BIOMARKERS FOR DENGUE

Information

  • Patent Application
  • 20120021936
  • Publication Number
    20120021936
  • Date Filed
    October 14, 2009
    15 years ago
  • Date Published
    January 26, 2012
    12 years ago
Abstract
The present invention provides protein-based biomarkers and biomarker combinations that are useful in qualifying dengue status in a patient. In particular, the biomarkers of this invention are useful to classify a subject sample as infected with dengue or not infected with dengue. The biomarkers can be detected by SELDI mass spectrometry.
Description
FIELD

The invention relates generally to clinical diagnostics and prognostics for infection.


BACKGROUND

“Break-bone fever”, or dengue fever (DF), was first spread worldwide in the tropics during the 18th and 19th century following the expansion of the commerce and shipping industry. The Aedes aegypti, main mosquito vector, was introduced, along with the dengue virus (DENV), in the new regions chartered by the industry. During the last decade, dengue was able to spread due to an increase in air travel, unprecedented population growth, unplanned and uncontrolled urbanization, and the lack of mosquito control among other things (Rigau-Perez, J., et al., 1998, Lancet 352:971-977). Today it is estimated that 2.5 billion people are at risk of DENV infection in more than 100 countries in the Americas, Southeast Asia, western Pacific, Africa and the eastern Mediterranean. There is an estimated 50 million cases of dengue infection each year with 500,000 cases of dengue hemorrhagic fever (the more severe case of the disease) and at least 12,000 deaths, mostly in children (DengueNet, 2002, Weekly Epidemiological Record 77:300-304).


Dengue virus belongs to the Flavivirus genus that also includes yellow fever, West Nile, tick-borne encephalitis (TBEV), and Japanese encephalitis viruses. There are 4 primary serotypes that exist which can cause different degrees of disease severity ranging from the mildest form of dengue fever (DF), to dengue hemorrhagic fever (DHF), and the most severe form of dengue shock syndrome (DSS). DENV possesses an icosahedral core of 40-50 nm in diameter, containing one of the 3 structural proteins, the C protein. It encapsulates the 10,700 nucleotide plus-sense RNA genome. Surrounding the core is a smooth lipid bilayer composed of the other 2 structural proteins, the membrane (M) protein, and the envelope glycoprotein (E) (Kuhn, R. J., et al., 2002, Cell 108:717-725). The main biological properties of the virus come from the E protein where it allows for receptor binding, haemagglutination of erythrocytes, neutralizing antibody induction, and protective immune response (Chang, G. J. 1997, p. 175-198. In D. J. Gubler and G. Kuno (ed.), CAB International, New York). It also possesses 7 non-structural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5), of which two, NS1 and NS3, are believed to be the most important ones involved in the pathogenesis. Upon primary infection with DENV, antibodies against the surface E, NS1, and NS3 proteins are generated (Green, S. and A. Rothman, 2006, Current Opinion in Infectious Diseases 19:429-436.). Therefore serotypes can be distinguished by virus-neutralizing antibodies, but non-neutralizing antibodies against the E protein and non-structural proteins NS1 and NS3 are cross-reactive. A life-long immunity against the infective serotype ensues, but protection against others is only for a short period of time. During a second infection by a different serotype, the presence of neutralizing antibodies can reduce the severity of the disease. However, if the levels of these antibodies drop under the neutralizing amount, the heterotypic IgG antibodies form complexes with dengue viruses that can bind to the FcyR resulting in an augmentation of the virus infection. This model is called the antibody dependent enhancement (ADE) (Green, S. and A. Rothman, 2006, Current Opinion in Infectious Diseases 19:429-436; Guzman, M. G. and G. Kouri. 2002, The Lancet Infectious Diseases 2:33-42; Kliks, S. C., et al., 1989, American Journal of Tropical Medicine & Hygiene 40:444-451; Oishi, K., et al., 2003, Journal of Medical Virology 71:259-264; and Stephenson, J. R., 2005, Bulletin of the World Health Organization 83:308-314). To further support this model, it has been observed that the incidence of DHF/DSS in children occurs at two distinct peaks in their lives. The first occurs when the child is 6-9 months old. This is the age at which the maternal antibodies are still present in the circulation. If the child gets infected by a different heterotypic DENV than the mother, DHF/DSS ensues since the levels of maternal antibodies have fallen below the protective levels (Simmons, C. P., et al., Journal of Infectious Diseases 196:416-424). The other peak occurs in young children infected for a second time. ADE supports the fact that DHF/DSS is 15-80 times more likely in secondary infections. However, this can not explain the whole pathogenesis of dengue virus and many other factors still to be studied might play a role such as the strain's virulence and the serotype, and the host susceptibility and the specific role of T cells (Chaturvedi, U., et al., 2006, FEMS Immunology & Medical Microbiology 47:155-166, Fink, J., et al., 2006, Reviews in Medical Virology 16:263-275). All these factors need to be considered in the design of a vaccine (Stephenson, J. R., 2005, Bulletin of the World Health Organization 83:308-314).


Once one is bitten by an infected mosquito, there is an incubation period of up to 2 weeks. Most infections are asymptomatic, especially in children under 15 years of age, but can cause a range of symptoms and even lead to death. Population-based studies have shown that the severity of the disease increases with the patient's age (Burke, D. S., 1988, American Journal of Tropical Medicine & Hygiene 38:172-80, Cobra, C., et al., 1995, American Journal of Epidemiology 142:1204-1211, Dietz, V., et al., 1996. Puerto Rico Health Sciences Journal 15:201-210; and Kuberski, T., et al., 1977, American Journal of Tropical Medicine & Hygiene 26:775-783). DF is an acute febrile disease often characterized by frontal headache, retroocular pain, muscle and joint pain, nausea, vomiting, and rash (Kalayanarooj, S., et al., 1997, Journal of Infectious Diseases 176:313-321). The febrile period usually terminates between 5-7 days after the onset of symptoms, often correlating with the disappearance of the virus from the circulation. In Southeast Asia, DHF is mostly seen in children, but it is seen in all age groups in the tropical Americas. This suggests the involvement of race or strain virulence as risk factors. DHF is an acute febrile illness, typically with bleeding, thrombocytopenia, elevated haematocrit, pleural effusions, and hypoproteinaemia. It begins as DF with a sudden onset of fever, and then develops into DHF around 3-7 days of illness (around the time of defervescence for DF) and continues for about 2-7 days. The main pathophysiological difference between DF and DHF is plasma leakage. Dengue shock syndrome (DSS) is the most severe form of the disease characterized by circulatory failure and a narrowing pulse range. Once shock begins, the fatality rate can be as high as 44% if the proper precautions are not taken (Oishi, K., et al., 2003, Journal of Medical Virology 71:259-264). There are no antiviral drugs administered nor are any drugs known to be useful in limiting the plasma leakage. Dengue treatment is only supportive where analgesics and antipyretics (but not aspirin) are given and fluid management is applied. Only when the molecular biology of DHF is understood will we able to treat it (Lei, H. Y., et al., 2001, Journal of Biomedical Science 8:377-388; and Rigau-Perez, J., et al., 1998, Lancet 352:971-977). This is why the diagnostic of a dengue infection needs to be given early in the disease progression so to maximize the patient's chance of survival. However, clinical findings alone are often not very helpful in distinguishing DF from other febrile illnesses (OFIs) such as the chikungunya, measles, leptospirosis, yellow fever, influenza, West Nile, Japanese, and St Louis encephalitis (Rigau-Perez, J., et al., 1998, Lancet 352:971-977; Senanayake, S., 2006, Australian Family Physician 35:609-612; and Teles, F. R., D. M. Prazeres, and J. L. Lima-Filho, 2005, Reviews in Medical Virology 15:287-302).


During a primary infection, IgM antibodies are developed after 5-6 days and are present in the circulation for up to 2-3 months after infection, while IgG antibodies become present after only 7-10 days. On the other hand, a secondary infection occurs when an individual has been previously infected or immunized with a flavivirus. IgM levels are lower if not absent but IgG levels are very high, even during the acute phase of the infection. Therefore, IgM is a sign of an early infection while high levels of IgG reveal a secondary infection (Guzman, M. G. and G. Kouri, 2002, The Lancet Infectious Diseases 2:33-42). Viable DENV particles are detectable in the circulation for up to 5 days after the symptoms but then rapidly disappear upon the appearance of DENV-specific antibodies (Kao, C. L., et al., 2005, Journal of Microbiology, Immunology & Infection 38:5-16).


Enzyme immunoassay (EIA) is used to detect IgM and IgG antibodies to dengue. This method can distinguish a primary infection from a secondary infection by determining the IgM/IgG ratio; if the ratio in convalescent sera exceeds 1.5, it reveals a primary infection. The World Health Organization (WHO) recommends the use of the dengue monoclonal antibody (IgM)-capture EIA (MAC-EIA) which is inexpensive, simple, fast, and only requires one blood sample. However, IgM antibodies can only be detected at least 5 days after infection since this is the time needed for the body to produce anti-dengue antibodies. Moreover, some false-positives can occur due to the persistence of IgM in the blood even after a few months (Teles, F. R., D. M. Prazeres, and J. L. Lima-Filho, 2005, Reviews in Medical Virology 15:287-302).


The haemagglutination-inhibition (HI) is slightly more sensitive than the EIA test. On the other hand, chemical treatment of the samples is needed to remove non-specific inhibitor of heamagglutination as well as non-specific agglutinins Moreover, this test does not differentiate between closely related flavivirus infections or different DENV serotypes. Paired sera are needed and so the results can take weeks.


There exists also the neutralization test which is more sensitive than the HI-test but employs live virus and so Biosafety Level 3 Laboratories are needed. It also encounters the same difficulties as the HI-test in terms of specificity in addition to the extra cost, time, and technical difficulty associated with the neutralizing test (Teles, F. R., D. M. Prazeres, and J. L. Lima-Filho, 2005, Reviews in Medical Virology 15:287-302).


The complement fixation (CF) test is a good marker of recent infection compared to the detection of IgM dengue specific antibodies due to their short persistence in the blood. However, the CF antibody appears only 7-14 days after the onset of symptoms. Also, it is the least sensitive of the serological tests.


Due to some cross-reactivity in flaviviruses, any serologic test must include as controls the four dengue serotypes, another serotype, a non-flavivirus and an uninfected control for it to be a confirmatory diagnosis (Teles, F. R., D. M. Prazeres, and J. L. Lima-Filho, 2005, Reviews in Medical Virology 15:287-302). Also, the high rate of IgG positive results for people in the tropics indicate that paired acute and convalescent serum samples are often critical for the significance of the tests (Rigau-Perez, J., et al., 1998, Lancet 352:971-977).


Inoculation of clinical specimens into mosquito cells, larvae or adult mosquitoes is the most sensitive approach. Specific detection and identification of the virus by immunofluorescence assays with serotype-specific anti-dengue monoclonal antibodies makes this technique able to determine the serotype of DENV. This test is convenient since the samples are relatively suitable for 2 weeks and the test does not require special facilities or special training (Teles, F. R., D. M. Prazeres, and J. L. Lima-Filho, 2005, Reviews in Medical Virology 15:287-302). However, days to weeks are necessary for virus isolation and the cost of equipment and laboratory maintenance is high (Kao, C. L., et al., 2005, Journal of Microbiology, Immunology & Infection 38:5-16).


RNA viral genome can be detected by PCR-based techniques, e.g., RT-PCR. It is a technique that is just as expensive as the virus culture technique with higher contamination risks associated with sample manipulation, but only takes a few hours to perform and is much more sensitive. By using 4 serotype-specific oligonucleotide primers, it is also possible to detect the serotype of the given DENV (Teles, F. R., D. M. Prazeres, and J. L. Lima-Filho, 2005, Reviews in Medical Virology 15:287-302).


Thus a need exists for the identification of biomarkers that could simplify the diagnosis and/or prognosis of dengue and its symptoms at, e.g., reduced costs. The present invention provides for these and other advantages, as described below.


SUMMARY

The present invention provides, inter alia, biomarkers that are differentially present in subjects with dengue. In addition, the present invention provides methods of using the biomarkers to qualify dengue in a subject or in a biological sample taken from a subject, including a sample of serum, blood, or other donated tissue. As such, the invention provides biomarkers that represent full length proteins or fragments of proteins expressed in infected individuals by a member of the Flaviviridae family, the pathogen responsible for dengue.


The biomarkers can be used, inter alia, to qualify dengue status, determine the course of dengue, monitor the response to treatment by a drug used to treat dengue, and/or determine a treatment regimen for dengue. The dengue can be caused by members of the Flaviviridae family.


In one aspect, the present invention provides a method for qualifying dengue status in a subject, the method including: (a) measuring at least one biomarker in a biological sample from the subject, wherein the at least one biomarker is selected from the group consisting of the biomarkers of Tables 1-5, 17, 21, and 24; and (b) correlating the measurement with dengue status. In one aspect, the biological sample is a serum sample.


The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 2.5, 2.6, 2.7, 2.8, 3.0, 3.2, 3.4, 3.5, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 5.0, 5.1, 5.2, 5.3, 5.5, 5.6, 5.7, 6.0, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.4, 7.5, 7.6, 8.2, 8.8, 9.0, 9.3, 9.5, 9.6, 10.0, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 11.0, 11.1, 11.3, 11.5, 11.7, 11.8, 11.9, 12.1, 12.2, 12.4, 12.5, 12.6, 12.7, 12.9, 13.0, 13.1, 13.2, 13.3, 13.4, 13.5, 13.8, 14.0, 14.1, 14.2, 14.3, 14.4, 15.3, 17.4, 17.7, 17.8, 18.0, 21.5, 22.4, 23.1, 23.3, 23.6, 23.7, 23.8, 25.4, 25.6, 26.5, 26.7, 28.2, 28.4, 29.0, 30.3, 30.8, 31.2, 32.3, 33.5, 33.6, 34.0, 34.2, 34.5, 34.7, 36.5, 36.6, 38.7, 39.5, 39.9, 42.3, 43.5, 44.0, 44.6, 44.7, 45.0, 45.4, 45.5, 45.6, 46.2, 46.6, 46.7, 49.7, 50.5, 51.7, 52.4, 52.6, 53.4, 53.6, 54.3, 54.4, 54.6, 54.8, 55.1, 55.3, 55.8, 56.6, 59.4, 59.5, 61.4, 63.1, 66.6, 66.7, 66.8, 67.1, 69.0, 70.9, 71.3, 71.5, 75.1, 75.2, 75.3, 77.1, 79.1, 79.3, 88.3, 95.7, 109.0, 111.3, 117.2, 123.0, 125.4, 133.4, 133.7, 150.1, 164.6, 188.6, 194.2, and 198.3 kDa and any combination thereof.


The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 2.5, 2.6, 2.7, 2.8, 3.0, 3.2, 3.4, 3.5, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 5.0, 5.1, 5.2, 5.3, 5.5, 5.6, 5.7, 6.0, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.4, 7.5, 7.6, 8.2, 8.8, 9.0, 9.3, 9.5, 9.6, 10.0, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 11.0, 11.1, 11.3, 11.5, 11.7, 11.8, 11.9, 12.1, 12.2, 12.4, 12.5, 12.6, 12.7, 12.9, 13.0, 13.1, 13.2, 13.3, 13.4, 13.5, 13.8, 14.0, 14.1, 14.2, 14.3, 14.4, 15.3, 17.4, 17.7, 17.8, 18.0, 21.5, 22.4, 23.1, 23.3, 23.6, 23.7, 23.8, and 25.4 kDa and any combination thereof. The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 25.6, 26.5, 26.7, 28.2, 28.4, 29.0, 30.3, 30.8, 31.2, 32.3, 33.5, 33.6, 34.0, 34.2, 34.5, 34.7, 36.5, 36.6, 38.7, 39.5, 39.9, 42.3, 43.5, 44.0, 44.6, 44.7, 45.0, 45.4, 45.5, 45.6, 46.2, 46.6, 46.7, 49.7, 50.5, 51.7, 52.4, 52.6, 53.4, 53.6, 54.3, 54.4, 54.6, 54.8, 55.1, 55.3, 55.8, 56.6, 59.4, 59.5, 61.4, 63.1, 66.6, 66.7, 66.8, 67.1, 69.0, 70.9, 71.3, 71.5, 75.1, 75.2, 75.3, 77.1, 79.1, 79.3, 88.3, 95.7, 109.0, 111.3, 117.2, 123.0, 125.4, 133.4, 133.7, 150.1, 164.6, 188.6, 194.2, and 198.3 kDa and any combination thereof.


The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 3.4, 3.8, 3.9, 4.0, 4.6, 6.6, 6.7, 7.0, 7.6, 10.6, 11.1, 11.7, 12.5, 12.7, 12.9, 13.1, 13.2, 13.3, 13.4, 14.4, 23.1, 23.3, 23.6, 23.8, 25.4, 34.2, 44.7, 45.6, 46.2, 46.4, 56.6, 117.2, 133.4, 133.7, 198.3 kDa and any combination thereof. The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 3.4, 3.8, 3.9, 4.0, 4.6, 6.6, 6.7, 7.0, 7.6, 10.6, 11.1, 11.7, and 12.5 kDa and any combination thereof. The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 12.7, 12.9, 13.1, 13.2, 13.3, 13.4, 14.4, 23.1, and 23.3 kDa. The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 23.6, 23.8, 25.4, 34.2, and 44.7 kDa and any combination thereof. The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 45.6, 46.2, 46.4, 56.6, 117.2, 133.4, 133.7, and 198.3 kDa and any combination thereof. The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 3.4, 3.8, 3.9, 4.0, 4.6, 6.6, 6.7, 133.4, 133.7, and 198.3 kDa and any combination thereof. The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 3.4, 3.8, 3.9, 25.4, 34.2, 44.7, 45.6, 46.2, and 46.4 kDa and any combination thereof. The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 4.6, 25.4, 34.2, and 44.7 kDa and any combination thereof. The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 7.0, 7.6, 10.6, 11.1, 11.7, 12.5, 12.7, 12.9, 13.1, 13.2, 13.3, 13.4, 14.4, 23.8, 25.4, 34.2, 44.7, and 45.6 kDa and any combination thereof. The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 3.4, 3.8, 3.9, 4.0, 4.6, 6.6, 6.7, 117.2, 133.4, 133.7, and 198.3 kDa and any combination thereof. The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 12.7, 12.9, 13.1, 13.2, and 13.3 kDa and any combination thereof.


The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 2.6, 2.7, 2.8, 3.5, 4.2, 5.1, 5.2, 5.3, 5.5, 5.6, 5.7, 6.7, 6.8, 6.9, 7.0, 7.4, 8.8, 9.0, 9.3, 9.5, 9.6, 10.3, 10.9, 11.3, 11.5, 11.7, 11.8, 11.9, 12.4, 12.6, 12.9, 13.5, 13.8, 25.6, 32.3, 39.9, 42.3, 44.0, 44.6, 45.0, 46.6, 46.7, 49.7, 53.6, 54.4, 55.8, 63.1, 67.1, 75.3, 88.3, 111.3, and 150.1 kDa and any combination thereof. The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 2.6, 2.7, 2.8, 3.5, 4.2, 5.1, 5.2, 5.3, 5.5, 5.6, 5.7, 6.7, and 6.8 kDa and any combination thereof. The at least one biomarker can be selected from the group consisting of biomarkers of molecular masses of about 6.9, 7.0, 7.4, 8.8, 9.0, 9.3, 9.5, 9.6, 10.3, 10.9, 11.3, 11.5, 11.7, 11.8, 11.9, and 12.4 kDa and any combination thereof. It will be understood that any combination of the biomarkers described herein can be measured using the methods described herein.


In some aspects, the at least one biomarker is selected from the group consisting of biomarkers of molecular masses of about 12.6, 12.9, 13.5, 13.8, 25.6, 32.3, 39.9, 42.3, 44.0, 44.6, and 45.0 kDa and any combination thereof. In some aspects, the at least one biomarker is selected from the group consisting of biomarkers of molecular masses of about 46.6, 46.7, 49.7, 53.6, 54.4, 55.8, 63.1, 67.1, 75.3, 88.3, 111.3, and 150.1 kDa and any combination thereof. In some aspects, the at least one biomarker is selected from the group consisting of biomarkers of molecular masses of about 2.6, 2.7, 2.8, 3.5, 4.2, 5.1, 5.2, 5.3, 67.1, 75.3, 88.3, 111.3, and 150.1 kDa and any combination thereof. In some aspects, each of the biomarkers having a molecular mass of about 75.3, 88.3, 111.3, and 150.1 kDa is measured.


In some aspects, the at least one biomarker is selected from the group consisting of biomarkers of molecular masses of about 2.6, 2.7, 11.7, 11.8, 11.9, 12.4, 67.1, 75.3, 88.3, 111.3, and 150.1 kDa and any combination thereof. In some aspects, the at least one biomarker is selected from the group consisting of biomarkers of molecular masses of about 7.4, 8.8, 9.0, 9.3, 9.5, 9.6, 10.3, 10.9, 12.4, 12.6, 12.9, 13.5, 13.8, 25.6, and 32.3 kDa and any combination thereof. In some aspects, the at least one biomarker is selected from the group consisting of biomarkers of molecular masses of about 11.5, 25.6, and 32.3 kDa and any combination thereof.


In some aspects, the at least one biomarker is a protein or fragment thereof as provided in Table 5. In certain aspects, the at least one biomarker is represented by at least one of the accession numbers provided in Table 5.


In one aspect, the at least one biomarker is measured by capturing the biomarker on an adsorbent of a SELDI probe and detecting the captured biomarkers by laser desorption-ionization mass spectrometry. In certain aspects, the adsorbent is a cation exchange adsorbent, whereas in other aspects, the adsorbent is a metal chelation adsorbent. In another aspect, the at least one biomarker is measured by immunoassay.


In another aspect, the correlating is performed by a software classification algorithm. In a further aspect, dengue status is selected from chronically infected versus uninfected. In yet other aspects, dengue status is selected from chronically infected status versus acutely infected disease status, chronically infected asymptomatic status versus chronically affected with symptoms, or acutely infected status versus healthy uninfected status. In still another aspect, dengue status is selected from dengue versus healthy. In yet other aspects, dengue status is selected from dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). In other aspects, the biomarkers of the present invention can be used to predict the effectiveness of a dengue vaccine. In other aspects, dengue status is selected from primary infection and secondary infection.


In yet another aspect, the method further comprises managing subject treatment based on the status. If the measurement correlates with dengue, then managing subject treatment comprises administering to a patient drugs selected from a group consisting of, but not necessarily limited to, drugs such as paracetamol, antipyretics, and combinations thereof.


In a further aspect, the method further comprises measuring the at least one biomarker after subject management.


In another aspect, the present invention provides a method comprising measuring at least one biomarker in a sample from a subject, wherein the at least one biomarker is selected from the group consisting of the biomarkers set forth in Tables 1-5, 17, 21, and 24. In one aspect, the sample is a serum sample.


In still another aspect, the present invention provides a kit comprising: (a) a solid support comprising at least one capture reagent attached thereto, wherein the capture reagent binds at least one biomarker from a first group consisting of the biomarkers set forth in Table 1, Table 2, Table 3, Table 4, Table 5, Table 17, Table 21, and Table 24; and (b) instructions for using the solid support to detect the at least one biomarker set forth in Table 1, Table 2, Table 3, Table 4, Table 5, Table 17, Table 21, and Table 24.


In other aspects, the kit additionally comprises (c) a container containing at least one of the biomarkers of Table 1, Table 2, Table 3, Table 4, Table 5, Table 17, Table 21, and Table 24.


In yet a further aspect, the present invention provides a software product, the software product comprising: (a) code that accesses data attributed to a sample, the data comprising measurement of at least one biomarker in the sample, the biomarker selected from the group consisting of the biomarkers of Table 1, Table 2, Table 3, Table 4, Table 5, Table 17, Table 21, and Table 24; and (b) code that executes a classification algorithm that classifies dengue status of the sample as a function of the measurement.


In one aspect, the classification algorithm classifies dengue status of the sample as a function of the measurement of a biomarker selected from the biomarkers of Tables 1-5, 17, 21, and 24.


In other aspects, the present invention provides purified biomolecules selected from the biomarkers set forth in Table 1, Table 2, Table 3, Table 4, Table 5, Table 17, Table 21, and Table 24 and, additionally, methods comprising detecting a biomarker set forth in Table 1, Table 2, Table 3, Table 4, Table 5, Table 17, Table 21, and Table 24 by mass spectrometry or immunoassay.


In yet another aspect, the method further comprises testing and qualifying stocks of blood based on the status of blood which has been tested according to the methods described herein. If the measurements taken from blood samples correlate with dengue, then the management of blood stocks comprises decontamination of the infected blood by treatment of the infected blood with purification agents available to one skilled in the art. Alternatively, the infected blood can be discarded or destroyed and only stocks of blood which have not tested positively for dengue are retained.


In one aspect, the present invention provides a method for qualifying dengue status in a subject in comparison to the status of a different viral infection, the method comprising: (a) measuring at least one biomarker in a biological sample from the subject, wherein the at least one biomarker specifically indicates the presence of dengue and does not indicate the presence of a different infection; and (b) correlating the measurement with dengue status in comparison to the status of a different infection. In one aspect, the biological sample is a serum sample. In a preferred aspect of this method, the at least one biomarker is selected from the group of biomarkers of Tables 1-5, 17, 21, and 24. In still another preferred aspect, the infection includes, but is not limited to other febrile illnesses (OFIs).


In another aspect, the present invention provides a method for monitoring the course of progression of dengue in a patient comprising: (a) measuring at least one biomarker in a first biological sample from the patient, wherein the at least one biomarker specifically indicates the presence of dengue; (b) measuring the at least one biomarker in a second biological sample from the subject, wherein the second biological sample was obtained from the subject after the first biological sample; and (c) correlating the measurements with the progression or regression of dengue in the subject. In one aspect, the at least one biomarker is selected from the group consisting of the biomarkers of Tables 1-5, 17, 21, and 24.


Other features, objects and advantages of the invention and its preferred aspects will become apparent from the detailed description, examples and claims that follow.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, and accompanying drawings, where:



FIG. 1 shows Biomarker Pattern Software analysis results for fraction F1CSL (fraction 1 using CM10 at low laser intensity). Using the indicated splitters, 100.000% sensitivity and 94.737% specificity was achieved.



FIG. 2 shows a graphical representation from CiphergenExpress of 3 candidate dengue diagnostic biomarkers of the F1CSL fraction. (A) Predicted MW of 4580 Da. (B) Predicted MW of 3957 Da. (C) Predicted MW of 3870 Da. Each dot represents a sample. The relative intensity of each protein is represented on the y-axis.



FIG. 3 shows a graphical representation from CiphergenExpress of a candidate dengue diagnostic biomarker with predicted MW of 4292 Da in the FISL fraction. (A) CE graphical representation of control and DHF at t2. (B) CE graphical representation of control and DF at t2. Each dot represents a sample. The relative intensity of each protein is represented on the y-axis.



FIG. 4 shows Biomarker Pattern Software analysis results for fraction FlISH (fraction 1 using IMAC at high laser intensity). Using the indicated splitters, 92.592% sensitivity and 100.000% specificity was achieved.



FIG. 5 shows a graphical representation from CiphergenExpress of a candidate dengue diagnostic biomarker with predicted MW of 23105 Da in the F1ISH fraction. Each dot represents a sample. The relative intensity of each protein is represented on the y-axis.



FIG. 6 shows Biomarker Pattern Software analysis results for fraction F5CSH (fraction 5 using CM10 at high laser intensity). Using the indicated splitters, 100.000% sensitivity and 100.000% specificity was achieved.



FIG. 7 shows a graphical representation from CiphergenExpress 2 candidate dengue diagnostic biomarker with predicted MW of 4292 Da in the FISL fraction. (A) CE graphical representation of control and DHF at t1 of candidate biomarker with predicted MW of 12919 Da. (B) CE graphical representation of control and DHF at t2 of candidate biomarker with predicted MW of 13092 Da. Each dot represents a sample. The relative intensity of each protein is represented on the y-axis.



FIG. 8 shows a graphical representation from CiphergenExpress of a candidate dengue diagnostic biomarker with predicted MW of 12650 Da in the F6CSL fraction. Each dot represents a sample. The relative intensity of each protein is represented on the y-axis.



FIG. 9 shows a graphical representation from CiphergenExpress of a candidate dengue diagnostic biomarker with predicted MW of 3437 Da in the F61SL fraction. Each dot represents a sample. The relative intensity of each protein is represented on the y-axis.



FIG. 10 shows Biomarker Pattern Software analysis results for fraction F6ISH (fraction 6 using IMAC at high laser intensity). Using the indicated splitters, 93.333% sensitivity and 100.00% specificity was achieved.



FIG. 11 shows a graphical representation from CiphergenExpress of a candidate dengue diagnostic biomarker with predicted MW of 13317 Da in the F6ISH fraction. Each dot represents a sample. The relative intensity of each protein is represented on the y-axis.



FIG. 12 shows a 4-12% Bis-Tris NuPAGE Gel #1 of pooled controls (C) at time 1 and 2 compared to pooled dengue samples of DF and DHF at time 1 and 2 (D). ZOOM Fractionated and desalted (200 μl). Lane 1 and 10, Marker 12 MW (invitrogen). Each C or D sample was desalted and ZOOM Fractionated using specific pI ranges corresponding to the pH indicated on the figure. The boxes indicate the potential diagnostic biomarkers sent for sequencing.



FIG. 13 shows a graphical representation of the differential signal intensity of the AMBP protein precursor biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 14 shows a graphical representation of the differential signal intensity of the Apolipoprotein A-I precursor biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 15 shows a graphical representation of the differential signal intensity of the Apolipoprotein D precursor biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 16 shows a graphical representation of the differential signal intensity of the C4b-binding protein a chain precursor biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 17 shows a graphical representation of the differential signal intensity of the Carboxypeptidase N subunit 2 precursor biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 18 shows a graphical representation of the differential signal intensity of the Ceruloplasmin precursor biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 19 shows a graphical representation of the differential signal intensity of the Complement Clq subcomponent subunit B precursor biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 20 shows a graphical representation of the differential signal intensity of the Hemoglobin subunit a biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 21 shows a graphical representation of the differential signal intensity of the Hemopexin precursor biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 22 shows a graphical representation of the differential signal intensity of the Insulin-like growth factor-binding protein complex acid labile chain biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 23 shows a graphical representation of the differential signal intensity of the Plasma protease Cl inhibitor precursor biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 24 shows a graphical representation of the differential signal intensity of the Sertransferrin precursor biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 25 shows a graphical representation of the differential signal intensity of the Vitamin K-dependent protein S precursor biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 26 shows a graphical representation of the differential signal intensity of the Vitronectin precursor biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 27 shows a graphical representation of the differential signal intensity of the alpha1B-glycoprotein precursor biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 28 shows a graphical representation of the differential signal intensity of the 3806 and 4596 DA biomarkers in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 29 shows a graphical representation of the differential signal intensity of the 23,260 DA biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 30 shows a graphical representation of the differential signal intensity of the 12,662 DA biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 31 shows a graphical representation of the differential signal intensity of the 13,295 DA biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 32 shows a graphical representation of the differential signal intensity of the 12,650 DA biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 33 shows a graphical representation of the differential signal intensity of the 7,625 DA biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.



FIG. 34 shows a graphical representation of the differential signal intensity of the 13,317 DA biomarker in control, DF, and DHF groups. The biomarker is characterized by its mass-to-charge ratio as determined by mass spectrometry and is represented in daltons.





DETAILED DESCRIPTION
Introduction

A biomarker is an organic biomolecule which is differentially present in a sample taken from a subject of one phenotypic status (e.g., having a disease) as compared with another phenotypic status (e.g., not having the disease). A biomarker is differentially present between different phenotypic statuses if the expression level of the biomarker (e.g., as indicated by the mean, median, or other measure) in the different groups is calculated to be statistically significant. Common tests for statistical significance include, among others, t-test, ANOVA, Kruskal-Wallis, Wilcoxon, Mann-Whitney and odds ratio. Biomarkers, alone or in combination, provide measures of relative risk that a subject belongs to one phenotypic status or another. Therefore, they are useful as markers for disease (diagnostics), therapeutic effectiveness of a drug (theranostics), drug toxicity, and the like.


It is to be understood that this invention is not limited to particular methods, reagents, compounds, compositions, or biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to be limiting. As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “a biomarker” includes a combination of two or more biomarkers, and the like.


“About” as used herein when referring to a measurable value such as an amount, a temporal duration, and the like, is meant to encompass variations of ±20% or ±10%, more preferably ±5%, even more preferably ±1%, and still more preferably ±0.1% from the specified value, as such variations are appropriate to perform the disclosed methods.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although any methods and materials similar or equivalent to those described herein can be used in the practice for testing of the present invention, the preferred materials and methods are described herein. In describing and claiming the present invention, the following terminology will be used.


The term “in situ” refers to processes that occur in a living cell growing separate from a living organism, e.g., growing in tissue culture.


The term “in vivo” refers to processes that occur in a living organism.


The term “mammal” as used herein includes both humans and non-humans and include but is not limited to humans, non-human primates, canines, felines, murines, bovines, equines, and porcines.


As used herein, the term “residue” refers to amino acids or analogs thereof.


As used herein, the term “peptide” refers to peptides, proteins, fragments of proteins, peptidomimetics, and the like that are comprised of more than one amino acid residue or similar molecule.


The term percent “identity,” in the context of two or more nucleic acid or polypeptide sequences, refer to two or more sequences or subsequences that have a specified percentage of nucleotides or amino acid residues that are the same, when compared and aligned for maximum correspondence, as measured using one of the sequence comparison algorithms described below (e.g., BLASTP and BLASTN or other algorithms available to persons of skill) or by visual inspection. Depending on the application, the percent “identity” can exist over a region of the sequence being compared, e.g., over a functional domain, or, alternatively, exist over the full length of the two sequences to be compared.


For sequence comparison, typically one sequence acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.


Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, 1981, Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman & Wunsch, 1970, J. Mol. Biol. 48:443, by the search for similarity method of Pearson & Lipman, 1988, Proc. Nat'l. Acad. Sci. USA 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see generally Ausubel et al., infra).


One example of an algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul et al., 1990, J. Mol. Biol. 215:403-410. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/).


The term “sufficient amount” means an amount sufficient to produce a desired effect, e.g., an amount sufficient to modulate protein aggregation in a cell.


The term “therapeutically effective amount” is an amount that is effective to ameliorate a symptom of a disease. A therapeutically effective amount can be a “prophylactically effective amount” as prophylaxis can be considered therapy.


A biomarker is an organic biomolecule which is differentially present in a sample taken from a subject of one phenotypic status (e.g., having a disease) as compared with another phenotypic status (e.g., not having the disease). A biomarker is differentially present between different phenotypic statuses if the mean or median expression level of the biomarker in the different groups is calculated to be statistically significant. Common tests for statistical significance include, among others, t-test, ANOVA, Kruskal-Wallis, Wilcoxon, Mann-Whitney and odds ratio. Biomarkers, alone or in combination, provide measures of relative risk that a subject belongs to one phenotypic status or another. Therefore, they are useful as markers for disease (diagnostics), therapeutic effectiveness of a drug (theranostics), prognostics, and drug toxicity.


The term “chronic” refers to a disease or condition that is long-lasting or recurrent. The term chronic describes the course of the disease, or its rate of onset and development. A chronic course is distinguished from a recurrent course; recurrent diseases or conditions relapse repeatedly, with periods of remission in between.


The term “acute” means an exacerbated event or attack, of short course, followed by a period of remission.


Biomarkers for Dengue


This invention provides, inter alia, polypeptide-based biomarkers that are differentially present in subjects having dengue, in particular, and particularly that are differentially expressed in subjects infected with dengue versus non uninfected individuals (e.g., control, healthy, benign condition or other disease state). The biomarkers are characterized by mass-to-charge ratio as determined by mass spectrometry, by the shape of their spectral peak in time-of-flight mass spectrometry and by their binding characteristics to adsorbent surfaces. These characteristics provide one method to determine whether a particular detected biomolecule is a biomarker of this invention. These characteristics represent inherent characteristics of the biomolecules and not process limitations in the manner in which the biomolecules are discriminated. In one aspect, this invention provides these biomarkers in isolated form.


The biomarkers of Tables 3-4 were discovered using SELDI technology employing ProteinChip® arrays from Ciphergen Biosystems, Inc. (Fremont, Calif.) (“Ciphergen”). Serum samples were collected from subjects diagnosed with dengue and subjects diagnosed as healthy as well as subjects diagnosed with other febrile illnesses (OFIs). “Other febrile illnesses” are defined as cases with no evidence of dengue infection and no obvious bacterial, rickettsial or protozoan etiology, including, without limitation, chikungunya, measles, leptospirosis, yellow fever, influenza, West Nile, Japanese, and St Louis encephalitis. The samples were fractionated by anion exchange chromatography. Fractionated samples were applied to SELDI biochips and spectra of polypeptides in the samples were generated by time-of-flight mass spectrometry on a Ciphergen PBS IIc mass spectrometer. The spectra thus obtained were analyzed by Ciphergen Express™ Data Manager Software with Biomarker Wizard and Biomarker Pattern Software from Ciphergen Biosystems, Inc. The mass spectra for each group were subjected to scatter plot analysis. A Mann-Whitney test analysis was employed to compare dengue and control groups for each protein cluster in the scatter plot, and proteins were selected that differed significantly (p<0.05) between the two groups. This method is described in more gel electrophoresis followed by protein identification by matrix-assisted laser desorption/ionization mass spectrometry (DIGE and MALDI-TOFMS). This method is described in more detail in the Examples.


The biomarkers thus discovered are presented in Tables 1-4 (the protocol for the data obtained is further described below in the Examples).









TABLE 1







Biomarkers identified using differential SDS-PAGE gel followed by protein


identification by matrix-assisted laser desorption/ionization mass spectroscopy.


Samples were fractionated using ZOOM IEF Fractionator (Invitrogen).














Approximate

Predicted





position on gel

molecular
Calculated


Fraction
Band #
(kDa)
ID
weight (Da)
pI value















F1 (pH
2.3
 116.3-200.00
α2-macroglobulin
164600
6.00


3.0-4.6)
4.5
66.3-97.4
plasma protease C1
55347
6.09





inhibitor precursor







carboxypeptidase N
61431
5.63





subunit 2 precursor







α1-acid glycoprotein
23725
4.93





1 precursor







serotransferrin
79280
6.81





precursor







lumican precursor
38747
6.16



6.7
55.4-66.3
lumican precursor
38747
6.16





hemopexin
52385
6.55





precursor





8.9
31.0-36.5
apolipoprotein D
21547
5.06





precursor





10.11
  10-14.4
complement C4 A
194247
6.65





precursor




F2 (pH
12.13
 116.3-200.00
α2-macroglobulin
164600
6.00


4.6-5.4)


AMBP protein
39886
5.95





precursor





14.15
 97.4-116.3
ceruloplasmin
122983
5.44





precursor







apolipoprotein A-I
30759
5.56





precursor







complement C4 A
194247
6.65





precursor







plasma protease C1
55347
6.09





inhibitor precursor







hemopexin
52385
6.55





precursor







apolipoprotein B-100
516666
6.61



16.17
66.3-97.4
prothrombin
71475
5.64





precursor







lumican precursor
38747
6.16





insulin-like growth
66735
6.33





factor-binding







protein complex acid







labile chain







precursor







α1B-glycoprotein
54809
5.58





precursor







apolipoprotein A-I
30759
5.56





precursor







afamin precursor
70963
5.64





haptoglobin-related
39496
6.42





protein precursor







vitamin K-dependent
77127
5.48





protein S precursor







complement C4 A
194247
6.65





precursor







apolipoprotein A-IV
45371
5.28





precursor







hemopexin
52385
6.55





precursor







vitronectin precursor
55069
5.55



18.19
14.4-21.5
apolipoprotein A-I
30759
5.56





precursor







haptoglobin-related
39496
6.42





protein precursor




F3 (pH
20.21
31.0-36.5
mannose binding
26526
5.39


5.4-7.0)


protein C precursor







complement C4 A
194247
6.65





precursor







prothrombin
71475
5.64





precursor







haptoglobin-related
39496
6.42





protein precursor







fibrinogen α chain
95656
5.70





precursor







complement C3
188569
6.02





precursor




F4 (pH
22.23
~66.3
complement C3
188569
6.02


7.0-9.1)


precursor







complement C4 A
194247
6.65





precursor







serotransferrin
79280
6.81





precursor







fibrinogen α chain
95656
5.70





precursor







C4b-binding protein
69042






α chain precursor





24.25
~36.5
complement C1q
26670
8.83





subcomponent







subunit B precursor







serotransferrin
79280
6.81





precursor







complement C4 A
194247
6.65





precursor







prothrombin
71475
5.64





precursor







complement C3
188569
6.02





precursor







fibrinogen α chain
95656
5.70





precursor





26.27
14.4-21.5
haptoglobin-related
39496
6.42





protein precursor







complement
22435
8.49





component C8 γ







chain precursor




F5 (pH
28.29
 116.3-200.00





9.1- 10.0)
30.31
~116.3
tRNA(Ile)-lysine
50497
9.57





synthase-








Streptococcus









mutans






32.33
55.4-66.3
complement C3
188569
6.02





precursor







complement C4 A
194247
6.65





precursor





34.35
36.5-55.4
















TABLE 2







TABLE 2. Biomarkers identified employing differential SDS-PAGE gel followed by


matrix-assisted laser desorption/ionization mass spectroscopy, their presence/absence in


sample and their obtained scores using MASCOTT search engine.


















Approximate

Predicted









position on

molecular
Calculated
Coverage


Fraction
Band #
gel (kDa)
ID
weight (Da)
pI value
(%)
Ct
DV
Score



















F1 (pH
2.3
 116.3-200.00
α2-macroglobulin
164600
6.00
4

x
390


3.0-4.6)
4.5
66.3-97.4
plasma protease C1
55347
6.09
11
x

311





inhibitor precursor





carboxypeptidase N
61431
5.63
9
x
xx
220





subunit 2 precursor





α1-acid glycoprotein
23725
4.93
3
x

52





1 precursor





serotransferrin
79280
6.81
3

x
99





precursor





lumican precursor
38747
6.16
5

x
60



6.7
55.4-66.3
Serum albumin
71317
5.92
32
x
xx
1236





precursor





lumican precursor
38747
6.16
7
x

130





hemopexin
52385
6.55
4

x
73





precursor



8.9
31.0-36.5
apolipoprotein D
21547
5.06
28
xx
x
229





precursor



10.11
  10-14.4
complement C4 A
194247
6.65
0
x

49





precursor


F2 (pH
12.13
 116.3-200.00
α2-macroglobulin
164600
6.00
1
x

63


4.6-5.4)


AMBP protein
39886
5.95
3
x

54





precursor



14.15
 97.4-116.3
Serum albumin
71317
5.92
12
x

396





precursor





ceruloplasmin
122983
5.44
12
x
xx
529





precursor





apolipoprotein A-I
30759
5.56
12

x
112





precursor





complement C4 A
194247
6.65
1

x
78





precursor





plasma protease C1
55347
6.09
4

x
65





inhibitor precursor





hemopexin
52385
6.55
2

x
49





precursor





apolipoprotein B-
516666
6.61
0

x
45





100



16.17
66.3-97.4
prothrombin
71475
5.64
42
x
xx
1187





precursor





lumican precursor
38747
6.16
14
xx
x
225





insulin-like growth
66735
6.33
9
x
xx
299





factor-binding





protein complex





acid labile chain





precursor





α1B-glycoprotein
54809
5.58
11
xx
x
187





precursor





apolipoprotein A-I
30759
5.56
12
xx
x
154





precursor





afamin precursor
70963
5.64
10
xx
x
154










9%










cov.










scor










219





haptoglobin-related
39496
6.42
6
x

99





protein precursor





vitamin K-
77127
5.48
5
x
xx
184





dependent protein S





precursor





complement C4 A
194247
6.65
0
x

67





precursor





apolipoprotein A-IV
45371
5.28
2
x

49





precursor





hemopexin
52385
6.55
4
x
x
95





precursor





vitronectin precursor
55069
5.55
3

x
92



18.19
14.4-21.5
apolipoprotein A-I
30759
5.56
19
xx
x
213





precursor





haptoglobin-related
39496
6.42
3
x
xx
137





protein precursor


F3
20.21
31.0-36.5
mannose binding
26526
5.39
26
x
xx
292


(pH 5.4-7.0)


protein C precursor





complement C4 A
194247
6.65
4
x
x
277





precursor





prothrombin
71475
5.64
5
x

154





precursor





haptoglobin-related
39496
6.42
3
x

62





protein precursor





fibrinogen α chain
95656
5.70
2

x
73





precursor





Serum albumin
71317
5.92
23
x
xx
715





precursor





complement C3
188569
6.02
0

x
46





precursor


F4
24.25
 ~36.5
complement C1q
26670
8.83
19
x
xx
216


(pH 7.0-9.1)


subcomponent





subunit B precursor





Ig gamma-1 chain C
36596
8.46
32
x
xx
426





region





Serum albumin
71317
5.92
6
x

206





precursor





serotransferrin
79280
6.81
4
x

120





precursor





complement C4 A
194247
6.65
5
x
xx
319





precursor





Ig gamma-2 chain C
36489
7.66
11
x
xx
146





region





Ig gamma-4 chain C
36431
7.18
13

x
94





region





prothrombin
71475
5.64
1
x

90





precursor





complement C3
188569
6.02
3
x
xx
268





precursor





fibrinogen α chain
95656
5.70
10

x
314





precursor



26.27
14.4-21.5
haptoglobin-related
39496
6.42
3
xx
x
127





protein precursor





Serum albumin
71317
5.92
8
xx
x
228





precursor





Hemoglobin subunit
15305
8.72
25
x

221





alpha





Ig gamma-1 chain C
36596
8.46
10
x
xx
136





region





complement
22435
8.49
5
xx
x
63





component C8 γ





chain precursor


F5
28.29
 116.3-200.00
Ig gamma-1 chain C
36596
8.46
3
x

47


(pH 9.1-10.0)


region



30.31
~116.3
Ig gamma-1 chain C
36596
8.46
8
xx
x
110





region





Ig gamma-2 chain C
36489
7.66
5
x

64





region





tRNA(Ile)-lysine
50497
9.57
3

x
46





synthase-






Streptococcus







mutans




32.33
55.4-66.3
complement C3
188569
6.02
4
x

266





precursor





Ig gamma-1 chain C
36596
8.46
19
xx
x
268





region





Ig gamma-2 chain C
36489
7.66
12
x

167





region





complement C4 A
194247
6.65
1
x

111





precursor



34.35
36.5-55.4
Ig gamma-1 chain C
36596
8.46
3
x

59





region
















TABLE 3





Table 3. Predicted correlation between biomarkers discovered employing differential SDS-PAGE gel followed by


protein identification by matrix-assisted laser desorption/ionization mass spectroscopy and those employing SELDI


technology.


TABLE 3


Proposed Proteins


















Gel
SELDI











Sample found

M/Z Average














Protein
Mass
Ct
DFNV
Fraction
Ct1_2
DF1_2
DHF1_2






text missing or illegible when filed

70963
x
x
x
x


precursor


AMBE protein
39686
x
x
F6ISH
39686.176 ± 8.381
39887.686 ± 8.490
39891.827 ± 7.9


precursor


Apolipoprotein

text missing or illegible when filed

x
x
x
x


Acl


precursor


Apolipoprotein
46371
x
x
F6ISH

text missing or illegible when filed ± 19.421


text missing or illegible when filed ± 22.022

46363.08 ± 0.08049



text missing or illegible when filed




F6CSH
45682.198 ± 4.882
45581.119 ± 9.163
0.08639 ± 0.02933


precursor


Apolipoprotein
616668
x
x

x


B-100


Apolipoprotein
21547
xx
x
F6CSL
33613.916 ± 3.735
88614.675 ± 8.733
88863.863 ± 4.863


D precursor

text missing or illegible when filed )



F6ISL
33656.728 ± 0.81
33556.081 ± 1.271
33558.493 ± 0.836


C4b-binding
69042
x
x
F1CSH
89023.681 ± 7.865
89821.468 ± 9.752
89023.41 ± 10.408


protein α



F6CSL
34624.834 ± 0.893
34623.590 ± 4.66
34821.235 ± 7.390


chain


precursor


Carboxypeptidase
61431
x
xx
F6CSH
61383.104 ± 3.227
61384.759 ± 5.492
61.383.023 ± 4.071


N subunit


2 precursor



text missing or illegible when filed

122963
x
xx
F6CSH
108960.906 ± 12.625
108981.316 ± 8.176
108960.41 ± 2.362


precursor


Complement
26670
x
xx
F6CSH
25404.284 ± 6.504
25403.649 ± 4.573
26404.844 ± 4.573


C1q


subcomponent



text missing or illegible when filed &



precursor


Complement
188669
x
x

x


C2 precursor


Complement
194247
x
x
x
x


C4A


precursor


Complement
62435
xx
x

x


component C3



text missing or illegible when filed chain



precursor


Fibrinogen α
95856
x
x
x
x


chain


precursor


Haptoglobin-
39496
xx
x
x
x


related protein


precursor


Hemoglobin
16385
x
x
F1CSH
16308.449 ± 0.683
16308.648 ± 0.829
16308.689 ± 1.241


subunit alpha



text missing or illegible when filed

62365
x
xx
F6ISH
52579.804 ± 14.203
62678.178 ± 13.289
52686.671 ± 7.276


precursor


Ic mu heavy
43543
x
x
x
x


chain disease


protein


Ic gamma-1
38686
x
x
x
x


chain C region


Ic gamma-2
38489
x
x
x
x


chain C region


Insulin-like
66735
x
xx
F8CSH
66724.441 ± 0.384
66724.559 ± 0.338
68724.523 ± 8.481


growth factor-



F6ISH
66626.217 ± 0.43
66626.311 ± 0.478
66626.319 ± 0.550


binding,


protein,


complex acid


labile chain,


precursor


Lumican
387.57
x
x
x
x


crocuses


Mammas,
25526
x
xx
x


binding,


protein C,


precursor


Plasma
55347
x
x
F1ISH
55237.604 ± 23.135
55287.389 ± 33.414
55305.740 ± 28.403


protease C1


inhibitor


precursor


Prothrombin
71470
x
xx
x
x


precursor


Serotransferrin
79280
x
x
F0CSH
79341.09 ± 4.442
79342.512 ± 4.3002
79341.031 ± 2.621


precursor


Serum,
71317
x
x
x
x


Albumin,


precursor


IRNAtext missing or illegible when filed ab
50497
x
x
x
x


lysine


sytext missing or illegible when filed base,


Stroptotext missing or illegible when filed


matura


Vitamin K1
77127
x
xx
F5CSH
75141.288 ± 2.803
75142.892 ± 2.12
75141.517 ± 1.906


datext missing or illegible when filed dent,
(75123)


protein S,


precursor


Vtext missing or illegible when filed actin,
55669
x
x
F6CSH
53489.215 ± 11.828
53486.247 ± 3.714
63466.088 ± 8.800


precursor


α1-acid,
23725
x
x
x
x


phytext missing or illegible when filed protein 1,


precursor


α18-
54809
xx
x
F1ISH
51693.736 ± 27.672
54594.675 ± 29.019
54692 ± 956 ± 26.418


ptytext missing or illegible when filed protein


precursor


αtext missing or illegible when filed -
184600
x
x
x
x


macroglobulin












SELDI













DHF1_DHF2 vs



Intensity average
Average
DF1_DF2













Protein
Ct1_2
DF1_2
DHF1_2
M/Z
p value
roc






text missing or illegible when filed




x
x
x


precursor


AMBE protein
0.02268 ± 0.00357
0.03806 ± 0.02312
0.04406 ± 0.01453
39668.6485

text missing or illegible when filed

0.3478861


precursor


Apolipoprotein



x
x
x


Acl


precursor


Apolipoprotein
0.17419 ± 0.05317
0.23873 ± 0.09065
45368.9521
45368.9621
0.02369367
0.31481481



text missing or illegible when filed

0.06414 ± text missing or illegible when filed
0.06085 ± 0.01474
45581.8839
45581.6839
1.0000000
0.5142045


precursor


Apolipoprotein



x
x
x


B-100


Apolipoprotein
0.40412 ± 0.15261
0.23087 ± 0.1193
0.30821 ± 0.14392
33614.1787
0.35620899
0.80897438


D precursor
0.58585 ± 0.0234
0.41558 ± 0.0689
0.50485 ± 0.11008
33665.3982
0.2779327
0.8028431


C4b-binding
0.13767 ± 0.14204
0.09796 ± 0.04115
0.12274 ± 0.11603
60023.5419
0.9024018
0.4717282


protein α
0.41100 ± 0.16538
0.07664 ± 0.1223
0.32514 ± 0.15886
34523.5514
0.37303721
0.59466128


chain


precursor


Carboxypeptidase
0.10387 ± 0.03894
0.0672 ± 0.2669
0.10007 ± 0.02767
61383.3748
0.0021063
0.2073864


N subunit


2 precursor



text missing or illegible when filed

0.0628 ± 0.01843
0.07162 ± 0.02190
0.08466 ± 0.02747
108961.408
0.0614734
0.3258999


precursor


Complement
0.07889 ± 0.08123
0.13804 ± 0.05838
0.13699 ± 0.04529
25404.0365
0.6574155
0.4886384


C1q


subcomponent



text missing or illegible when filed &



precursor


Complement



x
x
x


C2 precursor


Complement



x
x
x


C4A


precursor


Complement



x
x
x


component C3



text missing or illegible when filed chain



precursor


Fibrinogen α



x
x
x


chain


precursor


Haptoglobin-



x
x
x


related protein


precursor


Hemoglobin
0.72968 ± 0.42315
0.68053 ± 0.42315
0.41601 ± 0.22400
15308.5557
0.0805598
0.6517857


subunit alpha



text missing or illegible when filed

0.02969 ± 0.01659
0.038181 ± 0.01165
0.05034 ± 0.01527
89680.3719
0.0108684
0.2376812


precursor


Ic mu heavy



x
x
x


chain disease


protein


Ic gamma-1



x
x
x


chain C region


Ic gamma-2



x
x
x


chain C region


Insulin-like
2.80614 ± 0.68767
1.62726 ± 0.45856
1.70258 ± 0.41922
66794.6829
0.676938.7
0.4546466


growth factor-
1.91881 ± 0.43148
1.45151 ± 0.36184
1.79486 ± 0.42081
66626.9708
0.0190614
0.2724638


binding,


protein,


complex acid


labile chain,


precursor


Lumican



x
x
x


crocuses


Mammas,



x
x
x


binding,


protein C,


precursor


Plasma
0.15307 ± 0.07217
0.03087 ± 0.03844
0.09185 ± 0.03664
55291.4169
0.53341644
0.43333333


protease C1


inhibitor


precursor


Prothrombin



x
x
x


precursor


Serotransferrin
0.05046 ± 0.02730
0.06479 ± 0.03165
0.09141 ± 0.04297
29341.4807
0.0363029
0.3465908


precursor


Serum,



x
x
x


Albumin,


precursor


IRNAtext missing or illegible when filed ab



x
x
x


lysine


sytext missing or illegible when filed base,


Stroptotext missing or illegible when filed


matura


Vitamin K1
0.87103 ± 0.23150
0.86353 ± 0.29625
0.76484 ± 0.22220
75141.8895
0.1684346
0.6175595


datext missing or illegible when filed dent,


protein S,


precursor


Vtext missing or illegible when filed actin,
0.0265 ± 0.01133
0.0339 ± 0.01367
0.04679 ± 0.01447
63487.7965
0.00860text missing or illegible when filed 40
0.227text missing or illegible when filed 722


precursor


α1-acid,



x
x
x


phytext missing or illegible when filed protein 1,


precursor


α18-
0.21745 ± 0.09393
0.11499 ± 0.95443
0.12176 ± 0.04866
54593.1773
0.6909161
0.45833333


ptytext missing or illegible when filed protein


precursor


αtext missing or illegible when filed -



x
x
x


macroglobulin












SELDI










Ct1_2 vs DHF1_2
Ct1_2 vs DF1_2













Protein
p value
roc
p value
roc








text missing or illegible when filed

x
x
x
x



precursor



AMBE protein
0.0000889
0.8400000
0.0019049
0.7946377



precursor



Apolipoprotein
x
x
x
x



Acl



precursor



Apolipoprotein
0.2187700
0.8text missing or illegible when filed
0.272779
0.4194444




text missing or illegible when filed

0.0000113
0.0892857
0.0000728
0.1916584



precursor



Apolipoprotein
x
x
x
x



B-100



Apolipoprotein
0.0317443
0.3078451
0.0042800
0.2208333



D precursor
0.0163588
0.2819473
0.0331955
0.3333333



C4b-binding
0.6084078
0.4419848
0.3632777
0.4396269



protein α
0.1211833
0.3960784
0.0014444
0.2347222



chain



precursor



Carboxypeptidase
0.6962703
0.4732143
0.0081005
0.1916684



N subunit



2 precursor




text missing or illegible when filed

0.0129359
0.7112500
0.0722886
0.6809624



precursor



Complement
0.0001048
0.8268928
0.0000222
0.8409091



C1q



subcomponent




text missing or illegible when filed &




precursor



Complement
x
x
x
x



C2 precursor



Complement
x
x
x
x



C4A



precursor



Complement
x
x
x
x



component C3




text missing or illegible when filed chain




precursor



Fibrinogen α
x
x
x
x



chain



precursor



Haptoglobin-
x
x
x
x



related protein



precursor



Hemoglobin
0.0097068
0.2867143
0.1824001
0.3937075



subunit alpha




text missing or illegible when filed

0.0006866
0.8000000
0.0504608
0.8427538



precursor



Ic mu heavy
x
x
x
x



chain disease



protein



Ic gamma-1
x
x
x
x



chain C region



Ic gamma-2
x
x
x
x



chain C region



Insulin-like
0.0078297
0.2500000
0.0008317
0.2482687



growth factor-
0.4130817
0.4400000
0.0002888
0.2181359



binding,



protein,



complex acid



labile chain,



precursor



Lumican
x
x
x
x



crocuses



Mammas,
x
x
x
x



binding,



protein C,



precursor



Plasma
0.0088733
0.3314815
0.0004176
0.2129830



protease C1



inhibitor



precursor



Prothrombin
x
x
x
x



precursor



Serotransferrin
0.0013931
0.7723214
0.1090298
0.6298701



precursor



Serum,
x
x
x
x



Albumin,



precursor



IRNAtext missing or illegible when filed ab
x
x
x
x



lysine



sytext missing or illegible when filed base,



Stroptotext missing or illegible when filed



matura



Vitamin K1
0.1727823
0.5300080
0.0073757
0.7295238



datext missing or illegible when filed dent,



protein S,



precursor



Vtext missing or illegible when filed actin,
0.0000609
0.8437500
0.1323513
0.62398701



precursor



α1-acid,
x
x
x
x



phytext missing or illegible when filed protein 1,



precursor



α18-
0.0009107
0.2098788
0.0001174
0.1629830



ptytext missing or illegible when filed protein



precursor



αtext missing or illegible when filed -
x
x
x
x



macroglobulin








text missing or illegible when filed indicates data missing or illegible when filed














TABLE 4





Table 4. Summary list of most significant biomarkers discovered using SELDI technology.


TABLE 4




















DHF1_DHF2 vs






DF1_DF2
Ct1_2 vs DHF1_2
Ct1_2 vs DF1_2
Intensity average
















Index
p-value
roc
p-value
roc
p-value
roc
Ct1_2





F1CSL
20
0.0858999
0.3333333
0.0000002
0.9637815
0.0000000
0.9472789
0.13754 ± 0.09945



40
0.4194702
0.5714286
0.0000000
0.9915966
0.0000000
0.9778912
0.20533 ± 0.13663


F1CSH
42
0.0868537
0.3258929
0.0000003
0.9842857
0.0000448
0.8248299
1.01776 ± 0.3444982


F5CSL
23
0.7526763
0.4915459
0.0000023
0.1071429
0.0000006
0.1894720
0.26052 ± 0.18249


F5CSH
68
0.6677795
0.4717262
0.0000002
0.0200000
0.0000000
0.0342867
1.25365 ± 0.73605


F6CSL
106
0.091766
0.3333333
0.0000019
0.0960734
0.0000000
0.0444444
0.33588 ± 0.23484


F6ISL
22
0.0006400
0.8149510
0.4876235
0.4361339
0.0025296
0.7205480
0.40871 ± 0.22847


F6ISH
67
0.5806161
0.6913043
0.0000002
0.0100000
0.0000000
0.0297101
0.75444 ± 0.52943













Intensity average
m/z,














Index
DF1_2
DHF1_2
average







F1CSL
20
0.79791 ± 0.40975
1.14175 ± 0.61843
3808.262




40
 4.5165 ± 3.52856
3.33219 ± 2.33453
4596.111



F1CSH
42
1.70585 ± 0.55744
2.07821 ± 0.42565
23260.27



F5CSL
23
0.04893 ± 0.02439
 0.0486 ± 0.03122
12662.53



F5CSH
68
0.26347 ± 0.17809
 0.2595 ± 0.13859
13295.38



F6CSL
106
0.04337 ± 0.02361
0.06224 ± 0.03383
12650.52



F6ISL
22
 0.7085 ± 0.30474
0.39536 ± 0.32736
7605.507



F6ISH
67
0.12406 ± 0.0447 
0.11899 ± 0.04494
13312.42











The biomarkers are characterized by their mass-to-charge ratio as determined by mass spectrometry. The mass-to-charge ratios were determined from mass spectra generated on a Ciphergen Biosystems, Inc. PBS IIc mass spectrometer. This instrument has a mass accuracy of about +/−0.15 percent. Additionally, the instrument has a mass resolution of about 400 to 1000 m/dm, where m is mass and dm is the mass spectral peak width at 0.5 peak height. The mass-to-charge ratio of the biomarkers was determined using Biomarker Wizard™ software (Ciphergen Biosystems, Inc.). Biomarker Wizard assigns a mass-to-charge ratio to a biomarker by clustering the mass-to-charge ratios of the same peaks from all the spectra analyzed, as determined by the PBSIIc, taking the maximum and minimum mass-to-charge-ratio in the cluster, and dividing by two. Accordingly, the masses provided reflect these specifications.


The identity of certain of the biomarkers of Tables 1-4 of this invention has been determined and is indicated in Tables 1-4 and/or Table 5. Table 5 shows the accession numbers for the biomarkers as determined on the NCBI web-site on Oct. 10, 2008. Thus, one of ordinary skill in the art could ascertain the nucleotide and amino acid sequences of the biomarkers based on this information without undue experimentation.


Tables 17-24 (below) show biomarkers of the invention. Table 17 shows the exemplary biomarkers for detecting primary DENV infection as detected by Biomarker Pattern Software (BPS). Tables B-D show all biomarkers detected by SELDI for primary DENV infection that had a p-value smaller than or equal to 0.05. Table 21 shows the exemplary biomarkers for detecting secondary DENV infection as detected by BPS. Tables F and G show the biomarkers for detecting secondary DENV infection. Table 24 shows the biomarkers that can be used to differentiate between primary and secondary DENV infection as detected by BPS.


For biomarkers whose identify has been determined, the presence of the biomarker can be determined by methods known in the art other than mass spectrometry.









TABLE 5







by alphabetical order


TABLE 5. Non-redundant list of the discovered biomarkers using


differential SDS-PAGE gel followed by protein identification by


matrix-assisted laser desorption/ionization mass spectroscopy.


Accession numbers as determined on the NCBI website on


Oct. 10th, 2008.













Predicted






molecular
Calculated
Accession



ID
weight (Da)
pI value
number















1
afamin precursor
70963
5.64
NP_001124


2
AMBP protein
39886
5.95
P02760



precursor


3
apolipoprotein A-I
30759
5.56
NP_000030



precursor


4
apolipoprotein A-IV
45371
5.28
NP_000473



precursor


5
apolipoprotein B-100
516666
6.61
P04114


6
apolipoprotein D
21547
5.06
P05090



precursor


7
C4b-binding protein α
69042

P04003



chain precursor


8
carboxypeptidase N
61431
5.63
P22792



subunit 2 precursor


9
ceruloplasmin
122983
5.44
NP_000087



precursor


10
complement C1q
26670
8.83
P02746



subcomponent subunit



B precursor


11
complement C3
188569
6.02
P01024



precursor


12
complement C4 A
194247
6.65
P0C0L4



precursor


13
complement
22435
8.49
P07360



component C8 γ chain



precursor


14
fibrinogen α chain
95656
5.70
P02671



precursor


15
haptoglobin-related
39496
6.42
Q28801



protein precursor


16
Hemoglobin subunit
15305
8.72
P69905



alpha


17
hemopexin precursor
52385
6.55
AAA52704


18
Ig mu heavy chain
43543
5.13
P04220



disease protein


19
Ig gamma-1 chain C
36596
8.46
P20759



region


20
Ig gamma-2 chain C
36489
7.66
P01859



region


21
insulin-like growth
66735
6.33
P35858



factor-binding protein



complex acid labile



chain precursor


22
lumican precursor
38747
6.16
NP_002336


23
mannose binding
26526
5.39
P08661



protein C precursor


24
plasma protease C1
55347
6.09
AAB59387



inhibitor precursor


25
prothrombin precursor
71475
5.64
P00734


26
serotransferrin
79280
6.81
P02787



precursor


27
Serum albumin
71317
5.92
P02768



precursor


28
tRNA(Ile)-lysine
50497
9.57
Q8DWM9



synthase-




Streptococcus mutans



29
vitamin K-dependent
77127
5.48
P07225



protein S precursor


30
vitronectin precursor
55069
5.55
NP_000629


31
α1-acid glycoprotein 1
23725
4.93
AAA40699



precursor


32
α1B-glycoprotein
54809
5.58
Q9EPH1



precursor


33
α2-macroglobulin
164600
6.00
CAA48670


34
LEAP-2 precursor


NP_443203


35
LEAP-2


CAC51515









The biomarkers of this invention can be further characterized by the shape of their spectral peak in time-of-flight mass spectrometry.


The biomarkers of this invention can be further characterized by their binding properties on chromatographic surfaces.


Because the biomarkers are characterized by mass-to-charge ratio and binding properties, they can be detected by mass spectrometry without knowing their specific identity. The identity of certain of the biomarkers of Tables 1-4, and 17-24 is known and, if known, is shown in Tables 1-4 and/or Table 5. If desired, biomarkers whose identity is not determined can be identified by, for example, determining the amino acid sequence of the polypeptides. For example, a biomarker can be peptide-mapped with a number of enzymes, such as trypsin or V8 protease, and the molecular weights of the digestion fragments can be used to search databases for sequences that match the molecular weights of the digestion fragments generated by the various enzymes. Alternatively, protein biomarkers can be sequenced using tandem MS technology. In this method, the protein is isolated by, for example, gel electrophoresis. A band containing the biomarker is cut out and the protein is subject to protease digestion. Individual protein fragments are separated by a first mass spectrometer. The fragment is then subjected to collision-induced cooling, which fragments the peptide and produces a polypeptide ladder. A polypeptide ladder is then analyzed by the second mass spectrometer of the tandem MS. The difference in masses of the members of the polypeptide ladder identifies the amino acids in the sequence. An entire protein can be sequenced this way, or a sequence fragment can be subjected to database mining to find identity candidates.


The preferred biological source for detection of the biomarkers is serum. However, in other aspects, the biomarkers are detected in urine and other biological samples.


The biomarkers of this invention are biomolecules. Accordingly, this invention provides these biomolecules in isolated form. The biomarkers can be isolated from biological fluids, such as serum. They can be isolated by any method known in the art, based on both their mass and their binding characteristics. For example, a sample comprising the biomolecules can be subject to chromatographic fractionation, as described herein, and subject to further separation by, e.g., acrylamide gel electrophoresis. Knowledge of the identity of the biomarker also allows their isolation by immunoaffinity chromatography.


Biomarkers and Modified Forms of a Protein


Proteins frequently exist in a sample in a plurality of different forms. These forms can result from either, or both, of pre- and post-translational modification. Pre-translational modified forms include allelic variants, slice variants and RNA editing forms. Post-translationally modified forms include forms resulting from proteolytic cleavage (e.g., fragments of a parent protein), glycosylation, phosphorylation, lipidation, oxidation, methylation, cysteinylation, sulphonation and acetylation. When detecting or measuring a protein in a sample, the ability to differentiate between different forms of a protein depends upon the nature of the difference and the method used to detect or measure. For example, immunological methods of detection typically cannot distinguish between different forms of a protein that contain the same epitope or epitopes to which the antibody or antibodies are directed. In diagnostic assays, the inability to distinguish different forms of a protein has little impact when the forms detected by the particular method used are equally good biomarkers as any particular form. However, when a particular form (or a subset of particular forms) of a protein is a better biomarker than the collection of modified forms detected together by a particular method, the power of the assay can suffer. In this case, it is useful to employ an assay method that distinguishes between forms of a protein and that specifically detects and measures a desired modified form or forms of the protein. Distinguishing different forms of an analyte or specifically detecting a particular form of an analyte is referred to as “resolving” the analyte.


The collection of analytes detected in an assay and the ability to resolve modified forms of a protein of course depends on the methodology used. For example, an immunoassay using a monoclonal antibody will detect all forms of a protein containing the eptiope and will not distinguish between them. However, a sandwich immunoassay that uses two antibodies directed against different epitopes on a protein will detect all forms of the protein that contain both epitope and will not detect those forms that contain only one of the epitopes. Accordingly this method can be useful when the modified forms differ in a terminal amino acid and one of the antibodies is directed to the terminus of one of these forms.


Preferably, the biospecific capture reagent is bound to a solid phase, such as a bead, a plate, a membrane or a chip. Methods of coupling biomolecules, such as antibodies, to a solid phase are well known in the art. They can employ, for example, bifunctional linking agents, or the solid phase can be derivatized with a reactive group, such as an epoxide or an imidizole, that will bind the molecule on contact. Biospecific capture reagents against different target proteins can be mixed in the same place, or they can be attached to solid phases in different physical or addressable locations. For example, one can load multiple columns with derivatized beads, each column able to capture a single protein cluster. Alternatively, one can pack a single column with different beads derivatized with capture reagents against a variety of protein clusters, thereby capturing all the analytes in a single place. Accordingly, antibody-derivatized bead-based technologies, such as xMAP technology of Luminex (Austin, Tex.) can be used to detect the protein clusters. However, the biospecific capture reagents must be specifically directed toward the members of a cluster in order to differentiate them.


Mass spectrometry is a particularly powerful resolving methodology because different forms of a protein typically have different masses and can be differentiated by mass spectrometry. One useful methodology combines mass spectrometry with immunoassay. First, a biospecific capture reagent (e.g., an antibody, aptamer or Affibody that recognizes the biomarker and modified forms of it) is used to capture the biomarker of interest. Preferably, the biospecific capture reagent is bound to a solid phase, such as a bead, a plate, a membrane or a chip. After unbound materials are washed away, the captured analytes are detected and/or measured by mass spectrometry. (This method also will also result in the capture of protein interactors that are bound to the proteins or that are otherwise recognized by antibodies and that, themselves, can be biomarkers.) Then, the captured proteins can be detected by SELDI mass spectrometry or by eluting the proteins from the capture reagent and detecting the eluted proteins by traditional MALDI, SELDI or any other ionization method for mass spectrometry (e.g., electrospray).


Thus, when reference is made herein to detecting a particular protein or to measuring the amount of a particular protein, it means detecting and measuring the protein with or without resolving modified forms of protein. For example, the step of “measuring Apolipoprotein A-IV precursor” includes measuring Apolipoprotein A-IV precursor by means that do not differentiate between various forms of the protein (e.g., certain immunoassays) as well as by means that differentiate some forms from other forms or that measure a specific form of the protein. In contrast, when it is desired to measure a particular form or forms of a protein, the particular form (or forms) is specified. For example, “measuring M7.065159” or a biomarker of 7.065159 kDa means measuring it in a way that distinguishes it from forms of the protein that do not have the characteristic properties identified in Tables 1-5.


Detection of Biomarkers for Dengue


The biomarkers of this invention can be detected by any suitable method. Detection paradigms that can be employed to this end include optical methods, electrochemical methods (voltametry and amperometry techniques), atomic force microscopy, and radio frequency methods, e.g., multipolar resonance spectroscopy. Illustrative of optical methods, in addition to microscopy, both confocal and non-confocal, are detection of fluorescence, luminescence, chemiluminescence, absorbance, reflectance, transmittance, and birefringence or refractive index (e.g., surface plasmon resonance, ellipsometry, a resonant mirror method, a grating coupler waveguide method or interferometry).


In one aspect, a sample is analyzed by means of a biochip. Biochips generally comprise solid substrates and have a generally planar surface, to which a capture reagent (also called an adsorbent or affinity reagent) is attached. Frequently, the surface of a biochip comprises a plurality of addressable locations, each of which has the capture reagent bound there.


Protein biochips are biochips adapted for the capture of polypeptides. Many protein biochips are described in the art. These include, for example, protein biochips produced by Ciphergen Biosystems, Inc. (Fremont, Calif.), Zyomyx (Hayward, Calif.), Invitrogen (Carlsbad, Calif.), Biacore (Uppsala, Sweden) and Procognia (Berkshire, UK). Examples of such protein biochips are described in the following patents or published patent applications: U.S. Pat. No. 6,225,047 (Hutchens & Yip); U.S. Pat. No. 6,537,749 (Kuimelis and Wagner); U.S. Pat. No. 6,329,209 (Wagner et al.); PCT International Publication No. WO 00/56934 (Englert et al.); PCT International Publication No. WO 03/048768 (Boutell et al.); and U.S. Pat. No. 5,242,828 (Bergstrom et al.).


Detection by Mass Spectrometry


In a preferred aspect, the biomarkers of this invention are detected by mass spectrometry, a method that employs a mass spectrometer to detect gas phase ions. Examples of mass spectrometers are time-of-flight, magnetic sector, quadrupole filter, ion trap, ion cyclotron resonance, electrostatic sector analyzer and hybrids of these.


In a further preferred method, the mass spectrometer is a laser desorption/ionization mass spectrometer. In laser desorption/ionization mass spectrometry, the analytes are placed on the surface of a mass spectrometry probe, a device adapted to engage a probe interface of the mass spectrometer and to present an analyte to ionizing energy for ionization and introduction into a mass spectrometer. A laser desorption mass spectrometer employs laser energy, typically from an ultraviolet laser, but also from an infrared laser, to desorb analytes from a surface, to volatilize and ionize them and make them available to the ion optics of the mass spectrometer.


SELDI


A preferred mass spectrometric technique for use in the invention is “Surface Enhanced Laser Desorption and Ionization” or “SELDI,” as described, for example, in U.S. Pat. No. 5,719,060 and No. 6,225,047, both to Hutchens and Yip. This refers to a method of desorption/ionization gas phase ion spectrometry (e.g., mass spectrometry) in which an analyte (here, one or more of the biomarkers) is captured on the surface of a SELDI mass spectrometry probe. There are several versions of SELDI.


One version of SELDI is called “affinity capture mass spectrometry.” It also is called “Surface-Enhanced Affinity Capture” or “SEAC”. This version involves the use of probes that have a material on the probe surface that captures analytes through a non-covalent affinity interaction (adsorption) between the material and the analyte. The material is variously called an “adsorbent,” a “capture reagent,” an “affinity reagent” or a “binding moiety.” Such probes can be referred to as “affinity capture probes” and as having an “adsorbent surface.” The capture reagent can be any material capable of binding an analyte. The capture reagent is attached to the probe surface by physisorption or chemisorption. In certain aspects the probes have the capture reagent already attached to the surface. In other aspects, the probes are pre-activated and include a reactive moiety that is capable of binding the capture reagent, e.g., through a reaction forming a covalent or coordinate covalent bond. Epoxide and acyl-imidizole are useful reactive moieties to covalently bind polypeptide capture reagents such as antibodies or cellular receptors. Nitrilotriacetic acid and iminodiacetic acid are useful reactive moieties that function as chelating agents to bind metal ions that interact non-covalently with histidine containing peptides. Adsorbents are generally classified as chromatographic adsorbents and biospecific adsorbents.


“Chromatographic adsorbent” refers to an adsorbent material typically used in chromatography. Chromatographic adsorbents include, for example, ion exchange materials, metal chelators (e.g., nitrilotriacetic acid or iminodiacetic acid), immobilized metal chelates, hydrophobic interaction adsorbents, hydrophilic interaction adsorbents, dyes, simple biomolecules (e.g., nucleotides, amino acids, simple sugars and fatty acids) and mixed mode adsorbents (e.g., hydrophobic attraction/electrostatic repulsion adsorbents).


“Biospecific adsorbent” refers to an adsorbent comprising a biomolecule, e.g., a nucleic acid molecule (e.g., an aptamer), a polypeptide, a polysaccharide, a lipid, a steroid or a conjugate of these (e.g., a glycoprotein, a lipoprotein, a glycolipid, a nucleic acid (e.g., DNA)-protein conjugate). In certain instances, the biospecific adsorbent can be a macromolecular structure such as a multiprotein complex, a biological membrane or a virus. Examples of biospecific adsorbents are antibodies, receptor proteins and nucleic acids. Biospecific adsorbents typically have higher specificity for a target analyte than chromatographic adsorbents. Further examples of adsorbents for use in SELDI can be found in U.S. Pat. No. 6,225,047. A “bioselective adsorbent” refers to an adsorbent that binds to an analyte with an affinity of at least 10−8 M.


Protein biochips produced by Ciphergen Biosystems, Inc. comprise surfaces having chromatographic or biospecific adsorbents attached thereto at addressable locations. Ciphergen ProteinChip® arrays include NP20 (hydrophilic); H4 and HSO (hydrophobic); SAX-2, Q-10 and LSAX-30 (anion exchange); WCX-2, CM-10 and LWCX-30 (cation exchange); IMAC-3, IMAC-30 and IMAC 40 (metal chelate); and PS-10, PS-20 (reactive surface with acyl-imidizole, epoxide) and PG-20 (protein G coupled through acyl-imidizole). Hydrophobic ProteinChip arrays have isopropyl or nonylphenoxy-poly(ethylene glycol)methacrylate functionalities. Anion exchange ProteinChip arrays have quaternary ammonium functionalities. Cation exchange ProteinChip arrays have carboxylate functionalities. Immobilized metal chelate ProteinChip arrays have nitrilotriacetic acid functionalities that adsorb transition metal ions, such as copper, nickel, zinc, and gallium, by chelation. Preactivated ProteinChip arrays have acyl-imidizole or epoxide functional groups that can react with groups on proteins for covalent binding.


Such biochips are further described in: U.S. Pat. No. 6,579,719 (Hutchens and Yip, “Retentate Chromatography,” Jun. 17, 2003); U.S. Pat. No. 6,897,072 (Rich et al., “Probes for a Gas Phase Ion Spectrometer,” Can 24, 2005); U.S. Pat. No. 6,555,813 (Beecher et al., “Sample Holder with Hydrophobic Coating for Gas Phase Mass Spectrometer,” Apr. 29, 2003); U.S. Patent Application No. U.S. 2003 0032043 A1 (Pohl and Papanu, “Latex Based Adsorbent Chip,” Jul. 16, 2002); and PCT International Publication No. WO 03/040700 (Um et al., “Hydrophobic Surface Chip,” Can 15, 2003); U.S. Patent Application No. US 2003/0218130 A1 (Boschetti et al., “Biochips With Surfaces Coated With Polysaccharide-Based Hydrogels,” Apr. 14, 2003) and U.S. Patent Application No. 60/448,467, entitled “Photocrosslinked Hydrogel Surface Coatings” (Huang et al., filed Feb. 21, 2003).


In general, a probe with an adsorbent surface is contacted with the sample for a period of time sufficient to allow the biomarker or biomarkers that can be present in the sample to bind to the adsorbent. After an incubation period, the substrate is washed to remove unbound material. Any suitable washing solutions can be used; preferably, aqueous solutions are employed. The extent to which molecules remain bound can be manipulated by adjusting the stringency of the wash. The elution characteristics of a wash solution can depend, for example, on pH, ionic strength, hydrophobicity, degree of chaotropism, detergent strength, and temperature. Unless the probe has both SEAC and SEND properties (as described herein), an energy absorbing molecule then is applied to the substrate with the bound biomarkers.


The biomarkers bound to the substrates are detected in a gas phase ion spectrometer such as a time-of-flight mass spectrometer. The biomarkers are ionized by an ionization source such as a laser, the generated ions are collected by an ion optic assembly, and then a mass analyzer disperses and analyzes the passing ions. The detector then translates information of the detected ions into mass-to-charge ratios. Detection of a biomarker typically will involve detection of signal intensity. Thus, both the quantity and mass of the biomarker can be determined.


Another version of SELDI is Surface-Enhanced Neat Desorption (SEND), which involves the use of probes comprising energy absorbing molecules that are chemically bound to the probe surface (“SEND probe”). The phrase “energy absorbing molecules” (EAM) denotes molecules that are capable of absorbing energy from a laser desorption/ionization source and, thereafter, contribute to desorption and ionization of analyte molecules in contact therewith. The EAM category includes molecules used in MALDI, frequently referred to as “matrix,” and is exemplified by cinnamic acid derivatives, sinapinic acid (SPA), cyano-hydroxy-cinnamic acid (CHCA) and dihydroxybenzoic acid, ferulic acid, and hydroxyaceto-phenone derivatives. In certain aspects, the energy absorbing molecule is incorporated into a linear or cross-linked polymer, e.g., a polymethacrylate. For example, the composition can be a co-polymer of a-cyano-4-methacryloyloxycinnamic acid and acrylate. In another aspect, the composition is a co-polymer of a-cyano-4-methacryloyloxycinnamic acid, acrylate and 3-(tri-ethoxy)silyl propyl methacrylate. In another aspect, the composition is a co-polymer of a-cyano-4-methacryloyloxycinnamic acid and octadecylmethacrylate (“C18 SEND”). SEND is further described in U.S. Pat. No. 6,124,137 and PCT International Publication No. WO 03/64594 (Kitagawa, “Monomers And Polymers Having Energy Absorbing Moieties Of Use In Desorption/Ionization Of Analytes,” Aug. 7, 2003).


SEAC/SEND is a version of SELDI in which both a capture reagent and an energy absorbing molecule are attached to the sample presenting surface. SEAC/SEND probes therefore allow the capture of analytes through affinity capture and ionization/desorption without the need to apply external matrix. The C18 SEND biochip is a version of SEAC/SEND, comprising a C18 moiety which functions as a capture reagent, and a CHCA moiety which functions as an energy absorbing moiety.


Another version of SELDI, called Surface-Enhanced Photolabile Attachment and Release (SEPAR), involves the use of probes having moieties attached to the surface that can covalently bind an analyte, and then release the analyte through breaking a photolabile bond in the moiety after exposure to light, e.g., to laser light (see, U.S. Pat. No. 5,719,060). SEPAR and other forms of SELDI are readily adapted to detecting a biomarker or biomarker profile, pursuant to the present invention.


Other Mass Spectrometry Methods


In another mass spectrometry method, the biomarkers are first captured on a chromatographic resin having chromatographic properties that bind the biomarkers. In the present example, this could include a variety of methods. For example, one could capture the biomarkers on a cation exchange resin, such as CM Ceramic HyperD F resin, wash the resin, elute the biomarkers and detect by MALDI. Alternatively, this method could be preceded by fractionating the sample on an anion exchange resin before application to the cation exchange resin. In another alternative, one could fractionate on an anion exchange resin and detect by MALDI directly. In yet another method, one could capture the biomarkers on an immuno-chromatographic resin that comprises antibodies that bind the biomarkers, wash the resin to remove unbound material, elute the biomarkers from the resin and detect the eluted biomarkers by MALDI or by SELDI. In yet another method, one could isolate the biomarkers using gel elecrophoresis and detect the biomarkers by MALDI OR SELDI.


Data Analysis


Analysis of analytes by time-of-flight mass spectrometry generates a time-of-flight spectrum. The time-of-flight spectrum ultimately analyzed typically does not represent the signal from a single pulse of ionizing energy against a sample, but rather the sum of signals from a number of pulses. This reduces noise and increases dynamic range. This time-of-flight data is then subject to data processing. In Ciphergen's ProteinChip® software, data processing typically includes TOF-to-M/Z transformation to generate a mass spectrum, baseline subtraction to eliminate instrument offsets and high frequency noise filtering to reduce high frequency noise.


Data generated by desorption and detection of biomarkers can be analyzed with the use of a programmable digital computer. The computer program analyzes the data to indicate the number of biomarkers detected, and optionally the strength of the signal and the determined molecular mass for each biomarker detected. Data analysis can include steps of determining signal strength of a biomarker and removing data deviating from a predetermined statistical distribution. For example, the observed peaks can be normalized, by calculating the height of each peak relative to some reference.


The computer can transform the resulting data into various formats for display. The standard spectrum can be displayed, but in one useful format only the peak height and mass information are retained from the spectrum view, yielding a cleaner image and enabling biomarkers with nearly identical molecular weights to be more easily seen. In another useful format, two or more spectra are compared, conveniently highlighting unique biomarkers and biomarkers that are up- or down-regulated between samples. Using any of these formats, one can readily determine whether a particular biomarker is present in a sample.


Analysis generally involves the identification of peaks in the spectrum that represent signal from an analyte. Peak selection can be done visually, but software is available, as part of Ciphergen's ProteinChip® software package, that can automate the detection of peaks. In general, this software functions by identifying signals having a signal-to-noise ratio above a selected threshold and labeling the mass of the peak at the centroid of the peak signal. In one useful application, many spectra are compared to identify identical peaks present in some selected percentage of the mass spectra. One version of this software clusters all peaks appearing in the various spectra within a defined mass range, and assigns a mass (M/Z) to all the peaks that are near the mid-point of the mass (M/Z) cluster.


Software used to analyze the data can include code that applies an algorithm to the analysis of the signal to determine whether the signal represents a peak in a signal that corresponds to a biomarker according to the present invention. The software also can subject the data regarding observed biomarker peaks to classification tree or ANN analysis, to determine whether a biomarker peak or combination of biomarker peaks is present that indicates the status of the particular clinical parameter under examination. Analysis of the data can be “keyed” to a variety of parameters that are obtained, either directly or indirectly, from the mass spectrometric analysis of the sample. These parameters include, but are not limited to, the presence or absence of one or more peaks, the shape of a peak or group of peaks, the height of one or more peaks, the log of the height of one or more peaks, and other arithmetic manipulations of peak height data.


General Protocol for SELDI Detection of Biomarkers for Dengue


A preferred protocol for the detection of the biomarkers of this invention is as follows. The biological sample to be tested, e.g., serum, preferably is subject to pre-fractionation before SELDI analysis. This simplifies the sample and improves sensitivity. A preferred method of pre-fractionation involves contacting the sample with an anion exchange chromatographic material, such as Q HyperD (BioSepra, SA). The bound materials are then subject to stepwise pH elution using buffers at pH 9, pH 7, pH 5 and pH 4. (The fractions in which the biomarkers are eluted also are indicated in Tables 1-2, and 4) Various fractions containing the biomarker are collected.


The sample to be tested (preferably pre-fractionated) is then contacted with an affinity capture probe comprising an cation exchange adsorbent (preferably a WCX ProteinChip array (Ciphergen Biosystems, Inc.)) or an IMAC adsorbent (preferably an IMAC3 ProteinChip array (Ciphergen Biosystems, Inc.)). The probe is washed with a buffer that will retain the biomarker while washing away unbound molecules. The biomarkers are detected by laser desorption/ionization mass spectrometry.


Alternatively, if antibodies that recognize the biomarker are available, these can be attached to the surface of a probe, such as a pre-activated PS10 or PS20 ProteinChip array (Ciphergen Biosystems, Inc.). These antibodies can capture the biomarkers from a sample onto the probe surface. Then the biomarkers can be detected by, e.g., laser desorption/ionization mass spectrometry.


Detection by Immunoassay


In another aspect of the invention, the biomarkers of the invention are measured by a method other than mass spectrometry or other than methods that rely on a measurement of the mass of the biomarker. In one such aspect that does not rely on mass, the biomarkers of this invention are measured by immunoassay. Immunoassay requires biospecific capture reagents, such as antibodies, to capture the biomarkers. Antibodies can be produced by methods well known in the art, e.g., by immunizing animals with the biomarkers. Biomarkers can be isolated from samples based on their binding characteristics. Alternatively, if the amino acid sequence of a polypeptide biomarker is known, the polypeptide can be synthesized and used to generate antibodies by methods well known in the art.


This invention contemplates traditional immunoassays including, for example, sandwich immunoassays including ELISA or fluorescence-based immunoassays, as well as other enzyme immunoassays. Nephelometry is an assay done in liquid phase, in which antibodies are in solution. Binding of the antigen to the antibody results in changes in absorbance, which is measured. In the SELDI-based immunoassay, a biospecific capture reagent for the biomarker is attached to the surface of an MS probe, such as a pre-activated ProteinChip array. The biomarker is then specifically captured on the biochip through this reagent, and the captured biomarker is detected by mass spectrometry.


Determination of Subject Dengue Status


Single Markers


The biomarkers of the invention can be used in diagnostic tests to assess dengue status in a subject, e.g., to diagnose Dengue. The phrase “Dengue status” includes any distinguishable manifestation of the disease, including non-disease. For example, disease status includes, without limitation, the presence or absence of disease (e.g., dengue v. non dengue or Dengue v. other disease (e.g., OFIs), the risk of developing disease, the stage of the disease, the progress of disease (e.g., progress of disease or remission of disease over time) and the effectiveness or response to treatment of disease. The status of the subject can inform the practitioner about what status set is being distinguished. For example, a subject that presents with signs of a disease could be classed into Dengue v. non-Dengue disease, while a person exposed to a situation in which Dengue infection is possible and who is presenting with signs of Dengue infection could be classified into Dengue v. non-Dengue. Based on this status, further procedures can be indicated, including additional diagnostic tests or therapeutic procedures or regimens.


The power of a diagnostic test to correctly predict status is commonly measured as the sensitivity of the assay, the specificity of the assay or the area under a receiver operated characteristic (“ROC”) curve. Sensitivity is the percentage of true positives that are predicted by a test to be positive, while specificity is the percentage of true negatives that are predicted by a test to be negative. An ROC curve provides the sensitivity of a test as a function of 1-specificity. The greater the area under the ROC curve, the more powerful the predictive value of the test. Other useful measures of the utility of a test are positive predictive value and negative predictive value. Positive predictive value is the percentage of people who test positive that are actually positive. Negative predictive value is the percentage of people who test negative that are actually negative.


The biomarkers of this invention show a statistical difference in different dengue statuses of at least p≦0.05, p≦10−2, p≦10−3, p≦10−4 or p≦10−5. Diagnostic tests that use these biomarkers alone or in combination show a sensitivity and specificity of at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98% and about 100%.


Each biomarker listed in Tables 1-5 and 17-24 is differentially present in dengue, and, therefore, each is individually useful in aiding in the determination of dengue status. The method involves, first, measuring the selected biomarker in a subject sample using the methods described herein, e.g., capture on a SELDI biochip followed by detection by mass spectrometry and, second, comparing the measurement with a diagnostic amount or cut-off that distinguishes a positive dengue status from a negative dengue status. The diagnostic amount represents a measured amount of a biomarker above which or below which a subject is classified as having a particular dengue status, e.g. DF, DHF, DSS. For example, if the biomarker is up-regulated compared to normal during dengue, then a measured amount above the diagnostic cutoff provides a diagnosis of dengue status. Alternatively, if the biomarker is down-regulated during dengue, then a measured amount below the diagnostic cutoff provides a diagnosis of dengue status. As is well understood in the art, by adjusting the particular diagnostic cut-off used in an assay, one can increase sensitivity or specificity of the diagnostic assay depending on the preference of the diagnostician. The particular diagnostic cut-off can be determined, for example, by measuring the amount of the biomarker in a statistically significant number of samples from subjects with the different dengue statuses, as was done here, and drawing the cut-off to suit the diagnostician's desired levels of specificity and sensitivity.


Combinations of Markers


While individual biomarkers are useful diagnostic biomarkers, it has been found that a combination of biomarkers can provide greater predictive value of a particular status than single biomarkers alone. Specifically, the detection of a plurality of biomarkers in a sample can increase the sensitivity and/or specificity of the test. A combination of at least two biomarkers is sometimes referred to as a “biomarker profile” or “biomarker fingerprint.”


Presence of Dengue


In one aspect, this invention provides methods for determining the presence or absence of dengue in a subject (status: dengue v. non-dengue). The presence or absence of dengue is determined by measuring the relevant biomarker or biomarkers and then either submitting them to a classification algorithm or comparing them with a reference amount and/or pattern of biomarkers that is associated with the particular risk level.


Determining Risk of Developing Disease


In one aspect, this invention provides methods for determining the risk of developing disease in a subject. Biomarker amounts or patterns are characteristic of various risk states, e.g., high, medium or low. The risk of developing a disease is determined by measuring the relevant biomarker or biomarkers and then either submitting them to a classification algorithm or comparing them with a reference amount and/or pattern of biomarkers that is associated with the particular risk level.


Determining Stage of Disease


In one aspect, this invention provides methods for determining the stage of disease in a subject. Each stage of the disease has a characteristic amount of a biomarker or relative amounts of a set of biomarkers (a pattern). The stage of a disease is determined by measuring the relevant biomarker or biomarkers and then either submitting them to a classification algorithm or comparing them with a reference amount and/or pattern of biomarkers that is associated with the particular stage.


Determining Course (Progression/Remission) of Disease


In one aspect, this invention provides methods for determining the course of disease in a subject. Disease course refers to changes in disease status over time, including disease progression (worsening) and disease regression (improvement). Over time, the amounts or relative amounts (e.g., the pattern) of the biomarkers changes. Therefore, the trend of these markers, either increased or decreased over time toward diseased or non-diseased indicates the course of the disease. Accordingly, this method involves measuring one or more biomarkers in a subject at least two different time points, e.g., a first time and a second time, and comparing the change in amounts, if any. The course of disease is determined based on these comparisons.


Subject Management


In certain aspects of the methods of qualifying dengue status, the methods further comprise managing subject treatment based on the status. Such management includes the actions of the physician or clinician subsequent to determining dengue status. For example, if a physician makes a diagnosis of dengue, then a certain regime of treatment, such as prescription or administration of paracetamol, antipyretics or a combination thereof, might follow. Alternatively, a diagnosis of non-dengue might be followed with further testing to determine a specific disease that might the patient might be suffering from. Also, if the diagnostic test gives an inconclusive result on dengue status, further tests can be called for.


The methods described herein can be used in combination with and other tests and/or methods that are used to qualify dengue status in a subject. For example, in certain aspects, the methods described herein are used to determine whether or not a subject has an increased likelihood of having dengue. These methods can be used in combination with other tests that are useful for either diagnosing dengue in a subject or ruling out other diagnoses.


Additional aspects of the invention relate to the communication of assay results or diagnoses or both to technicians, physicians or patients, for example. In certain aspects, computers will be used to communicate assay results or diagnoses or both to interested parties, e.g., physicians and their patients. In some aspects, the assays will be performed or the assay results analyzed in a country or jurisdiction which differs from the country or jurisdiction to which the results or diagnoses are communicated.


In a preferred aspect of the invention, a diagnosis based on the presence or absence in a test subject of any the biomarkers of Table 1-5, and 17-24 is communicated to the subject as soon as possible after the diagnosis is obtained. The diagnosis can be communicated to the subject by the subject's treating physician. Alternatively, the diagnosis can be sent to a test subject by email or communicated to the subject by phone. A computer can be used to communicate the diagnosis by email or phone. In certain aspects, the message containing results of a diagnostic test can be generated and delivered automatically to the subject using a combination of computer hardware and software which will be familiar to artisans skilled in telecommunications. One example of a healthcare-oriented communications system is described in U.S. Pat. No. 6,283,761; however, the present invention is not limited to methods which utilize this particular communications system. In certain aspects of the methods of the invention, all or some of the method steps, including the assaying of samples, diagnosing of diseases, and communicating of assay results or diagnoses, can be carried out in diverse (e.g., foreign) jurisdictions.


Determining Therapeutic Efficacy of Pharmaceutical Drug


In another aspect, this invention provides methods for determining the therapeutic efficacy of a pharmaceutical drug. These methods are useful in performing clinical trials of the drug, as well as monitoring the progress of a patient on the drug. Therapy or clinical trials involve administering the drug in a particular regimen. The regimen can involve a single dose of the drug or multiple doses of the drug over time. The doctor or clinical researcher monitors the effect of the drug on the patient or subject over the course of administration. If the drug has a pharmacological impact on the condition, the amounts or relative amounts (e.g., the pattern or profile) of the biomarkers of this invention changes toward a non-disease profile. One can follow the course of the amounts of these biomarkers in the subject during the course of treatment. Accordingly, this method involves measuring one or more biomarkers in a subject receiving drug therapy, and correlating the amounts of the biomarkers with the disease status of the subject. One aspect of this method involves determining the levels of the biomarkers at least two different time points during a course of drug therapy, e.g., a first time and a second time, and comparing the change in amounts of the biomarkers, if any. For example, the biomarkers can be measured before and after drug administration or at two different time points during drug administration. The effect of therapy is determined based on these comparisons. If a treatment is effective, then the biomarkers will trend toward normal, while if treatment is ineffective, the biomarkers will trend toward disease indications. If a treatment is effective, then the biomarkers will trend toward normal, while if treatment is ineffective, the biomarkers will trend toward disease indications.


Generation of Classification Algorithms for Qualifying Dengue Status


In some aspects, data derived from the spectra (e.g., mass spectra or time-of-flight spectra) that are generated using samples such as “known samples” can then be used to “train” a classification model. A “known sample” is a sample that has been pre-classified. The data that are derived from the spectra and are used to form the classification model can be referred to as a “training data set.” Once trained, the classification model can recognize patterns in data derived from spectra generated using unknown samples. The classification model can then be used to classify the unknown samples into classes. This can be useful, for example, in predicting whether or not a particular biological sample is associated with a certain biological condition (e.g., diseased versus non-diseased).


The training data set that is used to form the classification model can comprise raw data or pre-processed data. In some aspects, raw data can be obtained directly from time-of-flight spectra or mass spectra, and then can be optionally “pre-processed” as described above.


Classification models can be formed using any suitable statistical classification (or “learning”) method that attempts to segregate bodies of data into classes based on objective parameters present in the data. Classification methods can be either supervised or unsupervised. Examples of supervised and unsupervised classification processes are described in Jain, “Statistical Pattern Recognition: A Review”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 1, January 2000, the teachings of which are incorporated by reference.


In supervised classification, training data containing examples of known categories are presented to a learning mechanism, which learns one or more sets of relationships that define each of the known classes. New data can then be applied to the learning mechanism, which then classifies the new data using the learned relationships. Examples of supervised classification processes include linear regression processes (e.g., multiple linear regression (MLR), partial least squares (PLS) regression and principal components regression (PCR)), binary decision trees (e.g., recursive partitioning processes such as CART—classification and regression trees), artificial neural networks such as back propagation networks, discriminant analyses (e.g., Bayesian classifier or Fischer analysis), logistic classifiers, and support vector classifiers (support vector machines).


A preferred supervised classification method is a recursive partitioning process. Recursive partitioning processes use recursive partitioning trees to classify spectra derived from unknown samples. Further details about recursive partitioning processes are provided in U.S. Patent Application No. 2002 0138208 A1 to Paulse et al., “Method for analyzing mass spectra.”


In other aspects, the classification models that are created can be formed using unsupervised learning methods. Unsupervised classification attempts to learn classifications based on similarities in the training data set, without pre-classifying the spectra from which the training data set was derived. Unsupervised learning methods include cluster analyses. A cluster analysis attempts to divide the data into “clusters” or groups that ideally should have members that are very similar to each other, and very dissimilar to members of other clusters. Similarity is then measured using some distance metric, which measures the distance between data items, and clusters together data items that are closer to each other. Clustering techniques include the MacQueen's K-means algorithm and the Kohonen's Self-Organizing Map algorithm.


Learning algorithms asserted for use in classifying biological information are described, for example, in PCT International Publication No. WO 01/31580 (Barnhill et al., “Methods and devices for identifying patterns in biological systems and methods of use thereof”), U.S. Patent Application No. 2002 0193950 A1 (Gavin et al., “Method or analyzing mass spectra”), U.S. Patent Application No. 2003 0004402 A1 (Hitt et al., “Process for discriminating between biological states based on hidden patterns from biological data”), and U.S. Patent Application No. 2003 0055615 A1 (Zhang and Zhang, “Systems and methods for processing biological expression data”).


The classification models can be formed on and used on any suitable digital computer. Suitable digital computers include micro, mini, or large computers using any standard or specialized operating system, such as a Unix, Windows™ or Linux™ based operating system. The digital computer that is used can be physically separate from the mass spectrometer that is used to create the spectra of interest, or it can be coupled to the mass spectrometer.


The training data set and the classification models according to aspects of the invention can be embodied by computer code that is executed or used by a digital computer. The computer code can be stored on any suitable computer readable media including optical or magnetic disks, sticks, tapes, and the like, and can be written in any suitable computer programming language including C, C++, visual basic, and the like


The learning algorithms described above are useful both for developing classification algorithms for the biomarkers already discovered, or for finding new biomarkers for dengue. The classification algorithms, in turn, form the base for diagnostic tests by providing diagnostic values (e.g., cut-off points) for biomarkers used singly or in combination.


Compositions of Matter


In another aspect, this invention provides compositions of matter based on the biomarkers of this invention.


In one aspect, this invention provides biomarkers of this invention in purified form. Purified biomarkers have utility as antigens to raise antibodies. Purified biomarkers also have utility as standards in assay procedures. As used herein, a “purified biomarker” is a biomarker that has been isolated from other proteins and peptdies, and/or other material from the biological sample in which the biomarker is found. Biomarkers can be purified using any method known in the art, including, but not limited to, mechanical separation (e.g., centrifugation), ammonium sulphate precipitation, dialysis (including size-exclusion dialysis), size-exclusion chromatography, affinity chromatography, anion-exchange chromatography, cation-exchange chromatography, and methal-chelate chromatography. Such methods can be performed at any appropriate scale, for example, in a chromatography column, or on a biochip.


In another aspect, this invention provides a biospecific capture reagent, optionally in purified form, that specifically binds a biomarker of this invention. In one aspect, the biospecific capture reagent is an antibody. Such compositions are useful for detecting the biomarker in a detection assay, e.g., for diagnostics.


In another aspect, this invention provides an article comprising a biospecific capture reagent that binds a biomarker of this invention, wherein the reagent is bound to a solid phase. For example, this invention contemplates a device comprising bead, chip, membrane, monolith or microtiter plate derivatized with the biospecific capture reagent. Such articles are useful in biomarker detection assays.


In another aspect this invention provides a composition comprising a biospecific capture reagent, such as an antibody, bound to a biomarker of this invention, the composition optionally being in purified form. Such compositions are useful for purifying the biomarker or in assays for detecting the biomarker.


In another aspect, this invention provides an article comprising a solid substrate to which is attached an adsorbent, e.g., a chromatographic adsorbent or a biospecific capture reagent, to which is further bound a biomarker of this invention. In one aspect, the article is a biochip or a probe for mass spectrometry, e.g., a SELDI probe. Such articles are useful for purifying the biomarker or detecting the biomarker.


Kits for Detection of Biomarkers for Dengue


In another aspect, the present invention provides kits for qualifying dengue status, which kits are used to detect biomarkers according to the invention. In one aspect, the kit comprises a solid support, such as a chip, a microtiter plate or a bead or resin having a capture reagent attached thereon, wherein the capture reagent binds a biomarker of the invention. Thus, for example, the kits of the present invention can comprise mass spectrometry probes for SELDI, such as ProteinChip® arrays. In the case of biospecfic capture reagents, the kit can comprise a solid support with a reactive surface, and a container comprising the biospecific capture reagent.


The kit can also comprise a washing solution or instructions for making a washing solution, in which the combination of the capture reagent and the washing solution allows capture of the biomarker or biomarkers on the solid support for subsequent detection by, e.g., mass spectrometry. The kit can include more than type of adsorbent, each present on a different solid support.


In a further aspect, such a kit can comprise instructions for suitable operational parameters in the form of a label or separate insert. For example, the instructions can inform a consumer about how to collect the sample, how to wash the probe or the particular biomarkers to be detected.


In yet another aspect, the kit can comprise one or more containers with biomarker samples, to be used as standard(s) for calibration.


Use of Biomarkers for Dengue in Screening Assays and Methods of Treating Dengue


The methods of the present invention have other applications as well. For example, the biomarkers can be used to screen for compounds that modulate the expression of the biomarkers in vitro or in vivo, which compounds in turn can be useful in treating or preventing dengue in patients. In another example, the biomarkers can be used to monitor the response to treatments for dengue. In yet another example, the biomarkers can be used in heredity studies to determine if the subject is at risk for developing dengue.


Thus, for example, the kits of this invention could include a solid substrate having a hydrophobic function, such as a protein biochip (e.g., a Ciphergen H50 ProteinChip array, e.g., ProteinChip array) and a sodium acetate buffer for washing the substrate, as well as instructions providing a protocol to measure the biomarkers of this invention on the chip and to use these measurements to diagnose dengue.


Compounds suitable for therapeutic testing can be screened initially by identifying compounds which interact with one or more biomarkers listed in Table 1, 2, 3, 4, 5, 17, 18, 19, 20, 21, 22, 23, or 24. By way of example, screening might include recombinantly expressing a biomarker listed in Table 1, 2, 3, 4, 5, 17, 18, 19, 20, 21, 22, 23, or 24, purifying the biomarker, and affixing the biomarker to a substrate. Test compounds would then be contacted with the substrate, typically in aqueous conditions, and interactions between the test compound and the biomarker are measured, for example, by measuring elution rates as a function of salt concentration. Certain proteins can recognize and cleave one or more biomarkers of Table 1, 2, 3, 4, 5, 17, 18, 19, 20, 21, 22, 23, or 24, in which case the proteins can be detected by monitoring the digestion of one or more biomarkers in a standard assay, e.g., by gel electrophoresis of the proteins.


In a related aspect, the ability of a test compound to inhibit the activity of one or more of the biomarkers of Table 1, 2, 3, 4, 5, 17, 18, 19, 20, 21, 22, 23, or 24, can be measured. One of skill in the art will recognize that the techniques used to measure the activity of a particular biomarker will vary depending on the function and properties of the biomarker. For example, an enzymatic activity of a biomarker can be assayed provided that an appropriate substrate is available and provided that the concentration of the substrate or the appearance of the reaction product is readily measurable. The ability of potentially therapeutic test compounds to inhibit or enhance the activity of a given biomarker can be determined by measuring the rates of catalysis in the presence or absence of the test compounds. The ability of a test compound to interfere with a non-enzymatic (e.g., structural) function or activity of one of the biomarkers of Table 1, 2, 3, 4, 5, 17, 18, 19, 20, 21, 22, 23, or 24, can also be measured. For example, the self-assembly of a multi-protein complex which includes one of the biomarkers of Table 1, 2, 3, 4, 5, 17, 18, 19, 20, 21, 22, 23, or 24, can be monitored by spectroscopy in the presence or absence of a test compound. Alternatively, if the biomarker is a non-enzymatic enhancer of transcription, test compounds which interfere with the ability of the biomarker to enhance transcription can be identified by measuring the levels of biomarker-dependent transcription in vivo or in vitro in the presence and absence of the test compound.


Test compounds capable of modulating the activity of any of the biomarkers of Table 1, 2, 3, 4, 5, 17, 18, 19, 20, 21, 22, 23, or 24, can be administered to patients who are suffering from or are at risk of developing dengue. For example, the administration of a test compound which increases the activity of a particular biomarker can decrease the risk of dengue in a patient if the activity of the particular biomarker in vivo prevents the accumulation of proteins for dengue. Conversely, the administration of a test compound which decreases the activity of a particular biomarker can decrease the risk of dengue in a patient if the increased activity of the biomarker is responsible, at least in part, for the onset of dengue.


In an additional aspect, the invention provides a method for identifying compounds useful for the treatment of disorders such as dengue which are associated with increased levels of modified forms of the biomarkers in Table 1, 2, 3, 4, 5, 17, 18, 19, 20, 21, 22, 23, or 24. For example, in one aspect, cell extracts or expression libraries can be screened for compounds which catalyze the cleavage of a full-length biomarker to form truncated forms of the biomarker. In one aspect of such a screening assay, cleavage of the biomarker can be detected by attaching a fluorophore to the biomarker which remains quenched when the biomarker is uncleaved but which fluoresces when the protein is cleaved. Alternatively, a version of full-length biomarker modified so as to render the amide bond between amino acids x and y uncleavable can be used to selectively bind or “trap” the cellular protesase which cleaves full-length biomarker at that site in vivo. Methods for screening and identifying proteases and their targets are well-documented in the scientific literature, e.g., in Lopez-Ottin et al. (Nature Reviews, 2002, 3:509-519).


In yet another aspect, the invention provides a method for treating or reducing the progression or likelihood of a disease, e.g., dengue, which is associated with the increased levels of a truncated biomarker. For example, after one or more proteins have been identified which cleave the full-length biomarker, combinatorial libraries can be screened for compounds which inhibit the cleavage activity of the identified proteins. Methods of screening chemical libraries for such compounds are well-known in art. See, e.g., Lopez-Otin et al. (2002). Alternatively, inhibitory compounds can be intelligently designed based on the structure of the biomarker.


At the clinical level, screening a test compound includes obtaining samples from test subjects before and after the subjects have been exposed to a test compound. The levels in the samples of one or more of the biomarkers listed in Table 1, 2, 3, 4, 5, 17, 18, 19, 20, 21, 22, 23, or 24, can be measured and analyzed to determine whether the levels of the biomarkers change after exposure to a test compound. The samples can be analyzed by mass spectrometry, as described herein, or the samples can be analyzed by any appropriate means known to one of skill in the art. For example, the levels of one or more of the biomarkers listed in Table 1, 2, 3, 4, 5, 17, 18, 19, 20, 21, 22, 23, or 24, can be measured directly by Western blot using radio- or fluorescently-labeled antibodies which specifically bind to the biomarkers. Alternatively, changes in the levels of mRNA encoding the one or more biomarkers can be measured and correlated with the administration of a given test compound to a subject. In a further aspect, the changes in the level of expression of one or more of the biomarkers can be measured using in vitro methods and materials. For example, human tissue cultured cells which express, or are capable of expressing; one or more of the biomarkers of Table 1, 2, 3, 4, 5, 17, 18, 19, 20, 21, 22, 23, or 24, can be contacted with test compounds. Subjects who have been treated with test compounds will be routinely examined for any physiological effects which can result from the treatment. In particular, the test compounds will be evaluated for their ability to decrease disease likelihood in a subject. Alternatively, if the test compounds are administered to subjects who have previously been diagnosed with dengue, test compounds will be screened for their ability to slow or stop the progression of the disease.


The invention will be further described with reference to the following exemplary aspects; however, it is to be understood that the invention is not limited to such exemplary aspects.


Exemplary Aspects

Below are examples of specific aspects for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, and the like), but some experimental error and deviation should, of course, be allowed for.


The practice of the present invention will employ, unless otherwise indicated, conventional methods of protein chemistry, biochemistry, recombinant DNA techniques and pharmacology, within the skill of the art. Such techniques are explained fully in the literature. See, e.g., T. E. Creighton, Proteins: Structures and Molecular Properties (W.H. Freeman and Company, 1993); A. L. Lehninger, Biochemistry (Worth Publishers, Inc., current addition); Sambrook, et al., Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Methods In Enzymology (S. Colowick and N. Kaplan eds., Academic Press, Inc.); Remington's Pharmaceutical Sciences, 18th Edition (Easton, Pa.: Mack Publishing Company, 1990); Carey and Sundberg Advanced Organic Chemistry 3rd Ed. (Plenum Press) Vols A and B(1992).


Example 1
Discovery of Dengue Biomarkers

Two complimentary approaches to identifying potential biomarkers for the diagnosis or prognosis of dengue have been taken: 1) SELDI-based and 2) gel-based. Based on estimated molecular weight, there is an overlap of biomarkers identified by both approaches (Tables 1-5). Similar methods for the discovery of biomarkers for babesia were used in U.S. provisional application Ser. No. 60/749,449 filed on Dec. 12, 2005 and U.S. provisional application Ser. No. 60/752,285 filed on Dec. 20, 2005, both of which are herein incorporated by reference for all purposes. The discovered biomarkers are shown in Tables 1-5, and Tables 17-24.


Sample Collection


Sample collection was previously peformed by Takol.


Plasma samples from pediatric That patients were obtained. For each dengue infected patient, 3 blood samples were taken at 3 different time points: t1 (1st day of admission), t2 (fever decreased to normal), t3 (convalescence stage 30 days after admission). Each probable dengue diagnosis was confirmed and the serotype as well as the type (primary or secondary) of the infection recorded. Samples of patients with other febrile illnesses (OFIs) were also collected to be used as controls. The samples were stored at −80° C. (Table 6). Table 6 shows a list of specimens collected in Thailand from pediatric patients. The list of 15 controls is not included.









TABLE 6







Classification of DENV infected pediatric patients.











TABLE 6






DENV
Primary Infection

Secondary Infection











Serotype
DF
DHF
DF
DHF














1
3
1
7
6


2
3
6
7
10


3
5
0
2
4


4
1
2
8
7


Total
12
9
24
27









Preparation and Fractionation of Serum Samples


Preparation and fractionation of serum samples was previously performed by Takol.


Fractionation of serum samples was performed with the use of the Biomek 2000 Laboratory Automation Workstation (Beckman Coulter, USA) using software protocols provided by Ciphergen (Ciphergen Biosystems, Fremont, Calif., USA). An Expression Difference Mapping Kit (Ciphergen Biosystems, Fremont, Calif., USA) was also used according to the manufacturer's instructions. Six fractions obtained through Fractionation of serum samples was performed with the use of the Biomek 2000 Laboratory Automation Workstation (Beckman Coulter, USA) using software protocols provided by Ciphergen (Ciphergen Biosystems, Fremont, Calif., USA). An Expression Difference Mapping Kit (Ciphergen Biosystems, Fremont, Calif., USA) was also used according to the manufacturer's instructions. Six fractions obtained through isoelectric point separation were obtained and collected using different buffers: F1 (pH 9), F2 (pH 7), F3 (pH5), F4 (pH 4), F5 (pH 3), F6 (organic solvent). The fractions were stored at −80° C.


SELDI Analysis


Protein Binding Using ProteinChip Arrays


Protein binding using ProteinChip Arrays was previously performed by Takol.


The following chip binding protocol was followed and the samples were processed using an IMAC-3 ProteinChip Array according to the protocol below:


Chip Binding Protocol


Weak Cation Exchange (WCX2) ProteinChip Array


Materials:


Bioprocessor


WCX-2 chip


Vortex


CM low stringency buffer


Deionized water


EAM solution

    • 1. Assemble the WCX-2 protein chip in the bioprocessor.
    • 2. Add 150 ul of CM low stringency buffer to each well.
    • 3. Vortex for 5 minutes (speed 100 rpm) at room temperature.
    • 4. Remove the buffer from the wells.
    • 5. Repeat steps 2 to 3 for a total of 2 washes.
    • 6. Add 90 ul of CM low stringency buffer to each well.
    • 7. Add 10 ul of sample (fractions) to each well.
    • 8. Vortex for 30 minutes (speed 100 rpm) at room temperature.
    • 9. Remove the samples from the wells.
    • 10. Wash each well with 150 ul CM low stringency buffer.
    • 11. Vortex for 5 minutes (100 rpm).
    • 12. Repeat twice for a total of three buffer washes.
    • 13. Remove the washing buffer from the wells and rinse each well with deionized water.
    • 14. Drain the wells and remove the chip from the bioprocessor.
    • 15. Allow the chip to air dry.
    • 16. Apply 0.5-1 ul of EAM solution per spot twice.
    • 17. Allow to air dry after each application.
    • 18. Analyze the chip.


Processing Samples Using an IMAC-3 ProteinChip Array


Material:


Bioprocessors


IMAC Chips


Pap Pen


Votex (VWR VX-2500 Multitube Vortexer)


IMAC3 Chip Buffer:


A) Binding Buffer: 100 mM Sodium Phosphate+0.5M NaCl pH 7.0+0.1% Triton X


B) Charging Buffer (Copper): 100 mM CuSO4+0.1% Triton X 20


C) Neutralizing Buffer:100 mM NaAcetate pH 4.0+0.1% Triton X 20

    • 1. Place Chip in bioprocessor
    • 2. Load IMAC chips with copper: Apply 50 μl/well of 100 mM CuSO4
    • 3. Vortex 5 min (speed 100 rpm) at room temperature
    • 4. Remove CuSO4
    • 5. Wash with water 120 μl/well
    • 6. Vortex 5 min (speed 100 rpm)
    • 7. Neutralize chips: Add 50 μl/well of 100 mM NaAcetate pH 4.0
    • 8. Remove solution
    • 9. Wash with water 120 μl/well
    • 10. Vortex 5 min (speed 100 rpm)
    • 11. Repeat steps 9 & 10 a further two times
    • 12. Equilibrate Chips: Add 120 μl Binding Buffer (PBS/0.5 M NaCl, pH 7.5)
    • 13. Vortex 5 min (100 rpm)
    • 14. Bind fractions to chips: Discard waste and add 80 μl Binding Buffer and 20 μl of fractions (containing samples)
    • 15. Vortex 45-60 min (100 rpm)
    • 16. Discard and wash (PBS/0.5M NaCl, 150 μl/well)
    • 17. Vortex 5 min (100 rpm)
    • 18. Repeat steps 16 & 17 a further two times
    • 19. Rinse chip with dH2O (150 μl/well)
    • 20. Add Matrix: Remove bioproceesor top and gasket
    • 21. Rinse the Chips quickly with dH2O
    • 22. Dry chips
    • 23. Circle spots with PAP pen
    • 24. Add 0.5 μl SPA to Chips two times (air dry the spots between addition) Ciphergen normally supplies EAM as 5 mg of dried powder in a tube. Add 100 μl of 100% Acetonitrile (final concentration 50% ACN)+50 μl 2% Trifluoroacetic acid (final conc. 0.5% TFA)+50 μl dH2O.
      • Vortex 1 min (high speed) and leave it in the bunch for 5 min
      • Spin 2 min at high speed to pellet any particulates
    • 25. Dry
    • 26. Read within 1 hour


Protein binding to ProteinChip Arrays was performed using the Biomek 2000 Laboratory Automation Workstation (Beckman Coulter) and protein binding software protocols provided by Ciphergen Biosystems. Immobilized affinity capture (IMAC3), weak cation-exchange (CM10) and hydrophobic (H50) ProteinChip Array types (eight spot format) were used (Ciphergen Biosystems). ProteinChip arrays were analyzed in the ProteinChip Biology System reader (model PBS IIc, Ciphergen Biosystems).


Reading and Analysis of ProteinChip Arrays

To initially compare data between different diseases tested, arrays were read at low (intensity=175, sensitivity=7, optimization range=2000-20,000 Da, high range=50,000 Da) and high (intensity=175, sensitivity=8, optimization range=20,000-50,000 Da, high range=150,000 Da) laser settings. The data was analyzed using ProteinChip software (version 3.2.1) and Ciphergen Express Data Manager (version 2.1) (Ciphergen Biosystems).


All data were imported into Ciphergen Express (CE) and grouped according to each condition (e.g., DHF fraction 1 bound to a WCX2 array, read at low laser intensity). Each data set was calibrated using an equation generated from a spectrum of protein standards, which were collected at the same laser intensity as the collected sample data.


The Baseline for all data was set at 15, and Noise set at 2000 Da (for arrays read at low laser energy) or 10,000 Da (high laser energy). Sample spectra for each group were normalized using a specific set of conditions. Arrays read at low laser intensity were normalized between 2000-100,000 Da, and 10,000-200,000 Da for high laser intensity. An external normalization coefficient of 0.2 was applied for both conditions. As a quality control measure for the comparison of spectra processed on different days, the average normalization factor was first calculated for all spectra within the condition. Any spectra that did not fall within twice the overall average normalization factor were discarded from the analysis.


Peak and Cluster detection (EDM) was then performed for both low and high laser intensities for each sample condition. A distinct set of variables were set for each of the samples collected depending on if they were obtained using low or high laser intensity.


The first set of comparisons was carried between control1 and 1DF1 and 1DHF1, control2 and 1DF2 and 1DHF2, 1DF1 and 1DHF1, 1DF2 and 1DHF2, 1DF3 and 1DHF3 plasma samples. After the first-pass analysis, all clusters found to have a p-value ≦0.05 were visually inspected for peak quality. High quality protein peaks were manually relabelled. A second-pass analysis was carried out; the EDM was run again using only user-detected peaks. Using Biomarker Pattern Software (BPS), a decision analysis software, combination of these candidate biomarkers was determined as well as their specificity and sensitivity using pooled data from 1DF1, 1DF2, 1DHF1 and 1DHF2 versus pooled data from control 1 and 2. These candidate biomarkers represent potential diagnostic biomarkers.


A second set of comparisons was carried out between secondary 2DF1 and 2DF1, 2DF2 and 2DHF2, 2DF3 and 2DHF3. The same first- and second-pass analysis protocol was followed with the same p-value limit.


Since the samples from primary and secondary infections were carried on 2 separate bioprocessors on 2 different days, the quality method described above was applied before the following analyses were carried out. A third set of comparisons was carried out between primary and secondary DF at each 3 time point as well as between primary and secondary DHF at each 3 time points. A comparison between control1 and 2DF1 and 2DHF1 as well as between control2 and 2DF2 and 2DHF2 was also carried. The same first- and second-pass analysis protocol was followed but only clusters found to have a p-value ≦0.005 were kept. BPS analysis was also carried using the same comparisons above. FIGS. 1-11, 13-34, and Tables 3-4, 7-16, 17-24 show the results of a SELDI-based biomarker discovery study. The biomarkers presented in these tables and figures can be used in all aspects of the present invention. F1CSL and F1CSH refers to Fraction 1, WCX2, SPA, Low or High intensity; F1ISL and F1ISH refer to Fraction 1, IMAC, SPA, Low or High intensity; F3CSL and F3CSH refer to Fraction 3, WCX2, SPA, Low or High intensity; F5CSL or F5CSH refer to Fraction 5, WCX2, SPA, Low or High intensity; F51SL and F51SH refer to Fraction 5, IMAC, SPA, Low or High intensity; F6CSL and F6CSH refer to Fraction 6, WCX2, SPA, Low or High intensity; and F61SL and F6ISH refer to Fraction 6, IMAC, SPA, Low or High intensity.


ZOOM Fractionation and SDS PAGE


Control 1 and 2 samples were pooled together and 1DF1,2 samples were pooled with 1DHF1,2. The plasma samples were prepared following Invitrogen's recommendations. 650 μl of the prepared samples were dispensed in 5 of the ZOOM® IEF Fractionator chambers. The ZOOM was run under standard conditions (100V for 20 min, 200V for 80 min, and 600V for 80 min). Once completed, the fractions from each chamber were kept at −20° C.


40 μl of for each fraction was desalted. Each aliquot was run on a Denaturing 4-12% Bis-Tris NuPAGE Gel Electrophoresis using Mark12 MW Marker 1× (Invitrogen) as the molecular weight ladder. The gel was run at 200V for 45 min with an expected current of 100-125 mA at the beginning and 60-80 mA towards the end. The gel was stained using a Coomassie stain for 2 days. It was destained with MiliQ water until band visualization was satisfying. The gel was kept in acetic acid. The candidate biomarkers were cut and kept in 2% acetic acid tubes and were sent for sequencing using mass spectrometry. Tables 1-2 and FIG. 12 show the results of a biomarker gel-based discovery study. The biomarkers presented in these tables and figures can be used in all aspects of the present invention.


While the invention has been particularly shown and described with reference to a preferred aspect and various alternate aspects, it will be understood by persons skilled in the relevant art that various changes in form and details can be made therein without departing from the spirit and scope of the invention.


All references, issued patents and patent applications cited within the body of the instant specification are hereby incorporated by reference in their entirety, for all purposes.









TABLE 7









embedded image







(A) Variable importance of other potential splitter as predicted by BPS in the F1CSL fraction to discriminate between dengue and OFI at t1 (day of admission) and t2 (fever decreases to normal).


(B) p-value and ROC value for all candidate biomarkers found in F1CSL either using BPS or CE. The values highlighted in gray indicate their irrelevance as a potential biomarker at t1 of DENV infection.













TABLE 8





Table 8. (A) Variable importance of other potential splitter as predicted by


BPS in the F1CSH (fraction 1 using CM10 at high laser intensity) fraction


to discriminate between dengue and OFI at t1 (day of admission) and t2


(fever decreases to normal). (B) p-value and ROC value for all candidate


biomarkers found in F1CSH either using BPS or CE.







A











Variable



Predicted
Importance



MW (Da)
(%)







238240
100.00%



 23260
 78.50%











B









Predicted
Control 1 vs DF1_DHF1
Control 2 vs DF2_DHF2











MW (Da)
p-value
ROC value
p-value
ROC value





11203
0.00005
0.12667
0.00695
0.22851


11605
0.00010
0.12667
0.00473
0.22851


23260
0.00032
0.87333
0.00006
0.90724


23824
0.00022
0.85000
0.00015
0.90724
















TABLE 9









embedded image







(A) Variable importance of other potential splitter as predicted by BPS in the F1ISL (fraction 1 using IMAC at low laser intensity) fraction to discriminate between dengue and OFI at t1 (day of admission) and t2 (fever decresases to normal).


(B) p-value and ROC value for all candidate biomarkers found in F1ISL either using BPS or CE. The values highlighted in gray indicate their irrelevance as a potential biomarker at t1 of DENV infection.













TABLE 10





Table 10. (A) Variable importance of other potential splitter as predicted


by BPS in the F1ISH (fraction 1 using IMAC at high laser intensity)


fraction to discriminate between dengue and OFI at t1 (day of admission)


and t2 (fever decreases to normal). (B) p-value and ROC value for all


candidate biomarkers found in F1ISH either using BPS or CE.







A











Variable



Predicted
Importance



MW (Da)
(%)







23105
100.00



23638
76.33



56622
72.35











B









Predicted
Control 1 vs DF1_DHF1
Control 2 vs DF2_DHF2











MW (Da)
p-value
ROC value
p-value
ROC value





10614
0.02586
0.23958
0.00007
0.09167


10634
0.00255
0.16667
0.00090
0.16667


10649
0.04109
0.27083
0.00157
0.19167


23105
0.00059
0.90625
0.00501
0.78125


23638
0.00098
0.85417
0.01019
0.75625


56622
0.00159
0.14063
0.00719
0.19167
















TABLE 11









embedded image







(A) Variable importance of other potential splitter as predicted by BPS in the F5CSL (fraction 5 using CM10 at low laser intensity) fraction to discrimiated between dengue and OFI at t1 (day of admission) and t2 (fever decreases to normal).


(B) p-value and ROC value for all candidate biomarkers found in F5CSL either using BPS or CE. The values highlighted in gray indicate their irrelevance as a potential biomarker at t1 of DENV infection.


*Splitter used in BPS analysis.













TABLE 12





Table 12. (A) Variable importance of other potential splitter as predicted


by BPS in the F5CSH (fraction 5 using CM10 at high laser intensity)


fraction to discriminate between dengue and OFI at t1 (day of admission)


and t2 (fever decreases to normal). (B) p-value and ROC value for all


candidate biomarkers found in F5CSH either using BPS or CE.







A











Variable



Predicted
Importance



MW (Da)
(%)







13294
100.00



13092
78.78



13325
68.42











B









Predicted
Control 1 vs DF1_DHF1
Control 2 vs DF2_DHF2











MW (Da)
p-value
ROC value
p-value
ROC value





12919
0.00031
0.12821
0.00042
0.14254


13092
0.00006
0.07692
0.00001
0.03728


13294
0.00001
0.02564
0.00001
0.01096


13325
0.00003
0.05128
0.00002
0.03728
















TABLE 13









embedded image







(A) Variable importance of other potential splitter as predicted by BPS in the F6CSL (fraction 6 using CM10 at low laser intensity) fraction to discriminate between dengue and OFI at t1 (day of admission) and t2 (fever decreases to normal).


(B) p-value and ROC value for all candidate biomarkers found in F6CSL either using BPS or CE. The values highlighted in gray indicate their irrelevance as a potential biomarker at t1 of DENV infection.













TABLE 14





Table 14. (A) Variable importance of other potential splitter as predicted


by BPS in the F6CSH (fraction 6 using CM10 at high laser intensity)


fraction to discriminate between dengue and OFI at t1 (day of admission)


and t2 (fever decreases to normal). (B) p-value and ROC value for all


candidate biomarkers found in F6CSH either using BPS or CE.







A











Variable



Predicted
Importance



MW (Da)
(%)







44705
100.00



46584
88.26



13359
76.16











B









Predicted
Control 1 vs DF1_DHF1
Control 2 vs DF2_DHF2











MW (Da)
p-value
ROC value
p-value
ROC value





25402
0.00119
0.82885
0.00011
0.87222


44705
0.00002
0.06154
0.00040
0.15556


45584
0.00008
0.07885
0.00188
0.17778


117245 
0.00715
0.21731
0.00537
0.23889


133359 
0.00061
0.17692
0.00002
0.06667
















TABLE 15









embedded image







(A) Variable importance of other potential splitter as predicted by BPS in the F6ISL (fraction 6 using IMAC at low laser intensity) fraction to discriminate between dengue and OFI at t1 (day of admission) and t2 (fever decreases to normal).


(B) p-value and ROC value for all candidate biomarkers found in F6ISL either using BPS or CE. The values highlighted in gray indicate their irrelevance as a potential biomarker at t1 of DENV infection, however, BPS analysis defined this peptide as a potential splitter.













TABLE 16





Table 16. (A) Variable importance of other potential splitter as predicted


by BPS in the F6ISH (fraction 6 using IMAC at high laser intensity)


fraction to discriminate between dengue and OFI at t1 (day of


admission) and t2 (fever decreases to normal). (B) p-value and ROC


value for all candidate biomarkers found in F6ISH either using BPS or CE.







A











Variable



Predicted
Importance



MW (Da)
(%)







13317
100.00



13181
60.63











B









Predicted
Control 1 vs DF1_DHF1
Control 2 vs DF2_DHF2











MW (Da)
p-value
ROC value
p-value
ROC value





11502
0.01192
0.75614
0.00049
0.83684


13181
0.00043
0.15614
0.00003
0.09298


13317
0.00000
0.00877
0.00001
0.05088


13400
0.00001
0.05088
0.00015
0.11404


133676 
0.00049
0.17368
0.00003
0.07193
















TABLE 17







Most significant biomarkers identified by SELDI technology and Biomarker Pattern Software (BPS)


for detecting primary DENV infection at different stages of the disease.


Primary Infection


Biomarkers detected by SELDI and BPS (Ct vs DENV)














Control 2 vs






Control 1 vs DHF1
DHF2
Control 1 vs DF1
Control 2 vs DF2

















p value
roc
p value
roc
p value
roc
p value
roc
m/z average




















F1CSL
0.00667
0.84074
0.19238
0.63942
0.00004
0.94444
0.01014
0.85043
3187.92612



0.00061
0.92963
0.02981
0.79327
0.00006
0.94444
0.00238
0.88462
3431.45742



0.00039
0.92963
0.01685
0.79327
0.00001
1.00000
0.00120
0.91880
3522.24286



0.00015
0.95926
0.00051
0.94712
0.00003
0.94444
0.00058
0.91880
3806.26212



0.00012
0.98889
0.00017
0.98558
0.00002
0.97222
0.00238
0.88462
3870.26222



0.00116
0.90000
0.00112
0.90865
0.00017
0.91667
0.00296
0.85043
3933.13794



0.61227
0.42593
0.00474
0.15385
0.49452
0.46111
0.01227
0.21795
3957.45555



0.57107
0.48519
0.01685
0.23077
1.00000
0.46111
0.00367
0.14957
3976.20723



0.00049
0.90000
0.00235
0.87019
0.00004
0.94444
0.00367
0.81624
4441.16417



0.00025
0.95926
0.02048
0.75481
0.00006
0.94444
0.00558
0.85043
4459.77765



0.00006
0.98889
0.00022
0.98558
0.00001
1.00000
0.00075
0.91880
4579.92629



0.00006
0.98889
0.00022
0.98558
0.00001
1.00000
0.00021
0.95299
4596.11099



0.00012
0.98889
0.00112
0.90865
0.20456
0.61111
0.05702
0.71368
4990.19603



0.00012
0.98889
0.00144
0.92308
0.00025
0.88889
0.04884
0.72222
6941.41838



0.00009
0.01111
0.00144
0.11538
0.00003
0.04444
0.00035
0.04701
7485.6467


F1CSH
0.02819
0.75833
0.34646
0.60096
0.00728
0.77778
0.06630
0.74786
10757.7961



0.00813
0.16667
0.02048
0.19231
0.02811
0.26667
0.05702
0.25214
11076.6199



0.00241
0.13333
0.16882
0.34615
0.01680
0.23889
0.01014
0.14957
13292.3331



0.00099
0.92083
0.00017
0.98558
0.00541
0.83333
0.00367
0.85043
23260.272



0.00156
0.88750
0.00022
0.98558
0.00248
0.86111
0.00835
0.81624
23823.3829



0.47768
0.55833
0.08219
0.69231
0.49452
0.42500
0.48320
0.44872
125373.713


F1ISL
0.00950
0.80357
0.12963
0.72857
0.00203
0.83929
0.00971
0.77778
3415.12898



0.02896
0.76786
0.30673
0.65238
0.00203
0.83929
0.09711
0.66667
3457.99405



0.04778
0.73214
0.08416
0.71905
0.05064
0.72024
0.00292
0.83333
3920.28814



0.00213
0.91071
0.97188
0.50000
0.01012
0.77976
0.03179
0.75000
4122.87062



0.63282
0.42857
0.00431
0.12857
0.57154
0.46429
0.01117
0.21111
4276.3415



0.49491
0.42857
0.00431
0.12857
0.50372
0.40476
0.00629
0.23889
4292.76446



0.00950
0.83929
0.19221
0.61429
0.00397
0.80952
0.00076
0.86111
4432.61693



0.00415
0.83929
0.50307
0.61429
0.00170
0.86905
0.00044
0.86111
4449.12593



0.04778
0.76786
0.00081
0.94762
0.75762
0.57143
0.40681
0.61111
4994.29386



0.05600
0.25000
0.04454
0.24286
0.07183
0.28571
0.07898
0.32222
6640.40179



0.01401
0.80357
0.00105
0.91905
0.00467
0.80952
0.00248
0.84167
6955.23285


F1ISH
0.01921
0.16667
0.00644
0.11111
0.00835
0.15000
0.00657
0.16667
10634.4592



0.03123
0.16667
0.00185
0.06667
0.46826
0.38333
0.31806
0.60000
12534.592



0.00145
0.95833
0.00046
0.98333
0.00835
0.80000
0.14924
0.66667
23104.0813



0.00200
0.95833
0.00108
0.98333
0.01222
0.80000
0.20202
0.60000
23638.655



0.03123
0.16667
0.01952
0.15556
0.00301
0.11667
0.03504
0.23333
56616.0019


F5CSL
0.11658
0.32051
0.05263
0.27778
0.62239
0.43007
0.14323
0.35000
6653.05308



0.02528
0.79060
0.22156
0.66296
0.00344
0.84965
0.00025
0.91667
8961.93991



0.01776
0.18376
0.00260
0.15926
0.03446
0.26224
0.00002
0.01667
12480.7656



0.00058
0.04701
0.00116
0.10000
0.00046
0.06643
0.00025
0.07222
12662.5319



0.02999
0.25214
0.42083
0.42593
0.00344
0.17832
0.30551
0.37778
44676.2104


F5CSH
0.04168
0.78205
0.10832
0.71429
0.00058
0.91880
0.41892
0.61111
10211.8483



0.02999
0.78205
0.03461
0.78571
0.00095
0.91880
0.56370
0.58333
10313.1139



0.48320
0.42308
0.61209
0.44048
0.04884
0.75641
0.72903
0.47222
10913.8933



0.01227
0.18376
0.79985
0.54762
0.05702
0.25214
0.90807
0.50000
12195.5553



0.00035
0.04701
0.00235
0.08333
0.00238
0.11538
0.00043
0.08333
12979.039



0.00035
0.04701
0.00177
0.08333
0.00190
0.11538
0.00003
0.00000
13092.8135



0.00009
0.01282
0.00072
0.01190
0.00035
0.04701
0.00003
0.00000
13295.3566



0.00016
0.01282
0.00177
0.08333
0.00151
0.11538
0.00007
0.02778
13325.8983



0.11658
0.68803
0.12819
0.26190
0.00684
0.85043
0.08326
0.72222
14029.4062



0.57030
0.42308
0.05191
0.22619
0.19286
0.66239
0.38648
0.63889
28370.513



0.86741
0.51709
0.00039
1.00000
0.92021
0.48291
0.00558
0.80556
108961.408


F5ISH
0.07857
0.30741
0.22156
0.36667
0.02811
0.72222
0.02480
0.26667
10226.9872


F6CSL
0.97622
0.48519
0.00062
0.92083
0.97930
0.49697
0.05591
0.71795
5289.43252



0.78845
0.57407
0.00062
0.95417
0.97930
0.52727
0.13436
0.67179
5474.34274



0.01127
0.18889
0.00671
0.16667
0.00240
0.13333
0.00060
0.11795
12481.1861



0.00049
0.10000
0.00125
0.10000
0.00005
0.04242
0.00008
0.09231
12650.5231



0.00039
0.07037
0.00099
0.06667
0.00098
0.13333
0.00012
0.06667
12906.1983



0.14404
0.33704
0.00049
0.06667
0.20353
0.37576
0.00030
0.11795
14429.2788



0.0112701
0.218518
0.00099
0.06667
0.00021
0.10303
0.00344
0.16923
45465.06



0.0295224
0.2481481
0.00368
0.13333
0.0020148
0.1636364
0.00344
0.19487
46196.85


F6CSH
0.15108
0.65385
0.01008
0.83333
0.54297
0.43007
0.81533
0.46667
10031.5232



0.11658
0.72222
0.00344
0.90952
0.83931
0.51399
0.93795
0.46667
10128.7882



0.00684
0.85043
0.00217
0.94762
0.00592
0.82168
0.00098
0.84848
25404.0365



0.00021
0.01282
0.01502
0.20476
0.00037
0.09441
0.00098
0.13333
44706.8965



0.00035
0.08120
0.00665
0.12857
0.00194
0.12238
0.01369
0.22424
45581.8839



0.05702
0.24359
0.91579
0.46190
0.01173
0.23427
0.01820
0.22424
46366.8165



0.97336
0.50855
0.86012
0.50000
0.00019
0.06643
0.00336
0.16364
59365.1146



0.44252
0.41453
0.75109
0.47143
0.00037
0.09441
0.00017
0.07273
117244.849



0.00190
0.11538
0.00081
0.05238
0.00706
0.17832
0.00025
0.07273
133359.809



0.02123
0.18376
0.00431
0.12857
0.07722
0.29021
0.00068
0.13333
198260.477


F6ISL
0.00556
0.15926
0.01401
0.20536
0.00128
0.12778
0.00467
0.22619
3437.48403



0.88150
0.51481
0.17224
0.27679
0.00842
0.80556
0.19849
0.63095
7625.50723



0.00316
0.15926
0.05600
0.28571
0.05704
0.29444
0.12282
0.34524
11724.8512



0.01127
0.15926
0.07597
0.28571
0.00842
0.21111
0.05064
0.28571
12478.098



0.01574
0.21852
0.00777
0.21429
0.02480
0.23889
0.00641
0.16667
34219.2306


F6ISH
0.00671
0.13333
0.00105
0.05238
0.00201
0.13333
0.00037
0.10000
13181.7725



0.00011
0.00000
0.00048
0.05238
0.00002
0.01212
0.00006
0.07222
13317.4205



0.00062
0.03333
0.00536
0.12857
0.00009
0.04242
0.00064
0.12778
13400.7181



0.27249
0.59583
0.80513
0.47143
0.00336
0.19394
0.00064
0.10000
59524.38



0.008132
0.1666667
0.00665
0.12857
0.00201
0.16364
0.00005
0.07222
133676.05
















TABLE 18







Biomarkers identified by SELDI technology with a p-value smaller


or equal to 0.05 that can discriminate primary DHF infection from


OFI. Grouped according to fraction it was detected in.


Diagnostic










Ct1_2 vs DHF1_2












p value
roc
m/z averaqe
















F1CSL
0.0000000
0.9915966
4579.926292




0.0000000
0.9915966
4596.110987




0.0000001
0.9726891
5583.561565




0.0000001
0.9726891
3870.26222




0.0000002
0.9537815
3806.262116




0.0000003
0.9348739
4990.19603




0.0000004
0.9537815
6941.418376




0.0000006
0.0651261
7485.646702




0.0000025
0.8970588
3933.137941




0.0000025
0.8970588
4441.164166




0.0000078
0.8781513
4459.777653




0.0000078
0.8781513
4800.693027




0.0000097
0.8592437
3061.572119




0.0000120
0.8592437
3522.242859




0.0000133
0.8592437
4020.472527




0.0000165
0.8781513
6140.608328




0.0000183
0.8781513
6138.119764




0.0000204
0.8403361
4423.747371




0.0000278
0.8592437
4654.384151




0.0000342
0.8403361
5266.529592




0.0000925
0.8592437
3431.457425




0.0000925
0.8403361
5183.584315




0.0001234
0.1596639
7658.7026




0.0001975
0.8403361
4488.791713




0.0004078
0.8025210
2517.703609




0.0005789
0.8025210
2886.289725




0.0005789
0.8025210
23588.47849




0.0006875
0.8025210
3821.714797




0.0007487
0.8025210
3248.144023




0.0018483
0.2542017
2752.206092




0.0020004
0.2163866
2980.456404




0.0029479
0.2542017
10556.99254




0.0031808
0.7647059
3187.926121




0.0039834
0.7647059
6456.367141




0.0046163
0.2731092
7940.572626




0.0053390
0.7457983
9107.540827




0.0061624
0.7268908
8780.719118




0.0076127
0.7457983
38593.25709




0.0081601
0.7079832
5912.839452




0.0107190
0.7268908
4471.501882




0.0122483
0.2920168
3957.455551




0.0149050
0.7079832
4527.180907




0.0204696
0.6701681
2683.722459




0.0204696
0.7268908
3224.576562




0.0204696
0.6890756
37462.00218




0.0246148
0.6890756
6487.177441




0.0261495
0.3109244
4189.213856




0.0312595
0.3109244
3321.159048




0.0351234
0.3109244
3976.207226




0.0466040
0.3109244
7195.954395



F1CSH
0.0011751
0.8080357
10064.31699




0.0003352
0.8303571
10143.66604




0.0078297
0.7321429
10267.57388




0.0137340
0.6964286
10299.90259




0.0016480
0.7946429
10527.69159




0.0036925
0.7410714
10655.02359




0.0168046
0.7187500
10757.79609




0.0005816
0.8125000
10802.97632




0.0003680
0.1785714
11076.61987




0.0062852
0.2678571
11157.80715




0.0000302
0.1250000
11203.02954




0.0046532
0.7589286
11324.62766




0.0005313
0.1607143
11396.01715




0.0119729
0.7053571
11451.56989




0.0002777
0.1785714
11605.52007




0.0481324
0.3214286
12494.15007




0.0299026
0.3214286
12562.70923




0.0062852
0.2500000
12955.299




0.0005313
0.1607143
13292.33306




0.0072807
0.2678571
13419.85168




0.0004851
0.1785714
13474.4264




0.0005816
0.1785714
13841.62893




0.0157200
0.2678571
14022.97966




0.0001558
0.1785714
15094.27149




0.0097059
0.2857143
15308.55574




0.0000003
0.9642857
23260.27196




0.0000007
0.9464286
23823.38294




0.0004851
0.8214286
25774.83879




0.0067665
0.7589286
29110.79546




0.0017909
0.7589286
30257.11683




0.0146974
0.7232143
38507.26592




0.0157200
0.2857143
53621.70016




0.0072807
0.2678571
54009.77568




0.0050205
0.7366071
173467.5879



F1ISL
0.0111540
0.7114943
2716.553062




0.0490254
0.6517241
2862.774426




0.0014647
0.7804598
2923.355944




0.0057683
0.2287356
3277.946842




0.0017358
0.7804598
3415.128978




0.0220073
0.6931034
3457.994054




0.0462472
0.6517241
3501.960593




0.0004593
0.7988506
3793.065138




0.0077763
0.7252874
3920.288144




0.0206128
0.7114943
4122.870618




0.0168814
0.2839080
4276.341498




0.0103893
0.2471264
4292.764456




0.0364235
0.6517241
4414.952812




0.0042403
0.7482759
4432.616925




0.0137566
0.7114943
4449.125935




0.0000574
0.8724138
4994.293858




0.0010358
0.7850575
5272.160739




0.0077763
0.7344828
5606.87859




0.0490254
0.6655172
5908.422969




0.0049512
0.7574713
6127.388003




0.0250440
0.6977011
6455.01391




0.0111540
0.7344828
6488.439228




0.0284370
0.7022989
6508.732475




0.0284370
0.6931034
6588.428983




0.0053457
0.2471264
6640.401792




0.0000271
0.8586207
6955.232848




0.0234831
0.7114943
23565.20853



F1ISH
0.0385298
0.7145062
10294.4998




0.0243382
0.7191358
10308.54818




0.0176221
0.2700617
10495.53183




0.0357638
0.2962963
10587.75825




0.0005226
0.1620370
10614.34283




0.0003706
0.1450617
10634.45923




0.0034870
0.2098765
10649.30096




0.0009107
0.1666667
10687.34192




0.0331690
0.2746914
10715.49742




0.0067653
0.7577160
10832.80337




0.0074117
0.7361111
10965.73793




0.0115498
0.2314815
12051.19993




0.0034870
0.2314815
12135.8102




0.0002054
0.1234568
12534.59195




0.0067653
0.2314815
12582.46907




0.0162215
0.2314815
13073.75509




0.0385298
0.2962963
13927.30735




0.0000013
0.9691358
23104.0813




0.0000050
0.9475309
23638.655




0.0105871
0.7793210
46473.02215




0.0162215
0.7361111
47298.31195




0.0191276
0.2746914
50851.35303




0.0331690
0.2962963
51514.98459




0.0042320
0.2098765
53216.07485




0.0038431
0.2098765
53984.24055




0.0009107
0.2098765
54593.1773




0.0088733
0.2314815
55291.41693




0.0010150
0.1666667
56616.00188




0.0115498
0.2530864
69203.03801




0.0284597
0.2916667
75424.41325




0.0385298
0.2916667
125490.8119




0.0331690
0.2700617
135956.4468



F5CSL
0.0073978
0.2678571
2580.061762




0.0079102
0.7242063
2714.357253




0.0022059
0.2321429
3432.717673




0.0324998
0.3035714
4788.767558




0.0383881
0.3035714
4818.40977




0.0031934
0.2678571
5006.990761




0.0109798
0.2678571
6653.053079




0.0005280
0.1964286
7785.325256




0.0244017
0.6706349
8961.939907




0.0029685
0.2500000
9320.83479




0.0363319
0.6964286
9763.784856




0.0001187
0.2142857
12480.76558




0.0000023
0.1071429
12662.53194




0.0011908
0.7420635
41655.94365




0.0258646
0.3214286
45581.34627




0.0307173
0.3035714
46027.40418




0.0324998
0.3392857
47028.57811



F5CSH
0.0095299
0.7512500
10018.90389




0.0161569
0.7112500
10086.0305




0.0075263
0.7312500
10143.05116




0.0081477
0.7512500
10153.05258




0.0046118
0.7512500
10166.44834




0.0111176
0.6912500
10183.30263




0.0119962
0.7112500
10201.4022




0.0075263
0.7312500
10211.84828




0.0042405
0.7312500
10223.78504




0.0021156
0.7712500
10235.16667




0.0111176
0.7312500
10278.21222




0.0035781
0.7512500
10296.22207




0.0019337
0.7512500
10313.11386




0.0011118
0.7912500
10356.48068




0.0013406
0.7912500
10373.5117




0.0017663
0.7912500
10388.54465




0.0004633
0.8112500
10403.84952




0.0005654
0.8112500
10419.84632




0.0003419
0.8112500
10436.95581




0.0004190
0.8112500
10463.24082




0.0017663
0.7712500
10483.65617




0.0017663
0.7712500
10496.39967




0.0012213
0.7712500
10504.37612




0.0006882
0.7912500
10509.50161




0.0000854
0.8512500
10518.98678




0.0000190
0.8912500
10534.02712




0.0284126
0.6912500
10614.76076




0.0150125
0.7512500
10627.7903




0.0075263
0.7312500
10643.0144




0.0042405
0.7712500
10663.86727




0.0054440
0.7312500
10689.51826




0.0247685
0.6712500
10713.27982




0.0150125
0.7112500
10750.54704




0.0088147
0.2712500
11044.03097




0.0027595
0.2200000
11064.19634




0.0347411
0.3000000
11957.03925




0.0450209
0.3000000
12241.63856




0.0161569
0.2800000
12320.35659




0.0325094
0.3000000
12450.7298




0.0000386
0.1200000
12919.66629




0.0000033
0.0600000
12979.03902




0.0004633
0.1800000
13032.98071




0.0000010
0.0400000
13092.81349




0.0000117
0.0800000
13195.95886




0.0000002
0.0200000
13295.35656




0.0000008
0.0600000
13325.89827




0.0000055
0.0800000
13355.13127




0.0000764
0.1400000
13405.34327




0.0009196
0.2200000
13486.03676




0.0265365
0.2912500
14217.37567




0.0247685
0.3112500
14521.99131




0.0161569
0.2800000
14618.82347




0.0139401
0.2600000
14800.15747




0.0304018
0.7000000
17985.77938




0.0027595
0.7912500
18369.45605




0.0347411
0.7112500
33613.09559




0.0095299
0.7512500
33970.50674




0.0038965
0.7512500
34365.74762




0.0042405
0.7512500
34643.275




0.0231034
0.2800000
42755.36144




0.0325094
0.2800000
42989.41225




0.0247685
0.2600000
43408.65433




0.0032835
0.2400000
44690.90268




0.0027595
0.2600000
45327.80096




0.0075263
0.2400000
47174.35563




0.0119962
0.7312500
52881.10915




0.0075263
0.7712500
53767.53507




0.0265365
0.3200000
89686.37727




0.0347411
0.2800000
101489.63




0.0129359
0.7112500
108961.4085




0.0001643
0.1600000
118140.2057




0.0000854
0.1400000
134053.0066




0.0325094
0.2912500
151649.6484




0.0173773
0.3000000
168760.9312




0.0002508
0.1600000
199067.5944



F5ISH
0.0267757
0.3166667
10194.75241




0.0214507
0.3166667
10265.10592




0.0298421
0.3166667
10268.93612




0.0368884
0.3166667
10370.69947




0.0151936
0.3000000
10413.75186




0.0052747
0.2833333
10416.27302




0.0368884
0.3333333
10419.51807




0.0388567
0.3333333
10424.409




0.0099719
0.2666667
10454.03617




0.0476454
0.3277778
10753.95946




0.0010397
0.7833333
11814.91128




0.0191526
0.7166667
11926.05207




0.0127163
0.7166667
12162.99607




0.0368884
0.6888889
12771.26536




0.0388567
0.6888889
63202.19281




0.0282731
0.3111111
134528.9143



F6CSL
0.0394890
0.3078431
3357.303486




0.0013257
0.2019608
3428.881722




0.0253401
0.3078431
4126.549336




0.0064640
0.7598039
4409.265978




0.0056480
0.7245098
4868.735212




0.0108921
0.7245098
4966.887753




0.0416586
0.6892157
5026.966286




0.0239258
0.6960784
5070.710423




0.0283870
0.6784314
5098.522928




0.0108921
0.7313725
5260.926275




0.0300253
0.7068627
5289.432519




0.0253401
0.7068627
5366.242108




0.0189314
0.6960784
5390.905048




0.0178353
0.6784314
5474.342743




0.0108921
0.6784314
5502.673564




0.0178353
0.7068627
5557.327902




0.0178353
0.6960784
5594.085902




0.0148737
0.7137255
5612.225059




0.0189314
0.6892157
5656.80656




0.0213014
0.6960784
5713.615364




0.0189314
0.6960784
5733.192122




0.0439284
0.6892157
5779.276452




0.0283870
0.6784314
5831.045095




0.0200859
0.6960784
5913.554395




0.0463016
0.6539216
5946.280315




0.0213014
0.6715686
5967.465293




0.0374161
0.6892157
6005.550627




0.0268262
0.6715686
6032.27113




0.0283870
0.6715686
6049.453271




0.0189314
0.6892157
6097.371545




0.0213014
0.6715686
6117.220263




0.0374161
0.6892157
6138.640057




0.0102204
0.7598039
6186.818987




0.0089866
0.7137255
6208.87014




0.0374161
0.6892157
6269.981914




0.0317443
0.6715686
6291.763152




0.0158088
0.7068627
6368.819184




0.0283870
0.6784314
6405.544153




0.0022478
0.8019608
6489.894258




0.0102204
0.7313725
6505.638023




0.0335469
0.6715686
6545.783991




0.0463016
0.6892157
6777.027523




0.0148737
0.2480392
7784.588778




0.0002376
0.1882353
8237.401638




0.0253401
0.7176471
9047.708867




0.0416586
0.7000000
9960.034625




0.0084211
0.2725490
11573.82995




0.0123542
0.2725490
11751.31327




0.0000811
0.2019608
12481.18612




0.0000019
0.0960784
12650.52312




0.0000019
0.0960784
12906.19826




0.0416586
0.3078431
14103.42005




0.0003075
0.1843137
14429.27882




0.0463016
0.3186275
15184.98539




0.0064640
0.2549020
17435.05944




0.0189314
0.2901961
28157.11019




0.0317443
0.3078431
33514.17865




0.0084211
0.7352941
41482.3358




0.0024195
0.2549020
43439.78321




0.0014315
0.2019608
44236.21224




0.0003348
0.1843137
44629.01998




0.0000347
0.1490196
44938.74105




0.0000213
0.1490196
45465.05824




0.0002590
0.2019608
46196.8513



F6CSH
0.0046532
0.7500000
10031.5232




0.0029156
0.7723214
10128.78825




0.0218270
0.6875000
10197.87061




0.0168046
0.7053571
10244.13547




0.0015156
0.7767857
10283.30231




0.0358888
0.6875000
10376.97318




0.0072807
0.7410714
10461.31639




0.0380990
0.6875000
10503.04585




0.0179544
0.6875000
10764.84395




0.0024839
0.7723214
10769.30644




0.0404240
0.7053571
10804.20204




0.0157200
0.7053571
10851.39035




0.0358888
0.6696429
10909.85409




0.0264071
0.6830357
10978.99413




0.0026919
0.7544643
11049.12454




0.0002526
0.1785714
12717.12602




0.0006957
0.1785714
12888.24561




0.0247957
0.3035714
13164.31745




0.0004037
0.8035714
23169.52525




0.0017909
0.7946429
23418.55947




0.0015156
0.8035714
23683.93102




0.0001048
0.8258929
25404.03647




0.0004037
0.8258929
25984.38257




0.0058349
0.7232143
39174.72596




0.0005313
0.8080357
39939.38857




0.0000126
0.1250000
44706.89653




0.0000113
0.0892857
45581.88392




0.0000271
0.8571429
51329.3608




0.0000699
0.8437500
53487.79549




0.0078297
0.2500000
66724.50295




0.0013931
0.7723214
79341.48074




0.0004037
0.1964286
100935.9107




0.0000032
0.0714286
133359.809




0.0001279
0.1785714
198260.4773



F6ISL
0.0297570
0.6937120
2640.69294




0.0464532
0.6653144
2689.783828




0.0280872
0.6754564
2995.703282




0.0394441
0.6572008
3030.319866




0.0046075
0.7484787
3056.069215




0.0315115
0.6572008
3258.38603




0.0297570
0.3002028
3365.113073




0.0002376
0.1906694
3437.484027




0.0046075
0.2454361
7781.264988




0.0163556
0.7119675
8842.911218




0.0053075
0.2819473
11569.16318




0.0006149
0.2271805
11724.85116




0.0022072
0.2271805
12478.09797




0.0144293
0.3002028
12902.9216




0.0163556
0.2819473
33565.39821




0.0003097
0.1724138
34219.23059



F6ISH
0.0321237
0.6800000
10518.14292




0.0044957
0.7400000
10601.92366




0.0140543
0.7000000
10692.28071




0.0208103
0.7200000
10772.27076




0.0060548
0.7200000
10787.02725




0.0024156
0.7600000
10815.66745




0.0075274
0.7200000
10847.40644




0.0236200
0.7200000
10866.3702




0.0048470
0.7400000
10883.24318




0.0483445
0.6800000
10898.15904




0.0195181
0.7200000
10915.09457




0.0284502
0.6800000
10922.99947




0.0122789
0.7000000
10936.0038




0.0251444
0.6800000
10954.03205




0.0140543
0.7000000
10975.52556




0.0182965
0.7000000
10994.92546




0.0361964
0.6800000
11025.95351




0.0321237
0.7000000
11041.94186




0.0361964
0.6800000
11461.63754




0.0030615
0.7400000
11480.30167




0.0005261
0.8200000
11502.5506




0.0030615
0.7600000
11552.19581




0.0048470
0.7600000
11568.9046




0.0028305
0.7800000
11588.80348




0.0041677
0.7400000
11651.54813




0.0026155
0.7600000
11900.72691




0.0383928
0.7000000
11987.52615




0.0208103
0.3000000
12191.72667




0.0341081
0.2800000
12227.2304




0.0456728
0.3200000
12252.12747




0.0341081
0.3000000
12311.09499




0.0080853
0.2400000
12335.34416




0.0070042
0.2600000
12372.53121




0.0131401
0.2600000
12426.65893




0.0035759
0.2000000
12566.3271




0.0075274
0.2400000
12630.52717




0.0302390
0.3000000
12703.38429




0.0080853
0.2600000
12763.65458




0.0431265
0.3000000
12851.09203




0.0000203
0.1200000
13181.77247




0.0004393
0.2000000
13231.38136




0.0000002
0.0400000
13317.42046




0.0000118
0.1000000
13400.71809




0.0018967
0.2200000
13464.97455




0.0022297
0.2200000
13586.74139




0.0013635
0.1800000
13711.01396




0.0011524
0.2000000
13796.51085




0.0383928
0.6800000
23411.55




0.0052229
0.7400000
23915.54212




0.0004011
0.8400000
39529.93455




0.0000869
0.8400000
39888.64853




0.0140543
0.7400000
40571.4705




0.0052229
0.2200000
41956.29129




0.0016099
0.2600000
44526.33609




0.0002298
0.1800000
45322.88979




0.0361964
0.3400000
46419.54842




0.0208103
0.2800000
47393.37799




0.0002090
0.8200000
51260.79681




0.0002525
0.8200000
51799.54682




0.0006866
0.8000000
52580.37193




0.0080853
0.7400000
75206.21809




0.0010585
0.7800000
79541.53333




0.0000251
0.1200000
100624.8699




0.0001290
0.1600000
133676.0475

















TABLE 19







Biomarkers identified by SELDI technology with a p-value smaller


or equal to 0.05 that can discriminate primary DF infection from


OFI. Grouped according to fraction it was detected in.


Diagnostic










Ct1_2 vs DF1_2












p value
roc
m/z averaqe
















F1CSL
0.0000000
0.9625850
4579.926292




0.0000000
0.9778912
4596.110987




0.0000004
0.9013605
5583.561565




0.0000001
0.9319728
3870.26222




0.0000000
0.9472789
3806.262116




0.0236516
0.6564626
4990.19603




0.0000448
0.8290816
6941.418376




0.0000001
0.0459184
7485.646702




0.0000011
0.9013605
3933.137941




0.0000004
0.9013605
4441.164166




0.0000008
0.9013605
4459.777653




0.0000140
0.8401361
4800.693027




0.0000005
0.9166667
3061.572119




0.0000000
0.9472789
3522.242859




0.0000128
0.8639456
6140.608328




0.0000411
0.8375850
6138.119764




0.0000097
0.8750000
4423.747371




0.0000184
0.8554422
4654.384151




0.0000007
0.9013605
3431.457425




0.0153351
0.6913265
5183.584315




0.0000014
0.1071429
7658.7026




0.0000154
0.8554422
4488.791713




0.0053031
0.7372449
2517.703609




0.0067852
0.7414966
2886.289725




0.0630724
0.6564626
23588.47849




0.0027893
0.7414966
3821.714797




0.0072096
0.7261905
3248.144023




0.0002988
0.1989796
2752.206092




0.0000106
0.1377551
2980.456404




0.0000011
0.9013605
3187.926121




0.0009909
0.2295918
7940.572626




0.0000128
0.8401361
9107.540827




0.0000965
0.8401361
8780.719118




0.0005509
0.7763605
5912.839452




0.0016234
0.7568027
4471.501882




0.0137100
0.2908163
3957.455551




0.0412997
0.3324830
4189.213856




0.0097100
0.2755102
3321.159048




0.0322319
0.3061224
3976.207226




0.0072096
0.2755102
7195.954395




0.0000184
0.8401361
3448.844444




0.0009220
0.2295918
2672.066808




0.0433518
0.3367347
8142.685699




0.0026103
0.7636054
4150.652833




0.0053031
0.2823129
3141.691497




0.0477149
0.3367347
4304.939937




0.0097100
0.7108844
3893.413384




0.0000489
0.8248299
4115.711469




0.0393306
0.3214286
3087.325152




0.0097100
0.3018707
2902.12753




0.0004070
0.7789116
10092.33514



F1CSH
0.0322319
0.3435374
10483.4761




0.0013168
0.7636054
10757.79609




0.0031814
0.2602041
11076.61987




0.0003769
0.2142857
11157.80715




0.0001140
0.1989796
11203.02954




0.0137100
0.3129252
11350.40235




0.0002988
0.1836735
11396.01715




0.0000168
0.1683673
11498.19671




0.0007411
0.2142857
11528.91453




0.0000097
0.1530612
11605.52007




0.0374418
0.3061224
11657.66336




0.0276559
0.3061224
12494.15007




0.0007974
0.2295918
13292.33306




0.0477149
0.3520408
13419.85168




0.0006394
0.2295918
13841.62893




0.0000448
0.8248299
23260.27196




0.0000533
0.8248299
23823.38294




0.0338949
0.6564626
25774.83879




0.0454892
0.6802721
29110.79546




0.0129560
0.6955782
30257.11683




0.0076577
0.7108844
38507.26592




0.0249266
0.6955782
46535.55302




0.0356307
0.3324830
53621.70016




0.0122390
0.3171769
54009.77568




0.0374418
0.3282313
57090.27251




0.0171275
0.3324830
63488.45467




0.0433518
0.3214286
149368.5056



F1ISL
0.0019931
0.7399425
2716.553062




0.0006862
0.7923851
2862.774426




0.0011457
0.7492816
2923.355944




0.0026829
0.7492816
3166.902131




0.0000396
0.8211207
3415.128978




0.0006428
0.7636494
3457.994054




0.0001752
0.7780172
3501.960593




0.0010097
0.7636494
3793.065138




0.0002672
0.7923851
3920.288144




0.0059277
0.7061782
4103.744956




0.0010757
0.7780172
4122.870618




0.0166483
0.7061782
4136.963402




0.0243579
0.3333333
4276.341498




0.0130015
0.2902299
4292.764456




0.0026829
0.7349138
4414.952812




0.0000073
0.8354885
4432.616925




0.0000028
0.8498563
4449.125935




0.0100801
0.7112069
4470.030305




0.0136685
0.7061782
5606.87859




0.0008335
0.7500000
5908.422969




0.0136685
0.6925287
5993.694087




0.0255115
0.6637931
6127.388003




0.0130015
0.6918103
6588.428983




0.0095715
0.3045977
6640.401792




0.0040169
0.3045977
6654.995846




0.0000102
0.8498563
6955.232848




0.0221857
0.3189655
8151.799057




0.0493518
0.3333333
41115.90512



F1ISH
0.0477569
0.3296296
10064.08045




0.0252391
0.2962963
10415.77202




0.0225628
0.3129630
10428.31602




0.0453879
0.3462963
10442.19383




0.0238684
0.2962963
10587.75825




0.0001075
0.1796296
10614.34283




0.0001525
0.1962963
10634.45923




0.0013461
0.2296296
10649.30096




0.0266773
0.3296296
10662.8102




0.0000477
0.1462963
10687.34192




0.0032007
0.2796296
10715.49742




0.0058850
0.2629630
10750.05013




0.0201368
0.2898148
10777.41795




0.0409462
0.3231481
10884.94807




0.0453879
0.3296296
11025.00949




0.0150417
0.3129630
11091.8077




0.0169247
0.2962963
11117.15405




0.0314243
0.6666667
12231.72039




0.0039363
0.7000000
23104.0813




0.0104530
0.7000000
23638.655




0.0213198
0.3129630
49665.31317




0.0169247
0.2962963
50851.35303




0.0067063
0.2796296
51514.98459




0.0003546
0.1962963
52248.13667




0.0012488
0.2129630
53216.07485




0.0003849
0.2129630
53984.24055




0.0001174
0.1629630
54593.1773




0.0004176
0.2129630
55291.41693




0.0002149
0.1962963
56616.00188




0.0331600
0.3296296
67189.1931




0.0081320
0.2962963
69203.03801




0.0297672
0.3296296
70488.37194



F5CSL
0.0447967
0.3268634
3360.320143




0.0009885
0.2336957
3432.717673




0.0255017
0.3268634
4788.767558




0.0011302
0.2336957
5006.990761




0.0447967
0.6459627
5165.803217




0.0080451
0.2802795
7785.325256




0.0076054
0.7150621
8726.282926




0.0000824
0.8167702
8846.247547




0.0000094
0.8633540
8961.939907




0.0002587
0.8012422
9192.684623




0.0003725
0.7701863
9468.993468




0.0004957
0.7701863
9679.241772




0.0000055
0.1560559
12480.76558




0.0000006
0.1094720
12662.53194




0.0294860
0.3423913
44310.14724




0.0080451
0.2647516
44676.21036




0.0067902
0.2958075
45036.99926




0.0131455
0.2958075
45285.08473




0.0085073
0.2802795
45581.34627




0.0111937
0.2958075
46027.40418




0.0100399
0.2958075
47028.57811



F5CSH
0.0001302
0.8152381
10018.90389




0.0026108
0.7466667
10086.0305




0.0037324
0.7466667
10143.05116




0.0028068
0.7638095
10153.05258




0.0034781
0.7638095
10166.44834




0.0052762
0.7466667
10183.30263




0.0056468
0.7295238
10201.4022




0.0020955
0.7466667
10211.84828




0.0011428
0.7638095
10223.78504




0.0012348
0.7638095
10235.16667




0.0188434
0.6952381
10278.21222




0.0131040
0.6952381
10296.22207




0.0060407
0.7295238
10313.11386




0.0052762
0.7123810
10356.48068




0.0108626
0.6952381
10373.5117




0.0095644
0.7123810
10388.54465




0.0016751
0.7809524
10403.84952




0.0042925
0.7123810
10419.84632




0.0056468
0.7295238
10436.95581




0.0167240
0.6780952
10463.24082




0.0131040
0.7123810
10483.65617




0.0095644
0.6952381
10496.39967




0.0123151
0.6952381
10504.37612




0.0049277
0.7123810
10509.50161




0.0018057
0.7638095
10518.98678




0.0069036
0.7123810
10534.02712




0.0593614
0.6438095
10614.76076




0.0095644
0.6952381
10627.7903




0.0131040
0.6609524
10643.0144




0.0237962
0.6780952
10663.86727




0.0224624
0.3085714
12130.19557




0.0157451
0.2742857
12810.96828




0.0000088
0.1200000
12919.66629




0.0000028
0.1028571
12979.03902




0.0000072
0.1542857
13032.98071




0.0000001
0.0514286
13092.81349




0.0000006
0.1028571
13195.95886




0.0000000
0.0342857
13295.35656




0.0000001
0.0514286
13325.89827




0.0000133
0.1371429
13355.13127




0.0000038
0.1200000
13405.34327




0.0000147
0.1200000
13486.03676




0.0037324
0.2571429
13633.86949




0.0009777
0.7809524
14029.40621




0.0019456
0.7638095
14996.39253




0.0484138
0.6857143
17665.44985




0.0089687
0.7295238
17790.31008




0.0004734
0.8152381
17985.77938




0.0000754
0.8323810
18369.45605




0.0459589
0.6514286
29222.15188




0.0046002
0.2571429
42755.36144




0.0064592
0.2742857
42989.41225




0.0030161
0.2571429
43408.65433




0.0010573
0.2228571
44690.90268




0.0022559
0.2228571
45327.80096




0.0089687
0.2914286
47174.35563




0.0056468
0.7123810
51440.05877




0.0069036
0.7200000
51889.38929




0.0049277
0.7295238
52881.10915




0.0078757
0.7295238
75141.88947




0.0237962
0.7123810
79071.92294




0.0157451
0.7123810
82425.00046




0.0237962
0.6780952
84062.87518




0.0028068
0.2400000
101489.63




0.0008348
0.2228571
118140.2057




0.0030161
0.2742857
134053.0066




0.0037324
0.2571429
168760.9312




0.0089687
0.3085714
199067.5944



F5ISL
0.0351749
0.3500000
43525.88014



F5ISH
0.0367139
0.3416667
11796.34403




0.0094934
0.3222222
13078.15809




0.0351749
0.3458333
13157.26855




0.0282801
0.3222222
13222.277




0.0148061
0.3222222
13254.13984




0.0050685
0.2944444
13274.84863




0.0170854
0.3138889
13538.51377



F6CSL
0.0032619
0.2527778
3357.303486




0.0000898
0.1930556
3428.881722




0.0104991
0.3041667
3473.520711




0.0141083
0.3180556
4126.549336




0.0077358
0.6944444
4178.147403




0.0007803
0.7583333
4409.265978




0.0134396
0.3041667
4788.788756




0.0270506
0.6833333
7636.624747




0.0270506
0.6666667
7661.987216




0.0062757
0.2944444
7784.588778




0.0023163
0.2527778
8237.401638




0.0032619
0.7166667
8296.864065




0.0472018
0.6708333
8722.157337




0.0247295
0.6986111
8746.621393




0.0008846
0.7638889
9047.708867




0.0491743
0.6569444
9463.07485




0.0322615
0.6847222
10472.88205




0.0029134
0.2805556
11573.82995




0.0015338
0.2527778
11751.31327




0.0000060
0.1277778
12481.18612




0.0000000
0.0444444
12650.52312




0.0000002
0.0861111
12906.19826




0.0003358
0.2111111
14429.27882




0.0434560
0.3083333
23566.3546




0.0434560
0.6652778
25601.84995




0.0012800
0.2208333
33514.17865




0.0014444
0.2625000
34088.06629




0.0014444
0.2347222
34523.55143




0.0036480
0.2805556
43439.78321




0.0010016
0.2527778
44236.21224




0.0000538
0.1555556
44629.01998




0.0000234
0.1694444
44938.74105




0.0000343
0.1833333
45465.05824




0.0000115
0.1694444
46196.8513



F6CSH
0.0162203
0.3214286
11147.59114




0.0286014
0.3214286
11670.74819




0.0069950
0.2889610
11750.95799




0.0021519
0.2240260
11780.11833




0.0017657
0.2402597
11832.56962




0.0035905
0.2564935
11908.94273




0.0078607
0.2889610
11993.02686




0.0420946
0.3214286
12057.41098




0.0008922
0.2727273
12717.12602




0.0005822
0.2402597
12888.24561




0.0110621
0.7110390
13612.48842




0.0051931
0.7272727
13846.52517




0.0002574
0.7759740
14825.26488




0.0002778
0.7759740
15055.63774




0.0078607
0.7110390
15411.25871




0.0029712
0.7272727
15613.40893




0.0009567
0.7435065
15812.1091




0.0015448
0.7272727
16257.83812




0.0029712
0.7272727
16334.75585




0.0026143
0.7435065
16782.20178




0.0022970
0.7272727
17134.49865




0.0145653
0.3051948
21786.35664




0.0000222
0.8409091
25404.03647




0.0002996
0.7759740
25984.38257




0.0331465
0.6948052
30482.78007




0.0162203
0.3051948
33560.43936




0.0016518
0.7597403
39939.38857




0.0074165
0.2564935
43596.91071




0.0000019
0.1103896
44706.89653




0.0000726
0.1915584
45581.88392




0.0005036
0.2240260
46366.8165




0.0021519
0.7435065
51329.3608




0.0258789
0.3214286
56681.92589




0.0004040
0.2240260
57685.14725




0.0000204
0.1590909
58847.42102




0.0000030
0.1266234
59365.11459




0.0000120
0.1590909
60097.13372




0.0001005
0.1915584
61383.37478




0.0008317
0.2402597
66724.50295




0.0365087
0.6623377
75362.49021




0.0401572
0.6298701
82507.09819




0.0029712
0.2727273
89782.65711




0.0001005
0.2077922
100935.9107




0.0000001
0.0779221
117244.8486




0.0000030
0.1428571
133359.809




0.0233833
0.3214286
149435.3445




0.0001751
0.2077922
198260.4773



F6ISL
0.0095715
0.2995690
2739.450599




0.0123635
0.3045977
3145.966693




0.0010757
0.2614943
3365.113073




0.0000102
0.1609195
3437.484027




0.0025296
0.7205460
7625.50723




0.0095715
0.2902299
7781.264988




0.0130015
0.6824713
8842.911218




0.0143656
0.2902299
11724.85116




0.0010097
0.2327586
12478.09797




0.0381955
0.3189655
12902.9216




0.0381955
0.6681034
15922.78821




0.0211642
0.6537356
16108.41436




0.0381955
0.3333333
33565.39821




0.0002019
0.2040230
34219.23059



F6ISH
0.0298954
0.6862319
10518.14292




0.0216133
0.6811594
10601.92366




0.0312772
0.6666667
10692.28071




0.0407710
0.6811594
10815.66745




0.0619867
0.6666667
10866.3702




0.0342060
0.6811594
10883.24318




0.0312772
0.6717391
10898.15904




0.0113934
0.6956522
10915.09457




0.0067313
0.6956522
10922.99947




0.0032489
0.7442029
10936.0038




0.0132657
0.6956522
10954.03205




0.0108237
0.7101449
10975.52556




0.0097596
0.7101449
10994.92546




0.0206106
0.6956522
11025.95351




0.0169945
0.6956522
11041.94186




0.0483741
0.6521739
11095.63804




0.0373659
0.6521739
11111.495




0.0012366
0.7536232
11461.63754




0.0048394
0.7101449
11480.30167




0.0003096
0.7826087
11502.5506




0.0014909
0.7536232
11535.71087




0.0030654
0.7536232
11552.19581




0.0206106
0.6956522
11568.9046




0.0206106
0.7101449
11588.80348




0.0011612
0.7731884
11900.72691




0.0357562
0.3340580
12191.72667




0.0407710
0.3340580
12227.2304




0.0260603
0.3050725
12252.12747




0.0425699
0.3340580
12311.09499




0.0119896
0.3195652
12335.34416




0.0030654
0.2326087
12372.53121




0.0154049
0.3340580
12426.65893




0.0051168
0.2760870
12566.3271




0.0067313
0.2760870
12630.52717




0.0444355
0.3340580
12660.70452




0.0327135
0.3340580
12703.38429




0.0951206
0.3579710
12763.65458




0.0169945
0.3195652
12816.16883




0.0000028
0.1166667
13181.77247




0.0000228
0.1601449
13231.38136




0.0000000
0.0297101
13317.42046




0.0000001
0.0876812
13400.71809




0.0005330
0.2181159
13464.97455




0.0028915
0.2471014
13586.74139




0.0001228
0.2036232
13711.01396




0.0001141
0.2181159
13796.51085




0.0373659
0.3485507
14550.43665




0.0216133
0.3340580
14599.05541




0.0139476
0.3050725
15028.22953




0.0048394
0.7297101
15772.51523




0.0040870
0.7391304
15807.50552




0.0051168
0.7152174
15961.34377




0.0022821
0.7297101
16106.21548




0.0000003
0.1021739
33558.37315




0.0006502
0.7876812
39529.93455




0.0019049
0.7246377
39888.64853




0.0285663
0.6717391
40571.4705




0.0021494
0.3050725
41956.29129




0.0146603
0.3195652
43536.29481




0.0000093
0.1456522
44526.33609




0.0000009
0.1311594
45322.88979




0.0015858
0.2615942
46419.54842




0.0079070
0.2855072
47393.37799




0.0057151
0.7152174
51260.79681




0.0060373
0.7152174
51799.54682




0.0272885
0.3340580
57741.52729




0.0000179
0.1746377
58960.28998




0.0000056
0.1456522
59524.3758




0.0002033
0.2181159
60636.58339




0.0002888
0.2181159
66625.27095




0.0113934
0.6956522
75206.21809




0.0000006
0.1166667
100624.8699




0.0000011
0.1311594
117726.354




0.0000003
0.1166667
133676.0475




0.0097596
0.2905797
149351.6364

















TABLE 20







Biomarkers identified by SELDI technology with a p-value smaller


or equal to 0.05 that can discriminate primary DF from primary


DHF infection. Grouped according to fraction it was detected in.


Prognostic










DHF1_DHF2 vs DF1_DF2












p value
roc
m/z averaqe
















F1CSL
0.0038311
0.2436975
4990.19603




0.0014459
0.1904762
4020.472527




0.0211895
0.2829132
6138.119764




0.0031730
0.2436975
5266.529592




0.0413134
0.6890756
3431.457425




0.0443241
0.3081232
5183.584315




0.0413134
0.3081232
2752.206092




0.0142310
0.7282913
9107.540827




0.0007753
0.1904762
38593.25709




0.0266561
0.3025210
2683.722459




0.0211895
0.3025210
3224.576562




0.0072261
0.2633053
37462.00218




0.0167265
0.2689076
35401.0858




0.0384778
0.7086835
3448.844444




0.0102048
0.7478992
3685.41489




0.0111026
0.7282913
10287.01359




0.0131111
0.2829132
2902.12753




0.0004510
0.8263305
10092.33514



F1CSH
0.0039547
0.2425595
10527.69159




0.0344018
0.3050595
10802.97632




0.0017659
0.2008929
11324.62766




0.0399741
0.3258929
11350.40235




0.0024050
0.2217262
11451.56989




0.0043569
0.2500000
11498.19671




0.0014310
0.1800595
11528.91453




0.0462940
0.3258929
12013.23362




0.0214895
0.7351190
14022.97966




0.0295071
0.6726190
14346.75421




0.0252238
0.7142857
15094.27149




0.0232917
0.7008929
40033.21376




0.0430361
0.3467262
74862.91741




0.0232917
0.7008929
79154.5458




0.0318740
0.6875000
89630.65823




0.0318740
0.2916667
125373.7131




0.0252238
0.2842262
149368.5056



F1ISL
0.03038282
0.68055556
4432.616925




0.01657493
0.73888889
4449.125935




0.00937477
0.26111111
4994.293858




0.01937332
0.28055556
5272.160739




0.04040412
0.31944444
6455.01391




0.03038282
0.3
7167.316325




0.01657493
0.28472222
35469.71663



F1ISH
0.0292725
0.2583333
10129.14503




0.0114023
0.2583333
10147.96592




0.0114023
0.2500000
10777.41795




0.0030935
0.1833333
10832.80337




0.0141957
0.2333333
10965.73793




0.0158068
0.2333333
11025.00949




0.0216432
0.2833333
11057.71207




0.0018457
0.8000000
12135.8102




0.0064351
0.7750000
12231.72039




0.0001164
0.9000000
12534.59195




0.0030935
0.8250000
12582.46907




0.0355579
0.7250000
13927.30735




0.0039711
0.2083333
23104.0813




0.0391105
0.2833333
23638.655




0.0391105
0.7083333
79113.00591



F5CSL
0.0379534
0.3176329
2714.357253




0.0116705
0.7342995
5165.803217




0.0013507
0.7729469
8726.282926




0.0009327
0.7729469
8846.247547




0.0073716
0.7342995
9192.684623




0.0100387
0.7342995
9320.83479




0.0116705
0.7149758
9468.993468




0.0156545
0.7536232
9679.241772




0.0238679
0.7149758
15227.01519




0.0062929
0.7536232
28203.24796




0.0049399
0.7342995
28984.77362




0.0049399
0.2596618
41655.94365




0.0333455
0.3176329
43694.32147



F5CSH
0.0198099
0.6934524
10913.89329




0.0017659
0.7976190
14029.40621




0.0370989
0.6592262
14521.99131




0.0063629
0.7633929
14996.39253




0.0076496
0.7767857
15572.71556




0.0091649
0.7559524
15774.3005




0.0344018
0.7142857
17665.44985




0.0009298
0.8184524
28370.51303




0.0014310
0.8184524
29222.15188




0.0119414
0.2633929
53767.53507




0.0462940
0.6800595
84062.87518



F5ISH
0.04465415
0.65277778
10194.75241




0.03714679
0.6712963
10255.15564




0.04202078
0.68981481
10265.10592




0.03489597
0.68981481
10275.98212




0.03489597
0.68981481
10389.26482




0.0157542
0.72685185
10413.75186




0.0180921
0.72685185
10416.27302




0.04742539
0.6712963
10419.51807




0.030742
0.32638889
11124.07478




0.02369357
0.27083333
11796.34403




0.0180921
0.27777778
11926.05207




0.030742
0.31481481
12771.26536




0.003468
0.25925926
13423.48434




0.02701997
0.31481481
13888.42124




0.02369357
0.31481481
45360.95214




0.030742
0.2962963
47280.55103



F6CSL
0.0046335
0.81089744
4178.147403




0.00308916
0.25801282
4966.887753




0.04503826
0.30288462
6005.550627




0.04503826
0.34775641
6368.819184




0.03864703
0.30288462
6405.544153




0.0219851
0.28044872
6730.940725




0.0259475
0.28044872
6777.027523




0.03304353
0.30288462
6814.090876




0.00996754
0.22115385
6852.503653




0.00827638
0.25801282
6868.685109




0.04503826
0.32532051
6892.31088




0.03864703
0.28044872
6962.971613




0.04503826
0.32532051
7002.421072




0.04855452
0.32532051
7049.864742




0.04855452
0.32532051
7065.348357




0.01561114
0.30288462
7089.314476




0.01561114
0.75160256
7636.624747




0.02020929
0.72115385
7661.987216




0.03051287
0.70673077
8296.864065




0.00753117
0.72916667
15184.98539




0.00996754
0.72916667
15365.82604




0.02815052
0.28846154
23566.3546



F6CSH
0.0054498
0.2613636
10031.5232




0.0054498
0.2414773
10128.78825




0.0141298
0.2812500
10197.87061




0.0071351
0.2613636
10244.13547




0.0015587
0.2017045
10283.30231




0.0413476
0.3210227
10327.90565




0.0130094
0.3011364
10461.31639




0.0110017
0.2613636
10503.04585




0.0332771
0.2897727
10769.30644




0.0009285
0.1676136
10851.39035




0.0049737
0.2414773
10909.85409




0.0025639
0.2073864
11049.12454




0.0031109
0.2073864
11147.59114




0.0265943
0.3011364
11185.14578




0.0228130
0.2812500
11246.64624




0.0153345
0.2954545
11750.95799




0.0332771
0.3352273
11832.56962




0.0476029
0.3551136
11908.94273




0.0246409
0.2954545
11993.02686




0.0476029
0.3409091
12057.41098




0.0153345
0.2414773
12176.73044




0.0059668
0.7528409
13612.48842




0.0211040
0.7471591
13846.52517




0.0413476
0.6875000
14825.26488




0.0023248
0.7869318
15055.63774




0.0025639
0.7528409
15411.25871




0.0054498
0.7727273
15613.40893




0.0085049
0.7528409
15812.1091




0.0005418
0.1875000
23169.52525




0.0211040
0.3011364
23418.55947




0.0246409
0.3068182
23683.93102




0.0332771
0.3153409
43596.91071




0.0358029
0.3068182
51329.3608




0.0085049
0.2272727
53487.79549




0.0045355
0.2414773
57685.14725




0.0010315
0.2073864
58847.42102




0.0014076
0.2073864
59365.11459




0.0007504
0.1676136
60097.13372




0.0021063
0.2073864
61383.37478




0.0130094
0.2812500
91892.51895




0.0008350
0.1875000
117244.8486



F6ISL
0.0280624
0.3051471
2592.104434




0.0198735
0.2855392
2649.485504




0.0128643
0.2745098
2995.703282




0.0342578
0.3137255
3030.319866




0.0280624
0.2745098
3056.069215




0.0390083
0.2745098
4019.571278




0.0006409
0.8149510
7625.50723




0.0280624
0.7058824
15922.78821




0.0198735
0.7169118
16108.41436



F6ISH
0.0029637
0.2318841
14550.43665




0.0137479
0.2724638
14599.05541




0.0149363
0.7130435
15772.51523




0.0149363
0.7333333
15807.50552




0.0162143
0.7130435
15961.34377




0.0327382
0.6927536
16106.21548




0.0010750
0.1710145
23411.55




0.0006275
0.1768116
23915.54212




0.0106684
0.2782609
33558.37315




0.0116189
0.2782609
51260.79681




0.0260898
0.2724638
51799.54682




0.0106684
0.2376812
52580.37193




0.0470378
0.2927536
57741.52729




0.0002258
0.1768116
58960.28998




0.0000238
0.1159420
59524.3758




0.0001100
0.1565217
60636.58339




0.0190614
0.2724638
66625.27095




0.0149363
0.2579710
79541.53333




0.0019953
0.1768116
117726.354

















TABLE 21







Most significant biomarkers identified by SELDI and BPS that can discriminate


between secondary DF and secondary DHF infection at different stages of the


disease. Grouped according to fraction it was found in.


Secondary Infection


p-value top 15% or < or = 0.05 AND


ROC value < or = 0.25 or > or = 0.75












2DHF1 vs
2DHF2 vs
2DHF3 vs




2DF1
2DF2
2DF3
m/z
















Index
p value
roc
p value
roc
p value
roc
average



















F1CSL
5
0.00671
0.23469
0.00113
0.18000
0.59628
0.55385
5268.88284



6
0.03867
0.26531
0.27169
0.36667
0.36904
0.57949
5513.34534



7
0.01310
0.21429
0.00953
0.23333
0.42016
0.60000
5559.47729



10
0.01688
0.23980
0.16468
0.36667
0.94491
0.47692
5675.03009



11
0.01688
0.23469
0.07118
0.34000
0.69539
0.57949
5688.54253



16
0.52005
0.56633
0.03620
0.68667
0.06882
0.68205
6887.48718



22
0.31209
0.38776
0.91741
0.52667
0.02000
0.75385
7434.41892



23
0.11824
0.64286
0.22110
0.63333
0.00461
0.17436
9314.81895



25
0.38266
0.61224
0.54755
0.55333
0.00344
0.20000
9526.36673



26
0.31209
0.63776
0.75574
0.55333
0.00532
0.20000
9550.87281



32
0.64589
0.46429
0.04006
0.28667
0.56474
0.43077
55807.6598


F1CSH
10
0.38266
0.40816
0.10134
0.31333
0.00397
0.19762
13462.0865



15
0.31209
0.38776
0.01074
0.23333
0.51269
0.43333
63122.4241


F1ISL
1
0.17765
0.66000
0.91741
0.50000
0.04881
0.74000
2565.21994



2
0.00844
0.23333
0.69355
0.58000
0.52028
0.60667
2614.7931



3
0.81955
0.55333
0.57551
0.58000
0.06493
0.71333
2656.55417



4
0.20584
0.63333
0.01708
0.74000
0.49373
0.44667
2842.30118



12
0.25402
0.60667
0.01910
0.71333
0.32969
0.39333
3485.24531



19
0.02379
0.76667
0.06493
0.71333
0.14089
0.36667
9298.45491



22
0.01209
0.76667
0.78746
0.47333
0.75574
0.47333
44956.201


F1ISH
1
0.10930
0.65385
0.27014
0.61735
0.79999
0.47692
10323.6689



2
0.03275
0.74451
0.35812
0.61224
0.11200
0.68205
10911.3918



3
1.00000
0.52473
0.04818
0.71429
0.53402
0.55385
10967.399



5
0.92268
0.50549
0.02742
0.71429
0.24013
0.63077
11308.5233



6
0.26438
0.38736
0.00671
0.81122
0.79999
0.48205
11468.1974



9
0.80829
0.55220
0.29060
0.63776
0.00461
0.83077
13486.9672



13
0.33179
0.59890
0.33459
0.61224
0.27901
0.58462
39896.2782



15
0.05225
0.70879
0.29060
0.61224
0.53402
0.58462
43960.757



14
0.01985
0.76374
0.35812
0.59184
0.79999
0.53333
42259.3628



16
0.04664
0.70879
0.49069
0.56122
0.94491
0.53333
44577.8155



21
0.92268
0.49725
0.01688
0.73980
0.39410
0.58462
88302.0484



24
0.46668
0.57143
0.49069
0.56122
0.56474
0.54872
111262.512


F5CSL
1
0.78279
0.51531
0.57551
0.52667
0.09870
0.68182
5077.61334



2
0.81830
0.46429
0.02944
0.68667
0.31064
0.40210
6658.89951



4
0.52005
0.44388
0.00953
0.74000
0.33910
0.37413
6688.97411



5
0.64589
0.43878
0.17765
0.63333
0.02981
0.76573
6826.12668



9
0.71319
0.54082
0.22110
0.63333
0.01380
0.20629
8845.3908



10
0.43474
0.61224
0.06493
0.66000
0.01380
0.17832
8964.59038



11
0.46224
0.58673
0.07793
0.71333
0.00839
0.17832
8982.52189



13
0.55029
0.56122
0.17765
0.66000
0.00496
0.17832
9316.3678



14
0.71319
0.56122
0.37251
0.58000
0.00706
0.20629
9469.87316



17
0.06608
0.70918
0.07793
0.71333
0.66391
0.43007
11760.7821



21
0.00380
0.81122
0.88457
0.44667
0.66391
0.45804
25640.9662



24
0.25068
0.60714
0.30953
0.58000
0.02981
0.23427
53647.346



25
0.64589
0.53571
0.88457
0.52667
0.05227
0.26224
67060.0819



26
0.96335
0.46429
0.11029
0.66000
0.00285
0.15035
75331.1654


F5CSH
4
0.16586
0.63889
0.52815
0.52473
0.00526
0.82231
12378.5059



6
0.03266
0.75000
0.22507
0.59890
0.62237
0.53306
12606.1744


F6CSL
1
0.51269
0.58810
0.04024
0.31429
0.96519
0.49524
4198.06271



2
0.11614
0.33333
0.07355
0.29048
0.79343
0.49524
5162.57462



3
0.03247
0.70714
0.51269
0.41190
0.31547
0.61190
6952.81298



4
0.04469
0.72857
0.07355
0.66905
0.51269
0.56429
11719.8723



5
0.01638
0.75238
0.60047
0.55238
0.04469
0.70476
11917.5926



6
0.04469
0.73095
0.07355
0.71667
0.08874
0.66190
12913.932



7
0.13784
0.63810
0.03618
0.71429
0.22170
0.61190
46601.9329



8
0.31547
0.61190
0.45812
0.57619
0.79343
0.47143
54417.1306


F6CSH
2
0.82726
0.51905
0.80829
0.51648
0.23865
0.37857
11783.4664



4
0.02324
0.72857
0.14545
0.66209
0.69447
0.44524
12436.087



5
0.03618
0.72857
0.10930
0.63462
0.96519
0.47143
12569.9265



8
0.03618
0.28571
0.12046
0.28571
0.75998
0.56429
32267.4992



10
0.31547
0.63571
0.26438
0.66209
0.57047
0.42857
39867.5323



12
0.79343
0.54524
0.01985
0.76374
0.17607
0.61429
46697.2707



14
0.00048
0.11905
0.88425
0.46978
0.93044
0.49524
150108.44


F6ISH
3
0.00040
0.86224
0.00394
0.79333
0.72442
0.47333
13533.1707



4
0.00282
0.81122
0.17765
0.66000
0.54755
0.55333
13816.9437



13
0.00770
0.21429
0.98345
0.52667
0.60413
0.47333
49749.6447





*No data for fractions F5ISL, F5ISH and F6ISL













TABLE 22







Biomarkers detected by SELDI technology with a p-value smaller or equal to 0.05 that can


discriminate secondary DENV infection from OFI. Grouped according to fraction it was found in.












Ct1_2 vs 2DF1_2

Ct1_2 vs 2DHF1_2
















p-value
roc value
m/z average

p-value
roc value
m/z average


















F1CSL
0.0000000
0.0151515
2625.181487
F1CSL
0.0000000
0.0454545
2625.181487



0.0000000
0.0303030
2667.845783

0.0000000
0.0454545
2667.845783



0.0000000
0.0151515
2741.725854

0.0000000
0.0303030
2741.725854



0.0000000
0.0606061
2856.727191

0.0000001
0.0757576
2856.727191



0.0000000
0.0151515
2872.154934

0.0000000
0.0303030
2872.154934



0.0001261
0.1969697
2897.527715

0.0001169
0.1969697
2897.527715



0.0000000
0.0454545
2921.681011

0.0000004
0.0909091
2921.681011



0.0000334
0.1666667
2938.078868

0.0000461
0.1818182
2938.078868



0.0000000
0.0454545
2990.831829

0.0000000
0.0303030
2990.831829



0.0000000
0.0303030
3043.041845

0.0000002
0.0757576
3043.041845



0.0000001
0.0606061
3071.048466

0.0000008
0.1303030
3071.048466



0.0000000
0.0303030
3145.264181

0.0000004
0.1060606
3145.264181



0.0000000
0.0151515
3175.340726

0.0000000
0.0757576
3175.340726



0.0000000
0.0303030
3209.081505

0.0000000
0.0757576
3209.081505



0.0000000
0.0151515
3262.112346

0.0000000
0.0606061
3262.112346



0.0000000
0.0000000
3280.760876

0.0000000
0.0151515
3280.760876



0.0000000
0.0606061
3307.659966

0.0000001
0.0757576
3307.659966



0.0000000
0.0303030
3358.521584

0.0000052
0.1303030
3358.521584



0.0000005
0.0848485
3420.037403

0.0002280
0.1848485
3420.037403



0.0000000
0.0151515
3437.42944

0.0000009
0.1363636
3437.42944



0.0000001
0.0757576
3511.538012

0.0000012
0.1212121
3511.538012



0.0000000
0.0151515
3589.060244

0.0000000
0.0454545
3589.060244



0.0000001
0.0757576
3631.061336

0.0001084
0.2000000
3631.061336



0.0000000
0.0151515
3680.115892

0.0000000
0.0303030
3680.115892



0.0001970
0.1969697
3799.639473

0.0250180
0.2969697
3799.639473



0.0000000
0.0151515
3814.303638

0.0000000
0.0757576
3814.303638



0.0000003
0.0909091
3863.107595

0.0018605
0.2363636
3863.107595



0.0000040
0.1363636
3884.602302

0.0000461
0.1606061
3884.602302



0.0064753
0.2818182
3923.916704

0.0000008
0.1060606
3949.327603



0.0000000
0.0606061
3949.327603

0.0000023
0.1363636
3965.762902



0.0000001
0.0606061
3965.762902

0.0000000
0.0303030
4063.241745



0.0000000
0.0151515
4063.241745

0.0051615
0.2757576
4103.551305



0.0000683
0.1848485
4103.551305

0.0117705
0.2818182
4128.656395



0.0001169
0.2060606
4128.656395

0.0003042
0.2272727
4143.916106



0.0000052
0.1363636
4143.916106

0.0000001
0.0757576
4182.768879



0.0000000
0.0454545
4182.768879

0.0000016
0.1212121
4279.033423



0.0000000
0.0454545
4279.033423

0.0000003
0.0909091
4299.724384



0.0000000
0.0606061
4299.724384

0.0001578
0.1818182
4468.900331



0.0454632
0.3515152
4450.645147

0.0250180
0.3272727
4492.301874



0.0000114
0.1666667
4468.900331

0.0000009
0.1060606
4524.063737



0.0007491
0.2515152
4492.301874

0.0000062
0.8666667
4573.192933



0.0000000
0.0303030
4524.063737

0.0000019
0.8818182
4588.379469



0.0001084
0.8060606
4573.192933

0.0117705
0.3121212
4646.271132



0.0000334
0.8363636
4588.379469

0.0003266
0.7909091
4972.46769



0.0017471
0.2363636
4646.271132

0.0000008
0.8969697
4985.052133



0.0160481
0.7000000
4972.46769

0.0000062
0.8666667
4995.082985



0.0001700
0.8212121
4985.052133

0.0000930
0.8060606
5487.254589



0.0007491
0.7606061
4995.082985

0.0000000
0.9727273
5559.119903



0.0006544
0.7606061
5487.254589

0.0000000
0.9727273
5574.710692



0.0000000
0.9575758
5559.119903

0.0000003
0.8969697
5590.063516



0.0000000
0.9424242
5574.710692

0.0000000
0.9878788
5675.016336



0.0000048
0.8727273
5590.063516

0.0000000
0.9878788
5689.765089



0.0000000
0.9727273
5675.016336

0.0474992
0.6454545
5767.809439



0.0000000
0.9727273
5689.765089

0.0001700
0.8030303
5912.163434



0.0000584
0.8181818
5912.163434

0.0004642
0.7606061
5996.460394



0.0000135
0.8424242
5996.460394

0.0057849
0.7303030
6013.779325



0.0025358
0.7151515
6013.779325

0.0000030
0.8666667
6127.503716



0.0000004
0.8969697
6127.503716

0.0000000
0.9424242
6143.838117



0.0000000
0.9575758
6143.838117

0.0038600
0.7454545
6454.996063



0.0000088
0.8363636
6454.996063

0.0000028
0.8666667
6487.509564



0.0000000
0.9424242
6487.509564

0.0000004
0.9121212
6591.475901



0.0000000
0.9575758
6591.475901

0.0454632
0.6454545
6642.439305



0.0005710
0.7606061
6642.439305

0.0117705
0.6848485
6652.107044



0.0000204
0.8212121
6652.107044

0.0000241
0.8363636
6683.82645



0.0000002
0.8969697
6683.82645

0.0000930
0.8060606
6805.698908



0.0000002
0.9121212
6805.698908

0.0007003
0.7757576
6860.453871



0.0000011
0.8969697
6860.453871

0.0000000
0.9575758
6944.325104



0.0000000
0.9878788
6944.325104

0.0002831
0.7757576
7160.085957



0.0000683
0.8212121
7160.085957

0.0001084
0.8060606
7331.96616



0.0000096
0.8363636
7331.96616

0.0111656
0.7151515
7350.027102



0.0160481
0.7000000
7350.027102

0.0000135
0.8515152
7415.948421



0.0000114
0.8666667
7415.948421

0.0011899
0.7454545
7589.702883



0.0006544
0.7757576
7589.702883

0.0380394
0.6606061
7661.734977



0.0000006
0.1212121
8150.546744

0.0000007
0.1060606
8150.546744



0.0036386
0.2727273
8314.622635

0.0137632
0.3121212
8314.622635



0.0000135
0.1666667
8356.79503

0.0000683
0.1969697
8356.79503



0.0000005
0.1060606
8459.519265

0.0000036
0.1363636
8459.519265



0.0004330
0.2121212
8625.552866

0.0168806
0.2969697
8625.552866



0.0015391
0.2363636
8954.752999

0.0013541
0.2363636
8954.752999



0.0022425
0.2454545
9170.910437

0.0015391
0.2303030
9170.910437



0.0000004
0.9121212
10101.46975

0.0000146
0.8515152
10101.46975



0.0012696
0.7666667
10289.18681

0.0022425
0.7363636
10289.18681



0.0000135
0.8363636
11135.15931

0.0000425
0.8060606
11135.15931



0.0000159
0.8515152
11491.70855

0.0000540
0.8060606
11491.70855



0.0000284
0.8363636
11677.83181

0.0004037
0.7969697
11677.83181



0.0000008
0.8818182
11743.17361

0.0000044
0.8666667
11743.17361



0.0000002
0.9272727
11902.07203

0.0000001
0.9272727
11902.07203



0.0000006
0.9121212
12083.60453

0.0000001
0.9121212
12083.60453



0.0000632
0.8363636
12590.76335

0.0032301
0.7303030
12590.76335



0.0028638
0.7606061
12896.80544

0.0009152
0.7606061
13115.34777



0.0000021
0.8818182
13115.34777

0.0000000
0.9727273
13375.41938



0.0000000
0.9727273
13375.41938

0.0000003
0.9272727
14757.7248



0.0000096
0.8666667
14757.7248

0.0000006
0.9121212
15198.38517



0.0000002
0.9272727
15198.38517

0.0000334
0.8060606
15906.99196



0.0000146
0.8515152
15906.99196

0.0006114
0.7757576
16080.83999



0.0001578
0.7909091
16080.83999

0.0000000
0.9424242
22937.26034



0.0000000
0.9424242
22937.26034

0.0000000
0.9424242
23544.76704



0.0000000
0.9575758
23544.76704

0.0000011
0.8969697
25497.91473



0.0000013
0.8818182
25497.91473

0.0000461
0.1606061
35405.0346



0.0000104
0.1454545
35405.0346

0.0000081
0.8666667
37705.72097



0.0000284
0.8212121
37705.72097

0.0000001
0.9121212
44810.68881



0.0000000
0.9575758
44810.68881

0.0000003
0.9121212
45184.10294



0.0000000
0.9575758
45184.10294

0.0000006
0.8969697
45616.26741



0.0000000
0.9575758
45616.26741

0.0000001
0.9272727
46357.92645



0.0000000
0.9575758
46357.92645
F1CSH
0.0005411
0.7533333
10025.87122


F1CSH
0.0194944
0.6866667
10025.87122

0.0000004
0.8866667
10130.28134



0.0000061
0.8333333
10130.28134

0.0000002
0.8866667
10149.11798



0.0000037
0.8466667
10149.11798

0.0000006
0.8866667
10171.11128



0.0000113
0.8066667
10171.11128

0.0000057
0.8466667
10196.44234



0.0000743
0.7933333
10196.44234

0.0000070
0.8466667
10215.38716



0.0001286
0.7933333
10215.38716

0.0000022
0.8600000
10224.52891



0.0000286
0.8200000
10224.52891

0.0000003
0.8733333
10241.85866



0.0000046
0.8333333
10241.85866

0.0000001
0.8733333
10297.3244



0.0000019
0.8466667
10297.3244

0.0000002
0.8866667
10351.51024



0.0000011
0.8466667
10351.51024

0.0000001
0.8733333
10369.2482



0.0000009
0.8600000
10369.2482

0.0000001
0.9000000
10413.34138



0.0000019
0.8466667
10413.34138

0.0000001
0.8866667
10444.68912



0.0000040
0.8466667
10444.68912

0.0000001
0.9000000
10461.79685



0.0000026
0.8466667
10461.79685

0.0000002
0.8733333
10481.71491



0.0000037
0.8333333
10481.71491

0.0000001
0.9000000
10490.47668



0.0000005
0.8466667
10490.47668

0.0000001
0.9000000
10496.60495



0.0000018
0.8600000
10496.60495

0.0000001
0.8866667
10507.40716



0.0000007
0.8600000
10507.40716

0.0000001
0.9000000
10514.61735



0.0000008
0.8600000
10514.61735

0.0000004
0.1133333
10755.48072



0.0000001
0.1266667
10755.48072

0.0000017
0.1533333
10783.37546



0.0000005
0.1533333
10783.37546

0.0000006
0.1266667
10808.95097



0.0000000
0.1000000
10808.95097

0.0000001
0.1133333
10835.54836



0.0000000
0.0733333
10835.54836

0.0000000
0.0733333
10882.15141



0.0000000
0.0466667
10882.15141

0.0000000
0.0466667
10908.0378



0.0000000
0.0333333
10908.0378

0.0000000
0.0333333
10926.28045



0.0000000
0.0200000
10926.28045

0.0000000
0.0200000
10951.30804



0.0000000
0.0200000
10951.30804

0.0000000
0.0866667
11040.90474



0.0000000
0.0333333
11040.90474

0.0000000
0.0466667
11078.55501



0.0000000
0.0333333
11078.55501

0.0000000
0.0600000
11154.55919



0.0000000
0.0466667
11154.55919

0.0000000
0.0733333
11197.83206



0.0000000
0.0466667
11197.83206

0.0129995
0.6733333
11324.57488



0.0357827
0.6866667
11383.78669

0.0059613
0.7000000
11383.78669



0.0000698
0.8066667
11420.34027

0.0001365
0.7800000
11420.34027



0.0006373
0.7400000
11450.04285

0.0003465
0.7400000
11450.04285



0.0371053
0.3400000
11526.18986

0.0153233
0.3133333
11679.13472



0.0071288
0.3000000
11679.13472

0.0000326
0.2066667
11725.21956



0.0000049
0.1800000
11725.21956

0.0000138
0.1933333
11790.8581



0.0000043
0.1533333
11790.8581

0.0000024
0.1533333
11823.52687



0.0000021
0.1400000
11823.52687

0.0000002
0.1133333
11853.93279



0.0000001
0.1000000
11853.93279

0.0000000
0.0200000
12009.62084



0.0000000
0.0333333
12009.62084

0.0000000
0.0333333
12080.71023



0.0000000
0.0200000
12080.71023

0.0000000
0.0466667
12112.68049



0.0000000
0.0200000
12112.68049

0.0000000
0.0600000
12132.64107



0.0000000
0.0466667
12132.64107

0.0000000
0.0866667
12163.0594



0.0000000
0.0466667
12163.0594

0.0000000
0.0600000
12268.93847



0.0000000
0.0466667
12268.93847

0.0000000
0.0333333
12358.50727



0.0000000
0.0333333
12358.50727

0.0000000
0.0466667
12493.48295



0.0000000
0.0466667
12493.48295

0.0000003
0.1266667
12562.71997



0.0000001
0.1133333
12562.71997

0.0074511
0.6866667
12954.81113



0.0088747
0.6866667
12954.81113

0.0345005
0.6733333
13063.59409



0.0014059
0.7266667
13086.15535

0.0005411
0.7666667
13086.15535



0.0018115
0.2866667
13289.07095

0.0059613
0.3000000
13289.07095



0.0001449
0.2333333
13468.91732

0.0020019
0.2600000
13468.91732



0.0000001
0.1000000
13655.28043

0.0000002
0.1133333
13655.28043



0.0194944
0.3400000
13733.51807

0.0047454
0.2733333
13733.51807



0.0000000
0.0866667
13839.31124

0.0000000
0.0733333
13839.31124



0.0000000
0.0466667
13930.38141

0.0000000
0.0200000
13930.38141



0.0000003
0.1266667
14140.38344

0.0000000
0.0866667
14140.38344



0.0000286
0.7933333
14449.85539

0.0000113
0.8200000
14449.85539



0.0049689
0.7000000
14639.78045

0.0056977
0.7000000
14639.78045



0.0475786
0.6466667
14934.23152

0.0219295
0.6600000
14934.23152



0.0000000
0.0866667
15200.55252

0.0000000
0.0866667
15200.55252



0.0001009
0.1933333
15603.49216

0.0014059
0.2733333
15603.49216



0.0000046
0.8333333
16111.96967

0.0000840
0.8066667
16111.96967



0.0000268
0.8200000
16791.53773

0.0028223
0.7266667
16791.53773



0.0000268
0.8066667
16986.38906

0.0035851
0.7133333
16986.38906



0.0022106
0.2866667
18269.77418

0.0001286
0.2200000
18269.77418



0.0428195
0.6466667
23397.5494

0.0021039
0.7400000
23397.5494



0.0002459
0.2200000
28456.83502

0.0159586
0.3266667
28456.83502



0.0002759
0.2333333
29189.74355

0.0088747
0.3133333
33656.05696



0.0371053
0.3666667
33656.05696

0.0000510
0.2066667
34696.86044



0.0000021
0.1533333
34696.86044

0.0000479
0.2200000
35998.90348



0.0000061
0.1800000
35998.90348

0.0013356
0.2466667
50105.04286



0.0018115
0.7133333
38857.74158

0.0000007
0.1400000
51139.33489



0.0023222
0.7000000
39959.10698

0.0000008
0.1666667
53826.57027



0.0000024
0.8333333
44257.94633

0.0005715
0.2466667
57323.39913



0.0000790
0.7933333
44763.72492

0.0000098
0.1666667
62969.82218



0.0000698
0.1933333
50105.04286

0.0000950
0.1933333
63794.78358



0.0000001
0.1000000
51139.33489

0.0026888
0.3133333
68276.74582



0.0000001
0.1000000
53826.57027

0.0012685
0.2600000
68908.94541



0.0021039
0.2866667
57323.39913

0.0071288
0.3133333
74844.60315



0.0000000
0.0866667
62969.82218

0.0000004
0.1133333
100409.516



0.0000011
0.1400000
63794.78358

0.0000004
0.1266667
101137.8334



0.0297570
0.3533333
68276.74582

0.0000005
0.1266667
102198.3507



0.0014796
0.2733333
68908.94541

0.0000000
0.0866667
107068.7099



0.0000543
0.2333333
74844.60315

0.0000001
0.1000000
113333.4714



0.0000001
0.1133333
100409.516

0.0009273
0.2866667
118685.9279



0.0000001
0.1133333
101137.8334

0.0000235
0.2200000
125659.3312



0.0000001
0.1000000
102198.3507

0.0332578
0.3533333
149568.5425



0.0000000
0.0866667
107068.7099

0.0001365
0.2200000
166914.0871



0.0000002
0.1133333
113333.4714

0.0000053
0.1666667
174369.2245



0.0003093
0.2466667
118685.9279

0.0000000
0.0200000
192541.7062



0.0000129
0.1933333
125659.3312
F1ISL
0.0000000
0.9690476
2503.154582



0.0003465
0.2600000
149568.5425

0.0000000
0.9559524
2513.073032



0.0006036
0.2600000
166914.0871

0.0000001
0.9035714
2517.656451



0.0000011
0.1533333
174369.2245

0.0002404
0.7857143
2521.649116



0.0000000
0.0733333
192541.7062

0.0000001
0.9035714
2522.859861


F1ISL
0.0000000
0.9821429
2503.154582

0.0000000
0.9297619
2523.669165



0.0000000
0.9297619
2513.073032

0.0000000
0.9428571
2524.520651



0.0000000
0.9166667
2517.656451

0.0000012
0.8511905
2525.251223



0.0000000
0.9166667
2521.649116

0.0000006
0.8904762
2526.594055



0.0000002
0.9035714
2522.859861

0.0000940
0.8250000
2527.751996



0.0000051
0.8511905
2523.669165

0.0004370
0.7857143
2534.62918



0.0000030
0.8511905
2524.520651

0.0003250
0.7595238
2540.500802



0.0000092
0.8380952
2525.251223

0.0000000
0.9166667
2549.242272



0.0000048
0.8511905
2526.594055

0.0000048
0.8380952
2556.57727



0.0000152
0.8119048
2527.751996

0.0000000
0.9297619
2565.111611



0.0071030
0.7333333
2530.612478

0.0000000
0.9166667
2570.087202



0.0000016
0.8380952
2534.62918

0.0000003
0.9035714
2578.662526



0.0000163
0.8119048
2540.500802

0.0000007
0.8773810
2590.690565



0.0000086
0.8380952
2549.242272

0.0000000
0.9297619
2595.854473



0.0000304
0.7988095
2556.57727

0.0000001
0.9035714
2601.511801



0.0000000
0.9559524
2565.111611

0.0010261
0.7726190
2603.929365



0.0000000
0.9166667
2570.087202

0.0000265
0.8119048
2605.06365



0.0000086
0.8380952
2578.662526

0.0000009
0.8642857
2608.030336



0.0000002
0.8904762
2590.690565

0.0000881
0.7988095
2611.242105



0.0000000
0.9297619
2595.854473

0.0000000
0.9690476
2614.032211



0.0000000
0.9166667
2601.511801

0.0000000
0.9428571
2617.583867



0.0044053
0.7202381
2603.929365

0.0000000
0.9166667
2621.696749



0.0212810
0.6678571
2608.030336

0.0000123
0.8380952
2629.00519



0.0001138
0.8119048
2611.242105

0.0000000
0.9166667
2631.998607



0.0000001
0.9035714
2614.032211

0.0000000
0.9297619
2634.20847



0.0000000
0.9428571
2617.583867

0.0000000
0.9559524
2635.700585



0.0000003
0.8904762
2621.696749

0.0000000
0.9559524
2637.169955



0.0002883
0.7857143
2629.00519

0.0000000
0.9559524
2637.618569



0.0021736
0.7202381
2631.998607

0.0000000
0.9428571
2638.060903



0.0000021
0.8380952
2634.20847

0.0000000
0.9559524
2638.54484



0.0000001
0.9035714
2635.700585

0.0000000
0.9690476
2639.173428



0.0000000
0.9690476
2637.169955

0.0000000
0.9821429
2639.795493



0.0000000
0.9559524
2637.618569

0.0000000
0.9821429
2640.467576



0.0000000
0.9559524
2638.060903

0.0000000
0.9821429
2641.164374



0.0000000
0.9559524
2638.54484

0.0000000
0.9821429
2641.926515



0.0000000
0.9559524
2639.173428

0.0000000
0.9821429
2642.885878



0.0000001
0.9035714
2639.795493

0.0000000
0.9297619
2643.949918



0.0000003
0.9035714
2640.467576

0.0000000
0.9428571
2646.227988



0.0000000
0.9428571
2641.164374

0.0000099
0.8380952
2648.600691



0.0000000
0.9821429
2641.926515

0.0000106
0.8250000
2657.390501



0.0000000
0.9821429
2642.885878

0.0000060
0.8380952
2658.351659



0.0000000
0.9559524
2643.949918

0.0000022
0.8642857
2658.967508



0.0000000
0.9428571
2646.227988

0.0000001
0.9035714
2659.814331



0.0002404
0.7595238
2648.600691

0.0000000
0.9297619
2661.194232



0.0000636
0.7988095
2657.390501

0.0000000
0.9559524
2661.84737



0.0000114
0.8380952
2658.351659

0.0000000
0.9428571
2662.858635



0.0000349
0.8250000
2658.967508

0.0000000
0.9166667
2666.570765



0.0000002
0.9035714
2659.814331

0.0000940
0.7988095
2674.971433



0.0000000
0.9297619
2661.194232

0.0000006
0.8773810
2677.075716



0.0000000
0.9559524
2661.84737

0.0000000
0.9297619
2679.146726



0.0000000
0.9821429
2662.858635

0.0000000
0.9821429
2681.308781



0.0000000
0.9166667
2666.570765

0.0000000
0.9428571
2684.692433



0.0000000
0.9166667
2674.971433

0.0000000
0.9428571
2686.45453



0.0000033
0.8511905
2677.075716

0.0000000
0.9559524
2704.270371



0.0000000
0.9297619
2679.146726

0.0000000
0.9428571
2709.71622



0.0000000
0.9821429
2681.308781

0.0001661
0.7857143
2722.447549



0.0000000
0.9821429
2684.692433

0.0000010
0.8773810
2724.372029



0.0000000
0.9821429
2686.45453

0.0000000
0.9166667
2726.112884



0.0000000
0.9821429
2704.270371

0.0000010
0.8642857
2727.211009



0.0000000
0.9821429
2709.71622

0.0000000
0.9559524
2738.579429



0.0031115
0.7202381
2721.081778

0.0000000
0.9821429
2749.363653



0.0000048
0.8511905
2722.447549

0.0000000
0.9428571
2752.680443



0.0000006
0.8642857
2724.372029

0.0000001
0.9035714
2753.648132



0.0000001
0.8904762
2726.112884

0.0000002
0.9035714
2753.857675



0.0000326
0.8250000
2727.211009

0.0000002
0.9035714
2753.946851



0.0000000
0.9166667
2738.579429

0.0000000
0.9559524
2755.192724



0.0000000
0.9428571
2749.363653

0.0017620
0.7428571
2767.933706



0.0000000
0.9821429
2752.680443

0.0001377
0.7642857
2770.080973



0.0000000
0.9821429
2753.648132

0.0000679
0.7988095
2771.748664



0.0000000
0.9821429
2753.857675

0.0000000
0.9166667
2772.763638



0.0000000
0.9821429
2753.946851

0.0000010
0.8904762
2775.410216



0.0000000
0.9690476
2755.192724

0.0000000
0.9690476
2788.581536



0.0048556
0.7166667
2767.933706

0.0000000
0.9690476
2791.185756



0.0000349
0.8166667
2770.080973

0.0000000
0.9559524
2796.034541



0.0000012
0.8642857
2771.748664

0.0000000
0.9559524
2803.236487



0.0000000
0.9297619
2772.763638

0.0000000
0.9690476
2811.436125



0.0000000
0.9428571
2775.410216

0.0000000
0.9559524
2817.188037



0.0000000
0.9690476
2788.581536

0.0000000
0.9821429
2819.017882



0.0000000
0.9297619
2791.185756

0.0000008
0.8904762
2820.608441



0.0000000
0.9428571
2796.034541

0.0000000
0.9297619
2824.989455



0.0000000
0.9297619
2803.236487

0.0005205
0.7690476
2840.429828



0.0000000
0.9821429
2811.436125

0.0000000
0.9821429
2859.505809



0.0000000
0.9428571
2817.188037

0.0000000
0.9821429
2866.751136



0.0000064
0.8642857
2819.017882

0.0000000
0.9297619
2879.703192



0.0000005
0.8773810
2820.608441

0.0000000
0.9821429
2883.890105



0.0000000
0.9428571
2824.989455

0.0000000
0.9428571
2887.453423



0.0000488
0.8166667
2840.429828

0.0000000
0.9166667
2894.062647



0.0000000
0.9559524
2859.505809

0.0000000
0.9297619
2904.031336



0.0000000
0.9690476
2866.751136

0.0000000
0.9428571
2906.91955



0.0000000
0.9821429
2879.703192

0.0000000
0.9428571
2908.899563



0.0000000
0.9821429
2883.890105

0.0000003
0.9035714
2910.510035



0.0000000
0.9821429
2887.453423

0.0000000
0.9428571
2911.83993



0.0000000
0.9559524
2894.062647

0.0000000
0.9297619
2915.763212



0.0000000
0.9428571
2904.031336

0.0000000
0.9166667
2927.060302



0.0000000
0.9690476
2906.91955

0.0000001
0.9035714
2930.543416



0.0000000
0.9428571
2908.899563

0.0000000
0.9821429
2933.649099



0.0000000
0.9690476
2910.510035

0.0000002
0.8904762
2938.720507



0.0000000
0.9690476
2911.83993

0.0000000
0.9690476
2948.917414



0.0000000
0.9166667
2915.763212

0.0000000
0.9297619
2951.608271



0.0000000
0.9297619
2927.060302

0.0000001
0.9083333
2953.403838



0.0000000
0.9559524
2930.543416

0.0000099
0.8297619
2956.963771



0.0000000
0.9690476
2933.649099

0.0000000
0.9035714
2976.912269



0.0000002
0.9035714
2938.720507

0.0000000
0.9559524
2993.494244



0.0000000
0.9428571
2948.917414

0.0000000
0.9559524
2997.743006



0.0000000
0.9297619
2951.608271

0.0000022
0.8511905
3000.298656



0.0000000
0.9476190
2953.403838

0.0000826
0.7988095
3001.47028



0.0000000
0.9214286
2956.963771

0.0002555
0.7857143
3002.078041



0.0000000
0.9428571
2976.912269

0.0001138
0.7988095
3004.640515



0.0000000
0.9559524
2993.494244

0.0000123
0.8250000
3015.428516



0.0000000
0.9428571
2997.743006

0.0000044
0.8380952
3020.653111



0.0000636
0.7988095
3000.298656

0.0330237
0.6547619
3026.595384



0.0000106
0.8380952
3001.47028

0.0006550
0.7380952
3035.982566



0.0000163
0.8119048
3002.078041

0.0025382
0.7202381
3039.961971



0.0053472
0.7071429
3004.640515

0.0000006
0.8642857
3042.639369



0.0000000
0.9297619
3015.428516

0.0000152
0.8380952
3048.708995



0.0000001
0.9035714
3020.653111

0.0000005
0.8642857
3066.155713



0.0077943
0.7071429
3026.595384

0.0000001
0.9166667
3083.362119



0.0000557
0.7988095
3035.982566

0.0000000
0.9559524
3092.389989



0.0028115
0.7333333
3039.961971

0.0000000
0.9297619
3101.60504



0.0000001
0.9035714
3042.639369

0.0000002
0.8773810
3113.412549



0.0000004
0.8904762
3048.708995

0.0000001
0.8904762
3129.459825



0.0000000
0.9166667
3066.155713

0.0000028
0.8380952
3135.980164



0.0000000
0.9297619
3083.362119

0.0117085
0.6809524
3140.915312



0.0000000
0.9559524
3092.389989

0.0000002
0.9035714
3149.522222



0.0000033
0.8380952
3101.60504

0.0000000
0.9559524
3158.254319



0.0000000
0.9428571
3113.412549

0.0000456
0.8119048
3163.025153



0.0000002
0.8904762
3129.459825

0.0000000
0.9035714
3166.387243



0.0000010
0.8642857
3135.980164

0.0006933
0.7464286
3169.365587



0.0000373
0.8119048
3140.915312

0.0000003
0.8904762
3172.450888



0.0000000
0.9035714
3149.522222

0.0000003
0.8904762
3177.822062



0.0000000
0.9559524
3158.254319

0.0000006
0.8773810
3183.425475



0.0016709
0.7464286
3163.025153

0.0000001
0.9035714
3197.777988



0.0001002
0.7988095
3166.387243

0.0000002
0.8904762
3213.068347



0.0034403
0.7071429
3169.365587

0.0000000
0.9035714
3221.413524



0.0000000
0.9297619
3172.450888

0.0000092
0.8166667
3235.296597



0.0000000
0.9821429
3177.822062

0.0000216
0.8119048
3245.638764



0.0000035
0.8511905
3183.425475

0.0038005
0.7035714
3276.379562



0.0000051
0.8250000
3197.777988

0.0000064
0.8380952
3285.606735



0.0000002
0.9035714
3213.068347

0.0000055
0.8380952
3290.515874



0.0000000
0.9559524
3221.413524

0.0002262
0.7726190
3300.370909



0.0002714
0.7773810
3235.296597

0.0000041
0.8642857
3314.079782



0.0000326
0.7988095
3245.638764

0.0000006
0.8642857
3315.115414



0.0000069
0.8380952
3285.606735

0.0000004
0.8904762
3315.909084



0.0000051
0.8380952
3290.515874

0.0000003
0.8773810
3316.53443



0.0000001
0.9166667
3314.079782

0.0000000
0.9035714
3318.297755



0.0000064
0.8380952
3315.115414

0.0012773
0.7464286
3321.260411



0.0000826
0.8119048
3315.909084

0.0000152
0.8250000
3324.2993



0.0000024
0.8773810
3316.53443

0.0000064
0.8380952
3336.16938



0.0000000
0.9166667
3318.297755

0.0003450
0.7595238
3343.441682



0.0009184
0.7464286
3321.260411

0.0000086
0.8380952
3353.246902



0.0001561
0.8119048
3322.335337

0.0000000
0.9166667
3369.373189



0.0000175
0.8250000
3324.2993

0.0000005
0.8642857
3377.906174



0.0000142
0.8250000
3336.16938

0.0000000
0.9428571
3397.259967



0.0000349
0.7857143
3343.441682

0.0000000
0.9297619
3402.125169



0.0001377
0.7857143
3349.175124

0.0000002
0.9035714
3417.509394



0.0000051
0.8511905
3353.246902

0.0000000
0.9559524
3430.642457



0.0000003
0.8642857
3369.373189

0.0000000
0.9821429
3445.720567



0.0000001
0.9035714
3377.906174

0.0000488
0.8119048
3456.301995



0.0000000
0.9690476
3397.259967

0.0000000
0.9690476
3468.46665



0.0000000
0.9297619
3402.125169

0.0000051
0.8380952
3478.572514



0.0000000
0.9166667
3417.509394

0.0000000
0.9428571
3488.857635



0.0000000
0.9297619
3430.642457

0.0000015
0.8642857
3499.370274



0.0000000
0.9428571
3445.720567

0.0000000
0.9821429
3515.357908



0.0000000
0.9297619
3456.301995

0.0000006
0.8904762
3528.345658



0.0000000
0.9821429
3468.46665

0.0000000
0.9166667
3536.763944



0.0000000
0.9166667
3478.572514

0.0000304
0.7988095
3573.694129



0.0000000
0.9559524
3488.857635

0.0000399
0.8214286
3588.453952



0.0000326
0.7988095
3499.370274

0.0000002
0.8773810
3604.347348



0.0000000
0.9690476
3515.357908

0.0000001
0.8773810
3612.0972



0.0000000
0.9428571
3528.345658

0.0005841
0.7595238
3623.497822



0.0000000
0.9297619
3536.763944

0.0000000
0.9166667
3644.486854



0.0000069
0.8380952
3573.694129

0.0000231
0.8380952
3670.116515



0.0001002
0.7904762
3588.453952

0.0000007
0.8511905
3678.462544



0.0000022
0.8642857
3604.347348

0.0000008
0.8642857
3687.780782



0.0000002
0.8773810
3612.0972

0.0000030
0.8642857
3699.672565



0.0000051
0.8250000
3623.497822

0.0000048
0.8380952
3739.751205



0.0000000
0.9428571
3644.486854

0.0000010
0.8511905
3772.107649



0.0000026
0.8380952
3670.116515

0.0000000
0.9166667
3790.742865



0.0000060
0.8511905
3678.462544

0.0000000
0.9297619
3807.332552



0.0000000
0.9166667
3687.780782

0.0000679
0.7988095
3817.046282



0.0000001
0.8904762
3699.672565

0.0000030
0.8511905
3827.712827



0.0000010
0.8773810
3739.751205

0.0000010
0.8773810
3891.091076



0.0000000
0.9297619
3772.107649

0.0000163
0.7988095
3922.074093



0.0000000
0.9035714
3790.742865

0.0000123
0.8380952
3929.390604



0.0000001
0.9035714
3807.332552

0.0481333
0.6547619
3955.346561



0.0000201
0.8250000
3817.046282

0.0015842
0.7380952
3972.21957



0.0000000
0.9428571
3827.712827

0.0282327
0.6642857
3983.675826



0.0000000
0.9035714
3891.091076

0.0032721
0.7297619
4005.668752



0.0001561
0.7595238
3922.074093

0.0025382
0.7166667
4029.284592



0.0000016
0.8511905
3929.390604

0.0028115
0.7333333
4110.556156



0.0370590
0.6726190
3972.21957

0.0000725
0.7904762
4119.607136



0.0127855
0.6821429
3983.675826

0.0000004
0.8773810
4127.77626



0.0007338
0.7428571
4005.668752

0.0000019
0.8511905
4137.751828



0.0384942
0.6511905
4029.284592

0.0000011
0.8511905
4144.116439



0.0000099
0.8511905
4110.556156

0.0004911
0.7726190
4182.996313



0.0002714
0.7726190
4119.607136

0.0000349
0.7857143
4191.218296



0.0003661
0.7857143
4127.77626

0.0000004
0.8904762
4203.02242



0.0000005
0.8511905
4137.751828

0.0067785
0.2761905
4275.126841



0.0000175
0.8250000
4144.116439

0.0016709
0.7511905
4332.585207



0.0000725
0.8250000
4182.996313

0.0003250
0.7726190
4392.121326



0.0000022
0.8511905
4191.218296

0.0000001
0.9166667
4418.467916



0.0000595
0.7726190
4203.02242

0.0000163
0.7988095
4434.401871



0.0038005
0.2761905
4275.126841

0.0001292
0.7857143
4451.561047



0.0067785
0.6940476
4332.585207

0.0017620
0.7595238
4472.538662



0.0006550
0.7642857
4392.121326

0.0000265
0.8250000
4491.879558



0.0000679
0.7988095
4418.467916

0.0010842
0.7464286
4644.394801



0.0000060
0.8380952
4434.401871

0.0012097
0.7333333
4761.564855



0.0006550
0.7726190
4451.561047

0.0041946
0.7119048
4820.900844



0.0117085
0.6809524
4472.538662

0.0187914
0.6857143
4919.007415



0.0006186
0.7464286
4491.879558

0.0010842
0.7202381
4994.422542



0.0000265
0.7988095
4644.394801

0.0004633
0.2238095
5765.752659



0.0006550
0.7642857
4761.564855

0.0010842
0.2500000
7167.554217



0.0028115
0.7333333
4820.900844

0.0056095
0.2892857
7665.827257



0.0026717
0.7119048
4919.007415

0.0000163
0.1845238
8149.336429



0.0071030
0.6940476
4994.422542

0.0102437
0.3285714
8313.570899



0.0003061
0.2238095
5765.752659

0.0015842
0.2500000
8472.644418



0.0002404
0.2107143
7167.554217

0.0039932
0.2761905
8598.621326



0.0003061
0.2369048
7665.827257

0.0000373
0.1845238
8953.916453



0.0036163
0.2892857
7781.136159

0.0000060
0.1845238
9309.466303



0.0000026
0.1583333
8149.336429

0.0384942
0.6416667
15170.38885



0.0077943
0.3023810
8313.570899

0.0003661
0.7857143
31172.33879



0.0004370
0.2238095
8472.644418

0.0399764
0.6464286
31844.2444



0.0004633
0.2238095
8598.621326

0.0293705
0.6416667
34078.02645



0.0000123
0.1666667
8953.916453

0.0133562
0.7071429
36236.07045



0.0008686
0.2583333
9309.466303

0.0152056
0.6726190
37339.38185



0.0029580
0.7202381
15170.38885

0.0093602
0.6940476
37681.0348



0.0003450
0.7595238
31172.33879

0.0012773
0.7511905
38035.46314



0.0012773
0.7202381
36236.07045

0.0021736
0.7380952
38449.75553



0.0250443
0.6726190
37339.38185

0.0038005
0.7119048
44944.74849



0.0005514
0.7595238
37681.0348

0.0221724
0.6809524
45471.54051



0.0356696
0.6547619
38035.46314

0.0293705
0.6678571
45847.89453



0.0050960
0.7071429
38449.75553

0.0009709
0.7726190
46550.98173



0.0240531
0.6857143
39042.10283

0.0003250
0.7726190
46955.84213



0.0000248
0.8250000
44944.74849

0.0000679
0.7857143
48592.66902



0.0000326
0.7726190
45471.54051
F1ISH
0.0000000
0.9855967
10011.99352



0.0003450
0.7595238
45847.89453

0.0000000
0.9855967
10020.52117



0.0000456
0.7988095
46550.98173

0.0000000
0.9855967
10025.43594



0.0003661
0.7857143
46955.84213

0.0000000
0.9855967
10028.64467



0.0000002
0.8904762
48592.66902

0.0000000
0.9855967
10036.97216


F1ISH
0.0000000
0.9855967
10011.99352

0.0000000
0.9855967
10051.63047



0.0000000
0.9855967
10020.52117

0.0000000
0.9855967
10061.98167



0.0000000
0.9855967
10025.43594

0.0000000
0.9855967
10072.44679



0.0000000
0.9855967
10028.64467

0.0000000
0.9855967
10081.58862



0.0000000
0.9855967
10036.97216

0.0000000
0.9855967
10090.2363



0.0000000
0.9855967
10051.63047

0.0000000
0.9855967
10098.45601



0.0000000
0.9855967
10061.98167

0.0000000
0.9855967
10105.92173



0.0000000
0.9855967
10072.44679

0.0000000
0.9855967
10114.78187



0.0000000
0.9855967
10081.58862

0.0000000
0.9855967
10135.6053



0.0000000
0.9855967
10090.2363

0.0000000
0.9855967
10147.36272



0.0000000
0.9855967
10098.45601

0.0000000
0.9855967
10162.00816



0.0000000
0.9855967
10105.92173

0.0000000
0.9718793
10175.58746



0.0000000
0.9855967
10114.78187

0.0000000
0.9581619
10187.91964



0.0000000
0.9855967
10135.6053

0.0000000
0.9307270
10198.46953



0.0000000
0.9855967
10147.36272

0.0000000
0.9581619
10208.17418



0.0000000
0.9855967
10162.00816

0.0000000
0.9444444
10217.54983



0.0000000
0.9855967
10175.58746

0.0000000
0.9170096
10230.57425



0.0000000
0.9718793
10187.91964

0.0000002
0.8895748
10239.94928



0.0000000
0.9444444
10198.46953

0.0000004
0.8895748
10247.57672



0.0000000
0.9718793
10208.17418

0.0000000
0.9307270
10262.82559



0.0000000
0.9718793
10217.54983

0.0000000
0.9444444
10294.56991



0.0000000
0.9718793
10230.57425

0.0000000
0.9581619
10306.64326



0.0000000
0.9581619
10239.94928

0.0000001
0.9170096
10324.32336



0.0000000
0.9581619
10247.57672

0.0000002
0.9170096
10346.11123



0.0000000
0.9718793
10262.82559

0.0000012
0.8758573
10363.09118



0.0000000
0.9718793
10294.56991

0.0000024
0.8758573
10383.28509



0.0000000
0.9718793
10306.64326

0.0013313
0.7386831
10402.18844



0.0000000
0.9581619
10324.32336

0.0054923
0.7112483
10408.85968



0.0000000
0.9581619
10346.11123

0.0017923
0.7386831
10414.59628



0.0000000
0.9581619
10363.09118

0.0033641
0.7112483
10425.2516



0.0000000
0.9581619
10383.28509

0.0150719
0.6975309
10434.47733



0.0000000
0.9170096
10402.18844

0.0199734
0.6700960
10456.2903



0.0000017
0.8758573
10408.85968

0.0387015
0.6426612
10472.20507



0.0000019
0.8758573
10414.59628

0.0041946
0.7249657
10488.20672



0.0000099
0.8484225
10425.2516

0.0006337
0.7524005
10500.0895



0.0000957
0.7935528
10434.47733

0.0000125
0.8347051
10509.73309



0.0001801
0.7935528
10442.82927

0.0000010
0.8895748
10521.88611



0.0006337
0.7798354
10456.2903

0.0000017
0.8758573
10546.67852



0.0001929
0.7935528
10472.20507

0.0262126
0.6700960
10562.0077



0.0000234
0.8209877
10488.20672

0.0476084
0.6426612
10567.23236



0.0000107
0.8484225
10500.0895

0.0158068
0.6838134
10574.35037



0.0000066
0.8484225
10509.73309

0.0173716
0.6783265
10877.21485



0.0000024
0.8758573
10521.88611

0.0190707
0.6783265
10890.43701



0.0000044
0.8621399
10546.67852

0.0438578
0.6604938
10909.77131



0.0041946
0.7249657
10562.0077

0.0209133
0.6604938
10928.38566



0.0209133
0.6838134
10567.23236

0.0037585
0.7249657
10944.27704



0.0158068
0.6975309
10574.35037

0.0020148
0.7524005
10962.30392



0.0001681
0.7935528
10855.25459

0.0000234
0.8484225
10978.46135



0.0000429
0.8072702
10877.21485

0.0001364
0.7976680
10994.43525



0.0002533
0.7935528
10890.43701

0.0075211
0.6879287
11014.94996



0.0001463
0.7935528
10909.77131

0.0009820
0.7386831
11035.719



0.0005578
0.7798354
10928.38566

0.0004307
0.7524005
11046.66769



0.0000620
0.8072702
10944.27704

0.0000829
0.7798354
11057.41916



0.0000003
0.9032922
10962.30392

0.0002066
0.8072702
11071.04109



0.0000125
0.8484225
10978.46135

0.0001104
0.8072702
11087.90879



0.0000012
0.8621399
10994.43525

0.0000077
0.8484225
11105.68287



0.0000462
0.8072702
11014.94996

0.0000497
0.7798354
11118.40053



0.0000005
0.8895748
11035.719

0.0009232
0.7524005
11123.52137



0.0000006
0.8895748
11046.66769

0.0001929
0.7839506
11130.42377



0.0000005
0.9032922
11057.41916

0.0041946
0.7386831
11147.3563



0.0000002
0.8895748
11071.04109

0.0001681
0.7702332
11163.91984



0.0000002
0.8895748
11087.90879

0.0011100
0.7290809
11178.66084



0.0000009
0.8895748
11105.68287

0.0229091
0.6646091
11191.97145



0.0000003
0.8895748
11118.40053

0.0001463
0.8072702
11212.36119



0.0000136
0.8484225
11123.52137

0.0025374
0.7386831
11226.91495



0.0000077
0.8347051
11130.42377

0.0274017
0.6742112
11244.4887



0.0000077
0.8484225
11147.3563

0.0000016
0.1104252
11488.09557



0.0000029
0.8758573
11163.91984

0.0000001
0.0829904
11508.64295



0.0000066
0.8525377
11178.66084

0.0000002
0.0967078
11533.00585



0.0000342
0.8347051
11191.97145

0.0000000
0.0281207
11553.43803



0.0000022
0.8484225
11212.36119

0.0000000
0.0555556
11576.23632



0.0000019
0.8621399
11226.91495

0.0000001
0.0692730
11596.70327



0.0007659
0.7565158
11244.4887

0.0000001
0.0967078
11607.15919



0.0030077
0.2613169
11488.09557

0.0000000
0.0692730
11623.79327



0.0000077
0.1515775
11508.64295

0.0000000
0.0555556
11642.6909



0.0000001
0.0692730
11533.00585

0.0000000
0.0281207
11662.86838



0.0000000
0.0692730
11553.43803

0.0000000
0.0555556
11682.71261



0.0000003
0.1104252
11576.23632

0.0000013
0.1241427
11706.67327



0.0000000
0.0555556
11596.70327

0.0000004
0.0967078
11737.66458



0.0000000
0.0555556
11607.15919

0.0000005
0.1104252
11758.16873



0.0000000
0.0692730
11623.79327

0.0000024
0.1378601
11778.74667



0.0000000
0.0555556
11642.6909

0.0000071
0.1652949
11785.26908



0.0000000
0.0418381
11662.86838

0.0000398
0.1790123
11789.43722



0.0000000
0.0692730
11682.71261

0.0003778
0.2475995
11794.63204



0.0000007
0.1104252
11706.67327

0.0000014
0.1241427
11810.11077



0.0000002
0.0967078
11737.66458

0.0000000
0.0692730
11849.00542



0.0000001
0.0829904
11758.16873

0.0000000
0.0692730
11881.99843



0.0000071
0.1515775
11778.74667

0.0000000
0.0418381
11909.00114



0.0000159
0.1652949
11785.26908

0.0000000
0.0555556
11918.54028



0.0000620
0.2201646
11789.43722

0.0000000
0.0692730
11925.28834



0.0001801
0.2201646
11794.63204

0.0000003
0.1104252
11930.35684



0.0000234
0.1652949
11810.11077

0.0000000
0.0692730
11946.65943



0.0000013
0.1241427
11849.00542

0.0000020
0.1241427
11977.13849



0.0000001
0.0829904
11881.99843

0.0000022
0.1241427
11992.80904



0.0000001
0.0829904
11909.00114

0.0000001
0.0967078
12009.23838



0.0000002
0.0967078
11918.54028

0.0000000
0.0555556
12043.45183



0.0000001
0.0829904
11925.28834

0.0000000
0.0144033
12063.7875



0.0000002
0.0829904
11930.35684

0.0000000
0.0555556
12080.17934



0.0000006
0.1104252
11946.65943

0.0000000
0.0692730
12095.12377



0.0004307
0.2434842
11977.13849

0.0000000
0.0692730
12101.64446



0.0002533
0.2064472
11992.80904

0.0000000
0.0555556
12119.25076



0.0000020
0.1337449
12009.23838

0.0000000
0.0418381
12141.1169



0.0000000
0.0555556
12043.45183

0.0000017
0.1241427
12160.76776



0.0000000
0.0418381
12063.7875

0.0035564
0.2750343
12181.97513



0.0000000
0.0829904
12080.17934

0.0476084
0.6467764
12343.70114



0.0000000
0.0692730
12095.12377

0.0312522
0.6604938
12359.32901



0.0000001
0.0829904
12101.64446

0.0030077
0.7427984
12404.11342



0.0000000
0.0692730
12119.25076

0.0030077
0.7427984
12428.61842



0.0000029
0.1515775
12141.1169

0.0229091
0.6838134
12526.96894



0.0000040
0.1378601
12160.76776

0.0000200
0.8209877
12586.1786



0.0039711
0.2750343
12181.97513

0.0000620
0.8072702
12616.77768



0.0000429
0.8113855
12343.70114

0.0158068
0.6783265
12657.85998



0.0000829
0.7976680
12359.32901

0.0000772
0.8072702
12725.27638



0.0000342
0.8251029
12404.11342

0.0061058
0.7153635
12755.4225



0.0009232
0.7606310
12428.61842

0.0015927
0.7290809
12792.9585



0.0000620
0.8072702
12526.96894

0.0083336
0.2887517
13272.14785



0.0000034
0.8621399
12586.1786

0.0002211
0.2475995
13425.04846



0.0001364
0.7976680
12616.77768

0.0000000
0.0281207
13517.3522



0.0006752
0.7469136
12657.85998

0.0000001
0.0829904
13572.89265



0.0001463
0.7935528
12725.27638

0.0000000
0.0555556
13664.61109



0.0000234
0.8251029
12755.4225

0.0000000
0.0555556
13743.15877



0.0000462
0.8251029
12792.9585

0.0006337
0.2338820
13857.21058



0.0112625
0.3024691
13272.14785

0.0000017
0.1337449
13933.3224



0.0004307
0.2338820
13425.04846

0.0000147
0.8484225
14144.36601



0.0000000
0.0555556
13517.3522

0.0000099
0.8484225
14330.61107



0.0000001
0.0967078
13572.89265

0.0000000
0.0281207
14868.45486



0.0001185
0.2064472
13664.61109

0.0000000
0.0418381
15277.38043



0.0000000
0.0555556
13743.15877

0.0000002
0.0967078
15477.52932



0.0003537
0.2338820
13857.21058

0.0002897
0.2338820
15627.65375



0.0000020
0.1378601
13933.3224

0.0218914
0.6700960
15817.19277



0.0000037
0.8621399
14144.36601

0.0000084
0.8347051
16525.3951



0.0000185
0.8429355
14330.61107

0.0031814
0.7112483
16735.85641



0.0000000
0.0418381
14868.45486

0.0165730
0.3079561
23638.15252



0.0000000
0.0555556
15277.38043

0.0209133
0.3299040
42740.48185



0.0326348
0.3299040
15397.6027

0.0000084
0.1515775
50962.01399



0.0000000
0.0829904
15477.52932

0.0000136
0.1652949
51505.99647



0.0000317
0.1927298
15627.65375

0.0000159
0.1748971
52094.18838



0.0057917
0.7112483
15817.19277

0.0000429
0.1844993
68311.65124



0.0000147
0.8347051
16525.3951

0.0021352
0.2530864
69531.81016



0.0001028
0.7798354
16735.85641

0.0007192
0.2393690
70239.10741



0.0173716
0.3257888
23638.15252

0.0001185
0.1886145
71096.60784



0.0000014
0.1337449
50962.01399

0.0000099
0.1611797
75269.22784



0.0000006
0.1104252
51505.99647

0.0021352
0.2572016
102406.355



0.0000014
0.1241427
52094.18838

0.0000536
0.2297668
124396.8269



0.0000047
0.1652949
68311.65124

0.0000667
0.2064472
135047.7781



0.0003310
0.2201646
69531.81016

0.0000185
0.1790123
150365.8563



0.0010442
0.2572016
70239.10741
F5CSL
0.0000000
0.0287356
3439.012926



0.0000217
0.1652949
71096.60784

0.0377842
0.6574713
6466.54012



0.0000000
0.0281207
75269.22784

0.0001916
0.7839080
6490.498273



0.0004904
0.2256516
102406.355

0.0000286
0.8091954
6689.07332



0.0000016
0.1378601
124396.8269

0.0301465
0.6574713
6863.56499



0.0000003
0.1104252
135047.7781

0.0113399
0.3114943
7781.442162



0.0000000
0.0281207
150365.8563

0.0146436
0.6701149
8845.312346


F5CSL
0.0000000
0.0540230
3439.012926

0.0055263
0.7080460
8966.56789



0.0118397
0.3114943
4793.423523

0.0091111
0.6827586
9174.061297



0.0364072
0.6574713
6466.54012

0.0016980
0.7333333
25619.17312



0.0002738
0.7586207
6490.498273

0.0005779
0.7459770
33593.85227



0.0123590
0.6741379
6661.944

0.0018823
0.7206897
34007.46796



0.0000018
0.8597701
6689.07332

0.0020848
0.7206897
34545.63707



0.0015304
0.7333333
6863.56499

0.0018823
0.7333333
34736.3154



0.0060637
0.2862069
7781.442162

0.0021934
0.7333333
34944.03116



0.0016980
0.7333333
8845.312346

0.0020848
0.7333333
35193.60994



0.0001330
0.7839080
8966.56789

0.0037803
0.7206897
35450.83994



0.0000860
0.8091954
9174.061297

0.0001504
0.2143678
47192.29627



0.0187682
0.6574713
9319.311385
F5CSH
0.0200134
0.6771337
10008.14304



0.0000135
0.8344828
25619.17312

0.0171027
0.7093398
10016.99725



0.0021934
0.7206897
33593.85227

0.0024712
0.7576490
10028.78563



0.0050322
0.7080460
34007.46796

0.0000273
0.8381643
10047.62033



0.0063497
0.7080460
34545.63707

0.0000114
0.8542673
10060.25984



0.0066478
0.6954023
34736.3154

0.0000066
0.8703704
10073.33412



0.0069584
0.7080460
34944.03116

0.0000004
0.9186795
10120.52937



0.0052740
0.7080460
35193.60994

0.0000003
0.9186795
10146.3839



0.0069584
0.6954023
35450.83994

0.0000004
0.9186795
10162.43733



0.0063497
0.2942529
47192.29627

0.0000004
0.9186795
10178.08813


F5CSH
0.0046230
0.7254428
10008.14304

0.0000006
0.9186795
10195.2301



0.0016686
0.7415459
10016.99725

0.0000010
0.9186795
10205.50105



0.0001655
0.8220612
10028.78563

0.0000011
0.9186795
10215.263



0.0000079
0.8703704
10047.62033

0.0000009
0.9186795
10227.99328



0.0000031
0.8864734
10060.25984

0.0000007
0.9186795
10237.23424



0.0000015
0.8864734
10073.33412

0.0000004
0.9186795
10254.36842



0.0000004
0.9186795
10120.52937

0.0000002
0.9186795
10281.47372



0.0000003
0.9186795
10146.3839

0.0000002
0.9186795
10296.18987



0.0000004
0.9186795
10162.43733

0.0000002
0.9186795
10308.69901



0.0000003
0.9186795
10178.08813

0.0000002
0.9186795
10341.43948



0.0000003
0.9186795
10195.2301

0.0000002
0.9186795
10359.22541



0.0000002
0.9186795
10205.50105

0.0000002
0.9186795
10373.50565



0.0000005
0.9186795
10215.263

0.0000001
0.9347826
10388.7689



0.0000005
0.9186795
10227.99328

0.0000001
0.9186795
10402.74887



0.0000004
0.9186795
10237.23424

0.0000001
0.9347826
10418.95812



0.0000003
0.9186795
10254.36842

0.0000004
0.9186795
10433.30772



0.0000002
0.9186795
10281.47372

0.0000002
0.9186795
10452.21013



0.0000002
0.9186795
10296.18987

0.0000000
0.9508857
10465.90587



0.0000001
0.9186795
10308.69901

0.0000001
0.9347826
10481.18415



0.0000002
0.9186795
10341.43948

0.0000002
0.9186795
10498.6017



0.0000002
0.9186795
10359.22541

0.0000006
0.9025765
10508.92986



0.0000002
0.9186795
10373.50565

0.0000004
0.9186795
10514.91432



0.0000001
0.9186795
10388.7689

0.0000004
0.9186795
10527.20915



0.0000001
0.9186795
10402.74887

0.0000006
0.9025765
10546.16486



0.0000001
0.9347826
10418.95812

0.0000007
0.8864734
10575.10057



0.0000002
0.9186795
10433.30772

0.0000002
0.9186795
10596.28169



0.0000001
0.9186795
10452.21013

0.0000007
0.9025765
10616.84987



0.0000000
0.9508857
10465.90587

0.0000007
0.9186795
10636.82577



0.0000000
0.9508857
10481.18415

0.0000002
0.9186795
10654.23706



0.0000001
0.9347826
10498.6017

0.0000002
0.9186795
10665.17962



0.0000002
0.9186795
10508.92986

0.0000055
0.8703704
10672.3618



0.0000001
0.9347826
10514.91432

0.0000013
0.8864734
10681.084



0.0000001
0.9347826
10527.20915

0.0000136
0.8542673
10694.26283



0.0000002
0.9186795
10546.16486

0.0000211
0.8220612
10711.81013



0.0000001
0.9186795
10575.10057

0.0000124
0.8542673
10725.60891



0.0000000
0.9508857
10596.28169

0.0001308
0.7898551
10736.52558



0.0000001
0.9186795
10616.84987

0.0000016
0.9025765
10751.55877



0.0000000
0.9347826
10636.82577

0.0000011
0.9025765
10773.15923



0.0000000
0.9347826
10654.23706

0.0000418
0.8220612
10790.91972



0.0000002
0.9025765
10665.17962

0.0074402
0.7254428
10816.55733



0.0000021
0.8864734
10672.3618

0.0001789
0.7898551
10874.11936



0.0000012
0.8864734
10681.084

0.0012752
0.7737520
10891.02957



0.0000012
0.9025765
10694.26283

0.0004110
0.7898551
10906.58841



0.0000104
0.8381643
10711.81013

0.0009691
0.7737520
10927.60682



0.0002433
0.7898551
10725.60891

0.0180288
0.7254428
10948.05849



0.0000809
0.8059581
10736.52558

0.0381678
0.6449275
11021.63296



0.0003053
0.7898551
10751.55877

0.0145703
0.7093398
11095.98577



0.0000494
0.8381643
10773.15923

0.0023167
0.7093398
11115.98954



0.0004758
0.7737520
10790.91972

0.0145703
0.7093398
11132.56083



0.0001531
0.8059581
10874.11936

0.0023167
0.2423510
11187.64311



0.0020339
0.7415459
10891.02957

0.0004758
0.1940419
11197.80359



0.0009040
0.7737520
10906.58841

0.0162187
0.3067633
11283.65755



0.0110785
0.6932367
10927.60682

0.0007858
0.2423510
11394.7004



0.0162187
0.6932367
10948.05849

0.0046230
0.2745572
11884.93051



0.0078838
0.6932367
11021.63296

0.0000298
0.1618357
11917.82491



0.0233475
0.6771337
11076.12773

0.0000809
0.1779388
11953.73243



0.0003290
0.8059581
11095.98577

0.0000384
0.1618357
11976.91805



0.0017831
0.7737520
11115.98954

0.0000012
0.1135266
11996.5121



0.0439411
0.6610306
11132.56083

0.0000004
0.0813205
12027.11641



0.0110785
0.3067633
11187.64311

0.0000003
0.0652174
12052.53166



0.0285359
0.3550725
11197.80359

0.0000494
0.1940419
12084.07622



0.0346883
0.3389694
11210.19746

0.0000079
0.1296296
12925.60447



0.0271535
0.3389694
11283.65755

0.0000013
0.1457327
12974.23339



0.0000633
0.1618357
11394.7004

0.0000004
0.0974235
13028.74639



0.0000114
0.1457327
11884.93051

0.0000000
0.0491143
13065.70027



0.0000162
0.1457327
11917.82491

0.0000000
0.0652174
13099.66919



0.0000633
0.1779388
11953.73243

0.0000066
0.1296296
13146.65925



0.0000537
0.1618357
11976.91805

0.0000003
0.0813205
13187.45517



0.0000003
0.0974235
11996.5121

0.0000009
0.0974235
13233.79106



0.0000015
0.1296296
12027.11641

0.0000002
0.0813205
13291.70681



0.0000009
0.0974235
12052.53166

0.0000002
0.0652174
13320.77403



0.0000298
0.1779388
12084.07622

0.0000001
0.0652174
13356.70436



0.0138029
0.6932367
12493.00409

0.0000230
0.1618357
13426.83767



0.0088427
0.7093398
12511.09369

0.0003817
0.2101449
13491.55847



0.0000148
0.1457327
12925.60447

0.0299785
0.3550725
13581.27869



0.0000006
0.0974235
12974.23339

0.0189985
0.3389694
13655.43547



0.0000010
0.1135266
13028.74639

0.0000087
0.1296296
14019.70586



0.0000000
0.0330113
13065.70027

0.0000000
0.0330113
14214.24986



0.0000000
0.0330113
13099.66919

0.0000000
0.0169082
14344.33114



0.0000021
0.1135266
13146.65925

0.0016686
0.7576490
14729.54802



0.0000001
0.0652174
13187.45517

0.0058812
0.7254428
14767.85965



0.0000000
0.0169082
13233.79106

0.0000005
0.1135266
15566.82603



0.0000000
0.0330113
13291.70681

0.0000353
0.1618357
15645.08235



0.0000002
0.0813205
13320.77403

0.0070191
0.2906602
16290.00891



0.0000000
0.0491143
13356.70436

0.0000000
0.0491143
17653.98849



0.0000007
0.0974235
13426.83767

0.0000015
0.1135266
17809.61765



0.0001116
0.1940419
13491.55847

0.0000011
0.8864734
17974.36692



0.0043492
0.2906602
13581.27869

0.0000746
0.8059581
29272.79419



0.0000001
0.0813205
14019.70586

0.0004758
0.7737520
33625.51714



0.0000000
0.0169082
14214.24986

0.0004423
0.7737520
33961.79795



0.0000000
0.0169082
14344.33114

0.0006821
0.2262480
42641.96081



0.0000136
0.8703704
14729.54802

0.0003290
0.2101449
42923.06964



0.0000251
0.8220612
14767.85965

0.0000951
0.2101449
43153.71795



0.0093602
0.6932367
14855.80746

0.0000537
0.1940419
43558.60561



0.0000015
0.1296296
15566.82603

0.0000072
0.1135266
44673.19334



0.0000079
0.1457327
15645.08235

0.0000001
0.0652174
45254.93201



0.0033949
0.2906602
16290.00891

0.0028089
0.7254428
60596.55945



0.0000000
0.0491143
17653.98849

0.0000011
0.9025765
61369.70702



0.0000273
0.1618357
17809.61765

0.0023167
0.2745572
66754.36307



0.0000124
0.8703704
17974.36692

0.0040902
0.2584541
75408.4976



0.0020339
0.7576490
26021.04631

0.0010385
0.2423510
79145.35138



0.0000019
0.8864734
29272.79419

0.0020339
0.2584541
91493.20762



0.0110785
0.7093398
33625.51714

0.0000324
0.1779388
133992.2232



0.0145703
0.7093398
33961.79795

0.0110785
0.2584541
168584.5002



0.0001531
0.2101449
42641.96081

0.0000124
0.1457327
198991.3517



0.0001655
0.1940419
42923.06964
F6CSL
0.0000046
0.8403576
2990.018687



0.0000211
0.1618357
43153.71795

0.0000168
0.8122605
3360.866902



0.0000273
0.1779388
43558.60561

0.0000050
0.8263091
4179.401548



0.0000005
0.1135266
44673.19334

0.0000022
0.8544061
4198.411686



0.0000001
0.0813205
45254.93201

0.0000016
0.8684547
4252.48155



0.0200134
0.6610306
60596.55945

0.0000260
0.8122605
4354.864569



0.0000177
0.8381643
61369.70702

0.0000007
0.8544061
4410.72305



0.0099045
0.2584541
66754.36307

0.0000750
0.7982120
4466.484268



0.0271535
0.3067633
75408.4976

0.0000860
0.7841635
4536.675037



0.0002831
0.2101449
79145.35138

0.0002040
0.7560664
4626.037492



0.0005117
0.2423510
91493.20762

0.0030793
0.7279693
4818.821494



0.0007322
0.1940419
133992.2232

0.0231454
0.3346105
5882.598843



0.0016686
0.2262480
168584.5002

0.0000022
0.8544061
6487.935491



0.0000136
0.1618357
198991.3517

0.0027670
0.7279693
6544.667343


F6CSL
0.0000001
0.8965517
2990.018687

0.0000019
0.8684547
6689.164478



0.0000016
0.8544061
3360.866902

0.0351130
0.6436782
6855.504433



0.0001678
0.7701149
4179.401548

0.0123987
0.6858238
6953.588087



0.0001376
0.7701149
4198.411686

0.0129846
0.6998723
7588.918733



0.0000019
0.8825032
4252.48155

0.0252060
0.6717752
8719.481654



0.0018881
0.7139208
4354.864569

0.0000099
0.8263091
8842.966359



0.0000002
0.8965517
4410.72305

0.0000039
0.8544061
9046.727666



0.0000347
0.8263091
4466.484268

0.0029193
0.7139208
9165.408341



0.0002639
0.7841635
4536.675037

0.0021086
0.7420179
9668.960682



0.0011345
0.7560664
4626.037492

0.0000115
0.1660281
10294.7238



0.0098066
0.6922095
4818.821494

0.0030793
0.2784163
10463.66285



0.0186220
0.3128991
5014.908804

0.0001288
0.2081737
10733.07419



0.0252060
0.3269476
5017.339281

0.0000001
0.0881226
12480.3404



0.0023525
0.2848020
5882.598843

0.0000000
0.0600255
12651.6673



0.0000000
0.8965517
6487.935491

0.0463412
0.6781609
13920.46348



0.0004932
0.7560664
6544.667343

0.0262945
0.6922095
14102.40615



0.0118364
0.6858238
6645.390397

0.0027670
0.7279693
15178.11257



0.0000000
0.9386973
6689.164478

0.0007091
0.7560664
15361.4929



0.0026219
0.7279693
6855.504433

0.0001912
0.7841635
15915.33173



0.0014263
0.7420179
6871.100138

0.0001471
0.7841635
16093.36476



0.0030793
0.7139208
6953.588087

0.0019956
0.7420179
17426.66866



0.0274235
0.3128991
7781.319356

0.0000429
0.7982120
18048.90648



0.0012017
0.7279693
8606.881674

0.0005243
0.2286079
23037.50948



0.0001571
0.7701149
8719.481654

0.0162966
0.3269476
23524.56381



0.0000000
0.9386973
8842.966359

0.0118364
0.7279693
28178.79099



0.0000000
0.9527458
9046.727666

0.0000429
0.8263091
29021.87789



0.0000347
0.8122605
9165.408341

0.0000429
0.8263091
30269.89108



0.0000400
0.8122605
9316.869151

0.0000530
0.7982120
31162.97802



0.0000209
0.8122605
9668.960682

0.0036083
0.2567050
42060.31032



0.0013475
0.7420179
9771.571531

0.0148918
0.3269476
44309.89849



0.0003192
0.2081737
10294.7238

0.0000985
0.1864623
44686.33634



0.0054469
0.2924649
10463.66285

0.0003192
0.2145594
45344.38107



0.0000209
0.1724138
10733.07419

0.0000323
0.1724138
46173.68592



0.0000001
0.0740741
12480.3404

0.0002996
0.2005109
47417.69242



0.0000001
0.0881226
12651.6673
F6CSH
0.0000000
0.9801587
10034.41899



0.0021086
0.7203065
13920.46348

0.0000000
0.9801587
10134.16987



0.0003619
0.7624521
14102.40615

0.0000000
0.9801587
10164.38262



0.0178165
0.6717752
15178.11257

0.0000000
0.9801587
10179.25579



0.0029193
0.7279693
15361.4929

0.0000000
0.9801587
10199.786



0.0001571
0.7841635
15915.33173

0.0000000
0.9801587
10247.31042



0.0000920
0.8122605
16093.36476

0.0000000
0.9801587
10308.99693



0.0010102
0.7279693
17426.66866

0.0000000
0.9801587
10324.98028



0.0000042
0.8544061
18048.90648

0.0000000
0.9801587
10351.28255



0.0186220
0.3128991
23037.50948

0.0000000
0.9801587
10382.71287



0.0000013
0.8684547
28178.79099

0.0000000
0.9801587
10437.59021



0.0000000
0.9527458
29021.87789

0.0000000
0.9801587
10456.27805



0.0000000
0.9246488
30269.89108

0.0000000
0.9365079
10586.5933



0.0000039
0.8403576
31162.97802

0.0000000
0.9656085
10639.37916



0.0186220
0.2988506
33490.36172

0.0000000
0.9801587
10659.7841



0.0089131
0.2988506
34479.07332

0.0000000
0.9656085
10714.34361



0.0001376
0.2362708
42060.31032

0.0000000
0.9365079
10736.08599



0.0036083
0.2848020
44686.33634

0.0000002
0.8928571
10828.01891



0.0066526
0.2848020
45344.38107

0.0000001
0.9365079
10910.64978



0.0005243
0.2286079
46173.68592

0.0000004
0.8928571
10929.45696



0.0040055
0.2848020
47417.69242

0.0001155
0.7764550
10952.36983


F6CSH
0.0000000
0.9814815
10034.41899

0.0078125
0.6746032
11084.38324



0.0000000
0.9814815
10134.16987

0.0018417
0.2526455
11471.46464



0.0000000
0.9814815
10164.38262

0.0001518
0.2089947
11571.8247



0.0000000
0.9814815
10179.25579

0.0000000
0.0925926
11623.61757



0.0000000
0.9814815
10199.786

0.0000001
0.0780423
11673.12834



0.0000000
0.9814815
10247.31042

0.0000000
0.0343915
11750.83857



0.0000000
0.9814815
10308.99693

0.0000000
0.0634921
11779.63819



0.0000000
0.9814815
10324.98028

0.0000000
0.0343915
11824.74215



0.0000000
0.9814815
10351.28255

0.0000000
0.0634921
11886.09971



0.0000000
0.9814815
10382.71287

0.0000000
0.0343915
11982.74557



0.0000000
0.9814815
10437.59021

0.0000000
0.0489418
12017.01197



0.0000000
0.9814815
10456.27805

0.0000000
0.0343915
12050.07302



0.0000000
0.9543210
10586.5933

0.0000000
0.0198413
12170.65112



0.0000000
0.9679012
10639.37916

0.0000000
0.0634921
12200.58095



0.0000000
0.9814815
10659.7841

0.0000007
0.1362434
12243.19154



0.0000000
0.9679012
10714.34361

0.0110152
0.6600529
12577.78835



0.0000000
0.9679012
10736.08599

0.0000021
0.1216931
12747.38612



0.0000066
0.8456790
10828.01891

0.0000000
0.0634921
12889.83948



0.0000000
0.9271605
10910.64978

0.0000000
0.0198413
13157.2016



0.0000002
0.9000000
10929.45696

0.0000000
0.0780423
13373.91926



0.0000646
0.7777778
10952.36983

0.0001624
0.2089947
13429.21615



0.0000429
0.8049383
11084.38324

0.0001624
0.2235450
13859.59685



0.0096227
0.6827160
11141.2016

0.0001738
0.2235450
13899.93271



0.0213677
0.6827160
11175.10112

0.0000000
0.0198413
14029.68761



0.0000348
0.1913580
11471.46464

0.0000000
0.0198413
14160.13964



0.0004124
0.2537037
11571.8247

0.0000000
0.0198413
14336.01183



0.0000001
0.0907407
11623.61757

0.0000000
0.0489418
14434.26849



0.0000009
0.1179012
11673.12834

0.0001078
0.8055556
14665.79315



0.0000000
0.0419753
11750.83857

0.0000221
0.8201058
14829.46698



0.0000000
0.0419753
11779.63819

0.0042085
0.2817460
15063.55589



0.0000000
0.0283951
11824.74215

0.0006316
0.2671958
15244.10632



0.0000000
0.0419753
11886.09971

0.0000000
0.0198413
15420.52874



0.0000000
0.0283951
11982.74557

0.0000055
0.1362434
15617.44859



0.0000000
0.0827160
12017.01197

0.0000002
0.8928571
15840.99957



0.0000000
0.0283951
12050.07302

0.0325041
0.6309524
16095.07951



0.0000000
0.0283951
12170.65112

0.0000002
0.9074074
16555.54127



0.0000000
0.0555556
12200.58095

0.0000001
0.9074074
16719.92602



0.0000033
0.1506173
12243.19154

0.0000000
0.0634921
17530.97848



0.0000245
0.8049383
12577.78835

0.0000000
0.0343915
17656.32521



0.0000373
0.1641975
12747.38612

0.0000000
0.9801587
18041.10658



0.0000001
0.1098765
12889.83948

0.0000000
0.9365079
18241.15243



0.0000000
0.0148148
13157.2016

0.0000939
0.7764550
18621.70523



0.0000000
0.0691358
13373.91926

0.0000238
0.1798942
23184.82846



0.0013163
0.2592593
13429.21615

0.0262606
0.3253968
23404.4619



0.0006636
0.2592593
13859.59685

0.0000004
0.0925926
33564.57869



0.0013163
0.2592593
13899.93271

0.0000037
0.1362434
33807.33449



0.0000000
0.0283951
14029.68761

0.0000010
0.1507937
39178.65241



0.0000000
0.0148148
14160.13964

0.0005578
0.2380952
39783.20564



0.0000000
0.0148148
14336.01183

0.0000276
0.1798942
43603.62674



0.0000000
0.0283951
14434.26849

0.0000002
0.1071429
44709.3435



0.0000400
0.8185185
14665.79315

0.0000176
0.1507937
45499.42435



0.0000004
0.8728395
14829.46698

0.0000040
0.1362434
46648.55176



0.0040176
0.3080247
15063.55589

0.0416359
0.3544974
47902.96874



0.0000844
0.1913580
15244.10632



0.0000000
0.0148148
15420.52874



0.0000006
0.1506173
15617.44859



0.0000373
0.8049383
15840.99957



0.0000003
0.9000000
16555.54127



0.0000002
0.9000000
16719.92602



0.0000000
0.0555556
17530.97848



0.0000000
0.0148148
17656.32521



0.0000000
0.9814815
18041.10658



0.0000000
0.9135802
18241.15243



0.0000148
0.8185185
18621.70523



0.0001099
0.2049383
23184.82846



0.0000000
0.0555556
33564.57869



0.0000000
0.0962963
33807.33449



0.0000171
0.1913580
39178.65241



0.0004651
0.2129630
39783.20564



0.0000103
0.1777778
43603.62674



0.0000000
0.0827160
44709.3435



0.0000111
0.1506173
45499.42435



0.0001252
0.2185185
46648.55176
















TABLE 23







Biomarkers identified by SELDI technology with a p-value smaller or equal to 0.05 that can


discriminate secondary DENV infection from OFI. Grouped according to fraction it was found in.












Ct1_2 vs 2DF1_2

Ct1_2 vs 2DHF1_2
















p-value
roc value
m/z average

p-value
roc value
m/z average


















F1CSL
0.0000000
0.0151515
2625.181487
F1CSL
0.0000000
0.0454545
2625.181487



0.0000000
0.0303030
2667.845783

0.0000000
0.0454545
2667.845783



0.0000000
0.0151515
2741.725854

0.0000000
0.0303030
2741.725854



0.0000000
0.0606061
2856.727191

0.0000001
0.0757576
2856.727191



0.0000000
0.0151515
2872.154934

0.0000000
0.0303030
2872.154934



0.0000000
0.0454545
2921.681011

0.0000004
0.0909091
2921.681011



0.0000000
0.0454545
2990.831829

0.0000000
0.0303030
2990.831829



0.0000000
0.0303030
3043.041845

0.0000002
0.0757576
3043.041845



0.0000001
0.0606061
3071.048466

0.0000000
0.0757576
3175.340726



0.0000000
0.0303030
3145.264181

0.0000000
0.0757576
3209.081505



0.0000000
0.0151515
3175.340726

0.0000000
0.0606061
3262.112346



0.0000000
0.0303030
3209.081505

0.0000000
0.0151515
3280.760876



0.0000000
0.0151515
3262.112346

0.0000001
0.0757576
3307.659966



0.0000000
0.0000000
3280.760876

0.0000052
0.1303030
3358.521584



0.0000000
0.0606061
3307.659966

0.0000000
0.0454545
3589.060244



0.0000000
0.0303030
3358.521584

0.0000000
0.0303030
3680.115892



0.0000005
0.0848485
3420.037403

0.0000000
0.0757576
3814.303638



0.0000000
0.0151515
3437.42944

0.0000000
0.0303030
4063.241745



0.0000001
0.0757576
3511.538012

0.0000001
0.0757576
4182.768879



0.0000000
0.0151515
3589.060244

0.0000003
0.0909091
4299.724384



0.0000001
0.0757576
3631.061336

0.0000000
0.9727273
5559.119903



0.0000000
0.0151515
3680.115892

0.0000000
0.9727273
5574.710692



0.0000000
0.0151515
3814.303638

0.0000000
0.9878788
5675.016336



0.0000003
0.0909091
3863.107595

0.0000000
0.9878788
5689.765089



0.0000000
0.0606061
3949.327603

0.0000000
0.9424242
6143.838117



0.0000001
0.0606061
3965.762902

0.0000028
0.8666667
6487.509564



0.0000000
0.0151515
4063.241745

0.0000004
0.9121212
6591.475901



0.0000000
0.0454545
4182.768879

0.0000000
0.9575758
6944.325104



0.0000000
0.0454545
4279.033423

0.0015391
0.2303030
9170.910437



0.0000000
0.0606061
4299.724384

0.0000001
0.9272727
11902.07203



0.0000000
0.0303030
4524.063737

0.0000001
0.9121212
12083.60453



0.0000000
0.9575758
5559.119903

0.0000000
0.9727273
13375.41938



0.0000000
0.9424242
5574.710692

0.0000003
0.9272727
14757.7248



0.0000000
0.9727273
5675.016336

0.0000006
0.9121212
15198.38517



0.0000000
0.9727273
5689.765089

0.0000000
0.9424242
22937.26034



0.0000000
0.9575758
6143.838117

0.0000000
0.9424242
23544.76704



0.0000000
0.9424242
6487.509564

0.0000001
0.9121212
44810.68881



0.0000000
0.9575758
6591.475901

0.0000003
0.9121212
45184.10294



0.0000002
0.8969697
6683.82645

0.0000001
0.9272727
46357.92645



0.0000002
0.9121212
6805.698908
F1CSH
0.0005411
0.7533333
10025.87122



0.0000000
0.9878788
6944.325104

0.0000004
0.8866667
10130.28134



0.0000004
0.9121212
10101.46975

0.0000057
0.8466667
10196.44234



0.0000002
0.9272727
11902.07203

0.0000001
0.9000000
10413.34138



0.0000006
0.9121212
12083.60453

0.0000001
0.8866667
10444.68912



0.0000000
0.9727273
13375.41938

0.0000001
0.9000000
10461.79685



0.0000002
0.9272727
15198.38517

0.0000001
0.9000000
10490.47668



0.0000000
0.9424242
22937.26034

0.0000001
0.9000000
10496.60495



0.0000000
0.9575758
23544.76704

0.0000001
0.9000000
10514.61735



0.0000000
0.9575758
44810.68881

0.0000000
0.0733333
10882.15141



0.0000000
0.9575758
45184.10294

0.0000000
0.0466667
10908.0378



0.0000000
0.9575758
45616.26741

0.0000000
0.0333333
10926.28045



0.0000000
0.9575758
46357.92645

0.0000000
0.0200000
10951.30804


F1CSH
0.0000061
0.8333333
10130.28134

0.0000000
0.0866667
11040.90474



0.0000743
0.7933333
10196.44234

0.0000000
0.0466667
11078.55501



0.0000046
0.8333333
10241.85866

0.0000000
0.0600000
11154.55919



0.0000040
0.8466667
10444.68912

0.0000000
0.0733333
11197.83206



0.0000026
0.8466667
10461.79685

0.0000000
0.0200000
12009.62084



0.0000000
0.1000000
10808.95097

0.0000000
0.0333333
12080.71023



0.0000000
0.0733333
10835.54836

0.0000000
0.0466667
12112.68049



0.0000000
0.0466667
10882.15141

0.0000000
0.0600000
12132.64107



0.0000000
0.0333333
10908.0378

0.0000000
0.0866667
12163.0594



0.0000000
0.0200000
10926.28045

0.0000000
0.0600000
12268.93847



0.0000000
0.0200000
10951.30804

0.0000000
0.0333333
12358.50727



0.0000000
0.0333333
11040.90474

0.0000000
0.0466667
12493.48295



0.0000000
0.0333333
11078.55501

0.0000000
0.0733333
13839.31124



0.0000000
0.0466667
11154.55919

0.0000000
0.0200000
13930.38141



0.0000000
0.0466667
11197.83206

0.0000000
0.0866667
14140.38344



0.0000001
0.1000000
11853.93279

0.0000000
0.0866667
15200.55252



0.0000000
0.0333333
12009.62084

0.0000000
0.0866667
107068.7099



0.0000000
0.0200000
12080.71023

0.0000001
0.1000000
113333.4714



0.0000000
0.0200000
12112.68049

0.0000000
0.0200000
192541.7062



0.0000000
0.0466667
12132.64107
F1ISL
0.0000000
0.9690476
2503.154582



0.0000000
0.0466667
12163.0594

0.0000000
0.9559524
2513.073032



0.0000000
0.0466667
12268.93847

0.0000001
0.9035714
2517.656451



0.0000000
0.0333333
12358.50727

0.0000001
0.9035714
2522.859861



0.0000000
0.0466667
12493.48295

0.0000000
0.9297619
2523.669165



0.0000001
0.1000000
13655.28043

0.0000000
0.9428571
2524.520651



0.0000000
0.0866667
13839.31124

0.0000000
0.9166667
2549.242272



0.0000000
0.0466667
13930.38141

0.0000000
0.9297619
2565.111611



0.0000000
0.0866667
15200.55252

0.0000000
0.9166667
2570.087202



0.0000001
0.1000000
51139.33489

0.0000003
0.9035714
2578.662526



0.0000001
0.1000000
53826.57027

0.0000000
0.9297619
2595.854473



0.0000000
0.0866667
62969.82218

0.0000001
0.9035714
2601.511801



0.0000001
0.1000000
102198.3507

0.0000000
0.9690476
2614.032211



0.0000000
0.0866667
107068.7099

0.0000000
0.9428571
2617.583867



0.0000000
0.0733333
192541.7062

0.0000000
0.9166667
2621.696749


F1ISL
0.0000000
0.9821429
2503.154582

0.0000000
0.9166667
2631.998607



0.0000000
0.9297619
2513.073032

0.0000000
0.9297619
2634.20847



0.0000000
0.9166667
2517.656451

0.0000000
0.9559524
2635.700585



0.0000000
0.9166667
2521.649116

0.0000000
0.9559524
2637.169955



0.0000002
0.9035714
2522.859861

0.0000000
0.9559524
2637.618569



0.0000000
0.9559524
2565.111611

0.0000000
0.9428571
2638.060903



0.0000000
0.9166667
2570.087202

0.0000000
0.9559524
2638.54484



0.0000000
0.9297619
2595.854473

0.0000000
0.9690476
2639.173428



0.0000000
0.9166667
2601.511801

0.0000000
0.9821429
2639.795493



0.0000001
0.9035714
2614.032211

0.0000000
0.9821429
2640.467576



0.0000000
0.9428571
2617.583867

0.0000000
0.9821429
2641.164374



0.0000001
0.9035714
2635.700585

0.0000000
0.9821429
2641.926515



0.0000000
0.9690476
2637.169955

0.0000000
0.9821429
2642.885878



0.0000000
0.9559524
2637.618569

0.0000000
0.9297619
2643.949918



0.0000000
0.9559524
2638.060903

0.0000000
0.9428571
2646.227988



0.0000000
0.9559524
2638.54484

0.0000001
0.9035714
2659.814331



0.0000000
0.9559524
2639.173428

0.0000000
0.9297619
2661.194232



0.0000001
0.9035714
2639.795493

0.0000000
0.9559524
2661.84737



0.0000003
0.9035714
2640.467576

0.0000000
0.9428571
2662.858635



0.0000000
0.9428571
2641.164374

0.0000000
0.9166667
2666.570765



0.0000000
0.9821429
2641.926515

0.0000000
0.9297619
2679.146726



0.0000000
0.9821429
2642.885878

0.0000000
0.9821429
2681.308781



0.0000000
0.9559524
2643.949918

0.0000000
0.9428571
2684.692433



0.0000000
0.9428571
2646.227988

0.0000000
0.9428571
2686.45453



0.0000002
0.9035714
2659.814331

0.0000000
0.9559524
2704.270371



0.0000000
0.9297619
2661.194232

0.0000000
0.9428571
2709.71622



0.0000000
0.9559524
2661.84737

0.0000000
0.9166667
2726.112884



0.0000000
0.9821429
2662.858635

0.0000000
0.9559524
2738.579429



0.0000000
0.9166667
2666.570765

0.0000000
0.9821429
2749.363653



0.0000000
0.9166667
2674.971433

0.0000000
0.9428571
2752.680443



0.0000000
0.9297619
2679.146726

0.0000001
0.9035714
2753.648132



0.0000000
0.9821429
2681.308781

0.0000002
0.9035714
2753.857675



0.0000000
0.9821429
2684.692433

0.0000002
0.9035714
2753.946851



0.0000000
0.9821429
2686.45453

0.0000000
0.9559524
2755.192724



0.0000000
0.9821429
2704.270371

0.0000000
0.9166667
2772.763638



0.0000000
0.9821429
2709.71622

0.0000000
0.9690476
2788.581536



0.0000000
0.9166667
2738.579429

0.0000000
0.9690476
2791.185756



0.0000000
0.9428571
2749.363653

0.0000000
0.9559524
2796.034541



0.0000000
0.9821429
2752.680443

0.0000000
0.9559524
2803.236487



0.0000000
0.9821429
2753.648132

0.0000000
0.9690476
2811.436125



0.0000000
0.9821429
2753.857675

0.0000000
0.9559524
2817.188037



0.0000000
0.9821429
2753.946851

0.0000000
0.9821429
2819.017882



0.0000000
0.9690476
2755.192724

0.0000000
0.9297619
2824.989455



0.0000000
0.9297619
2772.763638

0.0000000
0.9821429
2859.505809



0.0000000
0.9428571
2775.410216

0.0000000
0.9821429
2866.751136



0.0000000
0.9690476
2788.581536

0.0000000
0.9297619
2879.703192



0.0000000
0.9297619
2791.185756

0.0000000
0.9821429
2883.890105



0.0000000
0.9428571
2796.034541

0.0000000
0.9428571
2887.453423



0.0000000
0.9297619
2803.236487

0.0000000
0.9166667
2894.062647



0.0000000
0.9821429
2811.436125

0.0000000
0.9297619
2904.031336



0.0000000
0.9428571
2817.188037

0.0000000
0.9428571
2906.91955



0.0000000
0.9428571
2824.989455

0.0000000
0.9428571
2908.899563



0.0000000
0.9559524
2859.505809

0.0000003
0.9035714
2910.510035



0.0000000
0.9690476
2866.751136

0.0000000
0.9428571
2911.83993



0.0000000
0.9821429
2879.703192

0.0000000
0.9297619
2915.763212



0.0000000
0.9821429
2883.890105

0.0000000
0.9166667
2927.060302



0.0000000
0.9821429
2887.453423

0.0000001
0.9035714
2930.543416



0.0000000
0.9559524
2894.062647

0.0000000
0.9821429
2933.649099



0.0000000
0.9428571
2904.031336

0.0000000
0.9690476
2948.917414



0.0000000
0.9690476
2906.91955

0.0000000
0.9297619
2951.608271



0.0000000
0.9428571
2908.899563

0.0000001
0.9083333
2953.403838



0.0000000
0.9690476
2910.510035

0.0000000
0.9035714
2976.912269



0.0000000
0.9690476
2911.83993

0.0000000
0.9559524
2993.494244



0.0000000
0.9166667
2915.763212

0.0000000
0.9559524
2997.743006



0.0000000
0.9297619
2927.060302

0.0000001
0.9166667
3083.362119



0.0000000
0.9559524
2930.543416

0.0000000
0.9559524
3092.389989



0.0000000
0.9690476
2933.649099

0.0000000
0.9297619
3101.60504



0.0000002
0.9035714
2938.720507

0.0000002
0.9035714
3149.522222



0.0000000
0.9428571
2948.917414

0.0000000
0.9559524
3158.254319



0.0000000
0.9297619
2951.608271

0.0000000
0.9035714
3166.387243



0.0000000
0.9476190
2953.403838

0.0000001
0.9035714
3197.777988



0.0000000
0.9214286
2956.963771

0.0000000
0.9035714
3221.413524



0.0000000
0.9428571
2976.912269

0.0000000
0.9035714
3318.297755



0.0000000
0.9559524
2993.494244

0.0000000
0.9166667
3369.373189



0.0000000
0.9428571
2997.743006

0.0000000
0.9428571
3397.259967



0.0000000
0.9297619
3015.428516

0.0000000
0.9297619
3402.125169



0.0000001
0.9035714
3020.653111

0.0000002
0.9035714
3417.509394



0.0000001
0.9035714
3042.639369

0.0000000
0.9559524
3430.642457



0.0000000
0.9166667
3066.155713

0.0000000
0.9821429
3445.720567



0.0000000
0.9297619
3083.362119

0.0000000
0.9690476
3468.46665



0.0000000
0.9559524
3092.389989

0.0000000
0.9428571
3488.857635



0.0000000
0.9428571
3113.412549

0.0000000
0.9821429
3515.357908



0.0000000
0.9035714
3149.522222

0.0000000
0.9166667
3536.763944



0.0000000
0.9559524
3158.254319

0.0000000
0.9166667
3644.486854



0.0000000
0.9297619
3172.450888

0.0000000
0.9166667
3790.742865



0.0000000
0.9821429
3177.822062

0.0000000
0.9297619
3807.332552



0.0000002
0.9035714
3213.068347

0.0000001
0.9166667
4418.467916



0.0000000
0.9559524
3221.413524
F1ISH
0.0000000
0.9855967
10011.99352



0.0000001
0.9166667
3314.079782

0.0000000
0.9855967
10020.52117



0.0000000
0.9166667
3318.297755

0.0000000
0.9855967
10025.43594



0.0000001
0.9035714
3377.906174

0.0000000
0.9855967
10028.64467



0.0000000
0.9690476
3397.259967

0.0000000
0.9855967
10036.97216



0.0000000
0.9297619
3402.125169

0.0000000
0.9855967
10051.63047



0.0000000
0.9166667
3417.509394

0.0000000
0.9855967
10061.98167



0.0000000
0.9297619
3430.642457

0.0000000
0.9855967
10072.44679



0.0000000
0.9428571
3445.720567

0.0000000
0.9855967
10081.58862



0.0000000
0.9297619
3456.301995

0.0000000
0.9855967
10090.2363



0.0000000
0.9821429
3468.46665

0.0000000
0.9855967
10098.45601



0.0000000
0.9166667
3478.572514

0.0000000
0.9855967
10105.92173



0.0000000
0.9559524
3488.857635

0.0000000
0.9855967
10114.78187



0.0000000
0.9690476
3515.357908

0.0000000
0.9855967
10135.6053



0.0000000
0.9428571
3528.345658

0.0000000
0.9855967
10147.36272



0.0000000
0.9297619
3536.763944

0.0000000
0.9855967
10162.00816



0.0000000
0.9428571
3644.486854

0.0000000
0.9718793
10175.58746



0.0000000
0.9166667
3687.780782

0.0000000
0.9581619
10187.91964



0.0000000
0.9297619
3772.107649

0.0000000
0.9307270
10198.46953



0.0000000
0.9035714
3790.742865

0.0000000
0.9581619
10208.17418



0.0000001
0.9035714
3807.332552

0.0000000
0.9444444
10217.54983



0.0000000
0.9428571
3827.712827

0.0000000
0.9170096
10230.57425



0.0000000
0.9035714
3891.091076

0.0000000
0.9307270
10262.82559


F1ISH
0.0000000
0.9855967
10011.99352

0.0000000
0.9444444
10294.56991



0.0000000
0.9855967
10020.52117

0.0000000
0.9581619
10306.64326



0.0000000
0.9855967
10025.43594

0.0000001
0.9170096
10324.32336



0.0000000
0.9855967
10028.64467

0.0000002
0.9170096
10346.11123



0.0000000
0.9855967
10036.97216

0.0000001
0.0829904
11508.64295



0.0000000
0.9855967
10051.63047

0.0000002
0.0967078
11533.00585



0.0000000
0.9855967
10061.98167

0.0000000
0.0281207
11553.43803



0.0000000
0.9855967
10072.44679

0.0000000
0.0555556
11576.23632



0.0000000
0.9855967
10081.58862

0.0000001
0.0692730
11596.70327



0.0000000
0.9855967
10090.2363

0.0000001
0.0967078
11607.15919



0.0000000
0.9855967
10098.45601

0.0000000
0.0692730
11623.79327



0.0000000
0.9855967
10105.92173

0.0000000
0.0555556
11642.6909



0.0000000
0.9855967
10114.78187

0.0000000
0.0281207
11662.86838



0.0000000
0.9855967
10135.6053

0.0000000
0.0555556
11682.71261



0.0000000
0.9855967
10147.36272

0.0000004
0.0967078
11737.66458



0.0000000
0.9855967
10162.00816

0.0000000
0.0692730
11849.00542



0.0000000
0.9855967
10175.58746

0.0000000
0.0692730
11881.99843



0.0000000
0.9718793
10187.91964

0.0000000
0.0418381
11909.00114



0.0000000
0.9444444
10198.46953

0.0000000
0.0555556
11918.54028



0.0000000
0.9718793
10208.17418

0.0000000
0.0692730
11925.28834



0.0000000
0.9718793
10217.54983

0.0000000
0.0692730
11946.65943



0.0000000
0.9718793
10230.57425

0.0000001
0.0967078
12009.23838



0.0000000
0.9581619
10239.94928

0.0000000
0.0555556
12043.45183



0.0000000
0.9581619
10247.57672

0.0000000
0.0144033
12063.7875



0.0000000
0.9718793
10262.82559

0.0000000
0.0555556
12080.17934



0.0000000
0.9718793
10294.56991

0.0000000
0.0692730
12095.12377



0.0000000
0.9718793
10306.64326

0.0000000
0.0692730
12101.64446



0.0000000
0.9581619
10324.32336

0.0000000
0.0555556
12119.25076



0.0000000
0.9581619
10346.11123

0.0000000
0.0418381
12141.1169



0.0000000
0.9581619
10363.09118

0.0000000
0.0281207
13517.3522



0.0000000
0.9581619
10383.28509

0.0000001
0.0829904
13572.89265



0.0000000
0.9170096
10402.18844

0.0000000
0.0555556
13664.61109



0.0000003
0.9032922
10962.30392

0.0000000
0.0555556
13743.15877



0.0000005
0.9032922
11057.41916

0.0000000
0.0281207
14868.45486



0.0000001
0.0692730
11533.00585

0.0000000
0.0418381
15277.38043



0.0000000
0.0692730
11553.43803

0.0000002
0.0967078
15477.52932



0.0000000
0.0555556
11596.70327
F5CSL
0.0000000
0.0287356
3439.012926



0.0000000
0.0555556
11607.15919

0.0377842
0.6574713
6466.54012



0.0000000
0.0692730
11623.79327

0.0001916
0.7839080
6490.498273



0.0000000
0.0555556
11642.6909

0.0146436
0.6701149
8845.312346



0.0000000
0.0418381
11662.86838

0.0055263
0.7080460
8966.56789



0.0000000
0.0692730
11682.71261

0.0091111
0.6827586
9174.061297



0.0000002
0.0967078
11737.66458

0.0016980
0.7333333
25619.17312



0.0000001
0.0829904
11758.16873

0.0005779
0.7459770
33593.85227



0.0000001
0.0829904
11881.99843

0.0018823
0.7206897
34007.46796



0.0000001
0.0829904
11909.00114

0.0020848
0.7206897
34545.63707



0.0000002
0.0967078
11918.54028

0.0018823
0.7333333
34736.3154



0.0000001
0.0829904
11925.28834

0.0021934
0.7333333
34944.03116



0.0000002
0.0829904
11930.35684

0.0037803
0.7206897
35450.83994



0.0000000
0.0555556
12043.45183

0.0001504
0.2143678
47192.29627



0.0000000
0.0418381
12063.7875
F5CSH
0.0000004
0.9186795
10120.52937



0.0000000
0.0829904
12080.17934

0.0000003
0.9186795
10146.3839



0.0000000
0.0692730
12095.12377

0.0000004
0.9186795
10162.43733



0.0000001
0.0829904
12101.64446

0.0000004
0.9186795
10178.08813



0.0000000
0.0692730
12119.25076

0.0000006
0.9186795
10195.2301



0.0000000
0.0555556
13517.3522

0.0000010
0.9186795
10205.50105



0.0000001
0.0967078
13572.89265

0.0000011
0.9186795
10215.263



0.0000000
0.0555556
13743.15877

0.0000009
0.9186795
10227.99328



0.0000000
0.0418381
14868.45486

0.0000007
0.9186795
10237.23424



0.0000000
0.0555556
15277.38043

0.0000004
0.9186795
10254.36842



0.0000000
0.0829904
15477.52932

0.0000002
0.9186795
10281.47372



0.0000000
0.0281207
75269.22784

0.0000002
0.9186795
10296.18987



0.0000000
0.0281207
150365.8563

0.0000002
0.9186795
10308.69901


F5CSL
0.0000000
0.0540230
3439.012926

0.0000002
0.9186795
10341.43948



0.0000018
0.8597701
6689.07332

0.0000002
0.9186795
10359.22541



0.0016980
0.7333333
8845.312346

0.0000002
0.9186795
10373.50565



0.0001330
0.7839080
8966.56789

0.0000001
0.9347826
10388.7689



0.0000860
0.8091954
9174.061297

0.0000001
0.9186795
10402.74887



0.0187682
0.6574713
9319.311385

0.0000001
0.9347826
10418.95812



0.0000135
0.8344828
25619.17312

0.0000004
0.9186795
10433.30772



0.0069584
0.6954023
35450.83994

0.0000002
0.9186795
10452.21013



0.0000004
0.9186795
10120.52937

0.0000000
0.9508857
10465.90587



0.0000003
0.9186795
10146.3839

0.0000001
0.9347826
10481.18415



0.0000004
0.9186795
10162.43733

0.0000002
0.9186795
10498.6017



0.0000003
0.9186795
10178.08813

0.0000006
0.9025765
10508.92986



0.0000003
0.9186795
10195.2301

0.0000004
0.9186795
10514.91432



0.0000002
0.9186795
10205.50105

0.0000004
0.9186795
10527.20915



0.0000005
0.9186795
10215.263

0.0000006
0.9025765
10546.16486



0.0000005
0.9186795
10227.99328

0.0000002
0.9186795
10596.28169



0.0000004
0.9186795
10237.23424

0.0000007
0.9025765
10616.84987



0.0000003
0.9186795
10254.36842

0.0000007
0.9186795
10636.82577



0.0000002
0.9186795
10281.47372

0.0000002
0.9186795
10654.23706



0.0000002
0.9186795
10296.18987

0.0000002
0.9186795
10665.17962



0.0000001
0.9186795
10308.69901

0.0000016
0.9025765
10751.55877



0.0000002
0.9186795
10341.43948

0.0000011
0.9025765
10773.15923



0.0000002
0.9186795
10359.22541

0.0000004
0.0813205
12027.11641



0.0000002
0.9186795
10373.50565

0.0000003
0.0652174
12052.53166



0.0000001
0.9186795
10388.7689

0.0000004
0.0974235
13028.74639



0.0000001
0.9186795
10402.74887

0.0000000
0.0491143
13065.70027



0.0000001
0.9347826
10418.95812

0.0000000
0.0652174
13099.66919



0.0000002
0.9186795
10433.30772

0.0000003
0.0813205
13187.45517



0.0000001
0.9186795
10452.21013

0.0000009
0.0974235
13233.79106



0.0000000
0.9508857
10465.90587

0.0000002
0.0813205
13291.70681



0.0000000
0.9508857
10481.18415

0.0000002
0.0652174
13320.77403



0.0000001
0.9347826
10498.6017

0.0000001
0.0652174
13356.70436



0.0000002
0.9186795
10508.92986

0.0000000
0.0330113
14214.24986



0.0000001
0.9347826
10514.91432

0.0000000
0.0169082
14344.33114



0.0000001
0.9347826
10527.20915

0.0000000
0.0491143
17653.98849



0.0000002
0.9186795
10546.16486

0.0000001
0.0652174
45254.93201



0.0000001
0.9186795
10575.10057

0.0000011
0.9025765
61369.70702



0.0000000
0.9508857
10596.28169
F6CSL
0.0000046
0.8403576
2990.018687



0.0000001
0.9186795
10616.84987

0.0000168
0.8122605
3360.866902



0.0000000
0.9347826
10636.82577

0.0000050
0.8263091
4179.401548



0.0000000
0.9347826
10654.23706

0.0000022
0.8544061
4198.411686



0.0000002
0.9025765
10665.17962

0.0000016
0.8684547
4252.48155



0.0000012
0.9025765
10694.26283

0.0000260
0.8122605
4354.864569



0.0000003
0.0974235
11996.5121

0.0000007
0.8544061
4410.72305



0.0000009
0.0974235
12052.53166

0.0000022
0.8544061
6487.935491



0.0000006
0.0974235
12974.23339

0.0000019
0.8684547
6689.164478



0.0000000
0.0330113
13065.70027

0.0000099
0.8263091
8842.966359



0.0000000
0.0330113
13099.66919

0.0000039
0.8544061
9046.727666



0.0000001
0.0652174
13187.45517

0.0029193
0.7139208
9165.408341



0.0000000
0.0169082
13233.79106

0.0001288
0.2081737
10733.07419



0.0000000
0.0330113
13291.70681

0.0000001
0.0881226
12480.3404



0.0000002
0.0813205
13320.77403

0.0000000
0.0600255
12651.6673



0.0000000
0.0491143
13356.70436
F6CSH
0.0000000
0.9801587
10034.41899



0.0000007
0.0974235
13426.83767

0.0000000
0.9801587
10134.16987



0.0000001
0.0813205
14019.70586

0.0000000
0.9801587
10164.38262



0.0000000
0.0169082
14214.24986

0.0000000
0.9801587
10179.25579



0.0000000
0.0169082
14344.33114

0.0000000
0.9801587
10199.786



0.0000000
0.0491143
17653.98849

0.0000000
0.9801587
10247.31042



0.0000001
0.0813205
45254.93201

0.0000000
0.9801587
10308.99693


F6CSL
0.0000001
0.8965517
2990.018687

0.0000000
0.9801587
10324.98028



0.0000016
0.8544061
3360.866902

0.0000000
0.9801587
10351.28255



0.0000002
0.8965517
4410.72305

0.0000000
0.9801587
10382.71287



0.0000000
0.8965517
6487.935491

0.0000000
0.9801587
10437.59021



0.0000000
0.9386973
6689.164478

0.0000000
0.9801587
10456.27805



0.0000000
0.9386973
8842.966359

0.0000000
0.9365079
10586.5933



0.0000000
0.9527458
9046.727666

0.0000000
0.9656085
10639.37916



0.0000001
0.0740741
12480.3404

0.0000000
0.9801587
10659.7841



0.0000001
0.0881226
12651.6673

0.0000000
0.9656085
10714.34361



0.0000000
0.9527458
29021.87789

0.0000000
0.9365079
10736.08599



0.0000000
0.9246488
30269.89108

0.0000001
0.9365079
10910.64978


F6CSH
0.0000000
0.9814815
10034.41899

0.0000000
0.0925926
11623.61757



0.0000000
0.9814815
10134.16987

0.0000001
0.0780423
11673.12834



0.0000000
0.9814815
10164.38262

0.0000000
0.0343915
11750.83857



0.0000000
0.9814815
10179.25579

0.0000000
0.0634921
11779.63819



0.0000000
0.9814815
10199.786

0.0000000
0.0343915
11824.74215



0.0000000
0.9814815
10247.31042

0.0000000
0.0634921
11886.09971



0.0000000
0.9814815
10308.99693

0.0000000
0.0343915
11982.74557



0.0000000
0.9814815
10324.98028

0.0000000
0.0489418
12017.01197



0.0000000
0.9814815
10351.28255

0.0000000
0.0343915
12050.07302



0.0000000
0.9814815
10382.71287

0.0000000
0.0198413
12170.65112



0.0000000
0.9814815
10437.59021

0.0000000
0.0634921
12200.58095



0.0000000
0.9814815
10456.27805

0.0000000
0.0634921
12889.83948



0.0000000
0.9543210
10586.5933

0.0000000
0.0198413
13157.2016



0.0000000
0.9679012
10639.37916

0.0000000
0.0780423
13373.91926



0.0000000
0.9814815
10659.7841

0.0000000
0.0198413
14029.68761



0.0000000
0.9679012
10714.34361

0.0000000
0.0198413
14160.13964



0.0000000
0.9679012
10736.08599

0.0000000
0.0198413
14336.01183



0.0000000
0.9271605
10910.64978

0.0000000
0.0489418
14434.26849



0.0000002
0.9000000
10929.45696

0.0000000
0.0198413
15420.52874



0.0000001
0.0907407
11623.61757

0.0000002
0.9074074
16555.54127



0.0000000
0.0419753
11750.83857

0.0000001
0.9074074
16719.92602



0.0000000
0.0419753
11779.63819

0.0000000
0.0634921
17530.97848



0.0000000
0.0283951
11824.74215

0.0000000
0.0343915
17656.32521



0.0000000
0.0419753
11886.09971

0.0000000
0.9801587
18041.10658



0.0000000
0.0283951
11982.74557

0.0000000
0.9365079
18241.15243



0.0000000
0.0827160
12017.01197

0.0000004
0.0925926
33564.57869



0.0000000
0.0283951
12050.07302



0.0000000
0.0283951
12170.65112



0.0000000
0.0555556
12200.58095



0.0000000
0.0148148
13157.2016



0.0000000
0.0691358
13373.91926



0.0000000
0.0283951
14029.68761



0.0000000
0.0148148
14160.13964



0.0000000
0.0148148
14336.01183



0.0000000
0.0283951
14434.26849



0.0000000
0.0148148
15420.52874



0.0000003
0.9000000
16555.54127



0.0000002
0.9000000
16719.92602



0.0000000
0.0555556
17530.97848



0.0000000
0.0148148
17656.32521



0.0000000
0.9814815
18041.10658



0.0000000
0.9135802
18241.15243



0.0000000
0.0555556
33564.57869



0.0000000
0.0962963
33807.33449



0.0000000
0.0827160
44709.3435
















TABLE 24







Biomarkers identified by SELDI technology with a p-value smaller or equal to 0.05 that can


discriminate primary DENV from secondary DENV infection. Grouped according to fraction


it was found in.












1DF1_2 vs 2DF1_2

1DHF1_2 vs 2DHF1_2
















p-value
roc value
m/z average

p-value
roc value
m/z average



















0.0000000
0.9833333
2667.845783
F1CSL
0.0000011
0.9611111
2625.181487



0.0000000
0.9833333
2856.727191

0.0000005
0.9833333
2667.845783



0.0000000
0.9833333
2872.154934

0.0000096
0.9388889
2741.725854



0.0000000
0.9666667
2921.681011

0.0000008
0.9833333
2856.727191



0.0000003
0.9333333
2990.831829

0.0000006
0.9833333
2872.154934



0.0000020
0.9000000
3043.041845

0.0000065
0.9472222
2897.527715



0.0000000
0.9833333
3145.264181

0.0000019
0.9611111
2921.681011



0.0000000
0.9666667
3175.340726

0.0000029
0.9611111
2938.078868



0.0000000
0.9833333
3209.081505

0.0000015
0.9611111
3175.340726



0.0000000
0.9833333
3262.112346

0.0000038
0.9611111
3209.081505



0.0000001
0.9500000
3280.760876

0.0000013
0.9833333
3262.112346



0.0000001
0.9500000
3307.659966

0.0000011
0.9611111
3280.760876



0.0000010
0.9166667
3358.521584

0.0000124
0.9166667
3307.659966



0.0000000
0.9833333
3420.037403

0.0004513
0.8444444
3358.521584



0.0000000
0.9833333
3437.42944

0.0000074
0.9166667
3420.037403



0.0000003
0.9333333
3459.797001

0.0000084
0.9166667
3437.42944



0.0000000
0.9833333
3511.538012

0.0000038
0.9611111
3459.786786



0.0000000
0.9833333
3589.060244

0.0000038
0.9611111
3459.797001



0.0000000
0.9833333
3631.061336

0.0000010
0.9611111
3511.538012



0.0000001
0.9333333
3680.115892

0.0000013
0.9833333
3589.060244



0.0000000
0.9666667
3799.639473

0.0000033
0.9611111
3680.115892



0.0000000
0.9833333
3814.303638

0.0000029
0.9833333
3799.639473



0.0000000
0.9833333
3863.107595

0.0000006
0.9833333
3814.303638



0.0000000
0.9666667
3884.602302

0.0000015
0.9833333
3863.107595



0.0000001
0.9500000
3923.916704

0.0000232
0.9166667
3923.916704



0.0000010
0.9166667
3949.327603

0.0000007
0.9833333
4063.241745



0.0000001
0.9666667
4063.241745

0.0000159
0.9166667
4182.768879



0.0000003
0.9333333
4143.916106

0.0000006
0.9833333
4299.724384



0.0000003
0.9333333
4182.768879

0.0000084
0.9388889
4417.386857



0.0000001
0.9666667
4279.033423

0.0000038
0.9388889
4468.900331



0.0000000
0.9666667
4299.724384

0.0000043
0.9611111
4492.301874



0.0000001
0.9333333
4417.386857

0.0000065
0.9611111
4524.063737



0.0000002
0.9333333
4435.802022

0.0000050
0.9472222
4646.271132



0.0000003
0.9333333
4450.645147

0.0000043
0.0444444
5675.016336



0.0000000
0.9500000
4468.900331

0.0000013
0.0222222
5689.765089



0.0000001
0.9500000
4492.301874

0.0004513
0.1333333
6013.779325



0.0000001
0.9388889
4524.063737

0.0000232
0.0888889
7415.948421



0.0000013
0.9166667
4573.192933

0.0000074
0.0666667
7484.032788



0.0000018
0.9166667
4588.379469

0.0000022
0.0666667
7495.290949



0.0000001
0.9388889
4646.271132

0.0000480
0.9166667
8459.519265



0.0000028
0.1000000
5689.765089

0.0000019
0.0222222
10289.18681



0.0000013
0.0944444
5767.809439

0.0000232
0.0888889
11743.17361



0.0000023
0.1000000
6487.509564

0.0000140
0.0888889
11902.07203



0.0000002
0.0666667
6591.475901

0.0000480
0.0888889
12083.60453



0.0000052
0.1000000
6642.439305

0.0000029
0.0666667
13375.41938



0.0000005
0.0833333
6652.107044

0.0000096
0.0666667
14757.7248



0.0000001
0.0500000
6683.82645

0.0000038
0.0444444
44810.68881



0.0000001
0.0500000
6805.698908

0.0000065
0.0444444
45184.10294



0.0000001
0.0333333
6860.453871

0.0000074
0.0444444
45616.26741



0.0000004
0.0833333
7415.948421

0.0000084
0.0666667
46357.92645



0.0000003
0.0833333
7484.032788

0.0008932
0.2277778
10130.28134



0.0000001
0.0333333
7495.290949

0.0000570
0.1444444
10171.11128



0.0000017
0.1000000
7865.986549

0.0000140
0.1277778
10196.44234



0.0000002
0.0666667
11491.70855

0.0000063
0.1111111
10351.51024



0.0000001
0.0666667
11677.83181

0.0000017
0.0944444
10369.2482



0.0000001
0.0666667
11743.17361

0.0000007
0.0777778
10413.34138



0.0000002
0.0666667
11902.07203

0.0000009
0.0777778
10444.68912



0.0000005
0.0833333
12590.76335

0.0000010
0.0777778
10461.79685



0.0000007
0.0833333
13115.34777

0.0000011
0.0944444
10481.71491



0.0000000
0.0166667
13375.41938

0.0000008
0.0777778
10490.47668



0.0000008
0.0833333
14757.7248

0.0000012
0.0944444
10507.40716



0.0000023
0.0833333
15198.38517

0.0000003
0.9333333
10755.48072



0.0000047
0.1000000
22937.26034

0.0000001
0.9555556
10783.37546



0.0000012
0.0666667
23544.76704

0.0000001
0.9555556
10808.95097



0.0000011
0.9222222
35405.0346

0.0000001
0.9666667
10835.54836



0.0000001
0.0333333
44810.68881

0.0000001
0.9555556
10882.15141



0.0000001
0.0333333
45184.10294

0.0000000
0.9833333
10908.0378



0.0000001
0.0333333
45616.26741

0.0000000
0.9833333
10926.28045



0.0000001
0.0333333
46357.92645

0.0000000
0.9833333
10951.30804



0.0270506
0.3138889
10130.28134

0.0000007
0.0833333
11383.78669



0.0020619
0.2625000
10171.11128

0.0000000
0.9666667
11823.52687



0.0016282
0.2666667
10196.44234

0.0000001
0.9666667
11853.93279



0.0003589
0.2250000
10241.85866

0.0000000
0.9833333
12009.62084



0.0000001
0.0861111
10490.47668

0.0000000
0.9833333
12080.71023



0.0000001
0.0722222
10507.40716

0.0000000
0.9833333
12112.68049



0.0000002
0.1000000
10514.61735

0.0000000
0.9833333
12132.64107



0.0000001
0.9166667
10808.95097

0.0000000
0.9500000
12163.0594



0.0000000
0.9444444
10835.54836

0.0000000
0.9833333
12268.93847



0.0000001
0.9305556
10882.15141

0.0000001
0.9500000
12358.50727



0.0000001
0.9027778
10908.0378

0.0000000
0.9833333
12493.48295



0.0000000
0.9305556
10926.28045

0.0000000
0.0333333
12954.81113



0.0000000
0.9861111
10951.30804

0.0000013
0.1000000
13063.59409



0.0000005
0.9027778
11078.55501

0.0000001
0.0500000
13086.15535



0.0000003
0.9027778
11725.21956

0.0000000
0.9833333
13930.38141



0.0000002
0.9027778
11823.52687

0.0000003
0.9333333
14140.38344



0.0000000
0.9305556
11853.93279

0.0000001
0.0333333
14449.85539



0.0000000
0.9722222
12009.62084

0.0000002
0.0666667
14639.78045



0.0000000
0.9861111
12080.71023

0.0000000
0.0166667
14934.23152



0.0000000
0.9583333
12112.68049

0.0000002
0.9333333
100409.516



0.0000000
0.9861111
12132.64107

0.0000018
0.9166667
101137.8334



0.0000000
0.9861111
12163.0594

0.0000002
0.9500000
102198.3507



0.0000000
0.9861111
12268.93847

0.0000011
0.9166667
107068.7099



0.0000000
0.9861111
12358.50727

0.0000002
0.9500000
113333.4714



0.0000000
0.9861111
12493.48295

0.0000004
0.9333333
174369.2245



0.0000001
0.9069444
12562.71997

0.0000000
0.9666667
192541.7062



0.0000000
0.9583333
13930.38141
F1ISL
0.0000003
0.0400000
2503.154582



0.0000000
0.9583333
14140.38344

0.0000010
0.0600000
2513.073032



0.0000006
0.9027778
192541.7062

0.0000053
0.1000000
2517.656451


F1ISL
0.0000000
0.0166667
2503.154582

0.0000060
0.0800000
2522.859861



0.0000005
0.1000000
2534.62918

0.0000012
0.0600000
2523.669165



0.0000000
0.0722222
2565.111611

0.0000007
0.0600000
2524.520651



0.0000001
0.0861111
2595.854473

0.0000030
0.0800000
2549.242272



0.0000000
0.0583333
2601.511801

0.0000067
0.1000000
2565.111611



0.0000002
0.0861111
2614.032211

0.0000008
0.0600000
2570.087202



0.0000000
0.0444444
2617.583867

0.0000021
0.0800000
2595.854473



0.0000004
0.1000000
2621.696749

0.0000053
0.1000000
2601.511801



0.0000001
0.0722222
2634.20847

0.0000005
0.0400000
2614.032211



0.0000001
0.0861111
2635.700585

0.0000006
0.0400000
2617.583867



0.0000000
0.0166667
2637.169955

0.0000013
0.0600000
2621.696749



0.0000000
0.0444444
2638.060903

0.0000024
0.0800000
2634.20847



0.0000000
0.0444444
2639.173428

0.0000005
0.0400000
2635.700585



0.0000000
0.0166667
2641.926515

0.0000003
0.0400000
2637.169955



0.0000000
0.0166667
2642.885878

0.0000003
0.0400000
2637.618569



0.0000000
0.0444444
2643.949918

0.0000004
0.0400000
2638.060903



0.0000000
0.0583333
2658.967508

0.0000004
0.0400000
2638.54484



0.0000000
0.0444444
2659.814331

0.0000001
0.0200000
2639.173428



0.0000000
0.0166667
2661.84737

0.0000001
0.0200000
2639.795493



0.0000000
0.0166667
2662.858635

0.0000001
0.0200000
2640.467576



0.0000000
0.0305556
2666.570765

0.0000001
0.0200000
2641.164374



0.0000000
0.0861111
2674.971433

0.0000001
0.0200000
2641.926515



0.0000000
0.0583333
2679.146726

0.0000001
0.0200000
2642.885878



0.0000000
0.0166667
2681.308781

0.0000030
0.0600000
2643.949918



0.0000000
0.0166667
2684.692433

0.0000053
0.1000000
2646.227988



0.0000000
0.0166667
2686.45453

0.0000005
0.0400000
2657.390501



0.0000000
0.0166667
2704.270371

0.0000105
0.1000000
2658.351659



0.0000000
0.0305556
2709.71622

0.0000013
0.0600000
2658.967508



0.0000000
0.0583333
2726.112884

0.0000010
0.0600000
2659.814331



0.0000004
0.1000000
2738.579429

0.0000053
0.0800000
2661.194232



0.0000001
0.0861111
2749.363653

0.0000007
0.0600000
2661.84737



0.0000000
0.0166667
2752.680443

0.0000015
0.0800000
2662.858635



0.0000000
0.0166667
2753.648132

0.0000009
0.0600000
2666.570765



0.0000000
0.0722222
2772.763638

0.0000021
0.0600000
2679.146726



0.0000000
0.0305556
2775.410216

0.0000001
0.0200000
2681.308781



0.0000001
0.0722222
2796.034541

0.0000021
0.0600000
2684.692433



0.0000002
0.0861111
2803.236487

0.0000003
0.0600000
2686.45453



0.0000000
0.0166667
2811.436125

0.0000002
0.0400000
2704.270371



0.0000000
0.0583333
2817.188037

0.0000004
0.0600000
2709.71622



0.0000000
0.0166667
2824.989455

0.0000131
0.1000000
2738.579429



0.0000010
0.1000000
2866.751136

0.0000002
0.0400000
2749.363653



0.0000000
0.0305556
2879.703192

0.0000053
0.0800000
2752.680443



0.0000000
0.0166667
2883.890105

0.0000182
0.1000000
2753.648132



0.0000000
0.0166667
2887.453423

0.0000182
0.1000000
2753.857675



0.0000000
0.0583333
2894.062647

0.0000182
0.1000000
2753.946851



0.0000000
0.0583333
2904.031336

0.0000005
0.0400000
2755.192724



0.0000000
0.0444444
2906.91955

0.0000008
0.0600000
2772.763638



0.0000000
0.0583333
2908.899563

0.0000021
0.0800000
2788.581536



0.0000000
0.0166667
2911.83993

0.0000030
0.0800000
2791.185756



0.0000001
0.0861111
2915.763212

0.0000024
0.0800000
2796.034541



0.0000001
0.0722222
2930.543416

0.0000024
0.0800000
2803.236487



0.0000000
0.0583333
2933.649099

0.0000003
0.0400000
2811.436125



0.0000000
0.0583333
2948.917414

0.0000038
0.0600000
2817.188037



0.0000000
0.0305556
2951.608271

0.0000001
0.0200000
2819.017882



0.0000000
0.0166667
2953.403838

0.0000021
0.0600000
2824.989455



0.0000000
0.0166667
2956.963771

0.0000012
0.0600000
2883.890105



0.0000000
0.0444444
2976.912269

0.0000034
0.0800000
2887.453423



0.0000000
0.0444444
2993.494244

0.0000002
0.0200000
2933.649099



0.0000000
0.0166667
3015.428516

0.0000012
0.0600000
2948.917414



0.0000000
0.0444444
3020.653111

0.0000005
0.0400000
2951.608271



0.0000003
0.0861111
3042.639369

0.0000053
0.0800000
2953.403838



0.0000000
0.0583333
3066.155713

0.0000024
0.0800000
2976.912269



0.0000000
0.0583333
3083.362119

0.0000048
0.0800000
2993.494244



0.0000000
0.0583333
3092.389989

0.0000003
0.0400000
2997.743006



0.0000000
0.0444444
3113.412549

0.0000146
0.1000000
3015.428516



0.0000001
0.1000000
3149.522222

0.0000034
0.1000000
3066.155713



0.0000000
0.0305556
3158.254319

0.0000006
0.0800000
3092.389989



0.0000000
0.0305556
3177.822062

0.0000005
0.0600000
3129.459825



0.0000001
0.0861111
3213.068347

0.0000010
0.0800000
3158.254319



0.0000000
0.0305556
3221.413524

0.0000043
0.1000000
3197.777988



0.0000004
0.1000000
3235.296597

0.0000053
0.1000000
3213.068347



0.0000003
0.1000000
3314.079782

0.0000060
0.1000000
3221.413524



0.0000000
0.0444444
3318.297755

0.0000034
0.1000000
3235.296597



0.0000000
0.0722222
3324.2993

0.0000009
0.0600000
3276.379562



0.0000001
0.1000000
3397.259967

0.0000251
0.1000000
3285.606735



0.0000000
0.0444444
3468.46665

0.0000060
0.0800000
3290.515874



0.0000000
0.0444444
3515.357908

0.0000006
0.0600000
3315.115414



0.0000000
0.0444444
3528.345658

0.0000015
0.0600000
3315.909084



0.0000003
0.0861111
3536.763944

0.0000024
0.0800000
3316.53443



0.0000002
0.1000000
3588.453952

0.0000001
0.0200000
3318.297755



0.0000003
0.1000000
3604.347348

0.0000251
0.1000000
3321.260411



0.0000000
0.0583333
3644.486854

0.0000038
0.0800000
3324.2993



0.0000000
0.0583333
3687.780782

0.0000048
0.1000000
3369.373189



0.0000000
0.0583333
3699.672565

0.0000013
0.0600000
3397.259967



0.0000009
0.1000000
3739.751205

0.0000004
0.0400000
3445.720567



0.0000000
0.0305556
3772.107649

0.0000004
0.0600000
3468.46665



0.0000000
0.0305556
3827.712827

0.0000004
0.0600000
3515.357908



0.0000000
0.0444444
3891.091076

0.0000118
0.1000000
3528.345658



0.0000003
0.1000000
48592.66902

0.0000038
0.1000000
3536.763944


F1ISH
0.0000000
0.0129630
10011.99352

0.0000008
0.0600000
3644.486854



0.0000000
0.0129630
10020.52117

0.0000021
0.0800000
3670.116515



0.0000000
0.0129630
10025.43594

0.0000021
0.0600000
3687.780782



0.0000000
0.0129630
10028.64467

0.0000251
0.1000000
3699.672565



0.0000000
0.0129630
10036.97216

0.0000038
0.0800000
3772.107649



0.0000000
0.0129630
10051.63047

0.0000009
0.0600000
3972.21957



0.0000000
0.0129630
10061.98167

0.0000311
0.1000000
4301.196114



0.0000000
0.0129630
10072.44679
F1ISH
0.0000008
0.0154321
10011.99352



0.0000000
0.0129630
10081.58862

0.0000008
0.0154321
10020.52117



0.0000000
0.0129630
10090.2363

0.0000008
0.0154321
10025.43594



0.0000000
0.0129630
10098.45601

0.0000008
0.0154321
10028.64467



0.0000000
0.0129630
10105.92173

0.0000008
0.0154321
10036.97216



0.0000000
0.0129630
10114.78187

0.0000008
0.0154321
10051.63047



0.0000000
0.0129630
10135.6053

0.0000008
0.0154321
10061.98167



0.0000000
0.0129630
10147.36272

0.0000008
0.0154321
10072.44679



0.0000000
0.0296296
10162.00816

0.0000008
0.0154321
10081.58862



0.0000000
0.0296296
10175.58746

0.0000008
0.0154321
10090.2363



0.0000000
0.0296296
10187.91964

0.0000010
0.0154321
10098.45601



0.0000000
0.0462963
10198.46953

0.0000015
0.0154321
10105.92173



0.0000000
0.0462963
10208.17418

0.0000010
0.0154321
10114.78187



0.0000000
0.0462963
10217.54983

0.0000010
0.0154321
10135.6053



0.0000000
0.0462963
10230.57425

0.0000021
0.0154321
10147.36272



0.0000004
0.0629630
10239.94928

0.0000018
0.0154321
10162.00816



0.0000002
0.0796296
10262.82559

0.0000032
0.0370370
10175.58746



0.0000001
0.0462963
10294.56991

0.0000077
0.0586420
10187.91964



0.0000000
0.0462963
10306.64326

0.0000118
0.0802469
10198.46953



0.0000001
0.0462963
10324.32336

0.0000067
0.0586420
10208.17418



0.0000002
0.0629630
10346.11123

0.0000089
0.0586420
10217.54983



0.0000001
0.0629630
10363.09118

0.0000399
0.0802469
10521.88611



0.0000001
0.0462963
10383.28509

0.0000350
0.0586420
11087.90879



0.0000002
0.0629630
10402.18844

0.0000021
0.0370370
11105.68287



0.0000007
0.0796296
10408.85968

0.0000118
0.0586420
11118.40053



0.0000003
0.0629630
10414.59628

0.0000089
0.9475309
11508.64295



0.0000007
0.0962963
10425.2516

0.0000067
0.9521605
11533.00585



0.0000076
0.0962963
10434.47733

0.0000021
0.9691358
11553.43803



0.0000025
0.0962963
10521.88611

0.0000037
0.9691358
11576.23632



0.0000007
0.0796296
10890.43701

0.0000118
0.9475309
11596.70327



0.0000056
0.0962963
10909.77131

0.0000032
0.9475309
11607.15919



0.0000008
0.0796296
10994.43525

0.0000015
0.9907407
11623.79327



0.0000004
0.0629630
11014.94996

0.0000011
0.9907407
11642.6909



0.0000001
0.0462963
11035.719

0.0000011
0.9907407
11662.86838



0.0000001
0.0462963
11046.66769

0.0000018
0.9907407
11682.71261



0.0000002
0.0796296
11057.41916

0.0000455
0.9043210
11810.11077



0.0000000
0.0462963
11071.04109

0.0000028
0.9691358
11849.00542



0.0000000
0.0129630
11087.90879

0.0000032
0.9691358
11881.99843



0.0000000
0.0296296
11105.68287

0.0000032
0.9691358
11909.00114



0.0000000
0.0296296
11118.40053

0.0000032
0.9691358
11918.54028



0.0000002
0.0462963
11123.52137

0.0000043
0.9691358
11925.28834



0.0000000
0.0296296
11130.42377

0.0000178
0.9259259
11930.35684



0.0000003
0.0796296
11147.3563

0.0000155
0.9043210
11946.65943



0.0000003
0.0796296
11163.91984

0.0000178
0.9089506
12009.23838



0.0000001
0.0462963
11178.66084

0.0000204
0.9259259
12043.45183



0.0000001
0.0629630
11191.97145

0.0000018
0.9907407
12063.7875



0.0000003
0.0962963
11212.36119

0.0000067
0.9475309
12080.17934



0.0000000
0.0462963
11226.91495

0.0000102
0.0586420
12526.96894



0.0000016
0.0962963
11244.4887

0.0000037
0.0370370
12586.1786



0.0000000
0.9666667
11533.00585

0.0000204
0.0802469
12616.77768



0.0000000
0.9500000
11553.43803

0.0000008
0.9907407
13517.3522



0.0000005
0.9231481
11576.23632

0.0000050
0.9475309
13572.89265



0.0000001
0.9500000
11596.70327

0.0000178
0.9043210
13664.61109



0.0000002
0.9333333
11607.15919

0.0000018
0.9691358
13743.15877



0.0000001
0.9333333
11623.79327

0.0000234
0.9259259
14868.45486



0.0000000
0.9666667
11642.6909

0.0000008
0.9907407
15277.38043



0.0000000
0.9666667
11662.86838

0.0000268
0.9259259
23238.98573



0.0000000
0.9500000
11682.71261

0.0000043
0.9475309
23638.15252



0.0000004
0.9166667
11706.67327
F5CSL
0.0000009
0.9176245
3439.012926



0.0000004
0.9166667
11737.66458

0.0302687
0.3103448
6466.54012



0.0000002
0.9166667
11758.16873

0.0003051
0.1724138
6490.498273



0.0000004
0.9166667
11881.99843

0.0000427
0.1551724
6661.944



0.0000004
0.9166667
11909.00114

0.0000009
0.1034483
6689.07332



0.0000004
0.9231481
11925.28834

0.0003319
0.2068966
6863.56499



0.0000003
0.9231481
11930.35684

0.0036071
0.2586207
33593.85227



0.0000002
0.9333333
12043.45183

0.0050912
0.2758621
34007.46796



0.0000001
0.9333333
12063.7875

0.0000037
0.0706522
10146.3839



0.0000002
0.9333333
12080.17934

0.0000074
0.0706522
10162.43733



0.0000002
0.9333333
12095.12377

0.0000064
0.0706522
10178.08813



0.0000003
0.9166667
12101.64446

0.0000306
0.0896739
10215.263



0.0000000
0.9833333
13517.3522

0.0000125
0.0896739
10254.36842



0.0000002
0.9333333
13572.89265

0.0000006
0.0135870
10281.47372



0.0000000
1.0000000
13743.15877

0.0000005
0.0326087
10296.18987



0.0000007
0.9166667
14868.45486

0.0000012
0.0706522
10308.69901



0.0000000
0.9666667
15277.38043

0.0000006
0.0326087
10341.43948



0.0000001
0.9666667
75269.22784

0.0000006
0.0326087
10359.22541



0.0000002
0.9333333
150365.8563

0.0000005
0.0135870
10373.50565


F5CSL
0.0000006
0.8979885
3439.012926

0.0000010
0.0516304
10388.7689



0.0000627
0.1896552
6490.498273

0.0000021
0.0516304
10402.74887



0.0000499
0.1896552
6661.944

0.0000043
0.0516304
10418.95812



0.0000000
0.0603448
6689.07332

0.0000096
0.0896739
10433.30772



0.0000102
0.1321839
6863.56499

0.0000185
0.0896739
10452.21013



0.0000034
0.1321839
25619.17312

0.0000096
0.0706522
10465.90587



0.0062592
0.3045977
34736.3154

0.0000125
0.0896739
10481.18415



0.0000009
0.0731225
10281.47372

0.0000270
0.0896739
10498.6017



0.0000007
0.0731225
10296.18987

0.0000096
0.0706522
10906.58841



0.0000007
0.0909091
10308.69901

0.0000162
0.0896739
10927.60682



0.0000005
0.0909091
10341.43948

0.0000008
0.9483696
12052.53166



0.0000001
0.0553360
10359.22541

0.0000110
0.9144022
14019.70586



0.0000001
0.0553360
10373.50565

0.0000010
0.9524457
14214.24986



0.0000007
0.0909091
10388.7689

0.0000005
0.9673913
14344.33114



0.0000003
0.0731225
10402.74887

0.0000001
0.9864130
17653.98849



0.0000002
0.0731225
10418.95812

0.0000005
0.9483696
17809.61765



0.0000002
0.0731225
10433.30772

0.0000059
0.0926724
3360.866902



0.0000001
0.0553360
10452.21013

0.0000115
0.0926724
4198.411686



0.0000001
0.0731225
10465.90587

0.0104430
0.7327586
5014.908804



0.0000002
0.0553360
10481.18415

0.0166282
0.6939655
5017.339281



0.0000005
0.0731225
10508.92986

0.0051433
0.2284483
6487.935491



0.0000011
0.0909091
10575.10057

0.0000410
0.1508621
6689.164478



0.0000006
0.9268775
12052.53166

0.0007600
0.7909483
10733.07419



0.0000040
0.8913043
13356.70436

0.0000679
0.1314655
12910.82457



0.0000000
0.9802372
14019.70586

0.0000042
0.0926724
17426.66866



0.0000000
0.9624506
14214.24986

0.0000074
0.1120690
18048.90648



0.0000000
0.9802372
14344.33114

0.0000093
0.0926724
30269.89108



0.0000001
0.9446640
15566.82603

0.0000038
0.0926724
31162.97802



0.0000002
0.9446640
15645.08235

0.0000016
0.0357143
10134.16987



0.0000002
0.9446640
17653.98849

0.0000003
0.0357143
10164.38262



0.0000002
0.9446640
17809.61765

0.0000005
0.0357143
10179.25579



0.0000145
0.8557312
79145.35138

0.0000006
0.0357143
10199.786


F6CSL
0.0000007
0.1222571
2990.018687

0.0000084
0.0765306
10247.31042



0.0000001
0.0595611
3360.866902

0.0000005
0.0357143
10308.99693



0.0000009
0.1065831
4252.48155

0.0000003
0.0357143
10324.98028



0.0000050
0.1379310
6487.935491

0.0000003
0.0357143
10351.28255



0.0008161
0.2319749
6544.667343

0.0000003
0.0357143
10382.71287



0.0000000
0.0438871
6689.164478

0.0000003
0.0357143
10437.59021



0.0000016
0.0909091
6855.504433

0.0000003
0.0357143
10456.27805



0.0000066
0.1379310
6871.100138

0.0000084
0.0969388
10586.5933



0.0000001
0.0752351
12910.82457

0.0000005
0.0153061
10639.37916



0.0000003
0.0752351
13920.46348

0.0000002
0.0153061
10659.7841



0.0000003
0.0909091
14102.40615

0.0000008
0.0357143
10714.34361



0.0000004
0.0909091
17426.66866

0.0000095
0.0969388
10736.08599



0.0000008
0.0909091
18048.90648

0.0000003
0.9795918
11623.61757



0.0000005
0.1222571
28178.79099

0.0000005
0.9795918
11673.12834



0.0000000
0.0595611
29021.87789

0.0000002
0.9795918
11750.83857



0.0000000
0.0595611
30269.89108

0.0000010
0.9591837
11779.63819



0.0000006
0.0909091
31162.97802

0.0000003
0.9795918
11824.74215


F6CSH
0.0000000
0.0388889
10034.41899

0.0000003
0.9795918
11886.09971



0.0000000
0.0071429
10134.16987

0.0000002
0.9795918
11982.74557



0.0000000
0.0071429
10164.38262

0.0000002
0.9795918
12017.01197



0.0000000
0.0071429
10179.25579

0.0000002
0.9795918
12050.07302



0.0000000
0.0071429
10199.786

0.0000002
0.9795918
12170.65112



0.0000000
0.0230159
10247.31042

0.0000002
0.9795918
12200.58095



0.0000000
0.0071429
10308.99693

0.0000002
0.9795918
12243.19154



0.0000000
0.0071429
10324.98028

0.0000003
0.9795918
13157.2016



0.0000000
0.0071429
10351.28255

0.0000095
0.9183673
13373.91926



0.0000000
0.0071429
10382.71287

0.0000002
0.9795918
14029.68761



0.0000000
0.0071429
10437.59021

0.0000002
0.9795918
14160.13964



0.0000000
0.0071429
10456.27805

0.0000002
0.9795918
14336.01183



0.0000000
0.0230159
10639.37916

0.0000005
0.9795918
14434.26849



0.0000000
0.0230159
10659.7841

0.0000005
0.0357143
14665.79315



0.0000000
0.0230159
10714.34361

0.0000030
0.9591837
15420.52874



0.0000000
0.0230159
10736.08599

0.0000002
0.9795918
17530.97848



0.0000000
0.0388889
10910.64978

0.0000002
0.9795918
17656.32521



0.0000001
0.0706349
10929.45696

0.0000002
0.0153061
18041.10658



0.0000001
0.9523810
11824.74215

0.0000121
0.0765306
18241.15243



0.0000000
0.9523810
11982.74557

0.0000006
0.9591837
23184.82846



0.0000004
0.9047619
12017.01197

0.0000005
0.9591837
39178.65241



0.0000000
0.9841270
12050.07302

0.0000007
0.9591837
39783.20564



0.0000000
0.9365079
12170.65112



0.0000000
0.9841270
13157.2016



0.0000000
0.9682540
13373.91926



0.0000002
0.9047619
13859.59685



0.0000000
1.0000000
14029.68761



0.0000000
1.0000000
14160.13964



0.0000000
1.0000000
14336.01183



0.0000000
0.9841270
14434.26849



0.0000000
0.9523810
15244.10632



0.0000000
1.0000000
15420.52874



0.0000000
0.9841270
15617.44859



0.0000007
0.9047619
16254.77706



0.0000001
0.9365079
16335.46786



0.0000000
0.9841270
17530.97848



0.0000000
1.0000000
17656.32521



0.0000000
0.0230159
18041.10658



0.0000003
0.9047619
39178.65241



0.0000001
0.9365079
39783.20564









REFERENCES



  • 1. 2002. DengueNet—WHO's Internet-based System for the global surveillance of dengue fever and dengue haemorrhagic fever (dengue/DHF). Dengue/DHF—global public health burden. Weekly Epidemiological Record. 77:300-304.

  • 2. Burke, D. S., A. Nisalak, D. E. Johnson, and R. M. Scott. 1988. A prospective study of dengue infections in Bangkok. American Journal of Tropical Medicine & Hygiene. 38:172-80.

  • 3. Chang, G. J. 1997. The molecular biology of dengue virus, p. 175-198. In D. J. Gubler and G. Kuno (ed.), Dengue and dengue haemorrhagic fever. CAB International, New York.

  • 4. Chaturvedi, U., R. Nagar, and R. Shrivastava. 2006. Dengue and dengue haemorrhagic fever: implications of host genetics. FEMS Immunology & Medical Microbiology. 47:155-166.

  • 5. Cobra, C., J. G. Rigau-Perez, G. Kuno, and V. Vorndam. 1995. Symptoms of dengue fever in relation to host immunologic response and virus serotype, Puerto Rico, 1990-1991. American Journal of Epidemiology. 142:1204-1211.

  • 6. Dietz, V., D. J. Gubler, S. Ortiz, G. Kuno, A. Casta-Velez, G. E. Sather, I. Gomez, and E. Vergne. 1996. The 1986 dengue and dengue hemorrhagic fever epidemic in Puerto Rico: epidemiologic and clinical observations. Puerto Rico Health Sciences Journal. 15:201-210.

  • 7. Fink, J., F. Gu, and S. G. Vasudevan. 2006. Role of T cells, cytokines and antibody in dengue fever and dengue haemorrhagic fever. Reviews in Medical Virology. 16:263-275.

  • 8. Green, S. and A. Rothman. 2006. Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Current Opinion in Infectious Diseases. 19:429-436.

  • 9. Guzman, M. G. and G. Kouri. 2002. Dengue: an update. The Lancet Infectious Diseases. 2:33-42.

  • 10. Kalayanarooj, S., D. W. Vaughn, S. Nimmannitya, S. Green, S. Suntayakorn, N. Kunentrasai, W. Viramitrachai, S. Ratanachu-eke, S. Kiatpolpoj, B. L. Innis, A. L. Rothman, A. Nisalak, and F. A. Ennis. 1997. Early clinical and laboratory indicators of acute dengue illness. Journal of Infectious Diseases. 176:313-321.

  • 11. Kao, C. L., C. C. King, D. Y. Chao, H. L. Wu, and G. J. Chang. 2005. Laboratory diagnosis of dengue virus infection: current and future perspectives in clinical diagnosis and public health. Journal of Microbiology, Immunology & Infection. 38:5-16.

  • 12. Kliks, S. C., A. Nisalak, W. E. Brandt, L. Wahl, and D. S. Burke. 1989. Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever. American Journal of Tropical Medicine & Hygiene. 40:444-451.

  • 13. Kuberski, T., L. Rosen, D. Reed, and J. Mataika. 1977. Clinical and laboratory observations on patients with primary and secondary dengue type 1 infections with hemorrhagic manifestations in Fiji. American Journal of Tropical Medicine & Hygiene. 26:775-783.

  • 14. Kuhn, R. J., W. Zhang, M. G. Rossmann, S. V. Pletnev, J. Corver, E. Lenches, C. T. Jones, S. Mukhopadhyay, P. R. Chipman, E. G. Strauss, T. S. Baker, and J. H. Strauss. 2002. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell. 108:717-725.

  • 15. Lei, H. Y., T. M. Yeh, H. S. Liu, Y. S. Lin, S. H. Chen, and C. C. Liu. 2001. Immunopathogenesis of dengue virus infection. Journal of Biomedical Science. 8:377-388.

  • 16. Oishi, K., S. Inoue, M. T. Cinco, E. M. Dimaano, M. T. Alera, J. A. Alfon, F. Abanes, D. J. Cruz, R. R. Matias, H. Matsuura, F. Hasebe, S. Tanimura, A. Kumatori, K. Morita, F. F. Natividad, and T. Nagatake. 2003. Correlation between increased platelet-associated IgG and thrombocytopenia in secondary dengue virus infections. Journal of Medical Virology. 71:259-264.

  • 17. Rigau-Perez, J. G., G. G. Clark, D. J. Gubler, P. Reiter, E. J. Sanders, and A. V. Vorndam. 1998. Dengue and dengue haemorrhagic fever. Lancet. 352:971-977.

  • 18. Senanayake, S. 2006. Dengue fever and dengue haemorrhagic fever—a diagnostic challenge. [Review] [27 refs]. Australian Family Physician. 35:609-612.

  • 19. Simmons, C. P., T. N. Chau, T. T. Thuy, N. M. Tuan, D. M. Hoang, N. T. Thien, L. B. Lien, N. T. Quy, N. T. Hieu, T. T. Hien, C. McElnea, P. Young, S. Whitehead, N. T. Hung, and J. Farrar. 2007. Maternal antibody and viral factors in the pathogenesis of dengue virus in infants. Journal of Infectious Diseases. 196:416-424.

  • 20. Stephenson, J. R. 2005. Understanding dengue pathogenesis: implications for vaccine design. [Review] [49 refs]. Bulletin of the World Health Organization. 83:308-314.

  • 21. Teles, F. R., D. M. Prazeres, and J. L. Lima-Filho. 2005. Trends in dengue diagnosis. Reviews in Medical Virology. 15:287-302.



Each recited range includes all combinations and sub-combinations of ranges, as well as specific numerals contained therein.


All publications and patent applications cited in this specification are herein incorporated by reference in their entirety for all purposes as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference for all purposes.


Although the foregoing invention has been described in detail by way of example for purposes of clarity of understanding, it will be apparent to the artisan that certain changes and modifications are comprehended by the disclosure and can be practiced without undue experimentation within the scope of the appended claims, which are presented by way of illustration not limitation.

Claims
  • 1. A method for qualifying dengue status in a subject comprising: (a) measuring at least one biomarker in a biological sample from the subject, wherein the at least one biomarker is selected from the group consisting of the biomarkers of Table 1, Table 2, Table 3, Table 4, Table 5, Table 17, Table 21, and Table 24; and(b) correlating the measurement with dengue status.
  • 2. (canceled)
  • 3. The method of claim 1, wherein the at least one biomarker is selected from the group consisting of biomarkers of molecular masses of about 2.5, 2.6, 2.7, 2.8, 3.0, 3.2, 3.4, 3.5, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 5.0, 5.1, 5.2, 5.3, 5.5, 5.6, 5.7, 6.0, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.4, 7.5, 7.6, 8.2, 8.8, 9.0, 9.3, 9.5, 9.6, 10.0, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 11.0, 11.1, 11.3, 11.5, 11.7, 11.8, 11.9, 12.1, 12.2, 12.4, 12.5, 12.6, 12.7, 12.9, 13.0, 13.1, 13.2, 13.3, 13.4, 13.5, 13.8, 14.0, 14.1, 14.2, 14.3, 14.4, 15.3, 17.4, 17.7, 17.8, 18.0, 21.5, 22.4, 23.1, 23.3, 23.6, 23.7, 23.8, 25.4, 25.6, 26.5, 26.7, 28.2, 28.4, 29.0, 30.3, 30.8, 31.2, 32.3, 33.5, 33.6, 34.0, 34.2, 34.5, 34.7, 36.5, 36.6, 38.7, 39.5, 39.9, 42.3, 43.5, 44.0, 44.6, 44.7, 45.0, 45.4, 45.5, 45.6, 46.2, 46.6, 46.7, 49.7, 50.5, 51.7, 52.4, 52.6, 53.4, 53.6, 54.3, 54.4, 54.6, 54.8, 55.1, 55.3, 55.8, 56.6, 59.4, 59.5, 61.4, 63.1, 66.6, 66.7, 66.8, 67.1, 69.0, 70.9, 71.3, 71.5, 75.1, 75.2, 75.3, 77.1, 79.1, 79.3, 88.3, 95.7, 109.0, 111.3, 117.2, 123.0, 125.4, 133.4, 133.7, 150.1, 164.6, 188.6, 194.2, and 198.3 kDa.
  • 4-28. (canceled)
  • 29. The method of claim 1, wherein the correlating is performed by a software classification algorithm.
  • 30. The method of claim 1, wherein dengue status is selected from chronic symptomatic, chronic asymptomatic, acute, and uninfected.
  • 31. The method of claim 1, wherein dengue status is selected from dengue versus non-dengue.
  • 32. The method of claim 1, wherein dengue status is selected from dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS).
  • 33. The method of claim 1, wherein dengue status is selected from primary dengue infection and secondary dengue infection.
  • 34. The method of claim 1, further comprising: (c) managing subject treatment based on the status.
  • 35-37. (canceled)
  • 38. The method of claim 30, wherein, if the measurement correlates with dengue, then managing subject treatment comprises administering one or more drugs selected from the group consisting of paracetamol and antipyretics.
  • 39. The method of claim 30, further comprising: (d) measuring the at least one biomarker after subject management and correlating the measurement with disease progression.
  • 40-41. (canceled)
  • 42. A method for determining the course of dengue comprising: (a) measuring, at a first time, at least one biomarker in a biological sample from the subject, wherein the at least one biomarker is selected from the group consisting of the biomarkers of Table 1, Table 2, Table 3, Table 4, Table 5, Table 17, Table 21, and Table 24;(b) measuring, at a second time, the at least one biomarker in a biological sample from the subject; and(c) comparing the first measurement and the second measurement; wherein the comparative measurements determine the course of dengue.
  • 43-45. (canceled)
  • 46. The method of claim 42, wherein the at least one biomarker is selected from the group of biomarkers of molecular masses of about 2.5, 2.6, 2.7, 2.8, 3.0, 3.2, 3.4, 3.5, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 5.0, 5.1, 5.2, 5.3, 5.5, 5.6, 5.7, 6.0, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.4, 7.5, 7.6, 8.2, 8.8, 9.0, 9.3, 9.5, 9.6, 10.0, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 11.0, 11.1, 11.3, 11.5, 11.7, 11.8, 11.9, 12.1, 12.2, 12.4, 12.5, 12.6, 12.7, 12.9, 13.0, 13.1, 13.2, 13.3, 13.4, 13.5, 13.8, 14.0, 14.1, 14.2, 14.3, 14.4, 15.3, 17.4, 17.7, 17.8, 18.0, 21.5, 22.4, 23.1, 23.3, 23.6, 23.7, 23.8, 25.4, 25.6, 26.5, 26.7, 28.2, 28.4, 29.0, 30.3, 30.8, 31.2, 32.3, 33.5, 33.6, 34.0, 34.2, 34.5, 34.7, 36.5, 36.6, 38.7, 39.5, 39.9, 42.3, 43.5, 44.0, 44.6, 44.7, 45.0, 45.4, 45.5, 45.6, 46.2, 46.6, 46.7, 49.7, 50.5, 51.7, 52.4, 52.6, 53.4, 53.6, 54.3, 54.4, 54.6, 54.8, 55.1, 55.3, 55.8, 56.6, 59.4, 59.5, 61.4, 63.1, 66.6, 66.7, 66.8, 67.1, 69.0, 70.9, 71.3, 71.5, 75.1, 75.2, 75.3, 77.1, 79.1, 79.3, 88.3, 95.7, 109.0, 111.3, 117.2, 123.0, 125.4, 133.4, 133.7, 150.1, 164.6, 188.6, 194.2, and 198.3 kDa.
  • 47-51. (canceled)
  • 52. A kit comprising: (a) a solid support comprising at least one capture reagent attached thereto, wherein the capture reagent binds at least one biomarker from a first group consisting of the Biomarkers of Table 1, Table 2, Table 3, Table 4, Table 5, Table 17, Table 21, and Table 24; and(b) instructions for using the solid support to detect a biomarker of Table 1, Table 2, Table 3, Table 4, Table 5, Table 17, Table 21, or Table 24.
  • 53. The kit of claim 52 comprising instructions for using the solid support to detect at least one biomarker of molecular mass of about 2.5, 2.6, 2.7, 2.8, 3.0, 3.2, 3.4, 3.5, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 5.0, 5.1, 5.2, 5.3, 5.5, 5.6, 5.7, 6.0, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.4, 7.5, 7.6, 8.2, 8.8, 9.0, 9.3, 9.5, 9.6, 10.0, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 11.0, 11.1, 11.3, 11.5, 11.7, 11.8, 11.9, 12.1, 12.2, 12.4, 12.5, 12.6, 12.7, 12.9, 13.0, 13.1, 13.2, 13.3, 13.4, 13.5, 13.8, 14.0, 14.1, 14.2, 14.3, 14.4, 15.3, 17.4, 17.7, 17.8, 18.0, 21.5, 22.4, 23.1, 23.3, 23.6, 23.7, 23.8, 25.4, 25.6, 26.5, 26.7, 28.2, 28.4, 29.0, 30.3, 30.8, 31.2, 32.3, 33.5, 33.6, 34.0, 34.2, 34.5, 34.7, 36.5, 36.6, 38.7, 39.5, 39.9, 42.3, 43.5, 44.0, 44.6, 44.7, 45.0, 45.4, 45.5, 45.6, 46.2, 46.6, 46.7, 49.7, 50.5, 51.7, 52.4, 52.6, 53.4, 53.6, 54.3, 54.4, 54.6, 54.8, 55.1, 55.3, 55.8, 56.6, 59.4, 59.5, 61.4, 63.1, 66.6, 66.7, 66.8, 67.1, 69.0, 70.9, 71.3, 71.5, 75.1, 75.2, 75.3, 77.1, 79.1, 79.3, 88.3, 95.7, 109.0, 111.3, 117.2, 123.0, 125.4, 133.4, 133.7, 150.1, 164.6, 188.6, 194.2, and 198.3 kDa.
  • 54-55. (canceled)
  • 56. The kit of claim 52, wherein the solid support comprising a capture reagent is a SELDI probe or a cation exchange adsorbent.
  • 57. (canceled)
  • 58. The kit of claim 56, wherein the adsorbent is a metal chelate adsorbent.
  • 59. The kit of claim 52, additionally comprising: (c) a container containing at least one of the biomarkers of Table 1, Table 2, Table 3, Table 4, Table 5, Table 17, Table 21, or Table 24.
  • 60-68. (canceled)
  • 69. A software product comprising: (a) code that accesses data attributed to a sample, the data comprising measurement of at least one biomarker in the sample, the biomarker selected from the group consisting of the biomarkers of Table 1, Table 2, Table 3, Table 4, Table 5, Table 17, Table 21, and Table 24; and(b) code that executes a classification algorithm that classifies the disease status of the sample as a function of the measurement.
  • 70-76. (canceled)
  • 77. A method for qualifying dengue status in a subject in comparison to the status of a different infection, the method comprising: (a) measuring at least one biomarker in a biological sample from the subject, wherein the at least one biomarker specifically indicates the presence of dengue and does not indicate the presence of a different viral infection, wherein the at least one biomarker is selected from the group of the biomarkers of Table 1, Table 2, Table 3, Table 4, Table 5, Table 17, Table 21, or Table 24; and(b) correlating the measuring with dengue status in comparison to the status of the different viral infection.
  • 78. (canceled)
  • 79. The method of claim 77, wherein said viral infection comprises another febrile illness.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB2009/007358 10/14/2009 WO 00 10/11/2011
Provisional Applications (1)
Number Date Country
61105381 Oct 2008 US