458.8_702.4







ITLPDFTGDLR_
LBP_HUMAN
0.006993268


624.3_920.5







SILFLGK_
THBG_HUMAN
0.007134146


389.2_577.4







WSAGLTSSQVDLYIPK_
CBG_HUMAN
0.007670388


883.0_357.2







GVTSVSQIFHSPDLAIR_
IC1_HUMAN
0.007742729


609.7_472.3







VGEYSLYIGR_
SAMP_HUMAN
0.007778691


578.8_871.5







ITLPDFTGDLR_
LBP_HUMAN
0.008179918


624_3_288_2







YYLQGAK_
ITIH4_HUMAN
0.008404686


421.7_327.1







ALNHLPLEYNSALYSR_
CO6_HUMAN
0.008601162


621.0_538_3







DYWSTVK_
APOC3_HUMAN
0.008626786


449.7_620.3







TVQAVLTVPK_
PEDF_HUMAN
0.008907523


528.3_855.5







ITGFLKPGK_
LBP_HUMAN
0.009155417


320.9_301.2







LFIPQITR_
PSG9_HUMAN
0.009571006


494.3_727.4







SPELQAEAK_
APOA2_HUMAN
0.009776508


486.8_788.4







DYWSTVK_
APOC3_HUMAN
0.00998356


449.7_347.2







ITGFLKPGK_
LBP_HUMAN
0.010050264


320.9_429.3







FLNWIK_
HABP2_HUMAN
0.010372454


410.7_560.3







DLHLSDVFLK_
CO6_HUMAN
0.010806378


396.2_366.2







GVTSVSQIFHSPDLAIR_
IC1_HUMAN
0.011035991


609.7_908.5







VEHSDLSFSK_
B2MG_HUMAN
0.011113172


383.5_468.2







LLDSLPSDTR_
IC1_HUMAN
0.011589013


558.8_276.2







LLDSLPSDTR_
IC1_HUMAN
0.011629438


558.8_890.4







QALEEFQK_
CO8B_HUMAN
0.011693839


496.8_551.3







LLDSLPSDTR_
IC1_HUMAN
0.012159314


558.8_575.3







IIGGSDADIK_
C1S_HUMAN
0.013080243


494.8_762.4







AFIQLWAFDAVK_
AMBP_HUMAN
0.013462234


704.9_650.4







GFQALGDAADIR_
TIMP1_HUMAN
0.014370997


617.3_717_4







LPNNVLQEK_
AFAM_HUMAN
0.014424891


527.8_730.4







DTDTGALLFIGK_
PEDF_HUMAN
0.014967952


625_8_217.1







VQTAHFK_
CO8A_HUMAN
0.01524844


277.5_502.3







ILILPSVTR_
PSG1_HUMAN
0.015263132


506.3_559.3







SILFLGK_
THBG_HUMAN
0.015265233


389.2_201.1







TVQAVLTVPK_
PEDF_HUMAN
0.015344052


528.3_428.3







VEPLYELVTATDFAYSSTVR_
CO8B_HUMAN
0.015451068


754.4_712.4







FSLVSGWGQLLDR_
FA7_HUMAN
0.015510454


493.3_447_3







GWVTDGFSSLK_
APOC3_HUMAN
0.01610797


598.8_854.4







LSETNR_
PSG1_HUMAN
0.016433362


360.2_519.3







TQILEWAAER_
EGLN_HUMAN
0.01644844


608.8_632.3







SETEIHQGFQHLHQLFAK_
CBG_HUMAN
0.016720367


717_4_318.1







TNLESILSYPK_
IC1_HUMAN
0.017314185


632.8_936.5







TNLESILSYPK_
IC1_HUMAN
0.017593786


632.8_807.5







AYSDLSR_
SAMP_HUMAN
0.018531348


406.2_375.2







YEVQGEVFTKPQLWP_
CRP_HUMAN
0.019111323


911_0_392.2







AYSDLSR_
SAMP_HUMAN
0.019271266


406.2_577.3







QALEEFQK_
CO8B_HUMAN
0.019429489


496.8_680.3







APLTKPLK_
CRP_HUMAN
0.020110081


289.9_398.8







FQPTLLTLPR_
IC1_HUMAN
0.020114306


593.4_276.1







ITQDAQLK_
CBG_HUMAN
0.020401782


453.8_803.4







AVLH1GEK_
THBG_HUMAN
0.02056597


289.5_292.2







ANDQYLTAAALHNLDE
ILIA_HUMAN
0.020770124


AVK_




686.4_317.2







VGEYSLYIGR_
SAMP_HUMAN
0.021126414


578.8_708.4







TLYSSSPR_
IC1_HUMAN
0.021306106


455.7_533.3







VEHSDLSFSK_
B2MG_HUMAN
0.021640643


383.5_234.1







HELTDEELQSLFTNFA
AFAM_HUMAN
0.021921609


NVVDK_




817.1_906.5







TLYSSSPR_
IC1_HUMAN
0.022196181


455.7_696.3







GYVIIKPLVWV_
SAMP_HUMAN
0.023126336


643.9_854.6







DEIPHNDIALLK_
HABP2_HUMAN
0.023232158


459.9_260.2







ILILPSVTR_
PSGx_HUMAN
0.023519909


506.3_785.5







WNFAYWAAHQPWSR_
PRG2_HUMAN
0.023697087


607.3_545.3







FQPTLLTLPR_
IC1_HUMAN
0.023751959


593.4_712.5







AQPVQVAEGSEPDGF
GELS_HUMAN
0.024262721


WEALGGK_




758.0_623.4







DEIPHNDIALLK_
HABP2_HUMAN
0.024414348


459.9_510.8







GDSGGAFAVQDPNDK_
C1S_HUMAN
0.025075028


739.3_716.3







FLNWIK_
HABP2_HUMAN
0.025649617


410.7_561.3







APLTKPLK_
CRP_HUMAN
0.025961162


289.9_357.2







ALDLSLK_
ITIH3_HUMAN
0.026233504


380.2_185.1







GWVTDGFSSLK_
APOC3_HUMAN
0.026291884


598_8_953.5







SETEIHQGFQHLHQLFAK_
CBG_HUMAN
0.026457136


717.4_447.2







GDSGGAFAVQDPNDK_
C1S_HUMAN
0.02727457


739.3_473.2







YEVQGEVFTKPQLWP_
CRP_HUMAN
0.028244448


911.0_293.1







HVVQLR_
IL6RA_HUMAN
0.028428028


376.2_614.4







DTDTGALLFIGK_
PEDF_HUMAN
0.028773557


625.8_818.5







EVPLSALTN1LSAQLI
PAI1_HUMAN
0.029150774


SHWK_




740.8_996.6







AFTECCVVASQLR_
CO5_HUMAN
0.029993325


770.9_574.3







TLAFVR_
FA7_HUMAN
0.030064307


353.7_492.3







LWAYLTIQELLAK_
ITIH1_HUMAN
0.030368674


781.5_300.2







DEIPHNDIALLK_
HABP2_HUMAN
0.031972082


459_9_245_1







AGLLRPDYALLGHR_
PGRP2_HUMAN
0.032057409


518.0_369.2







AVYEAVLR_
PEPD_HUMAN
0.032527521


460.8_587.4







LPNNVLQEK_
AFAM_HUMAN
0.033807082


527.8_844.5







GAVHVVVAETDYQSFA
CO8G_HUMAN
0.054370139


VLYLER_




822_8_580.3







WNFAYWAAHQPWSR_
PRG2_HUMAN
0.0349737


607.3_673.3







EAQLPVIENK_
PLMN_HUMAN
0.035304322


570.8_329.2







VQEAHLTEDQIFYFPK_
CO8G_HUMAN
0.035704382


655.7_701.4







AFIQLWAFDAVK_
AMBP_HUMAN
0.035914532


704.9_836.4







SGFSFGFK_
CO8B_HUMAN
0.037168221


438.7_585.3







SGFSFGFK_
CO8B_HUMAN
0.040182596


438.7_732.4







DADPDTFFAK_
AFAM_HUMAN
0.041439744


563.8_302.1







EAQLPV1ENK_
PLMN_HUMAN
0.041447675


570.8_699.4







IIGGSDADIK_
C1S_HUMAN
0.041683256


494.8_260.2







AVLT1DEK_
A1AT_HUMAN
0.043221658


444.8_718.4







SEPRPGVLLR_
FA7_HUMAN
0.044079127


375.2_654.4







YHFEALADTGISSEFY
CO8A_HUMAN
0.045313634


DNANDLLSK_




940.8_874.5







HFQNLGK_
AFAM_HUMAN
0.047118971


422.2_527.2







LEQGENVFLQATDK_
C1QB_HUMAN
0.047818928


796.4_822.4







NTVISVNPSTK_
VCAM1_HUMAN
0.048102262


580.3_732.4







YYGYTGAFR_
TRFL_HUMAN
0.048331316


549.3_551.3







ISLLLIESWLEPVR_
CSH_HUMAN
0.049561581


834.5_500.3







LQVLGK_
A2GL_HUMAN
0.049738493


329.2_416.3
















TABLE 58







Univariate p-values for Peak Area Ratios


(<37 vs >37 weeks)











UniProt_ID
Transition
pvalue






SHBG_HUMAN
IALGGLLFPASN
0.006134652




LR_





481.3_





657.4







SHBG_HUMAN
IALGGLLFPASN
0.019049498




LR_





481.3_





412.3







APOC3_HUMAN
DALSSVQESQVAQ
0.020688543




QAR_





573.0_





672.4







THBG_HUMAN
AVLH1GEK_
0.0291698




289.5_





292.2







PSG9_HUMAN
DVLLLVHNLPQNL
0.033518454




PGYFWYK_





810.4_





960.5







APOC3_HUMAN
DALSSVQESQVAQ
0.043103265




QAR_





573.0_





502.3







PSG9_HUMAN
LFIPQITR_
0.04655948




494.3_





614.4
















TABLE 59







Univariate p-values for Peak Area


Ratios (<37 vs >40 weeks)











UniProt_ID
Transition
pvalue






APOC3_
DALSSVQESQVA
0.011174438



HUMAN
QQAR_573.0_





672.4







APOC3_
DALSSVQESQVA
0.015231617



HUMAN
QQAR_573.0_





502.3







PSG9_
LFIPQITR_
0.018308413



HUMAN
494.3_614.4







PSG9_
LFIPQITR_
0.027616871



HUMAN
494.3_727.4







PSG9_
DVLLLVHNLPQN
0.028117582



HUMAN
LPGYFWYK_





810.4_960.5







THBG_
AVLHIGEK_
0.038899107



HUMAN
289.5_292.2







CO6_
ALNHLPLEYNSA
0.040662269



HUMAN
LYSR_621.0_





696.4







ENPP2_
TYLHTYESEI_
0.044545826



HUMAN
628.3_908.4
















TABLE 60







Univariate p-values for Peak Area Ratios in


Time to Birth Linear Model











UniProt_ID
Transition
pvalue






ADA12_
FGFGGSTDSGPIR_
5.85E−27



HUMAN
649.3_946.5







ADA12_
FGFGGSTDSGPIR_
2.65E−24



HUMAN
649.3_745.4







PSG4_
TLF1FGVTK_
1.07E−20



HUMAN
513.3_215.1







PSG4_
TLFIFGVTK_
2.32E−20



HUMAN
513.3_811.5







PSGx_
ILILPSVTR_
8.25E−16



HUMAN
506.3_785.5







PSGx_
ILILPSVTR_
9.72E−16



HUMAN
506.3_559.3







PSG1_
FQLPGQK_
1.29E−12



HUMAN
409.2_429.2







PSG11_
LFIPQITPK_
2.11E−12



HUMAN
528.8_261.2







PSG1_
FQLPGQK_
2.33E−12



HUMAN
409.2_276.1







PSG11_
LFIPQITPK_
3.90E−12



HUMAN
528.8_683_4







PSG6_
SNPVTLNVLY
5.71E−12



HUMAN
GPDLPR_





585.7_817.4







PSG6_
SNPVTLNVLY
1.82E−11



HUMAN
GPDLPR_





585.7_654.4







VGFR3_
SGVDLADSNQK_
4.57E−11



HUMAN
567.3_662.3







INHBE_
ALVLELAK_
1.04E−08



HUMAN
428.8_331.2







PSG2_
IHPSYTNYR_
6.27E−08



HUMAN
384.2_452.2







PSG9_
LFIPQITR_
1.50E−07



HUMAN
494.3_727.4







VGFR3_
SGVDLADSNQK_
2.09E−07



HUMAN
567.3_591.3







PSG9_
LFIPQITR_
2.71E−07



HUMAN
494.3_614_4







PSG9_
DVLLLVHNLPQ
3.10E−07



HUMAN
NLPGYFWYK_





810.4_960.5







PSG2_
IHPSYTNYR_
2.55E−06



HUMAN
384.2_338.2







ITIH3_
LIQDAVTGLTV
2.76E−06



HUMAN
NGQITGDK_





972.0_640.4







ENPP2_
TYLHTYESEI_
2.82E−06



HUMAN
628.3_908_4







ENPP2_
WWGGQPLWI
3.75E−06



HUMAN
TATK_





772.4_373.2







PSG9_
DVLLLVHNLPQ
3.94E−06



HUMAN
NLPGYFWYK_





810.4_328.2







B2MG_
VEHSDLSFSK_
5.42E−06



HUMAN
383.5_468.2







ENPP2_
WWGGQPLW
7.93E−06



HUMAN
ITATK_





772.4_929.5







ANGT_
ALQDQLV
1.04E−05



HUMAN
LVAAK_





634.9_289.2







B2MG_
VNHVTLSQPK_
1.46E−05



HUMAN
374.9_244.2







AFAM_
LPNNVLQEK_
1.50E−05



HUMAN
527.8_730.4







AFAM_
LPNNVLQEK_
1.98E−05



HUMAN
527.8_844.5







THBG_
AVLHIGEK_
2.15E−05



HUMAN
289.5_292.2







ENPP2_
TYLHTYESEI_
2.17E−05



HUMAN
628.3_515.3







IL12B_
DIIKPDPPK_
3.31E−05



HUMAN
511.8_342.2







AFAM_
DADPDTFFAK_
6.16E−05



HUMAN
563.8_302.1







THBG_
AVLHIGEK_
8.34E−05



HUMAN
289.5_348.7







PSG9_
DVLLLVHNLPQ
0.000104442



HUMAN
NLPGYFWYK_





810.4_215.1







B2MG_
VEHSDLSFSK_
0.000140786



HUMAN
383.5_234.1







TRFL_
YYGYTGAFR_
0.000156543



HUMAN
549.3_450.3







HEMO_
QGHNSVFLIK_
0.000164578



HUMAN
381.6_260.2







A1BG_
LLELTGPK_
0.000171113



HUMAN
435.8_227.2







CO6_
ALNHLPLEYN
0.000242116



HUMAN
SALYSR_





621.0_696.4







CO6_
ALNHLPLEYN
0.00024681



HUMAN
SALYSR_





621.0_538.3







ALS_
IRPHTFTGLSGLR_
0.000314359



HUMAN
485.6_432.3







IT1H2_
LSNHNHGlAQR_
0.0004877



HUMAN
413.5_544_3







PEDF_
TVQAVLTVPK_
0.000508174



HUMAN
528.3_855.5







AFAM_
HFQNLGK_
0.000522139



HUMAN
422.2_527.2







FLNA_
TGVAVNKPAEFT
0.000594403



HUMAN
VDAK_





549.6_258.1







ANGT_
ALQDQLVLVAAK_
0.000640673



HUMAN
634.9_956.6







AFAM_
HFQNLGK_
0.000718763



HUMAN
422.2_285.1







HGFA_
LHKPGVYTR_
0.000753293



HUMAN
357.5_692.4







HGFA_
LHKPGVYTR_
0.000909298



HUMAN
357.5_479.3







HABP2_
FLNWIK_
0.001282014



HUMAN
410.7_561.3







FETUA_
HTLNQIDEVK_
0.001389792



HUMAN
598.8_951.5







AFAM_
DADPDIFFAK_
0.001498237



HUMAN
563.8_825.4







B2MG_
VNHVTLSQPK_
0.001559862



HUMAN
374.9_459.3







ALS_
IRPHTFTGLSGLR_
0.001612361



HUMAN
485.6_545.3







A1BG_
LLELTGPK_
0.002012656



HUMAN
435.8_644.4







F13B_
LIENGYFHPVK_
0.00275216



HUMAN
439.6_343.2







ITIH2_
LSNENHGIAQR_
0.00356561



HUMAN
413.5_519.8







APOC3_
DALSSVQESQVA
0.00392745



HUMAN
QQAR_573.0_





672.4







F13B_
LIENGYFHPVK_
0.00434836



HUMAN
439.6_627.4







PEDF_
TVQAVLTVPK_
0.00482765



HUMAN
528.3_428.3







PLMN_
YEFLNGR_
0.007325436



HUMAN
449.7_293.1







HEMO_
QGHNSVFLIK_
0.009508516



HUMAN
381.6_520.4







FETUA_
HTLNQIDEVK_
0.010018936



HUMAN
598.8_958.5







CO5_
LQGTLPVEAR_
0.011140661



HUMAN
542.3_842.5







PLMN_
YEFLNGR_
0.01135322



HUMAN
449.7_606.3







CO5_
TLLPVSKPE1R_
0.015045275



HUMAN
418.3_288.2







HABP2_
FLNWIK_
0.01523134



HUMAN
410.7_560.3







APOC3_
DALSSVQESQVA
0.01584708



HUMAN
QQAR_573.0_





502.3







CO5_
LQGTLPVEAR_
0.017298064



HUMAN
542.3_571.3







CFAB_
DISEWTPR_
0.021743221



HUMAN
508.3_472.3







CERU_
TTIEKPVWLG
0.02376225




FLGPIIK_




HUMAN
638.0_640.4







CO8G_
SLPVSDSVLSGFEQR_
0.041150397



HUMAN
810.9_723.3







CO8G_
FLQEQGHR_
0.042038143



HUMAN
338.8_497.3







CO5_
VFQFLEK_
0.043651929



HUMAN
455.8_811.4







CO8B_
QALEEFQK_
0.04761631



HUMAN
496.8_680.3
















TABLE 61







Univariate p-values for Peak Area Ratios


in Gestation Age at Birth Linear Model











UniProt_ID
Transition
pvalue






PSG9_
DVLLLVHNLPQNLP
0.000431547



HUMAN
GYFWYK_





810.4_960.5







B2MG_
VEHSDLSFSK_
0.000561148



HUMAN
383.5_468.2







PSG9_
DVLLLVHNLPQNLP
0.000957509



HUMAN
GYFWYK_





810.4_328.2







ENPP2_
TYLHTYESEI_
0.001058809



HUMAN
628.3_908.4







THBG_
AVLHIGEK_
0.001180484



HUMAN
289.5_292.2







ENPP2_
WWGGQPLWITATK_
0.001524983



HUMAN
772.4_373.2







PSG9_
LFIPQITR_
0.001542932



HUMAN
494.3_614_4







ENPP2_
WWGGQPLWITATK_
0.002047607



HUMAN
772.4_929.5







ENPP2_
TYLHTYESEI_
0.003087492



HUMAN
628.3_515.3







PSG9_
LFIPQITR_
0.00477154



HUMAN
494.3_727.4







PSG9_
DVLLLVHNLPQ
0.004824351



HUMAN
NLPGYFWYK_





810.4_215.1







THBG_
AVLHIGEK_
0.006668084



HUMAN
289.5_348.7







AFAM_
LPNNVLQEK_
0.006877647



HUMAN
527.8_730.4







ADA12_
FGFGGSTDSGPIR_
0.011738104



HUMAN
649.3_745_4







PEDF_
TVQAVLTVPK_
0.013349511



HUMAN
528.3_855.5







A1BG_
LLELTGPK_
0.015793885



HUMAN
435.8_227.2







ITIH3_
ALDLSLK_
0.016080436



HUMAN
380.2_185.1







ADA12_
FGFGGSTDSGP
0.017037089



HUMAN
IR_





649.3_946.5







B2MG_
VEHSDLSFSK_
0.017072093



HUMAN
383.5_234.1







CO6_
ALNHLPLEYNS
0.024592775



HUMAN
ALYSR_





621.0_696.4







TRFL_
YYGYTGAFR_
0.030890831



HUMAN
549.3_450.3







AFAM_
DADPDTFFAK_
0.033791429



HUMAN
563.8_302.1







CO6_
ALNHLPLEYNS
0.034865341



HUMAN
ALYSR_





621.0_538.3







AFAM_
LPNNVLQEK_
0.039880594



HUMAN
527.8_844.5







PEDF_
TVQAVLTVPK_
0.040854402



HUMAN
528.3_428.3







PLMN_
EAQLPVIENK_
0.041023812



HUMAN
570.8_329.2







LBP_
ITLPDFTGDLR_
0.042276813



HUMAN
624.3_920.5







CO8G_
VQEAHLTEDQI
0.042353851



HUMAN
FYFPK_





655.7_701.4







PLMN_
YEFLNGR_
0.04416504



HUMAN
449.7_606.3







B2MG_
VNHVTLSQPK_
0.045458409



HUMAN
374.9_459.3







CFAB_
DISEVVTPR_
0.046493405



HUMAN
508.3_472.3







INHBE_
ALVLELAK_
0.04789353



HUMAN
428.8_331.2
















TABLE 62







Random Forest Importance Values Using Adjusted Peak Areas









Transition
Rank
Importance












INHBE_ALVLELAK_428.8_672.4
1
2964.951571





EGLN_TQILEWAAER_608.8_761.4
2
1218.3406





FA7_SEPRPGVLLR_375.2_654.4
3
998.92897





CBG_ITQDAQLK_458.8_702.4
4
930.9931102





ITIH3_ALDLSLK_380.2_185.1
5
869.6315408





ENPP2_WWGGQPLWITATK_772.4_929.5
6
768.9182114





CBG_ITQDAQLK_458.8_803.4
7
767.8940452





PSG1_LSETNR_360.2_519.3
8
714.6160065





CAA60698_LEPLYSASGPGLRPLVIK_637.4_834.5
9
713.4086612





INHBC_LDFHFSSDR_375.2_611.3
11
681.2442909





CBG_QINSYVK_426.2_610.3
12
674.3363415





LBP_GLQYAAQEGLLALQSELLR_1037.1_858.5
13
603.197751





A1BG_LLELTGPK_435.8_644.4
14
600.9902818





CO6_DLHLSDVFLK_396.2_366.2
15
598.8214342





VCAM1_TQIDSPLSGK_523.3_816.5
16
597.4038769





LRP1_NAVVQGLEQPHGLVVHPLR_688.4_285.2
17
532.0500081





CBG_QINSYVK_426.2_496.3
18
516.5575201





CO6_ENPAVIDFELAP1VDLVR_670.7_811.5
19
501.4669261





ADA12_FGFGGSTDSGPIR_649.3_745.4
20
473.5510333





CO6_DLHLSDVFLK_396.2_260.2
21
470.5473702





ENPP2_TYLHTYESEI_628.3_908.4
22
444.7580726





A1BG_LLELTGPK_435.8_227.2
23
444.696292





FRIH_QNYHQDSEAAINR_515.9_544.3
24
439.2648872





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_846_8_600.3
25
389.3769604





CBG_WSAGLTSSQVDLYIPK_883.0_515.3
26
374.0749768





C1QC_FQSVFTVTR_542.8_623.4
27
370.6957977





GELS_DPDQTDGLGLSYLSSHIANVER_796.4_456.2
28
353.1176588





A1BG_ATWSGAVLAGR_544.8_643.4
29
337.4580124





APOA1_AKPALEDLR_506.8_813.5
30
333.5742035





ENPP2_TYLHTYESEI_628.3_515.3
31
322.6339162





PEPD_AVYEAVLR_460.8_750.4
32
321.4377907





TIMP1_GFQALGDAADIR_617.3_717.4
33
310.0997949





ADA12_LIEIANHVDK_384.6_498.3
34
305.8803542





PGRP2_WGAAPYR_410.7_577.3
35
303.5539874





PSG9_LFIPQITR_494.3_614.4
36
300.7877317





HABP2_FLNWIK_410.7_560.3
37
298.3363186





CBG_WSAGLTSSQVDLYIPK_883.0_357.2
38
297.2474385





PSG2_IHPSYTNYR_384.2_452.2
39
292.6203405





PSG5_LSIPQITTK_500.8_800.5
40
290.2023364





HABP2_FLNWIK_410.7_561.3
41
289.5092933





CO6_SEYGAALAWEK_612.8_788.4
42
287.7634114





ADA12_LIEIANHVDK_384.6_683.4
43
286.5047372





EGLN_TQILEWAAER_608.8_632.3
44
284.5138846





CO6_ENPAVIDFELAPIVDLVR_670.7_601.4
45
273.5146272





FA7_FSLVSGWGQLLDR_493.3_447.3
46
271.7850098





ITIH3_ALDLSLK_380.2_575.3
47
269.9425709





ADA12_FGFGGSTDSGPIR_649.3_946.5
48
264.5698225





FETUA_AALAAFNAQNNGSNFQLEEISR_789.1_746.4
49
247.4728828





FBLN1_AITPPHPASQANIIFDITEGNLR_825.8_459.3
50
246.572102





TSP1_FVFGTTPEDILR_697.9_843.5
51
245.0459575





VCAM1_NTVISVNPSTK_580.3_732.4
52
240.576729





ENPP2_TEFLSNYLTNVDDITLVPGTLGR_846.8_699.4
53
240.1949512





FBLN3_ELPQSIVYK_538.8_409.2
55
233.6825304





ACTB_VAPEEHPVLLTEAPLNPK_652.0_892.5
56
226.9772749





TSP1_FVFGTTPEDILR_697.9_742.4
57
224.4627393





PLMN_EAQLPVIENK_570.8_699.4
58
221.4663735





C1S_IIGGSDADEK_494.8_260.2
59
218.069476





ILIA_ANDQYLTAAALHNLDEAVK_686.4_317.2
60
216.5531949





PGRP2_WGAAPYR_410.7_634.3
61
211.0918302





PSG5_LSIPQITTK_500.8_687.4
62
208.7871461





PSG6_SNPVTLNVLYGPDLPR_585.7_654.4
63
207.9294937





PRG2_WNFAYWAAHQPWSR_607.3_545.3
64
202.9494031





CXCL2_CQCLQTLQGIHLK_13p8RT_533.6_567.4
65
202.9051326





CXCL2_CQCLQTLQGIHLK_13p48RT_533.6_695.4
66
202.6561548





G6PE_LLDFEFSSGR_585.8_553.3
67
201.004611





GELS_TASDFITK_441.7_710.4
68
200.2704809





B2MG_VEHSDLSFSK_383.5_468.2
69
199.880987





CO8B_IPGIFELGISSQSDR_809.9_849.4
70
198.7563875





PSG8_LQLSETNR_480.8_606.3
71
197.6739966





LBP_GLQYAAQEGLLALQSELLR_1037.1_929.5
72
197.4094851





AFAM_LPNNVLQEK_527.8_844.5
73
196.8123228





MAGE
74
196.2410502





PSG2_IHPSYTNYR_384.2_338.2
75
196.2410458





PSG9_LFIPQITR_494.3_727.4
76
193.5329266





TFR1_YNSQLLSFVR_613.8_734.5
77
193.2711994





C1R_QRPPDLDTSSNAVDLLFFTDESGDSR_961.5_866.3
78
193.0625419





PGH1_ILPSVPK_377.2_264.2
79
190.0504508





FA7_SEPRPGVLLR_375.2_454.3
80
188.2718422





FA7_TLAFVR_353.7_274.2
81
187.6895294





PGRP2_DGSPDVTTADIGANTPDATK_973.5_844.4
82
185.6017519





C1S_IIGGSDADIK_494.8_762.4
83
184.5985543





PEPD_VPLALFALNR_557.3_620.4
84
184.3962957





C1S_EDTPNSVWEPAK_686.8_630.3
85
179.2043504





CHL1_TAVTANLDIR_537.3_802.4
86
174.9866792





CHL1_VIAVNEVGR_478.8_744.4
88
172.2053147





SDF1_ILNTPNCALQIVAR_791.9_341.2
89
171.4604557





PAI1_EVPLSALTNILSAQLISHWK_740.8_996.6
90
169.5635635





AMBP_AFIQLWAFDAVK_704.9_650.4
91
169.2124477





G6PE_LLDFEFSSGR_585.8_944.4
92
168.2398598





THBG_SILFLGK_389.2_577.4
93
166.3110206





PRDX2_GLFIIDGK_431.8_545.3
94
164.3125132





ENPP2_WWGGQPLWITATK_772.4_373.2
95
163.4011689





VGFR3_SGVDLADSNQK_567.3_662.3
96
162.8822352





C1S_EDTPNSVWEPAK_686.8_315.2
97
161.6140915





AFAM_DADPDTFFAK_563.8_302.1
98
159.5917449





CBG_SETEIHQGFQHLHQLFAK_717.4_447.2
99
156.1357404





C1S_LLEVPEGR_456.8_686.4
100
155.1763293





PTGDS_GPGEDFR_389.2_623.3
101
154.9205208





ITIH2_IYLQPGR_423.7_329.2
102
154.6552717





FA7_TLAFVR_353.7_492.3
103
152.5009422





FA7_FSLVSGWGQLLDR_493.3_403.2
104
151.9971204





SAMP_VGEYSLYIGR_578.8_871.5
105
151.4738449





APOH_EHSSLAFWK_552.8_267.1
106
151.0052645





PGRP2_AGLLRPDYALLGHR_518.0_595.4
107
150.4149907





C1QC_FNAVLTNPQGDYDTSTGK_964.5_333.2
108
149.2592827





PGRP2_AGLLRPDYALLGHR_518.0_369.2
109
147.3609354





PGRP2_TFTLLDPK_467.8_686.4
111
145.2145223





CO5_TDAPDLPEENQAR_728.3_843.4
112
144.5213118





THRB_ELLESYIDGR_597.8_839.4
113
143.924639





GELS_DPDQTDGLGLSYLSSHIANVER_796.4_328.1
114
142.8936101





TRFL_YYGYTGAFR_549.3_450.3
115
142.8651352





HEMO_QGHNSVFLIK_381.6_260.2
116
142.703845





C1S_GDSGGAFAVQDPNDK_739.3_716.3
117
142.2799122





B1A4H9_AHQLAIDTYQEFR_531.3_450.3
118
138.196407





C1S_SSNNPHSPIVEEFQVPYNK_729.4_261.2
119
136.7868935





HYOU1_LPATEKPVLLSK_432.6_347.2
120
136.1146437





FETA_GYQELLEK_490.3_502.3
121
135.2890322





LRP1_SERPPIFEIR_415.2_288.2
122
134.6569527





CO6_SEYGAALAWEK_612.8_845.5
124
132.8634704





CERU_TTIEKPVWLGFLGPIIK_638.0_844.5
125
132.1047746





IBP1_AQETSGEEISK_589.8_850.4
126
130.934446





SHBG_VVLSSGSGPGLDLPLVLGLPLQLK_791.5_768.5
127
128.2052287





CBG_SETEIHQGFQHLHQLFAK_717.4_318.1
128
127.9873837





A1AT_LSITGTYDLK_555.8_696.4
129
127.658818





PGRP2_DGSPDVTTADIGANTPDATK_973.5_531.3
130
126.5775806





C1QB_LEQGENVFLQATDK_796.4_675.4
131
126.1762726





EGLN_GPITSAAELNDPQSILLR_632.4_826.5
132
125.7658253





IL12B_YENYTSSFFIR_713.8_293.1
133
125.0476631





B2MG_VEHSDLSFSK_383.5_234.1
134
124.9154706





PGH1_AEHPTWGDEQLFQTTR_639.3_765.4
135
124.8913193





INHBE_ALVLELAK_428.8_331.2
136
124.0109276





HYOU1_LPATEKPVLLSK_432.6_460.3
137
123.1900369





CXCL2_CQCLQTLQGIHLK_13p48RT_533.6_567.4
138
122.8800873





PZP_AVGYLITGYQR_620.8_523.3
139
122.4733204





AFAM_IAPQLSTEELVSLGEK_857.5_333.2
140
122.4707849





ICAM1_VELAPLPSWQPVGK_760.9_400.3
141
121.5494206





CHL1_VIAVNEVGR_478.8_284.2
142
119.0877137





APOB_ITENDIQIALDDAK_779.9_632.3
143
118.0222045





SAMP_AYSDLSR_406.2_577.3
144
116.409429





AMBP_AFIQLWAFDAVK_704.9_836.4
145
116.1900846





EGLN_GPITSAAELNDPQSILLR_632.4_601.4
146
115.8438804





LRP1_NAVVQGLEQPHGLVVHPLR_688.4_890.6
147
114.539707





SHBG_VVLSSGSGPGLDLPLVLGLPLQLK_791.5_598.4
148
113.1931134





IBP1_AQETSGEEISK_589.8_979.5
149
112.9902709





PSG6_SNPVTLNVLYGPDLPR_585.7_817.4
150
112.7910917





APOC3_DYWSTVK_449.7_347.2
151
112.544736





C1R_WILTAAHTLYPK_471.9_621.4
152
112.2199708





ANGT_ADSQAQLLLSTVVGVFTAPGLHLK_822.5_983.6
153
111.9634671





PSG9_DVLLLVHNLPQNLPGYFWYK_810.4_328.2
154
111.5743214





A1AT_AVLTIDEK_444.8_605.3
155
111.216651





PSGx_ILILPSVTR_506.3_785.5
156
110.8482935





THRB_ELLESYIDGR_597.8_710.4
157
110.7496103





SHBG_ALALPPLGLAPLLNLWAKPQGR_770.5_256.2
158
110.5091269





PZP_QTLSWTVTPK_580.8_545.3
159
110.4675104





SHBG_ALALPPLGLAPLLNLWAKPQGR_770.5_457.3
160
110.089808





PSG4_TLFIFGVTK_513.3_811.5
161
109.9039967





PLMN_YEFLNGR_449.7_293.1
162
109.6880397





PEPD_AVYEAVLR_460.8_587.4
163
109.3697285





PLMN_LSSPAVITDK_515.8_830.5
164
108.963353





FINC_SYTITGLQPGTDYK_772.4_352.2
165
108.452612





C1R_WILT_AAHTL_YPK_471.9_407.2
166
107.8348417





CHL1_TAVTANLDIR_537.3_288.2
167
107.7278897





TENA_AVDIPGLEAATPYR_736.9_286.1
168
107.6166195





CRP_YEVQGEVFTKPQLWP_911.0_293.1
169
106.9739589





APOB_SVSLPSLDPASAK_636.4_885.5
170
106.5901668





PRDX2_SVDEALR_395.2_488.3
171
106.2325046





CO8A_YHFEALADTGISSEFYDNANDLLSK_940.8_301.1
172
105.8963287





C1QC_FQSVFTVTR_542.8_722.4
173
105.4338742





PSGx_ILILPSVTR_506.3_559.3
174
105.1942655





VCAM1_TQIDSPLSGK_523.3_703.4
175
105.0091767





VCAM1_NTVISVNPSTK_580.3_845.5
176
104.8754444





CSH_ISLLLIESWLEPVR_834.5_500.3
177
104.6158295





HGFA_EALVPLVADHK_397.9_439.8
178
104.3383142





CGB1_CRPINATLAVEK_457.9_660.4
179
104.3378072





APOB_IEGNLIFDPNNYLPK_874.0_414.2
180
103.9849346





C1QB_LEQGENVFLQATDK_796.4_822.4
181
103.9153207





APOH_EHSSLAFWK_552.8_838.4
182
103.9052103





CO5_LQGTLPVEAR_542.3_842.5
183
103.1061869





SHBG_1ALGGLLFPASNLR_481.3_412.3
184
102.2490294





B2MG_VNHVTLSQPK_374.9_459.3
185
102.1204362





APOA2_SPELQAEAK_486.8_659.4
186
101.9166647





FLNA_TGVAVNKPAEFTVDAK_549.6_258.1
187
101.5207852





PLMN_YEFLNGR_449.7_606.3
188
101.2531011
















TABLE 63







Random Forest Importance Values


Using Peak Area Ratios











Variable
Rank
Importance














HABP2_FLNWIK_
1
3501.905733



410.7_561.3








ADA12_FGFGGST
2
3136.589992



DSGPIR_





649.3_946.5








A1BG_
3
2387.891934



LLELTGPK_





435.8_227.2








B2MG_
4
1431.31771



VEHSDLSFSK_





383.5_234.1








ADA12_FGFGGST
5
1400.917331



DSGPIR_





649.3_745.4








B2MG_
6
1374.453629



VEHSDLSFSK_





383.5_468.2








APOB_
7
1357.812445



IEGNLIFDPNN





YLPK_





874.0_414.2








PSG9_DVLLLVHNL
8
1291.934596



PQNLPGYFWYK_





810.4_960.5








A1BG_
9
1138.712941



LLELTGPK_





435.8_644.4








ITIH3_ALDLSLK_
10
1137.127027



380.2_185.1








ENPP2_TYLHTYESEI_
11
1041.036693



628.3_908.4








IL12B_
12
970.1662913



YENYTSSFFIR_





713.8_293.1








ENPP2_WWGGQPL
13
953.0631062



WITATK_





772.4_373.2








ENPP2_TYLHTYESEI_
14
927.3512901



628.3_515.3








PSG9_LFIPQITR_
15
813.9965357



494.3_614.4








MAGE
16
742.2425022






ENPP2_WWGGQPL
17
731.5206413



WITATK_





772.4_929.5








CERU_
18
724.7745695



TTIEKPVWLGFL





GPIIK_





638.0_640.4








ITIH3_ALDLSLK_
19
710.1982467



380.2_575.3








PSG2_IHPSYTNYR_
20
697.4750893



384.2_452.2








ITIH1_LWAYLTI
21
644.7416886



QELLAK_





781.5_371.2








INHBE_
22
643.008853



ALVLELAK_





428.8_331.2








HGFA_
23
630.8698445



LHKPGVYTR_





357.5_692.4








TRFL_
24
609.5866675



YYGYTGAFR_





549.3_450.3








THBG_
25
573.9320948



AVLHIGEK_





289.5_348.7








GELS_
26
564.3288862



TASDFITK_





441.7_710.4








PSG9_LFIPQITR_
27
564.1749327



494.3_727.4








VGFR3_SGVDLA
28
563.8087791



DSNQK_





567.3_662.3








INHA_
29
554.210214



TTSDGGYSFK_





531.7_860.4








PSG9_DVLLLVHNL
30
545.1743627



PQNLPGYFWYK_





810.4_328.2








HYOU1_LPATEK
31
541.6208032



PVLLSK_





432.6_347.2








C08G_
32
541.3193428



VQEAHLTEDQIFYFPK_





655.7_701.4








BMI
33
540.5028818






HGFA_
34
536.6051948



LHKPGVYTR_





357.5_479.3








PSG2_IHPSYTNYR_
35
536.5363489



384.2_338.2








GELS_
36
536.524931



AQPVQVAEGSEPDGFW





EALGGK_





758.0_623.4








PSG6_SNPVTLNVLYG
37
520.108646



PDLPR_





585.7_654.4








HABP2_FLNWIK_
38
509.0707814



410.7_560.3








PGH1_ILPSVPK_
39
503.593718



377.2_527.3








HYOU1_LPATEKPVL
40
484.047422



LSK_





432.6_460.3








C06_ALNHLPLEYNSA
41
477.8773179



LYSR_





621.0_696.4








INHBE_
42
459.1998276



ALVLELAK_





428.8_672.4








PLMN_
43
452.9466414



LSSPAVITDK_





515.8_743.4








PSG9_DVLLLVHNLPQ
44
431.8528248



NLPGYFWYK_





810.4_215.1








BGH3_LTLLAPLNSVFK_
45
424.2540315



658.4_875.5








AFAM_
46
421.4953221



LPNNVLQEK_





527.8_730.4








ITIH2_LSNENHGIAQR_
47
413.1231437



413.5_519.8








GELS_
48
404.2679723



TASDFITK_





441.7_781.4








FETUA_
49
400.4711207



AHYDLR_





387.7_566.3








CERU_
50
396.2873451



TTIEKPVWLGFLGPI1K_





638.0_844.5








PSGx_ILILPSVTR_
51
374.5672526



506.3_785.5








APOB_
52
371.1416438



SVSLPSLDPASAK_





636.4_885.5








FLNA_
53
370.4175588



TGVAVNKPAEFTVDAK_





549.6_258.1








PLMN_
54
367.2768078



YEFLNGR_





449.7_606.3








PSGx_ILILPSVTR_
55
365.7704321



506.3_559.3









From the foregoing description, it will be apparent that variations and modifications can be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.


The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.


All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.

Claims
  • 1. A panel of isolated biomarkers comprising N of the biomarkers listed in Tables 1 through 63.
  • 2. The panel of claim 1, wherein N is a number selected from the group consisting of 2 to 24.
  • 3-6. (canceled)
  • 7. A method of determining probability for preterm birth in a pregnant female, the method comprising detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in a biological sample obtained from said pregnant female, and analyzing said measurable feature to determine the probability for preterm birth in said pregnant female.
  • 8. The method of claim 7, wherein said measurable feature comprises fragments or derivatives of each of said N biomarkers selected from the biomarkers listed in Tables 1 through 63.
  • 9. The method of claim 7, wherein said detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63, combinations or portions and/or derivatives thereof in a biological sample obtained from said pregnant female.
  • 10. (canceled)
  • 11. The method of claim 7, further comprising an initial step of providing a biomarker panel comprising N of the biomarkers listed in Tables 1 through 63.
  • 12. The method of claim 7, further comprising an initial step of providing a biological sample from the pregnant female.
  • 13-14. (canceled)
  • 15. The method of claim 7, wherein N is a number selected from the group consisting of 2 to 24.
  • 16-37. (canceled)
  • 38. A method of predicting GAB, the method comprising detecting a measurable feature of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63 in a biological sample obtained from a pregnant female, and analyzing said measurable feature to predict GAB.
  • 39. The method of claim 38, wherein said measurable feature comprises fragments or derivatives of each of said N biomarkers selected from the biomarkers listed in Tables 1 through 63.
  • 40. The method of claim 38, wherein said detecting a measurable feature comprises quantifying an amount of each of N biomarkers selected from the biomarkers listed in Tables 1 through 63, combinations or portions and/or derivatives thereof in a biological sample obtained from said pregnant female.
  • 41-42. (canceled)
  • 43. The method of claim 38, further comprising an initial step of providing a biological sample from the pregnant female.
  • 44-79. (canceled)
  • 80. A method of detecting and/or quantifying one or more biomarkers selected from biomarkers listed in Tables 1 through 63 in a biological sample from a pregnant female, said method comprising: a. obtaining said biological sample from a pregnant female; and b. detecting whether said one or more biomarkers are present in the biological sample comprising subjecting the sample to mass spectrometry, a capture agent or a combination thereof.
Parent Case Info

This application is a continuation of application Ser. No. 16/255,757 filed Jan. 23, 2019, which is a continuation of Ser. No. 15/286,486, filed Oct. 5, 2016, which is a continuation of application Ser. No. 14/213,861, filed Mar. 14, 2014, which claims the benefit of U.S. provisional patent application No. 61/919,586, filed Dec. 20, 2013, and U.S. provisional application No. 61/798,504, filed Mar. 15, 2013, each of which is incorporated herein by reference in its entirety.

Provisional Applications (2)
Number Date Country
61919586 Dec 2013 US
61798504 Mar 2013 US
Continuations (3)
Number Date Country
Parent 16255757 Jan 2019 US
Child 17352898 US
Parent 15286486 Oct 2016 US
Child 16255757 US
Parent 14213861 Mar 2014 US
Child 15286486 US