BIOMARKERS FOR PREDICTING CLINICAL RESPONSE OF CANCER PATIENTS TO TREATMENT WITH IMMUNOTHERAPEUTIC AGENT

Information

  • Patent Application
  • 20150299804
  • Publication Number
    20150299804
  • Date Filed
    November 14, 2013
    11 years ago
  • Date Published
    October 22, 2015
    9 years ago
Abstract
Provided herein are prognostic and diagnostic methods for predicting likelihood of clinical response of a subject having cancer to treatment with an immunotherapeutic agent. Also provided herein are methods for treating a subject having cancer with an immunotherapeutic agent after determining likelihood of clinical response of the subject to such treatment.
Description
BACKGROUND

The National Cancer Institute has estimated that in the United States alone, 1 in 3 people will be struck with cancer during their lifetime. Moreover, approximately 50% to 60% of people contracting cancer will eventually succumb to the disease. The widespread occurrence of this disease underscores the need for improved anticancer regimens for the treatment of malignancy.


Due to the wide variety of cancers presently observed, numerous anticancer agents have been developed to destroy cancer within the body. These compounds are administered to cancer patients with the objective of destroying or otherwise inhibiting the growth of malignant cells while leaving normal, healthy cells undisturbed. Anticancer agents have been classified based upon their mechanism of action, and are often referred to as chemotherapeutics or immunotherapeutics (agents whose therapeutic effects are mediated by their immuno-modulating properties). The vertebrate immune system requires multiple signals to achieve optimal immune activation; see, e.g., Janeway, Cold Spring Harbor Symp. Quant. Biol., 54:1-14 (1989); and Paul, W. E., ed., Fundamental Immunology, 4th Edition, Raven Press, NY (1998), particularly Chapters 12 and 13, pp. 411-478. Interactions between T lymphocytes (T cells) and antigen presenting cells (APCs) are essential to the immune response. Levels of many cohesive molecules found on T cells and APC's increase during an immune response (Springer et al., Ann. Rev. Immunol., 5:223-252 (1987); Shaw et al., Curr. Opin. Immunol., 1:92-97 (1988); and Hemler, Immunology Today, 9:109-113 (1988)). Increased levels of these molecules may help explain why activated APCs are more effective at stimulating antigen-specific T cell proliferation than are resting APCs (Kaiuchi et al., J. Immunol., 131:109-114 (1983); Kreiger et al., J. Immunol., 135:2937-2945 (1985); McKenzie, J. Immunol., 141:2907-2911 (1988); and Hawrylowicz et al., J. Immunol., 141:4083-4088 (1988)).


T cell immune response is a complex process that involves cell-cell interactions (Springer et al., Ann. Rev. Immunol., 5:223-252 (1987)), particularly between T and accessory cells such as APCs, and production of soluble immune mediators (cytokines or lymphokines) (Dinarello, New Engl. J. Med., 317:940-945 (1987); and Sallusto, J. Exp. Med., 179:1109-1118 (1997)). This response is regulated by several T-cell surface receptors, including the T-cell receptor complex (Weiss, Ann. Rev. Immunol., 4:593-619 (1986)) and other “accessory” surface molecules (Allison, Curr. Opin. Immunol., 6:414-419 (1994); Springer (1987), supra). Many of these accessory molecules are naturally occurring cell surface differentiation (CD) antigens defined by the reactivity of monoclonal antibodies on the surface of cells (McMichael, ed., Leukocyte Typing Iff, Oxford Univ. Press, Oxford, N.Y. (1987)).


Early studies suggested that B lymphocyte activation requires two signals (Bretscher, Science, 169:1042-1049 (1970)) and now it is believed that all lymphocytes require two signals for their optimal activation, an antigen specific or clonal signal, as well as a second, antigen non-specific signal. (Janeway, supra). Freeman (J. Immunol., 143:2714-2722 (1989)) isolated and sequenced a cDNA clone encoding a B cell activation antigen recognized by MAb B7 (Freeman, J. Immunol., 139:3260 (1987)). COS cells transfected with this cDNA have been shown to stain by both labeled MAb B7 and MAb BB-1 (Clark, Human Immunol., 16:100-113 (1986); Yokochi, J. Immunol., 128:823 (1981); Freeman et al. (1989), supra; and Freeman et al. (1987), supra). In addition, expression of this antigen has been detected on cells of other lineages, such as monocytes (Freeman et al., (1989) supra).


T helper cell (Th) antigenic response requires signals provided by APCs. The first signal is initiated by interaction of the T cell receptor complex (Weiss, J. Clin. Invest., 86:1015 (1990)) with antigen presented in the context of major histocompatibility complex (MHC) molecules on the APC (Allen, Immunol. Today, 8:270 (1987)). This antigen-specific signal is not sufficient to generate a full response, and in the absence of a second signal may actually lead to clonal inactivation or anergy (Schwartz, Science, 248:1349 (1990)). The requirement for a second “costimulatory” signal has been demonstrated in a number of experimental systems (Schwartz, supra; Weaver et al., Immunol. Today, 11:49 (1990)).


CD28 antigen, a homodimeric glycoprotein of the immunoglobulin superfamily (Aruffo et al., Proc. Natl. Acad. Sci., 84:8573-8577 (1987)), is an accessory molecule found on most mature human T cells (Damle et al., J. Immunol., 131:2296-2300 (1983)). Current evidence suggests that this molecule functions in an alternative T cell activation pathway distinct from that initiated by the T-cell receptor complex (June et al., Mol. Cell. Biol., 7:4472-4481 (1987)). Some studies have indicated that CD28 is a counter-receptor for the B cell activation antigen, B7/BB-1 (Linsley et al., Proc. Natl. Acad. Sci. USA, 87:5031-5035 (1990)). The B7 ligands are also members of the immunoglobulin superfamily but have, in contrast to CD28, two Ig domains in their extracellular region, an N-terminal variable (V)-like domain followed by a constant (C)-like domain.


Delivery of a non-specific costimulatory signal to the T cell requires at least two homologous B7 family members found on APCs, B7-1 (also called B7, B7. 1, or CD80) and B7-2 (also called B7.2 or CD86), both of which can deliver costimulatory signals to T cells via CD28. Costimulation through CD28 promotes T cell activation.


CD28 has a single extracellular variable region (V)-like domain (Aruffo et al., supra). A homologous molecule, CTLA-4, has been identified by differential screening of a murine cytolytic-T cell cDNA library (Brunet, Nature, 328:267-270 (1987)). CTLA-4 (CD152) is a T cell surface molecule and also a member of the immunoglobulin (Ig) superfamily, comprising a single extracellular Ig domain. Researchers have reported the cloning and mapping of a gene for the human counterpart of CTLA-4 (Dariavach et al., Eur. J. Immunol., 18:1901-1905 (1988)) to the same chromosomal region (2q33-34) as CD28 (Lafage-Pochitaloff et al., Immunogenetics, 31:198-201 (1990)). Sequence comparison between this human CTLA-4 and CD28 proteins reveals significant homology of sequence, with the greatest degree of homology in the juxtamembrane and cytoplasmic regions (Brunet et al. (1988), supra; Dariavach et al. (1988), supra).


The CTLA-4 is inducibly expressed by T cells. It binds to the B7-family of molecules (primarily CD80 and CD86) on APCs (Chambers et al., Ann. Rev. Immunol., 19:565-594 (2001)). When triggered, it inhibits T-cell proliferation and function. Mice genetically deficient in CTLA-4 develop lymphoproliferative disease and autoimmunity (Tivol et al., Immunity, 3:541-547 (1995)). In pre-clinical models, CTLA-4 blockade also augments anti-tumor immunity (Leach et al., Science, 271:1734-1736 (1996); and van Elsas et al., J. Exp. Med., 190:355-366 (1999)). These findings led to the development of antibodies that block CTLA-4 for use in cancer immunotherapy.


Blockade of CTLA-4 by a monoclonal antibody leads to the expansion of all T cell populations, with activated CD4+ and CD8+ T cells mediating tumor cell destruction (Melero et al., Nat. Rev. Cancer, 7:95-106 (2007); and Wolchok et al., The Oncologist, 13 (Suppl. 4):2-9 (2008)). The antitumor response that results from the administration of anti-CTLA-4 antibodies is believed to be due to an increase in the ratio of effector T cells to regulatory T cells within the tumor microenvironment, rather than simply from changes in T cell populations in the peripheral blood (Quezada et al., J. Clin. Invest., 116:1935-1945 (2006)). One such agent is ipilimumab.


Ipilimumab (previously MDX-010; Medarex Inc., marketed by Bristol-Myers Squibb as YERVOY™) is a fully human anti-human CTLA-4 monoclonal antibody that blocks the binding of CTLA-4 to CD80 and CD86 expressed on antigen presenting cells, thereby, blocking the negative down-regulation of the immune responses elicited by the interaction of these molecules. Initial studies in patients with melanoma showed that ipilimumab could cause objective durable tumor regressions (Phan et al., Proc. Natl. Acad. Sci. USA, 100:8372-8377 (2003)). Also, reductions of serum tumor markers such as CA125 and PSA were seen for some patients with ovarian or prostate cancer, respectively (Hodi et al., Proc. Natl. Acad. Sci. USA, 100:4712-4717 (2003)). Ipilimumab has demonstrated antitumor activity in patients with advanced melanoma (Weber et al., J. Clin. Oncol., 26:5950-5956 (2008); Weber, Cancer Immunol. Immunother., 58:823-830 (2009)). In addition, in a number of phase II and two phase III clinical trials, ipilimumab was shown to increase the overall survival in advanced melanoma patients (Hodi, F. S. et al., “Improved survival with ipilimumab in patients with metastatic melanoma”, New Engl. J. Med., 363:711-723 (2010), and Robert, C. et al., “Ipilimumab plus dacarbazine for previously untreated metastatic melanoma”, New Engl. J. Med., 364:2517-2526 (2011)). Treatment with ipilimumab, however, can result in adverse events in some patients and individual survival outcome may be different.


Provided herein are biomarkers that may be used to predict clinical response of patients to treatment with an immunotherapeutic agent, for example, an anti-CTLA4 antibody such as ipilimumab, prior to receiving the agent, and methods of using the biomarkers for treatment with the immunotherapeutic agent, or for predicting clinical response of a patient treated with the immunotherapeutic agent.


SUMMARY

Provided herein are methods for treating a subject having cancer with an immunotherapeutic agent, comprising (a) determining expression level of at least one gene in a blood sample obtained from the subject, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3; (b) determining likelihood of clinical response of the subject to the treatment based on the expression level of the at least one gene in the blood sample, wherein the expression level of the at least one gene selected from the first group of genes is positively correlated with the likelihood of clinical response, and wherein the expression level of the at least one gene selected from the second group of genes is negatively correlated with the likelihood of clinical response; and (c) administering to the subject a therapeutically effective amount of the immunotherapeutic agent for treating the cancer.


Also provided herein are methods for predicting likelihood of clinical response of a subject having cancer to treatment with an immunotherapeutic agent, comprising (a) obtaining a blood sample from the subject before the treatment, (b) determining expression level of at least one gene in the blood sample, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3; (c) determining likelihood of clinical response to the treatment based on the expression level of the at least one gene in the blood sample, wherein the expression level of the at least one gene selected from the first group of genes is positively correlated with the likelihood of clinical response, and wherein the expression level of the at least one gene selected from the second group of genes is negatively correlated with the likelihood of clinical response.


Also provided herein are methods for determining whether to treat a subject having cancer with a immunotherapeutic agent, comprising (a) obtaining a blood sample from the subject, (b) determining expression level of at least one gene in a blood sample obtained from the subject, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3; (c) determining likelihood of clinical response to the treatment based on the expression level of the at least one gene in the blood sample, wherein the expression level of the at least one gene selected from the first group of genes is positively correlated with the likelihood of clinical response, and wherein the expression level of the at least one gene selected from the second group of genes is negatively correlated with the likelihood of clinical response; and (d) determining whether to treat the subject having cancer with the immunotherapeutic agent based on the likelihood of clinical response.


Also provided herein are methods for treating a subject having cancer with an immunotherapeutic agent, comprising (a) determining expression levels of a first gene and a second gene in a blood sample obtained from the subject, wherein the first gene is IL2RB and a second gene is selected from ASGR1 and ASGR2; (b) determining likelihood of longer overall survival of the subject following the treatment based on the expression levels of the first gene and the second gene in the blood sample, wherein the expression levels of the first gene and the second gene are used to calculate a score according to formula:





Score=−C1*Xfirst gene+C2*Xsecond gene,


wherein Xfirst gene and Xsecond gene are normalized mRNA expression levels of the first and the second gene, respectively, and C1 and C2 are each, independently, a number ranging from 0.01 to 3, wherein the score is negatively correlated with the likelihood of longer overall survival; and (c) administering to the subject a therapeutically effective amount of the immunotherapeutic agent for treating the cancer.


Also provided herein are methods for predicting likelihood of longer overall survival of a subject having cancer following treatment with an immunotherapeutic agent, comprising: (a) obtaining a blood sample from the subject before the treatment; (b) determining expression levels of a first gene and a second gene in the blood sample obtained from the subject, wherein the first gene is IL2RB and a second gene is selected from ASGR1 and ASGR2; and (c) determining likelihood of longer overall survival of the subject following the treatment based on the expression levels of the first gene and the second gene in the blood sample, wherein the expression levels of the first gene and the second gene are used to calculate a score according to formula:





Score=−C1*Xfirst gene+C2*Xsecond gene,


wherein Xfirst gene and Xsecond gene are normalized mRNA expression levels of the first and the second gene, respectively, and C1 and C2 are each, independently, a number ranging from 0.01 to 3, wherein the score is negatively correlated with the likelihood of longer overall survival.


Also provided herein are methods for determining whether to treat a subject having cancer with a immunotherapeutic agent, comprising: (a) obtaining a blood sample from the subject; (b) determining expression levels of a first gene and a second gene in the blood sample obtained from the subject, wherein the first gene is IL2RB and a second gene is selected from ASGR1 and ASGR2; and (c) determining likelihood of longer overall survival of the subject following the treatment based on the expression levels of the first gene and the second gene in the blood sample, wherein the expression levels of the first gene and the second gene are used to calculate a score according to formula:





Score=−C1*Xfirst gene+C2*Xsecond gene,


wherein Xfirst gene and Xsecond gene are normalized mRNA expression levels of the first and the second gene, respectively, and C1 and C2 are each, independently, a number ranging from 0.01 to 3, wherein the score is negatively correlated with the likelihood of longer overall survival; and (d) determining whether to treat the subject with the immunotherapeutic agent based on the likelihood of longer overall survival.


Also provided herein are kits for use for the methods disclosed herein. The kits may comprise one or more reagents for determining expression level of at least one gene in a blood sample, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3.


Also provided herein are kits for use for the methods disclosed herein. The kits may comprise one or more reagents for determining expression levels of a first gene and a second gene in a blood sample, wherein the first gene is IL2RB and a second gene is selected from ASGR1 and ASGR2.









TABLE 2





First group of genes



















IL2RB
PMS2L11
CCND3



KLRK1
ZMYND11
TRATRD



G3BP
TTC17
ZAP70



PPP1R16B
CLDN15
ADA



CLIC3
TBX21
LOC130074



PRF1
LUC7L2
GFOD1



SPON2
CAT
HLA-A///





HLA-H///





LOC642047 ///





LOC649853 ///





LOC649864



HOP
IMP3
CECR7



GNLY
CD2
C7ORF24



TMEM161A
GZMA
ZNF364



PRKCH
SPCS2
ID2



RUNX3
RPA2
KLRD1



GZMB
SLC25A5
SH2D2A



CCND2
CHST12
MATK



NKG7
MNAB
CDC25B



ARL2BP
GPR56
GIMAP4



CCL4
TXNIP
EOMES
















TABLE 3





Second group of genes



















ASGR1
ING2
TSPO



ASGR2
HOMER3
SERTAD3



CENTA2
RAB31
SULT1A1



PGLS
ARF5
S100A6



CEBPA
IL1RN
STX10



ZBP1
LILRA5
IFI6



MAPBPIP
PYCARD
C16ORF68



CEACAM3
HPSE












BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1. Kaplan-Meier estimates of overall survival (OS) for patients split into 2 groups based on the two-gene signature (IL2RB+ASGR2): training cohort (Panel A), test cohort (Panel B), and both cohorts pooled (Panel C). IL2RB and ASGR2 were identified by applying two different methods to the training cohort: multivariable Cox PH regression with elastic-net penalties, and unregularized univariate Cox PH regression coupled with evaluation of 2- and 3-gene combinations. Once genes were identified, coefficients were estimated using unregularized Cox PH regression on the training cohort, and a classification threshold was selected. Finally, the selected genes, coefficients, and thresholds were applied to the test cohort and to both cohorts pooled.



FIG. 2. Combining the two-gene signature with prognostic factor baseline LDH in the training cohort (Panel A), test cohort (Panel B), both cohorts pooled (Panel C), and both cohorts pooled using two thresholds (Panel D). Coefficients were estimated using Cox PH regression in the training cohort alone. They were then applied to the training cohort, test cohort, and both cohorts pooled to obtain patient scores. The threshold for panels A-C was determined using threshold optimization in the training cohort alone, then applying this threshold to the training cohort, test cohort, and both cohorts pooled. The two thresholds used in panel D were determined using threshold optimization on both cohorts pooled together. Time-dependent ROC curves at 12 months for the training cohort (Panel E), test cohort (Panel F), and both cohorts pooled (Panel G) are presented for both the two-gene signature (red) and the three-factor signature (black), along with the relevant AUCs. The stars indicate the points on the ROC curve corresponding to the selected thresholds.



FIG. 3. Functional and enrichment analysis yields insights into the biological mechanisms underlying the two-gene signature's association with OS in advanced metastatic melanoma patients receiving ipilimumab. Network analysis of genes (red) correlated with IL2RB (Panel A) suggests a role for EOMES in connecting IL2RB with the genes significantly correlated with it, as well as with CTLA-4 itself. For genes found to be associated with OS (Panel B, row headings) the relative expression of each gene across cell types (Panel B, columns) in the DMAP18 data is shown in a heat map. This analysis suggests roles for NK and T cells (Panel B, upper left) and B cells (Panel B, middle) in genes positively associated with OS, and a role for myeloid cells (Panel B, lower right) in genes negatively associated with OS. The genes and biological mechanisms (Panel C) suggest that the two-gene signature may represent a balance of anti-tumor lymphocyte-driven functions and pro-tumor myeloid-driven functions.



FIG. 4. Time-dependent ROC curves at 12 months comparing the two-gene signature (IL2RB+ASGR2) (black) with the three-gene signatures (red) (IL2RB+ASGR2+ZBP1), (IL2RB+ASGR2+CAT), and (IL2RB+ASGR2+ASGR1).



FIG. 5. Boxplot summarizing the distribution of normalized expression levels for genes ASGR1, ASGR2, and IL2RB in the training and test cohorts pooled. Mean expression of ASGR2 was 1.54-fold higher than ASGR1, and the difference was significant by a paired t-test (P=1.32×10−69).



FIG. 6. Kaplan-Meier estimates of OS, and log-rank test p-values, for patients split into 2 groups based on the two-gene signature, IL2RB+ASGR1: training cohort (Panel A), test cohort (Panel B), and both cohorts pooled (Panel C). The results are comparable to those achieved by IL2RB and ASGR2 (FIG. 1).



FIG. 7. Estimation of classification threshold(s) using the log-rank test chi-square statistic for (A) two-gene signature (IL2RB+ASGR2) in training cohort, (B) three-factor signature (IL2RB+ASGR2+LDH) in training cohort, and (C) three-factor signature (IL2RB+ASGR2+LDH) in pooled cohort (two thresholds).



FIG. 8. Analysis of EOMES by qPCR yielded a highly significant Kaplan-Meier plot (log-rank p=6.86×10−8).





The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.


DETAILED DESCRIPTION

The methods described herein are based on certain gene expression signatures. The gene expression signatures may be used as biomarkers, e.g., prognostic, predictive biomarkers for clinical efficacy and/or safety.


Provided herein are methods for treating a subject having cancer with an immunotherapeutic agent, comprising (a) determining expression level of at least one gene in a blood sample obtained from the subject, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3; (b) determining likelihood of clinical response of the subject to the treatment based on the expression level of the at least one gene in the blood sample, wherein the expression level of the at least one gene selected from the first group of genes is positively correlated with the likelihood of clinical response, and wherein the expression level of the at least one gene selected from the second group of genes is negatively correlated with the likelihood of clinical response; and (c) administering to the subject a therapeutically effective amount of the immunotherapeutic agent for treating the cancer.


Also provided herein are methods of predicting likelihood of clinical response of a subject having cancer to treatment with an immunotherapeutic agent, comprising (a) obtaining a blood sample from the subject before the treatment, (b) determining expression level of at least one gene in the blood sample, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3; (c) determining likelihood of clinical response of the subject to the treatment based on the expression level of the at least one gene in the blood sample, wherein the expression level of the at least one gene selected from the first group of genes is positively correlated with the likelihood of clinical response, and wherein the expression level of the at least one gene selected from the second group of genes is negatively correlated with the likelihood of clinical response.


Also provided herein are methods for determining whether to treat a subject having cancer with a immunotherapeutic agent, comprising (a) obtaining a blood sample from the subject, (b) determining expression level of at least one gene in a blood sample obtained from the subject, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3; (c) determining likelihood of clinical response of the subject to the treatment based on the expression level of the at least one gene in the blood sample, wherein the expression level of the at least one gene selected from the first group of genes is positively correlated with the likelihood of clinical response, and wherein the expression level of the at least one gene selected from the second group of genes is negatively correlated with the likelihood of clinical response; and (d) determining whether to treat the subject with the immunotherapeutic agent based on the likelihood of clinical response.


Also provided herein are methods for treating a subject having cancer with an immunotherapeutic agent, comprising (a) determining expression levels of a first gene and a second gene in a blood sample obtained from the subject, wherein the first gene is IL2RB and a second gene is selected from ASGR1 and ASGR2; (b) determining likelihood of longer overall survival of the subject following the treatment based on the expression levels of the first gene and the second gene in the blood sample, wherein the expression levels of the first gene and the second gene are used to calculate a score according to formula:





Score=−C1*Xfirst gene+C2*Xsecond gene,


wherein Xfirst gene and Xsecond gene are normalized mRNA expression levels of the first and the second gene, respectively, and C1 and C2 are each, independently, a number ranging from 0.01 to 3, wherein the score is negatively correlated with the likelihood of longer overall survival; and (c) administering to the subject a therapeutically effective amount of the immunotherapeutic agent for treating the cancer.


Also provided herein are methods of predicting likelihood of longer overall survival of a subject having cancer following treatment with an immunotherapeutic agent, comprising: (a) obtaining a blood sample from the subject before the treatment; (b) determining expression levels of a first gene and a second gene in the blood sample obtained from the subject, wherein the first gene is IL2RB and a second gene is selected from ASGR1 and ASGR2; and (c) determining likelihood of longer overall survival of the subject following the treatment based on the expression levels of the first gene and the second gene in the blood sample, wherein the expression levels of the first gene and the second gene are used to calculate a score according to formula:





Score=−C1*Xfirst gene+C2*Xsecond gene,


wherein Xfirst gene and Xsecond gene are normalized mRNA expression levels of the first and the second gene, respectively, and C1 and C2 are each, independently, a number ranging from 0.01 to 3, wherein the score is negatively correlated with the likelihood of longer overall survival.


Also provided herein are methods for determining whether to treat a subject having cancer with a immunotherapeutic agent, comprising: (a) obtaining a blood sample from the subject; (b) determining expression levels of a first gene and a second gene in the blood sample obtained from the subject, wherein the first gene is IL2RB and a second gene is selected from ASGR1 and ASGR2; and (c) determining likelihood of longer overall survival of the subject following the treatment based on the expression levels of the first gene and the second gene in the blood sample, wherein the expression levels of the first gene and the second gene are used to calculate a score according to formula:





Score=−C1*Xfirst gene+C2*Xsecond gene,


wherein Xfirst gene and Xsecond gene are normalized mRNA expression levels of the first and the second gene, respectively, and C1 and C2 are each, independently, a number ranging from 0.01 to 3, wherein the score is negatively correlated with the likelihood of longer overall survival; and (d) determining whether to treat the subject with the immunotherapeutic agent based on the likelihood of longer overall survival.


Also provided herein are kits for use for the methods disclosed herein. The kits may comprise one or more reagents for determining expression level of at least one gene in a blood sample, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3.


Also provided herein are kits for use for the methods disclosed herein. The kits may comprise one or more reagents for determining expression levels of a first gene and a second gene in a blood sample, wherein the first gene is IL2RB and a second gene is selected from ASGR1 and ASGR2.


The term “treating” or “treatment” refers to administering an immunotherapeutic agent described herein to a subject that has cancer, or has a symptom of cancer, or has a predisposition toward cancer, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect cancer, the symptoms of cancer, or the predisposition toward cancer.


The terms “patient” or “subject” are used interchangeably and refer to mammals such as human patients and non-human primates, as well as experimental animals such as rabbits, rats, and mice, and other animals. Animals include all vertebrates, e.g., mammals and non-mammals, such as sheep, dogs, cows, chickens, amphibians, and reptiles.


The term “immunotherapeutic agent” means an agent that may enhance or alter immune response to a disease or disorder such as cancer. The term “immune response” refers to the concerted action of immune cells, including lymphocytes, antigen presenting cells, phagocytic cells, and granulocytes, and soluble macromolecules produced by the above cells or the liver (including antibodies, cytokines, and complement), that results in selective damage to, destruction of, or elimination from the human body of invading pathogens, cells or tissues infected with pathogens, or cancerous cells. An immunotherapeutic agent may block immuno-regulatory proteins on immune cells, such as cytotoxic T lymphocyte antigen-4 (CTLA-4), Programmed Death 1 (PD-1), PD-1 ligand 1 (PD-L1), OX40, KIR (Killer-cell Immunoglobulin-Like Receptor), or CD137. The immunotherapeutic agent may be, for example, an anti-CTLA-4 antibody, an anti-PD-1 antibody, an anti-PD-L1 antibody, an anti-KIR antibody, an OX40 agonist, a CD137 agonist, IL21 or other cytokines. In some embodiments, the immunotherapeutic agent may be an anti-CTLA-4 antibody, such as ipilimumab or tremelimumab.


The term “effective amount” refers to an amount of an immunotherapeutic agent described herein effective to “treat” a disease or disorder in a subject. In the case of cancer, the effective amount may cause any of the changes observable or measurable in a subject as described in the definition of “treating” and “treatment” above. For example, the effective amount can reduce the number of cancer or tumor cells; reduce the tumor size; inhibit or stop tumor cell infiltration into peripheral organs including, for example, the spread of tumor into soft tissue and bone; inhibit and stop tumor metastasis; inhibit and stop tumor growth; relieve to some extent one or more of the symptoms associated with the cancer, reduce morbidity and/or mortality; improve quality of life; increase or prolong overall survival; or a combination of such effects. In some embodiments, an effective amount may be an amount sufficient to decrease the symptoms of the cancer, or an amount sufficient to prolong overall survival. Efficacy in vivo can, for example, be measured by assessing the duration of survival (e.g. overall survival), time to disease progression (TTP), the response rates (RR), duration of response, and/or quality of life. Effective amounts may vary, as recognized by those skilled in the art, depending on route of administration, excipient usage, and co-usage with other agents.


The term “clinical response” refers to positive clinical outcome of a patient to the treatment defined above, and may be expressed in terms of various measures of clinical outcome. Positive clinical outcome may be considered as an improvement in any measure of patient status, including those measures ordinarily used in the art, such as tumor regression, a decrease in tumor (or lesion) size or growth, a decrease in tumor (or lesion) burden, an increase in the duration of Recurrence-Free interval (RFI), an increase in the time of Progression Free Survival (PFS), an increase in the time of Overall Survival (OS) (from treatment to death), an increase in the time of Disease-Free Survival (DFS), an increase in the duration of Distant Recurrence-Free Interval (DRFI), and/or an increase in the duration of response, and the like. Clinical response may be a complete or partial response, or stable or controlled disease progression. Clinical response may be measured, for example, at 2-4 weeks, 4-8 weeks, 8-12 weeks, 12-16 weeks, 4-6 months, 6-9 months, 9 months to 1 year, 1-2 years, 2-5 years, 5-10 years or longer, from initiation of treatment. For example, clinical response may be measured at week 8, 12, 16, 20, 24, or 36, survival at one year, 18 months, 2 years, 3 years, 4 years, 5 years, or 10 years, from initiation of treatment.


In some embodiments of the methods described herein, the likelihood of clinical response may be expressed in terms of the likelihood of an increase in the time of survival, such as longer overall survival, as compared to some patients, for example, a control or test patient group; patients who have a higher or lower expression level of a gene than the subject; patients who have a higher or lower score based on a formula and expression level of one or more genes; other patients treated with the immunotherapeutic agent; patients not treated with the immunotherapeutic agent; or patients treated with a different anti-cancer agent or procedure (e.g. surgical procedure). In some embodiments of the methods described herein, clinical response is expressed in terms of longer overall survival as compared to patients receiving the immunotherapeutic agent, e.g., ipilimumab or tremelimumab, who have a higher or lower expression level of a gene than the subject; or patients receiving the immunotherapeutic agent, e.g., ipilimumab or tremelimumab, who have a higher or lower score based on a formula and expression level of one or more genes. In some embodiments the term “longer overall survival” may mean overall survival longer than 6, 8, 9, 10, 12, or 18 months, or longer than 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, or 20 years. In some embodiments, “longer overall survival” may mean overall survival longer than 10, 20, 30, 40, 50, or 60 months.


In some embodiments, “likelihood of clinical response” may mean higher probability of survival at certain time points, for example, at 6, 8, 9, 10, 12, 18, 20, 30, 40, 50, or 60 months, or 1 year, 2 years, 3 years, 4 years, 5 years, 6 years, 10 years, or more than 10 years, from initiation of treatment, as compared to some patients, for example, a control or test patient group; patients who have a higher or lower expression level of a gene than the subject; patients who have a higher or lower score based on a formula and expression level of one or more genes; other patients treated with the immunotherapeutic agent; patients not treated with the immunotherapeutic agent; or patients treated with a different anti-cancer agent or procedure.


In some embodiments, the likelihood of clinical response may be expressed in terms of likelihood of an increase in the time of progression free survival (PSF). In some embodiments, “likelihood of clinical response” may mean the likelihood of an increase in the time of PSF as compared to some patients, for example, a control or test patient group; patients who have a higher or lower expression level of a gene than the subject; patients who have a higher or lower score based on a formula and expression level of one or more genes; a group of other patients treated with the immunotherapeutic agent; patients not treated with the immunotherapeutic agent; or patients treated with a different anti-cancer agent or procedure. In some embodiments, “likelihood of clinical response” may mean higher probability of PSF at certain time points, for example, at 1 year, 18 months, 2 years, 3 years, 5 years, 10 years, or more than 10 years, from initiation of treatment, as compared to some patients, for example, a control or test patient group; patients who have a higher or lower expression level of a gene than the subject; patients who have a higher or lower score based on a formula and expression level of one or more genes; other patients treated with the immunotherapeutic agent; patients not treated with the immunotherapeutic agent; or patients treated with a different anti-cancer agent.


The term “advanced cancer” means cancer that is no longer localized to the primary tumor site, or a cancer that is Stage III or IV according to the American Joint Committee on Cancer (AJCC). In some embodiments, the subject may have advanced cancer, such as advanced melanoma. Advanced melanoma may be, for example, metastatic melanoma, or stage III or IV melanoma, such as unresectable stage III or IV melanoma.


In some embodiments of the methods described herein, a blood sample may be obtained from the subject having cancer, and the expression level of at least one gene in the blood sample may be determined. The at least one gene may be selected from the genes listed in the first group of genes as listed in Table 2, wherein the expression level of the at least one gene is positively correlated with the likelihood of clinical response. For example, the at least one gene may be selected from IL2RB, KLRK1, G3BP, PPP1R16B, CLIC3, PRF1, SPON2, HOP, GNLY, TMEM161A, PRKCH, RUNX3, EOMES, SLC25A5, GZMB, IMP3, and ZAP70. It may be determined that the subject may have a high likelihood of clinical response, for example, longer overall survival, if the expression level of the at least one gene is higher than a predetermined value.


In some embodiments, the at least one gene may be selected from the genes listed in the second group of genes as listed in Table 3, wherein the expression level of the at least one gene is negatively correlated with the likelihood of clinical response. For example, the at least one gene may be selected from ASGR1, ASGR2, CENTA2, PGLS, MAPBPIP, STX10, C16ORF68, and RAB31. It may be determined that the subject may have a high likelihood of clinical response, for example, longer overall survival, if the expression level of the at least one gene is lower than a predetermined value.


In some embodiments, the expression level of at least two genes in the blood sample may be determined, and the likelihood of clinical response may be predicted based on the expression level of the at least two genes in the blood sample. The at least two genes may be selected from the genes listed in Tables 2 and 3. In some embodiments, the first gene of the at least two genes may be selected from the first group of genes as listed in Table 2, and a second gene of the at least two genes may be selected from the second group of genes as listed in Table 3. For example, the first gene may be selected from IL2RB, KLRK1, G3BP, PPP1R16B, CLIC3, PRF1, SPON2, HOP, GNLY, TMEM161A, PRKCH, RUNX3, EOMES, SLC25A5, GZMB, IMP3, and ZAP70. In some embodiments, the first gene may be IL2RB.


In some embodiments, the second gene of the at least two genes may be selected from ASGR1, ASGR2, CENTA2, PGLS, MAPBPIP, STX10, C16ORF68, and RAB31. For example, the second gene may be selected from ASGR1 and ASGR2.


In some embodiments, the at least two genes may be selected from the pairs of genes (two-gene signatures) listed in Tables 7 and 10 (see the Example section). In some embodiments, the first gene may be IL2RB and the second gene may be ASGR2. In some embodiments, the first gene may be IL2RB and the second gene may be ASGR1.


In some embodiments, the expression level of at least three genes in the blood sample may be determined, and the likelihood of clinical response may be predicted based on the expression level of the at least three genes in the blood sample. The at least three genes may be selected from the genes listed in Tables 2 and 3. A first gene of the at least three genes may be selected from the first group of genes as listed in Table 2. A second gene of the at least three genes may be selected from the second group of genes as listed in Table 3. In some embodiments, the at least three genes may be selected from three-gene groups (three-gene signatures) listed in Table 8 (see the Example section).


In some embodiments of the methods described herein, determining the likelihood of clinical response may comprise subjecting the expression level of the at least two genes to a formula to calculate a score, wherein the formula may be pre-determined by statistical analysis of (a) clinical response of a plurality of patients having the cancer to treatment with the immunotherapeutic agent and (b) the expression level of the at least two genes in pre-treatment blood samples from the plurality of patients. For example, coefficients may be calculated for each gene based on the clinical response and the gene expression level in the pre-treatment blood samples. The statistical analysis may be performed with any statistical method that is suitable for analyzing gene expression data, for example, Cox proportional-hazards (PH) regression.


In some embodiments, the formula for calculating the score is





Score=−C1*Xfirst gene+C2*Xsecond gene,


wherein Xfirst gene and Xsecond gene may be expression level of the first and the second gene, respectively, and C1 and C2 may be, independently, pre-determined values. For example, C1 and C2 may be, independently, pre-determined coefficients of the first and the second gene, respectively, based on gene expression data obtained from pre-treatment blood samples from a patient group. For example, C1 and C2 may be each, independently, a number ranging from 0.01 to 3, wherein the score may be negatively correlated with the likelihood of survival.


In some embodiments, C1 may range from 0.1 to 2.5, from 0.2 to 1.8, or from 0.3 to 1.4. In some embodiments, C1 may be about 1.3.


In some embodiments, C2 may range from 0.1 to 1.2, from 0.1 to 1.0, or from 0.2 to 0.8. In some embodiments, C2 may be about 0.7 to 0.8.


In some embodiments, Xfirst gene and Xsecond gene may be mRNA expression level of the first and the second gene, respectively. For example, Xfirst gene and Xsecond gene may be mRNA expression level of IL2RB and ASGR2, respectively, or Xfirst gene and Xsecond gene may be mRNA expression level of IL2RB and ASGR1, respectively. The mRNA expression level may be normalized. In some embodiments, where the mRNA expression level is measured by microarray, the mRNA expression level may be normalized using a standard robust multichip average (RMA) approach.


In some embodiments, Xfirst gene and Xsecond gene may be mRNA expression level of IL2RB and ASGR2, respectively, C1 may be about 1.3, and C2 may be about 0.7 to 0.8.


The score described above may be compared to a predetermined threshold. A score that is lower than the threshold may be indicative of high likelihood of clinical response, for example, longer overall survival, or higher probability of survival at a time point, while a score that is higher than the threshold may be indicative of low likelihood of clinical response, for example, shorter overall survival, or lower probability of survival at a time point, as compared to a selected or control group of patients, such as, patients treated with the immunotherapeutic agent, patients not treated with the immunotherapeutic agent, or patients treated with a different anti-cancer agent or procedure.


The expression level of the at least one gene may be measured by at least one method selected from microarray, quantitative polymerase chain reaction (qPCR), and flow cytometry. “Microarray” refers to an ordered arrangement of hybridizable array elements, preferably polynucleotide probes, on a substrate.


The immunotherapeutic agent may be an antibody. In some embodiments, the immunotherapeutic agent may be an anti-CTLA4 antibody, such as a human or humanized or chimeric anti-CTLA4 antibody. In some embodiments, the immunotherapeutic agent may be ipilimumab or tremelimumab. In some embodiments, the immunotherapeutic agent may be ipilimumab


In some embodiments, the subject may have cancer selected from melanoma; prostate cancer, prostatic neoplasms, adenocarcinoma of the prostate; lung cancer, e.g., small cell lung cancer and non-small cell lung cancer; ovarian cancer; gastric cancer; adenocarcinoma of the gastric and gastro-esophageal junction; gastrointestinal stromal tumor; glioblastoma; cervical cancer; adenocarcinoma; breast cancer, invasive adenocarcinoma of the breast; pancreatic cancer; duct cell adenocarcinoma of the pancreas; sarcoma, such as chondrosarcoma, clear cell sarcoma of the kidney, endometrial stromal sarcoma, Ewing's sarcoma, osteosarcoma, peripheral primitive neuroectodermal tumor, ovarian sarcoma, soft tissue sarcoma, uterine sarcoma, adult soft tissue sarcoma, and synovial sarcoma; transitional cell carcinoma; urothelial carcinoma; Wilm's tumor and neuroblastoma; lymphoma; leukemia; ocular melanoma, intraocular melanoma, cutaneous melanoma; and kidney cancer. In some embodiments, the subject may have cancer selected from melanoma; prostate cancer, prostatic neoplasms, adenocarcinoma of the prostate; lung cancer, e.g., small cell lung cancer, non-small cell lung cancer; ovarian cancer; gastric cancer; and glioblastoma. In some embodiments, the subject may have advanced melanoma or metastatic melanoma. In some embodiments, the subject may have stage III or IV melanoma, such as unresectable stage III or IV melanoma. In some embodiments, the subject may have prostate cancer. In some embodiments, the subject may have lung cancer, e.g., small cell lung cancer or non-small cell lung cancer.


In some embodiments of the methods described herein, determining the likelihood of clinical response may be based on the gene expression level and at least one additional factor. In some embodiments, the at least one additional factor may be selected from baseline serum LDH level and disease stage (e.g., M category). In some embodiments, the at least one additional factor may be baseline serum LDH level.


In some embodiments, at the time the likelihood of clinical response of the subject is determined, the subject may be not being treated, or may have not been treated, with the immunotherapeutic agent. In some embodiments, the subject may have been treated with the immunotherapeutic agent at the time the likelihood of clinical response of the subject is determined. For example, the expression level of the at least one gene may change over time in the subject. Thus, the likelihood of clinical response may be determined to decide whether to administer (or re-administer) the immunotherapeutic agent to the subject.


Also provided are kits comprising one or more reagents for determining expression level of at least one gene in a blood sample, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3. In some embodiments, the one or more reagents may be used to determine mRNA expression level of the at least one gene. For example, the kit may comprise at least one nucleic acid or polynucleotide capable of specifically hybridizing to the at least one gene. For example, the kit may comprise at least one probe set capable of specifically hybridizing to the at least one gene. In some embodiments, the kit may comprise at least one probe set for microarray. In some embodiments, the kit may comprise at least one reagent for performing quantitative polymerase chain reaction (qPCR). In some embodiments, the kit may comprise at least one reagent for flow cytometry.


In some embodiments, the kit may comprise one or more reagents for determining expression level of at least one gene selected from IL2RB, KLRK1, G3BP, PPP1R16B, CLIC3, PRF1, SPON2, HOP, GNLY, TMEM161A, PRKCH, RUNX3, EOMES, SLC25A5, GZMB, IMP3, and ZAP70. In some embodiments, the kit may comprise one or more reagents for determining expression level of at least one gene selected from ASGR1, ASGR2, CENTA2, PGLS, MAPBPIP, STX10, C16ORF68, and RAB31.


In some embodiments, the kit may comprise one or more reagents for determining expression level of at least two genes in the blood sample. The at least two genes may be selected from the genes listed in Tables 2 and 3. In some embodiments, the first gene of the at least two genes may be selected from the first group of genes as listed in Table 2. In some embodiments, a second gene of the at least two genes may be selected from the second group of genes as listed in Table 3. For example, the first gene may be selected from IL2RB, KLRK1, G3BP, PPP1R16B, CLIC3, PRF1, SPON2, HOP, GNLY, TMEM161A, PRKCH, RUNX3, EOMES, SLC25A5, GZMB, IMP3, and ZAP70. For example, the first gene may be IL2RB. In some embodiments, the second gene may be selected from ASGR1, ASGR2, CENTA2, PGLS, MAPBPIP, STX10, C16ORF68, and RAB31. For example, the second gene may be selected from ASGR1 and ASGR2. In some embodiments, the first gene may be IL2RB and the second gene may be ASGR2. In some embodiments, the first gene may be IL2RB and the second gene may be ASGR1. In some embodiments, the at least two genes may be selected from the pairs of genes listed in Tables 7 and 10 (Example section).


In some embodiments, the kit may comprise one or more reagents for determining expression level of at least three genes in the blood sample. The first gene of the at least three genes may be selected from the first group of genes as listed in Table 2. The second gene of the at least three genes may be selected from the second group of genes as listed in Table 3. In some embodiments, the at least three genes may be selected from three-gene groups listed in Table 8 (Example section).


The following Example contains additional information, exemplification and guidance which can be adapted to the practice of this invention in its various embodiments and the equivalents thereof. The example is intended to help illustrate the invention, and is not intended to, nor should it be construed to, limit its scope.


EXAMPLE
Gene Signatures in Pre-Treatment Blood of Ipilimumab Treated Patients: Predictive and Prognostic Biomarkers of Response and Survival Introduction

Ipilimumab, a fully human monoclonal antibody against the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), promotes antitumor immunity and improves overall survival (OS) in metastatic melanoma patients.1,2


Several markers have been found to associate with OS or tumor response in patients receiving ipilimumab, including tumor expression of immune-related genes,3 changes in absolute lymphocyte count (ALC),4 EOMES-positive CD8+ T cells,5 ICOShi CD4+ T cells,6 NY-ESO-1 seropositivity,7 polyfunctional NY-ESO-1 specific T cell responses,8 and baseline myeloid-derived suppressor cell (MDSC) levels.9


Despite these insights, no marker has yet emerged that meets five key criteria: (1) can be measured prior to treatment in a readily-accessible sample (e.g. blood), (2) is significantly associated with OS in patients receiving ipilimumab, (3) has a clear mechanistic explanation rooted in the underlying biology, (4) has been repeated in a test cohort independent from the training cohort on which it was developed, and (5) has an effect of a magnitude sufficient to provide clinically meaningful predictions of OS.


In this study biomarkers that meet those five criteria were identified by analyzing gene expression levels in blood drawn from 88 patients prior to receiving ipilimumab and then testing candidate predictive models in a separate cohort of 69 patients.


Materials and Methods

1. Study Design


The multicenter, phase II clinical trial CA184-004 enrolled 82 previously-treated and untreated patients with unresectable stage III or IV melanoma, randomized 1:1 into 2 arms to receive up to 4 intravenous infusions of either 3 or 10 mg/kg ipilimumab every 3 weeks (Q3W) in the induction phase. In the phase II CA184-007 trial, treatment-naïve or previously treated patients with unresectable stage III/IV melanoma (N=115) received open-label ipilimumab (10 mg/kg every 3 wks for four doses) and were randomized to receive concomitant blinded prophylactic oral budesonide (9 mg/d with gradual taper through week 16) or placebo. Data for baseline (pre-treatment) serum lactate dehydrogenase (LDH) were available for 154 out of 157 patients in the two studies (67 in CA184004 and 87 in CA184007). Clinical variables including OS and disease stage (M category) were recorded. Patient disease stage (M category) information for each cohort appears in Table 1. Complete study design, patient characteristics and endpoint reports of these trials have been described elsewhere10,11. Both studies were conducted in accordance with the ethical principles originating from the current Declaration of Helsinki and consistent with International Conference on Harmonization Good Clinical Practice and the ethical principles underlying European Union Directive 2001/20/EC and the United States Code of Federal Regulations, Title 21, Part 50 (21 C.F.R. 50). The protocols and patient informed consent forms received appropriate approval by all Institutional Review Boards or Independent Ethics Committees prior to study initiation. All participating patients (or their legally acceptable representatives) gave written informed consent for these biomarker focused studies.









TABLE 1







Disease stage (M Category) of patients in training and test cohorts












Training Cohort (CA184-007)

Test Cohort (CA184-004)













M Category
N (%)
M Category
N (%)

















M0
0
(0%)
M0
1
(1.4%)



M1A
17
(19%)
M1A
17
(24.6%)



M1B
29
(33%)
M1B
5
(7.3%)



M1C
42
(48%)
M1C
46
(66.7%)



Total
88
(100%)
Total
69
(100%)









2. Affymetrix Gene Expression Analysis


Whole blood was collected prior to treatment. Total RNA was extracted using the Prism 6100 (Applied Biosystems, Foster City, Calif.), purified by RNAClean Kit (Agencourt Bioscience Corporation; Beverly, Mass.), and evaluated on a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, Calif.). Complementary DNA preparation and hybridization on HT-HG-U133A 96-array plates followed manufacturer's protocols (Affymetrix, Santa Clara, Calif.).


3. Computational Analysis


The training cohort consisted of 88 patients from CA184007, and the test cohort comprised 69 patients from CA184004. All raw microarray data for the training and test cohorts were normalized together using a standard robust multichip average (RMA) approach,12 which combines background adjustment, quantile normalization, and summarization, implemented in the Bioconductor package (v2.10, http://www.bioconductor.org)13 of the statistical computing language R (v2.15.1, http://www.r-project.org). For genes with multiple probes, the probe with the greatest mean expression level was selected.14


Feature Selection


A pathwise algorithm for Cox proportional-hazards (PH) regression, regularized by a lasso or elastic-net penalty, was applied to all probe sets for unique genes in the pre-treatment gene expression data from the training cohort to identify genes predictive of OS. This method has been previously described at length15 and is implemented as the glmnet package in the statistical computing language R. For much of the work the glmnet default alpha=1 (lasso penalty) was used, but it was also verified that alpha=0.95 yielded comparable results.


As a second method, a univariate Cox regression was applied to the pre-treatment gene expression data from the training cohort to rank the genes that were most significantly associated with OS.


Two-Gene Signature: Coefficient Estimation and Threshold Selection


Cox PH regression was used to estimate the coefficients for selected genes in order to best fit the OS data in the training cohort. Using the resulting coefficients and the gene expression values of the candidate genes, a two-gene score for each patient was calculated. For purposes of illustration, these scores were dichotomized by application of a classification threshold. This threshold was selected by minimizing, over all possible thresholds, the log-rank test p-value for comparing the OS curve in training-cohort patients with scores below the threshold to that in training-cohort patients with scores above the threshold.


Two-Gene Signature: Testing


For each patient in the test cohort, the coefficients previously estimated using the training cohort were used to calculate a score. Then the previously selected threshold was applied to classify patients into 2 groups, the Kaplan-Meier method16 was used to estimate the survival functions, and a log-rank test was used to compare OS in the 2 groups.


The scores for the training and test cohorts were then pooled, and the previously selected classification threshold was applied. Survival curves for the resulting 2 groups again were estimated by the Kaplan-Meier method and compared using a log-rank test.


Three-Factor Signature


Multivariable Cox PH regression was used to explore the relationship between selected genes and two of the most established prognostic factors in advanced melanoma: baseline serum lactate dehydrogenase (LDH) levels and disease stage (M category).17


An optimal three-factor signature (combining the previously-identified two-gene signature with LDH) was identified by performing a multivariable Cox regression on the training cohort to determine the best-fitting coefficients. Next, the comprehensive threshold exploration method described above was used to determine a good threshold.


Cell-Type Enrichment Analysis


A statistical method was developed to determine whether genes specific to particular cell types were over-represented in the set of genes positively associated with OS, and whether genes specific to particular cell types were over-represented in the set of genes negatively associated with OS. The publicly available Broad Institute Differentiation Map Portal (DMAP)18 data set was used. This data set contains a comprehensive collection of genome-wide gene expression profiles for all major human hematopoietic cell types in several replicates. To evaluate a given gene's cell-type specificity, for each gene profiled in the DMAP data an enrichment score was computed based on a published algorithm.19 Each enrichment score is a measure of how specific the expression of a particular gene is for a particular cell type. Next, for each cell type, cell-type specific gene sets were compiled using an enrichment score cut off of 10 as the criterion for inclusion of the gene into the gene set. Finally, separately for the set of genes positively associated with OS and the set of genes negatively associated with OS, a hypergeometric test was used to evaluate whether each gene set was enriched in genes specific for each of the cell types. The resulting hypergeometric p-values are reported in Tables 15-16, along with the hypergeometric p-values adjusted to control for false discovery rate (FDR) using the Benjamini-Hochberg method.


qPCR Data Analysis


Quantitative polymerase chain reaction (qPCR) was conducted using the TAQMAN® Gene Expression Assay (Life Technologies/Applied Biosystems) with Assay IDs Hs00172872_ml (EOMES) (target sequence RefSeq ID: NM005442.2) and Hs99999905_ml (GAPDH) (target sequence RefSeq ID: NM002046.4), respectively, according to methods previously described.3 The qPCR data were normalized using GAPDH as the housekeeping gene. An optimal threshold was identified using methods described above, and then a Kaplan-Meier plot was generated using R. The association with OS was determined by univariate Cox regression. In addition, Spearman's rank correlation was determined between the normalized EOMES expression by qPCR and the expression of selected genes by microarray.


Results
Identification of Potential Predictive-Prognostic Gene Signatures in Ipilimumab Treated Patients

Two analytical methods were used to identify genes predictive of OS: elastic-net regularized Cox PH regression, and univariate (unregularized) Cox PH regression.


When the elastic-net regularized regression method was applied to the gene expression profiles for the selected probe sets for 13,341 unique genes from 88 patients in the training cohort (treated in the CA184007 trial), with the regularization parameter, lambda between 0.3713 and 0.2443, it identified a combination of two genes predictive of OS: IL2RB (interleukin-2 receptor beta, also known as CD122; probe 205291_at) and ASGR1 (asialoglycoprotein receptor 1; probe 206743_s_at). Relaxing lambda to a number between 0.2443 and 0.2226 to identify the next gene yielded ASGR2 (asialoglycoprotein receptor 2; probe 206130_s_at). Further, the gene expression profiles of ASGR1 and ASGR2 were found to be highly correlated in the training cohort (Spearman's rank correlation, R=0.562, P=1.22×10−14) (Table 4). The two genes also have a close biological relationship, encoding two proteins that together form the asialoglycoprotein receptor.20









TABLE 4







Genes with expression most highly correlated with that of IL2RB and ASGR2 in


both cohorts pooled, sorted by Spearman's rank correlation coefficient, R.








IL2RB
ASGR2














Gene
Probe Set
R
P Value
Gene
Probe Set
R
P Value





PRF1
214617_at
0.735
2.77E−28
CSPG2
221731_x_at
0.605
2.91E−17


RUNX3
204197_s_at
0.729
1.24E−27
FCN1
205237_at
0.588
3.71E−16


SPON2
218638_s_at
0.692
5.13E−24
CD14
201743_at
0.588
3.75E−16


CLIC3
219529_at
0.692
5.44E−24
GRN
200678_x_at
0.569
5.32E−15


RFTN1
212646_at
0.682
4.26E−23
ASGR1
206743_s_at
0.562
1.22E−14


CD247
210031_at
0.671
4.03E−22
APLP2
208248_x_at
0.551
5.26E−14


TXK
206828_at
0.665
1.11E−21
IFI30
201422_at
0.538
2.52E−13


PRKCH
218764_at
0.655
7.35E−21
TSPO
202096_s_at
0.537
2.96E−13


ZAP70
214032_at
0.644
5.51E−20
DUSP3
201536_at
0.532
5.55E−13


LUC7L2
220099_s_at
0.641
9.34E−20
HK3
205936_s_at
0.526
1.08E−12


FYN
210105_s_at
0.640
1.01E−19
CENTA2
219358_s_at
0.523
1.52E−12


SYNE1
209447_at
0.640
1.02E−19
STAB1
204150_at
0.520
2.26E−12


TH1L
220607_x_at
0.637
1.67E−19
LTA4H
208771_s_at
0.501
1.75E−11


CHST12
218927_s_at
0.636
2.05E−19
CYFIP1
208923_at
0.498
2.31E−11


GZMB
210164_at
0.634
2.72E−19
PLXNB2
208890_s_at
0.491
5.17E−11


DENND2D
221081_s_at
0.633
3.54E−19
GNA15
205349_at
0.489
5.94E−11


CBLB
209682_at
0.632
3.98E−19
CTSH
202295_s_at
0.488
6.61E−11


IARS
204744_s_at
0.628
8.65E−19
ANXA2P2
208816_x_at
0.488
6.84E−11


KLRD1
210606_x_at
0.627
9.92E−19
LILRB4
210152_at
0.471
3.82E−10


CCND2
200953_s_at
0.623
1.67E−18
CD33
206120_at
0.457
1.34E−09


PTGDR
215894_at
0.621
2.52E−18
ANXA2
210427_x_at
0.450
2.68E−09


GPR56
212070_at
0.620
2.90E−18
LGALS1
201105_at
0.399
1.90E−07


NONO
200057_s_at
0.616
5.12E−18






MAPRE2
202501_at
0.615
6.48E−18






HOP
211597_s_at
0.605
2.83E−17






STAT4
206118_at
0.605
2.88E−17






NCAM1
212843_at
0.604
3.56E−17






RNPS1
200060_s_at
0.603
4.00E−17






NKG7
213915_at
0.603
4.24E−17






EVL
217838_s_at
0.601
5.14E−17






KLRF1
220646_s_at
0.600
6.35E−17






PRKCQ
210038_at
0.598
8.34E−17






TGFBR3
204731_at
0.597
9.62E−17






PYHIN1
216748_at
0.597
9.66E−17






CCL4
204103_at
0.594
1.46E−16






RBBP7
201092_at
0.593
1.79E−16






KLRK1
205821_at
0.592
1.99E−16






PVRIG
219812_at
0.591
2.32E−16






SLC25A3
200030_s_at
0.591
2.55E−16






ST6GAL1
201998_at
0.590
2.70E−16






TBX21
220684_at
0.589
3.29E−16






GTF3C2
212429_s_at
0.586
4.87E−16






SIDT1
219734_at
0.586
5.14E−16






ARHGEF7
202548_s_at
0.584
6.53E−16






MAGED1
209014_at
0.584
6.54E−16






CD160
207840_at
0.582
8.66E−16






ADA
204639_at
0.581
9.91E−16






LPXN
216250_s_at
0.579
1.31E−15






CX3CR1
205898_at
0.579
1.34E−15






DNMT1
201697_s_at
0.576
1.85E−15






NFATC3
210555_s_at
0.576
2.06E−15






ATP2B4
212135_s_at
0.575
2.29E−15






PPP1R16B
212750_at
0.574
2.62E−15






TRA@//TRD@
217143_s_at
0.574
2.63E−15






SMAD3
218284_at
0.573
2.91E−15






HSP90AB1
200064_at
0.572
3.55E−15






DDX47
220890_s_at
0.571
3.73E−15






CDC25B
201853_s_at
0.570
4.25E−15






PLEKHA1
219024_at
0.569
4.81E−15






CS
208660_at
0.568
6.10E−15






YPEL1
213996_at
0.566
7.16E−15






IL10RA
204912_at
0.566
7.54E−15






ITPR3
201189_s_at
0.566
7.73E−15






TMEM109
201361_at
0.566
7.86E−15






IMP3
221688_s_at
0.566
8.03E−15






NCALD
211685_s_at
0.565
8.51E−15






WWP1
212638_s_at
0.564
1.02E−14






SPTBN1
212071_s_at
0.562
1.30E−14






NPIP
204538_x_at
0.562
1.31E−14






KIFAP3
203333_at
0.562
1.32E−14






PLEKHF1
219566_at
0.561
1.38E−14






OFD1
203569_s_at
0.561
1.43E−14






CTSW
214450_at
0.561
1.47E−14






BLMH
202179_at
0.560
1.75E−14






AUTS2
212599_at
0.558
2.12E−14






GNLY
37145_at
0.557
2.54E−14






LCK
204891_s_at
0.556
2.65E−14






KIR3DL2
207314_x_at
0.555
3.32E−14






LOC339047
221501_x_at
0.554
3.39E−14






ZMYND11
202136_at
0.552
4.61E−14






SLC35E2
217122_s_at
0.549
6.37E−14






CRTC3
218648_at
0.548
7.38E−14









Applying the univariate (unregularized) Cox PH regression approach to the pre-treatment blood gene expression data from the 88 patients in the training cohort yielded 73 genes associated with OS with p<0.005 (Table 5), including a subset of 16 genes with p<0.001 (Table 6). IL2RB had the smallest p-value (p=4.62×10−7) in the training cohort, and higher expression of this gene was positively associated with longer survival (hazard ratio=0.28, 95% CI=0.17 to 0.46). Among the genes for which higher expression was associated with shorter survival (hazard ratio>1), ASGR1 and ASGR2 had the smallest p-values in the training cohort (P=1.18×10−6 and 1.42×104, respectively).









TABLE 5







Top overall survival-associated genes in training cohort


by univariate Cox PH regression analysis, p < 0.005.












Hazard Ratio



Gene
Probe Set
(95% CI)
P Value





IL2RB
205291_at
0.28 (0.17-0.46)
4.62E−07


ASGR1
206743_s_at
4.00 (2.30-6.94)
1.18E−06


KLRK1
205821_at
0.40 (0.26-0.62)
3.51E−05


G3BP
201503_at
0.17 (0.07-0.41)
6.44E−05


PPP1R16B
212750_at
0.20 (0.08-0.46)
1.24E−04


ASGR2
206130_s_at
2.05 (1.41-2.99)
1.42E−04


CLIC3
219529_at
0.45 (0.29-0.70)
1.58E−04


PRF1
214617_at
0.49 (0.34-0.70)
2.60E−04


SPON2
218638_s_at
0.53 (0.38-0.73)
3.77E−04


HOP
211597_s_at
0.50 (0.33-0.76)
4.76E−04


GNLY
37145_at
0.50 (0.34-0.73)
4.92E−04


TMEM161A
43977_at
0.12 (0.04-0.43)
6.26E−04


CENTA2
219358_s_at
3.99 (1.76-9.05)
6.43E−04


PRKCH
218764_at
0.50 (0.34-0.73)
6.75E−04


PGLS
218388_at
 5.03 (1.89-13.37)
9.13E−04


RUNX3
204197_s_at
0.40 (0.24-0.69)
9.65E−04


CEBPA
204039_at
3.61 (1.65-7.88)
1.06E−03


GZMB
210164_at
0.50 (0.32-0.76)
1.07E−03


CCND2
200953_s_at
0.42 (0.25-0.70)
1.11E−03


ZBP1
208087_s_at
3.36 (1.67-6.76)
1.16E−03


NKG7
213915_at
0.48 (0.31-0.75)
1.17E−03


ARL2BP
202092_s_at
0.30 (0.15-0.62)
1.19E−03


CCL4
204103_at
0.53 (0.37-0.78)
1.31E−03


PMS2L11
210707_x_at
0.34 (0.18-0.65)
1.42E−03


ZMYND11
202136_at
0.49 (0.32-0.76)
1.72E−03


TTC17
218972_at
0.35 (0.19-0.67)
1.80E−03


MAPBPIP
218291_at
 4.34 (1.73-10.91)
1.87E−03


CLDN15
219640_at
0.22 (0.08-0.58)
2.00E−03


TBX21
220684_at
0.49 (0.31-0.77)
2.09E−03


CEACAM3
208052_x_at
3.71 (1.57-8.75)
2.11E−03


ING2
205981_s_at
3.79 (1.67-8.60)
2.23E−03


LUC7L2
220099_s_at
0.40 (0.23-0.71)
2.28E−03


CAT
201432_at
0.40 (0.22-0.73)
2.30E−03


IMP3
221688_s_at
0.37 (0.20-0.70)
2.31E−03


CD2
205831_at
0.50 (0.33-0.76)
2.37E−03


GZMA
205488_at
0.55 (0.38-0.81)
2.39E−03


SPCS2
201240_s_at
0.37 (0.21-0.68)
2.47E−03


HOMER3
215489_x_at
 4.22 (1.66-10.69)
2.57E−03


RPA2
201756_at
0.48 (0.31-0.76)
2.61E−03


RAB31
217763_s_at
3.31 (1.48-7.41)
2.63E−03


SLC25A5
200657_at
0.18 (0.07-0.52)
2.69E−03


ARF5
201526_at
 4.80 (1.72-13.42)
2.70E−03


CHST12
218927_s_at
0.30 (0.13-0.68)
2.75E−03


MNAB
220202_s_at
0.31 (0.14-0.67)
3.01E−03


IL1RN
212657_s_at
2.36 (1.33-4.21)
3.02E−03


GPR56
212070_at
0.52 (0.34-0.80)
3.11E−03


TXNIP
201010_s_at
0.16 (0.05-0.54)
3.19E−03


CCND3
201700_at
0.34 (0.17-0.72)
3.38E−03


TRATRD
217147_s_at
0.56 (0.38-0.81)
3.45E−03


LILRA5
215838_at
1.87 (1.23-2.84)
3.47E−03


ZAP70
214032_at
0.48 (0.29-0.79)
3.48E−03


PYCARD
221666_s_at
3.67 (1.54-8.74)
3.49E−03


ADA
204639_at
0.37 (0.18-0.75)
3.69E−03


HPSE
219403_s_at
1.89 (1.23-2.92)
3.71E−03


TSPO
202096_s_at
 3.96 (1.54-10.21)
3.71E−03


LOC130074
212017_at
0.33 (0.15-0.69)
3.82E−03


GFOD1
219821_s_at
0.41 (0.22-0.76)
4.13E−03


HLA-A ///
213932_x_at
0.18 (0.06-0.58)
4.15E−03


HLA-H ///





LOC642047 ///





LOC649853 ///





LOC649864





CECR7
220452_x_at
0.16 (0.04-0.59)
4.23E−03


SERTAD3
219382_at
 3.96 (1.51-10.38)
4.25E−03


C7ORF24
215380_s_at
0.24 (0.09-0.65)
4.31E−03


ZNF364
212742_at
0.20 (0.06-0.62)
4.34E−03


SULT1A1
215299_x_at
2.16 (1.26-3.71)
4.38E−03


S100A6
217728_at
3.69 (1.49-9.17)
4.41E−03


ID2
201565_s_at
0.33 (0.16-0.70)
4.42E−03


STX10
212625_at
3.51 (1.44-8.55)
4.47E−03


KLRD1
210606_x_at
0.55 (0.36-0.85)
4.57E−03


SH2D2A
207351_s_at
0.33 (0.15-0.73)
4.58E−03


MATK
206267_s_at
0.41 (0.23-0.75)
4.60E−03


IFI6
204415_at
1.49 (1.15-1.94)
4.88E−03


CDC25B
201853_s_at
0.54 (0.35-0.82)
4.92E−03


C16ORF68
218945_at
2.40 (1.33-4.35)
4.94E−03


GIMAP4
219243_at
0.25 (0.09-0.66)
4.97E−03
















TABLE 6







Top overall survival-associated genes in training cohort


by univariate Cox PH regression analysis, with p < 0.001












Hazard Ratio



Gene
Probe Set
(95% CI)
P Value





IL2RB
205291_at
0.28 (0.17-0.46)
4.62E−07


ASGR1
206743_s_at
4.00 (2.30-6.94)
1.18E−06


KLRK1
205821_at
0.40 (0.26-0.62)
3.51E−05


G3BP
201503_at
0.17 (0.07-0.41)
6.44E−05


PPP1R16B
212750_at
0.20 (0.08-0.46)
1.24E−04


ASGR2
206130_s_at
2.05 (1.41-2.99)
1.42E−04


CLIC3
219529_at
0.45 (0.29-0.70)
1.58E−04


PRF1
214617_at
0.49 (0.34-0.70)
2.60E−04


SPON2
218638_s_at
0.53 (0.38-0.73)
3.77E−04


HOP
211597_s_at
0.50 (0.33-0.76)
4.76E−04


GNLY
37145_at
0.50 (0.34-0.73)
4.92E−04


TMEM161A
43977_at
0.12 (0.04-0.43)
6.26E−04


CENTA2
219358_s_at
3.99 (1.76-9.05)
6.43E−04


PRKCH
218764_at
0.50 (0.34-0.73)
6.75E−04


PGLS
218388_at
 5.03 (1.89-13.37)
9.13E−04


RUNX3
204197_s_at
0.40 (0.24-0.69)
9.65E−04









Next, the 73 genes identified above were analyzed in all 2,628 possible two-gene and all 62,196 possible three-gene combinations. For each such combination, an unregularized Cox PH model to predict OS as an additive function of the two or three expression values was fit to the training-cohort data. A likelihood-ratio test was used to compare each model to a null (constant) model. Among the top 10 two-gene signatures in the training cohort (Table 7) by p-value (where p-value is used solely for ranking), two stood out as being the highest ranked: IL2RB+ASGR1 (p=1.56×10−10) and IL2RB+ASGR2 (p=2.79×10−10).









TABLE 7







Top two-gene signatures in training


cohort by Cox PH regression analysis.













Training Cohort
Test Cohort
Both Cohorts


Gene 1
Gene 2
P Value
P Value
P Value





IL2RB
ASGR1
1.56E−10
2.21E−03
2.21E−13


IL2RB
ASGR2
2.79E−10
5.00E−04
1.32E−13


IL2RB
PGLS
1.25E−09
4.05E−02
3.00E−09


IL2RB
CENTA2
2.31E−09
1.38E−02
1.47E−10


ASGR1
PRF1
3.23E−09
1.66E−02
3.15E−11


ASGR1
SLC25A5
3.80E−09
3.45E−03
6.23E−12


ASGR1
SPON2
6.36E−09
1.17E−02
3.95E−11


ASGR1
GNLY
9.32E−09
5.06E−02
3.78E−10


IL2RB
MAPBPIP
1.06E−08
6.61E−03
3.07E−10


ASGR1
GZMB
1.11E−08
4.91E−02
2.02E−09









The three-gene signature with the smallest p-value in the training cohort was comprised of the combination of IL2RB, ASGR2, and CAT (catalase, probe 201432_at), p=2.41×1041. However, the p-value of this signature in the test cohort (as determined by applying the training model coefficients and threshold to the test cohort and calculating the log-rank p-value) was p=6.40×10−3, not below the p<0.001 threshold. To further explore the potential value of adding a third gene, possible three-gene signatures with a p<0.001 in the test cohort were examined. Among these, the three-gene signature with the smallest p-value in the training cohort (p=1.94×10−10) was IL2RB+ASGR2+ZBP1 (Z-DNA binding protein 1, probe 208087_s_at), with a significant p value also in the test cohort (p=9.53×10−4). For the training cohort, adding a third gene decreased the p-value for association with OS by at most one order of magnitude over the best two-gene signature (IL2RB+ASGR2). Furthermore, time-dependent Receiver Operating Characteristic (ROC) curves at 12 months21 show that the majority of the predictive power comes from IL2RB+ASGR2 (FIG. 4). In addition, among the top ten three-gene signatures in the training cohort (Table 8), six contained IL2RB and six contained either ASGR1 or ASGR2.









TABLE 8







Top three-gene signatures in training


cohort by Cox PH regression analysis.















Training
Test
Both





Cohort
Cohort
Cohorts


Gene 1
Gene 2
Gene 3
P Value
P Value
P Value





IL2RB
ASGR2
CAT
2.41E−11
6.40E−03
3.56E−13


IL2RB
ASGR2
PGLS
3.13E−11
1.22E−02
2.28E−12


SPON2
PGLS
SLC25A5
3.26E−11
1.64E−01
4.50E−08


IL2RB
ASGR1
CAT
4.02E−11
1.57E−02
8.19E−13


IL2RB
ASGR2
ASGR1
6.38E−11
2.99E−03
5.45E−14


SPON2
MAPBPIP
SLC25A5
6.71E−11
1.48E−02
2.90E−11


IL2RB
PGLS
SLC25A5
6.97E−11
8.00E−02
2.60E−09


IL2RB
ASGR1
SLC25A5
8.16E−11
3.57E−03
1.07E−13


PRF1
PGLS
SLC25A5
8.42E−11
1.92E−01
1.07E−07


PRF1
ASGR1
SLC25A5
1.01E−10
5.45E−03
2.36E−13









In summary, two different methods converged on two signatures associated with OS in metastatic melanoma patients receiving ipilimumab: IL2RB+ASGR1 and IL2RB+ASGR2. Both signatures yielded comparable log-rank p-values and Kaplan-Meier plots in the training, test, and pooled cohorts (IL2RB+ASGR2, FIG. 1; IL2RB+ASGR1, FIG. 6). However, ASGR2 had a significantly higher mean expression level than ASGR1 (1.54-fold higher, P=1.32×10−69 by paired t-test, FIG. 5), and therefore is likely to confer more consistency, less inter-assay variability and higher clinical robustness to a predictive signature. For this reason, the combination of IL2RB+ASGR2 was chosen as the primary two-gene signature for the analyses that follow.


The two coefficients for combining IL2RB and ASGR2 in a two-gene signature to predict OS were estimated using unregularized Cox PH regression in the training cohort. The estimated coefficients were −1.312 for IL2RB and 0.748 for ASGR2 (Table 9). The two-gene score for each patient could thus be calculated from the following equation: −1.312*XIL2RB+0.748*XASGR2, where Xj gives the log 2-scale RMA-normalized expression level for gene j. The signs of the coefficients indicate that higher expression of IL2RB was associated with longer survival (lesser hazard) whereas higher expression of ASGR2 was associated with shorter survival (greater hazard).









TABLE 9







Coefficients based on the training and test cohorts and the two cohorts pooled


together, as well as coefficients based on regularized Cox regression.













Training Cohort
Test Cohort
Both Cohorts Pooled
















Lambda

Lambda

Lambda



Gene
Model
(by CV)
Coefficient
(by CV)
Coefficient
(by CV)
Coefficient

















IL2RB
alpha = 1
0.02895
−1.20684
0.115523
−0.36107
0.0417252
−0.804715



alpha = 0.95
0.023
−1.2291964
0.0696
−0.458378
0.0482
−0.791582



Unregularized
0
−1.3123
0
−0.5861
0
−0.9063


ASGR2
alpha = 1
0.02895
0.66974
0.115523
0.28155
0.0417252
0.5239357



alpha = 0.95
0.023
0.686752
0.0696
0.350097
0.0482
0.5149287



Unregularized
0
0.7475
0
0.4419
0
0.59948









In order to generate Kaplan-Meier plots evaluating the association of the two-gene score with OS, it was necessary to select a threshold separating scores for high risk patients (shorter survival) from those with low risk (longer survival). Thus, each possible threshold was applied to classify the training cohort into two risk groups, and a log-rank test was used to compare OS in the two groups (FIG. 7A). The threshold yielding the largest chi-square statistic was −5.80, with longer survivors having smaller score values and shorter survivors having greater values (FIG. 1A).


In order to test our findings from the training cohort, the same coefficients and threshold were applied to the gene expression data from patients in the test cohort (CA184004 trial). The two-gene signature maintained a highly significant association with OS in the test cohort (log-rank p=1.74×10−4) with a clear separation of the survival curve estimates (FIG. 1B).


Finally, for illustration purposes, training- and test-cohort scores were pooled for the same two-gene signature, using the coefficients and threshold estimated from the training-cohort data alone, and again estimated OS curves for the two resulting risk groups (FIG. 1C).


While the two-gene signatures comprised of IL2RB+ASGR2 and IL2RB+ASGR1 were optimal with regard to our model-selection criteria in the training cohort, and were significant and had good predictive accuracy in the test cohort, for completeness this study sought to identify additional pairs of genes that were strongly associated with OS in both the training and test cohorts. For the 2,628 possible two-gene signatures derived from the 73 best genes in the training cohort, Cox PH regression was used to estimate the coefficients and p-values in the training cohort, then the coefficients from the training cohort was applied to the test cohort and the resulting p-values determined. All signatures that had p<0.001 in both the training cohort and the test cohort were retained (Table 10). Then the same procedure was used in reverse: all genes with a univariate Cox regression p<0.005 in the test cohort were selected, then all two-gene combinations formed from those genes were evaluated and the ones with p<0.001 in both the test and training cohorts were retained. More than 88% of the resulting signatures included IL2RB or ASGR2 (Table 11).









TABLE 10







Two-gene signatures with p < 0.001 by Cox PH regression


in both cohorts, sorted by training-cohort P value.













Training Cohort
Test Cohort
Both Cohorts


Gene 1
Gene 2
P Value
P Value
P Value





IL2RB
ASGR2
2.79E−10
5.00E−04
1.32E−13


IL2RB
STX10
1.87E−07
7.97E−04
6.82E−10


IL2RB
C16ORF68
4.55E−07
4.10E−04
4.59E−10


ASGR2
RUNX3
5.55E−07
3.99E−04
8.43E−10


ASGR2
IMP3
2.19E−06
8.47E−04
4.58E−09


ASGR2
SLC25A5
2.61E−06
4.72E−04
4.93E−10


ASGR2
C16ORF68
3.44E−05
3.05E−04
4.60E−09


ZAP70
STX10
2.30E−04
5.71E−04
5.39E−07


RAB31
C16ORF68
2.39E−04
5.14E−05
4.74E−07


STX10
C16ORF68
3.50E−04
2.11E−04
1.30E−06


RUNX3
STX10
3.88E−04
3.72E−04
1.58E−05


SLC25A5
STX10
5.25E−04
3.26E−04
2.74E−06


PRKCH
C16ORF68
6.27E−04
3.80E−04
8.95E−06


RUNX3
C16ORF68
6.38E−04
9.48E−05
9.07E−06
















TABLE 11







Additional two-gene signatures with p < 0.001 by Cox


PH regression in both cohorts, determined by training on


original test cohort and testing on original training cohort,


and sorted by P Value in original training cohort.













Original
Original





Test
Training
Both




Cohort
Cohort
Cohorts


Gene 1
Gene 2
P Value
P Value
P Value





IL2RB
ASGR2
4.81E−04
5.05E−10
1.66E−13


ASGR2
RUNX3
3.95E−04
5.29E−07
9.20E−10


IL2RB
MT1M
3.04E−05
3.95E−06
2.37E−11


IL2RB
C16ORF68
3.51E−05
4.66E−06
1.19E−09


ASGR2
WBP11
2.03E−04
5.98E−06
5.01E−09


ASGR2
EIF4B
8.09E−04
6.39E−06
2.25E−09


IL2RB
HIST2H2AA ///
3.52E−04
6.82E−06
2.16E−09



LOC653610 ///






H2AR





ASGR2
RFTN1
9.59E−05
1.08E−05
4.71E−08


IL2RB
IFI27
2.41E−06
1.09E−05
1.24E−10


IL2RB
AMFR
4.60E−04
1.13E−05
9.65E−10


IL2RB
FOLR3
1.80E−05
1.42E−05
5.33E−10


ASGR2
AMFR
1.51E−04
1.83E−05
3.04E−10


IL2RB
C4A /// C4B
1.94E−04
1.88E−05
3.51E−08


IL2RB
VPREB3
3.07E−04
1.89E−05
3.98E−08


ASGR2
C4A /// C4B
1.67E−05
2.16E−05
6.90E−10


RBBP7
ASGR2
3.96E−04
2.36E−05
1.54E−08


IL2RB
FTHP1
6.47E−04
2.74E−05
1.24E−06


IL2RB
HK3
5.36E−04
2.99E−05
7.44E−08


ASGR2
ZAP70
9.49E−04
3.16E−05
1.02E−08


IL2RB
KIAA1026
2.66E−04
3.26E−05
3.08E−08


IL2RB
ACTA2
3.13E−05
3.82E−05
7.67E−10


IL2RB
FTH1
8.81E−05
4.41E−05
8.58E−06


IL2RB
SLC7A1
1.85E−07
5.45E−05
1.43E−10


ASGR2
C16ORF68
1.78E−04
5.46E−05
9.66E−09


ASGR2
HSPA8
4.44E−04
7.11E−05
1.68E−08


IL2RB
SUMO2
6.35E−04
7.21E−05
2.41E−07


ASGR2
HNRPH1
5.96E−04
7.25E−05
2.15E−08


IL2RB
HP /// HPR
8.00E−05
7.64E−05
8.25E−09


IL2RB
GTF3A
4.37E−04
7.71E−05
8.72E−07


IL2RB
LOC171220
3.96E−05
8.25E−05
3.81E−05


FOXO3A
IL2RB
5.36E−04
8.34E−05
2.48E−06


IL2RB
TCF3
6.30E−06
8.75E−05
7.56E−08


ASGR2
CD247
7.57E−04
9.46E−05
6.59E−08


ASGR2
MAGED1
5.19E−04
1.01E−04
6.89E−07


ASGR2
CAMP
2.97E−06
1.06E−04
1.40E−09


ASGR2
XBP1
5.16E−04
1.12E−04
2.61E−08


ASGR2
IFI27
1.70E−05
1.14E−04
9.88E−10


IL2RB
CA4
3.67E−04
1.30E−04
2.12E−07


ASGR2
LOC171220
2.29E−04
1.44E−04
4.79E−05


IL2RB
NCF1 ///
2.28E−04
1.57E−04
1.51E−08



LOC653361 ///






LOC653840





ASGR2
MTMR1
2.37E−05
1.63E−04
1.57E−08


IL2RB
HSPA6 ///
4.48E−04
1.66E−04
5.98E−07



LOC652878





C4A /// C4B
RAB31
6.00E−05
1.66E−04
5.94E−07


IL2RB
ACTN1
7.68E−04
1.66E−04
1.98E−07


ASGR2
IL10RA
2.36E−04
1.69E−04
3.04E−07


ASGR2
SUMO2
2.71E−04
1.82E−04
5.19E−08


ASGR2
HP /// HPR
4.21E−04
1.91E−04
1.65E−08


IL2RB
PQLC1
1.79E−04
1.92E−04
1.52E−07


ASGR2
TCF3
1.19E−05
1.95E−04
3.51E−08


IL2RB
HNRPH1
4.93E−04
1.95E−04
2.83E−07


IL2RB
MAG
2.75E−05
1.98E−04
1.39E−08


IL2RB
WNK1
9.21E−05
2.01E−04
5.41E−07


IL2RB
HIST1H2BD
2.83E−04
2.14E−04
4.80E−08


ASGR2
EVL
4.26E−04
2.30E−04
1.15E−07


RAB31
C16ORF68
3.82E−05
2.37E−04
3.45E−07


ASGR2
FTH1
4.46E−04
2.46E−04
1.33E−05


ASGR2
FAM102A
3.02E−04
2.50E−04
1.41E−07


ASGR2
NPM1
5.13E−04
2.57E−04
1.80E−07


IL2RB
HSPA6
2.72E−04
2.59E−04
3.81E−07


ASGR2
FOLR3
3.22E−06
2.68E−04
7.96E−10


IL2RB
FAM102A
1.95E−04
2.86E−04
4.65E−07


IL2RB
HLADQB1 ///
1.25E−05
3.10E−04
1.28E−08



LOC650557





IL2RB
RALBP1
2.13E−04
3.22E−04
7.06E−08


IL2RB
ECGF1
4.85E−04
3.26E−04
1.54E−06


ASGR2
MAP3K4
5.38E−04
3.46E−04
2.54E−06


IL2RB
PPP1R10
4.73E−06
3.61E−04
1.03E−09


ASGR2
PDCD4
4.33E−04
3.64E−04
1.24E−06


RUNX3
KIAA0690
7.23E−04
3.75E−04
1.10E−06


IL2RB
MTMR1
3.55E−04
3.94E−04
1.13E−06


IL2RB
CKAP4
3.83E−05
4.14E−04
8.02E−08


RFTN1
RAB31
5.89E−04
4.17E−04
6.86E−05


ASGR2
KIAA1026
1.24E−04
4.18E−04
4.68E−08


IL2RB
P2RX5
9.59E−05
4.21E−04
3.48E−07


IL2RB
ZAP70
7.15E−04
4.27E−04
7.38E−07


IFI27
RAB31
7.89E−06
4.32E−04
6.29E−08


ASGR2
KIAA0746
5.33E−04
4.36E−04
1.83E−07


IL2RB
UBE2M
9.69E−06
4.55E−04
6.23E−06


IL2RB
PGCP
2.49E−04
4.70E−04
4.14E−07


IL2RB
NAGK
2.73E−04
4.91E−04
6.93E−07


IL2RB
MARK3
1.56E−04
4.92E−04
1.17E−05


IL2RB
ENDOD1
9.02E−06
4.97E−04
1.08E−07


IL2RB
CD6
1.51E−04
5.14E−04
5.39E−07


IL2RB
MRPL46
2.26E−04
5.34E−04
1.51E−04


C4A /// C4B
KIAA0690
3.40E−05
5.50E−04
7.24E−08


IL2RB
HDAC5
1.25E−05
5.66E−04
1.27E−07


ASGR2
NOL7
8.39E−04
5.81E−04
4.07E−06


ASGR2
LCN2
1.12E−09
5.84E−04
6.77E−11


RUNX3
MT1M
1.24E−04
6.51E−04
7.87E−08


IL2RB
HPCAL1
1.70E−04
6.53E−04
1.87E−06


MTF1
C4A /// C4B
9.36E−05
6.55E−04
3.71E−08


IL2RB
SMO
3.17E−04
6.73E−04
9.23E−07


ASGR2
MARK3
9.66E−05
6.87E−04
1.19E−06


ASGR2
RALBP1
4.75E−05
6.88E−04
4.14E−08


IL2RB
TALDO1
5.83E−04
6.91E−04
6.20E−06


AMFR
RAB31
3.22E−04
6.97E−04
7.85E−08


ASGR2
CIRBP
6.12E−04
7.00E−04
4.53E−07


IL2RB
HLADQA1
1.08E−05
7.16E−04
1.02E−08


IL2RB
UBE2G2
7.87E−04
7.19E−04
3.22E−06


ASGR2
GOLGA8G ///
2.18E−04
7.21E−04
1.08E−07



GOLGA8D ///






LOC388189 ///






GOLGA8E ///






GOLGA8C ///






GOLGA8F





IL2RB
HIP1R
2.50E−04
7.41E−04
6.31E−06


ASGR2
TCN1
1.09E−05
7.52E−04
1.17E−08


IL2RB
C2ORF17
2.00E−05
7.56E−04
1.59E−08


IL2RB
DHX34
5.38E−05
7.76E−04
7.76E−07


RUNX3
C16ORF68
3.81E−05
8.04E−04
4.76E−06


ZAP70
KIAA0690
3.81E−04
8.28E−04
2.65E−07


HNRPH1
DHX34
1.19E−04
8.47E−04
7.65E−07


ASGR2
PQLC1
6.91E−05
8.62E−04
8.70E−08


IL2RB
BLR1
4.49E−06
8.90E−04
1.13E−07


IL2RB
TSTA3
3.80E−04
8.99E−04
4.62E−06


IL2RB
VTI1B
5.48E−05
9.10E−04
1.46E−06


TCF3
RAB31
5.63E−07
9.45E−04
2.27E−06


MTF1
RFTN1
3.28E−04
9.49E−04
2.84E−06


ZAP70
HIST2H2AA ///
2.90E−04
9.59E−04
2.96E−07



LOC653610 ///






H2AR





ASGR2
GTF3A
1.32E−04
9.76E−04
9.90E−07









The Three-Factor Signature and Overall Survival

To determine whether the two-gene signature, IL2RB+ASGR2, was an independent predictor of OS given established prognostic factors in metastatic melanoma, we performed a multivariable Cox PH regression analysis including the expression levels of each of the genes or that of the two-gene signature as well as baseline serum LDH levels or disease stage (M category). The results suggest that the two-gene signature was an independent predictor of OS in this context in the training, test, and pooled cohorts (Table 12). Each p-value is for a likelihood-ratio test comparing the full model to a model that excludes the corresponding variable. Similarly, expression of each of the individual genes that comprise the two-gene signature (Table 13) also was an independent predictor of OS given baseline serum LDH levels or disease stage (M Category) in the training, test, and pooled cohorts. The two-gene signature was also an independent predictor of OS when absolute lymphocyte count (ALC) at baseline or prior to the third ipilimumab dose was added to the multivariable Cox PH model (Table 14).









TABLE 12







Marginal tests of significance from


multivariable Cox PH regression












Coefficient




Variable
Estimate
P Value














Training Cohort





LDH
0.0012
 0.042



2-Gene Signature
0.82
1.3 × 10−6



M1B vs M1A
−0.72
0.14



M1C vs M1A
0.26
0.55



Test Cohort





LDH
0.0025
1.9 × 10−4



2-Gene Signature
0.54
5.5 × 10−4



M1B vs M1A
0.70
0.31



M1C vs M1A
0.95
 0.011



Both Cohorts Pooled





LDH
0.0017
4.6 × 10−5



2-Gene Signature
0.62
7.6 × 10−9



M1B vs M1A
−0.23
0.55



M1C vs M1A
0.69
 0.013
















TABLE 13







Multivariable Cox PH regression showing that each key gene individually was an


independent predictor of OS, given both baseline LDH and M Category.









IL2RB
ASGR2
ASGR1
















Coefficient


Coefficient


Coefficient



Variable
Estimate
P Value
Variable
Estimate
P Value
Variable
Estimate
P Value


















Training Cohort


Training Cohort


Training Cohort




LDH
0.0019
8.8 × 10−4
LDH
0.0018
2.6 × 10−3
LDH
0.0016
1.2 × 10−2


IL2RB
−1.04
  9 × 10−5
ASGR2
0.45
1.7 × 10−2
ASGR1
0.81
1.1 × 10−2


M1B vs M1A
−0.64
0.19
M1B vs M1A
−0.49
0.32
M1B vs M1A
−0.47
0.33


M1C vs M1A
0.30
0.49
M1C vs M1A
0.49
0.25
M1C vs M1A
0.34
0.44


Test Cohort


Test Cohort


Test Cohort




LDH
0.0026
6.4 × 10−5
LDH
0.0025
1.2 × 10−4
LDH
0.0026
8.5 × 10−5


IL2RB
−0.66
1.6 × 10−2
ASGR2
0.72
6.8 × 10−4
ASGR1
0.61
5.2 × 10−2


M1B vs M1A
0.48
0.48
M1B vs M1A
0.42
0.53
M1B vs M1A
0.33
0.62


M1C vs M1A
0.76
3.7 × 10−2
M1C vs M1A
0.98
7.9 × 10−3
M1C vs M1A
0.86
1.8 × 10−2


Both Cohorts


Both Cohorts


Both Cohorts




Pooled


Pooled


Pooled




LDH
0.0022
1.6 × 10−7
LDH
0.0019
3.5 × 10−6
LDH
0.00020
1.8 × 10−6


IL2RB
−0.81
1.2 × 10−5
ASGR2
0.55
5.7 × 10−5
ASGR1
0.68
 1.0 × 1.0−3


M1B vs M1A
−0.36
0.33
M1B vs M1A
−0.26
0.50
M1B vs M1A
−0.16
0.68


M1C vs M1A
0.55
4.2 × 10−2
M1C vs M1A
0.71
9.8 × 10−3
M1C vs M1A
0.62
2.2 × 10−2
















TABLE 14







Multivariable Cox PH regression showing that the two-gene


signature was an independent predictor of OS, given ALC


(at baseline or prior to dose 3), LDH, and M category.












Coefficient




Variable
Estimate
P Value










Baseline ALC (ALC1)











Training Cohort





2-Gene Signature
0.846
3.2 × 10−6



LDH
0.0011
0.08



ALC1
0.110
0.67



M1B vs M1A
−0.701
0.16



M1C vs M1A
0.249
0.57



Test Cohort





2-Gene Signature
0.522
0.0092



LDH
0.00288
0.033



ALC1
0.209
0.34



M1B vs M1A
0.38
0.64



M1C vs M1A
1.06
0.019



Both Cohorts Pooled





2-Gene Signature
0.65
1.4 × 10−7



LDH
0.00164
2.2 × 10−3



ALC1
0.154
0.32



M1B vs M1A
−0.152
0.71



M1C vs M1A
0.799
9.0 × 10−3







ALC Prior to Dose 3 (ALC3)











Training Cohort





2-Gene Signature
0.792
1.1 × 10−5



LDH
0.00112
0.075



ALC3
−0.127
0.56



M1B vs M1A
−0.756
0.13



M1C vs M1A
0.204
0.64



Test Cohort





2-Gene Signature
0.403
0.023



LDH
0.00249
0.069



ALC3
−0.385
0.065



M1B vs M1A
0.488
0.550



M1C vs M1A
0.852
0.046



Both Cohorts Pooled





2-Gene Signature
0.572
9.9 × 10−7



LDH
0.00155
4.4 × 10−3



ALC3
−0.267
0.071



M1B vs M1A
−0.338
0.39



M1C vs M1A
0.662
0.027









As it was established that LDH and the two-gene signature, IL2RB+ASGR2, were independent predictors of OS, it was next determined whether the two-gene signature could be improved by combining it with LDH to create a three-factor signature. Coefficients were estimated using Cox PH regression on the training cohort (0.00158 for LDH and 0.816 for the two-gene signature). The three-factor score for each patient could thus be calculated from the following equation: 0.00158*YLDH+0.816*(−1.312*XIL2RB+0.748*XASGR2), where Yj gives the concentration of factor j. Next the log-rank p-value was calculated for all possible thresholds. The threshold with the smallest p-value was −4.437 (FIG. 7B). The Kaplan-Meier curves were plotted for the training cohort (FIG. 2A), then the same coefficients and threshold were applied to the test cohort (FIG. 2B), yielding a log-rank p-value of p=1.74×10−5. The Kaplan-Meier plot for both cohorts pooled together appears in FIG. 2C.


It was next determined whether using two thresholds instead of one could provide better separation among survival curves. Using the three-factor signature described above with coefficients from the training cohort, two-threshold exploration was performed on the pooled cohort. Using thresholds at both −5.29 and −3.62 (FIG. 7C), three groups of patients were identified that corresponded to high, intermediate and low risk (FIG. 2D).


Time dependent ROC curves at 12 months were then plotted for both the two-gene signature (IL2RB+ASGR2) and the three-factor signature (IL2RB+ASGR2+LDH) in the training cohort (FIG. 2E), test cohort (FIG. 2F), and both cohorts pooled (FIG. 2G). These curves show that at best, baseline LDH only slightly improves predictive performance when added to the two-gene signature.


Functional and Gene Set Enrichment Analysis

This study also sought to determine whether the various gene sets emerging in the above analyses were characteristic of particular blood cell types. Among the genes most highly correlated with IL2RB across the pooled training and test cohorts, the top two were PRF1 (perforin 1, probe 214617_at) (Spearman R=0.735, p=2.77×10−28) and RUNX3 (runt-related transcription factor 3, probe 204197_s_at) (Spearman R=0.729, p=1.24×10−27) (Table 5), genes that are highly interrelated, established to be associated with T-cells,22,23 and point clearly to underlying biological mechanisms (see Discussion). Also present among the 100 genes most correlated with IL2RB are a number of other genes established to be associated with T-cells including CD247,24 LCK,25 FYN,25 ZAP70,26 CBLB,27 and TXK.28 RUNX3, PRF1, and ZAP70 are also present on the list of genes associated with OS by univariate Cox regression with p<0.005. RUNX3 has been reported to induce transcription of PRF1 and EOMES (eomesodermin),22 which has been implicated in the regulation of IL2RB expression.29 These analyses pointed to a role for EOMES as a central regulator of the expression of various genes in our model (FIG. 3A). Since there were no probes on the HT-HG-U133A 96-array for testing the expression of this gene, the expression of EOMES was tested separately by qPCR. There was significant association between the expression of EOMES and overall survival by both log-rank test (p=6.86×10−8) (FIG. 8) and univariate Cox regression (p=1.808×10−3). In addition, expression of key genes as determined by microarray were all highly correlated with EOMES expression (by qPCR) as determined by Spearman's rank correlation, including IL2RB (R=0.474, p=1.50×10−5), PRF1 (R=0.585, p=2.90×10−8), and RUNX3 (R=0.594, p=1.57×10−8).


Among the genes most highly correlated with ASGR2 are ASGR1, CD14 (cluster of differentiation 14, probe 201743_at) (Spearman R=0.588, p=3.75×10−16), and CD33 (cluster of differentiation 33, probe 206120_at) (Spearman R=0.457, p=1.34×10−9) (Table 5). CD14 expression is a characteristic of myeloid-derived suppressor cells (MDSCs) in melanoma patients,9 and CD33 expression is a characteristic of myeloid cells more generally.30 Our cell type enrichment analysis found that among the 73 genes associated with OS by univariate Cox PH regression (p<0.005), the set of genes negatively associated with OS was most enriched in genes specific for CD14+ monocytes (P=2.17×10−7) (P values by hyper-geometric test as described in Methods), and also highly enriched in genes specific for CD33+ monocytes (P=2.62×10−4) as well as two types of granulocytes (Table 15). This is illustrated graphically (FIG. 3B, lower right) in a heat map of the DMAP18 expression data by cell type (columns) for the set of genes negatively associated with OS (rows).









TABLE 15







Enrichment of genes specific for particular cell types in the list of genes


negatively associated with OS, including adjusted hypergeometric P values.










Cell Type
Score
P-value
Adjusted P-value













MONO2|CD14+|CD45dim
36.64
1.11E−08
2.17E−07


GRAN2|CD34−|SSChi|CD45+|CD11b+|CD16−
25.54
4.64E−07
6.04E−06


MONO1|CD34−|CD33+|CD13+
13.91
2.69E−05
2.62E−04


GRAN3|CD16+|CD11b+
10.18
3.74E−03
2.91E−02









The set of genes positively associated with OS was most enriched in genes specific for two types of NK cells (CD56+CD16+CD3, P=2.50×10−18 and CD56CD16CD3, P=7.95×10−12) and two types of T cells (CD8+CD62LCD45RA+, P=3.41×10−17 and CD8+CD62LCD45RA, P=8.05×10−14) (Table 16) (P values by hyper-geometric test as described in Methods). This is illustrated graphically (FIG. 3B, top and middle) in a heat map of the DMAP expression data18 by cell type (columns) for the set of genes positively associated with OS (rows).









TABLE 16







Enrichment of genes specific for particular cell types in the list of genes


positively associated with OS, including adjusted hypergeometric P values.










Cell Type
Score
P-value
Adjusted P-value













NKA2|CD56+|CD16+|CD3−
53.89
1.28E−19
2.50E−18


TCELLA1|CD8+|CD62L−|CD45RA+
42.86
2.62E−18
3.41E−17


TCELLA3|CD8+|CD62L−|CD45RA−
34.51
8.26E−15
8.05E−14


NKA3|CD56−|CD16−|CD3−
41.42
1.02E−12
7.95E−12


GRAN3|CD16+|CD11b+
32.67
3.37E−09
2.19E−08


TCELLA4|CD8+|CD62L+|CD45RA−
15.54
8.98E−09
5.00E−08


NKA4|CD14−|CD19−|CD3+|CD1d+
2.95
7.20E−06
3.51E−05


MEGA2|CD34−|CD41+|CD61+|CD45−
2.86
8.97E−04
3.89E−03


GRAN1|CD34−|SSChi|CD45+|CD11b−|CD16−
9.78
1.65E−03
6.44E−03


TCELLA2|CD8+|CD62L+|CD45RA+
9.80
1.98E−03
7.01E−03


TCELLA7|CD4+|CD62L−|CD45RA−
5.12
2.38E−03
7.73E−03









Taken together, these analyses suggest that greater expression of genes more highly expressed in natural killer (NK) and T-cells (such as IL2RB) was associated with longer survival, while greater expression of genes expressed in CD14+ cells and other myeloid lineage cells (such as ASGR1 and ASGR2) was associated with shorter survival (FIG. 3C).


Discussion

Ongoing research aims to discover biomarkers that could select patients with an enhanced benefit/risk profile. Whereas ipilimumab has shown significant survival benefit in a subset of metastatic melanoma patients, in some patients the treatment can result in adverse events. Thus, identification of biomarkers that can predict a patient's response and are easily measured in peripheral blood is important. In the present study, a novel approach was used to identify blood gene-signatures that may predict OS in metastatic melanoma patients receiving ipilimumab.


When using microarray data to develop predictive gene-signatures there is a high likelihood of developing a signature that may be strongly associated with OS in a training cohort, but not significantly associated with OS in a test cohort, due to over-fitting in the training cohort. Signatures consisting of large numbers of genes are more likely to suffer from over-fitting and are less practical in the clinical context.


Using gene expression microarray data from a training cohort of 88 patients, two independent methods were applied to evaluate association of gene expression with OS. Results from both methods pointed to a lead two-gene signature of IL2RB+ASGR2 that was highly associated with OS in the training cohort. Using these two genes, a signature was calculated that included two coefficients and a threshold in the training cohort, and it was determined that the same signature was also significantly associated with OS in an independent test cohort of 69 patients (p<0.001). The signature also had strong predictive performance in the independent test cohort (AUC=0.818 for a time-dependent ROC curve at 12 months).


The size of the signature is noteworthy. While signatures comprised of many genes carry risk of over-fitting, a two-gene signature significantly mitigates this risk. Adding additional genes improved the signature incrementally, but in this study, the majority of the predictive power came from the combination of two top genes, IL2RB and ASGR2.


Mechanistic investigation of the two genes with expression most highly correlated with that of IL2RB (RUNX3 and PRF1) yielded insights into its underlying biology. RUNX3 has been reported to induce transcription of PRF1 and EOMES (eomesodermin),22 which has been implicated in the regulation of IL2RB expression.29 Based on the high correlation between IL2RB, RUNX3, and PRF1 expression and the mechanistic linkage between EOMES, RUNX3 and IL2RB, it may be hypothesized that EOMES is a core transcription factor that underlies the observed coexpression of IL2RB, RUNX3 and PRF1 in the data. Further analyses of EOMES by qPCR supported this notion, as we found strong correlation of the expression levels of EOMES and other genes in our model. Greater baseline expression levels of this gene were also associated with longer survival in the data set. Moreover, a direct relationship between EOMES and CTLA-4 has been established,31 as well as interactions between EOMES and IFNγ,22 the factor underlying many of the tumor chemokine changes linked with ipilimumab response (FIG. 3A).3


Mechanistic investigation of ASGR2 linked it to myeloid cells and particularly MDSCs, as its expression was highly correlated with the MDSC surface markers CD14 and CD33.9,30 MDSCs have the capacity to suppress both the cytotoxic activities of natural killer (NK) and natural killer T (NKT) cells, and the adaptive immune response mediated by CD4+ and CD8+ T cells. MDSCs act through multiple pathways including upregulation of nitric oxide synthase 2 (NOS2) and production of arginase 1 (ARG1). ARG1 and NOS2 metabolize L-arginine and either together, or separately, block translation of the T cell CD3 zeta chain, inhibit T cell proliferation, and promote T cell apoptosis.32 Additionally, MDSCs are believed to secrete immunosuppressive cytokines such as TGFβ and induce regulatory T cell development.30 High frequency of MDSCs have been reported in the peripheral blood of patients affected by breast, lung, renal and head and neck carcinomas33 and in melanoma.34


While in this study gene expression was mainly measured via microarray, it may also be assayed via quantitative polymerase chain reaction (qPCR). Moreover, IL2RB and ASGR2 are both cell surface markers and therefore may be detected via flow cytometry. The magnitude of the two-gene signature may change over time in a given patient (either inherently or in response to additional therapies such as a CD137-agonist), and may be monitored to determine the best times to administer or re-administer ipilimumab.


REFERENCES



  • 1. Hodi F S, O'Day S J, McDermott D F, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363:711-723.

  • 2. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus Dacarbazine for Previously Untreated Metastatic Melanoma. N Engl J Med 2011; 364:2517-2526.

  • 3. Ji R-R, Chasalow S D, Wang L, et al. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 2011.

  • 4. Berman D M, Wolchok J, Weber J, et al. Association of peripheral blood absolute lymphocyte count (ALC) and clinical activity in patients (pts) with advanced melanoma treated with ipilimumab. ASCO Annual Meeting 2009; Abs 3020.

  • 5. Weber J S, Yu B, Hall D, et al. Pharmacodynamic and predictive markers of ipilimumab on melanoma patients' T-cells. ASCO Annual Meeting 2011; Abs 2503.

  • 6. Chen H, Liakou C I, Kamat A, et al. Anti-CTLA-4 therapy results in higher CD4+ICOShi T cell frequency and IFN-γ levels in both nonmalignant and malignant prostate tissues. Proc Natl Acad Sci USA 2009; 106:2729-2734.

  • 7. Yuan J, Gnjatic S, Li H, et al. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci USA 2008; 105:20410-20415.

  • 8. Yuan J, Adamow M, Ginsberg B A, et al. Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci USA 2011.

  • 9. Kitano S, Postow M A, Cortez C, et al. Myeloid-derived supressor cell quantity prior to treatment with ipilimumab at 10 mg/kg to predict for overall survival in patients with metastatic melanoma. ASCO Annual Meeting 2012; Abs 2518.

  • 10. Weber J, Thompson J A, Hamid O, et al.: A randomized, double-blind, placebo-controlled, phase II study comparing the tolerability and efficacy of ipilimumab administered with or without prophylactic budesonide in patients with unresectable stage III or IV melanoma. Clin Cancer Res. 2009, 15:5591-5598.

  • 11. Hamid O, Schmidt H, Nissan A, et al.: A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J. Translational Medicine. 2011; 9:204.

  • 12. Irizarry R A, Bolstad B M, Collin F, et al Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Research, 2003; 31 (4):e15.

  • 13. Gentleman R C, Carey V J, Bates D M, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biology. 2005, 5:R80.

  • 14. Miller J A, Cai C, Langfelder P, et al. Strategies for aggregating gene expression data: The collapseRows R function. BMC Bioinformatics, 2011; 12:322.

  • 15. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Soft 2010; 33.

  • 16. Kaplan E L, Meier P. Nonparametric estimation from incomplete observations. J. Amer. Statist. Assn. 1958; 53:457-481.

  • 17. Balch C M, Gershenwald J E, Soong S, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 2009; 27:6199-6206.

  • 18. Novershtern N, Subramanian A, Lawton L N, et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 2011; 144:296-309.

  • 19. Benita Y, Cao Z, Giallourakis C, et al. Gene enrichment profiles reveal T-cell development, differentiation, and lineage-specific transcription factors including ZBTB25 as a novel NF-AT repressor. Blood 2010; 115:5376-5384.

  • 20. Harris R L, van den Berg C W, and Bowen D J. ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor), Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile. Molecular Biology International 2012; 283974.

  • 21. Heagerty P J, Lumley T, Pepe M S. Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker. Biometrics 2000; 56:337-344.

  • 22. Cruz-Guilloty F, Pipkin M E, Djuretic I M, et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J Exp Med 2009; 206:51-59.

  • 23. Voskoboinik I, Smyth M J, Trapani J A. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol. 2006; 6 (12):940-52.

  • 24. Lundholm M, Mayans S, Motta V, et al. Variation in the Cd3 zeta (Cd247) gene correlates with altered T cell activation and is associated with autoimmune diabetes. J Immunol 2010; 184 (10):5537-44.

  • 25. Filipp D, Ballek O, Manning J. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Front Immunol. 2012; 3:155.

  • 26. Yokosuka T, Sakata-Sogawa K, Kobayashi W, et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol. 2005 December; 6 (12):1253-62.

  • 27. Teh C E, Daley S R, Enders A, et al. T-cell regulation by casitas B-lineage lymphoma (Cblb) is a critical failsafe against autoimmune disease due to autoimmune regulator (Aire) deficiency. Proc Natl Acad Sci USA. 2010; 107(33):14709-14.

  • 28. Sahu N, Venegas A M, Jankovic D, et al. Selective expression rather than specific function of Txk and Itk regulate Th1 and Th2 responses. J Immunol. 2008 Nov. 1; 181 (9):6125-31.

  • 29. Intlekofer A M, Takemoto N, Wherry E J, et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol 2005; 6:1236-1244.

  • 30. Lechner, M G, Liebertz D J, Epstein A L. Characterization of Cytokine-Induced Myeloid-Derived Suppressor Cells from Normal Human Peripheral Blood Mononuclear Cells. J Immunol 2010; 185:2273-2284.

  • 31. Hegel J K, Knieke K, Kolar P, et al. CD152 (CTLA-4) regulates effector functions of CD8+ T lymphocytes by repressing Eomesodermin. Eur J Immunol 2009; 39:883-893.

  • 32. Bronte V, Serafini P, Mazzoni A, et al. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 2003; 24 (6):302-306.

  • 33. Talmadge J E. Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res. 2007; 13 (18 Pt 1):5243-8.

  • 34. Filipazzi P, Valenti R, Huber V, et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007; 25 (18):2546-53.










TABLE 17







Probe Sets












Target Name
Probe Set ID
SEQ ID NO.
Probe Sequences
Target Sequence
Target Genbank ID















SLC25A3
200030_s_at
1
TCATCATGATTGGTACCCTGACTGC
acaccatgatgaagttcgcctgctttgaacgtactgttgaagcactgtacaag
NM_002635.1






tttgtggttcctaagccccgcagtgaatgttcaaagccagagcagctggttgt






aacatttgtagcaggttacatagctggagtcttttgtgcaattgtttctcacc






ctgctgattctgtggtatctgtgttgaataaagaaaaaggtagcagtgcttct






ctggtcctcaagagacttggatttaaaggtgtatggaagggactgtttgcccg






tatcatcatgattggtaccctgactgcactacagtggtttatctatgactccgtgaag






gtctacttcagacttcctc




2
GTACCCTGACTGCACTACAGTGGTT




3
GTGGTTTATCTATGACTCCGTGAAG




4
GTGAAGGTCTACTTCAGACTTCCTC




5
ACACCATGATGAAGTTCGCCTGCTT




6
TCGCCTGCTTTGAACGTACTGTTGA




7
TGTACAAGTTTGTGGTTCCTAAGCC




8
TCCTAAGCCCCGCAGTGAATGTTCA




9
ACCCTGCTGATTCTGTGGTATCTGT




10
AAAGGTAGCAGTGCTTCTCTGGTCC




11
GTGCTTCTCTGGTCCTCAAGAGACT





NONO
200057_s_at
12
GCCCCAGAGAAACTGCCACATACAC
gccccagagaaactgccacatacaccacaaaaaccaaacatgccccaatgacc
NM_007363.2






ttagccccattgctccattcactcccaggtgagaattcaggcaaacgtccaca






aaggtcacaggcagcgtacatacggttctgttataccccatatattacccctt






catgtcctaaagaagacattttctcttagagattttcattttagtgtatcttt






aaaaaaaaaatcttgtgttaacttgcctccatctttttcttggggtgagggac






accagggaatgacccttttgtgtctatgatgttgctgttcacagcttttcttg






ataggcctagtacaatcttgggaacagggttactgtatactgaaggtctgaca






gtagctcttagactcgcctatcttaggtagtcatgctgtgcattttttttttcattggt






gtactgtgtttgatttgtctca




13
GCTCCATTCACTCCCAGGTGAGAAT




14
GGCAAACGTCCACAAAGGTCACAGG




15
AGGTCACAGGCAGCGTACATACGGT




16
CATACGGTTCTGTTATACCCCATAT




17
TATTACCCCTTCATGTCCTAAAGAA




18
AAATCTTGTGTTAACTTGCCTCCAT




19
GGAATGACCCTTTTGTGTCTATGAT




20
CACAGCTTTTCTTGATAGGCCTAGT




21
TGACAGTAGCTCTTAGACTCGCCTA




22
GGTGTACTGTGTTTGATTTGTCTCA





RNPS1
200060_s_at
23
CAGGGAAAAGTGAGGCTCTTGGGGG
cagggaaaagtgaggctcttgggggtggtttgaccctgcttacctgggagcac
BC001659.1






acttttcccttccccgatgacctgggatggtggccaggccgtgcccttgctgt






tgctgggcagtgtccttttggaaagggagctgccccaggctttagtgcagctg






ccaaccctgttaggcctggcctctcgaggcctcttctgatctcaagggtcaca






ccccctcaaagatcctctcacccatggtagttgctgctcgtggttctgtctgt






ccgtgcaccgatgcacacaccgcaccccaccactgtactctgaaattggcgag






tgagtggagagccagctctgcggagtcatcacgcagccatggttgtgcctgcc






gttcatggtggtctttcaggttatcttggcaacatgtacattgcttttatttt






ttttcttttttgctttcattgtacagtcagtactataaaatttctcttttgagtttta






tacctttgtagcattttagatgacattgtgtttgtactttgttg




24
TTACCTGGGAGCACACTTTTCCCTT




25
CCTTCCCCGATGACCTGGGATGGTG




26
CCCCGATGACCTGGGATGGTGGCCA




27
CCCACCACTGTACTCTGAAATTGGC




28
CACTGTACTCTGAAATTGGCGAGTG




29
CCGTTCATGGTGGTCTTTCAGGTTA




30
GGTGGTCTTTCAGGTTATCTTGGCA




31
GGTCTTTCAGGTTATCTTGGCAACA




32
TCAGGTTATCTTGGCAACATGTACA




33
ATGACATTGTGTTTGTACTTTGTTG





HSP90AB1
200064_at
34
AATAGACTTGTGTCTTCACCTTGCT
aatagacttgtgtcttcaccttgctgcattgtgaccagcacctacggctggac
AF275719.1






agccaatatggagcggatcatgaaagcccaggcacttcgggacaactccacca






tgggctatatgatggccaaaaagcacctggagatcaaccctgaccaccccatt






gtggagacgctgcggcagaaggctgaggccgacaagaatgataaggcagttaa






ggacctggtggtgctgctgtttgaaaccgccctgctatcttctggcttttccc






ttgaggatccccagacccactccaaccgcatctatcgcatgatcaagctaggt






ctaggtattgatgaagatgaagtggcagcagaggaacccaatgctgcagttcc






tgatgagatcccccctctcgagggcgatgaggatgcgtctcgcatggaagaagtcgat






taggttaggagttcatagttggaaaacttgtgcccttgtatagtgtccc




35
GTCTTCACCTTGCTGCATTGTGACC




36
GTGACCAGCACCTACGGCTGGACAG




37
GAGCGGATCATGAAAGCCCAGGCAC




38
AAAAGCACCTGGAGATCAACCCTGA




39
TGGTGGTGCTGCTGTTTGAAACCGC




40
CAACCGCATCTATCGCATGATCAAG




41
GCAGAGGAACCCAATGCTGCAGTTC




42
TCCCCCCTCTCGAGGGCGATGAGGA




43
GGGCGATGAGGATGCGTCTCGCATG




44
AACTTGTGCCCTTGTATAGTGTCCC





SLC25A5
200657_at
45
TAACACAATCTTGAGCATTCTTGAC
cctacttcggtatctatgacactgcaaagggaatgcttccggatcccaagaac
NM_001152.1






actcacatcgtcatcagctggatgatcgcacagactgtcactgctgttgccgg






gttgacttcctatccatttgacaccgttcgccgccgcatgatgatgcagtcag






ggcgcaaaggaactgacatcatgtacacaggcacgcttgactgctggcggaag






attgctcgtgatgaaggaggcaaagcttttttcaagggtgcatggtccaatgt






tctcagaggcatgggtggtgcttttgtgcttgtcttgtatgatgaaatcaaga






agtacacataagttatttcctaggatttttccccctgtgaacaggcatgttgt






attctataacacaatcttgagcattcttgacagactcctggctgtcagtttctcagtg






gcaac




46
CATTCTTGACAGACTCCTGGCTGTC




47
TGGCTGTCAGTTTCTCAGTGGCAAC




48
CCTACTTCGGTATCTATGACACTGC




49
GGGAATGCTTCCGGATCCCAAGAAC




50
CAAGAACACTCACATCGTCATCAGC




51
ATGATCGCACAGACTGTCACTGCTG




52
GCTGGCGGAAGATTGCTCGTGATGA




53
GGGTGCATGGTCCAATGTTCTCAGA




54
GAGGCATGGGTGGTGCTTTTGTGCT




55
TGCTTTTGTGCTTGTCTTGTATGAT





GRN
200678_x_at
56
CGTAGCCCTCACGTGGGTGTGAAGG
cgtagccctcacgtgggtgtgaaggacgtggagtgtggggaaggacacttctg
NM_002087.1






ccatgataaccagacctgctgccgagacaaccgacagggctgggcctgctgtc






cctaccgccagggcgtctgttgtgctgatcggcgccactgctgtcctgctggc






ttccgctgcgcagccaggggtaccaagtgtttgcgcagggaggccccgcgctg






ggacgcccctttgagggacccagccttgagacagctgctgtgagggacagtac






tgaagactctgcagccctcgggaccccactcggagggtgccctctgctcaggc






ctccctagcacctccccctaaccaaattctccctggaccccattctgagctcc






ccatcaccatgggaggtggggcctcaatctaaggccttccctgtcagaagggg






gttgtggcaaaagccacattacaagctgccatcccctccccgtttcagtggac






cctgtggccaggtgcttttccctatccacaggggtgtttgtgtgtgtgcgcgtgtgc






gtttcaata




57
GAAGGACACTTCTGCCATGATAACC




58
TGCCATGATAACCAGACCTGCTGCC




59
GCCGAGACAACCGACAGGGCTGGGC




60
GCCAGGGGTACCAAGTGTTTGCGCA




61
GACCCAGCCTTGAGACAGCTGCTGT




62
CAGTACTGAAGACTCTGCAGCCCTC




63
TGAGCTCCCCATCACCATGGGAGGT




64
TGGGGCCTCAATCTAAGGCCTTCCC




65
AAAGCCACATTACAAGCTGCCATCC




66
GTGTGTGCGCGTGTGCGTTTCAATA





CCND2
200953_s_at
67
GCCATTACAGTATCCAATGTCTTTT
gccattacagtatccaatgtcttttgacaggtgcctgtccttgaaaaacaaag
NM_001759.1






tttctatttttatttttaattggtttagttcttaactgctggccaactcttac






atccccagcaaatcatcgggccattggattttttccattatgttcatcaccct






tatatcatgtacctcagatctctctctctctcctctctctcagttatatagtt






tcttgtcttggactttttttttcttttctttttctttttttttttgctttaaa






acaagtgtgatgccatatcaagtccatgttattctctcacagtgtactctata






agaggtgtgggtgtctgtttggtcaggatgttagaaagtgctgataagtagca






tgatcagtgtatgcgaaaaggtttttaggaagtatggcaaaaatgttgtattg






gctatgatggtgacatgatatagtcagctgccttttaagaggtcttatctgttcagtg






tt




68
GTTTAGTTCTTAACTGCTGGCCAAC




69
CTTACATCCCCAGCAAATCATCGGG




70
TATGTTCATCACCCTTATATCATGT




71
TTATATCATGTACCTCAGATCTCTC




72
TCTCCTCTCTCTCAGTTATATAGTT




73
GTGTGATGCCATATCAAGTCCATGT




74
AGTCCATGTTATTCTCTCACAGTGT




75
GGTGTGGGTGTCTGTTTGGTCAGGA




76
ATGTTGTATTGGCTATGATGGTGAC




77
TAAGAGGTCTTATCTGTTCAGTGTT





TXNIP
201010_s_at
78
GTGTTCTCCTACTGCAAATATTTTC
gtgttctcctactgcaaatattttcatatgggaggatggttttctcttcatgt
NM_006472.1






aagtccttggaattgattctaaggtgatgttcttagcactttaattcctgtca






aattttttgttctccccttctgccatcttaaatgtaagctgaaactggtctac






tgtgtctctagggttaagccaaaagacaaaaaaaattttactacttttgagat






tgccccaatgtacagaattatataattctaacgcttaaatcatgtgaaagggt






tgctgctgtcagccttgcccactgtgacttcaaacccaaggaggaactcttga






tcaagatgcccaaccctgtgatcagaacctccaaatactgccatgagaaacta






gagggcaggtgttcataaaagccctttgaacccccttcctgccctgtgttagg






agatagggatattggcccctcactgcagctgccagcacttggtcagtcactct






cagccatagcactttgttcactgtcctgtgtcagagcactgagctccacccttttctg






agagttat




79
GGTTTTCTCTTCATGTAAGTCCTTG




80
TGTTCTTAGCACTTTAATTCCTGTC




81
GCTGAAACTGGTCTACTGTGTCTCT




82
GAAAGGGTTGCTGCTGTCAGCCTTG




83
CAACCCTGTGATCAGAACCTCCAAA




84
AGATAGGGATATTGGCCCCTCACTG




85
CACTCTCAGCCATAGCACTTTGTTC




86
ACTTTGTTCACTGTCCTGTGTCAGA




87
TGTGTCAGAGCACTGAGCTCCACCC




88
AGCTCCACCCTTTTCTGAGAGTTAT





RBBP7
201092_at
89
GCAGAAGATGGGCCTCCAGAACTCC
gcagaagatgggcctccagaactcctgtttattcatggaggacacactgctaa
NM_002893.2






gatttcagattttagctggaaccccaatgagccttgggtcatttgctcagtgt






ctgaggataacatcatgcagatatggcaaatggctgaaaatatttacaatgat






gaagagtcagatgtcacgacatccgaactggagggacaaggatcttaaaccca






aagtacgagaaatgtttctgttgaatgtaatgctacatgaatgcttgatttat






caagcgccaaaaaggcattgtatagtaggaaatgtaagtggggtggcttatgg






cttctttatcctctgattctagcactttcaagtgagctgttgcgtactgtatc






atattgtagctattagggaagagaagaatgttgcttaagaaagaacatcacca






ttgattttaaatacaagtagcagggtattgcctttgattcaactgttttaagtcctca






ttttctcaaactaagtgcttgctgtt




90
TATTCATGGAGGACACACTGCTAAG




91
TTAGCTGGAACCCCAATGAGCCTTG




92
AGCCTTGGGTCATTTGCTCAGTGTC




93
GTCACGACATCCGAACTGGAGGGAC




94
TGGGGTGGCTTATGGCTTCTTTATC




95
TTATCCTCTGATTCTAGCACTTTCA




96
GTGAGCTGTTGCGTACTGTATCATA




97
GTAGCAGGGTATTGCCTTTGATTCA




98
CAACTGTTTTAAGTCCTCATTTTCT




99
TTTCTCAAACTAAGTGCTTGCTGTT





LGALS1
201105_at
100
AAACCTGGAGAGTGCCTTCGAGTGC
ctcctggactcaatcatggcttgtggtctggtcgccagcaacctgaatctcaa
NM_002305.2






acctggagagtgccttcgagtgcgaggcgaggtggctcctgacgctaagagct






tcgtgctgaacctgggcaaagacagcaacaacctgtgcctgcacttcaaccct






cgcttcaacgcccacggcgacgccaacaccatcgtgtgcaacagcaaggacgg






cggggcctgggggaccgagcagcgggaggctgtctttcccttccagcctggaa






gtgttgcagaggtgtgcatcaccttcgaccaggccaacctgaccgtcaagctg






ccagatggatacgaattcaagttccccaaccgcctcaacctggaggccatcaactaca






tggcagctgacggtgacttcaa




101
GTGCCTTCGAGTGCGAGGCGAGGTG




102
CTCCTGACGCTAAGAGCTTCGTGCT




103
GCTTCGTGCTGAACCTGGGCAAAGA




104
TGTGCAACAGCAAGGACGGCGGGGC




105
ACCGAGCAGCGGGAGGCTGTCTTTC




106
GACCGTCAAGCTGCCAGATGGATAC




107
ACATGGCAGCTGACGGTGACTTCAA




108
CTCCTGGACTCAATCATGGCTTGTG




109
ATCATGGCTTGTGGTCTGGTCGCCA




110
GTCGCCAGCAACCTGAATCTCAAAC





ITPR3
201189_s_at
111
ACAGTCCTGCTTAGAGCCCTTAAAA
acagtcctgcttagagcccttaaaaagacttgaaagttcactgggactcagtt
NM_002224.1






taccttaatgccttagcagaagataaatcctacctagagacctttgttcctta






aagcaataactgacaactctttgtagtcctccttgtgggtagttaagagtggg






gtcacccctttaactccaagcactacattttggcggctgcggcctctggggga






ggtggcagttatgctgttactagtgattttagggctttgttatttaacttatt






tcaagggtgctgtgctcagccctgcccatggctgtgcagctccctccgtgcct






cagatctgctgtagccagtgcagacctcactgtcgtgtccatgccacccccgg






catggctccaggtggcctggtgactccatgatggacgatcttgctcccaggac






ctgcctcttcccaggcttcctggggaagagttgtacgcccaggcaacaagggctgag






ctgcgcttgcgtggctgtttcatgaccgc




112
GGACTCAGTTTACCTTAATGCCTTA




113
TAAATCCTACCTAGAGACCTTTGTT




114
AACTGACAACTCTTTGTAGTCCTCC




115
GGGAGGTGGCAGTTATGCTGTTACT




116
TGCCTCAGATCTGCTGTAGCCAGTG




117
GCTGTAGCCAGTGCAGACCTCACTG




118
CTCCAGGTGGCCTGGTGACTCCATG




119
CCATGATGGACGATCTTGCTCCCAG




120
GGGGAAGAGTTGTACGCCCAGGCAA




121
GCTTGCGTGGCTGTTTCATGACCGC





SPCS2
201240_s_at
122
GTATAGCTTTGGGCCATGTAGCATT
gagaagttgtagctctgatgtctagctgtagtctccttgatctgctgattgca
NM_014752.1






ttattttaatttgcttttctgggaaagcagttttgctaaaagctgtacagact






ttttcttttgtacctagcagtactttatatagtatagctttgggccatgtagc






attttaagactcaattttaaaaaattattaatctgttgctgactcttaattcc






tatttcaatatgtgtttccttgaagaattcaggatacaacttcttgtgtatga






cagctttccttcacacactatttttgtgggtgtgtatatatctgatttgggaa






gaatttaaaaaacacatagctttttaatttgtttgaaacagactttctgcctg






ttacatttttgcttttaaccaattaaagaagccaatggcattttagttttatattgt






gttttccactagtatatccctgttgatttgtttgtgccttt




123
AAATTATTAATCTGTTGCTGACTCT




124
GTTGCTGACTCTTAATTCCTATTTC




125
GTGTATGACAGCTTTCCTTCACACA




126
TCCTTCACACACTATTTTTGTGGGT




127
GACTTTCTGCCTGTTACATTTTTGC




128
GTGTTTTCCACTAGTATATCCCTGT




129
TCCCTGTTGATTTGTTTGTGCCTTT




130
GAGAAGTTGTAGCTCTGATGTCTAG




131
GATGTCTAGCTGTAGTCTCCTTGAT




132
GTCTCCTTGATCTGCTGATTGCATT





TMEM109
201361_at
133
GAGCAGTCACTCTCAGAATCTTGAT
gagcagtcactctcagaatcttgattccccatcagccaaagcaaaagatggct
NM_024092.1






gctgctttgtaggcatgtgcctgcaagtgggaccttgctgggcattatatgcc






ctgtgggggtttcagagaccctgaaagaggagggaggacccgcctccttgtct






gcacaactgcatgcacttctctccccatcgctccacaacctgaaaccgagaag






gagttgctgaccagtgcccaccccggcagcccgggaggaacacaggcagctcc






tttcccttcacgtggtctgcagagagcagggtgagctgccagctgcccctctc






caccagggtaccctgtcttggtggttaggggccacttttcctttgaggctcta






gtggaggtggatgtccttctctgccaggcttggcacatgatgtgaagaataaatgcc






caattcttactgttcaggt




134
TCAGAATCTTGATTCCCCATCAGCC




135
AAGTGGGACCTTGCTGGGCATTATA




136
ATGCCCTGTGGGGGTTTCAGAGACC




137
TCTGCACAACTGCATGCACTTCTCT




138
TCGCTCCACAACCTGAAACCGAGAA




139
AGAAGGAGTTGCTGACCAGTGCCCA




140
AGCCCGGGAGGAACACAGGCAGCTC




141
CTCCACCAGGGTACCCTGTCTTGGT




142
TAGTGGAGGTGGATGTCCTTCTCTG




143
AATGCCCAATTCTTACTGTTCAGGT





IFI30
201422_at
144
TGGAGGCCTGCGTGTTGGATGAACT
tggaggcctgcgtgttggatgaacttgacatggagctagccttcctgaccatg
NM_006332.1






tctggcatggcatggaagagtttgaggacatggagagaagtctgccactatgc






ctgcagctctacgccccagggctgtcgccagaactatcatggagtgtgcaatg






ggggaccgcggcatgcagctcatgcacgccaacgcccagcggacagatgctct






ccagccaccgcacgagtatgtgccctgggtcaccgtcaatgggaaacccttgg






aagatcagacccagctccttacccttgtctgccagttgtaccagggcaagaag






ccggatgtctgcccttcctcaaccagctccctccggagtgtttgcttcgagtg






ttggccggtgggctgcggagagctcatggaaggcgagtgggaactcggctgcc






tgcctttttttctgatccagaccctcggcacctgctacttaccaactggaaaa






ttttatgcatcccatgaagcccagatacacaaaattccacccctagatcaagaatcct






gctccacta




145
TTGACATGGAGCTAGCCTTCCTGAC




146
CAGGGCTGTCGCCAGAACTATCATG




147
TGGAGTGTGCAATGGGGGACCGCGG




148
TCCAGCCACCGCACGAGTATGTGCC




149
TGCCCTGGGTCACCGTCAATGGGAA




150
CCTTGTCTGCCAGTTGTACCAGGGC




151
GGCAAGAAGCCGGATGTCTGCCCTT




152
GGAGTGTTTGCTTCGAGTGTTGGCC




153
ATGCATCCCATGAAGCCCAGATACA




154
CTAGATCAAGAATCCTGCTCCACTA





CAT
201432_at
155
TTAGCGTTCATCCGTGTAACCCGCT
ttagcgttcatccgtgtaacccgctcatcactggatgaagattctcctgtgct
NM_001752.1






agatgtgcaaatgcaagctagtggcttcaaaatagagaatcccactttctata






gcagattgtgtaacaattttaatgctatttccccaggggaaaatgaaggttag






gatttaacagtcatttaaaaaaaaaatttgttttgacggatgattggattatt






catttaaaatgattagaaggcaagtttctagctagaaatatgattttatttga






caaaatttgttgaaattatgtatgtttacatatcacctcatggcctattatat






taaaatatggctataaatatataaaaagaaaagataaagatgatctactcaga






aatttttatttttctaaggttctcataggaaaagtacatttaatacagcagtgtcatc






agaagataacttgagcaccgtcatggcttaatgtttatt




156
GTAACCCGCTCATCACTGGATGAAG




157
GATGAAGATTCTCCTGTGCTAGATG




158
GATTCTCCTGTGCTAGATGTGCAAA




159
GTGCAAATGCAAGCTAGTGGCTTCA




160
GAGAATCCCACTTTCTATAGCAGAT




161
CAATTTTAATGCTATTTCCCCAGGG




162
GTATGTTTACATATCACCTCATGGC




163
TATCACCTCATGGCCTATTATATTA




164
GATAACTTGAGCACCGTCATGGCTT




165
GCACCGTCATGGCTTAATGTTTATT





G3BP
201503_at
166
AAAACCCAGATAACAACCAGAGCAA
aaaacccagataacaaccagagcaaaactgttgtgccttctatttatctttga
BG500067






tttcagtcttggcaattgtttaaaaaaaaaatctagatttgttttattaggtt






cagagtatgtggggaattatagaatccctctttcatcactttgtgtatgtctt






ttgttaacatatttgttatgccttattctaaaattgagtctcaaactggaatg






cctttgaagacagatgcttctatagaggttctttgacctaaatagttcagcat






ttgtatttttattctggtatctaatcagattcctaatcatagcccgtaagaag






gaatgttactttaatattggactttgctcatgtgctcgtgtccgcattttttt






ttttncttaaaatcatagccatatggtaaattttctattttgttatggttctctttta






ttgatgggcatgcagtgggtgttacttgga




167
GCAAAACTGTTGTGCCTTCTATTTA




168
TTATCTTTGATTTCAGTCTTGGCAA




169
CATATTTGTTATGCCTTATTCTAAA




170
TTGAGTCTCAAACTGGAATGCCTTT




171
GACAGATGCTTCTATAGAGGTTCTT




172
GGTTCTTTGACCTAAATAGTTCAGC




173
CAGATTCCTAATCATAGCCCGTAAG




174
TGCTCGTGTCCGCATTTTTTTTTTT




175
GGTTCTCTTTTATTGATGGGCATGC




176
GGGCATGCAGTGGGTGTTACTTGGA





ARF5
201526_at
177
GCAGTGCTGCTGGTATTTGCCAACA
gcagtgctgctggtatttgccaacaagcaggacatgcccaacgccatgcccgt
NM_001662.2






gagcgagctgactgacaagctggggctacagcacttacgcagccgcacgtggt






atgtccaggccacctgtgccacccaaggcacaggtctgtacgatggtctggac






tggctgtcccacgagctgtcaaagcgctaaccagccaggggcaggcccctgat






gcccggaagctcctgcgtgcatccccgggatgaccagactcccggactcctca






ggcagtgccctttcctcccacttttcctcccccatagccacaggcctctgctc






ctgctcctgcctgcatgttctctctgttgttggagcctggagccttgctctct






gggcacagaggggtccactctcctgcctgctgggacctatggaaggggcttcc






tggccaaggccccctcttccagaggaggagcagggatctgggtttcctttttttttt






ctgttttgggtgtactctaggggccaggttggga




178
TGCCCGTGAGCGAGCTGACTGACAA




179
TGCCACCCAAGGCACAGGTCTGTAC




180
GTACGATGGTCTGGACTGGCTGTCC




181
TCCCACGAGCTGTCAAAGCGCTAAC




182
CTGCGTGCATCCCCGGGATGACCAG




183
TCTCTGTTGTTGGAGCCTGGAGCCT




184
GCCTTGCTCTCTGGGCACAGAGGGG




185
GCCTGCTGGGACCTATGGAAGGGGC




186
GCCCCCTCTTCCAGAGGAGGAGCAG




187
GTGTACTCTAGGGGCCAGGTTGGGA





DUSP3
201536_at
188
GATTTAGCTCTTAGTTCTTCAAGTA
gatttagctcttagttcttcaagtaaaattaaagtctcttgtgtaagagccaa
AL048503






cacatgcccagctgcggatgggagctgttcctggacagccttctactgcctgg






gaagtgatggaacaggaactcagggtgcccttaccccctccccagacctgttc






cctttctttgactgacagagcaccatccaggcaaaattagagcgccaaatggt






tttcttctcaatcttaaagcagtatacctttccacaggctcgtctgtgtccct






gccactctgagttatccagaaaccaccacctacaaatgaggggactcatctag






aagacctctaaggtccccttttggctctgaggggtctctaataatccccactt






ggaattcagcaccgcaaggaaattatgggtatgtgagccataatatgatggcc






agcaggtngcgctgccttccacccatggtgatggatggtttggaaagggaatgttggt






gccttttgtgccaca




189
GAACAGGAACTCAGGGTGCCCTTAC




190
TGACTGACAGAGCACCATCCAGGCA




191
AAAGCAGTATACCTTTCCACAGGCT




192
TCCCTGCCACTCTGAGTTATCCAGA




193
GAAACCACCACCTACAAATGAGGGG




194
AGGGGACTCATCTAGAAGACCTCTA




195
CCTTTTGGCTCTGAGGGGTCTCTAA




196
GGGTCTCTAATAATCCCCACTTGGA




197
CCCACTTGGAATTCAGCACCGCAAG




198
GAATGTTGGTGCCTTTTGTGCCACA





ID2
201565_s_at
199
GAAAAACAGCCTGTCGGACCACAGC
gaaaaacagcctgtcggaccacagcctgggcatctcccggagcaaaacccctg
NM_002166.1






tggacgacccgatgagcctgctatacaacatgaacgactgctactccaagctc






aaggagctggtgcccagcatcccccagaacaagaaggtgagcaagatggaaat






cctgcagcacctcatcgactacatcttggacctgcagatcgccctggactcgc






atcccactattgtcagcctgcatcaccagagacccgggcagaaccagcgctcc






aggacgccgctgaccaccctcaacacggatatcagcatcctgtccttgcaggc






ttctgaattcccttctgagttaatgtcaaatgacagcaaagcactgtgtggct






gaataagcggtgttcatgatttcttttattctttgcacaacaacaacaacaacaaattc






acggaatcttttaagtgctgaac




200
GACCCGATGAGCCTGCTATACAACA




201
CCCGATGAGCCTGCTATACAACATG




202
GAGCCTGCTATACAACATGAACGAC




203
TATACAACATGAACGACTGCTACTC




204
GTGTGGCTGAATAAGCGGTGTTCAT




205
GAATAAGCGGTGTTCATGATTTCTT




206
AGCGGTGTTCATGATTTCTTTTATT




207
GGTGTTCATGATTTCTTTTATTCTT




208
CAACAACAAATTCACGGAATCTTTT




209
TCACGGAATCTTTTAAGTGCTGAAC





DNMT1
201697_s_at
210
ACCCAGAGCAGCACCGTGTGGTGAG
acccagagcagcaccgtgtggtgagcgtgcgggagtgtgcccgctcccagggc
NM_001379.1






ttccctgacacctaccggctcttcggcaacatcctggacaagcaccggcaggt






gggcaatgccgtgccaccgcccctggccaaagccattggcttggagatcaagc






tttgtatgttggccaaagcccgagagagtgcctcagctaaaataaaggaggag






gaagctgctaaggactagttctgccctcccgtcacccctgtttctggcaccag






gaatccccaacatgcactgatgttgtgtttttaacatgtcaatctgtccgttc






acatgtgtggtacatggtgtttgtggccttggctgacatgaagctgttgtgtg






aggttcgcttatcaactaatgatttagtgatcaaattgtgcagtactttgtgc






attctggattttaaaagttttttattatgcattatatcaaatctaccactgtatgagt




211
ACATCCTGGACAAGCACCGGCAGGT




212
CGGCAGGTGGGCAATGCCGTGCCAC




213
CCCCTGGCCAAAGCCATTGGCTTGG




214
GAGATCAAGCTTTGTATGTTGGCCA




215
AGCTGCTAAGGACTAGTTCTGCCCT




216
CAATCTGTCCGTTCACATGTGTGGT




217
GGCTGACATGAAGCTGTTGTGTGAG




218
GTGTGAGGTTCGCTTATCAACTAAT




219
GCAGTACTTTGTGCATTCTGGATTT




220
ATATCAAATCTACCACTGTATGAGT





CCND3
201700_at
221
TTGCATTTGGATTGGGGTCCCTCTA
ttgcatttggattggggtccctctaaaatttaatgcatgatagacacatatga
NM_001760.1






gggggaatagtctagatggctcctctcagtactttggaggcccctatgtagtc






cgtgctgacagctgctcctagagggaggggcctaggcctcagccagagaagct






ataaattcctctttgctttgctttctgctcagcttctcctgtgtgattgacag






ctttgctgctgaaggctcattttaatttattaattgctttgagcacaacttta






agaggacataatgggggcctggccatccacaagtggtggtaaccctggtggtt






gctgttttcctcccttctgctactggcaaaaggatctttgtggccaaggagct






gctatagcctggggtggggtcatgccctcctctcccattgtccctctgcccca






tcctccagcagggaaaatgcagcagggatgccctggaggtggctgagcccctg






tctagagagggaggcaagccctgttgacacaggtctttcctaaggctgcaaggtttag






gctggtggccc




222
GGGAATAGTCTAGATGGCTCCTCTC




223
GGCTCCTCTCAGTACTTTGGAGGCC




224
CTATGTAGTCCGTGCTGACAGCTGC




225
GCTCAGCTTCTCCTGTGTGATTGAC




226
GCTTTGCTGCTGAAGGCTCATTTTA




227
TAACCCTGGTGGTTGCTGTTTTCCT




228
TGGCCAAGGAGCTGCTATAGCCTGG




229
GGCTGAGCCCCTGTCTAGAGAGGGA




230
GACACAGGTCTTTCCTAAGGCTGCA




231
GCTGCAAGGTTTAGGCTGGTGGCCC





CD14
201743_at
232
GTGCCTAAAGGACTGCCAGCCAAGC
ccatccagaatctagcgctgcgcaacacaggaatggagacgcccacaggcgtg
NM_000591.1






tgcgccgcactggcggcggcaggtgtgcagccccacagcctagacctcagcca






caactcgctgcgcgccaccgtaaaccctagcgctccgagatgcatgtggtcca






gcgccctgaactccctcaatctgtcgttcgctgggctggaacaggtgcctaaa






ggactgccagccaagctcagagtgctcgatctcagctgcaacagactgaacag






ggcgccgcagcctgacgagctgcccgaggtggataacctgacactggacggga






atcccttcctggtccctggaactgccctcccccacgagggctcaatgaactcc






ggcgtggtcccagcctgtgcacgttcgaccctgtcggtgggggtgtcgggaac






cctggtgctgctccaaggggcccggggctttgcctaagatccaagacagaata






atgaatggactcaaactgccttggcttcaggggagtcccgtcaggacgttgaggact






tttcgaccaattcaacc




233
GCCAAGCTCAGAGTGCTCGATCTCA




234
GCAACAGACTGAACAGGGCGCCGCA




235
TGACGAGCTGCCCGAGGTGGATAAC




236
CTGACACTGGACGGGAATCCCTTCC




237
ACGAGGGCTCAATGAACTCCGGCGT




238
CCCGGGGCTTTGCCTAAGATCCAAG




239
GGGAGTCCCGTCAGGACGTTGAGGA




240
TGAGGACTTTTCGACCAATTCAACC




241
CCATCCAGAATCTAGCGCTGCGCAA




242
CCCTAGCGCTCCGAGATGCATGTGG





RPA2
201756_at
243
GGTTTCATCTATCAAATGTCTCCTC
gatattttacagctggacctagtttcacaatctgttgtctccagctctgcata
NM_002946.1






tgtctggccagggggcttctaggaagtaggtttcatctatcaaatgtctcctc






tgacttccttttgaaacttactgctcttctgttttattttgttttgtttgaag






ctcagagggagatgggcaattgacagggatgcaatccagggtgggatttcttg






aggaagttacaaataagcttgttacaacatcaagatagatggaattggaagga






tgctaccaggagagtacttacatagtgctcaggagtttctcttcttaaaatgt






ttactgctgaaagatgagcaggaccagggcgttataggcagagccctagccag






aaacctgctggcctctgcctgttttcatttcccactttggttgtgtggcatta






ctttcagaattgcactttcctgcttgtcatgactttttgacacacttgccatgac




244
TCCTCTGACTTCCTTTTGAAACTTA




245
ACTTACTGCTCTTCTGTTTTATTTT




246
GACAGGGATGCAATCCAGGGTGGGA




247
TAGCCAGAAACCTGCTGGCCTCTGC




248
TGTTTTCATTTCCCACTTTGGTTGT




249
ACTTTCCTGCTTGTCATGACTTTTT




250
GACTTTTTGACACACTTGCCATGAC




251
GATATTTTACAGCTGGACCTAGTTT




252
GCTGGACCTAGTTTCACAATCTGTT




253
CTCCAGCTCTGCATATGTCTGGCCA





CDC25B
201853_s_at
254
GCTTGGTCTGTTTGACTTTACGCCC
gcttggtctgtttgactttacgcccatctcaggacacttccgtagactgttta
NM_021873.1






ggttcccctgtcaaatatcagttacccactcggtcccagttttgttgccccag






aaagggatgttattatccttgggggctcccagggcaagggttaaggcctgaat






catgagcctgctggaagcccagcccctactgctgtgaaccctggggcctgact






gctcagaacttgctgctgtcttgttgcggatggatggaaggttggatggatgg






gtggatggccgtggatggccgtggatgcgcagtgccttgcatacccaaaccag






gtgggagcgttttgttgagcatgacacctgcagcaggaatatatgtgtgccta






tttgtgtggacaaaaatatttacacttagggtttggagctattcaagaggaaa






tgtcacagaagcagctaaaccaaggactgagcaccctctggattctgaatctc






aagatgggggcagggctgtgcttgaaggccctgctgagtcatctgttagggccttgg






ttc




255
CCATCTCAGGACACTTCCGTAGACT




256
GTTTAGGTTCCCCTGTCAAATATCA




257
CAAATATCAGTTACCCACTCGGTCC




258
TGAATCATGAGCCTGCTGGAAGCCC




259
CCCCTACTGCTGTGAACCCTGGGGC




260
TTGCTGCTGTCTTGTTGCGGATGGA




261
GATGGCCGTGGATGGCCGTGGATGC




262
GTGGGAGCGTTTTGTTGAGCATGAC




263
GCACCCTCTGGATTCTGAATCTCAA




264
GAGTCATCTGTTAGGGCCTTGGTTC





ST6GAL1
201998_at
265
GGCTGCTTAACTGCTGTATAGGACA
ggctgcttaactgctgtataggacaagccccttacccctctctgggcccatga
AI743792






attcctggcttggtttatgttctgatttgacacactgattttaatcttcgaat






catgacactgagtgcagaggaggtggcattccgacagcaggacatacatgttg






gtgtgaagactgggacgacactgggtagaatctagtttttaattattattaat






ataaaggatcaaattaatttaaatatgattctgaagtctacagaacttttagt






tctgtgctgtctatgtggacactttggtaaaatgcaaattatgatatggacgt






tatcattggtctggtgagatgtttcatatttgtgacagttaatttaaaaatta






tganttaatgctgcctgtgtctatggggttctgtcttctttgatagccatctattcat






ctggatcatgggaccctctctaa




266
TGCTGTATAGGACAAGCCCCTTACC




267
GCCCATGAATTCCTGGCTTGGTTTA




268
GGCTTGGTTTATGTTCTGATTTGAC




269
GGTGGCATTCCGACAGCAGGACATA




270
GAAGACTGGGACGACACTGGGTAGA




271
AGTTCTGTGCTGTCTATGTGGACAC




272
AATGCTGCCTGTGTCTATGGGGTTC




273
TATGGGGTTCTGTCTTCTTTGATAG




274
GATAGCCATCTATTCATCTGGATCA




275
ATCTGGATCATGGGACCCTCTCTAA





ARL2BP
202092_s_at
276
GGGCCACAGTTTCAGTACTTCAGCC
ccctcctggacctatttatcctgaaacaccttcttgtattcattaaccatagt
NM_012106.1






actcctccccacctcaagtagacacctctctcaggagcttctgagtcagacgc






ctctggagcgagccctatgtcaggcactccacctggggggcccttccccagca






tacctgctggtgtgtaagtgtggactaacccgccgccaccaccctctgttcca






gcaggctctgcatgaatctttgtgcacttgcacctctttttcacatgggccac






agtttcagtacttcagcctcagtggggttcctgatgtttatctagggtgttac






tcaagcccagtttgagattttggagtctcctgtgatcacatcttgtctcggct






gtaggaatcaacagaaggagacgtcctctacataaaagctccatgtgaaaagc






tactcctagtcttaacatttgcagtccttgtgtcactgtcttctggtcctgatgtag






tccc




277
CTTCAGCCTCAGTGGGGTTCCTGAT




278
TTTGGAGTCTCCTGTGATCACATCT




279
TCACATCTTGTCTCGGCTGTAGGAA




280
GACGTCCTCTACATAAAAGCTCCAT




281
GCTACTCCTAGTCTTAACATTTGCA




282
TGTCTTCTGGTCCTGATGTAGTCCC




283
CCCTCCTGGACCTATTTATCCTGAA




284
ATTCATTAACCATAGTACTCCTCCC




285
GACACCTCTCTCAGGAGCTTCTGAG




286
CTCTGGAGCGAGCCCTATGTCAGGC


TSPO
202096_s_at
287
GGCTCCTACCTGGTCTGGAAAGAGC
ggctcctacctggtctggaaagagctgggaggcttcacagagaaggctgtggt
NM_000714.2






tcccctgggcctctacactgggcagctggccctgaactgggcatggcccccca






tcttctttggtgcccgacaaatgggctgggccttggtggatctcctgctggtc






agtggggcggcggcngccactaccgtggcctggtaccaggtgagcccgctggc






cgcccgcctgctctacccctacctggcctggctggccttcgcgaccacactca






actactgcgtatggcgggacaaccatggctggcatgggggacggcggctgcca






gagtgagtgcccggcccaccagggactgcagctgcaccagcaggtgccatcac






gcttgtgatgtggtggccgtcacgctttcatgaccactgggcctgctagtctg






tcagggccttggcccaggggtcagcagagcttcagaggttgccccacctgagc






ccccacccgggagcagtgtcctgtgctttctgcatgcttagagcatg




288
GGAAAGAGCTGGGAGGCTTCACAGA




289
CATCTTCTTTGGTGCCCGACAAATG




290
CCGACAAATGGGCTGGGCCTTGGTG




291
CGTGGCCTGGTACCAGGTGAGCCCG




292
GACCACACTCAACTACTGCGTATGG




293
AACTACTGCGTATGGCGGGACAACC




294
ATGGCGGGACAACCATGGCTGGCAT




295
TGCACCAGCAGGTGCCATCACGCTT




296
TCACGCTTGTGATGTGGTGGCCGTC




297
GTGCTTTCTGCATGCTTAGAGCATG





ZMYND11
202136_at
298
AGGTTTGTCAGGGTCACTCTAAAGA
aggtttgtcagggtcactctaaagataaaaatgtaactaagtcttctgtgaaa
BE250417






tatcatccatctaatcttgatgctgttgcagatggtggtgacacaagttaatt






gacaaactactgccaaatggtgcacaatattttgtaaaaagtacccagtagcc






ccatttcatacaatgtacctaaattatgcagtaacttggcatcatcgttccct






ccttgttgctgtgtaattagtcagtgttgccacagtgtgtggcgctgatggag






atgtcagaaccgagaacacttaaccttctttgattgtttttcaagttttaaga






cttcgatccacccctatgagagcaagtaattgtggaaatatttttggtgtaaa






atcattccagagtatgtaatatttaactgatagctgcatgaaagtgagattcg






tgttactttggcttttctgtctctgttgacacggttgcacatttccaagtta




299
GTGAAATATCATCCATCTAATCTTG




300
TGTAAAAAGTACCCAGTAGCCCCAT




301
GTAGCCCCATTTCATACAATGTACC




302
GCAGTAACTTGGCATCATCGTTCCC




303
AGTGTGTGGCGCTGATGGAGATGTC




304
GTCAGAACCGAGAACACTTAACCTT




305
GATCCACCCCTATGAGAGCAAGTAA




306
GAGATTCGTGTTACTTTGGCTTTTC




307
GCTTTTCTGTCTCTGTTGACACGGT




308
GACACGGTTGCACATTTCCAAGTTA





BLMH
202179_at
309
GCATGTCCCTGAAGAGGTGCTAGCT
gcatgtccctgaagaggtgctagctgtgttagagcaggaacccattatcctgc
NM_000386.1






cagcatgggaccccatgggagctttggctgagtgatactgccctccagctctt






tcctccttccatggaacctgacgtagctgcaaaggacagatccagggactgaa






gccaaagttatgcaagggactgtgtgttgccacaggacacagtcagatttcca






gtctccaccaggaacctcttcagaaagtgtgctttatgctgaaacagaatact






gttaaaggaaaaaaaagaggggggaagatcaggtcatactatctactctcctc






atctctaacagctcaggatctcttagcattttaattagatgtaattgtttgtc






tttaactgtcaaaaagtttggttctgtgtctgtgttttaataagacgagagga






cgagcgattgaggtgtatggagagaaaacagacctaatgctccttgttcctag






agtagagtggagggagggtggcctaagagttgagctctcggaactgcatgctgc




310
GAACCCATTATCCTGCCAGCATGGG




311
ACCCCATGGGAGCTTTGGCTGAGTG




312
TTTGGCTGAGTGATACTGCCCTCCA




313
TCCTCCTTCCATGGAACCTGACGTA




314
AGGAACCTCTTCAGAAAGTGTGCTT




315
TCTCCTCATCTCTAACAGCTCAGGA




316
AACAGCTCAGGATCTCTTAGCATTT




317
AAACAGACCTAATGCTCCTTGTTCC




318
GAGGGTGGCCTAAGAGTTGAGCTCT




319
TTGAGCTCTCGGAACTGCATGCTGC





CTSH
202295_s_at
320
AGCCGCAGCGCAGACTGGCGGAGAA
tagaacgggcatctactccagtacttcctgccataaaactccagataaagtaa
NM_004390.1






accatgcagtactggctgttgggtatggagaaaaaaatgggatcccttactgg






atcgtgaaaaactcttggggtccccagtggggaatgaacgggtacttcctcat






cgagcgcggaaagaacatgtgtggcctggctgcctgcgcctcctaccccatcc






ctctggtgtgagccgtggcagccgcagcgcagactggcggagaaggagaggaa






cgggcagcctgggcctgggtggaaatcctgccctggaggaagttgtggggaga






tccactgggacccccaacattctgccctcacctctgtgcccagcctggaaacc






tacagacaaggaggagttccaccatgagctcacccgtgtctatgacgcaaaga






tcaccagccatgtgccttagtgtccttcttaacagactcaaaccacatggacc






acgaatattctttctgtccagaagggctactttccacatatagagctccagggactgt






ctttt




321
TGTGGGGAGATCCACTGGGACCCCC




322
AAGGAGGAGTTCCACCATGAGCTCA




323
CTCACCCGTGTCTATGACGCAAAGA




324
AAAGATCACCAGCCATGTGCCTTAG




325
GCCTTAGTGTCCTTCTTAACAGACT




326
GGACCACGAATATTCTTTCTGTCCA




327
TGTCCAGAAGGGCTACTTTCCACAT




328
TATAGAGCTCCAGGGACTGTCTTTT




329
TAGAACGGGCATCTACTCCAGTACT




330
CAGTACTTCCTGCCATAAAACTCCA





MAPRE2
202501_at
331
CAGCCACAAAACTGTCATTCACTCT
cagccacaaaactgtcattcactctaggggacccctactaaagggtaacttca
NM_014268.1






ggtgtgcagccctgagctccaaggctctgcaccatgccacacacttgctgtaa






ggctagaagtgaagaccttattaataggagcataattgcgagggagaatcatg






gttctgcagtctggtgtagacactggaataacagcacagaaaaatctatgact






cccaatatcttctagaataaagaattttccctctttaacacaagggccctcct






tgtcattgaccttagctaaaccatggcaattcataaatagaggaaacattaat






gaattaaaagcattccttattttttaactaatatttgtacattttcttagtct






ctttccaagtctttgcctcttttttttctttatttttattttttcctttgacagatg






gtatcccttcctggatcattcatttcaccttggtt




332
TCATTCACTCTAGGGGACCCCTACT




333
ACTTCAGGTGTGCAGCCCTGAGCTC




334
CATGCCACACACTTGCTGTAAGGCT




335
GAATCATGGTTCTGCAGTCTGGTGT




336
AATCTATGACTCCCAATATCTTCTA




337
AACACAAGGGCCCTCCTTGTCATTG




338
CCCTCCTTGTCATTGACCTTAGCTA




339
GACCTTAGCTAAACCATGGCAATTC




340
TTGACAGATGGTATCCCTTCCTGGA




341
CTGGATCATTCATTTCACCTTGGTT





ARHGEF7
202548_s_at
342
GTTACGGCATTGCCTTTTCTTTCTG
gttacggcattgccttttctttctgtggatccagtatcttcctcggcttttta
NM_003899.1






gggagcaggaaaaatgcgtctgagagcaactctttttaaaaacctgccctgtt






gtatataactgtgtctgtttcaccgtgtgacctcccaagggggtgggaacttg






atataaacgtttaaaggggccacgatttgcccgagggttactcctttgctctc






accttgtatggatgaggagatgaagccatttcttatcctgtagatgtgaagca






ctttcagttttcagcgatgttggaatgtagcatcagaagctcgttccttcaca






ctcagtggcgtctgtgcttgtccacatgcactgggcgtctgggaccttgaatg






cctgccctggttgtgtggactccttaatgccaatcatttcttcacttctctgggaca






cccagggcgcctgttgacaagtg




343
TTCTGTGGATCCAGTATCTTCCTCG




344
ATCTTCCTCGGCTTTTTAGGGAGCA




345
AAACCTGCCCTGTTGTATATAACTG




346
AACTGTGTCTGTTTCACCGTGTGAC




347
GCCACGATTTGCCCGAGGGTTACTC




348
CCTTTGCTCTCACCTTGTATGGATG




349
GATGAAGCCATTTCTTATCCTGTAG




350
GTAGCATCAGAAGCTCGTTCCTTCA




351
CACACTCAGTGGCGTCTGTGCTTGT




352
CACCCAGGGCGCCTGTTGACAAGTG





KIFAP3
203333_at
353
CCACCAAGCCACAAGAGACGTCATA
ccaccaagccacaagagacgtcataatcaaggaaacacaggctccagcatatc
NM_014970.1






tcatagacctaatgcatgataagaataatgaaatccgaaaggtctgtgataat






acattagatattatagcggaatatgatgaagaatgggctaagaaaattcagag






tgaaaagtttcgctggcataactctcagtggctggagatggtagagagtcgtc






agatggatgagagtgagcagtacttgtatggtgatgatcgaattgagccatac






attcatgaaggagatattctcgaaagacctgaccttttctacaactcagatgg






attaattgcctctgaaggagccataagtcccgatttcttcaatgattaccacc






ttcaaaatggagatgttgttgggcagcattcatttcctggcagccttggaatg






gatggctttggccaaccagttggcattcttggacgccctgccacagcatatgg






attccgccctgatgaaccttactactatggctatggatcttgataaagtatctgtttc






catgtgtaatctca




354
AACACAGGCTCCAGCATATCTCATA




355
GTTTCGCTGGCATAACTCTCAGTGG




356
CTCGAAAGACCTGACCTTTTCTACA




357
GGAGCCATAAGTCCCGATTTCTTCA




358
GATTTCTTCAATGATTACCACCTTC




359
GGATGGCTTTGGCCAACCAGTTGGC




360
CCCTGCCACAGCATATGGATTCCGC




361
GCATATGGATTCCGCCCTGATGAAC




362
GAACCTTACTACTATGGCTATGGAT




363
GTATCTGTTTCCATGTGTAATCTCA





OFD1
203569_s_at
364
AGCAGGAGCAAGACCAGGAGTCGGC
agcaggagcaagaccaggagtcggcagataagagctcaaaaaagatggtccaa
NM_003611.1






gaaggctccctagtggacacgctgcaatctagtgacaaagtcgaaagtttaac






aggcttttctcatgaagaactagacgactcttggtaaccatgtttgctgccca






gcttctaacttacataccgtgagaagttacgtaacatttactcctttgtaaat






gtttccctatcatcagacaaaactcaataaaaatgtgtgtaatccaatgtggg






tttttttttccataattaattttgataccatagtgtgtgaaccaagaataatctagtc






acgtgaaacctcttctccagtcatagtatt




365
CAAGAAGGCTCCCTAGTGGACACGC




366
GTGGACACGCTGCAATCTAGTGACA




367
AAGTTTAACAGGCTTTTCTCATGAA




368
GAACTAGACGACTCTTGGTAACCAT




369
CTTGGTAACCATGTTTGCTGCCCAG




370
TGTTTGCTGCCCAGCTTCTAACTTA




371
CCAGCTTCTAACTTACATACCGTGA




372
AAATGTTTCCCTATCATCAGACAAA




373
GATACCATAGTGTGTGAACCAAGAA




374
AAACCTCTTCTCCAGTCATAGTATT





CEBPA
204039_at
375
AAGCTAGGTCGTGGGTCAGCTCTGA
aagctaggtcgtgggtcagctctgaggatgtatacccctggtgggagagggag
NM_004364.1






acctagagatctggctgtggggcgggcatggggggtgaagggccactgggacc






ctcagccttgtttgtactgtatgccttcagcattgcctaggaacacgaagcac






gatcagtccatccagagggaccggagttatgacaagcttcccaaatattttgc






tttatcagccgatatcaacacttgtatctggcctctgtgcccagcagtgcctt






gtgcaatgtgaatgtaccgtctctgctaaaccaccattttatttggttttgtt






ttgtttggttttctcggatacttgccaaaatgagactctccgtcggcagctgg






gggaagggtctgagactctctttccttttggttttgggattacttttgatcct






gggggaccaatgaggtgaggggggttctcctttgccctcagctttcccagccc






tccggcctgggctgcccacaaggcttctcccccagaggccctggctcctggtcgggaa






gggag




376
AGCTCTGAGGATGTATACCCCTGGT




377
GAGGGAGACCTAGAGATCTGGCTGT




378
AGCCTTGTTTGTACTGTATGCCTTC




379
ATGCCTTCAGCATTGCCTAGGAACA




380
GAACACGAAGCACGATCAGTCCATC




381
TCAACACTTGTATCTGGCCTCTGTG




382
TGTGAATGTACCGTCTCTGCTAAAC




383
TGTTTGGTTTTCTCGGATACTTGCC




384
GCCAAAATGAGACTCTCCGTCGGCA




385
CCCTGGCTCCTGGTCGGGAAGGGAG





CCL4
204103_at
386
TACCATGAAGCTCTGCGTGACTGTC
taccatgaagctctgcgtgactgtcctgtctctcctcatgctagtagctgcct
NM_002984.1






tctgctctccagcgctctcagcaccaatgggctcagaccctcccaccgcctgc






tgcttttcttacaccgcgaggaagcttcctcgcaactttgtggtagattacta






tgagaccagcagcctctgctcccagccagctgtggtattccaaaccaaaagaa






gcaagcaagtctgtgctgatcccagtgaatcctgggtccaggagtacgtgtat






gacctggaactgaactgagctgctcagagacaggaagtcttcagggaaggtca






cctgagcccggatgcttctccatgagacacatctcctccatactcaggactcc






tctccgcagttcctgtcccttctcttaatttaatcttttttatgtgccgtgtt






attgtattaggtgtcatttccattatttatattagtttagccaaaggataagtgtcc






tatggggatggtccactgtcactg




387
CTCATGCTAGTAGCTGCCTTCTGCT




388
GCTCTCAGCACCAATGGGCTCAGAC




389
TTTCTTACACCGCGAGGAAGCTTCC




390
GCTTCCTCGCAACTTTGTGGTAGAT




391
AGTCTGTGCTGATCCCAGTGAATCC




392
GACCTGGAACTGAACTGAGCTGCTC




393
TCAGGGAAGGTCACCTGAGCCCGGA




394
TCCATGAGACACATCTCCTCCATAC




395
ATCTTTTTTATGTGCCGTGTTATTG




396
CTATGGGGATGGTCCACTGTCACTG





STAB1
204150_at
397
GTGACGCAGGCCCTGACAACAGTTC
gtgacgcaggccctgacaacagttcctgggcccctgtggccccagggacagtt
NM_015136.1






gtggttagccgtatcattgtgtgggacatcatggccttcaatggcatcatcca






tgctctggccagccccctcctggcacccccacagccccaggcagtgctggcgc






ctgaagccccacctgtggcggcaggcgtgggggctgtgcttgccgctggagca






ctgcttggcttggtggccggagctctctacctccgtgcccgaggcaagcccac






gggctttggcttctctgccttccaggcggaagatgatgctgacgacgacttct






caccgtggcaagaagggaccaaccccaccctggtctctgtccccaaccctgtc






tttggcagcgacaccttttgtgaacccttcgatgactcactgctggaggagga






cttccctgacacccagaggatcctcacagtcaagtgacgaggctggggctgaa






agcagaagcatgcacagggaggagaccacttttattgcttgtctgggtggat




398
GCCCCAGGGACAGTTGTGGTTAGCC




399
GGTTAGCCGTATCATTGTGTGGGAC




400
TGTGTGGGACATCATGGCCTTCAAT




401
TCAATGGCATCATCCATGCTCTGGC




402
CGAGGCAAGCCCACGGGCTTTGGCT




403
AGATGATGCTGACGACGACTTCTCA




404
TGGCAGCGACACCTTTTGTGAACCC




405
CACTGCTGGAGGAGGACTTCCCTGA




406
CCTGACACCCAGAGGATCCTCACAG




407
ACTTTTATTGCTTGTCTGGGTGGAT





RUNX3
204197_s_at
408
ATCCATTGTCCTTGTAGTTTCTTCC
atccattgtccttgtagtttcttccctcctgttctctggttatagctggtccc
NM_004350.1






aggtcagcgtgggaggcacctttgggttcccagtgcccagcactttgtagtct






catcccagattactaacccttcctgatcctggagaggcagggatagtaaataa






attgctcttcctaccccatcccccatcccctgacaaaaagtgacggcagccgt






actgagtctgtaaggcccaaagtgggtacagacagcctgggctggtaaaagta






ggtccttatttacaaggctgcgttaaagttgtactaggcaaacacactgatgt






aggaagcacgaggaaaggaagacgttttgatatagtgttactgtgagcctgtc






agtagtgggtaccaatcttttgtgacatattgtcatgctgaggtgtgacacct






gctgcactcatctgatgtaaaaccatcccagagctggcgagaggatggagctgggtg






gaaactgctttgcactatcgtttgctt




409
CTGTTCTCTGGTTATAGCTGGTCCC




410
GGTCCCAGGTCAGCGTGGGAGGCAC




411
CACTTTGTAGTCTCATCCCAGATTA




412
ATCCCAGATTACTAACCCTTCCTGA




413
CAGCCGTACTGAGTCTGTAAGGCCC




414
AAGTGGGTACAGACAGCCTGGGCTG




415
TGAGCCTGTCAGTAGTGGGTACCAA




416
ACCTGCTGCACTCATCTGATGTAAA




417
TGTAAAACCATCCCAGAGCTGGCGA




418
AACTGCTTTGCACTATCGTTTGCTT





IFI6
204415_at
419
TGACCTTCATGGCCGTCGGAGGAGG
tgaccttcatggccgtcggaggaggactcgcagtcgccgggctgcccgcgctg
NM_022873.1






ggcttcaccggcgccggcatcgcggccaactcggtggctgcctcgctgatgag






ctggtctgcgatcctgaatgggggcggcgtgcccgccggggggctagtggcca






cgctgcagagcctcggggctggtggcagcagcgtcgtcataggtaatattggt






gccctgatgggctacgccacccacaagtatctcgatagtgaggaggatgagga






gtagccagcagctcccagaacctcttcttccttcttggcctaactcttccagt






taggatctagaactttgcctttttttttttttttttttttttttgagatgggt






tctcactatattgtccaggctagagtgcagtggctattcacagatgcgaacat






agtacactgcagcctccaactcctagcctcaagtgatcctcctgtctcaacct






cccaagtaggattacaagcatgcgccgacgatgcccagaatccagaacttt




420
TGGCAGCAGCGTCGTCATAGGTAAT




421
GTCGTCATAGGTAATATTGGTGCCC




422
ATTGGTGCCCTGATGGGCTACGCCA




423
GCCACCCACAAGTATCTCGATAGTG




424
GGATGAGGAGTAGCCAGCAGCTCCC




425
TTCTTGGCCTAACTCTTCCAGTTAG




426
AACTCTTCCAGTTAGGATCTAGAAC




427
GATGCGAACATAGTACACTGCAGCC




428
ATTACAAGCATGCGCCGACGATGCC




429
GACGATGCCCAGAATCCAGAACTTT





NPIP
204538_x_at
430
CCTTCCACCCTCAGCGGATGATAAT
cagatgcaaaatcaccccttctgcaagaaagcctctttgcaaccgggtcagaa
NM_006985.1






tggcggcagtggagcatcgtcattcttcaggattgccctactggccctacctc






acagctgaaactttaaaaaacaggatgggccaccagccacctcctccaactca






acaacattctataattgataactccctgagcctcaagacaccttccgagtgtc






tgctcactccccttccaccctcagctctaccctcagcggatgataatctcaag






acacctgcggagtgtctgctctatccccttccaccctcagcggatgataatct






caagacacctcccgagtgtctgctcactccccttccaccctcagctccaccct






cagcggatgataatctcaagacacctcccgagtgtgtctgctcactccccttccaccc






tcagcggatgataat




431
CAGATGCAAAATCACCCCTTCTGCA




432
GCCTCTTTGCAACCGGGTCAGAATG




433
GAATGGCGGCAGTGGAGCATCGTCA




434
CATCGTCATTCTTCAGGATTGCCCT




435
TGATAACTCCCTGAGCCTCAAGACA




436
AGCTCTACCCTCAGCGGATGATAAT




437
GACACCTGCGGAGTGTCTGCTCTAT




438
TGATAATCTCAAGACACCTCCCGAG




439
GCTCCACCCTCAGCGGATGATAATC




440
AAGACACCTCCCGAGTGTGTCTGCT





ADA
204639_at
441
GTGGGGCTGAGCAACATTTTTACAT
gtggggctgagcaacatttttacatttattccttccaagaagaccatgatctc
NM_000022.1






aatagtcagttactgatgctcctgaaccctatgtgtccatttctgcacacacg






tatacctcggcatggccgcgtcacttctctgattatgtgccctggcagggacc






agcgcccttgcacatgggcatggttgaatctgaaaccctccttctgtggcaacttgta






ctga




442
TTTTACATTTATTCCTTCCAAGAAG




443
GACCATGATCTCAATAGTCAGTTAC




444
GTCAGTTACTGATGCTCCTGAACCC




445
TGAACCCTATGTGTCCATTTCTGCA




446
ATGTGTCCATTTCTGCACACACGTA




447
GCGTCACTTCTCTGATTATGTGCCC




448
GATTATGTGCCCTGGCAGGGACCAG




449
CAGCGCCCTTGCACATGGGCATGGT




450
TGGTTGAATCTGAAACCCTCCTTCT




451
CTCCTTCTGTGGCAACTTGTACTGA





TGFBR3
204731_at
452
TGTATTTCTTACAGGCCTACAGAAA
tgtatttcttacaggcctacagaaattgaaaatgaccaaaatcaggaaccaca
NM_003243.1






gatttgtgcccattcctaatattttgttctgcaaattaatgtataatttgagg






tgaaattcagttataaagtcaaggacgaatttgcacagtgatatatttctatg






tgtatgcaagtacaagtatataatatgtcacctggcacattcattttctcagt






tgaagaagagaaaatttgaaaatgtccttatgcttttagagttgcaacttaag






tatatttggtagggtgagtgtttccactcaaaatatgtcaacttaaaaaaaaa






taggccctttcataaaaaccaaactgtagcaagatgcaaatgcatggcaaatc






tgtcggtctccagttggttatctgaatagtgtcaccaattccaccaagacagtgctga






gat




453
GATTTGTGCCCATTCCTAATATTTT




454
GTCAAGGACGAATTTGCACAGTGAT




455
AAGTATATAATATGTCACCTGGCAC




456
CACCTGGCACATTCATTTTCTCAGT




457
AATGTCCTTATGCTTTTAGAGTTGC




458
TTTGGTAGGGTGAGTGTTTCCACTC




459
ATGCATGGCAAATCTGTCGGTCTCC




460
GTCGGTCTCCAGTTGGTTATCTGAA




461
GAATAGTGTCACCAATTCCACCAAG




462
AATTCCACCAAGACAGTGCTGAGAT





IARS
204744_s_at
463
TTGGCCTTCGGAGCAGGAAGCTAAA
ttggccttcggagcaggaagctaaagctgtttctgaatgagacccaaacgcag
NM_013417.1






gaaattacagaagacatccccgtgaagactttgaatatgaagactgtgtatgt






ttctgtgttaccaacaacagcagacttctagcatgtacttatcaatgttgttc






ggtcagcccttccctaattacacctatcccctacacatacatgcacatagaca






cacacatgaacacactgaagatatttccttcaggtgtgtgtaaaatatgctgc






ttggattgaaattcaaatgggattgattagtcaagtaacttgagacctcacag






taatcttcacacttaaccttagacacctatgcagtcatgttgggagcaggtta






caatgttacttcagcccacagtttatttctattcttgagttcttaagtacaga






agatagaagtgatttaaatggcatagtatatatatcattttctggccttttaa






aatttatttgagacctcttgatgaaatggacatattatatatttctgccacctggatt






ttcctggata




464
GAAGACATCCCCGTGAAGACTTTGA




465
GTTACCAACAACAGCAGACTTCTAG




466
GCAGACTTCTAGCATGTACTTATCA




467
TGAGACCTCACAGTAATCTTCACAC




468
CTTCACACTTAACCTTAGACACCTA




469
GACACCTATGCAGTCATGTTGGGAG




470
AGGTTACAATGTTACTTCAGCCCAC




471
TGTTACTTCAGCCCACAGTTTATTT




472
CATATTATATATTTCTGCCACCTGG




473
TCTGCCACCTGGATTTTCCTGGATA





LCK
204891_s_at
474
GACTTGGGGAGATGGAGTTCTTGTG
gacttggggagatggagttcttgtgccatagtcacatggcctatgcacatatg
NM_005356.1






gactctgcacatgaatcccacccacatgtgacacatatgcaccttgtgtctgt






acacgtgtcctgtagttgcgtggactctgcacatgtcttgtgcatgtgtagcc






tgtgcatgtatgtcttggacactgtacaaggtacccctttctggctctcccat






ttcctgagaccaccagagagaggggagaagcctgggattgacagaagcttctg






cccacctacttttctttcctcagatcatccagaagttcctgaagggccaggactttat






ctaatacctctgtgtgctc




475
TGGAGTTCTTGTGCCATAGTCACAT




476
TATGGACTCTGCACATGAATCCCAC




477
AATCCCACCCACATGTGACACATAT




478
ACATATGCACCTTGTGTCTGTACAC




479
TGTGTAGCCTGTGCATGTATGTCTT




480
GCATGTATGTCTTGGACACTGTACA




481
CACTGTACAAGGTACCCCTTTCTGG




482
GCCTGGGATTGACAGAAGCTTCTGC




483
GGGCCAGGACTTTATCTAATACCTC




484
CTTTATCTAATACCTCTGTGTGCTC





IL10RA
204912_at
485
TAGGCCATTTGGACTCTGCCTTCAA
taggccatttggactctgccttcaaacaaaggcagttcagtccacaggcatgg
NM_001558.1






aagctgtgaggggacaggcctgtgcgtgccatccagagtcatctcagccctgc






ctttctctggagcattctgaaaacagatattctggcccagggaatccagccat






gacccccacccctctgccaaagtactcttaggtgccagtctggtaactgaact






ccctctggaggcaggcttgagggaggattcctcagggttcccttgaaagcttt






atttatttattttgttcatttatttattggagaggcagcattgcacagtgaaa






gaattctggatatctcaggagccccgaaattctagctctgactttgctgtttc






cagtggtatgaccttggagaagtcacttatcctcttggagcctcagtttcctc






atctgcagaataatgactgacttgtctaattcatagggatgtgaggttctgctgagg




486
GGCAGTTCAGTCCACAGGCATGGAA




487
CTGGCCCAGGGAATCCAGCCATGAC




488
AGTACTCTTAGGTGCCAGTCTGGTA




489
GTAACTGAACTCCCTCTGGAGGCAG




490
TCAGGGTTCCCTTGAAAGCTTTATT




491
ATTCTGGATATCTCAGGAGCCCCGA




492
GGAGCCCCGAAATTCTAGCTCTGAC




493
GCTGTTTCCAGTGGTATGACCTTGG




494
AGAAGTCACTTATCCTCTTGGAGCC




495
ATAGGGATGTGAGGTTCTGCTGAGG





FCN1
205237_at
496
GGTATCAACTGGAGTGCGGCGAAGG
gagggcaaccaccagtttgctaagtacaaatcattcaaggtggctgacgaggc
NM_002003.2






agagaagtacaagctggtactgggagcctttgtcgggggcagtgcgggtaat






ctctaacgggccacaacaacaacttcttctccaccaaagaccaagacaatgat






gtgagttcttcgaattgtgctgagaagttccagggagcctggtggtacgccga






ctgtcatgcttcaaacctcaatggtctctacctcatgggaccccatgagagct






atgccaatggtatcaactggagtgcggcgaaggggtacaaatatagctacaag






gtgtcagagatgaaggtgcggcccgcctagacgggccaggacccctccacatg






cacctgctagtggggaggccacacccacaagcgctgcgtcgtggaag




497
CCTCCACATGCACCTGCTAGTGGGG




498
ACCCACAAGCGCTGCGTCGTGGAAG




499
GAGGGCAACCACCAGTTTGCTAAGT




500
GGGCAGTGCGGGTAATTCTCTAACG




501
TTCTCTAACGGGCCACAACAACAAC




502
GTGAGTTCTTCGAATTGTGCTGAGA




503
TCCAGGGAGCCTGGTGGTACGCCGA




504
GACTGTCATGCTTCAAACCTCAATG




505
CTCAATGGTCTCTACCTCATGGGAC




506
ATGGGACCCCATGAGAGCTATGCCA





IL2RB
205291_at
507
GACAAGCGTTGAGCCACTAAGCAGA
gacaagcgttgagccactaagcagaggaccttgggttcccaatacaaaaatac
NM_000878.1






ctactgctgagagggctgctgaccatttggtcaggattcctgttgcctttata






tccaaaataaactcccctttcttgaggttgtctgagtcttgggtctatgcctt






gaaaaaagctgaattattggacagtctcacctcctgccatagggtcctgaatg






tttcagaccacaaggggctccacacctttgctgtgtgttctggggcaacctac






taatcctctctgcaagtcggtctccttatccccccaaatggaaattgtatttg






ccttctccactttgggaggctcccacttcttgggagggttacattttttaagt






cttaatcatttgtgacatatgtatctatacatccgtatcttttaatgatccgtgtgta






ccatctttgtgat




508
TAAGCAGAGGACCTTGGGTTCCCAA




509
TGAGAGGGCTGCTGACCATTTGGTC




510
GATTCCTGTTGCCTTTATATCCAAA




511
CTTTCTTGAGGTTGTCTGAGTCTTG




512
CTGAGTCTTGGGTCTATGCCTTGAA




513
AATTATTGGACAGTCTCACCTCCTG




514
CCTCCTGCCATAGGGTCCTGAATGT




515
TTTGCTGTGTGTTCTGGGGCAACCT




516
GGAAATTGTATTTGCCTTCTCCACT




517
GATCCGTGTGTACCATCTTTGTGAT





GNA15
205349_at
518
AACGGCCATTTGGGATGCCAGGGTG
aacggccatttgggatgccagggtggatgaaaaggtgaagaaatcaggggatt
NM_002068.1






gagacttgggtgggtgggcatctctcaggagccccatctccgggcgtgtcacc






tcctgggcagggttctgggaccctctgtgggtgacgcacaccctgggatgggg






ctagtagagccttcaggcgccttcgggcgtggactctggcgcactctagtgga






caggagaaggaacgccttccaggaacctgtggactaggggtgcagggacttcc






ctttgcaaggggtaacagaccgctggaaaacactgtcactttcagagctcggt






ggctcacagcgtgtcctgccccggtttgcggacgagagaaatcgcggcccaca






agcatcccccatcccttgcaggctgggggctgggcatgctgcatcttaaccttttgta






tttat




519
GAGACTTGGGTGGGTGGGCATCTCT




520
TGACGCACACCCTGGGATGGGGCTA




521
GGGCTAGTAGAGCCTTCAGGCGCCT




522
ACTCTGGCGCACTCTAGTGGACAGG




523
GAACGCCTTCCAGGAACCTGTGGAC




524
CTAGGGGTGCAGGGACTTCCCTTTG




525
CAGACCGCTGGAAAACACTGTCACT




526
AACACTGTCACTTTCAGAGCTCGGT




527
GCGGACGAGAGAAATCGCGGCCCAC




528
CTGCATCTTAACCTTTTGTATTTAT





GZMA
205488_at
529
CAGCCACACGCGAAGGTGACCTTAA
cagccacacgcgaaggtgaccttaaacttttacagctgacggaaaaagcaaaa
NM_006144.2






attaacaaatatgtgactatccttcatctacctaaaaagggggatgatgtgaa






accaggaaccatgtgccaagttgcagggtgggggaggactcacaatagtgcat






cttggtccgatactctgagagaagtcaatatcaccatcatagacagaaaagtc






tgcaatgatcgaaatcactataattttaaccctgtgattggaatgaatatggt






ttgtgctggaagcctccgaggtggaagagactcgtgcaatggagattctggaa






gccctttgttgtgcgagggtgttttccgaggggtcacttcctttggccttgaa






aataaatgcggagaccctcgtgggcctggtgtctatattcttctctcaaagaaacacc






tcaactgga




530
GACCTTAAACTTTTACAGCTGACGG




531
TATGTGACTATCCTTCATCTACCTA




532
GGAACCATGTGCCAAGTTGCAGGGT




533
GACTCACAATAGTGCATCTTGGTCC




534
GCATCTTGGTCCGATACTCTGAGAG




535
TGCTGGAAGCCTCCGAGGTGGAAGA




536
TGTTGTGCGAGGGTGTTTTCCGAGG




537
AATAAATGCGGAGACCCTCGTGGGC




538
CTGGTGTCTATATTCTTCTCTCAAA




539
CTCTCAAAGAAACACCTCAACTGGA





KLRK1
205821_at
540
AGGCAATTCAGATATCCCCAAGGCT
aggcaattcagatatccccaaggctgcctctcccaccacaagcccagagtgga
NM_007360.1






tgggctgggggaggggtgctgttttaatttctaaaggtaggaccaacacccag






gggatcagtgaaggaagagaaggccagcagatcagtgagagtgcaaccccacc






ctccacaggaaattgcctcatgggcagggccacagcagagagacacagcatgg






gcagtgccttccctgcctgtgggggtcatgctgccacttttaatgggtcctcc






acccaacggggtcagggaggtggtgctgccccagtgggccatgattatcttaa






aggcattattctccagccttaagatcttaggacgtttcctttgctatgatttg






tacttgcttgagtcccatgactgtttctcttcctctctttcttccttttggaa






tagtaatatccatcctatgtttgtcccactattgta




541
GTAGGACCAACACCCAGGGGATCAG




542
AGATCAGTGAGAGTGCAACCCCACC




543
CACCCTCCACAGGAAATTGCCTCAT




544
AATTGCCTCATGGGCAGGGCCACAG




545
CTGCCACTTTTAATGGGTCCTCCAC




546
GGCATTATTCTCCAGCCTTAAGATC




547
GATCTTAGGACGTTTCCTTTGCTAT




548
GATTTGTACTTGCTTGAGTCCCATG




549
TTGAGTCCCATGACTGTTTCTCTTC




550
ATCCTATGTTTGTCCCACTATTGTA





CD2
205831_at
551
AGACCTCGAGTTCAGCCAAAACCTC
agacctcgagttcagccaaaacctccccatggggcagcagaaaactcattgtc
NM_001767.1






cccttcctctaattaaaaaagatagaaactgtctttttcaataaaaagcactg






tggatttctgccctcctgatgtgcatatccgtacttccatgaggtgttttctg






tgtgcagaacattgtcacctcctgaggctgtgggccacagccacctctgcatc






ttcgaactcagccatgtggtcaacatctggagtttttggtctcctcagagagc






tccatcacaccagtaaggagaagcaatataagtgtgattgcaagaatggtaga






ggaccgagcacagaaatcttagagatttcttgtcccctctcaggtcatgtgta






gatgcgataaatcaagtgattggtgtgcctgggtctcactacaagcagcctatctgc




552
GGCAGCAGAAAACTCATTGTCCCCT




553
AAAAGCACTGTGGATTTCTGCCCTC




554
CTGATGTGCATATCCGTACTTCCAT




555
GTACTTCCATGAGGTGTTTTCTGTG




556
TGTGCAGAACATTGTCACCTCCTGA




557
GAGTTTTTGGTCTCCTCAGAGAGCT




558
AGAGCTCCATCACACCAGTAAGGAG




559
AATCTTAGAGATTTCTTGTCCCCTC




560
TCCCCTCTCAGGTCATGTGTAGATG




561
GTCTCACTACAAGCAGCCTATCTGC





CX3CR1
205898_at
562
AGCCCCTGCCCATCTGGGAAAATAC
agcccctgcccatctgggaaaataccccatcattcatgctactgccaacctgg
U20350.1






ggagccagggctatgggagcagcttttttttcccccctagaaacgtttggaac






aatgtaaaactttaaagctcgaaaacaattgtaataatgctaaagaaaaagtc






atccaatctaaccacatcaatattgtcattcctgtattcacccgtccagacct






tgttcacactctcacatgtttagagttgcaatcgtaatgtacagatggtttta






taatctgatttgttttcctcttaacgttagaccacaaatagtgctcgctttct






atgtagtttggtaattatcattttagaagactctaccagactgtgtattcatt






gaagtcagatgtggtaactgttaaattgctgtgtatctgatagctctttggca






gtctatatgtttgtataatgaatgagagaataagtcatgttccttcaagatcatgtac






cccaatttacttgccattact




563
GAAAATACCCCATCATTCATGCTAC




564
GGCTATGGGAGCAGCTTTTTTTTCC




565
GTCATCCAATCTAACCACATCAATA




566
CTTGTTCACACTCTCACATGTTTAG




567
TTATAATCTGATTTGTTTTCCTCTT




568
GACCACAAATAGTGCTCGCTTTCTA




569
GTGCTCGCTTTCTATGTAGTTTGGT




570
GAAGACTCTACCAGACTGTGTATTC




571
TGTTCCTTCAAGATCATGTACCCCA




572
GTACCCCAATTTACTTGCCATTACT





HK3
205936_s_at
573
AGGTCCGAGCCATCCTAGAGGATCT
aggtccgagccatcctagaggatctggggctacccctgacctcagatgacgcc
NM_002115.1






ctgatggtgctagaggtgtgccaggctgtgtcccagagggctgcccagctctg






tggggcgggtgtagctgccgtggtggagaagatccgggggaaccggggcctgg






aagagctggcagtgtctgtgggggtggatggaacgctctacaagctgcacccg






cgcttctccagcctggtggcggccacagtgcgggagctggcccctcgctgtgt






ggtcacgttcctgcagtcagaggatgggtccggcaaaggtgcggccctggtca






ccgctgttgcctgccgccttgcgcagttgactcgtgtctgaggaaacctccag






gctgaggaggtctccgccgcagccttgctggagccgggtcggggtctgcctgt






ttcccagccaggcccagccacccaggactcctgggacatcccatgtgtgaccc






ctctgcggccatttggccttgctccctggctttccctgagagaagtagcactcaggtt






agcaatat




574
CTAGAGGATCTGGGGCTACCCCTGA




575
TGACCTCAGATGACGCCCTGATGGT




576
GACGCCCTGATGGTGCTAGAGGTGT




577
GGTGTAGCTGCCGTGGTGGAGAAGA




578
GTCTGTGGGGGTGGATGGAACGCTC




579
GATGGAACGCTCTACAAGCTGCACC




580
GGATGGGTCCGGCAAAGGTGCGGCC




581
TGACTCGTGTCTGAGGAAACCTCCA




582
GACTCCTGGGACATCCCATGTGTGA




583
GAAGTAGCACTCAGGTTAGCAATAT





ING2
205981_s_at
584
GATGGATTCCAGCCAACCAGAAAGA
gatggattccagccaaccagaaagatcttcaagaagaccccgcaggcagcgga
NM_001564.1






ccagtgaaagccgtgatttatgtcacatggcaaatgggattgaagactgtgat






gatcagccacctaaagaaaagaaatccaagtcagcaaagaaaaagaaacgctc






caaggccaagcaggaaagggaagcttcacctgttgagtttgcaatagatccta






atgaacctacatactgcttatgcaaccaagtgtcttatggggagatgatagga






tgtgacaatgaacagtgtccaattgaatggtttcacttttcatgtgtttcact






tacctataaaccaaaggggaaatggtattgcccaaagtgcaggggagataatg






agaaaacaatggacaaaagtactgaaaagacaaaaaaggatagaagatcgaggtagta






aaggccatccacattt




585
GGCAGCGGACCAGTGAAAGCCGTGA




586
AAAGCCGTGATTTATGTCACATGGC




587
AAGACTGTGATGATCAGCCACCTAA




588
GAAAAAGAAACGCTCCAAGGCCAAG




589
GGGAAGCTTCACCTGTTGAGTTTGC




590
GATCCTAATGAACCTACATACTGCT




591
TACTGCTTATGCAACCAAGTGTCTT




592
TTTCATGTGTTTCACTTACCTATAA




593
GGGGAAATGGTATTGCCCAAAGTGC




594
GAGGTAGTAAAGGCCATCCACATTT





STAT4
206118_at
595
GCTGACATCCTGCGAGACTACAAAG
gctgacatcctgcgagactacaaagttattatggctgaaaacattcctgaaaa
NM_003151.1






ccctctgaagtacctatatcctgacattcccaaagacaaagccttcggtaaac






actacagctctcagccttgcgaagtttcaagaccaacagaaaggggtgacaaa






ggttatgttccttctgtttttatccccatctcaacaatccgaagtgattcaac






agagccacattctccatcagaccttcttcccatgtctccaagtgtgtatgcgg






tgttgagagaaaacctgagtcccacaacaattgaaactgcaatgaagtctcct






tattctgctgaatgacaggataaactctgacgcaccaagaaaggaagcaaatg






aaaaagtttaaagactgttctttgcccaataaccacattttatttcttcagct






ttgtaaataccaggttctaggaaatgtttgacatctgaagctctcttcacactcccgt






ggcactcctcaattgggag




596
TCCTGAAAACCCTCTGAAGTACCTA




597
GAAGTACCTATATCCTGACATTCCC




598
CAAAGCCTTCGGTAAACACTACAGC




599
GCTCTCAGCCTTGCGAAGTTTCAAG




600
TCCCCATCTCAACAATCCGAAGTGA




601
AAACCTGAGTCCCACAACAATTGAA




602
TGCAATGAAGTCTCCTTATTCTGCT




603
AGACTGTTCTTTGCCCAATAACCAC




604
GACATCTGAAGCTCTCTTCACACTC




605
TCCCGTGGCACTCCTCAATTGGGAG





CD33
206120_at
606
GAGGAGCTGCATTATGCTTCCCTCA
agtgggcagcaatgacacccaccctaccacagggtcagcctccccgaaacacc
NM_001772.1






agaagaactccaagttacatggccccactgaaacctcaagctgttcaggtgcc






gcccctactgtggagatggatgaggagctgcattatgcttccctcaactttca






tgggatgaatccttccaaggacacctccaccgaatactcagaggtcaggaccc






agtgaggaaccctcaagagcatcaggctcagctagaagatccacatcctctac






aggtcggggaccaaaggctgattcttggagatttaactccccacaggcaatgg






gtttatagacattatgtgagtttcctgctatattaacatcatcttgagacttt






gcaagcagagagtcgtggaatcaaatctgtgctctttcatt




607
ATGCTTCCCTCAACTTTCATGGGAT




608
ATGAATCCTTCCAAGGACACCTCCA




609
GACACCTCCACCGAATACTCAGAGG




610
AGGAACCCTCAAGAGCATCAGGCTC




611
TAGAAGATCCACATCCTCTACAGGT




612
AGGTCGGGGACCAAAGGCTGATTCT




613
GGAATCAAATCTGTGCTCTTTCATT




614
AGTGGGCAGCAATGACACCCACCCT




615
AGAACTCCAAGTTACATGGCCCCAC




616
AAACCTCAAGCTGTTCAGGTGCCGC





ASGR2
206130_s_at
617
TGCAGGTGTACCGCTGGGTGTGTGA
ggagaacgcacacctggtggtcatcaactcctgggaggagcagaaattcattg
NM_001181.1






tacaacacacgaaccccttcaatacctggataggtctcacggacagtgatggc






tcttggaaatgggtggatggcacagactataggcacaactacaagaactgggc






tgtcactcagccagataattggcacgggcacgagctgggtggaagtgaagact






gtgttgaagtccagccggatggccgctggaacgatgacttctgcctgcaggtg






taccgctgggtgtgtgagaaaaggcggaatgccaccggcgaggtggcctgacc






ccagcacacctctggctaacccataccccacacctgcccagctctggcttctc






tgttgaggattttgaggaaaggaagaaacactgagacaggggtatggggaaga






gctgagcaaagagagaaaggaggtagtttaagagtccctgaccctggaggact






gagatcccacctccttctgtaattcattgtaattattataatcgtcagcctcttcaa




618
ATGCCACCGGCGAGGTGGCCTGACC




619
GGTAGTTTAAGAGTCCCTGACCCTG




620
CCCTGGAGGACTGAGATCCCACCTC




621
TTATTATAATCGTCAGCCTCTTCAA




622
GGAGAACGCACACCTGGTGGTCATC




623
TCATTGTACAACACACGAACCCCTT




624
GAACCCCTTCAATACCTGGATAGGT




625
TAATTGGCACGGGCACGAGCTGGGT




626
TGTTGAAGTCCAGCCGGATGGCCGC




627
GGCCGCTGGAACGATGACTTCTGCC





MATK
206267_s_at
628
GCCGAGCGGAAGGGGCTAGACTCAA
gccgagcggaaggggctagactcaagccggctgcccgtcaagtggacggcgcc
NM_002378.1






cgaggctctcaaacacgggttcaccagcaagtcggatgtctggagttttgggg






tgctgctctgggaggtcttctcatatggacgggctccgtaccctaaaatgtca






ctgaaagaggtgtcggaggccgtggagaaggggtaccgcatggaaccccccga






gggctgtccaggccccgtgcacgtcctcatgagcagctgctgggaggcagagc






cgcccgccggccacccttccgcaaactggccgagaagctggcccgggagctac






gcagtgcaggtgccccagcctccgtctcagggcaggacgccgacggtccacct






cgccccgaagccaggagccctgaccccacccggtggcccttggccccagaggaccgag






agagtggagagtgcggcgtgggggcac




629
GAAGGGGCTAGACTCAAGCCGGCTG




630
GTTCACCAGCAAGTCGGATGTCTGG




631
GCAAGTCGGATGTCTGGAGTTTTGG




632
CTCTGGGAGGTCTTCTCATATGGAC




633
TCTTCTCATATGGACGGGCTCCGTA




634
GCTCCGTACCCTAAAATGTCACTGA




635
CTGAAAGAGGTGTCGGAGGCCGTGG




636
AGGCCGTGGAGAAGGGGTACCGCAT




637
CCGTCTCAGGGCAGGACGCCGACGG




638
AGTGGAGAGTGCGGCGTGGGGGCAC





ASGR1
206743_s_at
639
CTACCGCTGGGTCTGCGAGACAGAG
aggagcagaaatttgtccagcaccacataggccctgtgaacacctggatgggc
NM_001671.1






ctccacgaccaaaacgggccctggaagtgggtggacgggacggactacgagac






gggcttcaagaactggaggccggagcagccggacgactggtacggccacgggc






tcggaggaggcgaggactgtgcccacttcaccgacgacggccgctggaacgac






gacgtctgccagaggccctaccgctgggtctgcgagacagagctggacaaggc






cagccaggagccacctctcctttaatttatttcttcaatgcctcgacctgccg






caggggtccgggattgggaatccgcccatctggggcctcttctgctttctcgg






gaattttcatctaggattttaagggaaggggaaggatagggtgatgttccgaaggtga






ggagcttgaaacccgtggcg




640
GGGTCTGCGAGACAGAGCTGGACAA




641
TGCCGCAGGGGTCCGGGATTGGGAA




642
TCTTCTGCTTTCTCGGGAATTTTCA




643
CTCGGGAATTTTCATCTAGGATTTT




644
GATAGGGTGATGTTCCGAAGGTGAG




645
GGTGAGGAGCTTGAAACCCGTGGCG




646
AGGAGCAGAAATTTGTCCAGCACCA




647
GAAATTTGTCCAGCACCACATAGGC




648
CCACATAGGCCCTGTGAACACCTGG




649
GAGCAGCCGGACGACTGGTACGGCC





TXK
206828_at
650
TAGCCCCAGGAACCCTTGAGGTTCT
tagccccaggaacccttgaggttcttcttcacaaggctgagagtgcttccttc
NM_003328.1






ttgaagacgagtgtcattcatcacttcagtgatccatgcatagaatatgaaaa






taaattcttccaactcatgggataaaggggactcccttgaagaatttcatgtt






tttgggctgtatagctctttacagaaaatgcacctttataaatcacatgaatg






ttagtattctggaaatgtcttttgttaatataatcttcccatgttatttaaca






aattgtttttgcacatatctgattatattgaaagcagtttttttgcattcgag






ttttaaacactgttataaaatgtagccaaagctcacctttgaacagatcccgg






tgacattctatttccaggaaaatccggaacctgattttagttctgtgatttta






cactttttacatgtgagattggacagtttcagaggccttattttgtcatactaagtg






tctcctgtaatt




651
TTGAGGTTCTTCTTCACAAGGCTGA




652
GACGAGTGTCATTCATCACTTCAGT




653
TCACTTCAGTGATCCATGCATAGAA




654
GGGACTCCCTTGAAGAATTTCATGT




655
GTTTTTGGGCTGTATAGCTCTTTAC




656
AGCTCACCTTTGAACAGATCCCGGT




657
TCCCGGTGACATTCTATTTCCAGGA




658
GAGATTGGACAGTTTCAGAGGCCTT




659
TCAGAGGCCTTATTTTGTCATACTA




660
GTCATACTAAGTGTCTCCTGTAATT





KIR3DL2
207314_x_at
661
GGAACTTCCAAATGCTGAGCCCAGA
ggaacttccaaatgctgagcccagatccaaagttgtctcctgcccacgagcac
NM_006737.1






cacagtcaggtcttgagggggttttctagggagacaacagccctgtctcaaaa






ccaggttgccagatccaatgaaccagcagctggaatctgaaggcatcagtctg






catcttaggggatcgctcttcctcacaccacgaatctgaacatgcctctctct






tgcttacaaatgcctaaggtcgccactgcctgctgcagagaaaacacactcct






ttgcttagcccacaaggtatctatttcacttgacccctgcccacctctccaac






ctaactggcttacttcctagtcctacttgaggctgcaatcacactgaggaact






cacaattccaaacatacaagaggctccctcttaacacggcacttacacacttg






ctgttccaccttccctcatgctgttccacctcccctcagactatctttcagcc






ttctgtcatcagtaaaatttataaattttttttataacttcagtgtagctctctcct




662
AGCCCAGATCCAAAGTTGTCTCCTG




663
CCACGAGCACCACAGTCAGGTCTTG




664
CAGTCTGCATCTTAGGGGATCGCTC




665
ACACCACGAATCTGAACATGCCTCT




666
AAGGTATCTATTTCACTTGACCCCT




667
TCTCCAACCTAACTGGCTTACTTCC




668
CTTCCTAGTCCTACTTGAGGCTGCA




669
AACACGGCACTTACACACTTGCTGT




670
TATCTTTCAGCCTTCTGTCATCAGT




671
TATAACTTCAGTGTAGCTCTCTCCT


SH2D2A
207351_s_at
672
CACCCTGTCCTACGGAAGAGCTGGT
caccctgtcctacggaagagctggtccaggcctgtcccaggaggccagaatac
NM_003975.1






aggtggctcccagctgcattctgagaactctgtgattgggcaaggccctcccc






tgccccaccagcccccacccgcctggagacacaccctcccccacaatctttct






agacaggtgcttcaggacagaggacaggcatggcttccccttgggcctcctca






gtaggcggtctggcctgacccccaacaaagaagcctggaggtcagagaagcaa






atgcggagcctgctccctcctaagaagatcccaagaatccaatggctcagtcc






ttggtgatctaagacagcaaagaagtgtgcaaggagggccctgttagctccca






ctgtcctggtttctcctcctggagtctaatttccttggccctctgagcctttt






gagtctgggccctggtccaatgctgctgttgtctgaggaatggtttggtgaga






acagatgttagaacttgtttgttgattcttgtctggctaat




673
CTCCCAGCTGCATTCTGAGAACTCT




674
GAACTCTGTGATTGGGCAAGGCCCT




675
TCCCCCACAATCTTTCTAGACAGGT




676
AAGCAAATGCGGAGCCTGCTCCCTC




677
CTCCCTCCTAAGAAGATCCCAAGAA




678
CAATGGCTCAGTCCTTGGTGATCTA




679
GTGCAAGGAGGGCCCTGTTAGCTCC




680
TCCTGGAGTCTAATTTCCTTGGCCC




681
CTCTGAGCCTTTTGAGTCTGGGCCC




682
GTTTGTTGATTCTTGTCTGGCTAAT





CD160
207840_at
683
AACAGAACAGCTTTCACCAAAGTGG
tcagtgtaatccttgactttgctcctcaccatcagggcaaacttgccttcttc
NM_007053.1






cctcctaagctccagtaaataaacagaacagctttcaccaaagtgggtagtat






agtcctcaaatatcggataaatatatgcgtttttgtaccccagaaaaactttt






cctccctcttcatcaacatagtaaaataagtcaaacaaaatgagaacaccaaa






ttttgggggaataaatttttatttaacactgcaaaggaaagagagagaaaaca






agcaaagataggtaggacagaaaggaagacagccagatccagtgattgacttg






gcatgaaaatgagaaaatgcagacagacctcaacattcaacattcaacaacat






ccatacagcactgctggaggaagaggaagatttgtgcagaccaagagcaccac






agactacaactgcccagcttcatctaaatacttgttaacctctttggtcat




684
GTGGGTAGTATAGTCCTCAAATATC




685
ATATATGCGTTTTTGTACCCCAGAA




686
GACAGCCAGATCCAGTGATTGACTT




687
CAACAACATCCATACAGCACTGCTG




688
AAGAGCACCACAGACTACAACTGCC




689
TACAACTGCCCAGCTTCATCTAAAT




690
GCCCAGCTTCATCTAAATACTTGTT




691
AATACTTGTTAACCTCTTTGGTCAT




692
TCAGTGTAATCCTTGACTTTGCTCC




693
TTCCCTCCTAAGCTCCAGTAAATAA





CEACAM3
208052_x_at
694
ATACCAAGAAAATGCCCCAGGCCTT
ataccaagaaaatgccccaggccttcctgtgggggccgtcgccggcatcgtga
NM_001815.1






ccggggtcctggtcggagtggcgctggtggccgcgctggtgtgtttcctgctc






cttgccaaaactggaaggccgtggtccctcccacagctctgccttctcgatgt






cccctctctccactgcctaggcccccctacccaaccccaggacagcagcttcc






atctatgagaagtggcttcttagcttcctccaggagctgctcctgtgggttga






tggagagtccccaaggcccccagccctggggatggggaaggacatgaagcctg






agccagagaaccagctataagtcctgagaagacactggtgtctggggacaggg






agggatggggtccctgatgaatatctggagacctcgacagcctgccctaggcc






ctgggtgggtcaggacaaaggcctctcatcaccgcagaaagcgggggcttgcagggaa






agtgaatgggcctgtggcccacctg




695
TTCCTGCTCCTTGCCAAAACTGGAA




696
CCAGGACAGCAGCTTCCATCTATGA




697
TTCTTAGCTTCCTCCAGGAGCTGCT




698
GGGTTGATGGAGAGTCCCCAAGGCC




699
GAAGCCTGAGCCAGAGAACCAGCTA




700
GGATGGGGTCCCTGATGAATATCTG




701
AATATCTGGAGACCTCGACAGCCTG




702
GGGTGGGTCAGGACAAAGGCCTCTC




703
GCCTCTCATCACCGCAGAAAGCGGG




704
AGTGAATGGGCCTGTGGCCCACCTG





ZBP1
208087_s_at
705
GGGTTCAGGCCAGGTCTTTTGATGG
gggttcaggccaggtcttttgatggccaggagtagatgacagggagttgcctt
NM_030776.1






ggggaacctttggtgtgccaagaggaggtgggtagatgggagtggggctcggt






cccccaggcccaggggactctctccactctttcctgggctcggggcatctgcc






tggagttaccttccatcatggctacctgctgtggtttgaatgtttgagtccca






acaaaattcatatcaaaacataatcccaactgggtgcagtggctcacgcctgt






aatcccagcactttgggaggccgaggcgggcggatcaataggtcaggaaatccagac






cgtcct




706
CCAGGTCTTTTGATGGCCAGGAGTA




707
GGCCAGGAGTAGATGACAGGGAGTT




708
TGCCTTGGGGAACCTTTGGTGTGCC




709
TGGGGAACCTTTGGTGTGCCAAGAG




710
GGTAGATGGGAGTGGGGCTCGGTCC




711
TAGATGGGAGTGGGGCTCGGTCCCC




712
GTGGTTTGAATGTTTGAGTCCCAAC




713
GAGTCCCAACAAAATTCATATCAAA




714
ACATAATCCCAACTGGGTGCAGTGG




715
TAGGTCAGGAAATCCAGACCGTCCT





APLP2
208248_x_at
716
CCCTTCCAACTATGTCCAGATGTGC
cccttccaactatgtccagatgtgcaggctcctcctctctggactttctccaa
NM_001642.1






aggcactgaccctcggcctctactttgtcccctcacctccaccccctcctgtc






accggccttgtgacattcactcagagaagaccacaccaaggaggggccgcggc






tggcccaggagagaacacggggaggtttgtttgtgtgaaaggaaagtagtcca






ggctgtccctgaaactgagtctgtggacactgtggaaagctttgaacaattgt






gttttcgtcacaggagtctttgtaatgcttgtacagttgatgtcgatgctcac






tgcttctgctttttctttctttttattttaaaaaatctgaaggttctggtaac






ctgtggtgtatttttattttcctgtgactgtttttgttttgtttttttccttt






ttcctcccctttagccctattcatgtctctacccactatgcacagattaaacttcac






ctacaaactcct




717
TCCTCTCTGGACTTTCTCCAAAGGC




718
CCGGCCTTGTGACATTCACTCAGAG




719
AGAAGACCACACCAAGGAGGGGCCG




720
AGGAAAGTAGTCCAGGCTGTCCCTG




721
GCTGTCCCTGAAACTGAGTCTGTGG




722
GTGTTTTCGTCACAGGAGTCTTTGT




723
CAGTTGATGTCGATGCTCACTGCTT




724
GGTGTATTTTTATTTTCCTGTGACT




725
TCTCTACCCACTATGCACAGATTAA




726
GATTAAACTTCACCTACAAACTCCT





CS
208660_at
727
AGAATACAAGCCACTACCTTCTGAC
agaatacaagccactaccttctgacctccccaccccccaccaacccccatctt
BC000105.1






ttaatatgctgtggggcatagaactccggaatgaccagcatgatattttcaga






gtcttgtccccggggtattagcacctctttttgaacagggaattgattcaaga






ttggacatggtctcctctgattatcaggtactggggctgagggcattaaaaat






agtaagcctccctcctcgtcccctgcctcaagaaattgcctccttatttatca






acatctttttcctccctttccctgagagctcacagtacaatgtttcagaagcc






ccatttgcacaggttttcagcaactcagaatgctctacttctttttctttgag






aaaggattaagatacactcctgctgtgcccccatctttcctccaaactcctgc






ctgtgtttgtgtggatacccagtcccagaaccacactgttgagttggacacactgtaa






acccct




728
TGCTGTGGGGCATAGAACTCCGGAA




729
TGATATTTTCAGAGTCTTGTCCCCG




730
TCTTGTCCCCGGGGTATTAGCACCT




731
GGTATTAGCACCTCTTTTTGAACAG




732
TGGACATGGTCTCCTCTGATTATCA




733
TGCCTCCTTATTTATCAACATCTTT




734
GCCCCATTTGCACAGGTTTTCAGCA




735
GCAACTCAGAATGCTCTACTTCTTT




736
TTGTGTGGATACCCAGTCCCAGAAC




737
TGAGTTGGACACACTGTAAACCCCT





LTA4H
208771_s_at
738
GATTGGAATGCCTGGCTCTACTCTC
gattggaatgcctggctctactctcctggactgcctcccataaagcccaatta
J02959.1






tgatatgactctgacaaatgcttgtattgccttaagtcaaagatggattactg






ccaaagaagatgatttaaattcattcaatgccacagacctgaaggatctctct






tctcatcaattgaatgagtttttagcacagacgctccagagggcacctcttcc






attggggcacataaagcgaatgcaagaggtgtacaacttcaatgccattaaca






attctgaaatacgattcagatggctgcggctctgcattcaatccaagtgggag






gacgcaattcctttggcgctaaagatggcaactgaacaaggaagaatgaagtt






tacccggcccttattcaaggatcttgctgcctttgacaaatcccatgatcaag






ctgtccgaacctaccaagagcacaaagcaagcatgcatcccgtgactgcaatgctggt






gg




739
GCCACAGACCTGAAGGATCTCTCTT




740
GGATCTCTCTTCTCATCAATTGAAT




741
GAGTTTTTAGCACAGACGCTCCAGA




742
TGGGAGGACGCAATTCCTTTGGCGC




743
GGCCCTTATTCAAGGATCTTGCTGC




744
TTGCTGCCTTTGACAAATCCCATGA




745
AAATCCCATGATCAAGCTGTCCGAA




746
GTCCGAACCTACCAAGAGCACAAAG




747
CAAAGCAAGCATGCATCCCGTGACT




748
CATCCCGTGACTGCAATGCTGGTGG





ANXA2P2
208816_x_at
749
CAGAAAGCGCTGCTGTACCTGTGTG
tgccccacctccagaaagtatttgataggtacaagagttacagcccttatgac
M62898.1






atgttggaaagcatcaggaaagaggttaaaggagacctggaaaatgctttcct






gaacctggtccagcgcattcagaacaagcccttgtattttgctgatcagctgt






acgactccatgaagggcaaggggacgcgagataaggtcctgatcagaatcatg






gtctcccgcagtgaagtggacatgttgaaaattaggtctgaattcaagagaaa






gtacggcaagtccctgtactactatatccagcaagacactaagggcgactacc






agaaagcgctgctgtacctgtgtggtggagctgactgaagcccgacacagcct






gagcgtccagaaatggtgctcaccatgcttccagctaacaggtctactaaaca






tacaaaagtttagccgggcgtggtggcgctcgcctgtagtcccagctagtccggagc






tgag




750
TGGTGGAGCTGACTGAAGCCCGACA




751
GACACAGCCTGAGCGTCCAGAAATG




752
CTCACCATGCTTCCAGCTAACAGGT




753
TAGTCCCAGCTAGTCCGGAGCTGAG




754
TGCCCCACCTCCAGAAAGTATTTGA




755
CTGAACCTGGTCCAGCGCATTCAGA




756
AAGCCCTTGTATTTTGCTGATCAGC




757
CTGATCAGCTGTACGACTCCATGAA




758
CTGATCAGAATCATGGTCTCCCGCA




759
GGCAAGTCCCTGTACTACTATATCC





PLXNB2
208890_s_at
760
CGCCCAGCGTCTAGACTGTAGCATC
cgcccagcgtctagactgtagcatcttcctctgagcaataccgccgggcaccg
BC004542.1






caccagcaccagccccagccccagctccctccggccgcagaaccagcatcggg






tgttcactgtcgagtctcgagtgatttgaaaatgtgccttacgctgccacgct






gggggcagctggcctccgcctccgcccacgcaccagcagccgcctccatgccc






taggttgggcccctgggggatctgagggcctgtggcccccagggcaagttccc






agatcctatgtctgtctgtccaccacgagatgggaggaggagaaaaagcggta






cgatgccttcctgacctcaccggcctccccaagggtgccggcactctgggtgg






actcacggctgctgggccccacgtcaaaggtcaagtgagacgtaggtcaagtc






ctacgtcggggcccagacatcctggggtcctggtctgtcagacaggctgccct






agagccccacccagtccggggggactgggagcagttccaagaccaccc




761
GAACCAGCATCGGGTGTTCACTGTC




762
GTGTTCACTGTCGAGTCTCGAGTGA




763
TACGCTGCCACGCTGGGGGCAGCTG




764
CCAGGGCAAGTTCCCAGATCCTATG




765
TCCCAGATCCTATGTCTGTCTGTCC




766
AGAAAAAGCGGTACGATGCCTTCCT




767
GGCCCCACGTCAAAGGTCAAGTGAG




768
TCTGTCAGACAGGCTGCCCTAGAGC




769
TCCGGGGGGACTGGGAGCAGTTCCA




770
ACTGGGAGCAGTTCCAAGACCACCC





CYFIP1
208923_at
771
GCACTCCGTAACTCAACATGGCATG
gcactccgtaactcaacatggcatgcctttctctccgtaaactatttagtgag
BC005097.1






atttttagggactatttttcagtatctctgtacctgttaaagggggtgctttt






cgatctaaaaacttaattttataaaattgacttatttttctagactaaaattg






tatatgcttttggtaattaggaactcttgagaatattggctgctgattgttgc






catcacgttcctacaaaattgtttttctatgggatgttctggcagctgtgtca






taaaatgctgctgggttcattcattcattccataagaaacttaataccagcaa






atgcattaaatcccttgccagttaccattaactataactatttagcttttgtt






tagggatctttctgatggtcttttatgagcaatcttagttctaagtcattgtt






cccatcccttttttgtgtgtttcagaaaatagtgaacttgattcccctgcttccacta






aatccagttgtga




772
GCCTTTCTCTCCGTAAACTATTTAG




773
TTTTCAGTATCTCTGTACCTGTTAA




774
GAGAATATTGGCTGCTGATTGTTGC




775
TTGTTGCCATCACGTTCCTACAAAA




776
TGGGATGTTCTGGCAGCTGTGTCAT




777
ATGCTGCTGGGTTCATTCATTCATT




778
GTTTAGGGATCTTTCTGATGGTCTT




779
CTTAGTTCTAAGTCATTGTTCCCAT




780
AATAGTGAACTTGATTCCCCTGCTT




781
CTGCTTCCACTAAATCCAGTTGTGA





MAGED1
209014_at
782
GGACTGCACAGTTCATGGAGGCTGC
ggactgcacagttcatggaggctgcagatgaggccttggatgctctggatgct
AF217963.1






gctgcagctgaggccgaagcccgggctgaagcaagaacccgcatgggaattgg






agatgaggctgtgtctgggccctggagctgggatgacattgagtttgagctgc






tgacctgggatgaggaaggagattttggagatccctggtccagaattccattt






accttctgggccagataccaccagaatgcccgctccagattccctcagacctt






tgccggtcccattattggtcctggtggtacagccagtgccaacttcgctgcca






actttggtgccattggtttcttctgggttgagtgagatgttggatattgctat






caatcgcagtagtctttcccctgtgtgagctgaagcctcagattccttctaaa






cacagctatctagagagccacatcctgttgactgaaagtggcatgcaagataa






atttatttgctgttccttgtctactgctttttttccccttgtgtgctgtcaagt




783
ATGAGGCCTTGGATGCTCTGGATGC




784
TGGAGATCCCTGGTCCAGAATTCCA




785
TTCCATTTACCTTCTGGGCCAGATA




786
GGTCCCATTATTGGTCCTGGTGGTA




787
CCAACTTCGCTGCCAACTTTGGTGC




788
GTGCCATTGGTTTCTTCTGGGTTGA




789
TCCCCTGTGTGAGCTGAAGCCTCAG




790
CTATCTAGAGAGCCACATCCTGTTG




791
ATTTATTTGCTGTTCCTTGTCTACT




792
TTTTTCCCCTTGTGTGCTGTCAAGT





SYNE1
209447_at
793
GAGGACCTTGATCTTGGCGAAAGCC
gaggaccttgatcttggcgaaagccatcggtgtggcagctttagccctcctcc
AF043290.1






agatcacatgtgtgcaaattatggcttcagagggtggaagataaacagtgacg






ggggaacaaacagacaacaagaaggtttggaagaaatctggtttgagactctg






aaccttagcactaaggagattgagtaaggacctccaaagttccccggactcat






gaattctgggcccttggcattcgtgtgcacagccaaggacttcagtagaccat






ctgggcagctttcccatggtgctgctccaaccatcagataaatgaccctcccc






aagcaccatgtcagtgtcgtacaatctaccaaccaaccagtgctgaagagatt






ttagaaccttgtaacatacaatttttaagagcttatatggcagcttcctttt




794
GCCATCGGTGTGGCAGCTTTAGCCC




795
TTGAGACTCTGAACCTTAGCACTAA




796
AAAGTTCCCCGGACTCATGAATTCT




797
CCCTTGGCATTCGTGTGCACAGCCA




798
GCACAGCCAAGGACTTCAGTAGACC




799
TCAGTAGACCATCTGGGCAGCTTTC




800
AACCATCAGATAAATGACCCTCCCC




801
GCACCATGTCAGTGTCGTACAATCT




802
GTGTCGTACAATCTACCAACCAACC




803
AGAGCTTATATGGCAGCTTCCTTTT





CBLB
209682_at
804
GGAGACCGATGCTTGCTCAGGATGT
ggagaccgatgcttgctcaggatgtcgacagctgtggcttccttgtttttgct
U26710.1






agccatatttttaaatcagggttgaactgacaaaaataatttaaagacgttta






cttcccttgaactttgaacctgtgaaatgctttaccttgtttacaatttggca






aagttgcagtttgttcttgtttttagtttagttttgttttggtgttttgatac






ctgtactgtgttcttcacagaccctttgtagcgtggtcaggtctgctgtaaca






tttcccaccaactctcttgctgtccacatcaacagctaaatcatttattcata






tggatctctaccatccccatgccttgcccaggtccagttccatttctctcatt






cacaagatgctttgaaggttctgattttcaactgatcaaactaatgcaaaaaa






aaaaagtatgtattcttcactactgagtttcttctttggaaaccatcactatt




805
CCTTGTTTTTGCTAGCCATATTTTT




806
GAACCTGTGAAATGCTTTACCTTGT




807
GGCAAAGTTGCAGTTTGTTCTTGTT




808
GTACTGTGTTCTTCACAGACCCTTT




809
CTTCACAGACCCTTTGTAGCGTGGT




810
GTAGCGTGGTCAGGTCTGCTGTAAC




811
GTTCCATTTCTCTCATTCACAAGAT




812
GAAGGTTCTGATTTTCAACTGATCA




813
TTCTTCACTACTGAGTTTCTTCTTT




814
TTCTTCTTTGGAAACCATCACTATT





CD247
210031_at
815
ACTGTACTGGGCCATGTTGTGCCTC
aagcgcagatgctagcacatgccctaatgtctgtatcactctgtgtctgagtg
J04132.1






gcttcactcctgctgtaaatttggcttctgttgtcaccttcacctcctttcaa






ggtaactgtactgggccatgttgtgcctccctggtgagagggccgggcagagg






ggcagatggaaaggagcctaggccaggtgcaaccagggagctgcaggggcatg






ggaaggtgggcgggcaggggagggtcagccagggcctgcgagggcagcgggag






cctccctgcctcaggcctctgtgccgcaccattgaactgtaccatgtgctaca






ggggccagaagatgaacagactgaccttgatgagctgtgcacaaagtggcata






aaaaacagtgtggttacacagtgtgaataaagtgctgcggagcaagaggaggc






cgttgattcacttcacgctttcagcgaatgacaaaatcatctttgtgaaggcctcgca






ggaagacgcaacacatgggacctat




816
AAAGGAGCCTAGGCCAGGTGCAACC




817
TGCCGCACCATTGAACTGTACCATG




818
GACTGACCTTGATGAGCTGTGCACA




819
TGATTCACTTCACGCTTTCAGCGAA




820
ATCATCTTTGTGAAGGCCTCGCAGG




821
GGAAGACGCAACACATGGGACCTAT




822
AAGCGCAGATGCTAGCACATGCCCT




823
AATGTCTGTATCACTCTGTGTCTGA




824
GGCTTCACTCCTGCTGTAAATTTGG




825
AAATTTGGCTTCTGTTGTCACCTTC





PRKCQ
210038_at
826
AATCCATTCATCCTGATTGGGCATG
aatccattcatcctgattgggcatgaaatccatggtcaagaggacaagtggaa
AL137145






agtgagagggaaggtttgctagacaccttcgcttgttatcttgtcaagataga






aaagatagtatcatttcacccttgccagtaaaaacctttccatccacccattc






tcagcagactccagtattggcacagtcactcactgccattctcacactataac






aagaaaagaaatgaagtgcataagtctcctgggaaaagaaccttaaccccttc






tcgtgccatgactggtgatttcatgactcataagcccctccgtaggcatcattcaaga






tcaatggcccatgcatgctgtttgcagca




827
GACACCTTCGCTTGTTATCTTGTCA




828
ATCATTTCACCCTTGCCAGTAAAAA




829
CCATTCTCAGCAGACTCCAGTATTG




830
CCAGTATTGGCACAGTCACTCACTG




831
ACTGCCATTCTCACACTATAACAAG




832
GAAGTGCATAAGTCTCCTGGGAAAA




833
CCTTCTCGTGCCATGACTGGTGATT




834
TGATTTCATGACTCATAAGCCCCTC




835
CCCCTCCGTAGGCATCATTCAAGAT




836
TGGCCCATGCATGCTGTTTGCAGCA





FYN
210105_s_at
837
GGCCCGGGTCTGCGGAGAGAGGCCT
ggcccgggtctgcggagagaggccttgtcccagaggctgccccacccctcccc
M14333.1






attagctttcaattccgtagccagctgctccccagcagcggaaccgcccagga






tcagattgcatgtgactctgaagctgacgaacttccatggccctcattaatga






cacttgtccccaaatccgaacctcctctgtgaagcattcgagacagaaccttg






ttatttctcagactttggaaaatgcattgtatcgatgttatgtaaaaggccaa






acctctgttcagtgtaaatagttactccagtgccaacaatcctagtgctttcc






ttttttaaaaatgcaaatcctatgtgattttaactctgtcttcacctgattca






actaaaaaaaaaaagtattattttccaaaagtggcctctttgtctaa




838
AGCTTTCAATTCCGTAGCCAGCTGC




839
AACCGCCCAGGATCAGATTGCATGT




840
GATTGCATGTGACTCTGAAGCTGAC




841
CTTCCATGGCCCTCATTAATGACAC




842
TAATGACACTTGTCCCCAAATCCGA




843
GACAGAACCTTGTTATTTCTCAGAC




844
AAAGGCCAAACCTCTGTTCAGTGTA




845
TCCAGTGCCAACAATCCTAGTGCTT




846
CCTATGTGATTTTAACTCTGTCTTC




847
TTCCAAAAGTGGCCTCTTTGTCTAA





LILRB4
210152_at
848
AGGACGGGGTGGAAATGGACACTCG
ccaacactggcgtcagggaaaacacaggacattggcccagagacaggctgatt
U82979.1






tccaacgtcctccaggggctgccgagccagagcccaaggacgggggcctacag






aggaggtccagcccagctgctgacgtccagggagaaaacttctgtgctgccgt






gaagaacacacagcctgaggacggggtggaaatggacactcggagcccacacg






atgaagacccccaggcagtgacgtatgccaaggtgaaacactccagacctagg






agagaaatggcctctcctccctccccactgtctggggaattcctggacacaaa






ggacagacaggcagaagaggacagacagatggacactgaggctgctgcatctg






aagccccccaggatgtgacctacgcccagctgcacagctttaccctcagacagaagg






caactg




849
CACAGCTTTACCCTCAGACAGAAGG




850
TTTACCCTCAGACAGAAGGCAACTG




851
CCAACACTGGCGTCAGGGAAAACAC




852
GGAAAACACAGGACATTGGCCCAGA




853
ATTGGCCCAGAGACAGGCTGATTTC




854
GAGACAGGCTGATTTCCAACGTCCT




855
GAGCCCAAGGACGGGGGCCTACAGA




856
GCTGACGTCCAGGGAGAAAACTTCT




857
AAACTTCTGTGCTGCCGTGAAGAAC




858
TCTGTGCTGCCGTGAAGAACACACA





GZMB
210164_at
859
GCCAAGCGGACCAGAGCTGTGCAGC
gccaagcggaccagagctgtgcagcccctcaggctacctagcaacaaggccca
J03189.1






ggtgaagccagggcagacatgcagtgtggccggctgggggcagacggcccccc






tgggaaaacattcacacacactacaagaggtgaagatgacagtgcaggaagat






cgaaagtgcgaatctgacttacgccattattacgacagtaccattgagttgtg






cgtgggggacccagagattaaaaagacttcctttaagggggactctggaggcc






ctcttgtgtgtaacaaggtggcccagggcattgtctcctatggacgaaacaat






ggcatgcctccacgagcctgcaccaaagtctcaagctttgtacactggataaa






gaaaaccatgaaacgctactaactacaggaagcaaactaagcccccgctgtaatgaa






acaccttctctggagcca




860
TGCGAATCTGACTTACGCCATTATT




861
GACTTACGCCATTATTACGACAGTA




862
ACGACAGTACCATTGAGTTGTGCGT




863
TTGAGTTGTGCGTGGGGGACCCAGA




864
ACTCTGGAGGCCCTCTTGTGTGTAA




865
GCATTGTCTCCTATGGACGAAACAA




866
AAGTCTCAAGCTTTGTACACTGGAT




867
TACAGGAAGCAAACTAAGCCCCCGC




868
CTAAGCCCCCGCTGTAATGAAACAC




869
TAATGAAACACCTTCTCTGGAGCCA





ANXA2
210427_x_at
870
CTGATCAGAATCATGGTCTCCCGCA
gaaaatgctttcctgaacctggttcagtgcattcagaacaagcccctgtattt
BC001388.1






tgctgatcggctgtatgactccatgaagggcaaggggacgcgagataaggtcc






tgatcagaatcatggtctcccgcagtgaagtggacatgttgaaaattaggtct






gaattcaagagaaagtacggcaagtccctgtactattatatccagcaagacac






taagggcgactaccagaaagcgctgctgtacctgtgtggtggagatgactgaa






gcccgacacggcctgagcgtccagaaatggtgctcaccatgcttccagctaac






aggtctagaaaaccagcttgcgaataacagtccccgtggccatccctgtgagg






gtgacgttagcattacccccaacctcattttagttgcctaagcattgcctggc






cttcctgtctagtctctcctgtaagccaaagaaatgaacattccaaggagttg






gaagtgaagtctatgatgtgaaacactttgcctcctgtgtactgtgtcataaa




871
CAGAAAGCGCTGCTGTACCTGTGTG




872
CTCACCATGCTTCCAGCTAACAGGT




873
ACCAGCTTGCGAATAACAGTCCCCG




874
CGTGGCCATCCCTGTGAGGGTGACG




875
GAGGGTGACGTTAGCATTACCCCCA




876
AGTTGCCTAAGCATTGCCTGGCCTT




877
TGCCTCCTGTGTACTGTGTCATAAA




878
GAAAATGCTTTCCTGAACCTGGTTC




879
CAAGCCCCTGTATTTTGCTGATCGG




880
GCTGATCGGCTGTATGACTCCATGA





NFATC3
210555_s_at
881
TCTGCACCTTCATCCTTAATATGTC
tctgcaccttcatccttaatatgtcacagtttgtgtgatccagcgtcatttcc
U85430.1






acctgatggggcaactgtgagcattaaacctgaaccagaagatcgagagccta






actttgcaaccattggtctgcaggacatcactttagat




882
CATCCTTAATATGTCACAGTTTGTG




883
ACAGTTTGTGTGATCCAGCGTCATT




884
TTGTGTGATCCAGCGTCATTTCCAC




885
GTCATTTCCACCTGATGGGGCAACT




886
GGGGCAACTGTGAGCATTAAACCTG




887
ACCTGAACCAGAAGATCGAGAGCCT




888
GATCGAGAGCCTAACTTTGCAACCA




889
GAGCCTAACTTTGCAACCATTGGTC




890
CAACCATTGGTCTGCAGGACATCAC




891
TGGTCTGCAGGACATCACTTTAGAT





KLRD1
210606_x_at
892
GAAAGACTCTGACTGCTGTTCTTGC
gaaagactctgactgctgttcttgccaagaaaaatgggttgggtaccggtgca
U30610.1






actgttacttcatttccagtgaacagaaaacttggaacgaaagtcggcatctc






tgtgcttctcagaaatccagcctgcttcagcttcaaaacacagatgaactgga






ttttatgagctccagtcaacaattttactggattggactctcttacagtgagg






agcacaccgcctggttgtgggagaatggctctgcactctcccagtatctattt






ccatcatttgaaacttttaatacaaagaactgcatagcgtataatccaaatgg






aaatgctttagatgaatcctgtgaagataaaaatcgttatatctgtaagcaac






agctcatttaaatgtttcttggggcagagaaggtggagagtaaagacccaaca






ttactaacaatgatacagttgcatgttatattattactaattgtctacttctggagt






cta




893
GTACCGGTGCAACTGTTACTTCATT




894
ACGAAAGTCGGCATCTCTGTGCTTC




895
CTGTGCTTCTCAGAAATCCAGCCTG




896
CAGCCTGCTTCAGCTTCAAAACACA




897
TTTTACTGGATTGGACTCTCTTACA




898
CTTACAGTGAGGAGCACACCGCCTG




899
GCACACCGCCTGGTTGTGGGAGAAT




900
GTGGGAGAATGGCTCTGCACTCTCC




901
TCCCAGTATCTATTTCCATCATTTG




902
ACTAATTGTCTACTTCTGGAGTCTA





PMS2L11
210707_x_at
903
GAAGTCAGTCCATCAGATTTGCTCT
ctggaccctatcgtacagaacctgctaaggccatcaaacctattgatcggaag
U38980.1






tcagtccatcagatttgctctgggccagtggtactgagtctaagcactgcagt






gaaggagttagtagaaaacagtctggatgctggtgccactaatattgatctaa






agcttaaggactatggaatggatctcattgaagtttcaggcaatggatgtggg






gtagaagaagaaaacttcgaaggcttaatgatgtcaccatttctacctgccac






gtctcggcgaaggttgggactcgactggtgtttgatcacgatgggaaaatcat






ccagaagaccccctacccccaccccagagggaccacagtcagcgtgaagcagt






tattttctacgctacctgtgcgccataaggaatttcaaaggaatattaagaagaaac






atgctgcttccccttc




904
GCTCTGGGCCAGTGGTACTGAGTCT




905
AACAGTCTGGATGCTGGTGCCACTA




906
TAATGATGTCACCATTTCTACCTGC




907
GCCACGTCTCGGCGAAGGTTGGGAC




908
GTTGGGACTCGACTGGTGTTTGATC




909
GAGGGACCACAGTCAGCGTGAAGCA




910
CTACGCTACCTGTGCGCCATAAGGA




911
AGAAGAAACATGCTGCTTCCCCTTC




912
CTGGACCCTATCGTACAGAACCTGC




913
GAACCTGCTAAGGCCATCAAACCTA





HOP
211597_s_at
914
AAGCTATGTGTATCTTCTGTGTAAA
aagctatgtgtatcttctgtgtaaagcagtggcttcactggaaaaatggtgtg
AB059408.1






gctagcatttccctttgagtcatgatgacagatggtgtgaaaaccatctaagt






ttgcttttgaccatcacctcccagtagcaatttgctttcataatccatttagc






aatccaggcctctgttgaaaagataatatgagggagaagggaacacatttcct






tctgaacttacttccctaagtcactttccttatgtatcatctaatacaatgat






ggttgagtgaaaatacagaaggggtgtttgagtattcagatttcataaaacac






ttccttggaatatagctgcattaacttggaaagaagcctgttgggccagaagacaga




915
AATGGTGTGGCTAGCATTTCCCTTT




916
TAAGTTTGCTTTTGACCATCACCTC




917
TCACCTCCCAGTAGCAATTTGCTTT




918
TAATCCATTTAGCAATCCAGGCCTC




919
GCAATCCAGGCCTCTGTTGAAAAGA




920
GAAGGGAACACATTTCCTTCTGAAC




921
CTTCCCTAAGTCACTTTCCTTATGT




922
AGTCACTTTCCTTATGTATCATCTA




923
ACTTCCTTGGAATATAGCTGCATTA




924
GAAGCCTGTTGGGCCAGAAGACAGA





NCALD
211685_s_at
925
TGGGTGAGGAGACCTAGCATGCCCT
tgggtgaggagacctagcatgccctattggcagtgctcaggagctgcatccca
AF251061.1






cttttccctgctctgaatcgaagtcctagttccttcctttgattctcctttgg






taggtggaatcagttaatgttttgagaaacctgcctgggctctgcccttagtc






atgacatctcgctgagccagacccactctgttccttggaacctagagctggag






tgaggagtagaggtctccggctattccagaaagaaaagtgagccacatgcagg






ctgatgaatgccgacacttccagaatgtatagaaatagtccctgtcctggcct






gccactgaccctgtctgtattttctcggaggttgtttttctccttctccttcc






caggaaggtctttgtatgtcgaatccagtgcactcaagtttggccaagggact






ccacagcacccagaagactgcatgcctcaaggtttatgtcactcctctgctgggctg






ttcattgtcattgc




926
AGCATGCCCTATTGGCAGTGCTCAG




927
TCCCTGCTCTGAATCGAAGTCCTAG




928
TTAGTCATGACATCTCGCTGAGCCA




929
GGAGTAGAGGTCTCCGGCTATTCCA




930
GAATGCCGACACTTCCAGAATGTAT




931
ACCCTGTCTGTATTTTCTCGGAGGT




932
TCTCGGAGGTTGTTTTTCTCCTTCT




933
GTATGTCGAATCCAGTGCACTCAAG




934
GCCTCAAGGTTTATGTCACTCCTCT




935
CTGCTGGGCTGTTCATTGTCATTGC





LOC130074
212017_at
936
GGATGAGCGGCGTCTGTGTAGGGAC
ggatgagcggcgtctgtgtagggacccccccccgggcctgcagaagggtggtg
BF677404






tgctcccaggactggcatgacaggtgtctcctcctcaccacaggctgtgccca






tgngtccctgtgcagaccagtgggcaaggcagctgggccagatctcaggccag






ccgtttgtgctcctagcagggttgctgtgctggccacacggagaggccctaga






gagcctcatggattgtaactaaagaagaaacggttcctttttgntttttttaa






aaatgatttttaaataccgttttttacaccgttctctcggtactttttttaag






ctaagtcagcattgtcttccagtgttaaaggcatccctcacctctgcattgaa






cttacgtatccatgccaaggaatggaatttccatcctgagccagttcagttaggtgt






caatt




937
TGCAGAAGGGTGGTGTGCTCCCAGG




938
GGACTGGCATGACAGGTGTCTCCTC




939
TCCCTGTGCAGACCAGTGGGCAAGG




940
TGTGCTCCTAGCAGGGTTGCTGTGC




941
CACACGGAGAGGCCCTAGAGAGCCT




942
GAGAGCCTCATGGATTGTAACTAAA




943
CCAGTGTTAAAGGCATCCCTCACCT




944
CTCACCTCTGCATTGAACTTACGTA




945
GAACTTACGTATCCATGCCAAGGAA




946
GAGCCAGTTCAGTTAGGTGTCAATT





GPR56
212070_at
947
TCCAAGGACTGAGACTGACCTCCTC
tccaaggactgagactgacctcctctggtgacactggcctagngcctgacact
AL554008






ctcctaagaggttctctccaagcccccaaatagctccaggcgccctcggccgc






ccatcatggttaattctgtccaacaaacacacacgggtagattgctggcctgt






tgtaggtggtagggacacagatgaccgacctggtcactcctcctgccaacatt






cagtctggtatgtgaggcgtgcgtgaagcaagaactcctggagctacagggac






agggagccatcattcctgcctgggaatcctggaagacttcctgcaggagtcag






cgttcaatcttgaccttgaagatgggaaggatgttctttttacgtaccaattct




948
ACACTCTCCTAAGAGGTTCTCTCCA




949
GGCCGCCCATCATGGTTAATTCTGT




950
CACACGGGTAGATTGCTGGCCTGTT




951
TAGGGACACAGATGACCGACCTGGT




952
CAGTCTGGTATGTGAGGCGTGCGTG




953
AGGCGTGCGTGAAGCAAGAACTCCT




954
AGGGACAGGGAGCCATCATTCCTGC




955
ACTTCCTGCAGGAGTCAGCGTTCAA




956
GTCAGCGTTCAATCTTGACCTTGAA




957
GATGTTCTTTTTACGTACCAATTCT





SPTBN1
212071_s_at
958
AAACCATTTGTATCTGGCATCACTT
aaaccatttgtatctggcatcacttactaacacacgacatgcggcttttctgc
BE968833






atcaactgctatgacggttaagaatgtcagtatacaagaaggaatagaaaact






gatactgttttaaataatctgtaatttcaatttttttttttttttngctgaaa






tacattatattgtacgtttgagataattctagntacaaagtataataaaacta






gatngtataataaaccctttaaatcattggtaagtgtacaagtggtggnaact






gaagcatttactggnacaaagtaatgttnactctaatggttacttgctcgtgc






gttgnnccacactgtgttataatttgcttcatttccttgctatttgatacata






gtgtgcatttctctgtcactgtaactattgtaatgacaaattttcatcttact






gcacaatcaaaatgacattgataggaatgaactccagaggctgggcctgaaca






gggaggtggtcgctcaggcctggtgctcagtcgtacgacctgtacct




959
TCTGGCATCACTTACTAACACACGA




960
TAACACACGACATGCGGCTTTTCTG




961
ACATGCGGCTTTTCTGCATCAACTG




962
TCTAATGGTTACTTGCTCGTGCGTT




963
TAATTTGCTTCATTTCCTTGCTATT




964
TGCATTTCTCTGTCACTGTAACTAT




965
AATTTTCATCTTACTGCACAATCAA




966
TAGGAATGAACTCCAGAGGCTGGGC




967
GAGGCTGGGCCTGAACAGGGAGGTG




968
GTGCTCAGTCGTACGACCTGTACCT





ATP2B4
212135_s_at
969
GTGGAAAAGCCTCTAAATGCATCCC
gtggaaaagcctctaaatgcatcccttcctttctttcctgcttcctttgcctt
AW517686






acaattgaagcagcccgtggtaccatcacagtatgcagagacttcctcacctt






tcatatctagggaccacccccgatgcattggtgagggtgggcacttataaatg






cctgctattgttaagccattccagcctcttcctctgaatagaccagacgccctttca






cttagttcagtgcca




970
TGCTTCCTTTGCCTTACAATTGAAG




971
CAATTGAAGCAGCCCGTGGTACCAT




972
CAGTATGCAGAGACTTCCTCACCTT




973
CACCTTTCATATCTAGGGACCACCC




974
ACCACCCCCGATGCATTGGTGAGGG




975
GGTGGGCACTTATAAATGCCTGCTA




976
GCCTGCTATTGTTAAGCCATTCCAG




977
CAGCCTCTTCCTCTGAATAGACCAG




978
TCTGAATAGACCAGACGCCCTTTCA




979
CGCCCTTTCACTTAGTTCAGTGCCA





GTF3C2
212429_s_at
980
GTATCTGCATGAAGGCTCCTGTCTG
gtatctgcatgaaggctcctgtctgactattccaggatccaatattactgcct
AW194657






tctgaaacttcctctttagggtaaccatcatgtatgcccacgagggtgatagt






aattcgtgagactgaagttgcttagagtacttctttgaccaaggaataccaca






gacaccctaccgatagaacagtggctcagatcttacttgctcctgcttacgaa






gtattcccaatcactggtcatctgaccctacttgaacactcctgaacagtcat






gttttttaaaatcttcctttatatcaagtcagagagtatacttctataaattt






cactcatggatgttaggaaatctagtcatcttccctgtgattgccctgttaagtattt






aaccatagctatcatgtgtttccca




981
GGCTCCTGTCTGACTATTCCAGGAT




982
TATTACTGCCTTCTGAAACTTCCTC




983
TAACCATCATGTATGCCCACGAGGG




984
CAAGGAATACCACAGACACCCTACC




985
CCCTACCGATAGAACAGTGGCTCAG




986
TGCTCCTGCTTACGAAGTATTCCCA




987
TTCCCAATCACTGGTCATCTGACCC




988
GGAAATCTAGTCATCTTCCCTGTGA




989
TCCCTGTGATTGCCCTGTTAAGTAT




990
AACCATAGCTATCATGTGTTTCCCA





AUTS2
212599_at
991
TCAGACACACACAGGTCGCCAGTGA
tcagacacacacaggtcgccagtgacttcacacacacctcatgtgagaaccat
AK025298.1






gccttttttagtgtgtcctatttcatacctgtacacacttcctcgttttgtaa






tgagatttacttacacccaaacagatcctgaaagaaagcttcaagttttctca






gatgatggatatgttttcactgtattcaataactgacggatgtaaggtgcacg






tttcctgatgnntgacgcactgtattccagctggtgatcaagtctgggaacag






ccgtaacaggtcaaccttgtggagccatcgcgagttagagggtgaaagatggc






agaaaaaaaagtcttgtgtgtgagtgtgttttttgagtttgcatcaatcttaatgtct






cttcataatacttttataatacattaagcctcttgtctacat




992
TAGTGTGTCCTATTTCATACCTGTA




993
TGTACACACTTCCTCGTTTTGTAAT




994
TACTTACACCCAAACAGATCCTGAA




995
GGATGTAAGGTGCACGTTTCCTGAT




996
GACGCACTGTATTCCAGCTGGTGAT




997
GGTGATCAAGTCTGGGAACAGCCGT




998
GAACAGCCGTAACAGGTCAACCTTG




999
CAACCTTGTGGAGCCATCGCGAGTT




1000
GCATCAATCTTAATGTCTCTTCATA




1001
AATACATTAAGCCTCTTGTCTACAT





STX10
212625_at
1002
AGCTGGAGAGTAGAGGGTCCCGCCT
ccaggttctgaagcacatgtccggccgcgttggagaagagctggacgagcagg
NM_003765.1






gcatcatgctggatgccttcgcccaagagatggaccacacccagtcccgcatg






gacggggtcctcaggaagttggccaaagtatcccacatgacgagtgaccgccg






acagtggtgtgccatcgccgtgctagtgggggtgcttctcctcgttctcatct






tactattctctctctgaccccagccctccctggcaggctggtcccttaagcct






ggggagccaccaagcactttggagctggcctcgccccctaggaggagagggtc






cctcctgggtagctggagagtagagggtcccgcctggggagctgtccccatgg






ctctcccctagagccagtgggacccttcaggaccctgggctggaaccaccacc






actggtcctgtctcaagtgcacttagggggtggtggaggcagggacacctgagacac






acctgtctccat




1003
TGGTCCTGTCTCAAGTGCACTTAGG




1004
ACACCTGAGACACACCTGTCTCCAT




1005
CCAGGTTCTGAAGCACATGTCCGGC




1006
CCGGCCGCGTTGGAGAAGAGCTGGA




1007
GGCATCATGCTGGATGCCTTCGCCC




1008
TGCCTTCGCCCAAGAGATGGACCAC




1009
TCCCGCATGGACGGGGTCCTCAGGA




1010
GTATCCCACATGACGAGTGACCGCC




1011
TGGTCCCTTAAGCCTGGGGAGCCAC




1012
GGAGCCACCAAGCACTTTGGAGCTG





WWP1
212638_s_at
1013
GGATCTACCACCATATAAGAGTTAT
ggatctaccaccatataagagttatgaacaactaaaggaaaaacttctttttg
BF131791






caatagaagagacagagggattnggacaagaatgaatgtggcttcttatttng






gaggagctcttgcatttaaataccccagccaagaaaaattgcacagatagtgt






atataagctgttcattctgtacagtgaattttccgaacctctcaaagtatgtt






ttccgttcttccacagaaatatgcaaaacagttcatccttttctactttattt






attgttcccttgaaatgactgaccaggaaaaagatcatccttaaattttgaag






caagtgagagactttattaaaaatacatatatatctatataaacatatatgat






agtggctctagttttatagagctccaagtgtattaaacatgacagccattcattcata






aagatctggatttgctttaccttgttaa




1014
GGAGCTCTTGCATTTAAATACCCCA




1015
TGCATTTAAATACCCCAGCCAAGAA




1016
AAGCTGTTCATTCTGTACAGTGAAT




1017
TACAGTGAATTTTCCGAACCTCTCA




1018
GAACCTCTCAAAGTATGTTTTCCGT




1019
ATGTTTTCCGTTCTTCCACAGAAAT




1020
GCAAAACAGTTCATCCTTTTCTACT




1021
ATTGTTCCCTTGAAATGACTGACCA




1022
TATGATAGTGGCTCTAGTTTTATAG




1023
ATCTGGATTTGCTTTACCTTGTTAA





RFTN1
212646_at
1024
TGCTGTTCATCCCACATCGTGTGGG
tgctgttcatcccacatcgtgtggggcagtgtccatcccctgcagctacttgg
D42043.1






tgacttaacaactccaggagccctgtcagctgccctcctccanctaaanccct






tcgactcttctgctttgacaaagaaaatgacattgggganggggaggtgctcc






gcctcccagcttttctcaaaatagtcctatagatactggtaatctggaaatga






agaagtaattctgtctctgcacctacttttgcagaatgttcaaggaagtattc






tgtgttagtattaatgccaaaaagttgtttttaaaggttttgtactcagcaca






tcatacaaaccacattacttctgtcacttcagggcatcgggactggctggcgc






ccttgttatgtgctattttaatcagtgtaacattggtcaagttgttacccatg






tatgctgtgtttatcatgtgtatatcgtccagaaagtattaaggctttaggta






gatgcaactggcgaaccttggagagggaatgctgattgtcttgaccaaacccaca




1025
CCTGCAGCTACTTGGTGACTTAACA




1026
TAACAACTCCAGGAGCCCTGTCAGC




1027
GTCTCTGCACCTACTTTTGCAGAAT




1028
TACAAACCACATTACTTCTGTCACT




1029
CTGTCACTTCAGGGCATCGGGACTG




1030
GCGCCCTTGTTATGTGCTATTTTAA




1031
GTTACCCATGTATGCTGTGTTTATC




1032
GTTTATCATGTGTATATCGTCCAGA




1033
GATGCAACTGGCGAACCTTGGAGAG




1034
GCTGATTGTCTTGACCAAACCCACA





IL1RN
212657_s_at
1035
GGTACTATGTTAGCCCCATAATTTT
ggtactatgttagccccataattttttttttccttttaaaacacttccataat
AW083357






ctggactcctctgtccaggcactgctgcccagcctccaagctccatctccact






ccagattttttacagctgcctgcagtactttacctcctatcagaagtttctca






gctcccaaggctctgagcaaatgtggctcctgggggttctttcttcctctgct






gaaggaataaattgctccttgacattgtagagcttctggcacttggagacttg






tatgaaagatggctgtgcctctgcctgtctcccccaccnggctgggagctctg






cagagcaggaaacatgactcgtatatgtctcaggtccctgcagggccaagcac






ctagcctcgctcttggcaggtactcagcgaatgaatgctgtatatgttgggtgcaaag






ttccctacttcctgtgacttcagctctgtttta




1036
ACACTTCCATAATCTGGACTCCTCT




1037
GATTTTTTACAGCTGCCTGCAGTAC




1038
CAGTACTTTACCTCCTATCAGAAGT




1039
AGCTCCCAAGGCTCTGAGCAAATGT




1040
GAGCAAATGTGGCTCCTGGGGGTTC




1041
ATAAATTGCTCCTTGACATTGTAGA




1042
TGACTCGTATATGTCTCAGGTCCCT




1043
CTCTTGGCAGGTACTCAGCGAATGA




1044
TGTTGGGTGCAAAGTTCCCTACTTC




1045
TTCCTGTGACTTCAGCTCTGTTTTA





ZNF364
212742_at
1046
TGAGGACTCTACTCGGCAAAGCCAG
ttaccttgcaatcacttctttcacagcagttgtattgtgccgtggctagaact
AL530462






gcatgacacatgtcctgtatgtaggaagagcttaaatggtgaggactctactc






ggcaaagccagagcactgaggcctctgcaagcaacagatttagcaatgacagt






cagctacatgaccgatggactttctgaagctaaagaccacacctgaatcaggg






ctgtggtaatcatcttaccatagctgtaaattgtatcaaaacaaaaaattagt






agatggatttaggaatatgtaagaaactcaacacataatataaatgcaatgaa






tgtttttcttctttaaatttaaagttagtatctacagatggaattgtatctac






aaccaaatgcctcttatccctgaattcagagtgataattttataagtgtgaaa






cttaattatgtagggctccccccgtctgaatagaattaattccttaaagtcta






gttagggtcctgctgtctgtcatgttgccttgtaacggatgtttccacctccttctcc






aacctctaccccaccattagtgtatttt




1047
CACTGAGGCCTCTGCAAGCAACAGA




1048
CATGACCGATGGACTTTCTGAAGCT




1049
GAATCAGGGCTGTGGTAATCATCTT




1050
ATCTACAACCAAATGCCTCTTATCC




1051
TCTAGTTAGGGTCCTGCTGTCTGTC




1052
CTGTCTGTCATGTTGCCTTGTAACG




1053
CTCTACCCCACCATTAGTGTATTTT




1054
TTACCTTGCAATCACTTCTTTCACA




1055
ACAGCAGTTGTATTGTGCCGTGGCT




1056
GTGCCGTGGCTAGAACTGCATGACA





PPP1R16B
212750_at
1057
TAACTTGGGGATGGTCTCCCCTGCC
taacttggggatggtctcccctgccccagggcacataagagcaaaggctccaa
AB020630.1






tggtcagtggatgactctgcaaaagtgaccccctgtgccagaagctatagccc






tctccccaacaggtctctcttgttggccagagggcctgcttcccatgggcatt






gcaagtgccaccgtgcggggcctggctctgcacacccaggaaaagtctgcaga






cccccagccctccgcaataattcaccagaccagaagccactggtgtacagaga






acacttaaaaaaatgtattttatgtgaaaaaaaattaaaactctgtatactgt






atcagcagctttgtgtaaaaatggcaatcaagagagtctaatatatttaaaac






ttttttaaaaaaaatcttcgcagatctttgatatcgtactgaggtaacttcca






cgtagccccttgccacgcggcaccggtgggccttgggtccaaaactgtggctc






agccacatcccaaagggggcacatgtccctggagttgcttccagctgccaaggcctgt






gacagaattcgctgtt




1058
CTGCCCCAGGGCACATAAGAGCAAA




1059
GGATGACTCTGCAAAAGTGACCCCC




1060
CTCCCCAACAGGTCTCTCTTGTTGG




1061
CCTGCTTCCCATGGGCATTGCAAGT




1062
ATGGGCATTGCAAGTGCCACCGTGC




1063
CTCCGCAATAATTCACCAGACCAGA




1064
GTATACTGTATCAGCAGCTTTGTGT




1065
AAAATCTTCGCAGATCTTTGATATC




1066
TACTGAGGTAACTTCCACGTAGCCC




1067
AAGGCCTGTGACAGAATTCGCTGTT





NCAM1
212843_at
1068
GAATGTGAGAGCCTGGGTGTCTGAG
gaatgtgagagcctgggtgtctgagaccgggagggcccagcagtgaggggcag
AA126505






gctcttctggtcaccaggctgttcagtggactcagttcttcatcttgtaatgt






cgatggctttgccacaccaggccaagcccatgccataccttgtcaagactgtc






aaagtggttgtggttaggtcaaactggttttggttctgatggttaggaagaaa






caggtcagccctcagatcacctggcccgggacagctgaccccctagaaccctg






gctctgccattagctaggacctaagactctgcccacattttggtctgttctctcccat






tacacataggtttgtctcagcatgcaagagt




1069
GCCTGGGTGTCTGAGACCGGGAGGG




1070
CTCTTCTGGTCACCAGGCTGTTCAG




1071
GGCTGTTCAGTGGACTCAGTTCTTC




1072
GGACTCAGTTCTTCATCTTGTAATG




1073
CTTGTAATGTCGATGGCTTTGCCAC




1074
CATGCCATACCTTGTCAAGACTGTC




1075
GAAGAAACAGGTCAGCCCTCAGATC




1076
GCTCTGCCATTAGCTAGGACCTAAG




1077
TTAGCTAGGACCTAAGACTCTGCCC




1078
TAGGTTTGTCTCAGCATGCAAGAGT





NKG7
213915_at
1079
ATTTCTGGTTTGAGGCTGTGGGTCC
atttctggtttgaggctgtgggtcccacccactcagctcactcgggcctctgg
NM_005601.1






ccaacagggcatggngacatcatatcaggctacatccacgtgacgcagacctt






cagcattatggctgttctgtgggccctggtgtccgtgagcttcctggtcctgt






cctgcttcccctcactgttccccccaggccacggcccgcttgtctcaaccacc






gcagcctttgctgcagccatctccatggtggtggccatggcggtgtacaccag






cgagcggtgggaccagcctccacacccccagatccagaccttcttctcctggt






ccttctacctgggctgggtctcagctatcctcttgctctgtacaggtgccctg






agcctgggtgctcactgtggcggtccccgtcctggctatgaaaccttgtgagcagaa






ggcaagagcggcaagatgagttttgagcgttgtattcca




1080
GACATCATATCAGGCTACATCCACG




1081
TCATATCAGGCTACATCCACGTGAC




1082
ACGCAGACCTTCAGCATTATGGCTG




1083
CATTATGGCTGTTCTGTGGGCCCTG




1084
TGGCCATGGCGGTGTACACCAGCGA




1085
TACACCAGCGAGCGGTGGGACCAGC




1086
CTATCCTCTTGCTCTGTACAGGTGC




1087
CGTCCTGGCTATGAAACCTTGTGAG




1088
GTGAGCAGAAGGCAAGAGCGGCAAG




1089
GATGAGTTTTGAGCGTTGTATTCCA





HLA-A
213932_x_at
1090
GAAGAACCCTGACTTTGTTTCTGCA
gacagacctcaggagggctattggtccaggacccacacctgctttcttcatgt
AI923492


/// HLA-



ttcctgatcccgccctgggtctgcagtcacacatttctggaaacttctctggg


H ///



gtccaagactaggaggttcnnctnggaccttanggccntggntcntttctggt


LOC642047



atctcacanggacattnncttctcacagatagaaaaggagggagttacactca


///



ggctgcanncagtgacagtgcccaggctctgatgtgtcnctcacagcttgtaa


LOC649853



agtgtgagacagctgccttgtgtgggactgagaggcaagagttgttcctgccc


///



ttccctttgtgacttgaagaaccctgactttgtttctgcaaaggcacctgcat


LOC649864



gtgtctgtgttcgtgtaggcntaatgtgaggaggtggggagaccaccccaccc






cnatgtccaccatgaccctcttcccacgctgacctgtgctccctccccaatca






tctttcctgttccagagaggtggggctgaggtgtctccatctctgtctcaacttcat






ggtgcactgagctgtaacttcttc




1091
AAGGCACCTGCATGTGTCTGTGTTC




1092
CAATCATCTTTCCTGTTCCAGAGAG




1093
CATCTCTGTCTCAACTTCATGGTGC




1094
TGGTGCACTGAGCTGTAACTTCTTC




1095
GACAGACCTCAGGAGGGCTATTGGT




1096
GGCTATTGGTCCAGGACCCACACCT




1097
GGTCTGCAGTCACACATTTCTGGAA




1098
GGAAACTTCTCTGGGGTCCAAGACT




1099
AGACAGCTGCCTTGTGTGGGACTGA




1100
TGCCCTTCCCTTTGTGACTTGAAGA





YPEL1
213996_at
1101
GCCGAACTGTCACCGAACGTACAGC
gccgaactgtcaccgaacgtacagctgtatccactgcagagcacacctggcca
NM_013313.1






atcatgacgagctcatctccaagtcctttcaggggagccagggacgcgcctac






ctcttcaattccgtggtgaacgtgggctgcggccctgcagaggagagggtcct






tctcaccgggctgcatgcggttgccgacatctactgcgagaactgcaagacca






cgctcgggtggaaatacgagcatgcctttgagagcagtcagaaatataaggaa






ggaaaattcatcattgagcttgctcatatgatcaaagacaatggctgggagta






atgtgcgaactttcccttctccttngaatgctgttttgtgaaagaaactgtga






atgtaatggaaacgtaggagcatctggtgacagcctttcttgccctctgacct






caaaggctagctgcgcatagctcttgacactcncggccatctctgtgggtaaggtgt






ccctcggatctgtcctcttcgtgtacacagttgtt




1102
CGTACAGCTGTATCCACTGCAGAGC




1103
ACACCTGGCCAATCATGACGAGCTC




1104
TCCAAGTCCTTTCAGGGGAGCCAGG




1105
TGCATGCGGTTGCCGACATCTACTG




1106
GAGTAATGTGCGAACTTTCCCTTCT




1107
TAGGAGCATCTGGTGACAGCCTTTC




1108
GCCCTCTGACCTCAAAGGCTAGCTG




1109
TAGCTGCGCATAGCTCTTGACACTC




1110
TGTGGGTAAGGTGTCCCTCGGATCT




1111
TGTCCTCTTCGTGTACACAGTTGTT





ZAP70
214032_at
1112
AAGGGCCGGAGGTCATGGCCTTCAT
aagggccggaggtcatggccttcatcgagcagggcaagcggatggantgccca
AI817942






ccagagtgtnccacccgaactgtacgcactcatgagtgactgctggatctaca






agtgggaggatcgccccgacttcctgaccgtggagcagcgcatgcgagcctgt






tactacagcctggccagcaaggtggaagggcccccaggcagcacacagaaggc






tgaggctgcctgtgcctgagctcccgctgcccaggggagccctccacnccggc






tcttccccaccctcagccccaccccaggtcctgcagtctggctgagccctgct






tggttgtctccacacacagctgggctgtggtagggggtgtctcaggccacacc






ggccttgcattgcctgcctggccccctgtcctctctggctggggagcagggag






gtccgggagggtgcggctgtgcagcctgtcctgggctggtggctcccggaggg






ccctgagctgagggcattgcttacacggatgccttcccctgggccctgacatt






ggagcctgggcatcctcaggtggtcaggcgtagatcaccagaataaacccagcttccc




1113
CCCGAACTGTACGCACTCATGAGTG




1114
TCATGAGTGACTGCTGGATCTACAA




1115
CATGCGAGCCTGTTACTACAGCCTG




1116
CACAGCTGGGCTGTGGTAGGGGGTG




1117
AGCAGGGAGGTCCGGGAGGGTGCGG




1118
GGCATTGCTTACACGGATGCCTTCC




1119
TGGGCCCTGACATTGGAGCCTGGGC




1120
TGACATTGGAGCCTGGGCATCCTCA




1121
GGTGGTCAGGCGTAGATCACCAGAA




1122
ATCACCAGAATAAACCCAGCTTCCC





CTSW
214450_at
1123
GGAGAGAAGGGCTATTTCCGGCTGC
caggacttcatcatgctgcagaacaacgagcacagaattgcgcagtacctggc
NM_001335.1






cacttatggccccatcaccgtgaccatcaacatgaagccccttcagctatacc






ggaaaggtgtgatcaaggccacacccaccacctgtgacccccagcttgtggac






cactctgtcctgctggtgggttttggcagcgtcaagtcagaggaggggatatg






ggcagagacagtctcatcgcagtctcagcctcagcctccacaccccaccccat






actggatcctgaagaactcctggggggcccaatggggagagaagggctatttc






cggctgcaccgagggagcaatacctgtggcatcaccaagttcccgctcactgcccgtg






tgcagaaaccggatatgaagccccgagtctc




1124
CGGCTGCACCGAGGGAGCAATACCT




1125
ATACCTGTGGCATCACCAAGTTCCC




1126
CTCACTGCCCGTGTGCAGAAACCGG




1127
AACCGGATATGAAGCCCCGAGTCTC




1128
CAGGACTTCATCATGCTGCAGAACA




1129
GCGCAGTACCTGGCCACTTATGGCC




1130
AGCCCCTTCAGCTATACCGGAAAGG




1131
GGGTTTTGGCAGCGTCAAGTCAGAG




1132
GAGACAGTCTCATCGCAGTCTCAGC




1133
CCACCCCATACTGGATCCTGAAGAA





PRF1
214617_at
1134
CCAACGCAAATTCGCAAACTTTCTT
ccaacgcaaattcgcaaactttcttaaaacattatgagttncnntttgctatt
AI445650






tttttttttttttttagctcatcggctatcgttagtgctagtggattttacat






gtggcccnnnannnnnnnncnnncaacgtggcccagagaagccaaaagattgg






atacgcatcagacagatggaaaagggagattcagactgtttttcagggaggtg






gctgggtttacacgctaatcccgattcaccctgtccaaactgcctaagccctc






cgccattntcaagccctgcagtcacagctacacagatcacagcttcagccagg






agctgggcagaaggccaanaggctgttcccaccaggctgctcagggntggtct






tttaggacccttcccttgagccctntatggtgtggcaaagccttcattgcctt






aactggagccccatcagctccagctgctctgtnttntttgcccncaatgcttt






gcccctgagacaaatggaggcctgtcctgacctgtctcaccatgtacatagctt




1135
GCTCATCGGCTATCGTTAGTGCTAG




1136
TGCTAGTGGATTTTACATGTGGCCC




1137
AGATTGGATACGCATCAGACAGATG




1138
GAGGTGGCTGGGTTTACACGCTAAT




1139
GGGTTTACACGCTAATCCCGATTCA




1140
GCAGTCACAGCTACACAGATCACAG




1141
GCCTTCATTGCCTTAACTGGAGCCC




1142
CAATGCTTTGCCCCTGAGACAAATG




1143
GACAAATGGAGGCCTGTCCTGACCT




1144
ACCTGTCTCACCATGTACATAGCTT





SULT1A1
215299_x_at
1145
AAGATCCTGGAGTTTGTGGGGCGCT
aagatcctggagtttgtggggcgctccctnccagaggagacngtggacntcat
U37025






ggttnagcacacgtcgttcaaggagatgaagaagaaccctatgaccaactaca






ccaccgtccnccnggagttcatggaccacagcatctcccccttcatgaggaaa






ggcatggctggggacnngngnngnccacnttcaccgtggcgcagaatgagcgc






ttcgatgcggacntatgcggagaagatggcaggncngcagcctcangcttccg






ctntgagcngtgagaggggnnncntggagtcacngcagagggagtgtgcgaat






caaacctgaccaagcggntcaagaataaaatatgaattgagggccngggacgg






taggtcatgtctgtaatcccagcaatttggaggctgaggtgggaggatcattt






gagcccaggagttcgagaccaacctgggcaacatagtgagattctgttaaaaa






aataaaataaaataaaaccaatttttaaaaagagaataaaatatgattgtgggccagg






cagagtggctcatgc




1146
AGCACACGTCGTTCAAGGAGATGAA




1147
AGAAGAACCCTATGACCAACTACAC




1148
GGAGTTCATGGACCACAGCATCTCC




1149
CATCTCCCCCTTCATGAGGAAAGGC




1150
TTCACCGTGGCGCAGAATGAGCGCT




1151
GCAGAATGAGCGCTTCGATGCGGAC




1152
GGGAGTGTGCGAATCAAACCTGACC




1153
GTGCGAATCAAACCTGACCAAGCGG




1154
GGACGGTAGGTCATGTCTGTAATCC




1155
GTGGGCCAGGCAGAGTGGCTCATGC





C7ORF24
215380_s_at
1156
GAAAATGGTTTGCCGCTGGAGTATC
gaaaatggtttgccgctggagtatcaagagaagttaaaagcaatagaaccaaa
AK021779.1






tgactatacaggaaaggtctcagaagaaattgaagacatcatcaaaaaggggg






aaacacaaactctttagaacataacagaatatatctaagggtattctatgtgc






taatataaaatatttttaacacttgagaacagggatctgggggatctccacgt






ttgatccattttcagcagtgctctgaaggagtatcttacttgggtgattcctt






gtttttagactataaaaagaaactgggataggagttagacaatttaaaagggg






tgtatgagggcctgaaatatgtgacaaatgaatgtgagtaccccttctatgaa






cactgaaagctattctcttgaattgatcttaagtgtctccttgctctggtaaa






agatagatttgtagctcacttgatgatggtgctggtgaattgctctgctctgtctgag






att




1157
ATCTAAGGGTATTCTATGTGCTAAT




1158
ATCTGGGGGATCTCCACGTTTGATC




1159
CAGCAGTGCTCTGAAGGAGTATCTT




1160
GGAGTATCTTACTTGGGTGATTCCT




1161
GGGTGATTCCTTGTTTTTAGACTAT




1162
ACAAATGAATGTGAGTACCCCTTCT




1163
ATTGATCTTAAGTGTCTCCTTGCTC




1164
GTGTCTCCTTGCTCTGGTAAAAGAT




1165
AGATAGATTTGTAGCTCACTTGATG




1166
GAATTGCTCTGCTCTGTCTGAGATT


HOMER3
215489_x_at
1167
CAATGTCCACAGCCAGGGAGCAGCC
gagggacactcatagtccctcctctctccctaggggccaaaccagtgctcctg
AI871287






ccacctctctggctgccccctagagcctgcccatcccagcctgaccaatgtcc






acagccagggagcagccaatcttcagcacacgggcgcacgtgttccaaattga






cccagccaccaagcgaaactggatcccagcgggcaagcacgcactcactgtct






cctatttctacgatgccacccgcaatgtgtaccgcatcatcagcatcggaggc






gccaaggccatcatcaacagcactgtcactcccaacatgaccttcaccaaaac






ttcccagaagttcgggcagtgggccgacagtcgcgccaacacagtctatggcc






tgggctttgcctctgaacagcatctgacacagtttgccgagaagttccaggaa






gtgaaggaagcagccaggctggccagggagaaatctcaggatggctggggtgg






gccccagtcggctctggttgttggcagctttggggctgtttttgagcttctcatt




1168
GGGCGCACGTGTTCCAAATTGACCC




1169
GTACCGCATCATCAGCATCGGAGGC




1170
GGCCATCATCAACAGCACTGTCACT




1171
AAGTTCGGGCAGTGGGCCGACAGTC




1172
AGTCGCGCCAACACAGTCTATGGCC




1173
GCTTTGCCTCTGAACAGCATCTGAC




1174
GACACAGTTTGCCGAGAAGTTCCAG




1175
CCCAGTCGGCTCTGGTTGTTGGCAG




1176
TGGGGCTGTTTTTGAGCTTCTCATT




1177
GAGGGACACTCATAGTCCCTCCTCT





LILRA5
215838_at
1178
TCCTGCAGGTATGGTCAGAACCCAG
tcctgcaggtatggtcagaacccagtgacctcctggagattccggtctcagga
AF212842.1






gcagctgataacctcagtccgtcacanaacaagtctgactctgggactgcctc






acaccttcaggattacgcagtagagaatctcatccgcatgggcatggccggct






tgatcctggtggtccttgggattctgatatttcaggattggcacagccagaga






agcccccaagctgcagctggaaggtgaacagaagagagaacaatgcaccattg






aatgctggagccttggaagcgaatctgatggtcctaggaggttcgggaagaccatctg






aggcctatgccatctggactgtctgctggcaatttcttt




1179
TGGAGATTCCGGTCTCAGGAGCAGC




1180
GAGCAGCTGATAACCTCAGTCCGTC




1181
TGCCTCACACCTTCAGGATTACGCA




1182
GGTCCTTGGGATTCTGATATTTCAG




1183
AATGCACCATTGAATGCTGGAGCCT




1184
GCTGGAGCCTTGGAAGCGAATCTGA




1185
GCGAATCTGATGGTCCTAGGAGGTT




1186
GGTTCGGGAAGACCATCTGAGGCCT




1187
TGAGGCCTATGCCATCTGGACTGTC




1188
TGGACTGTCTGCTGGCAATTTCTTT





PTGDR
215894_at
1189
CGCGCGCGGACGGGAGGGAAGCGTC
gccatgcgcaacctctatgcgatgcaccggcggctgcagcggcacccgcgctc
U31099.1






ctgcaccagggactgtgccgagccgcgcgcggacgggagggaagcgtcccctc






agcccctggaggagctggatcacctcctgctgctggcgctgatgaccgtgctc






ttcactatgtgttctctgcccgtaatttatcgcgcttactatggagcatttaa






ggatgtcaaggagaaaaacaggacctctgaagaagcagaagacctccgagcct






tgcgatttctatctgtgatttcaattgtggacccttggatttttatcattttc






agatctccagtatttcggatattttttcacaagattttcattagacctcttag






gtacaggagccggtgcagcaattccactaacatggaatccagtctgtgacagtgttt






ttcactc




1190
TGCCCGTAATTTATCGCGCTTACTA




1191
GAAGAAGCAGAAGACCTCCGAGCCT




1192
AGCCTTGCGATTTCTATCTGTGATT




1193
GCCATGCGCAACCTCTATGCGATGC




1194
GATTTCAATTGTGGACCCTTGGATT




1195
TTTTCAGATCTCCAGTATTTCGGAT




1196
TTTCACAAGATTTTCATTAGACCTC




1197
AGACCTCTTAGGTACAGGAGCCGGT




1198
AACATGGAATCCAGTCTGTGACAGT




1199
CAGTCTGTGACAGTGTTTTTCACTC





LPXN
216250_s_at
1200
GCTTTCTGCCTGACACAGTTGTCGA
gctttctgcctgacacagttgtcgaagggcattttcagggagcagaatgacaa
X77598.1






gacctattgtcaaccttgcttcaataagctcttcccactgtaatgccaactga






tccatagcctcttcagattccttataaaatttaaaccaagagaggagaggaaa






gggtaaattttctgttactgaccttctgcttaatagtcttatagaaaaaggaa






aggtgatgagcaaataaaggaacttctagactttacatgactaggctgataat






cttattttttaggcttctatacagttaattctataaattctctttctccctct






cttctccaatcaagcacttggagttagatctaggtccttctatctcgtccctc






tacagatgtattttccacttgcataattcatgccaacactggttttcttaggt






ttctccattttcacctctagtgatggccctactcatatcttctctaatttggt






cctgatacttgtttcttttcacgttttcccatttccctgtggctcactgtcttacaa






tcactg




1201
AAGACCTATTGTCAACCTTGCTTCA




1202
TCTTCCCACTGTAATGCCAACTGAT




1203
CCAACTGATCCATAGCCTCTTCAGA




1204
CTGTTACTGACCTTCTGCTTAATAG




1205
GTTAGATCTAGGTCCTTCTATCTCG




1206
TATCTCGTCCCTCTACAGATGTATT




1207
TTTCACCTCTAGTGATGGCCCTACT




1208
ACTCATATCTTCTCTAATTTGGTCC




1209
GGTCCTGATACTTGTTTCTTTTCAC




1210
GTGGCTCACTGTCTTACAATCACTG





PYHIN1
216748_at
1211
CCACCCTCTGGATCCCAATATTGAG
ccaccctctggatcccaatattgagatcttatcctcagggaatcctcacttag
AK024890.1






acccctgtaacaggttaaatcttcatggtgttctgtttcctaggaacttcttt






cttttctactgtttatgacaactgaagttaataagtgtttatctttcccacct






actcaaagtagttccaagattagggctagtttgtaattctgtggaccactgta






aacgagggcctagttcagtgtctgcctcatgggaagcttccaataaatacctttg




1212
TTATCCTCAGGGAATCCTCACTTAG




1213
CCTCACTTAGACCCCTGTAACAGGT




1214
AAATCTTCATGGTGTTCTGTTTCCT




1215
GTGTTCTGTTTCCTAGGAACTTCTT




1216
TAATAAGTGTTTATCTTTCCCACCT




1217
ATCTTTCCCACCTACTCAAAGTAGT




1218
GTAGTTCCAAGATTAGGGCTAGTTT




1219
GTGGACCACTGTAAACGAGGGCCTA




1220
CGAGGGCCTAGTTCAGTGTCTGCCT




1221
GGGAAGCTTCCAATAAATACCTTTG





SLC35E2
217122_s_at
1222
GTCTCTGAAGTATTTCCTCCAGTTT
gtctctgaagtatttcctccagtttccctgcgggcccctatgtttgagtttga
AL031282






tggctgctggatcctcactcaacgaaaactcggttggaaactgttccgcctgg






cagtccttttttgttgttttccatctcatttcccttccatctgaaagtggcat






tcagctgacttgctcatttagactgttcacggagtctgaatctgccaacgtgg






tgttggaggctccaccttgaaaagggccacagtcagggcaactttccccatac






aggaaaacttgaaaattacatcaacagtctacgtcacagccaaattatatttc






ctttataccaaacaaaactatggagaactaaaagtacatcacacaaaacgttt






atagtgttttgcatgtgacctatttcagtatttatataactagattagtgctt






tctagcaaacggttctgttaattagcgagtcactgttgattctgctgtggtggtaag






ttgataccgtgtaactaatcccgtggat




1223
GGGCCCCTATGTTTGAGTTTGATGG




1224
GGATCCTCACTCAACGAAAACTCGG




1225
CTCGGTTGGAAACTGTTCCGCCTGG




1226
GACTTGCTCATTTAGACTGTTCACG




1227
GAGTCTGAATCTGCCAACGTGGTGT




1228
TCAGGGCAACTTTCCCCATACAGGA




1229
TACATCAACAGTCTACGTCACAGCC




1230
GTGCTTTCTAGCAAACGGTTCTGTT




1231
TAGCGAGTCACTGTTGATTCTGCTG




1232
ATACCGTGTAACTAATCCCGTGGAT





TRA@ //
217143_s_at
1233
GTTGACCTGTCATAGCCTTGTTAAA
gaaggtgaacatgatgtccctcacagtgcttgggctacgaatgctgtttgcaa
X06557.1


TRD@



agactgttgccgtcaattttctcttgactgccaagttatttttcttgtaaggc






tgactggcatgaggaagctacactcctgaagaaaccaaaggcttacaaaaatg






catctccttggcttctgacttctttgtgattcaagttgacctgtcatagcctt






gttaaaatggctgctagccaaaccactttttcttcaaagacaacaaacccagc






tcatcctccagcttgatgggaagacaaaagtcctggggaaggggggtttatgtcctaa






ctgctttgta




1234
TCAAAGACAACAAACCCAGCTCATC




1235
GCTCATCCTCCAGCTTGATGGGAAG




1236
GGGTTTATGTCCTAACTGCTTTGTA




1237
GAAGGTGAACATGATGTCCCTCACA




1238
GCTTGGGCTACGAATGCTGTTTGCA




1239
AGACTGTTGCCGTCAATTTTCTCTT




1240
AATTTTCTCTTGACTGCCAAGTTAT




1241
TTTTCTTGTAAGGCTGACTGGCATG




1242
GAAGCTACACTCCTGAAGAAACCAA




1243
AAAAATGCATCTCCTTGGCTTCTGA





TRATRD
217147_s_at
1244
TCTCCTTTCTCACCAATGGGCAATA
tctcctttctcaccaatgggcaatagcccataattgaaataaatttctgattg
AJ240085.1






aaaggtataggaaacattaaaatgcattactaagagaagtaatataattttct






tacaaagtatttttcccaaagatagctttactatttcaaaaattgtcaaatta






atgcatgctccttacaacaaacaaatatcaaaaagagtttaggaattctacta






gccagagatagtcacttggagaaactttctatatatccttctaaatatttttc






tgggcatgctcatgtatgtacatcagttgtttctttttattttgaaccaaaaa






tgtggtttcttttgtacacattacttaaactttctttccagtcaacaatatat






tgtggatttattttcactgttatatttaactatatataaatacgcatatattgtaat






tttaatgtctgcttagcaccccactgataaccaaatcacag




1245
TCCTTTCTCACCAATGGGCAATAGC




1246
TATTTTTCCCAAAGATAGCTTTACT




1247
GTCAAATTAATGCATGCTCCTTACA




1248
AATGCATGCTCCTTACAACAAACAA




1249
ATGCTCCTTACAACAAACAAATATC




1250
GAGTTTAGGAATTCTACTAGCCAGA




1251
ACTAGCCAGAGATAGTCACTTGGAG




1252
GATAGTCACTTGGAGAAACTTTCTA




1253
GAAACTTTCTATATATCCTTCTAAA




1254
CACCCCACTGATAACCAAATCACAG





S100A6
217728_at
1255
GGGACCGCTATAAGGCCAGTCGGAC
gggaccgctataaggccagtcggactgcgacatagcccatcccctcgaccgct
NM_014624.2






cgcgtcgcatttggccgcctccctaccgctccaagcccagccctcagccatgg






catgccccctggatcaggccattggcctcctcgtggccatcttccacaagtac






tccggcagggagggtgacaagcacaccctgagcaagaaggagctgaaggagctgatc






cagaaggagctcaccattggctcgaagctgcagg




1256
TCGTGGCCATCTTCCACAAGTACTC




1257
TTCCACAAGTACTCCGGCAGGGAGG




1258
CCGCTATAAGGCCAGTCGGACTGCG




1259
TCCGGCAGGGAGGGTGACAAGCACA




1260
GACAAGCACACCCTGAGCAAGAAGG




1261
GCTGATCCAGAAGGAGCTCACCATT




1262
GAAGGAGCTCACCATTGGCTCGAAG




1263
AGCTCACCATTGGCTCGAAGCTGCA




1264
CTCACCATTGGCTCGAAGCTGCAGG




1265
GCCAGTCGGACTGCGACATAGCCCA





RAB31
217763_s_at
1266
AACATTGTAATGGCCATCGCTGGAA
aacattgtaatggccatcgctggaaacaagtgcgacctctcagatattaggga
NM_006868.1






ggttcccctgaaggatgctaaggaatacgctgaatccataggtgccatcgtgg






ttgagacaagtgcaaaaaatgctattaatatcgaagagctctttcaaggaatc






agccgccagatcccacccttggacccccatgaaaatggaaacaatggaacaat






caaagttgagaagccaaccatgcaagccagccgccggtgctgttgacccaagg






gcgtggtccacggtacttgaagaagccagagcccacatcctgtgcactgctga






aggaccctacgctcggtggcctggcacctcactttgagaagagtgagcacact






ggctttgcatcctggaaggcctgcagggggcggggcaggaaatgtacctgaaa






aggattttagaaaaccctgggaaacccaccacaccaccacaaaatggcctttagtgt




1267
GAAACAAGTGCGACCTCTCAGATAT




1268
GGAGGTTCCCCTGAAGGATGCTAAG




1269
TACGCTGAATCCATAGGTGCCATCG




1270
GTGCCATCGTGGTTGAGACAAGTGC




1271
TTCAAGGAATCAGCCGCCAGATCCC




1272
TGAGAAGCCAACCATGCAAGCCAGC




1273
CGTGGTCCACGGTACTTGAAGAAGC




1274
ATCCTGTGCACTGCTGAAGGACCCT




1275
GAGTGAGCACACTGGCTTTGCATCC




1276
ACCACCACAAAATGGCCTTTAGTGT





EVL
217838_s_at
1277
GATCATCGACGCCATCAGGCAGGAG
gatcatcgacgccatcaggcaggagctgagtgggatcagcaccacgtaagggg
NM_016337.1






ccggcctcgctgcgctgattcgtcgagcccatccggcgacagaggacagccag






aagcccagccagccccagactccagtgcaccagagcacgcacaggagcctggg






cgcgctgctgtgaaacgtcctgacctgtgatcacacatgacagtgaggaaacc






aagtgcaactcctgggtttttttagattctgcctgacacggaacaccaggtct






gctcgtcttttttgtgttttatatttgcttatttaaggtacatttctttgggtttcta






gagacgcccctaagtcacctgcttcattagacggtttccaggttttct




1278
TGGGATCAGCACCACGTAAGGGGCC




1279
CCCATCCGGCGACAGAGGACAGCCA




1280
GTGCACCAGAGCACGCACAGGAGCC




1281
TGAAACGTCCTGACCTGTGATCACA




1282
GGAAACCAAGTGCAACTCCTGGGTT




1283
TCCTGGGTTTTTTTAGATTCTGCCT




1284
TAGATTCTGCCTGACACGGAACACC




1285
CTGACACGGAACACCAGGTCTGCTC




1286
GGTACATTTCTTTGGGTTTCTAGAG




1287
TCATTAGACGGTTTCCAGGTTTTCT





SMAD3
218284_at
1288
GGTGTAGTGGCTTTTTGGCTCAGCA
ggtgtagtggctttttggctcagcatccagaaacaccaaaccaggctggctaa
NM_015400.1






acaagtggccgcgtgtaaaaacagacagctctgagtcaaatctgggcccttcc






acaagggtcctctgaaccaagccccactcccttgctaggggtgaaagcattac






agagagatggagccatctatccaagaagccttcactcaccttcactgctgctg






ttgcaactcggctgttctggactctgatgtgtgtggagggatggggaatagaa






cattgactgtgttgattaccttcactattcggccagcctgaccttttaataac






tttgtaaaaagcatgtatgtatttatagtgttttagatttttctaacttttat






atcttaaaagcagagcacctgtttaagcattgtacccctattgttaaagatttgtgt






cctctcattccctctcttcctcttgtaagtgcccttctaata




1289
GGCTCAGCATCCAGAAACACCAAAC




1290
GGCTGGCTAAACAAGTGGCCGCGTG




1291
CAGCTCTGAGTCAAATCTGGGCCCT




1292
CCCACTCCCTTGCTAGGGGTGAAAG




1293
GAGCCATCTATCCAAGAAGCCTTCA




1294
CTGTTCTGGACTCTGATGTGTGTGG




1295
GCCAGCCTGACCTTTTAATAACTTT




1296
GCACCTGTTTAAGCATTGTACCCCT




1297
GTTAAAGATTTGTGTCCTCTCATTC




1298
TCCTCTTGTAAGTGCCCTTCTAATA





MAPBPIP
218291_at
1299
AGCCAAGCCAACACTGGAGGCGTCC
gagaggcacctcggagatctgggtgcaaaagcccagggttaggaaccgtagca
NM_014017.1






tgctgcgccccaaggctttgacccaggtgctaagccaagccaacactggaggc






gtccagagcaccctgctgctgaataacgagggatcactgctggcctactctgg






ttacggggacactgacgcccgggtcaccgctgccatagccagtaacatctggg






ccgcctacgaccggaacgggaaccaagcgtttaatgaagacaatctcaaattc






atcctcatggactgcatggagggccgtgtagccatcacccgagtggccaacct






tctgctgtgtatgtatgccaaggagaccgtgggctttggaatgctcaaggcca






aggcccaggctttggtgcagtacctggaggagcccctcacccaagtggcggcatctt






aacggcattg




1300
ATAACGAGGGATCACTGCTGGCCTA




1301
CTACTCTGGTTACGGGGACACTGAC




1302
TAGCCAGTAACATCTGGGCCGCCTA




1303
AATCTCAAATTCATCCTCATGGACT




1304
TGGACTGCATGGAGGGCCGTGTAGC




1305
GAGAGGCACCTCGGAGATCTGGGTG




1306
GACCGTGGGCTTTGGAATGCTCAAG




1307
AAGTGGCGGCATCTTAACGGCATTG




1308
GGTTAGGAACCGTAGCATGCTGCGC




1309
CCAAGGCTTTGACCCAGGTGCTAAG





PGLS
218388_at
1310
CCTACAGGAGCGGGAGAAGATTGTG
cctacaggagcgggagaagattgtggctcccatcagtgactccccgaagccac
NM_012088.1






cgccacagcgtgtgaccctcacactacctgtcctgaatgcagcacgaactgtc






atctttgtggcaactggagaaggcaaggcagctgttctgaagcgcattttgga






ggaccaggaggaaaacccgctgcccgccgccctggtccagccccacaccgggaaact






gtgctggttcttggacgag




1311
GAAGATTGTGGCTCCCATCAGTGAC




1312
CTCACACTACCTGTCCTGAATGCAG




1313
ACCTGTCCTGAATGCAGCACGAACT




1314
CAGCACGAACTGTCATCTTTGTGGC




1315
GTGGCAACTGGAGAAGGCAAGGCAG




1316
GGCAAGGCAGCTGTTCTGAAGCGCA




1317
GGCAGCTGTTCTGAAGCGCATTTTG




1318
AAGCGCATTTTGGAGGACCAGGAGG




1319
CCCCACACCGGGAAACTGTGCTGGT




1320
GAAACTGTGCTGGTTCTTGGACGAG





SPON2
218638_s_at
1321
CTGCCCCGAGCTCGAAGAAGAGGCT
ctgccccgagctcgaagaagaggctgagtgcgtccctgataactgcgtctaag
NM_012445.1






accagagccccgcagcccctggggcccccggagccatggggtgtcgggggctc






ctgtgcaggctcatgctgcaggcggccgaggcacagggggtttcgcgctgctc






ctgaccgcggtgaggccgcgccgaccatctctgcactgaagggccctctggtg






gccggcacgggcattgggaaacagcctcctcctttcccaaccttgcttcttag






gggcccccgtgtcccgtctgctctcagcctcctcctcctgcaggataaagtca






tccccaaggctccagctactctaaattatggtctccttataagttattgctgc






tccaggagattgtccttcatcgtccaggggcctggctcccacgtggttgcaga






tacctcagacctggtgctctaggctgtgctgagcccactctcccgagggcgca






tccaagcgggggccacttgagaagtgaataaatggggcggtttcggaagcgtcagtg






tttccatgttatgg




1322
AAGAAGAGGCTGAGTGCGTCCCTGA




1323
GTCCCTGATAACTGCGTCTAAGACC




1324
GCCGGCACGGGCATTGGGAAACAGC




1325
AGGATAAAGTCATCCCCAAGGCTCC




1326
AAGGCTCCAGCTACTCTAAATTATG




1327
CCAGGAGATTGTCCTTCATCGTCCA




1328
CTCCCACGTGGTTGCAGATACCTCA




1329
TGCAGATACCTCAGACCTGGTGCTC




1330
CATCCAAGCGGGGGCCACTTGAGAA




1331
AAGCGTCAGTGTTTCCATGTTATGG





CRTC3
218648_at
1332
CCAGTTGTGGTCCTCAGCATTTGAA
ccagttgtggtcctcagcatttgaagcagctgcatacttcagagtaaactatt
NM_022769.1






tttcattatttagttttgtcacaagaaatcgaccattgtactactctcactta






cagcagttaaacagcatagaactaaaaacctgtctgcatttccattttttctt






tctgtatggttgtgggttttaggacatagggggttaggagaaggggtttcttg






atcatgtcatgaattctcctttgtcctgtttctcctgtttcatttctcctccg






cctgctgtatattacctgagctggtgttgtatcttcaagtccatatgcgtatt






tgcagacctttcctgttcccactcttgttggctcttctgatttatgcacagat






ggttcccagcatgtgtccagtgcttcatggatgggaccatcccagcaactaat






cagacttcctgccagtgtcctaacccccagggcaccctgttcaaccatatttaaa




1333
GAAATCGACCATTGTACTACTCTCA




1334
GTACTACTCTCACTTACAGCAGTTA




1335
AAAACCTGTCTGCATTTCCATTTTT




1336
GAGCTGGTGTTGTATCTTCAAGTCC




1337
TATGCGTATTTGCAGACCTTTCCTG




1338
CTCTTGTTGGCTCTTCTGATTTATG




1339
GATTTATGCACAGATGGTTCCCAGC




1340
CCCAGCATGTGTCCAGTGCTTCATG




1341
ACTAATCAGACTTCCTGCCAGTGTC




1342
GGCACCCTGTTCAACCATATTTAAA





PRKCH
218764_at
1343
CACCAAGACGACTGCTTCAGCTTCT
caccaagacgactgcttcagcttcttctcttatccttactttctttaatagat
NM_024064.1






atttattaaactgtccagtgaaaaggtgccacaatgcccagtattgtaaacaa






caggtttgcattcatgaagctttcattcattctggagtctactaatttacctg






aatggtgtttgcattctgtgaaatgcctctccacgttgcatatgtcacacttt






tgtctgcacataactcttttttcacaagaagggtcactgccacaacagcacag






tcagcgggtgaattacaggtgcctgctgcctgcctacctgggtaatctgatct






tgtctgtatcgccgtgtgctcatcactgaagaattgcaggccactcatgtcagt




1344
TCTCTTATCCTTACTTTCTTTAATA




1345
AAAGGTGCCACAATGCCCAGTATTG




1346
AGCTTTCATTCATTCTGGAGTCTAC




1347
ATTCTGTGAAATGCCTCTCCACGTT




1348
TCTCCACGTTGCATATGTCACACTT




1349
GTCTGCACATAACTCTTTTTTCACA




1350
GCCACAACAGCACAGTCAGCGGGTG




1351
GTCAGCGGGTGAATTACAGGTGCCT




1352
GTAATCTGATCTTGTCTGTATCGCC




1353
AGAATTGCAGGCCACTCATGTCAGT





CHST12
218927_s_at
1354
GACCCGCACACGGAGAAGCTGGCGC
gacccgcacacggagaagctggcgcccttcaacgagcactggcggcaggtgta
NM_018641.1






ccgcctctgccacccgtgccagatcgactacgacttcgtggggaagctggaga






ctctggacgaggacgccgcgcagctgctgcagctactccaggtggaccggcag






ctccgcttccccccgagctaccggaacaggaccgccagcagctgggaggagga






ctggttcgccaagatccccctggcctggaggcagcagctgtataaactctacg






aggccgactttgttctcttcggctaccccaagcccgaaaacctcctccgagac






tgaaagctttcgcgttgctttttctcgcgtgcctggaacctgacgcacgcgca






ctccagtttttttatgacctacgattttgcaatctgggcttcttgttcactccactg






cctctatccattgagtac




1355
CACTGGCGGCAGGTGTACCGCCTCT




1356
GCCAGATCGACTACGACTTCGTGGG




1357
GCTGGAGACTCTGGACGAGGACGCC




1358
GGAGGAGGACTGGTTCGCCAAGATC




1359
TAAACTCTACGAGGCCGACTTTGTT




1360
GAAAACCTCCTCCGAGACTGAAAGC




1361
AAAGCTTTCGCGTTGCTTTTTCTCG




1362
GCGTGCCTGGAACCTGACGCACGCG




1363
TTTGCAATCTGGGCTTCTTGTTCAC




1364
TCCACTGCCTCTATCCATTGAGTAC





C16ORF68
218945_at
1365
ACTGGACTGGCTGAAGGACGACCTC
actggactggctgaaggacgacctctgcacagatcccaaggtccccttcagtt
NM_024109.1






ggtcacaagaggaaatttctgacctgtacgatcacaccaccatcctgtttgca






gccgaagtgttttacgacgacgacttgactgatgctgtgtttaaaacgctctc






ccgactcgcccacagattgaaaaatgcctgcacagccatactgtcggtggaga






agaggctcaacttcacactgagacacttggacgtcacatgtgaagcctacgat






cacttccgctcctgcctgcacgcgctggagcagctcacagatggcaagctgcg






cttcgtggtggagcccgtggaggcctccttcccacagctcctggtttacgagc






gcctccagcagctggagctctggaagatcatcgcagaaccagtaacatgacccatcg






cctccaccaggcgcggcgtctcgactgttcttagagtg




1366
AATTTCTGACCTGTACGATCACACC




1367
ACCATCCTGTTTGCAGCCGAAGTGT




1368
TACGACGACGACTTGACTGATGCTG




1369
TGCTGTGTTTAAAACGCTCTCCCGA




1370
CCTGCACAGCCATACTGTCGGTGGA




1371
ATGTGAAGCCTACGATCACTTCCGC




1372
GCTCACAGATGGCAAGCTGCGCTTC




1373
TCCCACAGCTCCTGGTTTACGAGCG




1374
CAGAACCAGTAACATGACCCATCGC




1375
CGGCGTCTCGACTGTTCTTAGAGTG


TTC17
218972_at
1376
CTCCTGGGCCACAAGGGCTACTAGA
ctcctgggccacaagggctactagactggaagaccaggaaagtgccatagaca
NM_018259.1






taatgtaactggatttcagcaaggcatttaacagagcctcttatgatatcctt






gtgaaccagatggagagatgtgggcttgaagccttcccattgcctacaggata






aaattcaaacttcctagtgtggtgtacaagaccctttacagcccgcctctgtg






tacccttcaacaccattctctgaaccaaccatgctcatgtttttacctcagtg






cctttgcacatgctattccctctgcctggaatgccctgtgccccctctgccct






ctgccgtgctaaaatatcactcatccttaaacttcaaaatcaagtgccatctc






ttccttgttaccttcaggcagaattagttactctttcctctgtgcaattgttc






tatatcttcgctctagctcttttcctgttgtattgtaatgatttgtttatgtt






taccttccttactagactgtgagctcaagagcaggccgtcttaattattcctttctg






tacccctagtgtcttttatggttctcagccc




1377
CAGAGCCTCTTATGATATCCTTGTG




1378
GATGTGGGCTTGAAGCCTTCCCATT




1379
TGGTGTACAAGACCCTTTACAGCCC




1380
TGCCCTCTGCCGTGCTAAAATATCA




1381
CTCTTCCTTGTTACCTTCAGGCAGA




1382
AGAATTAGTTACTCTTTCCTCTGTG




1383
GTGCAATTGTTCTATATCTTCGCTC




1384
TTATGTTTACCTTCCTTACTAGACT




1385
GCAGGCCGTCTTAATTATTCCTTTC




1386
TAGTGTCTTTTATGGTTCTCAGCCC





PLEKHA1
219024_at
1387
ACTCTTTGGTCTCAACCTTTACCAT
acaacgtctcgaactttctatgtgcaggctgatagccctgaagagatgcacag
NM_021622.1






ttggattaaagcagtctctggcgccattgtagcacagcggggtcccggcagat






ctgcgtcttctgagcatccccccggtccttcagaatccaaacacgctttccgt






cctaccaacgcagccgccgccacctcacattccacagcctctcgcagcaactc






tttggtctcaacctttaccatggagaagcgaggattttacgagtctcttgcca






aggtcaagccagggaacttcaaggtccagactgtctctccaagagaaccagct






tccaaagtgactgaacaagctctgttaagacctcaaagtaaaaatggccctca






ggaaaaagattgtgacctagtagacttggacgatgcgagccttccggtcagtg






acgtgtgaggcagaagcgcacggagcctgcctgcctctgccgtcctcagttacctttc






atgaggcttctagcc




1388
GGATTTTACGAGTCTCTTGCCAAGG




1389
TTCAAGGTCCAGACTGTCTCTCCAA




1390
TCTCTCCAAGAGAACCAGCTTCCAA




1391
AGTAGACTTGGACGATGCGAGCCTT




1392
AGCCTTCCGGTCAGTGACGTGTGAG




1393
GAGGCAGAAGCGCACGGAGCCTGCC




1394
GTTACCTTTCATGAGGCTTCTAGCC




1395
ACAACGTCTCGAACTTTCTATGTGC




1396
CTCTGGCGCCATTGTAGCACAGCGG




1397
TCAGAATCCAAACACGCTTTCCGTC





GIMAP4
219243_at
1398
TCTTCTAGATTCTCTCTATGTTGGC
tcttctagattctctctatgttggcagataatctccccttgtagcttccactc
NM_018326.1






acttattcttgcattcagagtcacaatgatcatcttacccatgtggtttttga






gaaagaaagatcaattctttgtttgcagtgggtaatcttagagatggagatga






ttgtagaattattcctagatgagtgtcaatttatttaattccattgtcatata






aggagtcaaattgtttcttatcatttgttcattgaagaacagagacctgtctg






gaaaatcgatctctacaaattcaattaaataatgatccccaaatgctgaaaaa






gtgaaatacagcaattcaacagataatagagcaatgtttagtatattcagctg






tatctgtagaaactctttgacgaacctcaatttaaccaatttgatgaataccc






agttctcttcttttctagagaaagatagttgcaacctcacctccctcactcaacactt






tgaatacttattgtttggcaggtcatccacacact




1399
TGTTGGCAGATAATCTCCCCTTGTA




1400
TTCCACTCACTTATTCTTGCATTCA




1401
GAGTCACAATGATCATCTTACCCAT




1402
GATCAATTCTTTGTTTGCAGTGGGT




1403
AATTGTTTCTTATCATTTGTTCATT




1404
TGTAGAAACTCTTTGACGAACCTCA




1405
TGATGAATACCCAGTTCTCTTCTTT




1406
GAAAGATAGTTGCAACCTCACCTCC




1407
CTCCCTCACTCAACACTTTGAATAC




1408
TTGTTTGGCAGGTCATCCACACACT





CENTA2
219358_s_at
1409
CCAGCTACTCCGGACACTGATGTGA
ccagctactccggacactgatgtgagaggatcacttgagccagggaggtcatg
NM_018404.1






gctacagtgacccctcattgcaccactttacttagcctgggtgacagagtgag






accctatctcaaaaaaaaaaaaaatctatgcattgtatgggactttcctttgg






atcccccaatcaaaggataagcaatgcgtaagcctgtgtccttcctgaagctt






ctcgactgcccagatagggaggtgagtcctctctatctcctctggctctggaa






gcaccttgaaaatgtgcattttcaaggacacttgctgggttgtgcattaaggg






ccagtttacttgtctgcctctttgaccacctgtgaactctgttgggtgtactctgcta






agt




1410
GGGAGGTCATGGCTACAGTGACCCC




1411
TTGCACCACTTTACTTAGCCTGGGT




1412
TATGCATTGTATGGGACTTTCCTTT




1413
AAGCAATGCGTAAGCCTGTGTCCTT




1414
TTCTCGACTGCCCAGATAGGGAGGT




1415
TAGGGAGGTGAGTCCTCTCTATCTC




1416
AAGGACACTTGCTGGGTTGTGCATT




1417
GGTTGTGCATTAAGGGCCAGTTTAC




1418
TTGACCACCTGTGAACTCTGTTGGG




1419
CTCTGTTGGGTGTACTCTGCTAAGT





SERTAD3
219382_at
1420
TTTGTTCCCATTTCAGGGTTCCACA
tgtgtttttgtgggggctcgaagcagtgactatggcctcctttgttcccattt
NM_013368.1






cagggttccacaaactgtcttgcatgtgtgtgtgtgtctggttaccccgacct






tctgtgaaggtgggtcttcctgaattaatttatctattccaaatgccttaacg






agactctgtttctgggagtctgattttccacttacacatttcttccacctttc






ctgctagttcccactcccctgtgaccactggggcctcagggaagataaagaaa






gctgggcctgtcgaaggatgacagggatgtgctgccaggttgctatagaaacc






caggctctgcctcttgcaccttgagggggtgggaggggctggtgtcctccctc






caggctgaaccccacttcctcggcaggaccccagtctcagcagcctcctgatt






tcataaccaggccggaccacgtgcaatagggtggaaaccaaactgctccatgccggg






ttatttaaaagaaaggcagagtttgtggtggcttttttt




1421
TCAGGGTTCCACAAACTGTCTTGCA




1422
GCCTTAACGAGACTCTGTTTCTGGG




1423
TGATTTTCCACTTACACATTTCTTC




1424
GGATGTGCTGCCAGGTTGCTATAGA




1425
GCCTCTTGCACCTTGAGGGGGTGGG




1426
TGATTTCATAACCAGGCCGGACCAC




1427
ACTGCTCCATGCCGGGTTATTTAAA




1428
GGCAGAGTTTGTGGTGGCTTTTTTT




1429
TGTGTTTTTGTGGGGGCTCGAAGCA




1430
GCTCGAAGCAGTGACTATGGCCTCC





HPSE
219403_s_at
1431
ATTGGGCCTGTCAGCCCGAATGGGA
attgggcctgtcagcccgaatgggaatagaagtggtgatgaggcaagtattct
NM_006665.1






ttggagcaggaaactaccatttagtggatgaaaacttcgatcctttacctgat






tattggctatctcttctgttcaagaaattggtgggcaccaaggtgttaatggc






aagcgtgcaaggttcaaagagaaggaagcttcgagtataccttcattgcacaa






acactgacaatccaaggtataaagaaggagatttaactctgtatgccataaac






ctccataatgtcaccaagtacttgcggttaccctatcctttttctaacaagca






agtggataaataccttctaagacctttgggacctcatggattactttccaaat






ctgtccaactcaatggtctaactctaaagatggtggatgatcaaaccttgcca






cctttaatggaaaaacctctccggccaggaagttcactgggcttgccagctttctca






tatagtttttttgtgataagaaatgccaaagttgctgcttgcatctga




1432
GAAAACTTCGATCCTTTACCTGATT




1433
GATTATTGGCTATCTCTTCTGTTCA




1434
AGCTTCGAGTATACCTTCATTGCAC




1435
AACTCTGTATGCCATAAACCTCCAT




1436
CAAGTACTTGCGGTTACCCTATCCT




1437
GACCTTTGGGACCTCATGGATTACT




1438
GATTACTTTCCAAATCTGTCCAACT




1439
GAAGTTCACTGGGCTTGCCAGCTTT




1440
GCCAGCTTTCTCATATAGTTTTTTT




1441
TGCCAAAGTTGCTGCTTGCATCTGA





CLIC3
219529_at
1442
ACGCCAAGACAGACACGCTGCAGAT
acgccaagacagacacgctgcagatcgaggactttctggaggagacgctgggg
NM_004669.1






ccgcccgacttccccagcctggcgcctcgttacagggagtccaacaccgccgg






caacgacgttttccacaagttctccgcgttcatcaagaacccggtgc




1443
AGACACGCTGCAGATCGAGGACTTT




1444
ACACGCTGCAGATCGAGGACTTTCT




1445
GCTGCAGATCGAGGACTTTCTGGAG




1446
CGAGGACTTTCTGGAGGAGACGCTG




1447
GCCTCGTTACAGGGAGTCCAACACC




1448
TCGTTACAGGGAGTCCAACACCGCC




1449
GCAACGACGTTTTCCACAAGTTCTC




1450
CAAGTTCTCCGCGTTCATCAAGAAC




1451
TTCTCCGCGTTCATCAAGAACCCGG




1452
TCCGCGTTCATCAAGAACCCGGTGC





PLEKHF1
219566_at
1453
TTGGTAACAAACGCCACCTTACACT
ttggtaacaaacgccaccttacactctgcaggctgcagcggcagctccagatg
NM_024310.1






gcctcctgagctggacgaccccaggtctccagacatctagggaccagagcagg






tttgggaacacagagggaagacaggatgggagtgtagccacagaacccacctg






caccctgacaggcacaccccactgaagagcctgagtcccaggaggcctcctgg






aagcccaggactgcccacccaccacgctggtgcccaccgcctggccagccaag






ccctgccgatcagacatgtgggctccccgaagcccagccagagactgccgtgc






tgtgggtgccaccaggcccagggactgcagcctgagctccccgaggcccaggg






cagccgggtgaggactctgtcctgtgtcacctctctccaggtgtccagctgtc






tcatgcctttttgtcctgtcctcagctctccgtgtggtcagcgaaaccattgttttct






gttaggactcagttgcaa




1454
CCCAGGTCTCCAGACATCTAGGGAC




1455
ATCTAGGGACCAGAGCAGGTTTGGG




1456
TGGGAGTGTAGCCACAGAACCCACC




1457
CAGGCACACCCCACTGAAGAGCCTG




1458
CCCACTGAAGAGCCTGAGTCCCAGG




1459
AAGCCCTGCCGATCAGACATGTGGG




1460
CAGCCAGAGACTGCCGTGCTGTGGG




1461
CTCTCCGTGTGGTCAGCGAAACCAT




1462
GTCAGCGAAACCATTGTTTTCTGTT




1463
GTTTTCTGTTAGGACTCAGTTGCAA





CLDN15
219640_at
1464
CCTCCAGGCCAAGAACTGCTCTTGG
taccccggaaccaagtacgagctgggccccgccctctacctggggtggagcgc
NM_014343.1






ctcactgatctccatcctgggtggcctctgcctctgctccgcctgctgctgcg






gctctgacgaggacccagccgccagcgcccggcggccctaccaggctcccgtg






tccgtgatgcccgtcgccacctcggaccaagaaggcgacagcagctttggcaa






atacggcagaaacgcctacgtgtagcagctctggcccgtgggccccgctgtct






tcccactgccccaaggagaggggacctggccggggcccattcccctatagtaa






cctcaggggccggccacgccccgctcccgtagccccgccccggccacggcccc






gtgtcttgcactctcatggcccctccaggccaagaactgctcttgggaagtcg






catatctcccctctgaggctggatccctcatcttctgaccctgggttctgggctgtg






aaggggacggtgtccccgcacgtttgtattgtgtat




1465
TCTTGGGAAGTCGCATATCTCCCCT




1466
TCATCTTCTGACCCTGGGTTCTGGG




1467
TGACCCTGGGTTCTGGGCTGTGAAG




1468
GTGAAGGGGACGGTGTCCCCGCACG




1469
GTCCCCGCACGTTTGTATTGTGTAT




1470
TACCCCGGAACCAAGTACGAGCTGG




1471
GTCGCCACCTCGGACCAAGAAGGCG




1472
GACCAAGAAGGCGACAGCAGCTTTG




1473
GAAACGCCTACGTGTAGCAGCTCTG




1474
CTTCCCACTGCCCCAAGGAGAGGGG





SIDT1
219734_at
1475
GAGAAGTTCTACATTGACCAGGCCC
gagaagttctacattgaccaggcccccttgttgcctggagtatgacgtaatca
NM_017699.1






gaaaatagacgtataaatgtgcacatgcgtatgtatttgcttgtgaaattaaa






gtcacctcttgcctctgctttcctgatcattcgttagagaaatggatcaggca






tttttttaaattattattctttctctaaactatttgcattgtgttcaaaaacc






cattttagaagtttgaacagcaagcttttcctgattttaaaaacacaaagttg






ctttcaatgaaatattttgtgatttttttaaagtccccaaatgtgtacttagc






cttctgttattccttattctttaagcagtgttggcttccattgaccatatgaaggcc






accaattaaatggttgtg




1476
CCCCTTGTTGCCTGGAGTATGACGT




1477
GTGCACATGCGTATGTATTTGCTTG




1478
CTGCTTTCCTGATCATTCGTTAGAG




1479
TGCATTGTGTTCAAAAACCCATTTT




1480
GAACAGCAAGCTTTTCCTGATTTTA




1481
GTCCCCAAATGTGTACTTAGCCTTC




1482
TACTTAGCCTTCTGTTATTCCTTAT




1483
GTTATTCCTTATTCTTTAAGCAGTG




1484
CAGTGTTGGCTTCCATTGACCATAT




1485
GAAGGCCACCAATTAAATGGTTGTG





PVRIG
219812_at
1486
GCCCAGGGCCATGGAAGGACCCTTA
gctttgtctctgttgagaatggactctacgctcaggcaggggagaggcctcct
NM_024070.1






cacactggtcccggcctcactcttttccctgaccctcgggggcccagggccat






ggaaggacccttaggagttcgatgagagagaccatgaggccactgggctttcc






ccctcccaggcctcctgggtgtcatccccttactttaattcttgggcctccaa






taagtgtcccataggtgtctggccaggcccacctgctgcggatgtggtctgtg






tgcgtgtgtgggcacaggtgtgagtgtgtgagtgacagttaccccatttcagtcattt






cctgctgcaac




1487
AGGACCCTTAGGAGTTCGATGAGAG




1488
TCATCCCCTTACTTTAATTCTTGGG




1489
TTCTTGGGCCTCCAATAAGTGTCCC




1490
TAAGTGTCCCATAGGTGTCTGGCCA




1491
GTGCGTGTGTGGGCACAGGTGTGAG




1492
TGTGAGTGACAGTTACCCCATTTCA




1493
GACAGTTACCCCATTTCAGTCATTT




1494
CATTTCAGTCATTTCCTGCTGCAAC




1495
GCTTTGTCTCTGTTGAGAATGGACT




1496
TGAGAATGGACTCTACGCTCAGGCA





GFOD1
219821_s_at
1497
GATTGATTGGGCTTCCTCATAGGAA
gattgattgggcttcctcataggaagcactgagggtgtgtctttgtacttggt
NM_018988.1






tcattgcccttcacctggtagagaaagagaggtcagaaatagcaagcaaaaag






caggactcccaggagccacaagaaaagagcacaggctgcaccaaagcaggggc






agcagagaataaaatatccctttgaacttgtcaacaattaaaaaactgcaagg






agtcaccttataacactatttccagtaaaggtggaattgagtatcagagggat






tactgcggtgttaaggtagccctgccacgtggctctccaggcagggccaagaa






gacagcacaaagtatgggtttggccataagctcatatgctgcccccaaagact






ggggagagctgtgtgcctcagtgttgcagtgtgaattcctaaatagagggtaa






agtgagcctagccaggaggtgtttggggctctatcgcgcatctctcctaccaa






gctgggcaagagcttttaggagattcatccagctttgtggatttagaaaggaagcctt






cagttccaatcagaatc




1498
GTGTCTTTGTACTTGGTTCATTGCC




1499
TCATTGCCCTTCACCTGGTAGAGAA




1500
GTCACCTTATAACACTATTTCCAGT




1501
CTGCGGTGTTAAGGTAGCCCTGCCA




1502
TGGCTCTCCAGGCAGGGCCAAGAAG




1503
TTGGCCATAAGCTCATATGCTGCCC




1504
AGACTGGGGAGAGCTGTGTGCCTCA




1505
GTGTGCCTCAGTGTTGCAGTGTGAA




1506
CAGGAGGTGTTTGGGGCTCTATCGC




1507
GAAGCCTTCAGTTCCAATCAGAATC





LUC7L2
220099_s_at
1508
GATGCTGATCTCTTTATTCTTTCAA
gatgctgatctctttattctttcaagtaagagtgctagtgaacaaattgtgtt
NM_016007.1






acttggccttgggattttttgaacgtttgtaaaatgctgtcttcctagtccaa






acagctgcagctttgggcatttttctttttaattattcttcctctgactttgt






atcccttaatacctacactctccaattgtaagagaaagggggcagggaagcaa






tatagcttccattctaaggctgtattcccgttatgaattactagctgattaca






gttcagagcattgatcctggaatgtgtgctggagaaatttaaaatactggggt






tttttgtttaatggtgcctatttagagttggaagttgaacagctgttgcatta






catacttttgcttttttattgaaattttgaaatcaaacgtcttgatttttctg






ttctgttgaattgctatgttcaggatgttctagggggtgggggcagggactcttttcg






taataag




1509
AATGCTGTCTTCCTAGTCCAAACAG




1510
AGCTGCAGCTTTGGGCATTTTTCTT




1511
AATTATTCTTCCTCTGACTTTGTAT




1512
TCCTCTGACTTTGTATCCCTTAATA




1513
CTTAATACCTACACTCTCCAATTGT




1514
AAGGCTGTATTCCCGTTATGAATTA




1515
GAACAGCTGTTGCATTACATACTTT




1516
GATTTTTCTGTTCTGTTGAATTGCT




1517
GTTCAGGATGTTCTAGGGGGTGGGG




1518
GGGCAGGGACTCTTTTCGTAATAAG





MNAB
220202_s_at
1519
TGGGGTGCGATTTCCAGATCTTCCC
tggggtgcgatttccagatcttcccgtacaggttaccataccacagatcctgt
NM_018835.1






ccaggccactgcttcccaaggaagtgcgactaagcccatcagtgtatcagatt






atgtcccttatgtcaatgctgttgattcaaggtggagttcatatggcaacgag






gccacatcatcagcacactatgttgaaagggacagattcattgttactgattt






atctggtcatagaaagcattccagtactggggaccttttgagccttgaacttc






agcaggccaagagcaactcattacttcttcagagagaggccaatgctttggccatgc






aacagaagtggaattccctggatgaaggccgtcac




1520
TTCCCGTACAGGTTACCATACCACA




1521
GTGCGACTAAGCCCATCAGTGTATC




1522
TATGTCCCTTATGTCAATGCTGTTG




1523
GTGGAGTTCATATGGCAACGAGGCC




1524
GCCACATCATCAGCACACTATGTTG




1525
TACTGGGGACCTTTTGAGCCTTGAA




1526
GAGCCTTGAACTTCAGCAGGCCAAG




1527
AGAGCAACTCATTACTTCTTCAGAG




1528
CAATGCTTTGGCCATGCAACAGAAG




1529
GAATTCCCTGGATGAAGGCCGTCAC





CECR7
220452_x_at
1530
GATGAGAAAGACCTGACTGTGCCCC
gatgagaaagacctgactgtgccccagcccgacacccataaagggtctgtgct
NM_021031.1






gaggtggattagtaaaagaggaaagcctcttgcagttgagatagaggaaggcc






actgtctctgcctgcccctgggaactgaatgtctcggtataaaaccgattgta






catttgttcaattctgagataggagaaaaccgccctatggtgggagcgagaca






tgtttcgagcaatgctgccttgttattctttactccgctgagatgtttgggtg






gagagaaacataaatctggcctacatgcacatccgggcatagtaccttccctt






gaacttaatcatgacacagattcttttgctcacatgttttttgctgaccttct






ccttattatcaccctgctgtcctactacattcctttttgctgaaataatgaaa






ataatagtcaataaaaactgagggaactcaaaggccggtgccagtgcaggtcc






ttggtgtgtcgaatactggtcccc




1531
TAGAGGAAGGCCACTGTCTCTGCCT




1532
GCCCCTGGGAACTGAATGTCTCGGT




1533
GTGGGAGCGAGACATGTTTCGAGCA




1534
AGCAATGCTGCCTTGTTATTCTTTA




1535
ATAAATCTGGCCTACATGCACATCC




1536
AGTACCTTCCCTTGAACTTAATCAT




1537
GACACAGATTCTTTTGCTCACATGT




1538
GCTCACATGTTTTTTGCTGACCTTC




1539
TCAAAGGCCGGTGCCAGTGCAGGTC




1540
CTTGGTGTGTCGAATACTGGTCCCC





TH1L
220607_x_at
1541
ACTTCCTGTTGTCAGTTACATCCGA
acttcctgttgtcagttacatccgaaagtgtctggagaagctggacactgaca
NM_016397.1






tttcactcattcgctattttgtcactgaggtgctggacgtcattgctcctcct






tatacctctgacttcgtgcaacttttcctccccatcctggagaatgacagcat






cgcaggtaccatcaaaacggaaggcgagcatgaccctgtgacggagtttatag






ctcactgcaaatctaacttcatcatggtgaactaatttagagcatcctccaga






gctgaagcagaacattccagaacccgttgtggaaaaaccctttcaagaagctg






ttttaagaggctcgggcagcgtcttgaaaatgggcaccgctgggaggaggtgg






atgacttctttacaaaggaaaatggcaggcgctgggctcccacgacccctcag






gacagatctggccgtcagccgcgggccgctgggaactccactcggggaactcctttcc






aagctgacctcagttttctcac




1542
GGACACTGACATTTCACTCATTCGC




1543
TCACTCATTCGCTATTTTGTCACTG




1544
GTCACTGAGGTGCTGGACGTCATTG




1545
TTTTCCTCCCCATCCTGGAGAATGA




1546
GAATGACAGCATCGCAGGTACCATC




1547
CGAGCATGACCCTGTGACGGAGTTT




1548
GAGCATCCTCCAGAGCTGAAGCAGA




1549
GCAGAACATTCCAGAACCCGTTGTG




1550
TTAAGAGGCTCGGGCAGCGTCTTGA




1551
TCCAAGCTGACCTCAGTTTTCTCAC





KLRF1
220646_s_at
1552
ATCCAGGATTTTTATTCGTCGCTTA
atattcttcataaagggaccagctaaagaaaacagctgtgctgccattaagga
NM_016523.1






aagcaaaattttctctgaaacctgcagcagtgttttcaaatggatttgtcagt






attagagtttgacaaaattcacagtgaaataatcaatgatcactatttttggc






ctattagtttctaatattaatctccaggtgtaagattttaaagtgcaattaaa






tgccaaaatctcttctcccttctccctccatcatcgacactggtctagcctca






gagtaacccctgttaacaaactaaaatgtacacttcaaaatttttacgtgata






gtataaaccaatgtgacttcatgtgatcatatccaggatttttattcgtcgct






tattttatgccaaatgtgatcaaattatgcctgtttttctgtatcttgcgttt






taaattcttaataaggtcctaaacaaaatttcttatatttctaatggttgaat






tataatgtgggtttatacattttttacccttttgtcaaagagaattaactttgtttcc






aggcttttgctact




1553
TTATTCGTCGCTTATTTTATGCCAA




1554
AATGTGATCAAATTATGCCTGTTTT




1555
ACTTTGTTTCCAGGCTTTTGCTACT




1556
ATATTCTTCATAAAGGGACCAGCTA




1557
ACAGCTGTGCTGCCATTAAGGAAAG




1558
AAATTTTCTCTGAAACCTGCAGCAG




1559
CAATGATCACTATTTTTGGCCTATT




1560
CTCCATCATCGACACTGGTCTAGCC




1561
TAGCCTCAGAGTAACCCCTGTTAAC




1562
GTGACTTCATGTGATCATATCCAGG





TBX21
220684_at
1563
TCCTGGCCCACGATGAAACCTGAGA
tcctggcccacgatgaaacctgagaggggtgtccccttgccccatcctctgcc
NM_013351.1






ctaactacagtcgtttacctggtgctgcgtcttgcttttggtttccagctgga






gaaaagaagacaagaaagtcttgggcatgaaggagctttttgcatctagtggg






tgggaggggtcaggtgtgggacatgggagcaggagactccactttcttccttt






gtacagtaactttcaaccttttcgttggcatgtgtgttaatccctgatccaaa






aagaacaaatacacgtatgttataaccatcagcccgccagggtcagggaaagg






actcacctgactttggacagctggcctgggctccccctgctcaaacacagtgg






ggatcagagaaaaggggctggaaaggggggaatggcccacatctcaagaagcaa




1564
CTCTGCCCTAACTACAGTCGTTTAC




1565
TACAGTCGTTTACCTGGTGCTGCGT




1566
GGAGCTTTTTGCATCTAGTGGGTGG




1567
GGGGTCAGGTGTGGGACATGGGAGC




1568
AACTTTCAACCTTTTCGTTGGCATG




1569
GGCATGTGTGTTAATCCCTGATCCA




1570
CGTATGTTATAACCATCAGCCCGCC




1571
GCCCGCCAGGGTCAGGGAAAGGACT




1572
GAAAGGACTCACCTGACTTTGGACA




1573
GAATGGCCCACATCTCAAGAAGCAA





DDX47
220890_s_at
1574
AGCCCAAAGGTTTGCCCGAATGGAG
agcccaaaggtttgcccgaatggagttaagggagcatggagaaaagaagaaac
NM_016355.1






gctcgcgagaggatgctggagataatgatgacacagagggtgctattggtgtc






aggaacaaggtggctggaggaaaaatgaagaagcggaaaggccgttaatcact






tttatgaaggctcgagttctgctgttctgtaaaagagaattggagaatgaaac






ctgctccaacagagatcatgagactgaaattggtcagaattgtgtccagaatg






tgctcagctaattcagtattcttccccattctgggttggagtttactgcagag






taattcttacagtgctgatgtcaagactgttactgttcttcgactttgattcc






ttgctcatgacatgagtagggtgtgctcttctgtcacttcacacagacctttt






gccttttttagctgcaagtcaaggactaggttgatgatgcccatgacctgtaa






ttgtaaagaagcttggacatctgcaaatgatatttaaaccatcttggcttgtg






ctt




1575
GAAACGCTCGCGAGAGGATGCTGGA




1576
GAGGGTGCTATTGGTGTCAGGAACA




1577
AATTGTGTCCAGAATGTGCTCAGCT




1578
TCAGCTAATTCAGTATTCTTCCCCA




1579
GTTACTGTTCTTCGACTTTGATTCC




1580
GACTTTGATTCCTTGCTCATGACAT




1581
CATGAGTAGGGTGTGCTCTTCTGTC




1582
CTGTCACTTCACACAGACCTTTTGC




1583
GATGATGCCCATGACCTGTAATTGT




1584
ATTTAAACCATCTTGGCTTGTGCTT





DENND2D
221081_s_at
1585
TTCTCACTTTTCATCCAGGAAGCCG
ttctcacttttcatccaggaagccgagaagagcaagaatcctcctgcaggcta
NM_024901.1






tttccaacagaaaatacttgaatatgaggaacagaagaaacagaagaaaccaa






gggaaaaaactgtgaaataagagctgtggtgaataagaatgactagagctaca






caccatttctggacttcagcccctgccagtgtggcaggatcagcaaaactgtc






agctcccaaaatccatatcctcactctgagtcttggtatccaggtattgcttc






aaactggtgtctgagatttggatccctggtattgatttctcaggactttggag






ggctctgacaccatgctcacagaactgggctcagagctccattttttgcagag






gtgacacaggtaggaaacagtagtacatgtgttgtagacacttggttagaagc






tgctgcaactgccctctcccatcattataacatcttcaacacagaacacactt






tgtggtcgaaaggctcagcctctctacatgaagtctg




1586
AAGAGCAAGAATCCTCCTGCAGGCT




1587
GAGCTACACACCATTTCTGGACTTC




1588
GGATCAGCAAAACTGTCAGCTCCCA




1589
ATCCTCACTCTGAGTCTTGGTATCC




1590
GGTGTCTGAGATTTGGATCCCTGGT




1591
GACACCATGCTCACAGAACTGGGCT




1592
GGCTCAGAGCTCCATTTTTTGCAGA




1593
TGGTTAGAAGCTGCTGCAACTGCCC




1594
TTTGTGGTCGAAAGGCTCAGCCTCT




1595
GCTCAGCCTCTCTACATGAAGTCTG





LOC339047
221501_x_at
1596
TGATAACTCCCTGAGCCTCAAGACA
gaatggcggcagtggagcatcgtcattcttcaggattgccctactggccctac
AF229069.1






ctcacagctgaaactttaaaaaacaggatgggccaccagccacctcctccaac






tcaacaacattctataattgataactccctgagcctcaagacaccttccgagt






gtgtgctctatccccttccaccctcagcggatgataatctcaagacacctccc






gagtgtctgctcactccccttccaccctcagctctaccctcagcggatgataa






tctcaagacacctgccgagtgcctgctctatccccttccaccctcagcggatg






ataatctcaagacacctcccgagtgtctgctcactccccttccaccctcagctccac






cctcagcggatgataatctcaagacacctcctgagtgtgtctgctca




1597
AGACACCTTCCGAGTGTGTGCTCTA




1598
GAATGGCGGCAGTGGAGCATCGTCA




1599
CCTTCCACCCTCAGCGGATGATAAT




1600
TGATAATCTCAAGACACCTCCCGAG




1601
AGCTCTACCCTCAGCGGATGATAAT




1602
TAATCTCAAGACACCTGCCGAGTGC




1603
GATGATAATCTCAAGACACCTCCCG




1604
CATCGTCATTCTTCAGGATTGCCCT




1605
GCTCCACCCTCAGCGGATGATAATC




1606
GACACCTCCTGAGTGTGTCTGCTCA





PYCARD
221666_s_at
1607
CTGGATGCGCTGGAGAACCTGACCG
ctggatgcgctggagaacctgaccgccgaggagctcaagaagttcaagctgca
BC004470.1






ggcggccacgcaccagggctctggagccgcgccagctgggatccaggcccctc






ctcagtcggcagccaagccaggcctgcactttatagaccagcaccgggctgcg






cttatcgcgagggtcacaaacgttgagtggctgctggatgctctgtacgggaa






ggtcctgacggatgagcagtaccaggcagtgcgggccgagcccaccaacccaa






gcaagatgcggaagctcttcagtttcacaccagcctggaactggacctgcaaggact






tgctcctccaggccctaagggagtcccagtcctacctggtggaggac




1608
GGCCTGCACTTTATAGACCAGCACC




1609
GCGCTTATCGCGAGGGTCACAAACG




1610
GTCACAAACGTTGAGTGGCTGCTGG




1611
CTGCTGGATGCTCTGTACGGGAAGG




1612
GTACGGGAAGGTCCTGACGGATGAG




1613
TGAGCAGTACCAGGCAGTGCGGGCC




1614
TGCGGAAGCTCTTCAGTTTCACACC




1615
GGAACTGGACCTGCAAGGACTTGCT




1616
CTCCAGGCCCTAAGGGAGTCCCAGT




1617
GTCCCAGTCCTACCTGGTGGAGGAC





IMP3
221688_s_at
1618
TCAATAAATGCCCCAACTGCTTTGT
gcgcagcatggaggactttgtcacttgggtggactcgtccaagatcaagcggc
AL136913.1






acgtgctagagtacaatgaggagcgcgatgacttcgatctggaagcctagcgg






atctcccactttgcatggctgtcttttacagatgggaaaactgaggcctgatg






ctggagattctatgagggtgctctcctcaagggtatcagacggtcgtaggttc






ttaagaatttgattcatcagtggcaggccatgcatagagccacgggaggtgcg






tccttgttttccaggaaatgttcttagaacttggactactgattattaattga






ctgtgccttgggaaacagtgggaagtaacttggtgcagcactggggtattgtt






ggactggttcaattcgtttaactcgaattcttgctcctggccgtggttaagct






gtgtacagatgatggagagtttggcctcaagtttttataaactgagcgagact






agtgttcaggatctcctcccttgtttaaatgtcaataaatgccccaactgctttgt




1619
GCGCAGCATGGAGGACTTTGTCACT




1620
TTTGTCACTTGGGTGGACTCGTCCA




1621
GACTCGTCCAAGATCAAGCGGCACG




1622
GGAGCGCGATGACTTCGATCTGGAA




1623
CCCACTTTGCATGGCTGTCTTTTAC




1624
GAGGCCTGATGCTGGAGATTCTATG




1625
GGTGCTCTCCTCAAGGGTATCAGAC




1626
GCATAGAGCCACGGGAGGTGCGTCC




1627
CTCCTGGCCGTGGTTAAGCTGTGTA




1628
ATCTCCTCCCTTGTTTAAATGTCAA





CSPG2
221731_x_at
1629
TTTCAGCACCGATGGCCATGTAAAT
tttcagcaccgatggccatgtaaataagatgatttaatgttgattttaatcct
J02814.1






gtatataaantaaaaagtncncaatgagtttngggcatatttaatgatgatta






tggagccttagaggtctttaatcattggttcnggctgcttttatgtagtttag






gctggaaatggtttcacttgctctttgactgtcagcaagactgaagatggctt






ttcctggacagctagaaaacacaaaatcttgtaggtcattgcacctatctcag






ccataggtgcagtttgcttctacatgatgctaaaggctgcgaatgggatcctg






atggaactaaggactccaatgtcgaactcttctttgctgcattcctttttctt






cacttacaagaaaggcctgaatggaggacttttctgtaaccaggaacattttt






taggggtcaaagtgctaataattaactcaaccaggtctactttttaatggctt






tcataacactaactcataaggttaccgatcaatgcatttcatacggatatagacctag






ggctctggagggtgggg




1630
GAAATGGTTTCACTTGCTCTTTGAC




1631
GAAGATGGCTTTTCCTGGACAGCTA




1632
TGTAGGTCATTGCACCTATCTCAGC




1633
GGTGCAGTTTGCTTCTACATGATGC




1634
GGCTGCGAATGGGATCCTGATGGAA




1635
CCAATGTCGAACTCTTCTTTGCTGC




1636
CATTCCTTTTTCTTCACTTACAAGA




1637
GGTCTACTTTTTAATGGCTTTCATA




1638
AAGGTTACCGATCAATGCATTTCAT




1639
AGACCTAGGGCTCTGGAGGGTGGGG





GNLY
37145_at
1640
TCCTTGCAGCCATGCTCCTGGGCAA
tccttgcagccatgctcctgggcaacccaggtctggtcttntctcgtctgagc
M85276






ccnnngtacnacgancnngcaagancccacctnnntgntgaggagaaatcctn






gcccgtgncnngnccaggaggnnccnnnnnnnnnnnnnnngaccaaaacacag






gnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn






nnnnnnggataagcccacccagagaagtgtttccaatgctgcgacccgggtgt






gtaggacggggaggtcacgatggcgcgacgtctgcagaaatttcatgaggagg






tatcagtctagagttacccagggcctcgtggccggagaaactgcccagcagat






ctgtgaggacctcaggttgtgtataccttctacaggtcccctctgagccctctcacc






ttgtcctgtggaagaagcacag




1641
ATGCTCCTGGGCAACCCAGGTCTGG




1642
TGCTCCTGGGCAACCCAGGTCTGGT




1643
CCACCCAGAGAAGTGTTTCCAATGC




1644
CACCCAGAGAAGTGTTTCCAATGCT




1645
GAGAAGTGTTTCCAATGCTGCGACC




1646
TGTTTCCAATGCTGCGACCCGGGTG




1647
TCCAATGCTGCGACCCGGGTGTGTA




1648
CACGATGGCGCGACGTCTGCAGAAA




1649
GCGCGACGTCTGCAGAAATTTCATG




1650
GACGTCTGCAGAAATTTCATGAGGA




1651
GTATCAGTCTAGAGTTACCCAGGGC




1652
TGCCCAGCAGATCTGTGAGGACCTC




1653
ATACCTTCTACAGGTCCCCTCTGAG




1654
GCCCTCTCACCTTGTCCTGTGGAAG




1655
ACCTTGTCCTGTGGAAGAAGCACAG





TMEM161A
43977_at
1656
CCTCATCTGGTGGACGGCTGCCTGC
cctcatctggtggacggctgcctgccagctgctcgccagccttttcggcctct
AI660497






acttccaccagcacttggcaggctcctagctgcctgcagaccctcctggggcc






ctgaggtctgttcctggggcagcgggacactagcctgccccctctgtttgcgc






ccccgtgtccccagctgcaaggtggggccggactccccggcgttcccttcacc






acagtgcctgacccgcggccccccttggacgccgagtttctgcctcagaactg






tctctcctgggcccagcagcatgagggtcccgaggccattgtctccgaagcgt






atgtgccaggtttgagtggcgagggtgatgctggctgctcttctgaacaaataaag




1657
CTCATCTGGTGGACGGCTGCCTGCC




1658
TACTTCCACCAGCACTTGGCAGGCT




1659
CCAGCACTTGGCAGGCTCCTAGCTG




1660
CTTGGCAGGCTCCTAGCTGCCTGCA




1661
TCCTGGGGCCCTGAGGTCTGTTCCT




1662
CCCTGAGGTCTGTTCCTGGGGCAGC




1663
CCCGTGTCCCCAGCTGCAAGGTGGG




1664
TGGACGCCGAGTTTCTGCCTCAGAA




1665
GTTTCTGCCTCAGAACTGTCTCTCC




1666
CATTGTCTCCGAAGCGTATGTGCCA




1667
CTCCGAAGCGTATGTGCCAGGTTTG




1668
CCGAAGCGTATGTGCCAGGTTTGAG




1669
CGAGGGTGATGCTGGCTGCTCTTCT




1670
TGATGCTGGCTGCTCTTCTGAACAA




1671
TGGCTGCTCTTCTGAACAAATAAAG








Claims
  • 1. A method for treating a subject having cancer with an immunotherapeutic agent, comprising determining expression level of at least one gene in a blood sample obtained from the subject, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3;determining likelihood of clinical response of the subject to the treatment based on the expression level of the at least one gene in the blood sample, wherein the expression level of the at least one gene selected from the first group of genes is positively correlated with the likelihood of clinical response, andwherein the expression level of the at least one gene selected from the second group of genes is negatively correlated with the likelihood of clinical response; andadministering to the subject a therapeutically effective amount of the immunotherapeutic agent for treating the cancer.
  • 2. The method claim 1, wherein the at least one gene is selected from IL2RB, KLRK1, G3BP, PPP1R16B, CLIC3, PRF1, SPON2, HOP, GNLY, TMEM161A, PRKCH, RUNX3, EOMES, SLC25A5, GZMB, IMP3, and ZAP70, wherein the expression level of the at least one gene is positively correlated with the likelihood of clinical response.
  • 3. The method claim 1, wherein the at least one gene is selected from ASGR1, ASGR2, CENTA2, PGLS, MAPBPIP, STX10, C16ORF68, and RAB31, wherein the expression level of the at least one gene is negatively correlated with the likelihood of clinical response.
  • 4. The method claim 1, wherein the expression level of at least two genes in the blood sample is determined, and wherein determining the likelihood of clinical response is based on the expression level of the at least two genes in the blood sample.
  • 5. The method of claim 4, wherein a first gene of the at least two genes is selected from the first group of genes as listed in Table 2, and a second gene of the at least two genes is selected from the second group of genes as listed in Table 3.
  • 6. The method of claim 5, wherein the first gene is selected from IL2RB, KLRK1, G3BP, PPP1R16B, CLIC3, PRF1, SPON2, HOP, GNLY, TMEM161A, PRKCH, RUNX3, EOMES, SLC25A5, GZMB, IMP3, and ZAP70.
  • 7. The method of claim 5, wherein the second gene is selected from ASGR1, ASGR2, CENTA2, PGLS, MAPBPIP, STX10, C16ORF68, and RAB31.
  • 8. The method of claim 5, wherein the first gene is IL2RB and the second gene is selected from ASGR1 and ASGR2.
  • 9. The method of claim 8, wherein the first gene is IL2RB and the second gene is ASGR2.
  • 10. The method of claims 4, wherein determining the likelihood of clinical response comprises subjecting the expression level of the at least two genes to a formula to calculate a score,wherein the formula is pre-determined by statistical analysis of (a) clinical response of a plurality of patients having the cancer to treatment with the immunotherapeutic agent and (b) the expression level of the at least two genes in pre-treatment blood samples from the plurality of patients.
  • 11. The method of claim 10, wherein a first gene of the at least two genes is selected from the first group of genes as listed in Table 2, and a second gene of the at least two genes is selected from the second group of genes as listed in Table 3, wherein the formula for calculating the score is Score=−C1*Xfirst gene+C2*Xsecond gene,wherein Xfirst gene and Xsecond gene are normalized mRNA expression level of the first and the second gene, respectively, and C1 and C2 are each, independently, a number ranging from 0.01 to 3, andwherein the score is negatively correlated with the likelihood of clinical response.
  • 12. The method of claim 11, wherein C1 ranges from 0.1 to 2, and C2 ranges from 0.1 to 1.5.
  • 13. The method of claim 11, wherein the first gene is IL2RB, and the second gene is ASGR2, and wherein C1 ranges from 0.2 to 1.5, and C2 ranges from 0.1 to 1.
  • 14. The method of claim 11, wherein the score is compared to a predetermined threshold, wherein a score that is lower than the threshold is indicative of high likelihood of clinical response, and a score that is higher than the threshold is indicative of low likelihood of clinical response.
  • 15. The method of any of claims 1-14, wherein the expression level of the at least one gene is measured by at least one method selected from microarray, quantitative polymerase chain reaction (qPCR), and flow cytometry.
  • 16. The method of any one of claims 1-15, wherein the immunotherapeutic agent is an anti-CTLA4 antibody.
  • 17. The method of claim 16, wherein the anti-CTLA4 antibody is ipilimumab.
  • 18. The method of any one of claims 1-17, wherein the cancer is selected from melanoma, prostate cancer, lung cancer, ovarian cancer, gastric cancer, and glioblastoma.
  • 19. The method of claim 18, wherein the cancer is advanced melanoma.
  • 20. The method of claim 18, wherein the cancer is metastatic melanoma.
  • 21. The method of claim 18, wherein the cancer is stage III or IV melanoma.
  • 22. The method of claim 21, wherein the cancer is unresectable stage III or IV melanoma.
  • 23. The method of claim 1-22, wherein determining the likelihood of clinical response is based on the gene expression level and at least one additional factor.
  • 24. The method claim 23, wherein the at least one additional factor is selected from baseline serum LDH level and disease stage.
  • 25. The method claim 24, wherein the at least one additional factor is baseline serum LDH level.
  • 26. The method of any one of claims 1-25, wherein the subject is not being treated with the immunotherapeutic agent at the time the likelihood of clinical response of the subject is determined.
  • 27. A method of predicting likelihood of clinical response of a subject having cancer o treatment with an immunotherapeutic agent, comprising: obtaining a blood sample from the subject before the treatment,determining expression level of at least one gene in the blood sample, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3;determining likelihood of clinical response to the treatment based on the expression level of the at least one gene in the blood sample, wherein the expression level of the at least one gene selected from the first group of genes is positively correlated with the likelihood of clinical response, andwherein the expression level of the at least one gene selected from the second group of genes is negatively correlated with the likelihood of clinical response.
  • 28. The method claim 27, wherein the at least one gene is selected from IL2RB, KLRK1, G3BP, PPP1R16B, CLIC3, PRF1, SPON2, HOP, GNLY, TMEM161A, PRKCH, RUNX3, EOMES, SLC25A5, GZMB, IMP3, and ZAP70, wherein the expression level of the at least one gene is positively correlated with the likelihood of clinical response.
  • 29. The method claim 27, wherein the at least one gene is selected from ASGR1, ASGR2, CENTA2, PGLS, MAPBPIP, STX10, C16ORF68, and RAB31, wherein the expression level of the at least one gene is negatively correlated with the likelihood of clinical response.
  • 30. The method claim 27, wherein the expression level of at least two genes in the blood sample is determined, and wherein determining the likelihood of clinical response is based on the expression level of the at least two genes in the blood sample.
  • 31. The method of claim 30, wherein a first gene of the at least two genes is selected from the first group of genes as listed in Table 2, and a second gene of the at least two genes is selected from the second group of genes as listed in Table 3.
  • 32. The method of claim 31, wherein the first gene is selected from IL2RB, KLRK1, G3BP, PPP1R16B, CLIC3, PRF1, SPON2, HOP, GNLY, TMEM161A, PRKCH, RUNX3, EOMES, SLC25A5, GZMB, IMP3, and ZAP70.
  • 33. The method of claim 31, wherein the second gene is selected from ASGR1, ASGR2, CENTA2, PGLS, MAPBPIP, STX10, C16ORF68, and RAB31.
  • 34. The method of claim 31, wherein the first gene is IL2RB and the second gene is selected from ASGR1 and ASGR2.
  • 35. The method of claim 34, wherein the first gene is IL2RB and the second gene is ASGR2.
  • 36. The method of claims 30, wherein determining the likelihood of clinical response comprises subjecting the expression level of the at least two genes to a formula to calculate a score,wherein the formula is pre-determined by statistical analysis of (a) clinical response of a plurality of patients having the cancer to treatment with the immunotherapeutic agent and (b) the expression level of the at least two genes in pre-treatment blood samples from the plurality of patients.
  • 37. The method of claim 36, wherein a first gene of the at least two genes is selected from the first group of genes as listed in Table 2, and a second gene of the at least two genes is selected from the second group of genes as listed in Table 3, wherein the formula for calculating the score is Score=−C1*Xfirst gene+C2*Xsecond gene,wherein Xfirst gene and Xsecond gene are normalized mRNA expression level of the first and the second gene, respectively, and C1 and C2 are each, independently, a number ranging from 0.01 to 3, andwherein the score is negatively correlated with the likelihood of clinical response.
  • 38. The method of claim 37, wherein C1 ranges from 0.1 to 2, and C2 ranges from 0.1 to 1.5.
  • 39. The method of claim 38, wherein the first gene is IL2RB, and the second gene is ASGR2, and wherein C1 ranges from 0.2 to 1.5, and C2 ranges from 0.1 to 1.
  • 40. The method of claim 32, wherein the score is compared to a predetermined threshold, wherein a score that is lesser than the threshold is indicative of high likelihood of clinical response, and a score that is greater than the threshold is indicative of low likelihood of clinical response.
  • 41. The method of any of claims 27-40, wherein the expression level of the at least one gene is measured by at least one method selected from microarray, quantitative polymerase chain reaction (qPCR), and flow cytometry.
  • 42. The method of any one of claims 27-41, wherein the immunotherapeutic agent is an anti-CTLA4 antibody.
  • 43. The method of claim 42, wherein the anti-CTLA4 antibody is ipilimumab.
  • 44. The method of any one of claims 27-43, wherein the cancer is selected from melanoma, prostate cancer, lung cancer, ovarian cancer, gastric cancer, and glioblastoma.
  • 45. The method of claim 44, wherein the cancer is advanced melanoma.
  • 46. The method of claim 44, wherein the cancer is metastatic melanoma.
  • 47. The method of claim 44, wherein the cancer is stage III or IV melanoma.
  • 48. The method of claim 47, wherein the cancer is unresectable stage III or IV melanoma.
  • 49. The method of claim 27-48, wherein determining the likelihood of clinical response is based on the gene expression level and at least one additional factor.
  • 50. The method claim 49, wherein the at least one additional factor is selected from baseline serum LDH level and disease stage.
  • 51. The method claim 50, wherein the at least one additional factor is baseline serum LDH level.
  • 52. The method of any one of claims 27-51, wherein the subject is not being treated with the immunotherapeutic agent at the time the likelihood of clinical response of the subject is determined.
  • 53. A method for treating a subject having melanoma with an ipilimumab, comprising determining expression level of at least one gene in a blood sample obtained from the subject, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3;determining likelihood of clinical response to the treatment based on the expression level of the at least one gene in the blood sample, wherein the expression level of the at least one gene selected from the first group of genes is positively correlated with the likelihood of clinical response, andwherein the expression level of the at least one gene selected from the second group of genes is negatively correlated with the likelihood of clinical response; andadministering to the subject a therapeutically effective amount of the ipilimumab for treating melanoma.
  • 54. A method for treating a subject having melanoma with an ipilimumab, comprising determining expression level of at least one gene in a blood sample obtained from the subject, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3;determining likelihood of clinical response to the treatment based on the expression level of the at least one gene in the blood sample, wherein the expression level of the at least one gene selected from the first group of genes is positively correlated with the likelihood of clinical response, andwherein the expression level of the at least one gene selected from the second group of genes is negatively correlated with the likelihood of clinical response; andadministering to the subject a therapeutically effective amount of the ipilimumab for treating melanoma if the likelihood of clinical response is higher than a predetermined value.
  • 55. A method for determining whether to treat a subject having cancer with a immunotherapeutic agent, comprising obtaining a blood sample from the subject,determining expression level of at least one gene in a blood sample obtained from the subject, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3;determining likelihood of clinical response to the treatment based on the expression level of the at least one gene in the blood sample, wherein the expression level of the at least one gene selected from the first group of genes is positively correlated with the likelihood of clinical response, andwherein the expression level of the at least one gene selected from the second group of genes is negatively correlated with the likelihood of clinical response; anddetermining whether to treat the subject having cancer with the immunotherapeutic agent based on the likelihood of clinical response.
  • 56. A method for determining whether to treat a subject having melanoma with ipilimumab, comprising obtaining a blood sample from the subject,determining expression level of at least one gene in a blood sample obtained from the subject, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3;determining likelihood of clinical response to the treatment based on the expression level of the at least one gene in the blood sample, wherein the expression level of the at least one gene selected from the first group of genes is positively correlated with the likelihood of clinical response, andwherein the expression level of the at least one gene selected from the second group of genes is negatively correlated with the likelihood of clinical response; anddetermining whether to treat the subject having cancer with ipilimumab based on the likelihood of clinical response.
  • 57. A kit comprising one or more reagents for determining expression level of at least one gene in a blood sample, wherein the at least one gene is selected from a first group of genes as listed in Table 2 and a second group of genes as listed in Table 3.
  • 58. The kit of claim 57, wherein the one or more reagents are used to determine mRNA expression level of the at least one gene.
  • 59. The kit of claim 57, comprising at least one polynucleotide capable of specifically hybridizing to the at least one gene.
  • 60. The method claim 57, wherein the at least one gene is selected from IL2RB, KLRK1, G3BP, PPP1R16B, CLIC3, PRF1, SPON2, HOP, GNLY, TMEM161A, PRKCH, RUNX3, EOMES, SLC25A5, GZMB, IMP3, and ZAP70.
  • 61. The method claim 57, wherein the at least one gene is selected from ASGR1, ASGR2, CENTA2, PGLS, MAPBPIP, STX10, C16ORF68, and RAB31.
  • 62. The method claim 57, wherein the kit comprises one or more reagents for determining expression level of at least two genes in the blood sample.
  • 63. The method of claim 62, wherein a first gene of the at least two genes is selected from the first group of genes as listed in Table 2, and a second gene of the at least two genes is selected from the second group of genes as listed in Table 3.
  • 64. The method of claim 63, wherein the first gene is selected from IL2RB, KLRK1, G3BP, PPP1R16B, CLIC3, PRF1, SPON2, HOP, GNLY, TMEM161A, PRKCH, RUNX3, EOMES, SLC25A5, GZMB, IMP3, and ZAP70.
  • 65. The method of claim 63, wherein the second gene is selected from ASGR1, ASGR2, CENTA2, PGLS, MAPBPIP, STX10, C16ORF68, and RAB31.
  • 66. The method of claim 63, wherein the first gene is IL2RB and the second gene is selected from ASGR1 and ASGR2.
  • 67. The method of claim 66, wherein the first gene is IL2RB and the second gene is ASGR2.
  • 68. A method for treating a subject having cancer with an immunotherapeutic agent, comprising determining expression levels of a first gene and a second gene in a blood sample obtained from the subject, wherein the first gene is IL2RB and a second gene is selected from ASGR1 and ASGR2;determining likelihood of longer overall survival of the subject following the treatment based on the expression levels of the first gene and the second gene in the blood sample, wherein the expression levels of the first gene and the second gene are used to calculate a score according to formula: Score=−C1*Xfirst gene+C2*Xsecond gene,wherein Xfirst gene and Xsecond gene are normalized mRNA expression levels of the first and the second gene, respectively, and C1 and C2 are each, independently, a number ranging from 0.01 to 3,wherein the score is negatively correlated with the likelihood of longer overall survival;administering to the subject a therapeutically effective amount of the immunotherapeutic agent for treating the cancer.
  • 69. The method of claim 68, wherein C1 ranges from 0.1 to 2, and C2 ranges from 0.1 to 1.5.
  • 70. The method of claim 68, wherein the first gene is IL2RB, and the second gene is ASGR2, and wherein C1 ranges from 0.2 to 1.5, and C2 ranges from 0.1 to 1.
  • 71. The method of claim 68, wherein the score is compared to a predetermined threshold, wherein a score that is lower than the threshold is indicative of high likelihood of longer overall survival, and a score that is higher than the threshold is indicative of low likelihood of longer overall survival.
  • 72. The method of any of claims 68-71, wherein the expression level of the at least one gene is measured by at least one method selected from microarray and quantitative polymerase chain reaction (qPCR).
  • 73. The method of any one of claims 68-72, wherein the immunotherapeutic agent is an anti-CTLA4 antibody.
  • 74. The method of claim 73, wherein the anti-CTLA4 antibody is ipilimumab.
  • 75. The method of any one of claims 68-74, wherein the cancer is selected from melanoma, prostate cancer, lung cancer, ovarian cancer, gastric cancer, and glioblastoma.
  • 76. The method of claim 75, wherein the cancer is advanced melanoma.
  • 77. The method of claim 75, wherein the cancer is metastatic melanoma.
  • 78. The method of claim 75, wherein the cancer is stage III or IV melanoma.
  • 79. The method of claim 78, wherein the cancer is unresectable stage III or IV melanoma.
  • 80. The method of claim 68-79, wherein determining the likelihood of clinical response is based on the gene expression level and at least one additional factor.
  • 81. The method claim 80, wherein the at least one additional factor is selected from baseline serum LDH level and disease stage.
  • 82. The method claim 80, wherein the at least one additional factor is baseline serum LDH level.
  • 83. The method of any one of claims 68-82, wherein the subject is not being treated with the immunotherapeutic agent at the time the likelihood of clinical response of the subject is determined.
  • 84. A method of predicting likelihood of longer overall survival of a subject having cancer to treatment with an immunotherapeutic agent, comprising: obtaining a blood sample from the subject before the treatment,determining expression levels of a first gene and a second gene in the blood sample obtained from the subject, wherein the first gene is IL2RB and a second gene is selected from ASGR1 and ASGR2;determining likelihood of longer overall survival of the subject following the treatment based on the expression levels of the first gene and the second gene in the blood sample, wherein the expression levels of the first gene and the second gene are used to calculate a score according to formula: Score=−C1*Xfirst gene+C2*Xsecond gene,wherein Xfirst gene and Xsecond gene are normalized mRNA expression levels of the first and the second gene, respectively, and C1 and C2 are each, independently, a number ranging from 0.01 to 3,wherein the score is negatively correlated with the likelihood of longer overall survival.
  • 85. The method of claim 84, wherein C1 ranges from 0.1 to 2, and C2 ranges from 0.1 to 1.5.
  • 86. The method of claim 84, wherein the first gene is IL2RB, and the second gene is ASGR2, and wherein C1 ranges from 0.2 to 1.5, and C2 ranges from 0.1 to 1.
  • 87. The method of claim 84, wherein the score is compared to a predetermined threshold, wherein a score that is lower than the threshold is indicative of high likelihood of longer overall survival, and a score that is higher than the threshold is indicative of low likelihood of longer overall survival.
  • 88. The method of any of claims 84-87, wherein the expression level of the at least one gene is measured by at least one method selected from microarray and quantitative polymerase chain reaction (qPCR).
  • 89. The method of any one of claims 84-88, wherein the immunotherapeutic agent is an anti-CTLA4 antibody.
  • 90. The method of claim 89, wherein the anti-CTLA4 antibody is ipilimumab.
  • 91. The method of any one of claims 84-90, wherein the cancer is selected from melanoma, prostate cancer, lung cancer, ovarian cancer, gastric cancer, and glioblastoma.
  • 92. The method of claim 91, wherein the cancer is advanced melanoma.
  • 93. The method of claim 91, wherein the cancer is metastatic melanoma.
  • 94. The method of claim 91, wherein the cancer is stage III or IV melanoma.
  • 95. The method of claim 94, wherein the cancer is unresectable stage III or IV melanoma.
  • 96. The method of claim 84-95, wherein determining the likelihood of clinical response is based on the gene expression level and at least one additional factor.
  • 97. The method claim 96, wherein the at least one additional factor is selected from baseline serum LDH level and disease stage.
  • 98. The method claim 96, wherein the at least one additional factor is baseline serum LDH level.
  • 99. The method of any one of claims 84-98, wherein the subject is not being treated with the immunotherapeutic agent at the time the likelihood of clinical response of the subject is determined.
PCT Information
Filing Document Filing Date Country Kind
PCT/US13/69975 11/14/2013 WO 00
Provisional Applications (1)
Number Date Country
61726953 Nov 2012 US