BIOMARKERS FOR PREDICTING IMMUNOGENICITY AND THERAPEUTIC RESPONSES TO ADALIMUMAB IN RHEUMATOID ARTHRITIS PATIENTS

Information

  • Patent Application
  • 20240027444
  • Publication Number
    20240027444
  • Date Filed
    November 11, 2021
    2 years ago
  • Date Published
    January 25, 2024
    3 months ago
Abstract
A method for predicting an immunogenic and/or therapeutic response to adalimumab 5 from a sample extracted from a rheumatoid arthritis patient by testing the sample for the presence of biomarkers, the biomarkers being autoantibodies to antigens comprising SSB, TROVE2 and ZHX2.
Description
FIELD OF INVENTION

The invention relates to the detection of immunological biomarkers, particularly autoantibodies, to predict immunogenicity and therapeutic responses to adalimumab in patients with Rheumatoid Arthritis (RA).


BACKGROUND

Rheumatoid arthritis (RA), a chronic inflammatory articular disease, is characterized by persistent synovitis, cartilage degradation, and bone erosions [1], and tumor necrosis factor (TNF)-α is a crucial inflammatory mediator in RA-related synovitis and joint damage [2]. The importance of the role of TNF-α in RA pathogenesis is supported by the effectiveness of biologics targeting this cytokine [2-4], although the efficacy diminishes in some patients over time (secondary failure) [5]. Accumulating evidence indicates that the presence of anti-drug antibodies (ADAb) in certain patients may be associated with low or undetectable drug levels and ensuing reduction of therapeutic responsiveness to TNF-α inhibitors [6-10]. Such ADAb responses reflect the differential immunogenicity of the given biologic drug triggered in individual patients, which results in some patients developing a neutralising antibody response against the biologic drug and others not. In the face of such uncertainty about whether individual RA patients will show therapeutic responsiveness to TNF-α inhibitors or not [11], physicians hoping to optimize personalized and precision therapy are thus eager to find biomarkers which can predict the emergence of ADAb and the effectiveness of anti-TNF-α biologics.


Proteomics research has been increasingly applied to the identification of novel biomarkers that might be useful for monitoring therapeutic response in RA patients on specific treatments [12-14]. However, there is currently limited knowledge about circulating biomarkers that are able to predict the development of ADAb in RA patients receiving anti-TNF-α therapy.


Autoantibody biomarkers as described herein are autoantibodies to antigens, autoantibodies being antibodies which are produced by an individual which are directed against one or more of the individual's own proteins (‘self’ antigens).


The aim of the present invention therefore is to provide a novel panel of autoantibody biomarkers that are able to predict immunogenicity of adalimumab and therapeutic responses to adalimumab in individual RA patients, prior to treatment with adalimumab, a widely used TNF-α inhibitor marketed under the brand name HUMIRA® and commonly used for the treatment of autoimmune diseases, such as RA, Crohn's Disease and Psoriasis.


SUMMARY OF INVENTION

In one aspect of the invention, there is provided a method for predicting a response to adalimumab from a sample extracted from a rheumatoid arthritis patient prior to treating the patient with adalimumab, said response being classified as a good response corresponding to anti-drug antibody negative or a poor response corresponding to anti-drug antibody positive, comprising the steps of:

    • (i) testing the sample for the presence of autoantibody biomarkers; and
    • (ii) determining whether the patient will develop a good response or a bad response to treatment with adalimumab, based on the detection of said autoantibody biomarkers;


      characterised in that the autoantibody biomarkers are autoantibodies to antigens comprising SSB, TROVE2 and ZHX2, wherein ZHX2 is associated with the good response, and SSB and TROVE2 are associated with the poor response.


Advantageously the autoantibody biomarkers can be used to predict immunogenicity of adalimumab and therapeutic responses to adalimumab in individual rheumatoid arthritis (RA) patients at baseline (i.e. prior to treating the patient with adalimumab).


In one embodiment the sample is tested using a panel of antigens that correspond to the autoantibody biomarkers. Typically the antigens are biotinylated proteins. Advantageously the biotinylation ensures that the antigens are folded in their correct form to ensure accuracy of detection by the autoantibody biomarkers.


In one embodiment the antigens may include one or more additional antigens from the group comprising of PPARD, SPANXN2, HNRNPA2B, TRIB2, CEP55, SH3GL1, FN3K, PANK3, HPCAL1, THRA, AIFM1, ODC1, RPS6KA4, EEF1D, KLF10, EPHA2, PRKAR1A and EAPP.


It should be noted that not all human antigens generate an autoantibody response and it is not possible to predict a priori which human antigens will do so in a given patient cohort—of the 1622 antigens tested, only autoantibodies against the 21 antigens described above are suitable as biomarkers in predicting immunogenicity of adalimumab and therapeutic responses to adalimumab in RA patient at baseline.


In one embodiment each biotinylated protein is formed from a Biotin Carboxyl Carrier Protein (BCCP) folding marker which is fused in-frame with the protein.


In one embodiment the biotinylated proteins are bound to a streptavidin-coated substrate.


Advantageously full-length proteins are expressed as fusions to the BCCP folding marker which itself becomes biotinylated in vivo when the fusion partner is correctly folded. By comparison misfolded fusion partners cause the BCCP to remain in the ‘apo’ (i.e. non-biotinylated) form such that it cannot attach to a streptavidin substrate. Thus only correctly folded fusion proteins become attached to the streptavidin substrate via the biotin moiety appended to the BCCP tag.


In one embodiment the substrate comprises a glass slide, biochip, strip, slide, bead, microtitre plate well, surface plasmon resonance support, microfluidic device, thin film polymer base layer, hydrogel-forming polymer base layer, or any other device or technology suitable for detection of antibody-antigen binding.


In one embodiment the substrate is exposed to a sample extracted from a person, such that autoantibody biomarkers from the sample may bind to the antigens. Typically the sample comprises any or any combination of exosomes, blood, serum, plasma, urine, saliva, amniotic fluid, cerebrospinal fluid, breast milk, semen or bile.


Typically the sample is collected at baseline prior to administration of the first dose of adalimumab.


In one embodiment following exposure to the sample, the substrate is exposed to a fluorescently-tagged secondary antibody to allow the amount of any autoantibodies from the sample bound to the antigens on the panel to be determined. Typically the secondary antibody is anti-human IgG, but it will be appreciated that other secondary antibodies could be used, such as anti-IgM, anti-IgG1, anti-IgG2, anti-IgG3, anti-IgG4 or anti-IgA.


In one embodiment the patient's response to treatment with adalimumab (i.e. the immunogenic and/or therapeutic response outcome to adalimumab in RA patient at baseline) corresponds to the relative or absolute amount of autoantibodies from the baseline sample specifically binding to the antigens.


In one embodiment the method is performed in vitro.


In a further aspect of the invention, there is provided a method for manufacturing a kit for predicting a response to adalimumab from a sample extracted from a rheumatoid arthritis patient prior to treating the patient with adalimumab, comprising the steps of:

    • for each antigen in a panel, cloning a biotin carboxyl carrier protein folding marker in-frame with a gene encoding the antigen and expressing the resulting biotinylated antigen;
    • binding the biotinylated antigens to addressable locations on one or more streptavidin-coated substrates, thereby forming an antigen array;
    • such that the amount of autoantibodies from the sample binding to the antigens on the panel can be determined by exposing the substrate to the sample and measuring the immunogenicity and response;
    • characterised in that the antigens comprise SSB, TROVE2 and ZHX2.


In one embodiment the antigens further comprise one or more of PPARD, SPANXN2, HNRNPA2B, TRIB2, CEP55, SH3GL1, FN3K, PANK3, HPCAL1, THRA, AIFM1, ODC1, RPS6KA4, EEF1D, KLF10, EPHA2, PRKARIA and EAPP.


In a further aspect of the invention there is provided a method for predicting immunogenicity of adalimumab and therapeutic responses to adalimumab in RA patients at baseline by exposing a composition comprising a panel of antigens as herein described to a sample extracted from a person, and determining the level of autoantibodies from the sample binding to the antigens.


In a yet further aspect of the invention there is provided a method for predicting immunogenicity of adalimumab and therapeutic responses to adalimumab in RA patients at baseline by exposing a composition comprising a panel of antigens as herein described to a sample extracted from a person in vitro, and determining the level of autoantibodies from the sample binding to the antigens.


In further aspect of the invention, there is provided a composition comprising a panel of antigens for predicting an immunogenic and/or therapeutic response to adalimumab in a rheumatoid arthritis patient who has not previously been treated with adalimumab, characterised in that the antigens comprise SSB, TROVE2 and ZHX2.


In one embodiment the antigens further comprise one or more of PPARD, SPANXN2, HNRNPA2B, TRIB2, CEP55, SH3GL1, FN3K, PANK3, HPCAL1, THRA, AIFM1, ODC1, RPS6KA4, EEF1D, KLF10, EPHA2, PRKARIA and EAPP.


In one embodiment the antigens are biotinylated proteins


In one embodiment the amount of one or more autoantibody biomarkers binding in vitro to the antigens in a sample from a patient can be measured to determine the immunogenicity and therapeutic response outcome to adalimumab in an RA patient at baseline.


In yet further aspect of the invention, there is provided a composition comprising a panel of autoantibody biomarkers for predicting an immunogenic and/or therapeutic response to adalimumab in a rheumatoid arthritis patient who has not previously been treated with adalimumab, wherein the level of the autoantibody biomarkers are measured in a sample collected from the patient;

    • characterised in that the autoantibody biomarkers are specific to antigens comprising SSB, TROVE2 and ZHX2.





BRIEF DESCRIPTION OF DRAWINGS

It will be convenient to further describe the present invention with respect to the accompanying drawings that illustrate possible arrangements of the invention. Other arrangements of the invention are possible, and consequently the particularity of the accompanying drawings is not to be understood as superseding the generality of the preceding description of the invention.



FIG. 1 illustrates the structure of the E. coli Biotin Carboxyl Carrier Protein domain.



FIG. 2 illustrates the pPRO9 plasmid used as a vector.



FIG. 3 illustrates the distribution of the normalised RFU (i.e. autoantibody responses) for all 21 biomarkers between ADAb-positive (Group A) and ADAb-negative (Group B) RA patients collected at baseline.



FIG. 4 illustrates the discriminatory performance represented as a receiver operating curve (ROC) with an area under the curve (AUC) of 0.835 for all 21 biomarkers (SSB, TROVE2, ZHX2, PPARD, SPANXN2, HNRNPA2B, TRIB2, CEP55, SH3GL1, FN3K, PANK3, HPCAL1, THRA, AIFM1, ODC1, RPS6KA4, EEF1D, KLF10, EPHA2, PRKARIA and EAPP) between ADAb-positive (Group A) and ADAb-negative (Group B) RA patients collected at baseline.



FIG. 5 illustrates the variable importance measure for each of the 21 biomarkers identified in the study.



FIG. 6 illustrates the discriminatory performance represented as a receiver operating curve (ROC) with an area under the curve (AUC) of 0.761 for the core biomarkers (SSB, TROVE2 and ZHX2) between ADAb-positive (Group A) and ADAb-negative (Group B) RA patients collected at baseline.





DETAILED DESCRIPTION

The invention utilises the Biotin Carboxyl Carrier Protein (BCCP) folding marker which is cloned in-frame with the gene encoding the protein of interest, as described above and in EP1470229. The structure of the E. coli BCCP domain is illustrated in FIG. 1, wherein residues 77-156 are drawn (coordinate file 1bdo) showing the N- and C-termini and the single biotin moiety that is attached to lysine-122 in vivo by biotin ligase.


BCCP acts not only as a protein folding marker but also as a protein solubility enhancer. BCCP can be fused to either the N- or C-terminal of a protein of interest. Full-length proteins are expressed as fusions to the BCCP folding marker which becomes biotinylated in vivo, but only when the protein is correctly folded. Conversely, misfolded proteins drive the misfolding of BCCP such that it is unable to become biotinylated by host biotin ligases. Hence, misfolded proteins are unable to specifically attach to a streptavidin-coated solid support. Therefore only correctly folded proteins become attached to a solid support via the BCCP tag.


The surface chemistry of the support is designed carefully and may use a three-dimensional thin film hydrogel layer (polyethylene glycol; PEG), which retains protein spot morphologies and ensures consistent spot sizes across the array. The PEG layer inhibits non-specific macromolecule absorption, therefore reducing the high background observed using other platforms. The solid support used to immobilize the selected biomarkers thus provides excellent signal-to-noise ratios and low limits of detection (translating in to improved sensitivity). In addition the PEG hydrogel layer also aids preservation of the folded structure and functionality of arrayed proteins and protein complexes post-immobilisation.


Retention of the correct folded structure of immobilised antigens during antibody binding assays (‘immuno-assays’) is particularly advantageous because human antibodies are known in general to specifically recognise and bind to discontinuous, solvent-accessible epitopes on protein surfaces, yet are also known to bind non-specifically to exposed hydrophobic surfaces on unfolded proteins. Thus serological assays carried out on arrays of unfolded proteins typically give rise to many false positive results due to such non-specific binding events (which have no biological relevance), whilst at the same time also giving rise to many false negative results due to the absence of biologically-relevant discontinuous epitopes. By contrast, serological assays carried out on arrays of folded antigens result in detection of biologically meaningful antibody-antigen interactions that are not obscured by high rates of non-specific binding.


As biotinylated proteins bound to a streptavidin-coated surface show negligible dissociation, this interaction therefore provides a superior means for tethering proteins to a planar surface in a controlled orientation and is thus ideal for applications such as protein arrays, SPR and bead-based assays. The use of a compact, folded, biotinylated, 80 residue domain BCCP affords two significant advantages over for example the AviTag and intein-based tag. First, the BCCP domain is cross-recognised by eukaryotic biotin ligases enabling it to be biotinylated efficiently in yeast, insect, and mammalian cells without the need to co-express the E. coli biotin ligase. Second, the N- and C-termini of BCCP are physically separated from the site of biotinylation by 50 Å (as shown in FIG. 1), so the BCCP domain can be thought of as a stalk which presents the recombinant proteins away from the solid support surface, thus minimising any deleterious effects due to immobilisation.


The addition of BCCP permits the monitoring of fusion protein folding by measuring the extent of in vivo biotinylation. This can be measured by standard blotting procedures, using SDS-PAGE or in situ colony lysis and transfer of samples to a membrane, followed by detection of biotinylated proteins using a streptavidin conjugate such as streptavidin-horseradish peroxidase. Additionally, the fact that the BCCP domain is biotinylated in vivo is particularly useful when multiplexing protein purification for fabrication of protein arrays since the proteins can be simultaneously purified from cellular lysates and immobilised in a single step via the high affinity and specificity exhibited by a streptavidin surface.


Example 1

Materials and Methods


Gene synthesis and cloning. The pPRO9 plasmid (see FIG. 2 below) was constructed by standard techniques and consists of genetic elements encoding a c-myc tag and a BCCP protein domain, preceded by a multiple-cloning site. Synthetic genes encoding individual human antigens were assembled from synthetic oligonucleotides and were cloned into pPRO9 using SpeI and NcoI cloning sites such that each resultant clonal ‘transfer vector’ encoded an in-frame fusion protein comprising a specific human antigen fused to the BCCP tag. The plasmid DNA was purified from transformed bacteria and verified by DNA sequencing. The required sequence congruence within the synthetic gene region was 100%.


Recombinant baculovirus was generated via co-transfection of Sf9 cells (a clonal isolate derived from the parental Spodoptera frugiperda cell line IPLB-Sf-21-AE) with a replication-deficient bacmid vector carrying the viral polyhedrin promoter and a transfer vector carrying a specific coding sequence for a specific antigen. Homologous recombination between the transfer vector and the bacmid within Sf9 cells resulted in formation of a replication competent baculoviral vector encoding the specific antigen fused to the BCCP tag. Successful homologous recombination between the transfer vector and the bacmid within Sf9 cells caused the transfected cells to show signs of viral cytopathic effect (CPE) within few days of culture incubation. The most common CPE observed was the significantly enlargement of average cell size, a consequences of viral progeny propagation. These baculoviruses known as P0 were then released into the culture medium, and viral amplification were done to generate a higher titre of P1 viruses.


Protein Expression. Expression of recombinant antigens was carried out in 24 well blocks using 3 ml cultures containing 6×106 Sf9 cells per well. High titre, low passage, viral stocks of recombinant baculovirus (>107 pfu/ml) were used to infect Sf9 insect cells. The infected cells were then cultured for 72 hours to allow them to produce the recombinant protein of interest. The cells were washed with PBS, resuspended in buffer, and were frozen in aliquots at −80° C. ready for lysis as required. Depending on the transfer vector construct and the nature of the antigen itself, the resultant recombinant protein lysate can be recovered either from the cultured cell or the culture medium. Expression of recombinant proteins was confirmed by SDS-PAGE as well as by Western blot using streptavidin-HRP-based detection. In total, 1622 human antigens were cloned and expressed using this methodology.


Array fabrication. Hydrogel coated, streptavidin-derivatised slides were custom manufactured by Schott and used as substrates on to which the biotinylated proteins were then printed. A total of 9 nanoliters of crude protein lysate was printed on a HS slide in quadruplicate using non-contact piezo printing technology. Print buffer that have a pH between 7.0 and 7.5 were used. The slides were dried by centrifugation (200×g for 5 min) before starting the washing and blocking. The printed arrays were blocked with solutions containing BSA or casein (concentration: 0.1 mg/ml) in a phosphate buffer. The pH was adjusted to be between 7.0 and 7.5 and cold solutions were used (4° C.-20° C.). Slides were not allowed to dry between washes, and were protected from light. In total, each resultant ‘Immunome array’ comprised 1622 antigens, each printed in quadruplicate.


Experimental Procedure

1. Study Cohort


The study cohort comprised of a total of 62 plasma and serum samples collected from RA patients at baseline (i.e. prior to treatment administration);

    • i. Run 1: 6 ADAb-positive (“poor response”) and 6 ADAb-negative (“good response”)
    • ii. Run 2: 24 ADAb-positive (“poor response”) and 26 ADAb-negative (“good response”)


Patients were administered with adalimumab at a dose of 40 mg every other week. The immunogenicity and therapeutic response to adalimumab were evaluated at week 24, the latter by using the EULAR response criteria [15]. EULAR responders were defined as RA patients with good and moderate (“good response”) or poor (“poor response”) EULAR therapeutic responses.


2. Sample Collection and Storage


Peripheral blood samples were collected immediately before the first adalimumab administration (the baseline sample) and also at week 24. After centrifugation at 1000 g for 10 min within 15 min of withdrawal, serum and plasma samples were stored at −70° C.


3. Sample Preparation and Dilution


For each run, samples were placed in a shaking incubator set at 20° C. to allow thawing for 30 minutes. When completely thawed, each sample was vortexed vigorously three times and debris was pelleted by centrifugation for 3 minutes at 13,000 rpm. 11.25 μL of the sample was pipetted into 4.5 mL of Serum Assay Buffer (SAB) containing 0.1% v/v Triton, 0.1% w/v BSA in PBS (20° C.) and vortexed to mix three times. The tube was tilted during aspiration to ensure that the sera was sampled from below the lipid layer at the top but did not touch the bottom of the tube in case of presence of any sediment. Batch records were marked accordingly to ensure that the correct samples were added to the correct tubes. Samples were then randomised prior to assay.


4. Biomarker Assay


Each Immunome array was removed from the storage buffer using forceps, placed in the slide box and rack containing 200 mL cold SAB and shaken on an orbital shaker at 50 rpm, for 5 minutes. After washing, each slide was scanned using a barcode scanner and then placed array side up in an individual slide hybridization chamber containing an individual diluted sera (Step 3 above). All slides were and incubated on a horizontal shaker at 50 rpm for 2 hours at 20° C.


5. Array Washing after Serum Binding


Each Immunome array slide was rinsed twice in individual “Pap jars” with 30 mL SAB, followed by 200 mL of SAB buffer in the slide staining box for 20 minutes on the shaker at 50 rpm at room temperature. All slides were transferred sequentially and in the same orientation.


6. Incubation with Cy3-Anti-Human IgQ


Binding of autoantibodies to the arrayed antigens on the arrays was detected by incubation with Cy3-rabbit anti-human IgG (Dako Cytomation) labelled according to the manufacturer's recommended protocols (GE Healthcare). Arrays were immersed in hybridization solution containing a mixture of Cy3-rabbit anti-human IgG solution diluted 1:1000 in SAB buffer for 2 hours at 50 rpm in 20° C.


7. Washing after Incubation with Cy3-Anti-Human IgG


After incubation, the slide was dipped in 200 mL of SAB buffer, 3 times for 5 minutes at 50 rpm at room temperature. Excess buffer was removed by immersing the slide in 200 mL of pure water for a few minutes. Slides were then dried for 2 min by centrifugation at 240 g at room temperature. Slides were then stored at room temperature until scanning. Fluorescent hybridization signals were measured with excitation at 550 nm and emission at 570 nm using a microarray laser scanner (Agilent) at 10 μm resolution.


Bioinformatic analysis.


1. Image Analysis: Raw Data Extraction


The aim of an image analysis is to evaluate the amount of autoantibody present in the serum sample by measuring the median intensities of all the pixels within each probed spot. A raw .tiff format image file is generated for each slide, i.e. each sample. Automatic extraction and quantification of each spot on the array are performed using the GenePix Pro 7 software (Molecular Devices) which outputs the statistics for each probed spot on the array. This includes the mean and median of the pixel intensities within a spot as well as in its surrounding local background area. A GAL (GenePix Array List) file for the array is generated to enable image analysis. This file contains the information of all probed spots and their positions on the array. Following data extraction, a GenePix Results (.GPR) file is generated for each slide which contains the information for each spot: Protein ID, protein name, foreground intensities, background intensities etc. In the data sheet generated from the experiment, both foreground and background intensities of each spot are represented in relative fluorescence units (RFUs).


2. Data Handling and Pre-Processing


For each slide, antigens and control probes are spotted in quadruplicate on each array. The following steps were performed to verify the quality of the antigen array data before proceeding with data analysis:


Step 1:


Calculate net intensities for each spot by subtracting background signal intensities from the foreground signal intensities of each spot. For each spot, the background signal intensity was calculated using a circular region with three times the diameter of the spot, centered on the spot.


Step 2:


Remove replica spots with net intensity ≤0.


Step 3:


Zero net intensities if only 1 replica spot remaining.


Step 4:


Calculate the coefficient of variant (CV %) for the replica spots on each array.










CV


%

=



S
.
D
.

Mean

×
1

0

0

%





Equation


1







Flag any replica spots with only 2 or less replica/s remaining and CV %>20% as “High CV”. The mean net intensity of such replica spots (i.e. antigens) is excluded from downstream analysis.


For antigens/controls with a CV %>20% and with 3 or more replica spots remaining, the replica spots which result in this high CV % value were filtered out. This was done by calculating the standard deviation between the median value of the net intensities and individual net intensities for each set of replica spots. The spot with the highest standard deviation was removed. CV % values were re-calculated and the process repeated.


Step 5:


Calculate the mean of the net intensities for the remaining replica spots.


Step 6:


Inspect signal intensities of two positive controls: IgG and Cy3-BSA.


Step 7:


Carry out a composite normalisation [16] using both quantile-based and total intensity-based modules for each dataset. This method assumes that different samples share a common underlying distribution of their control probes while taking into account the potential existence of flagged spots within them. The Immunome array uses Cy3-labelled biotinylated BSA (Cy3-BSA) replicates as the positive control spots across slides. Hence it is considered as a ‘housekeeping’ probe for normalisation of signal intensities for any given study.


The quantile module adopts the algorithm described by Bolstad et al., 2003 [17]. This reorganisation enables the detection and handling of outliers or flagged spots in any of the Cy3BSA control probes. A total intensity-based module was then implemented to obtain a scaling factor for each sample. This method assumes that post-normalisation, the positive controls should have a common total intensity value across all samples. This composite method aims to normalise the protein array data from variations in their measurements whilst preserving the targeted biological activity across samples. The steps are as follows:


Quantile-Based Normalisation of all cy3BSA across all samples


(i=spot number and j=sample number)

    • 1. Load all Cy3-BSA across all samples, j, into an i×j matrix X
    • 2. Sort spot intensities in each column j of X to get Xsort
    • 3. Take the mean across each row i of Xsort to get <Xi>


Intensity-Based Normalisation

    • 1. Calculate sum of the mean across each row i, Σ<Xi>
    • 2. For each sample, k, calculate the sum of all Cy3-BSA controls, ΣXk
    • 3. For each sample, k,









Scaling


factor



(
k
)






<

X

i

>





X

k







Equation


2







3. Data Analysis


Batch normalisation: The composite normalised data sets from the assays in the two runs were merged using a ComBat normalisation method [18]. For each protein, this method inputs the net intensity values across all the samples from the 2 data sets and adjusts for any possible batch effects between the two data sets using a parametric empirical Bayes frameworks.


Biomarker Panel Selection: A pipeline was developed which utilises a combination of feature selection and machine learning methodologies to determine the optimal combination of antigens eliciting autoantibody responses from the list of 1622 antigens which are able to provide the best stratification between ADAb-positive and ADAb-negative patients [19]. For feature selection, univariate statistical tests, random forest importance and mutual information metrics were the filter methods used to rank biomarkers.


Biomarker panels were generated by additively selecting the top-ranking biomarkers as inputs to machine learning models up to a total of top 160 biomarkers (top 10% of biomarkers). Any further addition of number of biomarkers did not lead to significant improvements of model performance and would lead to further increase of computational time. To estimate the biomarker panel performance, ROC, sensitivity and specificity was evaluated and the biomarker panel with the best sensitivity and specificity was deemed as the optimal panel to stratify ADAb status. For this analysis, machine learning models were built using Random Forests [20], under default settings with leave-one out cross validation (LOOCV). All analyses were performed using packages available in R. Feature selection was performed using ranger [21] package and all machine learning models were performed using the caret [22] package.


Table 1 shows top 4 best performing biomarker panel from the machine learning models using leave-one out cross validation. The lowest number of antigens with the highest sensitivity and specificity was deemed to be the top biomarker panel. This panel comprises SSB, TROVE2, ZHX2, PPARD, SPANXN2, HNRNPA2B, TRIB2, CEP55, SH3GL1, FN3K, PANK3, HPCAL1, THRA, AIFM1, ODC1, RPS6KA4, EEF1D, KLF10, EPHA2, PRKARIA and EAPP. FIG. 3 shows the distribution of the normalised net intensity (i.e. autoantibody responses) for each of these 21 individual biomarkers in ADAb-positive (Group A) and ADAb-negative (Group B) RA patients at baseline. FIG. 4 shows the discriminatory performance of the combined panel of 21 autoantibody biomarkers represented as a receiver operating curve (ROC), yielding an area under the curve (AUC) of 0.835.


The biomarkers were ranked based on Random Forests estimated variable importance measure [23] derived from each panel (FIG. 5 and Table 2). This further identified a core set of biomarkers which are common across the top 4 biomarker panels, comprising SSB, TROVE2 and ZHX2, with an AUC performance of 0.761 (FIG. 6).


REFERENCES



  • 1. Choy E H, Panayi G S. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 2001; 344:907-916.

  • 2. Furst D E, Emery P. Rheumatoid arthritis pathophysiology: update on emerging cytokine and cytokine-associated cell targets. Rheumatology (Oxford) 2014; 53:1560-9.

  • 3. Breedveld F C, Weisman M H, Kavanaugh A F, et al. The PREMIER study: a multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum 2006; 54:26-37.

  • 4. Kievit W, Fransen J, Adang E M M, et al. Long-term effectiveness and safety of TNF-blocking agents in daily clinical practive: results from the Dutch rheumatoid arthritis monitoring register. Rheumatology (Oxford) 2011; 50:196-203.

  • 5. Bandres Ciga S, Salvatierra J, Lopez-Sidro M, et al. An examination of the mechanisms involved in secondary clinical failure to adalimumab or etanercept in inflammatory arthropathies. J Clin Rheumatol 2015; 21:115-9.

  • 6. Radstake T R, Svenson M, Eijsbouts A M, et al. Formation of antibodies against infliximab and adalimumab strongly correlates with functional drug levels and clinical response in rheumatoid arthritis. Ann Rheum Dis 2009; 68:1739-45.

  • 7. van schouwenburg PA, van de Stadt L A, de Jong R N, et al. Adalimumab elicits a restricted anti-idiotypic antibody response in autoimmune patients resulting in functional neutralization. Ann Rheum Dis 2013; 72:104-109.

  • 8. Bartelds G M, Krieckaert C L, Nurmohamed M T, et al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA 2011; 305:1460-68.

  • 9. Balsa A, Sanmarti R, Rosas J, et al. Drug immunogenicity in patients with inflammatory arthritis and secondary failure to tumor necrosis factor inhibitor therapies: the REASON study. Rheumatology (Oxford) 2018; 57:688-93.

  • 10. Chen D Y, Chen Y M, Tsai W C, et al. Significant associations of antidrug antibody levels with serum drug trough levels and therapeutic response of adalimumab and etanercept treatment in rheumatoid arthritis. Ann Rheum Dis 2015; 74:e16.

  • 11. Smolen J S, Breedveld F C, Burmester G R, et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann Rheum Dis 2016; 75:3-15.

  • 12. Ortea I, Roschitzki B, L6pez-Rodriguez R, et al. Independent candidate serum protein biomarkers of response to adalimumab and to infliximab in rheumatoid arthritis: an exploratory study. PLoS One 2016; 11:e0153140.

  • 13. Cuppen B, Fritsch-Stork R, Eekhout I, et al. Proteomics to predict the response to tumor necrosis factor-alpha inhibitors in rheumatoid arthritis using a supervised cluster-analysis based protein score. Scand J Rheumatol 2018; 47:12-21.

  • 14. Tasaki S, Suzuki K, Kassai Y, et al. Multi-omics monitoring of drug response in rheumatoid arthritis in pursuit of molecular remission. Nat Commun 2018; 9:2755.

  • 15. Van Gestel A M, Prevoo M L, van't Hof M A, et al. Development and validation of the European League Against Rheumatism response criteria for rheumatoid arthritis.



Comparison with the preliminary American College of Rheumatology and the World Health Organization/International League Against Rheumatism Criteria. Arthritis Rheum 1996; 39:34-40.

  • 16. Duarte J, Serufuri J-M, Mulder N, Blackburn J. Protein function microarrays: design, use and bioinformatic analysis in cancer biomarker discovery and quantitation. In: Wang X, editor. Bioinformatics of Human Proteomics. Dordrecht: Springer 2013; 39-74.
  • 17. Bolstad B M, Irizarry R A, Astrand M, Speed T P. A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics 2003; 19:185-193.
  • 18. Johnson, WE, Rabinovic, A, and Li, C (2007). Adjusting batch effects in microarray expression data using Empirical Bayes methods. Biostatistics 8(1):118-127.
  • 19. Bommert, A., Sun, X., Bischl, B., Rahnenfiuhrer, J., Lang, M., 2020. Benchmark for filter methods for feature selection in high-dimensional classification data. Comput.


Stat. Data Anal. 143, 106839.

  • 20. Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5-32.
  • 21. Wright, M. N., Ziegler, A., 2017. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77 (1), 1-17.
  • 22. Kuhn, M. Caret package. Journal of Statistical Software, 2008; 28(5)
  • Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., Zeileis, A., 2008. Conditional variable importance for random forests. BMC Bioinformatics 9 (307).














TABLE 1






No of






test
antigen
Biomarkers in panel
ROC
Sens
Spec




















ranger_permutation
20
SSB, TROVE2, ZHX2, PPARD, SPANXN2, HNRNPA2B1, TRIB2, CEP55,
0.821
0.806
0.774




SH3GL1, FN3K, PANK3, HPCAL1, THRA, AIFM1, ODC1, RPS6KA4,







EEF1D, KLF10, EPHA2, PRKAR1A





ranger_permutation
21
SSB, TROVE2, ZHX2, PPARD, SPANXN2, HNRNPA2B1, TRIB2, CEP55,
0.835
0.839
0.774




SH3GL1, FN3K, PANK3, HPCAL1, THRA, AIFM1, ODC1, RPS6KA4,







EEF1D, KLF10, EPHA2, PRKAR1A, EAPP





ranger_permutation
28
SSB, TROVE2, ZHX2, PPARD, SPANXN2, HNRNPA2B1, TRIB2, CEP55,
0.824
0.839
0.710




SH3GL1, FN3K, PANK3, HPCAL1, THRA, AIFM1, ODC1, RPS6KA4,







EEF1D, KLF10, EPHA2, PRKAR1A, EAPP, ZNF331, GMPS, POTEE,







ASPSCR1, ECI2, ETV7, BUD31





ranger_permutation
29
SSB, TROVE2, ZHX2, PPARD, SPANXN2, HNRNPA2B1, TRIB2, CEP55,
0.811
0.839
0.774




SH3GL1, FN3K, PANK3, HPCAL1, THRA, AIFM1, ODC1, RPS6KA4,







EEF1D, KLF10, EPHA2, PRKAR1A, EAPP, ZNF331, GMPS, POTEE,







ASPSCR1, ECI2, ETV7, BUD31, ATF3




















TABLE 2







test
Importance value
Ranking




















SSB
0.003172
1



TROVE2
0.003142
2



ZHX2
0.002135
3



PPARD
0.001290
4



SPANXN2
0.000886
5



HNRNPA2B1
0.000870
6



TRIB2
0.000825
7



CEP55
0.000814
8



SH3GL1
0.000776
9



FN3K
0.000759
10



PANK3
0.000703
11



HPCAL1
0.000689
12



THRA
0.000657
13



AIFM1
0.000639
14



ODC1
0.000638
15



RPS6KA4
0.000613
16



EEF1D
0.000590
17



KLF10
0.000588
18



EPHA2
0.000587
19



PRKAR1A
0.000587
20



EAPP
0.000565
21



















TABLE 3





Protein Name
UniprotID
Description







SSB
P05455
Lupus La protein










Nucleotide Sequence (Seq ID No. 1):


>P003196_Q311_Q311_tube_SSB/La_6741_0_NM_


003142.3_0_P05455_0


ATGGCTGAGAACGGCGACAACGAGAAGATGGCTGCTCTCGAGGCT


AAGATCTGCCACCAGATCGAGTACTACTTCGGCGACTTCAACCTG


CCCCGTGACAAGTTCCTGAAGGAACAGATCAAGCTGGACGAGGGC


TGGGTGCCCCTCGAGATCATGATCAAGTTCAACCGTCTGAACCGC


CTGACCACCGACTTCAACGTGATCGTCGAGGCTCTGTCCAAGTCC


AAGGCTGAGCTGATGGAAATCTCCGAGGACAAGACCAAGATCCGT


CGTTCCCCATCCAAGCCCCTGCCCGAAGTGACCGACGAGTACAAG


AACGACGTGAAGAACCGTTCCGTGTACATCAAGGGTTTCCCCACC


GACGCTACCCTGGACGACATCAAGGAATGGCTCGAGGACAAGGGC


CAGGTGCTGAACATCCAGATGCGTCGTACCCTGCACAAGGCTTTC


AAGGGTTCCATCTTCGTGGTGTTCGACTCCATCGAGTCCGCTAAG


AAGTTCGTCGAGACTCCCGGCCAGAAGTACAAGGAAACCGACCTG


CTGATCCTGTTCAAGGACGACTACTTCGCCAAGAAGAACGAGGAA


CGCAAGCAGAACAAGGTCGAGGCCAAGCTGCGTGCTAAGCAAGAG


CAAGAGGCTAAGCAGAAGCTGGAAGAGGACGCTGAGATGAAGTCC


CTGGAAGAGAAGATCGGTTGCCTGCTGAAGTTCTCCGGCGACCTG


GACGACCAGACCTGCCGCGAGGACCTGCACATCCTGTTCTCCAAC


CACGGCGAGATCAAGTGGATCGACTTCGTGCGTGGTGCTAAGGAA


GGCATCATCCTCTTCAAGGAAAAGGCCAAGGAAGCTCTGGGCAAG


GCTAAGGACGCTAACAACGGCAACCTGCAGCTGCGTAACAAGGAA


GTGACCTGGGAGGTCCTCGAGGGCGAGGTCGAGAAGGAAGCCCTG


AAGAAGATCATCGAGGACCAGCAAGAGTCCCTGAACAAGTGGAAG


TCCAAGGGTCGTCGTTTCAAGGGCAAGGGAAAGGGCAACAAGGCT


GCTCAGCCCGGTTCCGGAAAGGGAAAGGTGCAGTTCCAGGGCAAG


AAGACCAAGTTCGCTTCCGACGACGAGCACGATGAGCACGACGAG


AACGGTGCTACCGGTCCCGTGAAGCGTGCTCGTGAAGAGACTGAC


AAGGAAGAACCCGCTTCCAAGCAGCAAAAGACCGAGAACGGCGCT


GGCGACCAG





Protein Sequence (Seq ID No. 22):


>sp|P05455|LA_HUMAN Lupus La protein


OS = Homo sapiens OX = 9606 GN = SSB


PE = 1 SV = 2


MAENGDNEKMAALEAKICHQIEYYFGDFNLPRDKFLKEQIKLDEG


WVPLEIMIKFNRLNRLTTDFNVIVEALSKSKAELMEISEDKTKIR


RSPSKPLPEVTDEYKNDVKNRSVYIKGFPTDATLDDIKEWLEDKG


QVLNIQMRRTLHKAFKGSIFVVFDSIESAKKFVETPGQKYKETDL


LILFKDDYFAKKNEERKQNKVEAKLRAKQEQEAKQKLEEDAEMKS


LEEKIGCLLKFSGDLDDQTCREDLHILFSNHGEIKWIDFVRGAKE


GIILFKEKAKEALGKAKDANNGNLQLRNKEVTWEVLEGEVEKEAL


KKIIEDQQESLNKWKSKGRRFKGKGKGNKAAQPGSGKGKVQFQGK


KTKFASDDEHDEHDENGATGPVKRAREETDKEEPASKQQKTENGA


GDQ












TROVE2
P10155
HUMAN 60 kDa SS-A/




Ro ribonucleoprotein










Nucleotide Sequence (Seq ID No. 2):


>P001236_CAG_CAGp1_SSA2_6738_Homo sapiens


Sjogren syndrome antigen A2 (60 kDa


ribonucleoprotein


autoantigen SS-A/Ro)_BC036658.2_


AAH36658.1_P10155_0_0_1617_0_1614


ATGGAGGAATCTGTAAACCAAATGCAGCCACTGAATGAGAAGCAG


ATAGCCAATTCTCAGGATGGATATGTATGGCAAGTCACTGACATG


AATCGACTACACCGGTTCTTATGTTTCGGTTCTGAAGGTGGGACT


TATTATATCAAAGAACAGAAGTTGGGCCTTGAAAATGCTGAAGCT


TTAATTAGATTGATTGAAGATGGCAGAGGATGTGAAGTGATACAA


GAAATAAAGTCATTTAGTCAAGAAGGCAGAACCACAAAGCAAGAG


CCTATGCTCTTTGCACTTGCCATTTGTTCCCAGTGCTCCGACATA


AGCACAAAACAAGCAGCATTTAAAGCTGTTTCTGAAGTTTGTCGC


ATTCCTACCCATCTCTTTACTTTTATCCAGTTTAAGAAAGATCTG


AAGGAAAGCATGAAATGTGGCATGTGGGGTCGTGCCCTCCGGAAG


GCTATAGCGGACTGGTACAATGAGAAAGGTGGCATGGCCCTTGCT


CTGGCAGTTACAAAATATAAACAGAGAAATGGCTGGTCTCACAAA


GATCTATTAAGATTGTCACATCTTAAACCTTCCAGTGAAGGACTT


GCAATTGTGACCAAATATATTACAAAGGGCTGGAAAGAAGTTCAT


GAATTGTATAAAGAAAAAGCACTCTCTGTGGAGACTGAAAAATTA


TTAAAGTATCTGGAGGCTGTAGAGAAAGTGAAGCGCACAAGAGAT


GAGCTAGAAGTCATTCATCTAATAGAAGAACATAGATTAGTTAGA


GAACATCTTTTAACAAATCACTTAAAGTCTAAAGAGGTATGGAAG


GCTTTGTTACAAGAAATGCCGCTTACTGCATTACTAAGGAATCTA


GGAAAGATGACTGCTAATTCAGTACTTGAACCAGGAAATTCAGAA


GTATCTTTAGTATGTGAAAAACTGTGTAATGAAAAACTATTAAAA


AAGGCTCGTATACATCCATTTCATATTTTGATCGCATTAGAAACT


TACAAGACAGGTCATGGTCTCAGAGGGAAACTGAAGTGGCGCCCT


GATGAAGAAATTTTGAAAGCATTGGATGCTGCTTTTTATAAAACA


TTTAAGACAGTTGAACCAACTGGAAAACGTTTCTTACTAGCTGTT


GATGTCAGTGCTTCTATGAACCAAAGAGTTTTGGGTAGTATACTC


AACGCTAGTACAGTTGCTGCAGCAATGTGCATGGTTGTCACACGA


ACAGAAAAAGATTCTTATGTAGTTGCTTTTTCCGATGAAATGGTA


CCATGTCCAGTGACTACAGATATGACCTTACAACAGGTTTTAATG


GCTATGAGTCAGATCCCAGCAGGTGGAACTGATTGCTCTCTTCCA


ATGATCTGGGCTCAGAAGACAAACACACCTGCTGATGTCTTCATT


GTATTCACTGATAATGAGACCTTTGCTGGAGGTGTCCATCCTGCT


ATTGCTCTGAGGGAGTATCGAAAGAAAATGGATATTCCAGCTAAA


TTGATTGTTTGTGGAATGACATCAAATGGTTTCACCATTGCAGAC


CCAGATGATAGAGGCATGTTGGATATGTGCGGCTTTGATACTGGA


GCTCTGGATGTAATTCGAAATTTCACATTAGATATGATT





Protein Sequence (Seq ID No. 23):


>sp|P10155|RO60_HUMAN 60 kDa SS-A/Ro


ribonucleoprotein


OS = Homo sapiens OX = 9606 GN = RO60 PE = 1


SV = 2


MEESVNQMQPLNEKQIANSQDGYVWQVTDMNRLHRFLCFGSEGGT


YYIKEQKLGLENAEALIRLIEDGRGCEVIQEIKSFSQEGRTTKQE


PMLFALAICSQCSDISTKQAAFKAVSEVCRIPTHLFTFIQFKKDL


KESMKCGMWGRALRKAIADWYNEKGGMALALAVTKYKQRNGWSHK


DLLRLSHLKPSSEGLAIVTKYITKGWKEVHELYKEKALSVETEKL


LKYLEAVEKVKRTRDELEVIHLIEEHRLVREHLLTNHLKSKEVWK


ALLQEMPLTALLRNLGKMTANSVLEPGNSEVSLVCEKLCNEKLLK


KARIHPFHILIALETYKTGHGLRGKLKWRPDEEILKALDAAFYKT


FKTVEPTGKRFLLAVDVSASMNQRVLGSILNASTVAAAMCMVVTR


TEKDSYVVAFSDEMVPCPVTTDMTLQQVLMAMSQIPAGGTDCSLP


MIWAQKTNTPADVFIVFTDNETFAGGVHPAIALREYRKKMDIPAK


LIVCGMTSNGFTIADPDDRGMLDMCGFDTGALDVIRNFTLDMI












ZHX2
Q9Y6X8
Zinc fingers and homeoboxes




protein 2










Nucleotide Sequence (Seq ID No. 3):


> P002188_Q305_Q305p3_ZHX2_22882_Homo sapiens


zinc fingers and homeoboxes


2_BC042145.1_Q9Y6X8


ATGGCTAGCAAACGAAAATCTACAACTCCATGCATGGTTCGGACA


TCACAAGTAGTAGAACAAGATGTGCCCGAGGAAGTAGACAGGGCC


AAAGAGAAAGGAATCGGCACACCACAGCCTGACGTGGCCAAGGAC


AGTTGGGCAGCAGAACTTGAAAACTCTTCCAAAGAAAACGAAGTG


ATAGAGGTGAAATCTATGGGGGAAAGCCAGTCCAAAAAACTCCAA


GGTGGTTATGAGTGCAAATACTGCCCCTACTCCACGCAAAACCTG


AACGAGTTCACGGAGCATGTCGACATGCAGCATCCCAACGTGATT


CTCAACCCCCTCTACGTGTGTGCAGAATGTAACTTCACAACCAAA


AAGTACGACTCCCTATCCGACCACAACTCCAAGTTCCATCCCGGG


GAGGCCAACTTCAAGCTGAAGTTAATTAAACGCAATAATCAAACT


GTCTTGGAACAGTCCATCGAAACCACCAACCATGTCGTGTCCATC


ACCACCAGTGGCCCTGGAACTGGTGACAGTGATTCTGGGATCTCG


GTGAGTAAAACCCCCATCATGAAGCCTGGAAAACCAAAAGCGGAT


GCCAAGAAGGTGCCCAAGAAGCCCGAGGAGATCACCCCCGAGAAC


CACGTGGAAGGGACCGCCCGCCTGGTGACAGACACAGCTGAGATC


CTCTCGAGACTCGGCGGGGTGGAGCTCCTCCAAGACACATTAGGA


CACGTCATGCCTTCTGTACAGCTGCCACCAAATATCAACCTTGTG


CCCAAGGTCCCTGTCCCACTAAATACTACCAAATACAACTCTGCC


CTGGATACAAATGCCACGATGATCAACTCTTTCAACAAGTTTCCT


TACCCGACCCAGGCTGAGTTGTCCTGGCTGACAGCTGCCTCCAAA


CACCCAGAGGAGCACATCAGAATCTGGTTTGCCACCCAGCGCTTA


AAGCATGGCATCAGCTGGTCCCCAGAAGAGGTGGAGGAGGCCCGG


AAGAAGATGTTCAACGGCACCATCCAGTCAGTACCCCCGACCATC


ACTGTGCTGCCCGCCCAGTTGGCCCCCACAAAGGTGACGCAGCCC


ATCCTCCAGACGGCTCTACCGTGCCAGATCCTCGGCCAGACTAGC


CTGGTGCTGACTCAGGTGACCAGCGGGTCAACAACCGTCTCTTGC


TCCCCCATCACACTTGCCGTGGCAGGAGTCACCAACCATGGCCAG


AAGAGACCCTTGGTGACTCCCCAAGCTGCCCCCGAACCCAAGCGT


CCACACATCGCTCAGGTGCCAGAGCCCCCACCCAAGGTGGCCAAC


CCCCCGCTCACACCAGCCAGTGACCGCAAGAAGACAAAGGAGCAG


ATAGCACATCTCAAGGCCAGCTTTCTCCAGAGCCAGTTCCCTGAC


GATGCCGAGGTTTACCGGCTCATCGAGGTGACTGGCCTTGCCAGG


AGCGAGATCAAGAAGTGGTTCAGTGACCACCGATATCGGTGTCAA


AGGGGCATCGTCCACATCACCAGCGAATCCCTTGCCAAAGACCAG


TTGGCCATCGCGGCCTCCCGACACGGTCGCACGTATCATGCGTAC


CCAGACTTTGCCCCCCAGAAGTTCAAAGAGAAAACACAGGGTCAG


GTTAAAATCTTGGAAGACAGCTTTTTGAAAAGTTCTTTTCCTACC


CAAGCAGAACTGGATCGGCTAAGGGTGGAGACCAAGCTGAGCAGG


AGAGAGATCGACTCCTGGTTCTCGGAGAGGCGGAAGCTTCGAGAC


AGCATGGAACAAGCTGTCTTGGATTCCATGGGGTCTGGCAAAAAA


GGCCAAGATGTGGGAGCCCCCAATGGTGCTCTGTCTCGACTCGAC


CAGCTCTCCGGTGCCCAGTTAACAAGTTCTCTGCCCAGCCCTTCG


CCAGCAATTGCAAAAAGTCAAGAACAGGTTCATCTCCTGAGGAGC


ACGTTTGCAAGAACCCAGTGGCCTACTCCCCAGGAGTACGACCAG


TTAGCGGCCAAGACTGGCCTGGTCCGAACTGAGATTGTGCGTTGG


TTCAAGGAGAACAGATGCTTGCTGAAAACGGGAACCGTGAAGTGG


ATGGAGCAGTACCAGCACCAGCCCATGGCAGATGATCACGGCTAC


GATGCCGTAGCAAGGAAAGCAACAAAACCCATGGCCGAGAGCCCA


AAGAACGGGGGTGATGTGGTTCCACAATATTACAAGGACCCCAAA


AAGCTCTGCGAAGAGGACTTGGAGAAGTTGGTGACCAGGGTAAAA


GTAGGCAGCGAGCCAGCAAAAGACTGTTTGCCAGCAAAGCCCTCA


GAGGCCACCTCAGACCGGTCAGAGGGCAGCAGCCGGGACGGCCAG


GGTAGCGACGAGAACGAGGAGTCGAGCGTTGTGGATTACGTGGAG


GTGACGGTCGGGGAGGAGGATGCGATCTCAGATAGATCAGATAGC


TGGAGTCAGGCTGCGGCAGAAGGTGTGTCGGAACTGGCTGAATCA


GACTCCGACTGCGTCCCTGCAGAGGCTGGCCAGGCC





Protein Sequence (Seq ID No. 24):


>sp|Q9Y6X8|ZHX2_HUMAN Zinc fingers and


homeoboxes protein 2


OS = Homo sapiens OX = 9606 GN = ZHX2


PE = 1 SV = 1


MASKRKSTTPCMVRTSQVVEQDVPEEVDRAKEKGIGTPQPDVAKD


SWAAELENSSKENEVIEVKSMGESQSKKLQGGYECKYCPYSTQNL


NEFTEHVDMQHPNVILNPLYVCAECNFTTKKYDSLSDHNSKFHPG


EANFKLKLIKRNNQTVLEQSIETTNHVVSITTSGPGTGDSDSGIS


VSKTPIMKPGKPKADAKKVPKKPEEITPENHVEGTARLVTDTAEI


LSRLGGVELLQDTLGHVMPSVQLPPNINLVPKVPVPLNTTKYNSA


LDTNATMINSFNKFPYPTQAELSWLTAASKHPEEHIRIWFATQRL


KHGISWSPEEVEEARKKMFNGTIQSVPPTITVLPAQLAPTKVTQP


ILQTALPCQILGQTSLVLTQVTSGSTTVSCSPITLAVAGVTNHGQ


KRPLVTPQAAPEPKRPHIAQVPEPPPKVANPPLTPASDRKKTKEQ


IAHLKASFLQSQFPDDAEVYRLIEVTGLARSEIKKWFSDHRYRCQ


RGIVHITSESLAKDQLAIAASRHGRTYHAYPDFAPQKFKEKTQGQ


VKILEDSFLKSSFPTQAELDRLRVETKLSRREIDSWFSERRKLRD


SMEQAVLDSMGSGKKGQDVGAPNGALSRLDQLSGAQLTSSLPSPS


PAIAKSQEQVHLLRSTFARTQWPTPQEYDQLAAKTGLVRTEIVRW


FKENRCLLKTGTVKWMEQYQHQPMADDHGYDAVARKATKPMAESP


KNGGDVVPQYYKDPKKLCEEDLEKLVTRVKVGSEPAKDCLPAKPS


EATSDRSEGSSRDGQGSDENEESSVVDYVEVTVGEEDAISDRSDS


WSQAAAEGVSELAESDSDCVPAEAGQA












PPARD
Q03181
Peroxisome proliferator-




activated receptor delta










Nucleotide Sequence (Seq ID No. 4):


>P000475_SIG_SIG1-2_PPARD_5467_Homo sapiens


peroxisome proliferative activated receptor


delta transcript variant 2_BC002715.2_


AAH02715.1_Q03181_51381.84_0_1086_0_1083


ATGGAGCAGCCACAGGAGGAAGCCCCTGAGGTCCGGGAAGAGGAG


GAGAAAGAGGAAGTGGCAGAGGCAGAAGGAGCCCCAGAGCTCAAT


GGGGGACCACAGCATGCACTTCCTTCCAGCAGCTACACAGACCTC


TCCCGGAGCTCCTCGCCACCCTCACTGCTGGACCAACTGCAGATG


GGCTGTGACGGGGCCTCATGCGGCAGCCTCAACATGGAGTGCCGG


GTGTGCGGGGACAAGGCATCGGGCTTCCACTACGGTGTTCATGCA


TGTGAGGGGTGCAAGGGCTTCTTCCGTCGTACGATCCGCATGAAG


CTGGAGTACGAGAAGTGTGAGCGCAGCTGCAAGATTCAGAAGAAG


AACCGCAACAAGTGCCAGTACTGCCGCTTCCAGAAGTGCCTGGCA


CTGGGCATGTCACACAACGCTATCCGTTTTGGTCGGATGCCGGAG


GCTGAGAAGAGGAAGCTGGTGGCAGGGCTGACTGCAAATGAGGGG


AGCCAGTACAACCCACAGGTGGCCGACCTGAAGGCCTTCTCCAAG


CACATCTACAATGCCTACCTGAAAAACTTCAACATGACCAAAAAG


AAGGCCCGCAGCATCCTCACCGGCAAAGCCAGCCACACGGCGCCC


TTTGTGATCCACGACATCGAGACATTGTGGCAGGCAGAGAAGGGG


CTGGTGTGGAAGCAGTTGGTGAATGGCCTGCCTCCCTACAAGGAG


ATCAGCGTGCACGTCTTCTACCGCTGCCAGTGCACCACAGTGGAG


ACCGTGCGGGAGCTCACTGAGTTCGCCAAGAGCATCCCCAGCTTC


AGCAGCCTCTTCCTCAACGACCAGGTTACCCTTCTCAAGTATGGC


GTGCACGAGGCCATCTTCGCCATGCTGGCCTCTATCGTCAACAAG


GACGGGCTGCTGGTAGCCAACGGCAGTGGCTTTGTCACCCGTGAG


TTCCTGCGCAGCCTCCGCAAACCCTTCAGTGATATCATTGAGCCT


AAGTTTGAATTTGCTGTCAAGTTCAACGCCCTGGAACTTGATGAC


AGTGACCTGGCCCTATTCATTGCGGCCATCATTCTGTGTGGAGGT


GAG





Protein Sequence (Seq ID No. 25):


>sp|Q03181|PPARD_HUMAN Peroxisome


proliferator-activated receptor delta


OS = Homo sapiens OX = 9606


GN = PPARD PE = 1 SV = 1


MEQPQEEAPEVREEEEKEEVAEAEGAPELNGGPQHALPSSSYTDL


SRSSSPPSLLDQLQMGCDGASCGSLNMECRVCGDKASGFHYGVHA


CEGCKGFFRRTIRMKLEYEKCERSCKIQKKNRNKCQYCRFQKCLA


LGMSHNAIRFGRMPEAEKRKLVAGLTANEGSQYNPQVADLKAFSK


HIYNAYLKNFNMTKKKARSILTGKASHTAPFVIHDIETLWQAEKG


LVWKQLVNGLPPYKEISVHVFYRCQCTTVETVRELTEFAKSIPSF


SSLFLNDQVTLLKYGVHEAIFAMLASIVNKDGLLVANGSGFVTRE


FLRSLRKPFSDIIEPKFEFAVKFNALELDDSDLALFIAAIILCGD


RPGLMNVPRVEAIQDTILRALEFHLQANHPDAQYLFPKLLQKMAD


LRQLVTEHAQMMQRIKKTETETSLHPLLQEIYKDMY












SPANXN2
Q5MJ10
Sperm protein associated




with the nucleus on




the X chromosome N2










Nucleotide Sequence (Seq ID No. 5):


>P003098_Q211_Q211_tube_SPANXN2_494119_0_NM_


001009615.1_0_Q5MJ10_0_Insert sequence is gene


optimized by GeneArt_0_0_0


ATGGAACAGCCCACCTCTTCCACCAACGGCGAGAAGCGCAAGTCC


CCCTGCGAGTCCAACAACAAGAAAAACGACGAGATGCAAGAGGCT


CCCAACCGTGTGCTGGCTCCCAAGCAGTCCCTGCAAAAGACCAAG


ACCATCGAGTACCTGACCATCATCGTGTACTACTACCGCAAGCAC


ACCAAGATCAACTCCAACCAGCTCGAGAAGGACCAGTCCCGCGAG


AACTCCATCAACCCCGTGCAAGAGGAAGAGGACGAGGGCCTGGAC


TCCGCTGAGGGATCCTCCCAAGAAGATGAGGACCTGGACAGCTCC


GAGGGTTCCAGCCAAGAGGATGAAGATCTCGACTCCTCCGAGGGC


AGCTCCCAAGAGGACGAGGACTTGGATTCCTCCGAGGGATCTAGT


CAAGAGGACGAGGATCTGGACTCTTCCGAAGGCTCATCTCAAGAA


GATGAAGATTTGGACCCCCCTGAGGGTAGCAGTCAAGAGGATGAG


GACCTCGATTCCAGCGAGGGCTCCTCACAAGAGGGTGGCGAGGAT


Protein Sequence (Seq ID No. 26):





>sp|Q5MJ10|SPXN2_HUMAN Sperm protein associated


with the nucleus on the X chromosome N2


OS = Homo sapiens


OX = 9606 GN = SPANXN2 PE = 1 SV = 1


MEQPTSSTNGEKRKSPCESNNKKNDEMQEAPNRVLAPKQSLQKTK


TIEYLTIIVYYYRKHTKINSNQLEKDQSRENSINPVQEEEDEGLD


SAEGSSQEDEDLDSSEGSSQEDEDLDSSEGSSQEDEDLDSSEGSS


QEDEDLDSSEGSSQEDEDLDPPEGSSQEDEDLDSSEGSSQEGGED












HNRNPA2B1
P22626
Heterogeneous nuclear




ribonucleoproteins A2/B1










Nucleotide Sequence (Seq ID No. 6):


>P003186_Q311_Q311_tube_HNRNPA2B1_3181_0_


NM_002137.3_0_P22626_0


ATGGAACGCGAGAAAGAGCAGTTCCGCAAGCTGTTCATCGGTGGC


CTGTCCTTCGAGACTACCGAGGAATCCCTGCGCAACTACTACGAG


CAGTGGGGCAAGCTGACCGACTGCGTGGTCATGCGTGACCCCGCT


TCCAAGCGTTCCCGTGGTTTCGGTTTCGTGACCTTCTCCAGCATG


GCTGAGGTGGACGCTGCTATGGCTGCTCGTCCCCACTCCATCGAC


GGTCGTGTGGTCGAGCCTAAGCGTGCTGTGGCTCGTGAAGAGTCC


GGCAAGCCTGGTGCTCACGTGACCGTGAAGAAGCTGTTCGTTGGC


GGTATCAAAGAGGACACCGAGGAACACCACCTGAGGGACTACTTC


GAGGAATACGGCAAGATCGACACCATCGAGATCATCACCGACCGT


CAGTCCGGAAAGAAGCGCGGCTTCGGCTTCGTCACTTTCGACGAC


CACGACCCCGTGGACAAGATCGTGCTGCAGAAGTACCACACCATC


AACGGTCACAACGCTGAAGTGCGCAAGGCTCTGTCCCGTCAAGAG


ATGCAAGAGGTGCAGTCCTCCCGTTCCGGTCGTGGTGGCAACTTC


GGATTCGGCGACTCTCGCGGTGGTGGCGGAAACTTCGGTCCTGGT


CCCGGTTCCAACTTCCGTGGTGGTTCCGACGGTTACGGCTCCGGA


AGAGGTTTCGGCGACGGCTACAACGGCTACGGTGGTGGTCCTGGC


GGTGGAAATTTCGGTGGTTCCCCTGGTTACGGTGGCGGTCGCGGT


GGATACGGCGGAGGTGGTCCAGGATACGGCAACCAGGGTGGCGGT


TACGGCGGTGGTTACGACAACTACGGTGGCGGCAACTACGGTTCC


GGAAACTACAACGACTTCGGCAATTACAACCAGCAGCCCTCCAAC


TACGGCCCCATGAAGTCTGGCAATTTCGGCGGCTCCCGTAACATG


GGTGGTCCTTACGGTGGTGGAAATTACGGTCCCGGTGGTTCCGGT


GGCTCTGGTGGCTACGGCGGTCGTTCCCGTTAC





Protein Sequence (Seq ID No. 27):


>sp|P22626|ROA2_HUMAN Heterogeneous nuclear


ribonucleoproteins A2/B1


OS = Homo sapiens OX = 9606


GN = HNRNPA2B1 PE = 1 SV = 2


MEKTLETVPLERKKREKEQFRKLFIGGLSFETTEESLRNYYEQWG


KLTDCVVMRDPASKRSRGFGFVTFSSMAEVDAAMAARPHSIDGRV


VEPKRAVAREESGKPGAHVTVKKLFVGGIKEDTEEHHLRDYFEEY


GKIDTIEIITDRQSGKKRGFGFVTFDDHDPVDKIVLQKYHTINGH


NAEVRKALSRQEMQEVQSSRSGRGGNFGFGDSRGGGGNFGPGPGS


NFRGGSDGYGSGRGFGDGYNGYGGGPGGGNFGGSPGYGGGRGGYG


GGGPGYGNQGGGYGGGYDNYGGGNYGSGNYNDFGNYNQQPSNYGP


MKSGNFGGSRNMGGPYGGGNYGPGGSGGSGGYGGRSRY












TRIB2
Q92519
HUMAN Tribbles homolog 2










Nucleotide Sequence (Seq ID No. 7):


>P001066_KIN2_KIN2p1_TRB2_28951_Homo sapiens


tribbles homolog 2_BC002637.2_AAH02637.1_


Q92519_0_0_1032_0_1029


ATGAACATACACAGGTCTACCCCCATCACAATAGCGAGATATGGG


AGATCGCGGAACAAAACCCAGGATTTCGAAGAGTTGTCGTCTATA


AGGTCCGCGGAGCCCAGCCAGAGTTTCAGCCCGAACCTCGGCTCC


CCGAGCCCGCCCGAGACTCCGAACTTGTCGCATTGCGTTTCTTGT


ATCGGGAAATACTTATTGTTGGAACCTCTGGAGGGAGACCACGTT


TTTCGTGCCGTGCATCTGCACAGCGGAGAGGAGCTGGTGTGCAAG


GTGTTTGATATCAGCTGCTACCAGGAATCCCTGGCACCGTGCTTT


TGCCTGTCTGCTCATAGTAACATCAACCAAATCACTGAAATTATC


CTGGGTGAGACCAAAGCCTATGTGTTCTTTGAGCGAAGCTATGGG


GACATGCATTCCTTCGTCCGCACCTGCAAGAAGCTGAGAGAGGAG


GAGGCAGCCAGACTGTTCTACCAGATTGCCTCGGCAGTGGCCCAC


TGCCATGACGGGGGGCTGGTGCTGCGGGACCTCAAGCTGCGGAAA


TTCATCTTTAAGGACGAAGAGAGGACTCGGGTCAAGCTGGAAAGC


CTGGAAGACGCCTACATTCTGCGGGGAGATGATGATTCCCTCTCC


GACAAGCATGGCTGCCCGGCTTACGTAAGCCCAGAGATCTTGAAC


ACCAGTGGCAGCTACTCGGGCAAAGCAGCCGACGTGTGGAGCCTG


GGGGTGATGCTGTACACCATGTTGGTGGGGCGGTACCCTTTCCAT


GACATTGAACCCAGCTCCCTCTTCAGCAAGATCCGGCGTGGCCAG


TTCAACATTCCAGAGACTCTGTCGCCCAAGGCCAAGTGCCTCATC


CGAAGCATTCTGCGTCGGGAGCCCTCAGAGCGGCTGACCTCGCAG


GAAATTCTGGACCATCCTTGGTTTTCTACAGATTTTAGCGTCTCG


AATTCAGCATATGGTGCTAAGGAAGTGTCTGACCAGCTGGTGCCG


GACGTCAACATGGAAGAGAACTTGGACCCTTTCTTTAAC





Protein Sequence (Seq ID No. 28):


>sp|Q92519|TRIB2_HUMAN Tribbles homolog 2


OS = Homo sapiens OX = 9606 GN = TRIB2


PE = 1 SV = 1


MNIHRSTPITIARYGRSRNKTQDFEELSSIRSAEPSQSFSPNLGS


PSPPETPNLSHCVSCIGKYLLLEPLEGDHVFRAVHLHSGEELVCK


VFDISCYQESLAPCFCLSAHSNINQITEIILGETKAYVFFERSYG


DMHSFVRTCKKLREEEAARLFYQIASAVAHCHDGGLVLRDLKLRK


FIFKDEERTRVKLESLEDAYILRGDDDSLSDKHGCPAYVSPEILN


TSGSYSGKAADVWSLGVMLYTMLVGRYPFHDIEPSSLFSKIRRGQ


FNIPETLSPKAKCLIRSILRREPSERLTSQEILDHPWFSTDFSVS


NSAYGAKEVSDQLVPDVNMEENLDPFFN












CEP55
Q53EZ4
Centrosomal protein




of 55 kDa










Nucleotide Sequence (Seq ID No. 8):


>P003121_Q211_Q211_tube_CEP55_55165_0_


NM_001127182.1_0_Q53EZ4_0


ATGTCCTCCCGTTCCACCAAGGACCTGATCAAGTCTAAGTGGGGT


TCCAAGCCCTCCAACTCCAAGTCCGAGACTACCCTCGAGAAGCTG


AAGGGCGAGATCGCTCACCTCAAGACCTCCGTGGACGAGATCACC


TCCGGCAAGGGCAAGCTGACCGACAAGGAACGTCACCGTCTGCTC


GAGAAGATCCGTGTGCTCGAGGCTGAGAAGGAAAAGAACGCTTAC


CAGCTGACTGAGAAGGACAAGGAAATCCAGCGTCTGCGCGACCAG


CTGAAGGCTCGTTACTCCACCACCGCTCTGCTGGAACAGCTGGAA


GAAACCACCCGCGAGGGCGAGCGTCGCGAGCAGGTCCTGAAGGCT


CTGTCCGAAGAGAAGGACGTGCTGAAGCAGCAGCTGTCCGCTGCT


ACCTCCCGTATCGCTGAGCTGGAATCCAAGACCAACACCCTGCGT


CTGTCCCAGACCGTGGCTCCCAACTGCTTCAACTCCTCCATCAAC


AACATCCACGAGATGGAAATCCAACTGAAGGACGCTCTCGAGAAG


AACCAGCAGTGGCTGGTGTACGACCAGCAGCGCGAGGTGTACGTG


AAGGGCCTGCTGGCTAAGATCTTCGAGCTGGAAAAGAAGACCGAG


ACTGCTGCTCACTCCCTGCCCCAGCAGACCAAGAAGCCCGAGTCC


GAGGGTTACCTGCAAGAGGAAAAGCAGAAGTGCTACAACGACCTG


CTGGCTTCCGCTAAGAAGGACCTGGAAGTCGAGCGTCAGACCATC


ACCCAGCTGTCCTTCGAGCTGTCCGAGTTCCGTAGGAAGTACGAA


GAGACTCAGAAGGAAGTCCACAACCTGAACCAGCTGCTGTACTCC


CAGCGTCGTGCTGACGTGCAGCACCTCGAGGACGACCGTCACAAG


ACTGAGAAGATCCAGAAGCTGCGCGAAGAGAACGATATCGCTCGT


GGCAAGCTCGAGGAAGAGAAGAAGCGTTCCGAGGAACTGCTGTCC


CAGGTGCAGTTCCTGTACACCTCCCTGCTCAAGCAGCAAGAGGAA


CAGACCCGTGTGGCTCTGTTGGAGCAGCAGATGCAGGCTTGCACC


CTGGACTTCGAGAACGAGAAGCTGGACCGTCAGCACGTCCAGCAC


CAGCTGCACGTGATCCTGAAGGAACTGCGCAAGGCTCGTAACCAG


ATCACCCAGTTGGAGTCCCTGAAGCAGCTGCACGAGTTCGCTATC


ACCGAGCCCCTGGTCACCTTCCAAGGCGAGACTGAGAACCGCGAG


AAGGTGGCCGCTTCCCCCAAGTCCCCCACCGCTGCTCTGAACGAG


TCCCTGGTCGAGTGCCCCAAGTGCAACATCCAGTACCCCGCTACC


GAGCACCGTGACCTGCTGGTGCACGTCGAGTACTGCTCCAAG





Protein Sequence (Seq ID No. 29):


>sp|Q53EZ4|CEP55_HUMAN Centrosomal protein


of 55 kDa


OS = Homo sapiens OX = 9606 GN = CEP55 PE = 1


SV = 3


MSSRSTKDLIKSKWGSKPSNSKSETTLEKLKGEIAHLKTSVDEIT


SGKGKLTDKERHRLLEKIRVLEAEKEKNAYQLTEKDKEIQRLRDQ


LKARYSTTTLLEQLEETTREGERREQVLKALSEEKDVLKQQLSAA


TSRIAELESKTNTLRLSQTVAPNCFNSSINNIHEMEIQLKDALEK


NQQWLVYDQQREVYVKGLLAKIFELEKKTETAAHSLPQQTKKPES


EGYLQEEKQKCYNDLLASAKKDLEVERQTITQLSFELSEFRRKYE


ETQKEVHNLNQLLYSQRRADVQHLEDDRHKTEKIQKLREENDIAR


GKLEEEKKRSEELLSQVQFLYTSLLKQQEEQTRVALLEQQMQACT


LDFENEKLDRQHVQHQLHVILKELRKARNQITQLESLKQLHEFAI


TEPLVTFQGETENREKVAASPKSPTAALNESLVECPKCNIQYPAT


EHRDLLVHVEYCSK












SH3GL1
Q99961
Endophilin-A2










Nucleotide Sequence (Seq ID No. 9):


>P000121_CAN_CAN1-1_SH3GL1_6455_Homo sapiens


SH3-domain GRB2-like


1_BC001270.1_AAH01270.1_Q99961_0_0_1107_0_1104


ATGTCGGTGGCGGGGCTGAAGAAGCAGTTCTACAAGGCGAGCCAG


CTGGTCAGTGAGAAGGTCGGAGGGGCCGAGGGGACCAAGCTGGAT


GATGACTTCAAAGAGATGGAGAAGAAGGTGGATGTCACCAGCAAG


GCGGTGACAGAAGTGCTGGCCAGGACCATCGAGTACCTGCAGCCC


AACCCAGCCTCGCGGGCTAAGCTGACCATGCTCAACACGGTGTCC


AAGATCCGGGGCCAGGTGAAGAACCCCGGCTACCCGCAGTCGGAG


GGGCTTCTGGGCGAGTGCATGATCCGCCACGGGAAGGAGCTGGGC


GGCGAGTCCAACTTTGGTGACGCATTGCTGGATGCCGGCGAGTCC


ATGAAGCGCCTGGCAGAGGTGAAGGACTCCCTGGACATCGAGGTC


AAGCAGAACTTCATTGACCCCCTCCAGAACCTGTGCGAGAAAGAC


CTGAAGGAGATCCAGCACCACCTGAAGAAACTGGAGGGCCGCCGC


CTGGACTTTGACTACAAGAAGAAGCGGCAGGGCAAGATCCCCGAT


GAGGAGCTACGCCAGGCGCTGGAGAAGTTCGAGGAGTCCAAGGAG


GTGGCAGAAACCAGCATGCACAACCTCCTGGAGACTGACATCGAG


CAGGTGAGTCAGCTCTCGGCCCTGGTGGATGCACAGCTGGACTAC


CACCGGCAGGCCGTGCAGATCCTGGACGAGCTGGCGGAGAAGCTC


AAGCGCAGGATGCGGGAAGCTTCCTCACGCCCTAAGCGGGAGTAT


AAGCCGAAGCCCCGGGAGCCCTTTGACCTTGGAGAGCCTGAGCAG


TCCAACGGGGGCTTCCCCTGCACCACAGCCCCCAAGATCGCAGCT


TCATCGTCTTTCCGATCTTCCGACAAGCCCATCCGGACCCCTAGC


CGGAGCATGCCGCCCCTGGACCAGCCGAGCTGCAAGGCGCTGTAC


GACTTCGAGCCCGAGAACGACGGGGAGCTGGGCTTCCATGAGGGC


GACGTCATCACGCTGACCAACCAGATCGATGAGAACTGGTACGAG


GGCATGCTGGACGGCCAGTCGGGCTTCTTCCCGCTCAGCTACGTG


GAGGTGCTTGTGCCCCTGCCGCAG





Protein Sequence (Seq ID No. 30):


>sp|Q99961|SH3G1_HUMAN Endophilin-A2


OS = Homo sapiens OX = 9606 GN = SH3GL1


PE = 1 SV = 1


MSVAGLKKQFYKASQLVSEKVGGAEGTKLDDDFKEMEKKVDVTSK


AVTEVLARTIEYLQPNPASRAKLTMLNTVSKIRGQVKNPGYPQSE


GLLGECMIRHGKELGGESNFGDALLDAGESMKRLAEVKDSLDIEV


KQNFIDPLQNLCEKDLKEIQHHLKKLEGRRLDFDYKKKRQGKIPD


EELRQALEKFEESKEVAETSMHNLLETDIEQVSQLSALVDAQLDY


HRQAVQILDELAEKLKRRMREASSRPKREYKPKPREPFDLGEPEQ


SNGGFPCTTAPKIAASSSFRSSDKPIRTPSRSMPPLDQPSCKALY


DFEPENDGELGFHEGDVITLTNQIDENWYEGMLDGQSGFFPLSYV


EVLVPLPQ












FN3K
Q9H479
Fructosamine-3-kinase










Nucleotide Sequence (Seq ID No. 10):


>P002359_Q106_Q106p1_FN3K_64122_Homo sapiens


fructosamine 3 kinase_BC042680.1_


AAH42680.1_Q9H479_0_0_930_0_927


ATGGAGCAGCTGCTGCGCGCCGAGCTGCGCACCGCGACCCTGCGG


GCCTTCGGCGGCCCCGGCGCCGGCTGCATCAGCGAGGGCCGAGCC


TACGACACGGACGCAGGCCCAGTGTTCGTCAAAGTCAACCGCAGG


ACGCAGGCCCGGCAGATGTTTGAGGGGGAGGTGGCCAGCCTGGAG


GCCCTCCGGAGCACGGGCCTGGTGCGGGTGCCGAGGCCCATGAAG


GTCATCGACCTGCCGGGAGGTGGGGCCGCCTTTGTGATGGAGCAT


TTGAAGATGAAGAGCTTGAGCAGTCAAGCATCAAAACTTGGAGAG


CAGATGGCAGATTTGCATCTTTACAACCAGAAGCTCAGGGAGAAG


TTGAAGGAGGAGGAGAACACAGTGGGCCGAAGAGGTGAGGGTGCT


GAGCCTCAGTATGTGGACAAGTTCGGCTTCCACACGGTGACGTGC


TGCGGCTTCATCCCGCAGGTGAATGAGTGGCAGGATGACTGGCCG


ACCTTTTTCGCCCGGCACCGGCTCCAGGCGCAGCTGGACCTCATT


GAGAAGGACTATGCTGACCGAGAGGCACGAGAACTCTGGTCCCGG


CTACAGGTGAAGATCCCGGATCTGTTTTGTGGCCTAGAGATTGTC


CCCGCGTTGCTCCACGGGGATCTCTGGTCGGGAAACGTGGCTGAG


GACGACGTGGGGCCCATTATTTACGACCCGGCTTCCTTCTATGGC


CATTCCGAGTTTGAACTGGCAATCGCCTTGATGTTTGGGGGGTTC


CCCAGATCCTTCTTCACCGCCTACCACCGGAAGATCCCCAAGGCT


CCGGGCTTCGACCAGCGGCTGCTGCTCTACCAGCTGTTTAACTAC


CTGAACCACTGGAACCACTTCGGGGGGGAGTACAGGAGCCCTTCG


TTGGGCACCATGCGAAGGCTGCTCAAG





Protein Sequence (Seq ID No. 31):


>sp|Q9H479|FN3K_HUMAN Fructosamine-3-kinase


OS = Homo sapiens OX = 9606 GN = FN3K


PE = 1 SV = 1


MEQLLRAELRTATLRAFGGPGAGCISEGRAYDTDAGPVFVKVNRR


TQARQMFEGEVASLEALRSTGLVRVPRPMKVIDLPGGGAAFVMEH


LKMKSLSSQASKLGEQMADLHLYNQKLREKLKEEENTVGRRGEGA


EPQYVDKFGFHTVTCCGFIPQVNEWQDDWPTFFARHRLQAQLDLI


EKDYADREARELWSRLQVKIPDLFCGLEIVPALLHGDLWSGNVAE


DDVGPIIYDPASFYGHSEFELAIALMFGGFPRSFFTAYHRKIPKA


PGFDQRLLLYQLFNYLNHWNHFGREYRSPSLGTMRRLLK












PANK3
Q9H999
Pantothenate kinase 3










Nucleotide Sequence (Seq ID No. 11):


>P002239_Q106_Q106p2_PANK3_79646_Homo sapiens


pantothenate kinase 3_BC013705.1_AAH13705.1_


Q9H999_0_0_1113_0_1110


ATGAAGATCAAAGATGCCAAGAAACCCTCTTTCCCATGGTTTGGC


ATGGACATTGGGGGAACTCTAGTAAAGCTCTCGTACTTTGAACCT


ATTGATATCACAGCAGAGGAAGAGCAAGAAGAAGTTGAGAGTTTA


AAAAGTATTCGGAAATATTTGACTTCTAACGTGGCATATGGATCC


ACCGGCATTCGGGATGTACACCTTGAACTGAAAGATTTAACACTT


TTTGGCCGAAGAGGGAACTTGCACTTTATCAGGTTTCCAACCCAG


GACCTGCCTACTTTTATCCAAATGGGAAGAGATAAAAACTTCTCA


ACATTGCAGACGGTGCTATGTGCTACAGGAGGTGGTGCTTACAAG


TTTGAAAAAGATTTTCGCACAATTGGAAACCTCCACCTGCACAAA


CTGGATGAACTTGACTGCCTTGTAAAGGGCTTGCTGTATATAGAC


TCTGTCAGTTTCAATGGACAAGCCGAGTGCTATTATTTTGCTAAT


GCCTCAGAACCTGAGCGATGCCAAAAGATGCCTTTTAACCTGGAT


GATCCCTATCCACTGCTTGTAGTGAACATTGGCTCAGGAGTCAGT


ATTTTAGCAGTCCATTCCAAAGACAACTATAAACGAGTGACTGGG


ACAAGCCTTGGAGGGGGTACCTTTCTGGGTTTATGCAGTTTATTG


ACTGGCTGTGAAAGTTTTGAAGAGGCTCTTGAAATGGCATCCAAA


GGTGATAGCACACAAGCTGACAAGCTGGTCCGTGATATTTATGGA


GGAGATTATGAAAGATTTGGTTTGCCAGGTTGGGCTGTAGCATCT


AGTTTTGGGAATATGATTTATAAGGAGAAGCGAGAATCTGTTAGT


AAAGAAGATCTGGCAAGAGCTACTTTAGTTACTATCACCAATAAC


ATTGGTTCTGTGGCACGAATGTGTGCTGTTAATGAGAAAATAAAC


AGAGTTGTCTTTGTTGGAAACTTTTTACGTGTCAATACCCTCTCA


ATGAAACTTTTGGCATATGCACTGGATTACTGGTCAAAAGGTCAA


CTAAAAGCATTGTTTCTAGAACATGAGGGTTACTTTGGAGCAGTT


GGTGCACTTCTTGGGCTGCCAAATTTCAGC





Protein Sequence (Seq ID No. 32):


>sp|Q9H999|PANK3_HUMAN Pantothenate kinase 3


OS = Homo sapiens OX = 9606 GN = PANK3


PE = 1 SV = 1


MKIKDAKKPSFPWFGMDIGGTLVKLSYFEPIDITAEEEQEEVESL


KSIRKYLTSNVAYGSTGIRDVHLELKDLTLFGRRGNLHFIRFPTQ


DLPTFIQMGRDKNFSTLQTVLCATGGGAYKFEKDERTIGNLHLHK


LDELDCLVKGLLYIDSVSFNGQAECYYFANASEPERCQKMPFNLD


DPYPLLVVNIGSGVSILAVHSKDNYKRVTGTSLGGGTFLGLCSLL


TGCESFEEALEMASKGDSTQADKLVRDIYGGDYERFGLPGWAVAS


SFGNMIYKEKRESVSKEDLARATLVTITNNIGSVARMCAVNEKIN


RVVFVGNFLRVNTLSMKLLAYALDYWSKGQLKALFLEHEGYFGAV


GALLGLPNFS












HPCAL1
P37235
Hippocalcin-like protein 1










Nucleotide Sequence (Seq ID No. 12):


>P003172_Q311_Q311_tube_HPCAL1_3241_0_NM_


002149.2_0_P37235_0


ATGGGCAAGCAGAACTCCAAGCTGCGTCCCGAGGTGCTGCAGGAC


CTGCGCGAGAACACCGAGTTCACCGACCACGAGCTGCAAGAGTGG


TACAAGGGTTTCCTGAAGGACTGCCCCACCGGTCACCTGACCGTG


GACGAGTTCAAGAAGATCTACGCTAACTTCTTCCCCTACGGCGAC


GCTTCCAAGTTCGCTGAGCACGTGTTCCGTACCTTCGACACCAAC


GGCGACGGCACCATCGACTTCCGCGAGTTCATCATCGCTCTGTCC


GTGACCTCCCGTGGCAAGCTCGAGCAAAAGCTGAAGTGGGCTTTC


TCGATGTACGACCTGGACGGCAACGGTTACATCTCCCGTTCCGAG


ATGCTCGAGATCGTGCAGGCTATCTACAAGATGGTGTCCTCCGTG


ATGAAGATGCCCGAGGACGAGTCCACCCCCGAGAAGCGTACCGAC


AAGATCTTCCGTCAGATGGACACCAACAACGACGGAAAGCTGTCC


CTGGAAGAGTTCATCCGTGGTGCTAAGTCCGACCCCTCCATCGTG


CGTCTGCTGCAGTGCGACCCATCCTCCGCTTCCCAGTTC





Protein Sequence (Seq ID No. 33):


>sp|P37235|HPCL1_HUMAN Hippocalcin-


like protein 1


OS = Homo sapiens OX = 9606 GN = HPCAL1


PE = 1 SV = 3


MGKQNSKLRPEVLQDLRENTEFTDHELQEWYKGFLKDCPTGHLTV


DEFKKIYANFFPYGDASKFAEHVFRTFDTNGDGTIDFREFIIALS


VTSRGKLEQKLKWAFSMYDLDGNGYISRSEMLEIVQAIYKMVSSV


MKMPEDESTPEKRTDKIFROMDTNNDGKLSLEEFIRGAKSDPSIV


RLLQCDPSSASQF












THRA
P10827
Thyroid hormone




receptor alpha










Nucleotide Sequence (Seq ID No. 13):


>P000757_TRN_TRNp2_THRA_7067_Homo sapiens



Homo sapiens thyroid hormone receptor alpha



(erythroblastic leukemia viral (v-erb-a)


onc_BC000261.1_AAH00261.1_P10827_0_0_


1473_0_1470


ATGGAACAGAAGCCAAGCAAGGTGGAGTGTGGGTCAGACCCAGAG


GAGAACAGTGCCAGGTCACCAGATGGAAAGCGAAAAAGAAAGAAC


GGCCAATGTTCCCTGAAAACCAGCATGTCAGGGTATATCCCTAGT


TACCTGGACAAAGACGAGCAGTGTGTCGTGTGTGGGGACAAGGCA


ACTGGTTATCACTACCGCTGTATCACTTGTGAGGGCTGCAAGGGC


TTCTTTCGCCGCACAATCCAGAAGAACCTCCATCCCACCTATTCC


TGCAAATATGACAGCTGCTGTGTCATTGACAAGATCACCCGCAAT


CAGTGCCAGCTGTGCCGCTTCAAGAAGTGCATCGCCGTGGGCATG


GCCATGGACTTGGTTCTAGATGACTCGAAGCGGGTGGCCAAGCGT


AAGCTGATTGAGCAGAACCGGGAGCGGCGGCGGAAGGAGGAGATG


ATCCGATCACTGCAGCAGCGACCAGAGCCCACTCCTGAAGAGTGG


GATCTGATCCACATTGCCACAGAGGCCCATCGCAGCACCAATGCC


CAGGGCAGCCATTGGAAACAGAGGCGGAAATTCCTGCCCGATGAC


ATTGGCCAGTCACCCATTGTCTCCATGCCGGACGGAGACAAGGTG


GACCTGGAAGCCTTCAGCGAGTTTACCAAGATCATCACCCCGGCC


ATCACCCGTGTGGTGGACTTTGCCAAAAAACTGCCCATGTTCTCC


GAGCTGCCTTGCGAAGACCAGATCATCCTCCTGAAGGGGTGCTGC


ATGGAGATCATGTCCCTGCGGGGGCTGTCCGCTACGACCCTGAGA


GCGACACCCTGACGCTGAGTGGGGAGATGGCTGTCAAGCGGGAGC


AGCTCAAGAATGGCGGCCTGGGCGTAGTCTCCGACGCCATCTTTG


AACTGGGCAAGTCACTCTCTGCCTTTAACCTGGATGACACGGAAG


TGGCTCTGCTGCAGGCTGTGCTGCTAATGTCAACAGACCGCTCGG


GCCTGCTGTGTGTGGACAAGATCGAGAAGAGTCAGGAGGCGTACC


TGCTGGCGTTCGAGCACTACGTCAACCACCGCAAACACAACATTC


CGCACTTCTGGCCCAAGCTGCTGATGAAGGAGAGAGAAGTGCAGA


GTTCGATTCTGTACAAGGGGGCAGCGGCAGAAGGCCGGCCGGGGG


GTCACTGGGCGTCCACCCGGAAGGACAGCAGCTTCTCGGAATGCA


TGTTGTTCAGGGTCCGCAGGTCCGGCAGCTTGAGCAGCAGCTTGG


TGAAGCGGGAAGTCTCCAAGGGCCGGTTCTTCAGCACCAGAGCCC


GAAGAGCCCGCAGCAGCGTCTCCTGGAGCTGCTCCACCGAAGCGG


AATTCTCCATGCCCGAGCGGTCTGTGGGGAAGACGACAGCAGTGA


GGCGGACTCCCCGAGCTCCTCTGAGGAGGAACCGGAGGTCTGCGA


GGACCTGGCAGGCAATGCAGCCTCTCCC





Protein Sequence (Seq ID No. 34):


>sp|P10827|THA_HUMAN Thyroid hormone


receptor alpha


OS = Homo sapiens OX = 9606 GN = THRA PE = 1


SV = 1


MEQKPSKVECGSDPEENSARSPDGKRKRKNGQCSLKTSMSGYIPS


YLDKDEQCVVCGDKATGYHYRCITCEGCKGFFRRTIQKNLHPTYS


CKYDSCCVIDKITRNQCQLCRFKKCIAVGMAMDLVLDDSKRVAKR


KLIEQNRERRRKEEMIRSLQQRPEPTPEEWDLIHIATEAHRSTNA


QGSHWKQRRKFLPDDIGQSPIVSMPDGDKVDLEAFSEFTKIITPA


ITRVVDFAKKLPMFSELPCEDQIILLKGCCMEIMSLRAAVRYDPE


SDTLTLSGEMAVKREQLKNGGLGVVSDAIFELGKSLSAFNLDDTE


VALLQAVLLMSTDRSGLLCVDKIEKSQEAYLLAFEHYVNHRKHNI


PHFWPKLLMKEREVQSSILYKGAAAEGRPGGSLGVHPEGQQLLGM


HVVQGPQVRQLEQQLGEAGSLQGPVLQHQSPKSPQQRLLELLHRS


GILHARAVCGEDDSSEADSPSSSEEEPEVCEDLAGNAASP












AIFM1
O95831
Apoptosis-inducing




factor 1, mitochondrial










Nucleotide Sequence (Seq ID No. 14):


>P003305_Q311_Q311_tube_AIFM1_9131_Apoptosis-


inducing factor, mitochondrion-associated,


1 [Homo sapiens]_NM_001130846.2_0_0_0_0_0_0_0


ATGGAAAAGGTCCGCCGCGAGGGTGTCAAGGTCATGCCCAACGCT


ATCGTGCAGTCCGTGGGCGTGTCCTCCGGCAAGCTGCTGATCAAG


CTGAAGGACGGTCGCAAGGTGGAAACCGACCACATCGTGGCTGCT


GTGGGCCTCGAGCCCAACGTCGAGCTGGCTAAGACCGGTGGCCTC


GAGATCGACTCCGACTTCGGTGGTTTCCGTGTGAACGCTGAGCTG


CAGGCTCGTTCCAACATCTGGGTGGCCGGCGACGCTGCTTGCTTC


TACGACATCAAGCTGGGTCGTCGTCGTGTCGAGCACCACGACCAC


GCTGTGGTGTCCGGTCGTCTGGCTGGCGAGAACATGACCGGTGCT


GCTAAGCCCTACTGGCACCAGTCCATGTTCTGGTCCGACCTGGGT


CCCGACGTGGGTTACGAGGCTATCGGCCTGGTGGACTCCTCCCTG


CCCACCGTGGGAGTGTTCGCTAAGGCTACCGCTCAGGACAACCCC


AAGTCCGCTACCGAGCAGTCCGGCACCGGTATCCGTTCCGAGTCC


GAGACTGAGTCCGAGGCTTCCGAGATCACCATCCCCCCCTCCACC


CCCGCTGTGCCTCAAGCTCCTGTGCAGGGCGAGGACTACGGCAAG


GGTGTCATCTTCTACCTGCGTGACAAGGTGGTCGTGGGTATCGTG


CTGTGGAACATCTTCAACCGTATGCCTATCGCCCGCAAGATCATC


AAGGACGGCGAGCAGCACGAGGACCTGAACGAGGTGGCCAAGCTG


TTCAACATCCACGAGGAC





Protein Sequence (Seq ID No. 35):


>sp|O95831|AIFM1_HUMAN Apoptosis-inducing


factor 1, mitochondrial


OS = Homo sapiens OX = 9606


GN = AIFM1 PE = 1 SV = 1


MFRCGGLAAGALKQKLVPLVRTVCVRSPRQRNRLPGNLFQRWHVP


LELQMTRQMASSGASGGKIDNSVLVLIVGLSTVGAGAYAYKTMKE


DEKRYNERISGLGLTPEQKQKKAALSASEGEEVPQDKAPSHVPFL


LIGGGTAAFAAARSIRARDPGARVLIVSEDPELPYMRPPLSKELW


FSDDPNVTKTLRFKQWNGKERSIYFQPPSFYVSAQDLPHIENGGV


AVLTGKKVVQLDVRDNMVKLNDGSQITYEKCLIATGGTPRSLSAI


DRAGAEVKSRTTLFRKIGDFRSLEKISREVKSITIIGGGFLGSEL


ACALGRKARALGTEVIQLFPEKGNMGKILPEYLSNWTMEKVRREG


VKVMPNAIVQSVGVSSGKLLIKLKDGRKVETDHIVAAVGLEPNVE


LAKTGGLEIDSDFGGFRVNAELQARSNIWVAGDAACFYDIKLGRR


RVEHHDHAVVSGRLAGENMTGAAKPYWHQSMFWSDLGPDVGYEAI


GLVDSSLPTVGVFAKATAQDNPKSATEQSGTGIRSESETESEASE


ITIPPSTPAVPQAPVQGEDYGKGVIFYLRDKVVVGIVLWNIFNRM


PIARKIIKDGEQHEDLNEVAKLFNIHED












ODC1
P11926
Ornithine decarboxylase










Nucleotide Sequence (Seq ID No. 15):


>P000568_SIG_SIG1-3_ODC1_4953_Homo sapiens


ornithine decarboxylase


1_BC025296.1_AAH25296.1_P11926_62117_0_


1386_0_1383


ATGAACAACTTTGGTAATGAAGAGTTTGACTGCCACTTCCTCGAT


GAAGGTTTTACTGCCAAGGACATTCTGGACCAGAAAATTAATGAA


GTTTCTTCTTCTGATGATAAGGATGCCTTCTATGTGGCAGACCTG


GGAGACATTCTAAAGAAACATCTGAGGTGGTTAAAAGCTCTCCCT


CGTGTCACCCCCTTTTATGCAGTCAAATGTAATGATAGCAAAGCC


ATCGTGAAGACCCTTGCTGCTACCGGGACAGGATTTGACTGTGCT


AGCAAGACTGAAATACAGTTGGTGCAGAGTCTGGGGGTGCCTCCA


GAGAGGATTATCTATGCAAATCCTTGTAAACAAGTATCTCAAATT


AAGTATGCTGCTAATAATGGAGTCCAGATGATGACTTTTGATAGT


GAAGTTGAGTTGATGAAAGTTGCCAGAGCACATCCCAAAGCAAAG


TTGGTTTTGCGGATTGCCACTGATGATTCCAAAGCAGTCTGTCGT


CTCAGTGTGAAATTCGGTGCCACGCTCAGAACCAGCAGGCTCCTT


TTGGAACGGGCGAAAGAGCTAAATATCGATGTTGTTGGTGTCAGC


TTCCATGTAGGAAGCGGCTGTACCGATCCTGAGACCTTCGTGCAG


GCAATCTCTGATGCCCGCTGTGTTTTTGACATGGGGGCTGAGGTT


GGTTTCAGCATGTATCTGCTTGATATTGGCGGTGGCTTTCCTGGA


TCTGAGGATGTGAAACTTAAATTTGAAGAGATCACCGGCGTAATC


AACCCAGCGTTGGACAAATACTTTCCGTCAGACTCTGGAGTGAGA


ATCATAGCTGAGCCCGGCAGATACTATGTTGCATCAGCTTTCACG


CTTGCAGTTAATATCATTGCCAAGAAAATTGTATTAAAGGAACAG


ACGGGCTCTGATGACGAAGATGAGTCGAGTGAGCAGACCTTTATG


TATTATGTGAATGATGGCGTCTATGGATCATTTAATTGCATACTC


TATGACCACGCACATGTAAAGCCCCTTCTGCAAAAGAGACCTAAA


CCAGATGAGAAGTATTATTCATCCAGCATATGGGGACCAACATGT


GATGGCCTCGATCGGATTGTTGAGCGCTGTGACCTGCCTGAAATG


CATGTGGGTGATTGGATGCTCTTTGAAAACATGGGCGCTTACACT


GTTGCTGCTGCCTCTACGTTCAATGGCTTCCAGAGGCCGACGATC


TACTATGTGATGTCAGGGCCTGCGTGGCAACTCATGCAGCAATTC


CAGAACCCCGACTTCCCACCCGAAGTAGAGGAACAGGATGCCAGC


ACCCTGCCTGTGTCTTGTGCCTGGGAGAGTGGGATGAAACGCCAC


AGAGCAGCCTGTGCTTCGGCTAGTATTAATGTG





Protein Sequence (Seq ID No. 36):


>sp|P11926|DCOR_HUMAN Ornithine decarboxylase


OS = Homo sapiens OX = 9606 GN = ODC1 PE = 1


SV = 2


MNNFGNEEFDCHFLDEGFTAKDILDQKINEVSSSDDKDAFYVADL


GDILKKHLRWLKALPRVTPFYAVKCNDSKAIVKTLAATGTGFDCA


SKTEIQLVQSLGVPPERIIYANPCKQVSQIKYAANNGVQMMTFDS


EVELMKVARAHPKAKLVLRIATDDSKAVCRLSVKFGATLRTSRLL


LERAKELNIDVVGVSFHVGSGCTDPETFVQAISDARCVFDMGAEV


GFSMYLLDIGGGFPGSEDVKLKFEEITGVINPALDKYFPSDSGVR


IIAEPGRYYVASAFTLAVNIIAKKIVLKEQTGSDDEDESSEQTFM


YYVNDGVYGSFNCILYDHAHVKPLLQKRPKPDEKYYSSSIWGPTC


DGLDRIVERCDLPEMHVGDWMLFENMGAYTVAAASTFNGFQRPTI


YYVMSGPAWQLMQQFQNPDFPPEVEEQDASTLPVSCAWESGMKRH


RAACASASINV












RPS6KA4
O75676
Ribosomal protein S6




kinase alpha-4










Nucleotide Sequence (Seq ID No. 16):


>P001321_Q305_Q305p4_RPS6KA4_8986_Homo sapiens


RPS6KA4 ribosomal protein S6 kinase, 90 kDa,


polypeptide 4_BC047896_AAH47896_O75676_0_0_


1575_0_1572


ATGGGGGACGAGGACGACGATGAGAGCTGCGCCGTGGAGCTGOGG


ATCACAGAAGCCAACCTGACCGGGCACGAGGAGAAGGTGAGCGTG


GAGAACTTCGAGCTGCTCAAGGTGCTGGGCACGGGAGCCTACGGC


AAGGTGTTCCTGGTGCGGAAGGCGGGCGGGCACGACGCGGGGAAG


CTGTACGCCATGAAGGTGCTGCGCAAGGCGGCGCTGGTGCAGCGC


GCCAAGACGCAGGAGCACACGCGCACCGAGCGCTCGGTGCTGGAG


CTGGTGCGCCAGGCGCCCTTCCTGGTCACGCTGCACTACGCTTTC


CAGACGGATGCCAAGCTGCACCTCATCCTGGACTATGTGAGCGGC


GGGGAGATGTTCACCCACCTCTACCAGCGCCAGTACTTCAAGGAG


GCTGAGGTGCGCGTGTATGGGGGTGAGATCGTGCTGGCCCTGGAA


CACCTGCACAAGCTCGGCATCATTTACCGAGACCTGAAACTGGAG


AATGTGCTGCTGGACTCCGAGGGCCACATTGTCCTCACGGACTTC


GGGCTGAGCAAGGAGTTCCTGACGGAGGAGAAAGAGCGGACCTTC


TCCTTCTGTGGCACCATCGAGTACATGGCCCCCGAAATCATCCGT


AGCAAGACGGGGCATGGCAAGGCTGTGGACTGGTGGAGCCTGGGC


ATCTTGCTCTTCGAGCTGCTGACGGGGGCCTCGCCCTTCACCCTG


GAGGGCGAGAGGAACACGCAGGCTGAGGTGTCTCGACGGATCCTG


AAGTGCTCCCCTCCCTTCCCCCCTCGGATCGGGCCCGTGGCGCAG


GACCTGCTGCAGCGGCTGCTTTGTAAGGATCCTAAGAAGCGATTG


GGCGCGGGGCCCCAGGGGGCACAAGAAGTCCGGAACCATCCCTTC


TTCCAGGGCCTCGATTGGGTGGCTCTGGCTGCCAGGAAGATTCCA


GCCCCATTCCGGCCCCAAATCCGCTCAGAGCTGGATGTGGGCAAC


TTTGCGGAGGAATTCACTCGGCTGGAGCCTGTCTACTCACCCCCT


GGCAGCCCCCCACCTGGGGACCCCCGAATCTTTCAGGGATACTCC


TTTGTGGCACCCTCCATTCTCTTTGACCACAACAACGCGGCCGAG


ATCATGTGCAAAATCCGCGAGGGGCGCTTCTCCCTTGACGGGGAG


GCCTGGCAGGGTGTATCCGAGGAAGCCAAGGAGCTGGTCCGAGGG


CTCCTGACCGTGGACCCCGCCAAGCGGCTGAAGCTCGAGGGACTG


CGGGGCAGCTCGTGGCTGCAGGACGGCAGCGCGCGCTCCTCGCCC


CCGCTCCGGACGCCCGACGTGCTCGAGTCCTCTGGGCCCGCAGTG


CGCTCGGGTCTCAACGCCACCTTCATGGCATTCAACCGGGGCAAG


CGGGAGGGCTTCTTCCTGAAGAGCGTGGAGAACGCACCCCTGGCC


AAGCGGCGGAAGCAGAAGCTGCGGAGCGCCACCGCCTCCCGCCGG


GGCTCCCCTGCACCAGCCAACCCGGGCCGAGCCCCCGTCGCCGCC


AAAGGGGCCCCCCGCCGAGCCAACGGCCCCCTGCCCCCCTCC





Protein Sequence (Seq ID No. 37):


>sp|O75676|KS6A4_HUMAN Ribosomal protein


S6 kinase alpha-4


OS = Homo sapiens OX = 9606 GN = RPS6KA4


PE = 1 SV = 1


MGDEDDDESCAVELRITEANLTGHEEKVSVENFELLKVLGTGAYG


KVFLVRKAGGHDAGKLYAMKVLRKAALVQRAKTQEHTRTERSVLE


LVRQAPFLVTLHYAFQTDAKLHLILDYVSGGEMFTHLYQRQYFKE


AEVRVYGGEIVLALEHLHKLGIIYRDLKLENVLLDSEGHIVLTDF


GLSKEFLTEEKERTFSFCGTIEYMAPEIIRSKTGHGKAVDWWSLG


ILLFELLTGASPFTLEGERNTQAEVSRRILKCSPPFPPRIGPVAQ


DLLQRLLCKDPKKRLGAGPQGAQEVRNHPFFQGLDWVALAARKIP


APFRPQIRSELDVGNFAEEFTRLEPVYSPPGSPPPGDPRIFQGYS


FVAPSILFDHNNAVMTDGLEAPGAGDRPGRAAVARSAMMQDSPFF


QQYELDLREPALGQGSFSVCRRCRQRQSGQEFAVKILSRRLEANT


QREVAALRLCQSHPNVVNLHEVHHDQLHTYLVLELLRGGELLEHI


RKKRHFSESEASQILRSLVSAVSFMHEEAGVVHRDLKPENILYAD


DTPGAPVKIIDFGFARLRPQSPGVPMQTPCFTLQYAAPELLAQQG


YDESCDLWSLGVILYMMLSGQVPFQGASGQGGQSQAAEIMCKIRE


GRFSLDGEAWQGVSEEAKELVRGLLTVDPAKRLKLEGLRGSSWLQ


DGSARSSPPLRTPDVLESSGPAVRSGLNATFMAFNRGKREGFFLK


SVENAPLAKRRKQKLRSATASRRGSPAPANPGRAPVASKGAPRRA


NGPLPPS












EEF1D
P29692
Elongation factor 1-delta










Nucleotide Sequence (Seq ID No. 17):


>P001467_CAG_CAGp2_EEF1D_1936_Homo sapiens



Homo sapiens eukaryotic translation



elongation factor 1 delta (guanine nucleotide


exchang_BC007847.2_AAH07847.1_P29692_0_0_


1944_0_1941


ATGAGGAGCGGGAAGGCCTCCTGCACCCTGGAGACCGTGTGGGAA


GACAAGCACAAGTATGAGGAGGCCGAGCGGCGCTTCTACGAACAC


GAGGCCACACAGGCGGCCGCCTCCGCCCAGCAGCTGCCAGCCGAG


GGGCCAGCCATGAATGGGCCCGGCCAGGACGACCCTGAGGACGCT


GATGAGGCGGAAGCCCCTGACGGCGGCAGCAGGCGTGATCCCAGG


AAGAGCCAGGACAGCAGGAAGCCCCTGCAGAAAAAGAGGAAGCGC


TCCCCCAAGAGCGGGCTCGGCCCCGCGGACCTGGCCCTCCTGGGC


CTCTCGGCCGAACGTGTGTGGCTGGACAAGTCACTTTTCGACCAG


GCAGAGAGCTCCTACCGCCAGAAGCTGGCAGATGTGGCTGCCCAG


GCAGCCTGGCCTCCTGCCTTGGCCCCTTGGGGTCTCTGCACCCAT


GGAAACCAGGTGGCCTGCCACCACGTGACCTGGGGGATCTGGGTC


AACAAGTCCTCCTTCGACCAGGCTGAGCGGGCCTTCGTGGAGTGG


TCTCAGGCCCTGTTGCTGGCCCCCGAGGGCAGCCGCAGGCAGGGG


ACTCCCAACACAGGCCAGCAGGTGGCCGTCCCCGACCTGGCCCAC


CAGCCCAGCCCACCGGTCAATGGCCAGCCCCCGCTGGGCAGCCTG


CAGGCACTGGTTCGGGAGGTGTGGCTGGAGAAGCCCCGGTATGAT


GCAGCCGAGAGGGGCTTCTACGAGGCCCTGTTTGACGGCCATCCC


CCAGGGAAGGTGCGCCTGCAAGAGCGAGCCGGCCTGGCCGAGGGT


GCCCGGGGGGCCGCAGAGACCGGCGGGGCCGCAACATCTTAGGGA


ACAAGCGGGCCGGGCTGCGACGGGCCGATGGGGAGGCCCCCTCTG


CCTTGCCCTACTGTTACTTCCTGCAGAAGGATGCAGAGGCCCCCT


GGCTCAGCAAGCCTGCCTACGACAGCGCCGAGTGCCGCCACCACG


CTGCCGAGGCCCTGCGTGTGGCCTGGTGCCTCGAAGCTGCCTCCC


TGTCTCACCGACCCGGTCCTCGGTCTGGCCTGTCCGTGTCCAGCC


TGAGACCCAACAGAAAAATGGCTACAAACTTCCTAGCACATGAGA


AGATCTGGTTCGACAAGTTCAAATATGACGACGCAGAAAGGAGAT


TCTACGAGCAGATGAACGGGCCTGTGGCAGGTGCCTCCCGCCAGG


AGAACGGCGCCAGCGTGATCCTCCGTGACATTGCGAGAGCCAGAG


AGAACATCCAGAAATCCCTGGCTGGAAGCTCAGGCCCCGGGGCCT


CCAGCGGCACCAGCGGAGACCACGGTGAGCTCGTCGTCCGGATTG


CCAGTCTGGAAGTGGAGAACCAGAGTCTGCGTGGCGTGGTACAGG


AGCTGCAGCAGGCCATCTCCAAGCTGGAGGCCCGGCTGAACGTGC


TGGAGAAGAGCTCGCCTGGCCACCGGGCCACGGCCCCACAGACCC


AGCACGTATCTCCCATGCGCCAAGTGGAGCCCCCAGCCAAGAAGC


CAGCCACACCAGCAGAGGATGACGAGGATGATGACATTGACCTGT


TTGGCAGTGACAATGAGGAGGAGGACAAGGAGGCGGCACAGCTGC


GGGAGGAGCGGCTACGGCAGTACGCGGAGAAGAAGGCCAAGAAGC


CTGCACTGGTGGCCAAGTCCTCCATCCTGCTGGATGTCAAGCCTT


GGGATGATGAGACGGACATGGCCCAGCTGGAGGCCTGTGTGCGCT


CTATCCAGCTGGACGGGCTGGTCTGGGGGGCTTCCAAGCTGGTGC


CCGTGGGCTACGGTATCCGGAAGCTACAGATTCAGTGTGTGGTGG


AGGACGACAAGGTGGGGACAGACTTGCTGGAGGAGGAGATCACCA


AGTTTGAGGAGCACGTGCAGAGTGTCGATATCGCAGCTTTCAACA


AGATC





Protein Sequence (Seq ID No. 38):


>sp|P29692|EF1D_HUMAN Elongation factor 1-delta


OS = Homo sapiens OX = 9606 GN = EEF1D PE = 1


SV = 5


MATNFLAHEKIWFDKFKYDDAERRFYEQMNGPVAGASRQENGASV


ILRDIARARENIQKSLAGSSGPGASSGTSGDHGELVVRIASLEVE


NQSLRGVVQELQQAISKLEARLNVLEKSSPGHRATAPQTQHVSPM


RQVEPPAKKPATPAEDDEDDDIDLFGSDNEEEDKEAAQLREERLR


QYAEKKAKKPALVAKSSILLDVKPWDDETDMAQLEACVRSIQLDG


LVWGASKLVPVGYGIRKLQIQCVVEDDKVGTDLLEEEITKFEEHV


QSVDIAAFNKI












KLF10
Q13118
Krueppel-like factor 10










Nucleotide Sequence (Seq ID No. 18):


>P000598_TRN_TRNp1_TIEG_7071_Homo sapiens


TGFB inducible early growth


response_BC011538.1_AAH11538.1_Q53QU8_0_0_


1410_0_1407


ATGGAGGAAAGAATGGAAATGATTTCTGAAAGGCCAAAAGAGAGT


ATGTATTCCTGGAACAAAACTGCAGAGAAAAGTGATTTTGAAGCT


GTAGAAGCACTTATGTCAATGAGCTGCAGTTGGAAGTCTGATTTT


AAGAAATACGTTGAAAACAGACCTGTTACACCAGTATCTGATTTG


TCAGAGGAAGAGAATCTGCTTCCGGGAACACCTGATTTTCATACA


ATCCCAGCATTTTGTTTGACTCCACCTTACAGTCCTTCTGACTTT


GAACCCTCTCAAGTGTCAAATCTGATGGCACCAGCGCCATCTACT


GTACACTTCAAGTCACTCTCAGATACTGCCAAACCTCACATTGCC


GCACCTTTCAAAGAGGAAGAAAAGAGCCCAGTATCTGCCCCCAAA


CTCCCCAAAGCTCAGGCAACAAGTGTGATTCGTCATACAGCTGAT


GCCCAGCTATGTAACCACCAGACCTGCCCAATGAAAGCAGCCAGC


ATCCTCAACTATCAGAACAATTCTTTTAGAAGAAGAACCCACCTA


AATGTTGAGGCTGCAAGAAAGAACATACCATGTGCCGCTGTGTCA


CCAAACAGATCCAAATGTGAGAGAAACACAGTGGCAGATGTTGAT


GAGAAAGCAAGTGCTGCACTTTATGACTTTTCTGTGCCTTCCTCA


GAGACGGTCATCTGCAGGTCTCAGCCAGCCCCTGTGTCCCCACAA


CAGAAGTCAGTGTTGGTCTCTCCACCTGCAGTATCTGCAGGGGGA


GTGCCACCTATGCCGGTCATCTGCCAGATGGTTCCCCTTCCTGCC


AACAACCCTGTTGTGACAACAGTCGTTCCCAGCACTCCTCCCAGC


CAGCCACCAGCCGTTTGCCCCCCTGTTGTGTTCATGGGCACACAA


GTCCCCAAAGGCGCTGTCATGTTTGTGGTACCCCAGCCCGTTGTG


CAGAGTTCAAAGCCTCCGGTGGTGAGCCCGAATGGCACCAGACTC


TCTCCCATTGCCCCTGCTCCTGGGTTTTCCCCTTCAGCAGCAAAA


GTCACTCCTCAGATTGATTCATCAAGGATAAGGAGTCACATCTGT


AGCCACCCAGGATGTGGCAAGACATACTTTAAAAGTTCCCATCTG


AAGGCCCACACGAGGACGCACACAGGAGAAAAGCCTTTCAGCTGT


AGCTGGAAAGGTTGTGAAAGGAGGTTTGCCCGTTCTGATGAACTG


TCCAGACACAGGCGAACCCACACGGGTGAGAAGAAATTTGCGTGC


CCCATGTGTGACCGGCGGTTCATGAGGAGTGACCATTIGACCAAG


CATGCCCGGCGCCATCTATCAGCCAAGAAGCTACCAAACTGGCAG


ATGGAAGTGAGCAAGCTAAATGACATTGCTCTACCTCCAACCCCT


GCTCCCACACAG





Protein Sequence (Seq ID No. 39):


>sp|Q13118|KLF10_HUMAN Krueppel-like factor 10


OS = Homo sapiens OX = 9606 GN = KLF10 PE = 1


SV = 1


MLNFGASLQQTAEERMEMISERPKESMYSWNKTAEKSDFEAVEAL


MSMSCSWKSDFKKYVENRPVTPVSDLSEEENLLPGTPDFHTIPAF


CLTPPYSPSDFEPSQVSNLMAPAPSTVHFKSLSDTAKPHIAAPFK


EEEKSPVSAPKLPKAQATSVIRHTADAQLCNHQTCPMKAASILNY


QNNSFRRRTHLNVEAARKNIPCAAVSPNRSKCERNTVADVDEKAS


AALYDFSVPSSETVICRSQPAPVSPQQKSVLVSPPAVSAGGVPPM


PVICQMVPLPANNPVVTTVVPSTPPSQPPAVCPPVVFMGTQVPKG


AVMFVVPQPVVQSSKPPVVSPNGTRLSPIAPAPGFSPSAAKVTPQ


IDSSRIRSHICSHPGCGKTYFKSSHLKAHTRTHTGEKPFSCSWKG


CERRFARSDELSRHRRTHTGEKKFACPMCDRRFMRSDHLTKHARR


HLSAKKLPNWQMEVSKLNDIALPPTPAPTQ












EPHA2
P29317
Ephrin type-A receptor 2










Nucleotide Sequence (Seq ID No. 19):


>P003284_Q311_Q311_tube_EPHA2_1969_0_


NM_004431.3_0_P29317_0


ATGGAACTGCAGGCTGCTCGTGCTTGCTTCGCTCTGCTGTGGGGT


TGCGCTTTGGCTGCTGCAGCTGCTGCTCAGGGCAAAGAGGTGGTC


CTGCTGGACTTCGCTGCTGCCGGTGGCGAACTGGGATGGCTGACT


CACCCTTACGGCAAGGGCTGGGACCTGATGCAGAACATCATGAAC


GACATGCCCATCTACATGTACTCCGTGTGCAACGTGATGTCCGGC


GACCAGGACAACTGGCTGCGTACCAACTGGGTGTACCGTGGCGAG


GCTGAGCGCATCTTCATCGAGCTGAAGTTCACCGTGCGCGACTGC


AACTCCTTCCCTGGTGGTGCTTCCAGCTGCAAAGAGACTTTCAAC


CTGTACTACGCTGAGTCCGACCTGGACTACGGCACCAACTTCCAG


AAGCGTCTGTTCACCAAGATCGACACTATCGCTCCCGACGAGATC


ACCGTGTCCTCCGACTTCGAGGCTCGTCACGTGAAGCTGAACGTC


GAGGAACGCTCCGTGGGTCCCCTGACCCGCAAGGGATTCTACCTG


GCTTTCCAGGACATCGGTGCTTGCGTGGCCCTGCTGTCCGTGCGT


GTGTACTACAAGAAGTGCCCCGAGCTGCTCCAGGGCCTGGCTCAC


TTCCCTGAGACTATCGCTGGTTCCGACGCTCCCTCCCTGGCTACC


GTTGCTGGTACTTGCGTGGACCACGCTGTGGTGCCACCTGGTGGC


GAGGAACCTCGTATGCACTGCGCTGTGGACGGCGAGTGGCTGGTG


CCTATCGGTCAATGCCTGTGCCAGGCTGGTTACGAGAAGGTCGAG


GACGCTTGCCAGGCTTGCTCCCCCGGTTTCTTCAAGTTCGAGGCT


TCCGAGTCCCCCTGCCTGGAATGCCCTGAACACACCCTGCCTTCC


CCAGAGGGTGCTACCTCCTGCGAGTGCGAAGAGGGCTTCTTCCGT


GCTCCCCAGGACCCCGCTTCTATGCCTTGCACCCGTCCTCCCTCC


GCTCCCCACTACCTGACTGCTGTCGGCATGGGTGCTAAGGTCGAG


CTGCGTTGGACCCCCCCTCAGGATTCTGGTGGTCGCGAGGACATC


GTCTACTCCGTGACCTGCGAGCAGTGCTGGCCTGAGTCTGGCGAA


TGCGGTCCCTGCGAGGCTTCTGTGCGCTACTCTGAGCCTCCTCAC


GGCCTGACCCGTACCTCTGTGACCGTGTCCGACCTCGAGCCCCAC


ATGAACTACACCTTCACCGTCGAGGCCCGTAACGGTGTCTCCGGA


CTGGTCACCTCCCGTTCCTTCCGTACCGCTTCCGTGTCCATCAAC


CAGACCGAGCCCCCCAAAGTGCGCCTGGAAGGACGTTCTACCACC


TCCCTGTCCGTGTCTTGGTCCATCCCCCCACCTCAGCAGTCCCGT


GTGTGGAAGTACGAAGTGACCTACCGCAAGAAGGGCGACTCCAAC


TCTTACAACGTGCGTCGTACCGAGGGTTTCAGCGTGACCCTGGAC


GACCTGGCTCCCGACACCACCTACCTGGTGCAAGTGCAGGCTCTG


ACCCAAGAGGGCCAGGGTGCTGGTTCCAAGGTGCACGAGTTCCAG


ACCCTGTCCCCCGAGGGTTCCGGAAACTTGGCTGTGATCGGCGGT


GTCGCTGTGGGTGTCGTGCTGCTGTTGGTGCTGGCTGGTGTCGGC


TTCTTCATCCACCGTCGTCGCAAGAACCAGCGTGCTCGTCAGTCC


CCTGAGGACGTGTACTTCTCCAAGTCCGAGCAGCTGAAGCCCCTC


AAGACCTACGTGGACCCCCACACTTACGAGGACCCCAACCAGGCT


GTGCTCAAGTTCACTACCGAGATCCACCCCTCCTGCGTGACCCGT


CAGAAAGTGATCGGTGCTGGCGAGTTCGGCGAGGTGTACAAGGGA


ATGCTCAAGACTTCCTCCGGCAAGAAAGAGGTGCCCGTCGCTATC


AAGACCCTGAAGGCTGGCTACACCGAGAAGCAGCGTGTGGACTTC


CTGGGAGAGGCTGGTATCATGGGCCAGTTCTCCCACCACAACATC


ATCCGTCTGGAAGGTGTCATCTCCAAGTACAAGCCCATGATGATC


ATTACCGAGTACATGGAAAACGGCGCCCTGGACAAGTTCCTGCGC


GAGAAGGATGGCGAGTTCTCCGTGCTGCAGCTCGTGGGAATGCTG


CGTGGTATCGCTGCTGGCATGAAGTACCTGGCCAACATGAATTAC


GTGCACAGGGACCTGGCTGCTCGCAACATCCTGGTCAACTCCAAC


CTCGTGTGCAAGGTGTCAGACTTCGGCCTGTCCCGCGTGCTCGAG


GACGATCCTGAGGCTACCTACACCACCTCCGGTGGAAAGATCCCC


ATCCGTTGGACCGCTCCCGAGGCTATCTCTTACCGCAAGTTCACC


TCCGCTTCCGACGTGTGGTCCTTCGGTATCGTGATGTGGGAAGTG


ATGACCTACGGCGAGCGCCCCTACTGGGAGCTGTCTAACCACGAA


GTCATGAAGGCTATCAACGACGGTTTCCGTCTGCCCACCCCTATG


GACTGCCCCTCCGCTATCTACCAGCTGATGATGCAATGCTGGCAG


CAAGAGCGTGCTAGGCGTCCCAAGTTCGCTGACATCGTGTCTATC


CTCGACAAGCTGATCCGCGCTCCTGACTCCCTGAAAACCCTGGCT


GACTTCGACCCCCGTGTGTCCATCCGCCTGCCTTCTACCTCTGGC


TCCGAGGGTGTCCCTTTCCGTACTGTGTCCGAGTGGCTCGAGTCC


ATCAAGATGCAGCAGTACACCGAGCACTTCATGGCTGCTGGTTAC


ACCGCTATCGAGAAGGTGGTGCAGATGACCAACGACGACATCAAG


CGTATCGGCGTGCGTCTGCCCGGTCACCAGAAGAGGATCGCTTAC


TCCCTGCTGGGCCTGAAGGACCAAGTGAACACCGTGGGTATCCCC


ATC





Protein Sequence (Seq ID No. 40):


>sp|P29317|EPHA2_HUMAN Ephrin type-A


receptor 2


OS = Homo sapiens OX = 9606 GN = EPHA2 PE = 1


SV = 2


MELQAARACFALLWGCALAAAAAAQGKEVVLLDFAAAGGELGWLT


HPYGKGWDLMQNIMNDMPIYMYSVCNVMSGDQDNWLRTNWVYRGE


AERIFIELKFTVRDCNSFPGGASSCKETFNLYYAESDLDYGTNFQ


KRLFTKIDTIAPDEITVSSDFEARHVKLNVEERSVGPLTRKGFYL


AFQDIGACVALLSVRVYYKKCPELLQGLAHFPETIAGSDAPSLAT


VAGTCVDHAVVPPGGEEPRMHCAVDGEWLVPIGQCLCQAGYEKVE


DACQACSPGFFKFEASESPCLECPEHTLPSPEGATSCECEEGFFR


APQDPASMPCTRPPSAPHYLTAVGMGAKVELRWTPPQDSGGREDI


VYSVTCEQCWPESGECGPCEASVRYSEPPHGLTRTSVTVSDLEPH


MNYTFTVEARNGVSGLVTSRSFRTASVSINQTEPPKVRLEGRSTT


SLSVSWSIPPPQQSRVWKYEVTYRKKGDSNSYNVRRTEGFSVTLD


DLAPDTTYLVQVQALTQEGQGAGSKVHEFQTLSPEGSGNLAVIGG


VAVGVVLLLVLAGVGFFIHRRRKNQRARQSPEDVYFSKSEQLKPL


KTYVDPHTYEDPNQAVLKFTTEIHPSCVTRQKVIGAGEFGEVYKG


MLKTSSGKKEVPVAIKTLKAGYTEKQRVDFLGEAGIMGQFSHHNI


IRLEGVISKYKPMMIITEYMENGALDKFLREKDGEFSVLQLVGML


RGIAAGMKYLANMNYVHRDLAARNILVNSNLVCKVSDFGLSRVLE


DDPEATYTTSGGKIPIRWTAPEAISYRKFTSASDVWSFGIVMWEV


MTYGERPYWELSNHEVMKAINDGFRLPTPMDCPSAIYQLMMQCWQ


QERARRPKFADIVSILDKLIRAPDSLKTLADFDPRVSIRLPSTSG


SEGVPFRTVSEWLESIKMQQYTEHFMAAGYTAIEKVVQMTNDDIK


RIGVRLPGHQKRIAYSLLGLKDQVNTVGIPI












PRKAR1A
P10644
CAMP-dependent protein




kinase type I-alpha




regulatory subunit










Nucleotide Sequence (Seq ID No. 20):


>P000113_CAN_CAN1-1_PRKAR1A_5573_Homo sapiens


protein kinase cAMP-dependent regulatory


type I alpha (tissue specific e_BC036285.1_


AAH36285.1_P10644_0_0_1146_0_1143


ATGGAGTCTGGCAGTACCGCCGCCAGTGAGGAGGCACGCAGCCTT


CGAGAATGTGAGCTCTACGTCCAGAAGCATAACATTCAAGCGCTG


CTCAAAGATTCTATTGTGCAGTTGTGCACTGCTCGACCTGAGAGA


CCCATGGCATTCCTCAGGGAATACTTTGAGAGGTTGGAGAAGGAG


GAGGCAAAACAGATTCAGAATCTGCAGAAAGCAGGCACTCGTACA


GACTCAAGGGAGGATGAGATTTCTCCTCCTCCACCCAACCCAGTG


GTTAAAGGTAGGAGGCGACGAGGTGCTATCAGCGCTGAGGTCTAC


ACGGAGGAAGATGCGGCATCCTATGTTAGAAAGGTTATACCAAAA


GATTACAAGACAATGGCCGCTTTAGCCAAAGCCATTGAAAAGAAT


GTGCTGTTTTCACATCTTGATGATAATGAGAGAAGTGATATTTTT


GATGCCATGTTTTCGGTCTCCTTTATCGCAGGAGAGACTGTGATT


CAGCAAGGTGATGAAGGGGATAACTTCTATGTGATTGATCAAGGA


GAGACGGATGTCTATGTTAACAATGAATGGGCAACCAGTGTTGGG


GAAGGAGGGAGCTTTGGAGAACTTGCTTTGATTTATGGAACACCG


AGAGCAGCCACTGTCAAAGCAAAGACAAATGTGAAATTGTGGGGC


ATCGACCGAGACAGCTATAGAAGAATCCTCATGGGAAGCACACTG


AGAAAGCGGAAGATGTATGAGGAATTCCTTAGTAAAGTCTCTATT


TTAGAGTCTCTGGACAAGTGGGAACGTCTTACGGTAGCTGATGCA


TTGGAACCAGTGCAGTTTGAAGATGGGCAGAAGATTGTGGTGCAG


GGAGAACCAGGGGATGAGTTCTTCATTATTTTAGAGGGGTCAGCT


GCTGTGCTACAACGTCGGTCAGAAAATGAAGAGTTTGTTGAAGTG


GGAAGATTGGGGCCTTCTGATTATTTTGGTGAAATTGCACTACTG


ATGAATCGTCCTCGTGCTGCCACAGTTGTTGCTCGTGGCCCCTTG


AAGTGCGTTAAGCTGGACCGACCTAGATTTGAACGTGTTCTTGGC


CCATGCTCAGACATCCTCAAACGAAACATCCAGCAGTACAACAGT


TTTGTGTCACTGTCTGTC





Protein Sequence (Seq ID No. 41):


>sp|P10644|KAPO_HUMAN CAMP-dependent protein


kinase type I-alpha regulatory subunit


OS = Homo sapiens


OX = 9606 GN = PRKAR1A PE = 1 SV = 1


MESGSTAASEEARSLRECELYVQKHNIQALLKDSIVQLCTARPER


PMAFLREYFERLEKEEAKQIQNLQKAGTRTDSREDEISPPPPNPV


VKGRRRRGAISAEVYTEEDAASYVRKVIPKDYKTMAALAKAIEKN


VLFSHLDDNERSDIFDAMFSVSFIAGETVIQQGDEGDNFYVIDQG


ETDVYVNNEWATSVGEGGSFGELALIYGTPRAATVKAKTNVKLWG


IDRDSYRRILMGSTLRKRKMYEEFLSKVSILESLDKWERLTVADA


LEPVQFEDGQKIVVQGEPGDEFFIILEGSAAVLQRRSENEEFVEV


GRLGPSDYFGEIALLMNRPRAATVVARGPLKCVKLDRPRFERVLG


PCSDILKRNIQQYNSFVSLSV












EAPP
Q56P03
E2F-associated




phosphoprotein










Nucleotide Sequence (Seq ID No. 21):


>P001616_Q106_Q106p2_EAPP_55837_Homo sapiens


chromosome 14 open reading frame


11_BC001245.1_AAH01245.1_xx_0_0_858_0_855


ATGAACCGGCTTCCGGATGACTACGACCCCTACGCGGTTGAAGAG


CCTAGCGACGAGGAGCCGGCTTTGAGCAGCTCTGAGGATGAAGTG


GATGTGCTTTTACATGGAACTCCTGACCAAAAACGAAAACTCATC


AGAGAATGTCTTACCGGAGAAAGTGAATCATCTAGTGAAGATGAA


TTTGAAAAGGAGATGGAAGCTGAATTAAATTCTACCATGAAAACA


ATGGAGGACAAGTTATCCTCTCTGGGAACTGGATCTTCCTCAGGA


AATGGAAAAGTTGCAACAGCTCCGACAAGGTACTACGATGATATA


TATTTTGATTCTGATTCCGAGGATGAAGACAGAGCAGTACAGGTG


ACCAAGAAAAAAAAGAAGAAACAACACAAGATTCCAACAAATGAC


GAATTACTGTATGATCCTGAAAAAGATAACAGAGATCAGGCCTGG


GTTGATGCACAGAGAAGGGGTTACCATGGTTTGGGACCACAGAGA


TCACGTGAACAACAGCCTGTTCCAAATAGTGATGCTGTCTTGAAT


TGTCCTGCCTGCATGACCACACTTTGCCTTGATTGCCAAAGGCAT


GAATCATACAAAACTCAATATAGAGCAATGTTTGTAATGAATTGT


TCTATTAACAAAGAGGAGGTTCTAAGATATAAAGCCTCAGAGAAC


AGGAAGAAAAGGCGGGTCCATAAGAAGATGAGGTCTAACCAGGAA


GATGCTGCTGAGAAGGCAGAGACAGATGTGGAAGAAATCTATCAC


CCAGTCATGTGCACTGAATGTTCCACTGAAGTGGCAGTCTACGAC


AAGGATGAAGTCTTTCATTTTTTCAATGTTTTAGCAAGCCATTCC





Protein Sequence (Seq ID No. 42):


>sp|Q56P03|EAPP_HUMAN E2F-associated


phosphoprotein


OS = Homo sapiens OX = 9606 GN = EAPP PE = 1


SV = 4


MNRLPDDYDPYAVEEPSDEEPALSSSEDEVDVLLHGTPDQKRKLI


RECLTGESESSSEDEFEKEMEAELNSTMKTMEDKLSSLGTGSSSG


NGKVATAPTRYYDDIYFDSDSEDEDRAVQVTKKKKKKQHKIPTND


ELLYDPEKDNRDQAWVDAQRRGYHGLGPQRSRQQQPVPNSDAVLN


CPACMTTLCLDCQRHESYKTQYRAMFVMNCSINKEEVLRYKASEN


RKKRRVHKKMRSNREDAAEKAETDVEEIYHPVMCTECSTEVAVYD


KDEVFHFFNVLASHS








Claims
  • 1. A method for predicting a response to adalimumab from a serum/plasma sample extracted from a rheumatoid arthritis patient prior to treating the patient with adalimumab, said response being classified as a good response corresponding to anti-drug antibody negative or a poor response corresponding to anti-drug antibody positive, comprising the steps of: (i) testing the sample for the presence of autoantibody biomarkers; and(ii) determining whether the patient will develop a good response or a poor response to treatment with adalimumab, based on the detection of said autoantibody biomarkers:characterised in that said autoantibody biomarkers comprise autoantibodies to antigens SSB, TROVE2 and ZHX2, wherein ZHX2 is associated with the good response, and SSB and TROVE2 are associated with the poor response.
  • 2. The method according to claim 1 wherein the autoantibody biomarkers further comprise autoantibodies to one or more antigens from the group comprising of: PPARD, TRIB2, SH3GL1, ODC1, EEF1D, PRKARIA and EAPP which are associated with the good response, and SPANXN2, HNRNPA2B, CEP55, FN3K, PANK3. HPCAL1. THRA. AIFM1, RPS6KA4, KLF10 and EPHA2 which are associated with the poor response.
  • 3. The method according to claim 1 wherein the antigens are biotinylated proteins.
  • 4. The method according to claim 3 wherein each biotinylated protein is formed from a Biotin Carboxyl Carrier Protein folding marker which is fused in-frame with a protein.
  • 5. The method according to claim 3 wherein the biotinylated proteins are bound to a streptavidin-coated substrate.
  • 6. The method according to claim 5 wherein the substrate comprises a hydrogel-forming polymer base layer.
  • 7. The method according to claim 1 wherein the antigens are exposed to a serum/plasma sample extracted from a rheumatoid arthritis patient, such that autoantibody biomarkers from the sample may bind to the antigens.
  • 8. The method according to claim 7 wherein the antigens are subsequently exposed to a fluorescently-tagged secondary antibody to allow the amount of any autoantibodies from the sample bound to the antigens to be determined.
  • 9. The method according to claim 8 wherein the patient's response to treatment with adalimumab corresponds to the relative or absolute amount of autoantibodies from the sample specifically binding to the antigens.
  • 10. The method according to claim 1 wherein the steps are performed in vitro.
  • 11. The method according to claim 1 wherein the method comprises detecting upregulation/downregulation of one or more biomarkers
  • 12. Use of a kit to predict a response to adalimumab from a serum/plasma sample extracted from a rheumatoid arthritis patient prior to treating the patient with adalimumab, said response being classified as a good response corresponding to anti-drug antibody negative or a poor response corresponding to anti-drug antibody positive, the method of manufacturing the kit comprising the steps of: for each antigen in a panel, cloning a biotin carboxyl carrier protein folding marker in-frame with a gene encoding the antigen and expressing the resulting biotinylated antigen;binding the biotinylated antigens to addressable locations on one or more streptavidin-coated substrates, thereby forming an antigen array;such that the amount of autoantibodies from the sample binding to the antigens on the panel can be determined by exposing the substrate to the sample and measuring the response;characterised in that the antigens comprise SSB, TROVE2 and ZHX2, wherein ZHX2 is associated with the good response, and SSB and TROVE2 are associated with the poor response.
  • 13. The use according to claim 12 wherein the antigens further comprise one or more of: PPARD, TRIB2, SH3GL1, ODC1. EEF1D, PRKAR1A and EAPP which are associated with the good response, and SPANXN2. HNRNPA2B, CEP55, FN3K, PANK3, HPCAL1. THRA, AIFMI1, RPS6KA4, KLF10 and EPHA2 which are associated with the poor response.
  • 14. Use of a composition comprising a panel of antigens to predict an immunogenic and/or therapeutic response to adalimumab in a rheumatoid arthritis patient who has not previously been treated with adalimumab, said response being classified as a good response corresponding to anti-drug antibody negative or a poor response corresponding to anti-drug antibody positive, characterised in that the antigens comprise SSB, TROVE2 and ZHX2, wherein ZHX2 is associated with the good response, and SSB and TROVE2 are associated with the poor response.
  • 15. The use according to claim 14 wherein the antigens further comprise one or more of PPARD. TRIB2, SH3GL1, ODC1. EEF1D. PRKAR1A and EAPP which are associated with the good response, and SPANXN2, HNRNPA2B. CEP55. FN3K, PANK3, HPCAL1, THRA, AIFM1, RPS6KA4. KLF10 and EPHA2 and which are associated with the poor response.
  • 16. The use according to claim 14 wherein the antigens are biotinylated proteins.
  • 17. The use according to claim 14 wherein the amount of one or more autoantibody biomarkers binding in vitro to the antigens in a sample from a patient can be measured to predict the response.
  • 18. Use of a composition comprising a panel of autoantibody biomarkers to predict an immunogenic and/or therapeutic response to adalimumab in a rheumatoid arthritis patient who has not previously been treated with adalimumab, said response being classified as a good response corresponding to anti-drug antibody negative or a poor response corresponding to anti-drug antibody positive, wherein the level of the autoantibody biomarkers are measured in a serum/plasma sample collected from the patient:characterised in that the autoantibody biomarkers are specific to antigens comprising SSB, TROVE2 and ZHX2, wherein ZHX2 is associated with the good response, and SSB and TROVE2 are associated with the poor response.
Priority Claims (1)
Number Date Country Kind
10202011473Y Nov 2020 SG national
PCT Information
Filing Document Filing Date Country Kind
PCT/SG2021/050690 11/11/2021 WO