BIOMARKERS TO IMPROVE EFFICACY OF CANCER IMMUNOTHERAPY

Information

  • Patent Application
  • 20210395831
  • Publication Number
    20210395831
  • Date Filed
    November 08, 2019
    4 years ago
  • Date Published
    December 23, 2021
    2 years ago
Abstract
Provided are methods for treatment of cancer. Also provided are methods for treating a patient susceptible, or suspected of being susceptible, with anti-CD47 therapy.
Description
BACKGROUND OF THE DISCLOSURE

The development of cancer immunotherapies is occurring at a rapid pace. These immunotherapy treatments enhance the cytotoxic activity of cells of the immune system and have resulted in improved survival of patients with tumor types as diverse as melanoma, non-small cell lung cancer, bladder cancer, and Hodgkin's lymphoma. Despite these positive results, there remains a significant patient population that fail to respond to prescribed immunotherapy treatment or respond initially only to eventually acquire resistance.


The identification and use of biomarkers in the clinic would significantly improve the use of these immunotherapies. Not only would health care providers be able to identify patients that are most likely to benefit from these therapies, biomarkers may avoid treatment-related toxicity and increase our understanding of modes of action of immunotherapy and thereby identify potential combination therapies.


Furthermore, discovering and validating new biomarkers remains an extremely active area of research and development, especially with respect to: other types of immune cells, the complexity of tumor-immune interactions, and the steps involved in the process of the immune system launching an adaptive response against tumors. Thus, there remains a need for advances in biomarker development to further understand the relationship between cancer, the immune system, and the efficacy of immunotherapies.





DETAILED DESCRIPTION OF THE DRAWINGS


FIG. 1A-FIG. 1B. Treatment with an anti-CD47 antibody induces molecular patterns of PCDIII and ICD. FIG. 1A. Gene expression heat map from Annexin V+ Jurkat human leukemia cells treated with an anti-CD47 Ab which induces cell death compared to treated cells with an anti-CD47 Ab that does not induce cell death or IgG2 Ab (control) treated cells. FIG. 1B. Pathway enrichment analysis of genes upregulated in Annexin V+ cells treated with an anti-CD47 Ab which induces cell death compared to treated cells with an IgG2 Ab (control).





DETAILED DESCRIPTION

Disclosed herein are methods for treating cancer in a patient and for identifying a patient likely to respond to treatment with an agent that specifically binds to CD47, wherein the agent is an anti-CD47 antibody or antigen binding fragment thereof. The methods disclosed herein use multiple assays of biomarkers contained with a biological sample obtained from a patient. In certain embodiments, diagnosing and treating a cancer in a patient who has not received therapy, comprises obtaining a first biological sample from a patient and administering an anti-CD47 antibody to the biological sample in vitro;


quantifying the amount of at least one biomarker in:

    • i. a biological sample treated with an anti-CD47 antibody or antigen binding fragment thereof; and
    • ii. in an untreated biological sample, wherein the at least one biomarker is selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2 or variants thereof, and comparing the amounts of the at least one biomarker in an treated biological sample with the biomarker in the untreated biological sample; identifying a patient as responsive to anti-CD47 therapy when the amount of at least one biomarker in the treated biological sample is greater than the amount of at least one biomarker in the untreated biological sample from the patient; and


administering a therapeutically effective amount of an anti-CD47 antibody or antigen binding fragment thereof to the patient.


In certain embodiments, the method of quantifying the amount of the biomarker in each sample is not limited to one or more methods selected from NanoString gene expression profiling, RNAseq, qPCR, and microarray.


In certain embodiments, the anti-CD47 antibody or antigen binding fragment thereof can be used (alone or in combination with other therapeutic agents or procedures) to treat, prevent and/or diagnose disorders, including immune disorders and cancer.


In certain embodiments, the cancer is a solid tumor, leukemia, a lymphoma, multiple myeloma.


In certain embodiments, the solid tumor is selected from ovarian cancer, breast cancer, endometrial cancer, colon cancer (colorectal cancer), rectal cancer, bladder cancer, urothelial cancer, lung cancer (non-small cell lung cancer, adenocarcinoma of the lung, squamous cell carcinoma of the lung), bronchial cancer, bone cancer, prostate cancer, pancreatic cancer, gastric cancer, adrenocortical carcinoma, hepatocellular carcinoma, adult (primary) liver cancer, gall bladder cancer, bile duct cancer, esophageal cancer, renal cell carcinoma, thyroid cancer, squamous cell carcinoma of the head and neck (head and neck cancer), testicular cancer, cancer of the endocrine gland, cancer of the adrenal gland, cancer of the pituitary gland, cancer of the skin, cancer of soft tissues, cancer of blood vessels, cancer of brain, cancer of nerves, cancer of eyes, cancer of meninges, cancer of oropharynx, cancer of hypopharynx, cancer of cervix, and cancer of uterus, glioblastoma, meduloblastoma, astrocytoma, glioma, meningioma, gastrinoma, neuroblastoma, melanoma, and myelodysplastic syndrome.


In certain embodiments, the leukemia is selected from systemic mastocytosis, acute lymphocytic (lymphoblastic) leukemia (ALL), T-cell—ALL, acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), myeloproliferative disorder/neoplasm, myelodysplastic syndrome, monocytic cell leukemia, and plasma cell leukemia.


In certain embodiments, the lymphoma is selected from histiocytic lymphoma and T-cell lymphoma, B cell lymphomas, including Hodgkin's lymphoma and non-Hodgkin's lymphoma, such as low grade/follicular non-Hodgkin's lymphoma (NHL), cell lymphoma (FCC), mantle cell lymphoma (MCL), diffuse large cell lymphoma (DLCL), small lymphocytic (SL) NHL, intermediate grade/follicular NHL, intermediate grade diffuse NHL, high grade immunoblastic NHL, high grade lymphoblastic NHL, high grade small non-cleaved cell NHL, bulky disease NHL, and Waldenstrom's Macroglobulinemia.


In certain embodiments, the sarcoma is selected from osteosarcoma, Ewing's sarcoma, leiomyosarcoma, synovial sarcoma, alveolar soft part sarcoma, angiosarcoma, liposarcoma, fibrosarcoma, rhabdomyosarcoma, and chrondrosarcoma. In certain embodiments, the biological sample is selected from, but not limited to, a core biopsy, a free needle aspirate, a pleural effusion, a resection, ascites, whole blood, blood serum, plasma, bone marrow, or other bodily fluid, or dilution thereof.


In certain embodiments the least two biomarkers are selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2 or variants thereof.


In certain embodiments, the at least three biomarkers are selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2 or variants thereof.


In certain embodiments, the at least four biomarkers are selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2 or variants thereof.


In certain embodiments, the at least five biomarkers are selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2 or variants thereof.


In certain embodiments, greater that five biomarkers are selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2 or variants thereof.


In certain embodiments, the baseline standard is a unit of measurement which provides a calibrated level of the biological effect which may occur prior to the administration of a therapy; i.e. an anti-CD47 antibody. As described herein, you may achieve a baseline standard by measuring gene expression levels for the one or more biomarkers described herein, in untreated tumor cells; i.e., without the administration of an anti-CD47 antibody or antigen binding fragment thereof to establish a baseline standard for treated tumor cells; i.e., with the administration of an anti-CD47 antibody when measured in the same patient.


In certain embodiments, the baseline standard is established for different tumor cell types; i.e., solid tumors and hematological tumors in an untreated patient when measured in the same patient.


In certain embodiments, the anti-CD47 antibodies or antigen binding fragments thereof disclosed block the CD47/SIRPα interaction, reversing the ‘don't eat me’ signal.


In certain embodiments, the anti-CD47 antibodies or antigen binding fragments thereof disclosed induce cell death in solid and hematopoietic cell tumor lines.


In certain embodiments, the anti-CD47 antibodies or antigen binding fragments thereof disclosed have tumor cell binding selectivity compared to normal cells, particularly, binding negligibly to red blood cells (RBCs) in contrast to tumor cells even at high concentrations of antibody.


In certain embodiments, the anti-CD47 antibodies or antigen binding fragments thereof disclosed comprise a combination of a heavy chain (HC) and a light chain (LC), wherein the combination is selected from:


a heavy chain comprising the amino acid sequence of SEQ ID NO:1 and a light chain comprising the amino acid sequence SEQ ID NO:2;


a heavy chain comprising the amino acid sequence of SEQ ID NO:3 and a light chain comprising the amino acid sequence SEQ ID NO:4;


a heavy chain comprising the amino acid sequence of SEQ ID NO:5 and a light chain comprising the amino acid sequence SEQ ID NO:6;


a heavy chain comprising the amino acid sequence of SEQ ID NO:7 and a light chain comprising the amino acid sequence SEQ ID NO:6;


a heavy chain comprising the amino acid sequence of SEQ ID NO:8 and a light chain comprising the amino acid sequence SEQ ID NO:9; and


a heavy chain comprising the amino acid sequence of SEQ ID NO:7 and a light chain comprising the amino acid sequence SEQ ID NO:10.












Summary of Sequences









SEQ




ID




NO:
Description
Sequence












1
Vx4humH01
QVQLVQSGAEVKKPGASVQVSCKASGYTFTNYVIHWLRQAPGQGLEWMGYIYPYNDGILYNE



Full Length
KFKGRVTMTSDTSISTAYMELSSLRSDDTAVYYCARGGYYVPDYWGQATLVTVSSASTKGPSV



HC
FPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS




SSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLEPPKPKDTLMISRTPE




VTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEY




KCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESN




GQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK





2
Vx4humL01
DIVMTQSPLSLPVTPGEPASISCRSRQSIVHTNGNTYLGWYLQKPGQSPRLLIYKVSNRFSGVPDR



Full Length
FSGSGSGTDFTLKISRVEADDVGIYYCFQGSHVPYTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKS



LC
GTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHK




VYACEVTHQGLSSPVTKSFNRGEC





3
Vx8humH11
QVQLVQSGAEVKKPGASVQVSCKASGYSFTNYYIHWLRQAPGQGLEWMGYIDPLNGDTTYNQ



Full Length
KFKGRVTMTSDTSISTAYMELSSLRSDDTAVYYCARGGKRAMDYWGQATLVTVSSASTKGPS



HC
VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP




SSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPE




VTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEY




KCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESN




GQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK





4
Vx8humL03
DIVMTQSPLSLPVTPGEPASISCRASQDISNYLNWYLQKPGQSPRLLIYYTSRLYSGVPDRFSGSG



Full Length
SGTDFTLKISRVEADDVGIYYCQQGNTLPWTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTAS



LC
VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYAC




EVTHQGLSSPVTKSFNRGEC





5
Vx9humH12
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWIHWVRQAPGQGLEWMGYTDPRTDYTEYN



Full Length
QKFKDRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARGGRVGLGYWGQGTLVTVSSASTKGP



HC
SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTV




PSSNFGTQTYTCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTP




EVTCVVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE




YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWES




NGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG




K





6
Vx9humL02
DIVMTQSPDSLAVSLGERATINCRSSQNIVQSNGNTYLEWYQQKPGQPPKLLIYKVFHRFSGVPD



Full Length
RFSGSGSGTDFTLTISSLQAEDVAVYYCFQGSHVPYTFGQGTKLEIKRTVAAPSVFIFPPSDEQLK



LC
SGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH




KVYACEVTHQGLSSPVTKSFNRGEC





7
Vx9humH14
EVQLVQSGAEVKKPGESLKISCKGSGYTFTNYWIHWVRQMPGKGLEWMGYTDPRTDYTEYNQ



Full Length
KFKDQVTISADKSISTAYLQWSSLKASDTAMYYCARGGRVGLGYWGQGTLVTVSSASTKGPSV



HC
FPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS




SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV




TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTERVVSVLTVVHQDWLNGKEYK




CKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNG




QPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





8
Vx4humH05
QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYVIHWVRQAPGQGLEWMGYIYPYNDGILYNE



Full Length
KFKGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARGGYYVPDYWGQGTTVTVSSASTKGPS



HC
VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP




SSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPE




VTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEY




KCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESN




GQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK





9
Vx4humL02
DVVMTQSPLSLPVTLGQPASISCRSRQSIVHTNGNTYLGWFQQRPGQSPRRLIYKVSNRFSGVPD



Full Length
RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGQGTKLEIKRTVAAPSVFIFPPSDEQLK



LC
SGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH




KVYACEVTHQGLSSPVTKSFNRGEC





10
Vx9humL07
DVVMTQSPLSLPVTLGQPASISCRSSQNIVQSNGNTYLEWFQQRPGQSPRRLIYKVFHRFSGVPD



Full Length
RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGQGTKLEIKRTVAAPSVFIFPPSDEQLK



LC
SGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH




KVYACEVTHQGLSSPVTKSFNRGEC





11

Homo

GCTATGGTGGTGGTGGCAGCCGCGCCGAACCCGGCCGACGGGACCCCTAAAGTTCTGCTTC




sapiens

TGTCGGGGCAGCCCGCCTCCGCCGCCGGAGCCCCGGCCGGCCAGGCCCTGCCGCTCATGGT



XBP1 full
GCCAGCCCAGAGAGGGGCCAGCCCGGAGGCAGCGAGCGGGGGGCTGCCCCAGGCGCGCAA



length open
GCGACAGCGCCTCACGCACCTGAGCCCCGAGGAGAAGGCGCTGAGGAGGAAACTGAAAAA



reading
CAGAGTAGCAGCTCAGACTGCCAGAGATCGAAAGAAGGCTCGAATGAGTGAGCTGGAACA



frame (ORF)
GCAAGTGGTAGATTTAGAAGAAGAGAACCAAAAACTTTTGCTAGAAAATCAGCTTTTACGA



cDNA clone.
GAGAAAACTCATGGCCTTGTAGTTGAGAACCAGGAGTTAAGACAGCGCTTGGGGATGGATG



GenBank:
CCCTGGTTGCTGAAGAGGAGGCGGAAGCCAAGGGGAATGAAGTGAGGCCAGTGGCCGGGT



CR456611.1
CTGCTGAGTCCGCAGCACTCAGACTACGTGCACCTCTGCAGCAGGTGCAGGCCCAGTTGTC




ACCCCTCCAGAACATCTCCCCATGGATTCTGGCGGTATTGACTCTTCAGATTCAGAGTCTGA




TATCCTGTTGGGCATTCTGGACAACTTGGACCCAGTCATGTTCTTCAAATGCCCTTCCCCAG




AGCCTGCCAGCCTGGAGGAGCTCCCAGAGGTCTACCCAGAAGGACCCAGTTCCTTACCAGC




CTCCCTTTCTCTGTCAGTGGGGACGTCATCAGCCAAGCTGGAAGCCATTAATGAACTAATTC




GTTTTGACCACATATATACCAAGCCCCTAGTCTTAGAGATACCCTCTGAGACAGAGAGCCA




AGCTAATGTGG





12

Homo

ATGGCCCCAGGCCAAGCACCCCATCAGGCTACCCCGTGGAGGGATGCCCACCCTTTCTTCCT




sapiens full

CCTGTCCCCAGTGATGGGCCTCCTCAGCCGCACCTGGAGCCGCCTGAGGGGCCTGGGACCT



open reading
CTAGAGCCCTGGCTGGTGGAAGCAGTAAAAGGAGCAGCTCTGGTAGAAGCTGGCCTGGAG



frame cDNA
GGAGAAGCTAGGACTCCTCTGGCAATCCCCCATACCCCTTGGGGCAGACGCCCTGAAGAGG



clone
AGGCTGAAGACAGTGGAGGCCCTGGAGAGGACAGAGAAACACTGGGGCTGAAAACCAGCA



RZPDo834C
GTTCCCTTCCTGAAGCCTGGGGACTTTTGGATGATGATGATGGCATGTATGGTGAGCGAGAG



036D for
GCAACCAGTGTCCCTAGAGGGCAGGGAAGTCAATTTGCAGATGGCCAGCGTGCTCCCCTGT



gene
CTCCCAGCCTTCTGATAAGGACACTGCAAGGTTCTGATAAGAACCCAGGGGAGGAGAAAGC



PPP1R15A,
CGAGGAAGAGGGAGTTGCTGAAGAGGAGGGAGTTAACAAGTTCTCTTATCCACCATCACAC



protein.
CGGGAGTGTTGTCCAGCCGTGGAGGAGGAGGACGATGAAGAAGCTGTAAAGAAAGAAGCT



phosphatase
CACAGAACCTCTACTTCTGCCTTGTCTCCAGGATCCAAGCCCAGCACTTGGGTGTCTTGCCC



1, regulatory
AGGGGAGGAAGAGAATCAAGCCACGGAGGATAAAAGAACAGAAAGAAGTAAAGGAGCCA



(inhibitor)
GGAAGACCTCCGTGTCCCCCCGATCTTCAGGCTCCGACCCCAGGTCCTGGGAGTATCGTTCA



subunit 15A.
GGAGAGGCGTCCGAGGAGAAGGAGGAAAAGGCACACAAAGAAACTGGGAAAGGAGAAGC



GenBank:
TGCCCCAGGGCCGCAATCCTCAGCCCCAGCCCAGAGGCTCCAGCTCAAGTCCTGGTGGTGC



CR457259.1
CAACCCAGTGATGAAGAGGAGGGTGAGGTCAAGGCTTTGGGGGCAGCTGAGAAGGATGGA




GAAGCTGAGTGTCCTCCCTGCATCCCCCCACCAAGTGCCTTCCTGAAGGCCTGGGTGTATTG




GCCAGGAGAGGACACAGAGGAAGAGGAAGATGAGGAAGAAGATGAGGACAGTGACTCTG




GATCAGATGAGGAAGAGGGAGAAGCTGAGGCTTCCTCTTCCACTCCTGCTACAGGTGTCTT




CTTGAAGTCCTGGGTCTATCAGCCAGGAGAGGACACAGAGGAGGAGGAAGATGAGGACAG




TGATACAGGATCAGCCGAGGATGAAAGAGAAGCTGAGACTTCTGCTTCCACACCCCCTGCA




AGTGCTTTCTTGAAGGCCTGGGTGTATCGGCCAGGAGAGGACACGGAGGAGGAGGAAGAT




GAGGATGTGGATAGTGAGGATAAGGAAGATGATTCAGAAGCAGCCTTGGGAGAAGCTGAG




TCAGACCCACATCCCTCCCACCCGGACCAGAGGGCCCACTTCAGGGGCTGGGGATATCGAC




CTGGAAAAGAGACAGAGGAAGAGGAAGCTGCTGAGGACTGGGGAGAAGCTGAGCCCTGCC




CCTTCCGAGTGGCCATCTATGTACCTGGAGAGAAGCCACCGCCTCCCTGGGCTCCTCCTAGG




CTGCCCCTCCGACTGCAAAGGCGGCTCAAGCGCCCAGAAACCCCTACTCATGATCCGGACC




CTGAGACTCCCCTAAAGGCCAGAAAGGTGCGCTTCTCCGAGAAGGTCACTGTCCATTTCCTG




GCTGTCTGGGCAGGGCCGGCCCAGGCCGCCCGCCAGGGCCCCTGGGAGCAGCTTGCTCGGG




ATCGCAGCCGCTTCGCACGCCGCATCACCCAGGCCCAGGAGGAGCTGAGCCCCTGCCTCAC




CCCTGCTGCCCGGGCCAGAGCCTGGGCACGCCTCAGGAACCCACCTTTAGCCCCCATCCCTG




CCCTCACCCAGACCTTGCCTTCCTCCTCTGTCCCTTCGTCCCCAGTCCAGACCACGCCCTTGA




GCCAAGCTGTGGCCACACCTTCCCGCTCGTCTGCTGCTGCAGCGGCTGCCCTGGACCTCAGT




GGGAGGCGTGGTTAA





13

Homo

GAAGGCCCTGGGCACCCTGGGCATGACGACAAATGAAAAGGGCCAGGTCGTGACCAAGAC




sapiens

AGCACTCCTGAAGCAGATGGAAGAGCTGATCGAGGAGCCTGGCCTCACGTGCTGCATCTGC



ubiquitin
AGGGAGGGATACAAGTTCCAGCCCACAAAGGTCCTGGGCATTTATACCTTCACGAAGCGGG



protein
TAGCCTTGGAGGAGATGGAGAATAAGCCCCGGAAACAGCAGGGCTACAGCACCGTGTCCC



ligase E3
ACTTCAACATTGTGCACTACGACTGCCATCTGGCTGCCGTCAGGTTGGCTCGAGGCCGGGAA



component
GAGTGGGAGAGTGCCGCCCTGCAGAATGCCAACACCAAGTGCAACGGGCTCCTTCCGGTCT



n-recognin
GGGGACCTCATGTCCCTGAATCAGCTTTTGCCACTTGCTTGGCAAGACACAACACTTACCTC



4, mRNA.
CAGGAATGTACAGGCCAGCGGGAGCCCACGTATCAGCTCAACATCCATGACATCAAACTGC



GenBank:
TCTTCCTGCGCTTCGCCATGGAGCAGTCGTTCAGCGCAGACACTGGCGGGGGCGGCCGGGA



BC007962.2.
GAGCAACATCCACCTGATCCCGTACATCATTCACACTGTGCTTTACGTCCTGAACACAACCC




GAGCAACTTCCCGAGAAGAGAAGAACCTCCAAGGCTTTCTGGAACAGCCCAAGGAGAAGT




GGGTGGAGAGTGCCTTTGAAGTGGACGGGCCCTACTATTTCACAGTCTTGGCCCTTCACATC




CTGCCCCCTGAGCAGTGGAGAGCCACACGTGTGGAAATCTTGCGGAGGCTGTTGGTGACCT




CGCAGGCTCGGGCAGTGGCTCCAGGTGGAGCCACCAGGCTGACAGATAAGGCAGTGAAGG




ACTATTCCGCTTACCGTTCTTCCCTTCTCTTTTGGGCCCTCGTCGATCTCATTTACAACATGTT




TAAGAAGGTGCCTACCAGTAACACAGAGGGAGGCTGGTCCTGCTCTCTCGCTGAGTACATC




CGCCACAACGACATGCCCATCTACGAAGCTGCCGACAAAGCCCTGAAAACCTTCCAGGAGG




AGTTCATGCCAGTGGAGACCTTCTCAGAGTTCCTCGATGTGGCCGGTCTTTTATCAGAAATC




ACCGATCCAGAGAGCTTCCTGAAGGACCTGTTGAACTCAGTCCCCTGACCACCACACAGCA




GCTGCGGCGGCGAAGACGAAGCTGGCTTGCCTTCCACCCTCTGTTCTCCCTCCTTGTGCATT




AAGTTCCCTCCGCGGGATGCTGCATTGTTACCCCGCCCTCCCCTCTCTCATTTTTCTTGGTGT




GGCTTGGGGTTTTTAGGCTTCCTGTTTTATCTCGTGTGTGTGGTGCACCAGCTATGAGGTTGT




CTGTAACCCAAGCCATCAAAGGGCCTGTACATACCTAGGAGCCATGAGTTGTCCCGGCCAG




CTTCATACTTGAGTGTGCACATCTTGAGAAATAAACAAGTGACTTAACACAAAAAAAAAAA




AAAAAAA





14

Homo

GTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGTT




sapiens clone

GGCATGCGAGCCACCCCTCTGGCTGCTCCTGCGGGTTCCCTGTCCAGGAAGAAGCGGTTGG



CCSBHm_00010895
AGTTGGATGACAACTTAGATACCGAGCGTCCCGTCCAGAAACGAGCTCGAAGTGGGCCCCA



TRIB3
GCCCAGACTGCCCCCCTGCCTGTTGCCCCTGAGCCCACCTACTGCTCCAGATCGTGCAACTG



(TRIB3)
CTGTGGCCACTGCCTCCCGTCTTGGGCCCTATGTCCTCCTGGAGCCCGAGGAGGGCGGGCGG



mRNA.
GCCTACCGGGCCCTGCACTGCCCTACAGGCACTGAGTATACCTGCAAGGTGTACCCCGTCC



GenBank:
AGGAAGCCCTGGCCGTGCTGGAGCCCTATGCGCGGCTGCCCCCGCACAAGCATGTGGCTCG



KR710261.1
GCCCACTGAGGTCCTGGCTGGTACCCAGCTCCTCTACGCCTTTTTCACTCGGACCCATGGGG




ACATGCACAGCCTGGTGCGAAGCCGCCACCGTATCCCTGAGCCTGAGGCTGCCGTGCTCTTC




CGCCAGATGGCCACCGCCCTGGCGCACTGTCACCAGCACGGTCTGGTCCTGCGTGATCTCA




AGCTGTGTCGCTTTGTCTTCGCTGACCGTGAGAGGAAGAAGCTGGTGCTGGAGAACCTGGA




GGACTCCTGCGTGCTGACTGGGCCAGATGATTCCCTGTGGGACAAGCACGCGTGCCCAGCC




TACGTGGGACCTGAGATACTCAGCTCACGGGCCTCATACTCGGGCAAGGCAGCCGATGTCT




GGAGCCTGGGCGTGGCGCTCTTCACCATGCTGGCCGGCCACTACCCCTTCCAGGACTCGGA




GCCTGTCCTGCTCTTCGGCAAGATCCGCCGCGGGGCCTACGCCTTGCCTGCAGGCCTCTCGG




CCCCTGCCCGCTGTCTGGTTCGCTGCCTCCTTCGTCGGGAGCCAGCTGAACGGCTCACAGCC




ACAGGCATCCTCCTGCACCCCTGGCTGCGACAGGACCCGATGCCCTTAGCCCCAACCCGAT




CCCATCTCTGGGAGGCTGCCCAGGTGGTCCCTGATGGACTGGGGCTGGACGAAGCCAGGGA




AGAGGAGGGAGACAGAGAAGTGGTTCTGTATGGCTACCCAACTTTCTTGTACAAAGTTGGC




ATTATAAGAAAGCATTGCTTATCAATTTGTTGCAACGAAC





15

Homo

GTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGTT




sapiens clone

GGCATGCCTTTAAACCGCACTTTGTCCATGTCCTCACTGCCAGGACTGGAGGACTGGGAGG



ccsbBroadEn_15439
ATGAATTCGACCTGGAGAACGCAGTGCTCTTCGAAGTGGCCTGGGAGGTGGCTAACAAGGT



GYS1 gene.
GGGTGGCATCTACACGGTGCTGCAGACGAAGGCGAAGGTGACAGGGGACGAATGGGGCGA



GenBank:
CAACTACTTCCTGGTGGGGCCGTACACGGAGCAGGGCGTGAGGACCCAGGTGGAACTGCTG



KJ905769.1
GAGGCCCCCACCCCGGCCCTGAAGAGGACACTGGATTCCATGAACAGCAAGGGCTGCAAGT




TCCTGGCACAGAGTGAGGAGAAGCCACATGTGGTTGCTCACTTCCATGAGTGGTTGGCAGG




CGTTGGACTCTGCCTGTGTCGTGCCCGGCGACTGCCTGTAGCAACCATCTTCACCACCCATG




CCACGCTGCTGGGGCGCTACCTGTGTGCCGGTGCCGTGGACTTCTACAACAACCTGGAGAA




CTTCAACGTGGACAAGGAAGCAGGGGAGAGGCAGATCTACCACCGATACTGCATGGAAAG




GGCGGCAGCCCACTGCGCTCACGTCTTCACTACTGTGTCCCAGATCACCGCCATCGAGGCAC




AGCACTTGCTCAAGAGGAAACCAGATATTGTGACCCCCAATGGGCTGAATGTGAAGAAGTT




TTCTGCCATGCATGAGTTCCAGAACCTCCATGCTCAGAGCAAGGCTCGAATCCAGGAGTTTG




TGCGGGGCCATTTTTATGGGCATCTGGACTTCAACTTGGACAAGACCTTATACTTCTTTATC




GCCGGCCGCTATGAGTTCTCCAACAAGGGTGCTGACGTCTTCCTGGAGGCATTGGCTCGGCT




CAACTATCTGCTCAGAGTGAACGGCAGCGAGCAGACAGTGGTTGCCTTCTTCATCATGCCA




GCGCGGACCAACAATTTCAACGTGGAAACCCTCAAAGGCCAAGCTGTGCGCAAACAGCTTT




GGGACACGGCCAACACGGTGAAGGAAAAGTTCGGGAGGAAGCTTTATGAATCCTTACTGGT




TGGGAGCCTTCCCGACATGAACAAGATGCTGGATAAGGAAGACTTCACTATGATGAAGAGA




GCCATCTTTGCAACGCAGCGGCAGTCTTTCCCCCCTGTGTGCACCCACAATATGCTGGATGA




CTCCTCAGACCCCATCCTGACCACCATCCGCCGAATCGGCCTCTTCAATAGCAGTGCCGACA




GGGTGAAGGTGATTTTCCACCCGGAGTTCCTCTCCTCCACAAGCCCCCTGCTCCCTGTGGAC




TATGAGGAGTTTGTCCGTGGCTGTCACCTTGGAGTCTTCCCCTCCTACTATGAGCCTTGGGG




CTACACACCGGCTGAGTGCACGGTTATGGGAATCCCCAGTATCTCCACCAATCTCTCCGGCT




TCGGCTGCTTCATGGAGGAACACATCGCAGACCCCTCAGCTTACGGTATCTACATTCTTGAC




CGGCGGTTCCGCAGCCTGGATGATTCCTGCTCGCAGCTCACCTCCTTCCTCTACAGTTTCTGT




CAGCAGAGCCGGCGGCAGCGTATCATCCAGCGGAACCGCACGGAGCGCCTCTCCGACCTTC




TGGACTGGAAATACCTAGGCCGGTACTATATGTCTGCGCGCCACATGGCGCTGTCCAAGGC




CTTTCCAGAGCACTTCACCTACGAGCCCAACGAGGCGGATGCGGCCCAGGGGTACCGCTAC




CCACGGCCAGCCTCGGTGCCACCGTCGCCCTCGCTGTCACGACACTCCAGCCCGCACCAGA




GTGAGGACGAGGAGGATCCCCGGAACGGGCCGCTGGAGGAAGACGGCGAGCGCTACGATG




AGGACGAGGAGGCCGCCAAGGACCGGCGCAACATCCGTGCACCAGAGTGGCCGCGCCGAG




CGTCCTGCACCTCCTCCACCAGCGGCAGCAAGCGCAACTCTGTGGACACGGCCACCTCCAG




CTCACTCAGCACCCCGAGCGAGCCCCTCAGCCCCACCAGCTCCCTGGGCGAGGAGCGTAAC




TNNCCAACTTTCTTGTACAAAGTTGGCATTATAAGAAAGCATTGCTTATCAATTTGTTGCAA




CGAAC





16

Homo

GTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGTT




sapiens clone

GGCATGGCCGCATTGTACCGCCCTGGCCTGCGGCTTAACTGGCATGGGCTGAGCCCCTTGGG



ccsbBroadEn_06695
CTGGCCATCATGCCGTAGCATCCAGACCCTGCGAGTGCTTAGTGGAGATCTGGGCCAGCTTC



PCK2 gene.
CCACTGGCATTCGAGATTTTGTAGAGCACAGTGCCCGCCTGTGCCAACCAGAGGGCATCCA



GenBank:
CATCTGTGATGGAACTGAGGCTGAGAATACTGCCACACTGACCCTGCTGGAGCAGCAGGGC



KJ897301.1
CTCATCCGAAAGCTCCCCAAGTACAATAACTGCTGGCTGGCCCGCACAGACCCCAAGGATG




TGGCACGAGTAGAGAGCAAGACGGTGATTGTAACTCCTTCTCAGCGGGACACGGTACCACT




CCCGCCTGGTGGGGCCCGTGGGCAGCTGGGCAACTGGATGTCCCCAGCTGATTTCCAGCGA




GCTGTGGATGAGAGGTTTCCAGGCTGCATGCAGGGCCGCACCATGTATGTGCTTCCATTCAG




CATGGGTCCTGTGGGCTCCCCGCTGTCCCGCATCGGGGTGCAGCTCACTGACTCAGCCTATG




TGGTGGCAAGCATGCGTATTATGACCCGACTGGGGACACCTGTGCTTCAGGCCCTGGGAGA




TGGTGACTTTGTCAAGTGTCTGCACTCCGTGGGCCAGCCCCTGACAGGACAAGGGGAGCCA




GTGAGCCAGTGGCCGTGCAACCCAGAGAAAACCCTGATTGGCCACGTGCCCGACCAGCGGG




AGATCATCTCCTTCGGCAGCGGCTATGGTGGCAACTCCCTGCTGGGCAAGAAGTGCTTTGCC




CTACGCATCGCCTCTCGGCTGGCCCGGGATGAGGGCTGGCTGGCAGAGCACATGCTGATCC




TGGGCATCACCAGCCCTGCAGGGAAGAAGCGCTATGTGGCAGCCGCCTTCCCTAGTGCCTG




TGGCAAGACCAACCTGGCTATGATGCGGCCTGCACTGCCAGGCTGGAAAGTGGAGTGTGTG




GGGGATGATATTGCTTGGATGAGGTTTGACAGTGAAGGTCGACTCCGGGCCATCAACCCTG




AGAACGGCTTCTTTGGGGTTGCCCCTGGTACCTCTGCCACCACCAATCCCAACGCCATGGCT




ACAATCCAGAGTAACACTATTTTTACCAATGTGGCTGAGACCAGTGATGGTGGCGTGTACTG




GGAGGGCATTGACCAGCCTCTTCCACCTGGTGTTACTGTGACCTCCTGGCTGGGCAAACCCT




GGAAACCTGGTGACAAGGAGCCCTGTGCACATCCCAACTCTCGATTTTGTGCCCCGGCTCGC




CAGTGCCCCATCATGGACCCAGCCTGGGAGGCCCCAGAGGGTGTCCCCATTGACGCCATCA




TCTTTGGTGGCCGCAGACCCAAAGGGGTACCCCTGGTATACGAGGCCTTCAACTGGCGTCAT




GGGGTGTTTGTGGGCAGCGCCATGCGCTCTGAGTCCACTGCTGCAGCAGAACACAAAGGGA




AGATCATCATGCACGACCCATTTGCCATGCGGCCCTTTTTTGGCTACAACTTCGGGCACTAC




CTGGAACACTGGCTGAGCATGGAAGGGCGCAAGGGGGCCCAGCTGCCCCGTATCTTCCATG




TCAACTGGTTCCGGCGTGACGAGGCAGGGCACTTCCTGTGGCCAGGCTTTGGGGAGAATGC




TCGGGTGCTAGACTGGATCTGCCGGCGGTTAGAGGGGGAGGACAGTGCCCGAGAGACACCC




ATTGGGCTGGTGCCAAAGGAAGGAGCCTTGGATCTCAGCGGCCTCAGAGCTATAGACACCA




CTCAGCTGTTCTCCCTCCCCAAGGACTTCTGGGAACAGGAGGTTCGTGACATTCGGAGCTAC




CTGACAGAGCAGGTCAACCAGGATCTGCCCAAAGAGGTGTTGGCTGAGCTTGAGGCCCTGG




AGAGACGTGTGCACAAAATGTGCCCAACTTTCTTGTACAAAGTTGGCATTATAAGAAAGCA




TTGCTTATCAATTTGTTGCAACGAAC





17

Homo

GTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGTT




sapiens clone

GGCATGACCCTGACTGAAAGGCTGCGTGAGAAGATATCTCGGGCCTTCTACAACCATGGGC



ccsbBroadEn_11654
TCCTCTGTGCATCCTATCCCATCCCCATCATCCTCATCGGCTACTTCACCCTAGTGCCCGCCA



SCAP gene.
TCCAGGAGTTCTGTCTCTTTGCTGTCGTGGGGCTGGTGTCTGACTTCTTCCTTCAGATGCTGT



GenBank:
TTTTCACCACTGTCCTGTCCATTGACATTCGCCGGATGGAGCTAGCAGACCTGAACAAGCGA



KJ902260.1
CTGCCCCCTGAGGCCTGCCTGCCCTCAGCCAAGCCAGTGGGGCAGCCAACGCGCTACGAGC




GGCAGCTGGCTGTGAGGCCGTCCACACCCCACACCATCACGTTGCAGCCGTCTTCCTTCCGA




AACCTGCGGCTCCCCAAGAGGCTGCGTGTTGTCTACTTCCTGGCCCGCACCCGCCTGGCACA




GCGCCTCATCATGGCTGGCACCGTTGTCTGGATTGGCATCCTGGTATACACAGACCCAGCAG




GGCTGCGCAACTACCTCGCTGCCCAGGTGACGGAACAGAGCCCATTGGGTGAGGGAGCCCT




GGCTCCCATGCCCGTGCCTAGTGGCATGCTGCCCCCCAGCCACCCGGACCCTGCCTTCTCCA




TCTTCCCACCTGATGCCCCTAAGCTACCTGAGAACCAGACGTCGCCAGGCGAGTCACCTGA




GCGTGGAGGTCCAGCAGAGGTTGTCCATGACAGCCCAGTCCCAGAGGTAACCTGGGGGCCT




GAGGATGAGGAACTTTGGAGGAAATTGTCCTTCCGCCACTGGCCGACGCTCTTCAGCTATTA




CAACATCACACTGGCCAAGAGGTACATCAGCCTGCTGCCCGTCATCCCAGTCACGCTCCGC




CTGAACCCGAGGGAGGCTCTGGAGGGCCGGCACCCTCAGGACGGCCGCAGTGCCTGGCCCC




CACCGGGGCCCATACCTGCTGGGCACTGGGAAGCAGGACCCAAGGGCCCAGGTGGGGTGC




AGGCCCATGGAGACGTCACGCTGTACAAGGTGGCGGCGCTGGGCCTGGCCACCGGCATCGT




CTTGGTGCTGCTGCTGCTCTGCCTCTACCGCGTGCTATGCCCGCGCAACTACGGGCAGCTGG




GTGGTGGGCCCGGGCGGCGGAGGCGCGGGGAGCTGCCCTGCGACGACTACGGCTATGCGCC




ACCCGAGACGGAGATCGTGCCGCTTGTGCTGCGCGGCCACCTCATGGACATCGAGTGCCTG




GCCAGCGACGGCATGCTGCTGGTGAGCTGCTGCCTGGCAGGCCACATCTGCGTGTGGGACG




CGCAGACCGGGGATTGCCTAACGCGCATTCCGCGCCCAGGGCAGCGCCGGGACAGTGGCGT




GGGCAGCGGGCTTGAGGCTCAGGAGAGCTGGGAACGACTTTCAGATGGTGGGAAGGCTGG




TCCAGAGGAGCCTGGGGACAGCCCTCCCCTGAGACACCGCCCCCGGGGCCCTCCGCCGCCT




TCCCTCTTCGGGGACCAGCCTGACCTCACCTGCTTAATTGACACCAACTTTTCAGCGCAGCC




TCGGTCCTCACAGCCCACTCAGCCCGAGCCCCGGCACCGGGCGGTCTGTGGCCGCTCTCGG




GACTCCCCAGGCTATGACTTCAGCTGCCTGGTGCAGCGGGTGTACCAGGAGGAGGGGCTGG




CGGCCGTCTGCACACCAGCCCTGCGCCCACCCTCGCCTGGGCCGGTGCTGTCCCAGGCCCCT




GAGGACGAGGGTGGCTCCCCCGAGAAAGGCTCCCCTTCCCTCGCCTGGGCCCCCAGTGCCG




AGGGTTCCATCTGGAGCTTGGAGCTGCAGGGCAACCTCATCGTGGTGGGGCGGAGCAGCGG




CCGGCTGGAGGTGTGGGACGCCATTGAAGGGGTGCTGTGCTGCAGCAGCGAGGAGGTCTCC




TCAGGCATTACCGCTCTGGTGTTCTTGGACAAAAGGATTGTGGCTGCACGGCTCAACGGTTC




CCTTGATTTCTTCTCCTTGGAGACCCACACTGCCCTCAGCCCCCTGCAGTTTAGAGGGACCC




CAGGGCGGGGCAGTTCCCCTGCCTCTCCAGTGTACAGCAGCAGCGACACAGTGGCCTGTCA




CCTGACCCACACAGTGCCCTGTGCACACCAAAAACCCATCACAGCCCTGAAAGCCGCTGCT




GGGCGCTTGGTGACTGGGAGCCAAGACCACACACTGAGAGTGTTCCGTCTGGAGGACTCGT




GCTGCCTCTTCACCCTTCAGGGCCACTCAGGGGCCATCACGACCGTGTACATTGACCAGACC




ATGGTGCTGGCCAGTGGAGGACAAGATGGGGCCATCTGCCTGTGGGATGTACTGACTGGCA




GCCGGGTCAGCCATGTGTTTGCTCACCGTGGGGATGTCACCTCCCTTACCTGTACCACCTCC




TGTGTCATCAGCAGTGGCCTGGATGACCTCATCAGCATCTGGGACCGCAGCACAGGCATCA




AGTTCTACTCCATTCAGCAGGACCTGGGCTGTGGTGCAAGCTTGGGTGTCATCTCAGACAAC




CTGCTGGTGACTGGCGGCCAGGGCTGTGTCTCCTTTTGGGACCTAAACTACGGGGACCTGTT




ACAGACAGTCTACCTGGGGAAGAACAGTGAGGCCCAGCCTGCCCGCCAGATCCTGGTGCTG




GACAACGCTGCCATTGTCTGCAACTTTGGCAGTGAGCTCAGCCTGGTGTATGTGCCCTCTGT




GCTGGAGAAGCTGGACTGCCCAACTTTCTTGTACAAAGTTGGCATTATAAGAAAGCATTGCT




TATCAATTTGTTGCAACGAAC





18

Homo

GTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGTT




sapiens clone

GGCATGGACGAGCCACCCTTCAGCGAGGCGGCTTTGGAGCAGGCGCTGGGCGAGCCGTGCG



ccsbBroadEn_06995
ATCTGGACGCGGCGCTGCTGACCGACATCGAAGACATGCTTCAGCTTATCAACAACCAAGA



SREBF1
CAGTGACTTCCCTGGCCTATTTGACCCACCCTATGCTGGGAGTGGGGCAGGGGGCACAGAC



gene.
CCTGCCAGCCCCGATACCAGCTCCCCAGGCAGCTTGTCTCCACCTCCTGCCACATTGAGCTC



GenBank:
CTCTCTTGAAGCCTTCCTGAGCGGGCCGCAGGCAGCGCCCTCACCCCTGTCCCCTCCCCAGC



KJ897601.1
CTGCACCCACTCCATTGAAGATGTACCCGTCCATGCCCGCTTTCTCCCCTGGGCCTGGTATC




AAGGAAGAGTCAGTGCCACTGAGCATCCTGCAGACCCCCACCCCACAGCCCCTGCCAGGGG




CCCTCCTGCCACAGAGCTTCCCAGCCCCAGCCCCACCGCAGTTCAGCTCCACCCCTGTGTTA




GGCTACCCCAGCCCTCCGGGAGGCTTCTCTACAGGAAGCCCTCCCGGGAACACCCAGCAGC




CGCTGCCTGGCCTGCCACTGGCTTCCCCGCCAGGGGTCCCGCCCGTCTCCTTGCACACCCAG




GTCCAGAGTGTGGTCCCCCAGCAGCTACTGACAGTCACAGCTGCCCCCACGGCAGCCCCTG




TAACGACCACTGTGACCTCGCAGATCCAGCAGGTCCCGGTCCTGCTGCAGCCCCACTTCATC




AAGGCAGACTCGCTGCTTCTGACAGCCATGAAGACAGACGGAGCCACTGTGAAGGCGGCA




GGTCTCAGTCCCCTGGTCTCTGGCACCACTGTGCAGACAGGGCCTTTGCCGACCCTGGTGAG




TGGCGGAACCATCTTGGCAACAGTCCCACTGGTCGTAGATGCGGAGAAGCTGCCTATCAAC




CGGCTCGCAGCTGGCAGCAAGGCCCCGGCCTCTGCCCAGAGCCGTGGAGAGAAGCGCACA




GCCCACAACGCCATTGAGAAGCGCTACCGCTCCTCCATCAATGACAAAATCATTGAGCTCA




AGGATCTGGTGGTGGGCACTGAGGCAAAGCTGAATAAATCTGCTGTCTTGCGCAAGGCCAT




CGACTACATTCGCTTTCTGCAACACAGCAACCAGAAACTCAAGCAGGAGAACCTAAGTCTG




CGCACTGCTGTCCACAAAAGCAAATCTCTGAAGGATCTGGTGTCGGCCTGTGGCAGTGGAG




GGAACACAGACGTGCTCATGGAGGGCGTGAAGACTGAGGTGGAGGACACACTGACCCCAC




CCCCCTCGGATGCTGGCTCACCTTTCCAGAGCAGCCCCTTGTCCCTTGGCAGCAGGGGCAGT




GGCAGCGGTGGCAGTGGCAGTGACTCGGAGCCTGACAGCCCAGTCTTTGAGGACAGCAAGG




CAAAGCCAGAGCAGCGGCCGTCTCTGCACAGCCGGGGCATGCTGGACCGCTCCCGCCTGGC




CCTGTGCACGCTCGTCTTCCTCTGCCTGTCCTGCAACCCCTTGGCCTCCTTGCTGGGGGCCCG




GGGGCTTCCCAGCCCCTCAGATACCACCAGCGTCTACCATAGCCCTGGGCGCAACGTGCTG




GGCACCGAGAGCAGAGATGGCCCTGGCTGGGCCCAGTGGCTGCTGCCCCCAGTGGTCTGGC




TGCTCAATGGGCTGTTGGTGCTCGTCTCCTTGGTGCTTCTCTTTGTCTACGGTGAGCCAGTCA




CACGGCCCCACTCAGGCCCCGCCGTGTACTTCTGGAGGCATCGCAAGCAGGCTGACCTGGA




CCTGGCCCGGGGAGACTTTGCCCAGGCTGCCCAGCAGCTGTGGCTGGCCCTGCGGGCACTG




GGCCGGCCCCTGCCCACCTCCCACCTGGACCTGGCTTGTAGCCTCCTCTGGAACCTCATTCG




TCACCTGCTGCAGCGTCTCTGGGTGGGCCGCTGGCTGGCAGGCCGGGCAGGGGGCCTGCAG




CAGGACTGTGCTCTGCGAGTGGATGCTAGCGCCAGCGCCCGAGACGCAGCCCTGGTCTACC




ATAAGCTGCACCAGCTGCACACCATGGGGAAGCACACAGGCGGGCACCTCACTGCCACCAA




CCTGGCGCTGAGTGCCCTGAACCTGGCAGAGTGTGCAGGGGATGCCGTGTCTGTGGCGACG




CTGGCCGAGATCTATGTGGCGGCTGCATTGAGAGTGAAGACCAGTCTCCCACGGGCCTTGC




ATTTTCTGACACGCTTCTTCCTGAGCAGTGCCCGCCAGGCCTGCCTGGCACAGAGTGGCTCA




GTGCCTCCTGCCATGCAGTGGCTCTGCCACCCCGTGGGCCACCGTTTCTTCGTGGATGGGGA




CTGGTCCGTGCTCAGTACCCCATGGGAGAGCCTGTACAGCTTGGCCGGGAACCCAGTGGAC




CCCCTGGCCCAGGTGACTCAGCTATTCCGGGAACATCTCTTAGAGCGAGCACTGAACTGTGT




GACCCAGCCCAACCCCAGCCCTGGGTCAGCTGATGGGGACAAGGAATTCTCGGATGCCCTC




GGGTACCTGCAGCTGCTGAACAGCTGTTCTGATGCTGCGGGGGCTCCTGCCTACAGCTTCTC




CATCAGTTCCAGCATGGCCACCACCACCGGCGTAGACCCGGTGGCCAAGTGGTGGGCCTCT




CTGACAGCTGTGGTGATCCACTGGCTGCGGCGGGATGAGGAGGCGGCTGAGCGGCTGTGCC




CGCTGGTGGAGCACCTGCCCCGGGTGCTGCAGGAGTCTGAGAGACCCCTGCCCAGGGCAGC




TCTGCACTCCTTCAAGGCTGCCCGGGCCCTGCTGGGCTGTGCCAAGGCAGAGTCTGGTCCAG




CCAGCCTGACCATCTGTGAGAAGGCCAGTGGGTACCTGCAGGACAGCCTGGCTACCACACC




AGCCAGCAGCTCCATTGACAAGGCCGTGCAGCTGTTCCTGTGTGACCTGCTTCTTGTGGTGC




GCACCAGCCTGTGGCGGCAGCAGCAGCCCCCGGCCCCGGCCCCAGCAGCCCAGGGCACCA




GCAGCAGGCCCCAGGCTTCCGCCCTTGAGCTGCGTGGCTTCCAACGGGACCTGAGCAGCCT




GAGGCGGCTGGCACAGAGCTTCCGGCCCGCCATGCGGAGGGTGTTCCTACATGAGGCCACG




GCCCGGCTGATGGCGGGGGCCAGCCCCACACGGACACACCAGCTCCTCGACCGCAGTCTGA




GGCGGCGGGCAGGCCCCGGTGGCAAAGGAGGCGCGGTGGCGGAGCTGGAGCCGCGGCCCA




CGCGGCGGGAGCACGCGGAGGCCTTGCTGCTGGCCTCCTGCTACCTGCCCCCCGGCTTCCTG




TCGGCGCCCGGGCAGCGCGTGGGCATGCTGGCTGAGGCGGCGCGCACACTCGAGAAGCTTG




GCGATCGCCGGCTGCTGCACGACTGTCAGCAGATGCTCATGCGCCTGGGCGGTGGGACCAC




TGTCACTTCCAGCTACCCAACTTTCTTGTACAAAGTTGGCATTATAAGAAAGCATTGCTTAT




CAATTTGTTGCAACGAAC





19

Homo

CTAATGCCTGTGGATGAGAAAAGAGGCTTAGAGAAATTATGTTTTGCCTAATTGACAAAAC




sapiens Rap

CAATTAGTGGCTGAAACAACACAGAAGGCCAGGTTTGTCCTCTCACTTCCTAACTTGAGGAC



guanine
AGAGAAATATATTCTGATGTCCCTAACTGGCAGTCTGCTATGATAGTGACCACATGCCCATT



nucleotide
TCTTTCTTGGGATTTCGTCCCAGCCTGACAACCTTGGAACAGAACAAGAGGACAGGAGGTG



exchange
TCGTTCCAGACTCTCAGCGTTCTCATCTCTCTTCCTTCACCATGAAGCTGATGGACAAATTCC



factor 1
ACTCACCCAAAATCAAGAGAACGCCATCAAAGAAGGGAAAACCAGCTGAGGTGTCCGTAA



(RAPGEF1),
AGATTCCAGAGAAGCCTGTGAACAAAGAATCCAGGTTTCCTCTCTTCCAGGAGGCAACAGA



transcript.
CAGATTTCTACCAGAGGGCTACCCTCTCCCCTTGGATCTGGAGCAGCAGGCAGTAGAATTTA



NCBI
TGTCCACCAGTGCTGTGGCTTCCAGGTCTCAAAGGCAGAAGAACCTGAGCTGGCTGGAGGA



Reference
GAAAGAGAAGGAAGTTGTCAGTGCCCTGCGCTACTTTAAGACCATTGTGGACAAAATGGCA



Sequence:
ATTGATAAGAAGGTACTGGAGATGCTTCCAGGGTCAGCCAGCAAGGTGCTGGAGGCCATCT



XM_011518581.3
TACCCCTGGTGCAGAACGATCCTCGAATTCAGCACAGCTCAGCCCTCTCTTCCTGCTATAGC




CGAGTGTACCAAAGCCTCGCCAACCTCATTCGCTGGTCTGACCAAGTGATGCTGGAAGGCG




TGAACTCAGAAGACAAGGAGATGGTGACGACTGTGAAGGGGGTCATCAAGGCTGTGCTGG




ATGGAGTGAAGGAGCTGGTCAGGCTCACCATCGAGAAGCAGGGACGTCCGTCTCCGACGAG




CCCCGTGAAGCCCAGTTCCCCTGCCAGCAAGCCTGATGGCCCAGCAGAGCTCCCCCTGACA




GACCGCGAGGTAGAGATCCTAAACAAGACGACTGGGATGTCACAGTCAACTGAGCTCCTCC




CAGATGCCACGGATGAAGAGGTCGCGCCCCCCAAGCCTCCTCTGCCTGGCATTCGGGTGGT




TGATAATAGTCCTCCACCAGCATTGCCACCCAAGAAAAGACAGTCGGCGCCGTCCCCTACC




CGAGTGGCTGTGGTGGCCCCCATGAGCCGAGCCACCAGTGGCTCCAGTTTGCCTGTTGGAAT




CAATAGGCAGGATTTTGATGTTGACTGTTACGCACAGAGGCGACTGTCAGGAGGCAGCCAC




TCATATGGTGGAGAGTCGCCCCGCCTCTCCCCCTGCAGCAGCATAGGCAAGCTCAGCAAGT




CAGACGAGCAGCTGTCCTCTCTGGACAGGGACAGTGGGCAGTGCTCCCGGAACACAAGCTG




TGAAACACTAGACCACTATGATCCCGACTATGAATTCCTCCAGCAAGACCTCTCTAACGCAG




ACCAGATACCTCAGCAGACGGCCTGGAACCTTAGCCCGTTGCCAGAGTCTTTGGGGGAGTC




TGGGTCTCCATTTCTTGGCCCTCCTTTCCAGCTGCCTCTTGGCGGCCATCCCCAGCCAGACGG




ACCTCTGGCCCCAGGGCAGCAGACAGATACGCCACCTGCTCTCCCCGAGAAGAAGCGCAGG




AGCGCAGCCTCCCAGACGGCGGACGGCTCTGGCTGCAGGGTGTCCTACGAGCGGCATCCCT




CGCAGTATGACAACATCTCTGGGGAGGACCTGCAGAGCACAGCCCCGATCCCATCCGTCCC




CTACGCGCCCTTTGCTGCTATTCTGCCCTTTCAGCATGGAGGTTCCTCAGCCCCTGTCGAATT




TGTGGGTGATTTTACTGCTCCTGAGTCAACCGGTGACCCAGAAAAACCACCTCCTCTACCAG




AGAAGAAAAACAAACACATGCTGGCCTACATGCAGTTGCTGGAGGACTACTCGGAGCCGCA




GCCCTCTATGTTCTACCAGACGCCACAGAACGAGCACATCTACCAGCAGAAGAACAAGCTC




CTCATGGAGGTATACGGCTTCAGCGACTCCTTCAGTGGGGTGGACTCCGTGCAGGAGCTGG




CCCCGCCGCCCGCCCTACCCCCCAAGCAGCGGCAGCTGGAGCCACCGGCTGGGAAAGACGG




ACATCCCAGAGATCCCTCAGCGGTCAGCGGCGTCCCTGGGAAGGACAGCAGAGACGGCAGT




GAGAGCGGAATCACTTCCGTGTACAGATGGAACATCCAGAGGCAGCAGCGACTGTCCTATG




GCCACACAGCCAGTCAGTAGCAGAGCTGAGGATCCAGTCCATAGTGACGTAGCTGCCATCG




GGGCAGGGCCCCAAAGTCACCAGATGCTCTGGAGTCGGCTCAGTCGGAGGAGGAAGTGGA




CGAGCTGTCCCTCATTGACCA





20

Homo

GTTCCCAGGACGGAAGTGGCCGAGAGAGTGTCGAAGGGAGGGCGAGGCCGGAGCCCGAGG




sapiens talin

GCGACCCGAGAAGCGGCGGGGCGGCGGGCCGGCGGGCGGGGCGCAGAGCCAGGCAGCGC



1 (TLN1),
AGGTATAGCCAGGCTGGAGAAAAGAAGCTGCCACCATGGTTGCACTTTCACTGAAGATCAG



mRNA.
CATTGGGAATGTGGTGAAGACGATGCAGTTTGAGCCGTCTACCATGGTGTACGACGCCTGC



NCBI
CGCATCATTCGTGAGCGGATCCCAGAGGCCCCAGCTGGTCCTCCCAGCGACTTTGGGCTCTT



Reference
TCTGTCAGATGATGACCCCAAAAAGGGTATATGGCTGGAGGCTGGGAAAGCTTTGGACTAC



Sequence:
TACATGCTCCGAAATGGGGACACTATGGAGTACAGGAAGAAACAGAGACCCCTGAAGATC



NM_006289.4
CGTATGCTGGATGGAACTGTGAAGACGATCATGGTGGATGACTCTAAGACTGTCACTGACA




TGCTCATGACCATCTGTGCCCGCATTGGCATCACCAATCATGATGAATATTCATTGGTTCGA




GAGCTGATGGAAGAGAAAAAGGAGGAAATAACAGGGACCTTAAGAAAGGACAAGACATTG




CTGCGAGATGAAAAGAAGATGGAGAAACTAAAGCAGAAATTGCACACAGATGATGAGTTG




AACTGGCTGGACCATGGTCGGACACTGAGGGAGCAGGGTGTAGAGGAGCACGAGACGCTG




CTGCTGCGGAGGAAGTTCTTTTACTCAGACCAGAATGTGGATTCCCGGGACCCTGTACAGCT




GAACCTCCTGTATGTGCAGGCACGAGATGACATCCTGAATGGCTCCCACCCTGTCTCCTTTG




ACAAGGCCTGTGAGTTTGCTGGCTTCCAATGCCAGATCCAGTTTGGGCCCCACAATGAGCA




GAAGCACAAGGCTGGCTTCCTTGACCTGAAGGACTTCCTGCCCAAGGAGTATGTGAAGCAG




AAGGGAGAGCGTAAGATCTTCCAGGCACACAAGAATTGTGGGCAGATGAGTGAGATTGAG




GCCAAGGTCCGCTACGTGAAGCTAGCCCGTTCTCTCAAGACTTACGGTGTCTCCTTCTTCCT




GGTGAAGGAAAAAATGAAAGGGAAGAACAAGCTAGTGCCCAGGCTTCTGGGCATCACCAA




GGAGTGTGTGATGCGAGTGGATGAGAAGACCAAGGAAGTGATCCAGGAGTGGAACCTCAC




CAACATCAAACGCTGGGCTGCGTCTCCCAAAAGCTTCACCCTGGATTTTGGAGATTACCAAG




ATGGCTATTACTCAGTACAGACAACTGAAGGGGAGCAGATTGCACAGCTCATTGCCGGCTA




CATCGATATCATCCTGAAGAAGAAAAAAAGCAAGGATCACTTTGGGCTGGAAGGAGATGA




GGAGTCTACTATGCTGGAGGACTCAGTGTCCCCCAAAAAGTCAACAGTCCTGCAGCAGCAA




TACAACCGGGTGGGGAAAGTGGAGCATGGCTCTGTGGCCCTGCCTGCCATCATGCGCTCTG




GAGCCTCTGGTCCTGAGAATTTCCAGGTGGGCAGCATGCCCCCTGCCCAGCAGCAGATTAC




CAGCGGCCAGATGCACCGAGGACACATGCCTCCTCTGACTTCAGCCCAGCAGGCACTCACT




GGAACCATTAACTCCAGCATGCAGGCCGTGCAGGCTGCCCAGGCCACCCTGGATGACTTTG




ACACTCTGCCGCCTCTTGGCCAGGATGCTGCCTCTAAGGCCTGGCGTAAAAACAAGATGGA




TGAATCAAAGCATGAGATCCACTCTCAGGTAGATGCCATCACAGCTGGTACTGCGTCTGTG




GTGAACCTGACAGCAGGGGACCCTGCTGAGACAGACTATACCGCAGTGGGCTGTGCAGTCA




CCACAATCTCCTCCAACCTGACGGAGATGTCCCGTGGGGTGAAGCTGCTGGCTGCCTTGCTG




GAGGACGAAGGCGGCAGTGGTCGGCCCCTGTTGCAGGCAGCAAAGGGCCTTGCGGGAGCA




GTGTCAGAACTGCTGCGCAGTGCCCAACCAGCCAGTGCTGAGCCCCGTCAGAACCTGCTGC




AAGCAGCTGGGAACGTGGGCCAGGCCAGTGGGGAGCTGTTGCAACAAATTGGGGAAAGTG




ATACTGACCCCCACTTCCAGGATGCGCTAATGCAGCTCGCCAAAGCTGTGGCAAGTGCTGC




AGCTGCCCTGGTCCTCAAGGCCAAGAGTGTGGCCCAGCGGACAGAGGACTCGGGACTTCAG




ACCCAAGTTATTGCTGCAGCAACACAGTGTGCCCTATCCACTTCCCAACTAGTGGCCTGTAC




TAAGGTGGTGGCACCTACAATCAGCTCACCTGTCTGCCAAGAGCAACTGGTGGAGGCTGGA




CGACTGGTAGCCAAAGCCGTGGAGGGCTGTGTGTCTGCCTCCCAGGCAGCTACAGAGGATG




GGCAACTGTTGCGAGGGGTAGGAGCAGCAGCCACAGCTGTCACCCAGGCCCTAAATGAGCT




GCTGCAGCATGTGAAAGCCCATGCCACAGGGGCTGGGCCTGCTGGCCGTTATGACCAGGCT




ACTGACACCATCCTAACCGTCACTGAGAACATCTTTAGCTCCATGGGTGATGCTGGGGAGAT




GGTGCGACAGGCCCGCATCCTGGCCCAAGCCACATCTGACCTGGTCAATGCCATCAAGGCT




GATGCTGAGGGGGAAAGTGATCTGGAGAACTCCCGCAAGCTCTTAAGTGCTGCCAAGATCC




TAGCTGATGCCACAGCCAAGATGGTAGAGGCTGCCAAGGGAGCAGCTGCCCACCCTGACAG




TGAGGAGCAGCAGCAGCGGCTGCGGGAGGCAGCTGAGGGGCTGCGCATGGCCACCAATGC




AGCTGCGCAGAATGCCATCAAGAAAAAGCTGGTGCAGCGCCTGGAGCATGCAGCCAAGCA




GGCTGCAGCCTCAGCCACACAGACCATCGCTGCAGCTCAGCACGCAGCCTCTACCCCCAAG




GCCTCTGCCGGCCCCCAGCCCCTGCTGGTGCAGAGCTGCAAGGCAGTGGCAGAGCAGATTC




CACTGCTGGTGCAGGGCGTCCGAGGAAGCCAAGCCCAGCCTGACAGCCCCAGCGCTCAGCT




TGCCCTCATTGCTGCCAGCCAGAGCTTCCTGCAGCCAGGTGGGAAGATGGTGGCAGCTGCA




AAGGCCTCAGTGCCAACGATTCAGGACCAGGCTTCAGCCATGCAGCTGAGTCAGTGTGCCA




AGAACCTGGGCACCGCGCTGGCTGAACTCCGGACGGCTGCCCAGAAGGCTCAGGAAGCATG




TGGACCTTTGGAGATGGATTCTGCACTGAGTGTGGTACAGAATCTAGAGAAAGATCTACAG




GAAGTGAAGGCAGCAGCTCGAGATGGCAAGCTTAAACCCTTACCTGGGGAGACAATGGAG




AAGTGTACCCAGGACCTGGGCAACAGCACCAAAGCCGTGAGCTCAGCCATCGCCCAGCTAC




TGGGAGAGGTTGCCCAGGGCAATGAGAATTATGCAGGTATTGCAGCTCGGGATGTGGCAGG




TGGGCTGCGGTCACTGGCCCAGGCCGCTAGGGGAGTCGCTGCACTGACGTCAGATCCTGCA




GTGCAGGCCATTGTACTTGATACGGCCAGTGATGTGCTGGACAAGGCCAGCAGCCTCATTG




AGGAGGCGAAAAAGGCAGCTGGCCATCCAGGGGACCCTGAGAGCCAGCAGCGGCTTGCCC




AGGTGGCTAAAGCAGTGACCCAGGCTCTGAACCGCTGTGTCAGCTGCCTACCTGGCCAGCG




CGATGTGGATAATGCCCTGAGGGCAGTTGGAGATGCCAGCAAGCGACTCCTGAGTGACTCG




CTTCCTCCTAGCACTGGGACATTTCAAGAAGCTCAGAGCCGGTTGAATGAAGCTGCTGCTGG




GCTGAATCAGGCAGCCACAGAACTGGTGCAGGCCTCTCGGGGAACCCCTCAGGACCTGGCT




CGAGCCTCAGGCCGATTTGGACAGGACTTCAGCACCTTCCTGGAAGCTGGTGTGGAGATGG




CAGGCCAGGCTCCGAGCCAGGAGGACCGAGCCCAAGTTGTGTCCAACTTGAAGGGCATCTC




CATGTCTTCAAGCAAACTTCTTCTGGCTGCCAAGGCCCTGTCCACGGACCCTGCTGCCCCTA




ACCTCAAGAGTCAGCTGGCTGCAGCTGCCAGGGCAGTAACTGACAGCATCAATCAGCTCAT




CACTATGTGCACCCAGCAGGCACCCGGCCAGAAGGAGTGTGATAACGCCCTGCGGGAATTG




GAGACGGTCCGGGAACTCCTGGAGAACCCAGTCCAGCCCATCAATGACATGTCCTACTTTG




GTTGCCTGGACAGTGTAATGGAGAACTCAAAGGTGCTGGGCGAGGCCATGACTGGCATCTC




CCAAAATGCCAAGAACGGAAACCTGCCAGAGTTTGGAGATGCCATTTCCACAGCCTCAAAG




GCACTTTGTGGCTTCACCGAGGCAGCTGCACAGGCTGCATATCTGGTTGGTGTCTCTGACCC




CAATAGCCAAGCTGGACAGCAAGGGCTAGTGGAGCCCACACAGTTTGCCCGTGCAAACCAG




GCAATTCAGATGGCCTGCCAGAGTTTGGGAGAGCCTGGCTGTACCCAGGCCCAGGTGCTCT




CTGCAGCCACCATTGTGGCTAAACACACCTCTGCACTGTGTAACAGCTGTCGCCTGGCTTCT




GCCCGTACCACCAATCCTACTGCCAAGCGCCAGTTTGTACAGTCAGCCAAGGAGGTGGCCA




ACAGCACAGCTAATCTTGTCAAGACCATCAAGGCGCTAGATGGGGCCTTCACAGAGGAGAA




CCGTGCCCAGTGCCGAGCAGCAACAGCCCCTCTGCTGGAGGCTGTGGACAATCTGAGTGCC




TTTGCGTCCAACCCTGAGTTCTCCAGCATTCCTGCCCAGATCAGCCCTGAGGGTCGGGCTGC




CATGGAGCCCATTGTGATCTCTGCCAAGACAATGTTAGAGAGTGCCGGGGGACTCATCCAG




ACAGCCCGGGCCCTCGCAGTCAATCCCCGGGACCCCCCGAGCTGGTCGGTGCTGGCCGGCC




ACTCCCGTACTGTCTCAGACTCCATCAAGAAGCTAATTACAAGCATGAGGGACAAGGCTCC




AGGGCAGCTGGAGTGTGAAACGGCCATTGCAGCTCTGAACAGTTGTCTACGGGACCTAGAC




CAGGCTTCCCTCGCTGCAGTCAGCCAGCAGCTTGCTCCCCGTGAGGGAATCTCTCAAGAGGC




CTTGCACACTCAGATGCTCACTGCAGTCCAAGAGATCTCCCATCTCATTGAGCCGCTGGCCA




ATGCTGCCCGGGCTGAAGCCTCCCAGCTGGGACACAAGGTGTCCCAGATGGCGCAGTACTT




TGAGCCGCTCACCCTGGCTGCAGTGGGTGCTGCCTCCAAGACCCTGAGCCACCCGCAGCAG




ATGGCACTCCTGGACCAGACTAAAACATTGGCAGAGTCTGCCCTGCAGTTGCTATACACTGC




CAAGGAGGCTGGTGGTAACCCAAAGCAAGCAGCTCACACCCAGGAAGCCCTGGAGGAGGC




TGTGCAGATGATGACCGAGGCCGTAGAGGACCTGACAACAACCCTCAACGAGGCAGCCAGT




GCTGCTGGGGTCGTGGGTGGCATGGTGGACTCCATCACCCAGGCCATCAACCAGCTAGATG




AAGGACCAATGGGTGAACCAGAAGGTTCCTTCGTGGATTACCAAACAACTATGGTGCGGAC




AGCCAAGGCCATTGCAGTGACCGTTCAGGAGATGGTTACCAAGTCAAACACCAGCCCAGAG




GAGCTGGGCCCTCTTGCTAACCAGCTGACCAGTGACTATGGCCGTCTGGCCTCGGAGGCCA




AGCCTGCAGCGGTGGCTGCTGAAAATGAAGAGATAGGTTCCCATATCAAACACCGGGTACA




GGAGCTGGGCCATGGCTGTGCCGCTCTGGTCACCAAGGCAGGCGCCCTGCAGTGCAGCCCC




AGTGATGCCTACACCAAGAAGGAGCTCATAGAGTGTGCCCGGAGAGTCTCTGAGAAGGTCT




CCCACGTCCTGGCTGCGCTCCAGGCTGGGAATCGTGGCACCCAGGCCTGCATCACAGCAGC




CAGCGCTGTGTCTGGTATCATTGCTGACCTCGACACCACCATCATGTTCGCCACTGCTGGCA




CGCTCAATCGTGAGGGTACTGAAACTTTCGCTGACCACCGGGAGGGCATCCTGAAGACTGC




GAAGGTGCTGGTGGAGGACACCAAGGTCCTGGTGCAAAACGCAGCTGGGAGCCAGGAGAA




GTTGGCGCAGGCTGCCCAGTCCTCCGTGGCGACCATCACCCGCCTCGCTGATGTGGTCAAGC




TGGGTGCAGCCAGCCTGGGAGCTGAGGACCCTGAGACCCAGGTGGTACTAATCAACGCAGT




GAAAGATGTAGCCAAAGCCCTGGGAGACCTCATCAGTGCAACGAAGGCTGCAGCTGGCAA




AGTTGGAGATGACCCTGCTGTGTGGCAGCTAAAGAACTCTGCCAAGGTGATGGTGACCAAT




GTGACATCATTGCTTAAGACAGTAAAAGCCGTGGAAGATGAGGCCACCAAAGGCACTCGGG




CCCTGGAGGCAACCACAGAACACATACGGCAGGAGCTGGCGGTTTTCTGTTCCCCAGAGCC




ACCTGCCAAGACCTCTACCCCAGAAGACTTCATCCGAATGACCAAGGGTATCACCATGGCA




ACCGCCAAGGCCGTTGCTGCTGGCAATTCCTGTCGCCAGGAAGATGTCATTGCCACAGCCA




ATCTGAGCCGCCGTGCTATTGCAGATATGCTTCGGGCTTGCAAGGAAGCAGCTTACCACCCA




GAAGTGGCCCCTGATGTGCGGCTTCGAGCCCTGCACTATGGCCGGGAGTGTGCCAATGGCT




ACCTGGAACTGCTGGACCATGTACTGCTGACCCTGCAGAAGCCAAGCCCAGAACTGAAGCA




GCAGTTGACAGGACATTCAAAGCGTGTGGCTGGTTCCGTCACTGAGCTCATCCAGGCTGCTG




AAGCCATGAAGGGAACAGAATGGGTAGACCCAGAGGACCCCACAGTCATTGCTGAGAATG




AGCTCCTGGGAGCTGCAGCCGCCATTGAGGCTGCAGCCAAAAAGCTAGAGCAGCTGAAGCC




CCGGGCCAAACCCAAGGAGGCAGATGAGTCCTTGAACTTTGAGGAGCAGATACTAGAAGCT




GCCAAGTCCATTGCAGCAGCCACCAGTGCACTGGTAAAGGCTGCGTCGGCTGCCCAGAGAG




AACTAGTGGCCCAAGGGAAGGTGGGTGCCATTCCAGCCAATGCACTGGACGATGGGCAGTG




GTCCCAGGGCCTCATTTCTGCTGCCCGGATGGTGGCTGCGGCCACCAACAATCTGTGTGAGG




CAGCCAATGCAGCTGTACAAGGCCATGCCAGCCAGGAGAAGCTCATCTCATCAGCCAAGCA




GGTAGCTGCCTCCACAGCCCAGCTCCTTGTGGCCTGCAAGGTCAAGGCTGACCAGGACTCG




GAGGCAATGAAACGACTTCAGGCTGCTGGCAACGCAGTGAAGCGAGCCTCAGATAATCTGG




TGAAAGCAGCACAGAAGGCTGCAGCCTTTGAAGAGCAGGAGAATGAGACAGTGGTGGTGA




AAGAGAAGATGGTTGGCGGCATTGCCCAGATCATCGCAGCACAGGAAGAAATGCTTCGGA




AGGAACGAGAGCTGGAAGAGGCGCGGAAGAAACTGGCCCAGATCCGGCAGCAGCAGTACA




AGTTTCTGCCTTCAGAGCTTCGAGATGAGCACTAAAGAAGCCTCTTCTATTTAATGCAGACC




CGGCCCAGAGACTGTGCGTGCCACTACCAAAGCCTTCTGGGCTGTCGGGGCCCAACCTGCC




CAACCCCAGCACTCCCCAAAGTGCCTGCCAAACCCCAGGGCCTGGCCCCGCCCAGTCCCGC




AGTACATCCCCTGTCCCCTCCCCAACCCCAAGTGCCTTCATGCCCTAGGGCCCCCCAAGTGC




CTGCCCCTCCCCAGAGTATTAACGCTCCAAGAGTATTATTAACGCTGCTGTACCTCGATCTG




AATCTGCCGGGGCCCCAGCCCACTCCACCCTGCCAGCAGCTTCCGGCCAGTCCCCACAGCCT




CATCAGCTCTCTTCACCGTTTTTTGATACTATCTTCCCCCACCCCCAGCTACCCATAGGGGCT




GCAGAGTTATAAGCCCCAAACAGGTCATGCTCCAATAAAAATGATTCTACCTACAACCTCT




GCCTGGCTTCAAGGGAGATACAAGTTTTCTCCCAGGGCAGTAGGAGAGACAGTGGGGTTGA




ATTCTGTCACCCAGCTTGATCCAGCTTGAAATGGGAGAGGGGAAGACTGGCAGTCTGCACC




TGAGGTCCCTTCCTCCTTGCACCCGGACCCTAAAGTTATCCAATGGGGAAGTTGTGCCTGAG




AAGTCATACTCCTGTTATCCTCACCTCCCTGGCCAGCACCTAAGCCTCACAAAGTGTCGTTC




TGCTGCTGCTGGGACAGCAGCTACCACAGTTCCTTGTGGCTACCAGGACATTCTGTTCTTCA




TAGCTACTCAGGGTATGTCAACAAATCCAGTCCTTGACCAAATTCAAATTTTCAAAAGAAGC




TTTGCTAAAAATAA





21

Homo

CGGCGCGGGCGGGCCGGCCGGGCTGTGCACCTGCGCCTCGGCGGGCCGCCTGGGGCACCGT




sapiens par-6

CCCCGGCCC



family cell
GCCCGGCCCCGCCATGGCCCGGCCGCAGAGGACTCCGGCGCGCAGTCCCGATAGCATCGTC



polarity
GAGGTGAAG



regulator
AGCAAATTTGACGCCGAGTTCCGACGCTTCGCGCTGCCTCGCGCTTCGGTGAGCGGCTTCCA



alpha
GGAGTTCT



(PARD6A),
CGCGGTTGCTGCGGGCGGTGCACCAGATCCCGGGCCTGGACGTGCTACTTGGCTATACGGA



transcript.
TGCTCATGG



NCBI
CGACCTGCTGCCCCTCACCAACGACGACAGCCTGCACCGGGCCCTGGCCAGCGGGCCCCCG



Reference
CCACTGCGCCTACTGGTGCAGAAGCGGGGTGAGGAGGGGTACAGTGGGCAGCCTCTGTGGG



Sequence:
AAGCTGACTCCAGCGGCCTGGCTTTTGCCTCCAACTCTCTGCAGCGGCGCAAGAAAGGGCT



XM_011523095.2
CTTGCTGCGGCCAGTGGCACCCCTGCGCACCCGGCCACCCTTGCTAATCAGCCTGCCCCAAG




ATTTCCGCCAGGTTTCCTCAGTCATAGACGTGGACCTACTGCCTGAGACCCACCGACGGGTG




CGGCTGCACAAGCATGGTTCAGACCGCCCCCTGGGCTTCTACATCCGAGATGGCATGAGCG




TGCGTGTGGCTCCCCAGGGCCTGGAGCGGGTTCCAGGAATCTTCATCTCCCGCCTGGTACGT




GGGGGTCTGGCTGAGAGTACAGGGCTGCTGGCGGTCAGTGATGAGATCCTCGAGGTCAAT




GGCATTGAAGTAGCCGGGAAGACCTTGGACCAAGTGACGGACATGATGGTTGCCAACAGCC




ATAACCTCATTGTCACTGTCAAGCCCGCCAACCAGCGCAATAACGTGGTGCGAGGGGCATC




TGGGCGTTTGACAGGTCCTCCCTCTGCAGGGCCTGGGCCTGCTGAGCCTGATAGTGACGATG




ACAGCAGTGACCTGGTCATTGAGAACCGCCAGCCTCCCAGTTCCAATGGGCTGTCTCAGGG




GCCCCCGTGCTGGGACCTGCACCCTGGCTGCCGACATCCTGGTACCCGCAGCTCTCTGCCCT




CCCTGGATGACCAGGAGCAGGCCAGTTCTGGCTGGGGGAGTCGCATTCGAGGAGATGGTAG




TGGCTTCAGCCTCTGACAGTCAGGATGAAGCCCCATGCCACTCCACACTGCTGGGACATGG




CAGGGACTTCACAGTGGGGGTTTTTAGCTGGCTCACAGGGCTCCCTCAGCCTGGGGAACAT




TAAAGGTTTTCTACAAATACA





22

Homo

TGGCTTGATTGGCGTGCTGAGACGCACCTGGCGCAACCCTCCCTTCTGAATCGAAGTTCAAG




sapiens

TCCCGCGGACACTGCAACCATGAAGGAGAGACGGGCCCCCCAGCCAGTCGTGGCCAGATGT



mRNA for
AAGCTCGTTCTGGTCGGGGACGTGCAGTGTGGGAAGACCGCGATGTTGCAAGTGTTAGCGA



Rnd1,
AGGATTGCTATCCAGAGACCTATGTGCCCACCGTGTTCGAAAATTACACAGCCTGTTTGGAG



complete
ACAGAGGAACAGAGGGTGGAGCTTAGTCTCTGGGATACCTCAGGATCTCCCTACTACGATA



cds.
ATGTCCGTCCACTCTGCTACAGCGACTCGGATGCAGTATTACTATGTTTTGACATCAGCCGT



GenBank:
CCAGAGACAGTGGACAGCGCACTCAAGAAGTGGAGGACAGAAATCCTAGATTATTGTCCCA



AB040147.1
GCACCCGCGTTTTGCTCATTGGCTGCAAGACAGACCTGCGAACAGACCTGAGTACTCTGATG




GAGCTGTCCCACCAGAAGCAGGCGCCCATCTCCTATGAGCAGGGTTGTGCAATAGCAAAGC




AGCTGGGTGCAGAAATCTACCTGGAAGGCTCAGCTTTCACCTCAGAAAAGAGCATCCACAG




CATCTTTCGGACGGCATCCATGCTGTGTCTGAACAAGCCTAGCCCACTGCCCCAGAAGAGCC




CTGTCCGAAGCCTCTCCAAACGGCTGCTCCACCTCCCCAGTCGCTCTGAACTCATCTCTTCT




ACCTTCAAGAAGGAAAAGGCCAAAAGCTGTTCCATTATGTGAAGTGGAAATTGGAGGGGG




GAGTCGACCCCCTACTTCCTCCCTTGGGGTGCAGAGGCACGGGGAGAGGGAGGATGAGACA




ATTTAGGACACTGGACATGAGTTTTTCAGATGGCCACGGTGAGGGCTTGGAAGGAGACAGG




AATGGGGCGAGGAAGGAGCCAGGCCCGGCATGAGGACCTGACGCTGAGAGAGAACCATCA




TACCCCAAGCCAG





23

Homo

GTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGTT




sapiens clone

GGCATGCCCTGGTCGTCCCGCGGCGCCCTCCTTCGGGACCTGGTCCTGGGCGTGCTGGGCAC



ccsbBroadEn_03525
CGCCGCCTTCCTGCTCGACCTGGGCACCGACCTGTGGGCCGCCGTCCAGTATGCGCTCGGCG



XKR8 gene.
GCCGCTACCTGTGGGCGGCGCTGGTGCTGGCGCTGCTGGGCCTGGCCTCCGTGGCGCTGCA



GenBank:
GCTCTTCAGCTGGCTCTGGCTGCGCGCTGACCCTGCCGGCCTGCACGGGTCGCAGCCCCCGC



KJ894131.1
GCCGCTGCCTGGCGCTGCTGCATCTCCTGCAGCTGGGTTACCTGTACAGGTGCGTGCAGGAG




CTGCGGCAGGGGCTGCTGGTGTGGCAGCAGGAGGAGCCCTCTGAGTTTGACTTGGCCTACG




CCGACTTCCTCGCCCTGGACATCAGCATGCTGCGGCTCTTCGAGACCTTCTTGGAGACGGCA




CCACAGCTCACGCTGGTGCTGGCCATCATGCTGCAGAGTGGCCGGGCTGAGTACTACCAGT




GGGTTGGCATCTGCACATCCTTCCTGGGCATCTCGTGGGCACTGCTCGACTACCACCGGGCC




TTGCGCACCTGCCTCCCCTCCAAGCCGCTCCTGGGCCTGGGCTCCTCCGTGATCTACTTCCTG




TGGAACCTGCTGCTGCTGTGGCCCCGAGTCCTGGCTGTGGCCCTGTTCTCAGCCCTCTTCCCC




AGCTATGTGGCCCTGCACTTCCTGGGCCTGTGGCTGGTACTGCTGCTCTGGGTCTGGCTTCA




GGGCACAGACTTCATGCCGGACCCCAGCTCCGAGTGGCTGTACCGGGTGACGGTGGCCACC




ATCCTCTATTTCTCCTGGTTCAACGTGGCTGAGGGCCGCACCCGAGGCCGGGCCATCATCCA




CTTCGCCTTCCTCCTGAGTGACAGCATTCTCCTGGTGGCCACCTGGGTGACTCATAGCTCCT




GGCTGCCCAGCGGGATTCCACTGCAGCTGTGGCTGCCTGTGGGATGCGGCTGCTTCTTTCTG




GGCCTGGCTCTGCGGCTTGTGTACTACCACTGGCTGCACCCTAGCTGCTGCTGGAAGCCCGA




CCCTGACCAGGTAGACGGGGCCCGGAGTCTGCTTTCTCCAGAGGGGTATCAGCTGCCTCAG




AACAGGCGCATGACCCATTTAGCACAGAAGTTTTTCCCCAAGGCTAAGGATGAGGCTGCTT




CGCCAGTGAAGGGATACCCAACTTTCTTGTACAAAGTTGGCATTATAAGAAAGCATTGCTTA




TCAATTTGTTGCAACGAAC





24

Homo

GTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGTT




sapiens clone

GGCACCATGAAAAAGATGAGCAGGAATGTTTTGCTACAAATGGAGGAGGAGGAGGACGAC



ccsbBroadEn_09792
GACGATGGGGATATCGTGTTGGAAAACCTTGGACAGACAATTGTCCCCGATTTGGGATCAC



ANO6 gene.
TGGAAAGTCAGCATGATTTTCGAACCCCGGAGTTTGAAGAATTTAATGGAAAACCTGACTC



GenBank:
CCTCTTTTTTAATGATGGCCAGCGAAGAATTGACTTTGTTCTAGTATATGAGGATGAAAGCA



KJ900398.1
GAAAAGAGACCAATAAAAAGGGTACAAATGAAAAACAAAGGAGGAAAAGACAAGCATAC




GAATCTAACCTTATCTGTCATGGCCTGCAGTTAGAAGCAACAAGATCAGTATTGGATGACA




AGCTTGTATTTGTAAAAGTACACGCACCATGGGAGGTGTTATGTACGTATGCTGAGATAATG




CACATCAAATTGCCTCTGAAACCCAATGATCTGAAAAACCGGTCCTCAGCCTTTGGTACACT




CAACTGGTTTACCAAAGTCCTCAGTGTAGACGAAAGCATCATCAAGCCAGAGCAAGAGTTT




TTCACTGCCCCATTTGAGAAGAACCGGATGAATGATTTTTACATAGTTGATAGAGATGCTTT




CTTCAATCCAGCCACCAGAAGCCGCATTGTTTACTTCATCCTCTCTCGGGTCAAGTATCAAG




TGATAAACAATGTTAGCAAGTTTGGGATCAACAGACTTGTAAACTCTGGGATCTACAAGGC




AGCTTTCCCACTCCATGATTGCAAATTCCGCCGTCAGTCAGAGGATCCCAGCTGCCCTAATG




AACGGTACCTTCTGTACAGAGAATGGGCTCATCCTCGAAGCATATACAAAAAGCAGCCCTT




GGATCTTATCAGGAAATACTATGGAGAGAAGATTGGAATCTACTTTGCTTGGCTGGGCTATT




ACACTCAGATGCTTCTCCTGGCCGCAGTTGTAGGAGTGGCTTGCTTTCTCTATGGATATCTTA




ATCAAGATAACTGTACATGGAGCAAAGAAGTTTGTCATCCTGATATTGGTGGCAAGATCAT




AATGTGTCCTCAGTGTGATAGGCTTTGTCCATTCTGGAAACTCAATATTACTTGCGAGTCCT




CAAAGAAATTGTGCATCTTCGACAGTTTTGGAACCCTGGTCTTTGCAGTATTTATGGGAGTA




TGGGTTACCTTGTTTTTGGAGTTTTGGAAGCGACGCCAGGCAGAACTTGAGTATGAATGGGA




TACTGTTGAGTTACAGCAGGAAGAACAAGCCCGACCAGAATACGAAGCACGATGTACTCAC




GTAGTGATAAATGAGATTACTCAGGAAGAAGAACGCATTCCCTTTACTGCCTGGGGAAAAT




GTATACGGATAACCCTCTGTGCCAGTGCTGTCTTTTTCTGGATCCTATTGATCATCGCTTCAG




TTATTGGGATCATTGTCTATAGGCTCTCGGTGTTCATTGTATTTTCTGCAAAACTTCCCAAGA




ACATTAATGGAACAGACCCAATCCAGAAATACCTGACTCCACAGACAGCCACGTCCATCAC




GGCCTCCATCATCAGCTTTATAATTATCATGATTCTGAACACCATATATGAAAAAGTGGCAA




TTATGATTACTAACTTCGAACTCCCAAGGACCCAGACTGATTATGAGAACAGCCTCACCATG




AAGATGTTCTTATTCCAGTTTGTCAACTACTACTCTTCATGCTTCTACATAGCATTCTTTAAG




GGCAAATTTGTAGGCTATCCAGGAGACCCAGTTTATTGGTTGGGAAAATACAGAAATGAAG




AGTGTGACCCAGGTGGCTGTCTTCTTGAACTGACAACTCAGCTGACAATAATCATGGGAGG




AAAAGCAATCTGGAATAACATACAAGAAGTATTATTGCCCTGGATCATGAATCTAATTGGG




CGATTTCACAGAGTTTCTGGATCAGAAAAGATAACCCCACGATGGGAACAGGACTACCATC




TGCAGCCTATGGGCAAACTGGGATTATTTTATGAATATCTTGAAATGATTATTCAGTTTGGG




TTCGTCACCTTATTTGTGGCCTCTTTTCCACTGGCCCCTCTGTTGGCTCTCGTGAACAATATA




TTGGAAATAAGAGTGGACGCATGGAAACTGACCACCCAGTTTAGACGCCTGGTACCAGAGA




AAGCCCAAGACATTGGAGCATGGCAGCCCATCATGCAAGGAATAGCAATTCTGGCTGTGGT




GACCAATGCCATGATCATAGCTTTCACGTCGGACATGATCCCCCGCCTAGTGTACTACTGGT




CCTTCTCCGTCCCTCCCTACGGGGACCACACTTCCTACACCATGGAAGGGTACATCAACAAC




ACTCTCTCCATCTTCAAAGTCGCAGACTTCAAAAACAAAAGCAAGGGAAACCCGTACTCTG




ACCTGGGTAACCATACCACATGCAGGTATCGTGATTTCCGATACCCACCTGGACACCCCCAG




GAGTATAAACACAACATCTACTATTGGCATGTGATTGCAGCCAAGCTGGCTCTTATCATTGT




CATGGAGCACGTCATCTACTCTGTGAAATTTTTCATTTCATATGCAATTCCCGATGTATCAA




AACGCACAAAGAGCAAGATCCAGAGAGAAAAATACCTAACCCAAAAGCTTCTTCATGAGA




ATCACCTCAAAGATATGACGAAAAATATGGGGGTGATAGCTGAGCGGATGATAGAAGCAG




TAGATAACAATTTACGGCCAAAATCAGAATTGCCAACTTTCTTGTACAAAGTTGGCATTATA




AGAAAGCATTGCTTATCAATTTGTTGCAACGAAC





25

Homo

GCCTTCCGGAGCGTAGCGGCCTCTAGCTCGAGCAGCAGGAGCAGCCCGCACCGGACAACTT




sapiens

GCGAGCCATGGGGCTGGCGGATGCGTCGGGACCGAGGGACACACAGGCACTGCTGTCTGCA



solute carrier
ACACAAGCAATGGACCTGCGGAGGCGAGACTACCACATGGAACGGCCGCTGCTGAACCAG



family 26
GAGCATTTGGAGGAGCTGGGGCGCTGGGGCTCAGCACCTAGGACCCACCAGTGGCGGACCT



member 6
GGTTGCAGTGCTCCCGTGCTCGGGCCTATGCCCTTCTGCTCCAACACCTCCCGGTTTTGGTCT



(SLC26A6).
GGTTACCCCGGTATCCTGTGCGTGACTGGCTCCTGGGTGACCTGTTATCCGGCCTGAGTGTG



NCBI
GCCATCATGCAGCTTCCGCAGGGCTTGGCCTACGCCCTCCTGGCTGGATTGCCCCCCGTGTT



Reference
TGGCCTCTATAGCTCCTTCTACCCTGTCTTCATCTACTTCCTGTTTGGCACTTCCCGGCACAT



Sequence:
CTCCGTGGGGACCTTTGCTGTCATGTCTGTGATGGTGGGCAGTGTGACAGAATCCCTGGCCC



NM_022911.3
CGCAGGCCTTGAACGACTCCATGATCAATGAGACAGCCAGAGATGCTGCCCGGGTACAGGT




GGCCTCCACACTCAGTGTCCTGGTTGGCCTCTTCCAGGTGGGGCTGGGCCTGATCCACTTCG




GCTTCGTGGTCACCTACCTGTCAGAACCTCTTGTCCGAGGCTATACCACAGCTGCAGCTGTG




CAGGTCTTCGTCTCACAGCTCAAGTATGTGTTTGGCCTCCATCTGAGCAGCCACTCTGGGCC




ACTGTCCCTCATCTATACAGTGCTGGAGGTCTGCTGGAAGCTGCCCCAGAGCAAGGTTGGC




ACCGTGGTCACTGCAGCTGTGGCTGGGGTGGTGCTCGTGGTGGTGAAGCTGTTGAATGACA




AGCTGCAGCAGCAGCTGCCCATGCCGATACCCGGGGAGCTGCTCACGCTCATCGGGGCCAC




AGGCATCTCCTATGGCATGGGTCTAAAGCACAGATTTGAGGTAGATGTCGTGGGCAACATC




CCTGCAGGGCTGGTGCCCCCAGTGGCCCCCAACACCCAGCTGTTCTCAAAGCTCGTGGGCA




GCGCCTTCACCATCGCTGTGGTTGGGTTTGCCATTGCCATCTCACTGGGGAAGATCTTCGCC




CTGAGGCACGGCTACCGGGTGGACAGCAACCAGGAGCTGGTGGCCCTGGGCCTCAGTAACC




TTATCGGAGGCATCTTCCAGTGCTTCCCCGTGAGTTGCTCTATGTCTCGGAGCCTGGTACAG




GAGAGCACCGGGGGCAACTCGCAGGTTGCTGGAGCCATCTCTTCCCTTTTCATCCTCCTCAT




CATTGTCAAACTTGGGGAACTCTTCCATGACCTGCCCAAGGCGGTCCTGGCAGCCATCATCA




TTGTGAACCTGAAGGGCATGCTGAGGCAGCTCAGCGACATGCGCTCCCTCTGGAAGGCCAA




TCGGGCGGATCTGCTTATCTGGCTGGTGACCTTCACGGCCACCATCTTGCTGAACCTGGACC




TTGGCTTGGTGGTTGCGGTCATCTTCTCCCTGCTGCTCGTGGTGGTCCGGACACAGATGCCC




CACTACTCTGTCCTGGGGCAGGTGCCAGACACGGATATTTACAGAGATGTGGCAGAGTACT




CAGAGGCCAAGGAAGTCCGGGGGGTGAAGGTCTTCCGCTCCTCGGCCACCGTGTACTTTGC




CAATGCTGAGTTCTACAGTGATGCGCTGAAGCAGAGGTGTGGTGTGGATGTCGACTTCCTCA




TCTCCCAGAAGAAGAAACTGCTCAAGAAGCAGGAGCAGCTGAAGCTGAAGCAACTGCAGA




AAGAGGAGAAGCTTCGGAAACAGGCTGCCTCCCCCAAGGGCGCCTCAGTTTCCATTAATGT




CAACACCAGCCTTGAAGACATGAGGAGCAACAACGTTGAGGACTGCAAGATGATGCAGGT




GAGCTCAGGAGATAAGATGGAAGATGCAACAGCCAATGGTCAAGAAGACTCCAAGGCCCC




AGATGGGTCCACACTGAAGGCCCTGGGCCTGCCTCAGCCAGACTTCCACAGCCTCATCCTG




GACCTGGGTGCCCTCTCCTTTGTGGACACTGTGTGCCTCAAGAGCCTGAAGAATATTTTCCA




TGACTTCCGGGAGATTGAGGTGGAGGTGTACATGGCGGCCTGCCACAGCCCTGTGGTCAGC




CAGCTTGAGGCTGGGCACTTCTTCGATGCATCCATCACCAAGAAGCATCTCTTTGCCTCTGT




CCATGATGCTGTCACCTTTGCCCTCCAACACCCGAGGCCTGTCCCCGACAGCCCTGTTTCGG




TCACCAGACTCTGAACATGCTACATCCTGCCCAAGACTGCACCTCTGGAGGTGCAGGGCAC




CCTTGAGAAGCCCCTCACCCCTAGGCCGCCTCCAGGTGCTACCCAGGAGTCCCCTCCATGTA




CACACACACAACTCAGGGAAGGAGGTCCTGGGACTCCAAGTTCAGCGCTCCAGGTCTGGGA




CAGGGCCTGCATGCAGTCAGGCTGGCAGTGGCGCGGTACAGGGAGGGAACTGGTGCATATT




TTAGCCTCAGGAATAAAGATTTGTCTGCTCAA





26

Homo

GTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGTT




sapiens clone

GGCATGACCTCACGTTTCCGATTGCCTGCTGGCAGAACCTACAATGTACGAGCATCAGAGTT



ccsbBroadEn_01341
GGCCCGAGACAGACAGCATACTGAAGTGGTTTGCAACATCCTTCTTCTGGATAACACTGTAC



PTPN4
AAGCTTTCAAAGTCAATAAACATGATCAGGGGCAAGTCTTGTTGGATGTCGTCTTCAAGCAT



gene.
CTAGATTTGACTGAGCAGGACTATTTTGGTTTACAGTTGGCTGATGATTCCACAGATAACCC



GenBank:
AAGGTGGCTGGATCCAAACAAACCAATAAGGAAGCAGCTAAAGAGAGGATCTCCTTACAG



KJ891947.1
TTTGAACTTTAGAGTCAAATTTTTTGTAAGTGACCCCAACAAGTTACAAGAAGAATATACAA




GGTACCAGTATTTTTTGCAAATTAAACAAGACATTCTTACTGGAAGATTACCCTGTCCTTCT




AATACTGCTGCCCTTTTAGCTTCATTTGCTGTTCAGTCTGAACTTGGAGACTACGATCAGTCA




GAGAACTTGTCAGGCTACCTCTCAGATTATTCTTTCATTCCTAATCAACCTCAAGATTTTGAA




AAAGAAATTGCAAAATTACATCAGCAACACATAGGCTTATCTCCTGCAGAAGCAGAATTTA




ATTACCTAAACACAGCACGTACCTTAGAACTCTATGGAGTTGAATTCCACTATGCAAGGGAT




CAGAGTAACAATGAAATTATGATTGGAGTGATGTCAGGAGGAATTCTGATTTATAAGAACA




GGGTACGAATGAATACCTTTCCATGGTTGAAGATTGTAAAAATTTCTTTTAAGTGCAAACAG




TTTTTTATTCAACTTAGAAAAGAATTGCATGAATCTAGAGAAACATTATTGGGATTTAATAT




GGTGAATTACAGAGCATGTAAAAATTTGTGGAAAGCATGTGTAGAACATCACACATTCTTC




CGTTTGGACAGACCACTTCCACCTCAAAAGAATTTTTTTGCACATTATTTTACATTAGGTTCA




AAATTCCGGTACTGTGGGAGAACTGAAGTCCAATCAGTTCAGTATGGCAAAGAAAAGGCAA




ATAAAGACAGGGTATTTGCAAGATCCCCAAGTAAGCCCTTGGCACGGAAATTAATGGATTG




GGAAGTAGTAAGCAGAAATTCAATATCTGATGACAGGTTAGAAACACAAAGTCTTCCATCA




CGATCTCCACCGGGAACTCCTAATCATCGAAATTCTACATTCACGCAGGAAGGAACCCGGT




TACGACCATCTTCAGTTGGTCATTTGGTAGACCATATGGTTCATACTTCCCCAAGCGAAGTG




TTTGTAAATCAGAGATCTCCGTCATCAACACAAGCTAATAGCATTGTTCTGGAATCATCACC




ATCACAAGAGACCCCTGGAGATGGGAAGCCTCCAGCTTTACCACCCAAACAGTCAAAGAAA




AACAGTTGGAACCAAATTCATTATTCACATTCGCAACAAGATCTAGAAAGTCATATTAATG




AAACATTTGATATTCCATCTTCTCCTGAAAAACCCACTCCTAATGGTGGTATTCCACATGAT




AATCTTGTCCTAATCAGAATGAAACCTGATGAAAATGGGAGGTTTGGATTCAATGTAAAGG




GAGGATATGATCAGAAGATGCCTGTGATTGTGTCTCGAGTAGCACCAGGAACACCTGCTGA




CCTCTGTGTCCCTAGACTGAATGAAGGGGACCAAGTTGTACTGATCAATGGTCGGGACATT




GCAGAACACACTCATGATCAGGTTGTGCTGTTTATTAAAGCTAGTTGTGAGAGACATTCTGG




GGAACTCATGCTTCTAGTTCGACCTAATGCTGTATATGATGTAGTGGAAGAAAAGCTAGAA




AATGAGCCAGATTTCCAGTATATTCCTGAGAAAGCCCCACTAGATAGTGTGCATCAGGATG




ACCATTCCCTGCGGGAGTCAATGATCCAGCTAGCTGAGGGGCTTATCACTGGAACAGTCCT




GACACAGTTTGATCAACTGTATCGGAAAAAACCTGGAATGACAATGTCCTGTGCCAAATTA




CCTCAGAATATTTCCAAAAATAGATACAGAGATATTTCGCCTTATGATGCCACACGGGTCAT




TTTAAAAGGTAATGAAGACTACATCAATGCGAACTATATAAATATGGAAATTCCTTCTTCCA




GCATTATAAATCAGTACATTGCTTGTCAAGGGCCATTACCACACACTTGTACAGATTTTTGG




CAGATGACTTGGGAACAAGGCTCCTCTATGGTTGTAATGTTGACCACACAAGTTGAACGTG




GCAGAGTTAAATGTCACCAATATTGGCCAGAACCCACAGGCAGTTCATCTTATGGATGCTA




CCAAGTTACCTGCCACTCTGAAGAAGGAAACACTGCCTATATCTTCAGGAAGATGACCCTA




TTTAACCAAGAGAAAAATGAAAGTCGTCCACTCACTCAGATCCAGTACATAGCCTGGCCTG




ACCATGGAGTCCCTGATGATTCGAGTGACTTTCTAGATTTTGTTTGTCATGTACGAAACAAG




AGGGCTGGCAAGGAAGAACCCGTTGTTGTCCATTGCAGTGCTGGAATCGGAAGAACTGGGG




TTCTTATTACTATGGAAACAGCCATGTGTCTCATTGAATGCAATCAGCCAGTTTATCCACTA




GATATTGTAAGAACAATGAGAGATCAGCGAGCCATGATGATCCAAACACCTAGTCAATACA




GATTTGTATGTGAAGCTATTTTGAAAGTTTATGAAGAAGGCTTTGTTAAACCCTTAACAACA




TCAACAAATAAATACCCAACTTTCCTTGTACAAAGTTGGCATTATAAGAAAGCATTGCTTAT




CAATTTGTTGCAACGAAC





27

Homo

GTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGTT




sapiens clone

GGCATGGTGAACCACAGTCTTCACCCTACTGAACCCGTCAAGGTCACTCTGCCAGACGCCTT



ccsbBroadEn_12539
TTTGCCTGCTCAAGTCTGTAGTGCCAGGATTCAGGAAAATGGCTCCCTTATCACCATCCTGG



ATG9A
TCATTGCTGGTGTCTTCTGGATCCACCGGCTTATCAAGTTCATCTATAACATTTGCTGCTACT



gene.
GGGAGATCCACTCCTTCTACCTGCACGCTCTGCGCATCCCTATGTCTGCCCTTCCGTATTGCA



GenBank:
CGTGGCAAGAAGTGCAGGCCCGGATCGTGCAGACGCAGAAGGAGCACCAGATCTGCATCC



KJ903145.1
ACAAACGTGAGCTGACAGAACTGGACATCTACCACCGCATCCTCCGTTTCCAGAACTACAT




GGTGGCACTGGTTAACAAATCCCTCCTGCCTCTGCGCTTCCGCCTGCCTGGCCTCGGGGAAG




CTGTCTTCTTCACCCGTGGTCTCAAGTACAACTTTGAGCTGATCCTCTTCTGGGGACCTGGCT




CTCTGTTTCTCAATGAATGGAGCCTCAAGGCCGAGTACAAACGTGGGGGGCAACGGCTAGA




GCTGGCCCAGCGCCTCAGCAACCGCATCCTGTGGATTGGCATCGCTAACTTCCTGCTGTGCC




CCCTCATCCTCATATGGCAAATCCTCTATGCCTTCTTCAGCTATGCTGAGGTGCTGAAGCGG




GAGCCGGGGGCCCTGGGAGCACGCTGCTGGTCACTCTATGGCCGCTGCTACCTCCGCCACTT




CAACGAGCTGGAGCACGAGCTGCAGTCCCGCCTCAACCGTGGCTACAAGCCCGCCTCCAAG




TACATGAATTGCTTCTTGTCACCTCTTTTGACACTGCTGGCCAAGAATGGAGCCTTCTTCGCT




GGCTCCATCCTGGCTGTGCTTATTGCCCTCACCATTTATGACGAAGATGTGTTGGCTGTGGA




ACATGTGCTGACCACCGTCACACTCCTGGGGGTCACCGTGACCGTGTGCAGGTCCTTTATCC




CGGACCAGCACATGGTGTTCTGCCCTGAGCAGCTGCTCCGCGTGATCCTCGCTCACATCCAC




TACATGCCTGACCACTGGCAGGGTAATGCCCACCGCTCGCAGACCCGGGACGAGTTTGCCC




AGCTCTTCCAGTACAAGGCAGTGTTCATTTTGGAAGAGTTGCTGAGCCCCATTGTCACACCC




CTCATCCTCATCTTCTGCCTGCGCCCACGGGCCCTGGAGATTATAGACTTCTTCCGAAACTTC




ACCGTGGAGGTCGTTGGTGTGGGAGATACCTGCTCCTTTGCTCAGATGGATGTTCGCCAGCA




TGGTCATCCCCAGTGGCTATCTGCTGGGCAGACAGAGGCCTCAGTGTACCAGCAAGCTGAG




GATGGAAAGACAGAGTTGTCACTCATGCACTTTGCCATCACCAACCCTGGCTGGCAGCCAC




CACGTGAGAGCACAGCCTTCCTAGGCTTCCTCAAGGAGCAGGTTCAGCGGGATGGAGCAGC




TGCTAGCCTCGCCAAGGGGGTCTGCTCCCTGAAAATGCCCTCTTTACGTCTATCCAGTCCTT




ACAATCTGAGTCTGAGCCCCTGCCCAACTTTCTTGTACAAAGTTGGCATTATAAGAAAGCAT




TGCTTATCAATTTGTTGCAACGAAC





28

Homo

GTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGTT




sapiens clone

GGCATGCCGTCGGAGAAGACCTTCAAGCAGCGCCGCACCTTCGAACAAAGAGTAGAAGAT



ccsbBroadEn_04252
GTCCGACTTATTCGAGAGCAGCATCCAACCAAAATCCCGGTGATAATAGAACGATACAAGG



MAP1LC3B
GTGAGAAGCAGCTTCCTGTTCTGGATAAAACAAAGTTCCTTGTACCTGACCATGTCAACATG



gene.
AGTGAGCTCATCAAGATAATTAGAAGGCGCTTACAGCTCAATGCTAATCAGGCCTTCTTCCT



GenBank:
GTTGGTGAACGGACACAGCATGGTCAGCGTCTCCACACCAATCTCAGAGGTGTATGAGAGT



KJ894858. 1
GAGAAAGATGAAGATGGATTCCTGTACATGGTCTATGCCTCCCAGGAGACGTTCGGGATGA




AATTGTCAGTGTACCCAACTTTCTTGTACAAAGTTGGCATTATAAGAAAGCATTGCTTATCA




ATTTGTTGCAACGAAC





29

Homo

GTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGTT




sapiens clone

GGCATGAAGGTTGTCCCAGAAAAGAATGCTGTCCGGATACTCTGGGGGCGAGAACGGGGTG



ccsbBroadEn_08557
CTCGGGCCATGGGAGCTCAGCGGCTTCTGCAGGAGCTGGTAGAGGATAAAACCCGGTGGAT



AMBRA1
GAAATGGGAGGGCAAGAGAGTAGAACTGCCGGATAGTCCACGCTCTACCTTCTTATTGGCC



gene.
TTCAGCCCAGACAGGACTCTCTTAGCCTCCACCCATGTGAACCATAATATCTATATTACGGA



GenBank:
GGTGAAGACTGGCAAGTGTGTTCATTCCCTGATTGGACACCGCCGTACTCCATGGTGTGTCA



KJ899163.1
CTTTTCATCCCACCATCTCAGGCCTTATTGCTTCTGGCTGCCTAGATGGGGAGGTTAGGATTT




GGGATTTACACGGTGGCAGTGAAAGCTGGTTCACAGATAGCAACAATGCCATTGCCTCCCT




GGCTTTCCACCCTACGGCTCAGCTCCTGCTGATTGCCACTGCCAATGAGATCCACTTCTGGG




ACTGGAGTCGACGGGAACCCTTTGCTGTGGTGAAGACAGCTAGTGAGATGGAACGGGTCCG




TCTGGTGAGATTTGATCCACTTGGACACTACTTACTCACAGCAATTGTTAACCCCTCTAATC




AACAGGGTGATGACGAACCAGAGATCCCCATAGATGGAACAGAATTATCCCACTACCGTCA




GCGTGCCCTCCTGCAATCACAGCCAGTTCGCCGGACGCCTCTCCTCCACAATTTCCTGCACA




TGCTGTCCTCCCGCTCTTCTGGCATCCAGACCGAGCCCTTCCATCCCCCGGAGCAGGCCTCG




TCAACGCAGCAGGACCAGGGCCTCCTGAACCGGCCGTCTGCCTTCAGTACAGTCCAGAGCA




GCACTGCCGGCAACACGCTCCGCAACCTCAGTCTGGGTCCTACCCGCCGCTCTTTGGGAGG




GCCTCTGTCTAGCCACCCTTCTAGGTATCACCGAGAAATAGCTCCTGGGTTGACAGGATCTG




AGTGGACCCGGACAGTACTCAGTCTGAACTCCCGCTCTGAGGCGGAATCCATGCCCCCGCC




CAGAACCAGTGCCTCTTCGGTGAGTTTGCTGTCTGTGCTGAGACAGCAGGAAGGTGGCTCTC




AGGCATCTGTGTACACTTCAGCCACAGAAGGGAGGGGTTTTCCGGCATCAGGGTTGGCAAC




TGAGTCAGATGGAGGGAATGGCTCCAGCCAAAACAACTCGGGCAGCATTCGCCATGAGCTT




CAGTGTGACCTGAGACGCTTCTTTCTGGAGTATGACCGGCTTCAGGAGCTGGATCAGAGCCT




GAGTGGGGAAGCTCCCCAGACCCAACAGGCCCAGGAAATGCTCAACAATAACATTGAATCT




GAGAGGCCAGGCCCTTCCCACCAGCCCACCCCACACAGCAGTGAGAACAACTCCAACCTGT




CCCGTGGCCACCTGAATCGCTGTCGTGCTTGCCACAATCTCCTGACCTTCAACAACGATACC




CTGCGCTGGGAAAGAACCACACCTAACTACTCCTCTGGCGAGGCTAGTTCCTCTTGGCAGGT




CCCCAGCTCCTTTGAGAGTGTGCCATCAAGTGGCAGCCAGTTGCCACCTCTCGAGCGGACTG




AGGGCCAAACGCCCAGCTCCAGCAGGCTGGAGTTGAGCAGCTCTGCTAGTCCGCAGGAGGA




GAGGACTGTGGGGGTGGCCTTTAACCAGGAGACAGGCCACTGGGAAAGAATTTACACCCAG




TCCAGCAGATCTGGAACTGTGTCACAGGAGGCCTTACATCAGGATATGCCTGAGGAGAGCT




CTGAGGAGGATTCACTCAGGAGGAGGCTGCTGGAATCTTCCCTCATTTCATTATCCCGTTAT




GATGGAGCAGGATCCAGAGAGCACCCAATTTACCCAGACCCAGCGAGATTATCTCCTGCTG




CATACTACGCCCAGAGGATGATCCAGTATCTCTCACGGAGAGACAGTATTCGCCAGCGCTC




CATGCGCTACCAACAGAACCGTCTCCGTTCTTCCACCTCCTCCTCTTCCTCAGACAACCAGG




GTCCATCAGTAGAGGGAACCGACTTGGAATTTGAGGACTTTGAGGACAATGGTGACAGATC




CAGGCACCGAGCTCCACGCAATGCCCGGATGTCTGCACCTTCGCTTGGACGCTTTGTCCCAA




GGCGTTTCTTGCTGCCTGAGTACTTGCCTTATGCTGGGATTTTTCATGAACGTGGACAGCCT




GGCTTGGCTACTCACTCTTCTGTTAACAGGGTCCTGGCAGGGGCAGTGATCGGTGATGGACA




GTCTGCTGTGGCCAGTAACATTGCCAATACTACCTACCGGCTCCAGTGGTGGGACTTCACTA




AGTTTGACCTCCCTGAAATCAGTAATGCTTCCGTGAATGTGCTGGTGCAGAACTGCAAGATC




TACAATGATGCCAGCTGTGACATTTCTGCAGATGGCCAGCTCCTGGCAGCTTTCATCCCCAG




CAGCCAGAGGGGCTTTCCTGATGAAGGCATCCTGGCAGTGTACTCCCTGGCCCCCCATAACC




TGGGCGAAATGCTCTACACCAAGCGATTTGGTCCCAATGCCATTTCGGTGAGCCTGTCCCCA




ATGGGCAGATATGTAATGGTGGGCTTGGCCTCACGAAGGATCCTGCTGCACCCCTCCACAG




AGCACATGGTGGCCCAGGTCTTCAGGCTGCAACAGGCCCATGGTGGAGAGACCTCCATGAG




GAGAGTTTTCAACGTCCTTTATCCCATGCCTGCCGACCAGCGGAGACATGTCAGTATCAACT




CTGCCCGTTGGCTGCCTGAGCCAGGGCTTGGCTTGGCCTATGGTACTAACAAAGGAGACCT




GGTGATCTGCCGACCAGAGGCCTTAAACTCTGGTGTTGAGTACTACTGGGACCAGCTGAAC




GAGACGGTCTTCACTGTCCATTCCAACAGCAGGAGCAGCGAGCGGCCTGGAACCAGCAGAG




CCACATGGAGGACAGACAGAGACATGGGGCTGATGAATGCCATTGGGCTTCAGCCCCGGAA




CCCTGCCACCTCAGTGACATCTCAGGGCACCGAGACTCTGGCCCTTCAGCTGCAGAATGCC




GAAACACAGACTGAGAGGGAGGTGCCGGAGCCAGGGACAGCCGCCTCAGGTCCTGGTGAA




GGTGAGGGTTCAGAGTATGGTGCCAGTGGAGAAGATGCGCTCAGCAGGATCCAGAGGCTG




ATGGCGGAGGGCGGCATGACAGCCGTGGTGCAGCGGGAGCAGAGCACCACCATGGCCTCC




ATGGGCGGCTTCGGCAACAACATCATCGTCAGCCACCGCATTCACCGCAGCTCTCAGACGG




GCACTGAACCTGGTGCCGCCCACACCTCCTCACCCCAGCCCTCCACCTCTCGGGGACTGCTC




CCAGAGGCCGGGCAACTGGCAGAGCGAGGCCTAAGCCCCCGGACAGCTTCCTGGGACCAG




CCTGGTACCCCTGGGCGGGAGCCAACCCAGCCAACCCTGCCCTCTTCCTCCCCTGTCCCCAT




TCCTGTTTCCCTTCCCAGCGCTGAGGGACCAACCGTCCACTGCGAGTTGACCAATAACAACC




ACCTTCTGGATGGTGGCAGCAGCAGGGGGGACGCTGCAGGCCCTAGGGGAGAACCACGGA




ACAGGTACCCAACTTTCTTGTACAAAGTTGGCATTATAAGAAAGCATTGCTTATCAATTTGT




TGCAACGAAC





30

Homo

GACTGATTTCGAGTTTCCGGTCAGGTTAGGCCGGGGGGGTGCGGTCCTGGTCGGAAGGAGG




sapiens

TGGAGAGTCGGGGGTCACCAGGCCTATCCTTGGCGCCACAGTCGGCCACCGGGGCTCGCCG



mitochondria
CCGTCATGGAGAGCGGAGGGCGGCCCTCGCTGTGCCAGTTCATCCTCCTGGGCACCACCTCT



1 E3
GTGGTCACCGCCGCCCTGTACTCCGTGTACCGGCAGAAGGCCCGGGTCTCCCAAGAGCTCA



ubiquitin
AGGGAGCTAAAAAAGTTCATTTGGGTGAAGATTTAAAGAGTATTCTTTCAGAAGCTCCAGG



protein ligase
AAAATGCGTGCCTTATGCTGTTATAGAAGGAGCTGTGCGGTCTGTTAAAGAAACGCTTAAC



1 (MUL1).
AGCCAGTTTGTGGAAAACTGCAAGGGGGTAATTCAGCGGCTGACACTTCAGGAGCACAAGA



NCBI
TGGTGTGGAATCGAACCACCCACCTTTGGAATGATTGCTCAAAGATCATTCATCAGAGGAC



Reference
CAACACAGTGCCCTTTGACCTGGTGCCCCACGAGGATGGCGTGGATGTGGCTGTGCGAGTG



Sequence:
CTGAAGCCCCTGGACTCAGTGGATCTGGGTCTAGAGACTGTGTATGAGAAGTTCCACCCCTC



NM_024544.3
GATTCAGTCCTTCACCGATGTCATCGGCCACTACATCAGCGGTGAGCGGCCCAAAGGCATC




CAAGAGACCGAGGAGATGCTGAAGGTGGGGGCCACCCTCACAGGGGTTGGCGAACTGGTC




CTGGACAACAACTCTGTCCGCCTGCAGCCGCCCAAACAAGGCATGCAGTACTATCTAAGCA




GCCAGGACTTCGACAGCCTGCTGCAGAGGCAGGAGTCGAGCGTCAGGCTCTGGAAGGTGCT




GGCGCTGGTTTTTGGCTTTGCCACATGTGCCACCCTCTTCTTCATTCTCCGGAAGCAGTATCT




GCAGCGGCAGGAGCGCCTGCGCCTCAAGCAGATGCAGGAGGAGTTCCAGGAGCATGAGGC




CCAGCTGCTGAGCCGAGCCAAGCCTGAGGACAGGGAGAGTCTGAAGAGCGCCTGTGTAGTG




TGTCTGAGCAGCTTCAAGTCCTGCGTCTTTCTGGAGTGTGGGCACGTTTGTTCCTGCACCGA




GTGCTACCGCGCCTTGCCAGAGCCCAAGAAGTGCCCTATCTGCAGACAGGCGATCACCCGG




GTGATACCCCTGTACAACAGCTAATAGTTTGGAAGCCGCACAGCTTGACCTGGAAGCACCC




CTGCCCCCTTTTCAGGGATTTTTATCTCGAGGCCTTTGGAGGAGCAGTGGTGGGGGTAGCTG




TCACCTCCAGGTATGATTGAGGGAGGAATTGGGTAGAAACTCTCCAGACCCATGCCTCCAA




TGGCAGGATGCTGCCTTTCCCACCTGAGAGGGGACCCTGTCCATGTGCAGCCTCATCAGAGC




CTCACCCTGGGAGGATGCCGTGGCGTCTCCTCCCAGGAGCCAGATCAGTGCGAGTGTGACT




GAAAATGCCTCATCACTTAAGCACCAAAGCCAGTGATCAGCAGCTCTTCTGTTCCTGTGTCT




TCTGTTTTTTTCTGGTGAATCGTTGCTTGCTGTGGACTTGGTGGAGGACTCAGAGGGGAGGA




AAGGCTGGGCCCCGAGTACAACGGATGCCTTGGGTGCTGCCTCCGAAGAGACTCTGCCGCA




GCTTTTCTTCTTTTTCCTCATGCCCCGGGAAACAGTCTTTCTTCAGAATTGTCAGGCTGGGCA




GGTCAACTTGTGTTCCTTTCCCCTCACCTGCTTGCCTCCTTAACGCCTGCACGTGTGTGTAGA




GGACAAAAGAAAGTGAAGTCAGCACATCCGCTTCTGCCCAGATGGTCGGGGCCCCGGGCAA




CAGATTGAAGAGAGATCATGTGAAGGGCAGTTGGTCAGGCAGGCCTCCTGGTTTCGCCACT




GGCCCTGATTTGAACTCCTGCCACTTGGGAGAGCTCGGGGTGGTCCCTGGTTTTCCCTCCTG




GAGAATGAGGCGCAGAGGCCTCGCCTCCTGAAGGACGCAGTGTGGATGCCACTGGCCTAGT




GTCCTGGCCTCACAGCTTCCTTGCAAGGCTGTCACAAGGAAAAGCAGCCGGCTGGCACCCT




GAGCATATGCCCTCTTGGGGCTCCCTCATCCAGCCCGTCGCAGCTTTGACATCTTGGTGTAC




TCATGTCGCTTCTCCTTGTGTTACCCCCTCCCAGTATTACCATTTGCCCCTCACCTGCCCTTG




GTGAGCCTTTTAGTGCAAGACAGATGGGGCTGTTTTCCCCCACCTCTGAGTAGTTGGAGGTC




ACATACACAGCTCTTTTTTTATTGCCCTTTTCTGCCTCTGAATGTTCATCTCTCGTCCTCCTTT




GTGCAGGCGAGGAAGGGGTGCCCTCAGGGGCCGACACTAGTATGATGCAGTGTCCAGTGTG




AACAGCAGAAATTAAACATGTTGCAACCAA





31

Homo

GCGCTGCCCCATACCTGAAGACCAAGTTTATCTGTGTGACACCGTAAGTGGCTTCCTTTCCC




sapiens

CGTTTTGCCTTCATTTCTAATATCCTCAGTTATCCCTGGGAATGGGACACTGGGTGAGAGTT



STAT3
AATCTGCCAAAGGTTGGAAGCCCCTGGGCTATGTTTAGTACTCAAAGTGACCTTGTGTGTTT



(STAT3)
AAAAAGCTTGAGCTTTTATTTTTCTGTTGGAGACCAGAGTTTGATGGCTTGTGTGTGTGTGTT



gene.
TTGTTCTTTTTTTTTTTTCCATTGTGTCTTGTCAACCCCCCGTTTCCCCTCCTGCTGCCCCCCA



GenBank:
TTTCCTACAGAACGACCTGCAGCAATACCATTGACCTGCCGATGTCCCCCCGCACTTTAGAT



AF332508.1
TCATTGATGCAGTTTGGAAATAAKGGTGAAGGTGCTGAACCCTCAGCAGGAGGGCAGTTTG





32

Homo

ATGCTTTTGAGCCAGAATGCCTTCATCTTCAGATCACTTAATTTGGTTCTCATGGTGTATATC




sapiens full

AGCCTCGTGTTTGGTATTTCATATGATTCGCCTGATTACACAGATGAATCTTGCACTTTCAAG



open reading
ATATCATTGCGAAATTTCCGGTCCATCTTATCATGGGAATTAAAAAACCACTCCATTGTACC



frame cDNA
AACTCACTATACATTGCTGTATACAATCATGAGTAAACCAGAAGATTTGAAGGTGGTTAAG



clone
AACTGTGCAAATACCACAAGATCATTTTGTGACCTCACAGATGAGTGGAGAAGCACACACG



RZPDo834C
AGGCCTATGTCACCGTCCTAGAAGGATTCAGCGGGAACACAACGTTGTTCAGTTGCTCACA



0132D for
CAATTTCTGGCTGGCCATAGACATGTCTTTTGAACCACCAGAGTTTGAGATTGTTGGTTTTA



gene
CCAACCACATTAATGTGATGGTGAAATTTCCATCTATTGTTGAGGAAGAATTACAGTTTGAT



IFNAR2,
TTATCTCTCGTCATTGAAGAACAGTCAGAGGGAATTGTTAAGAAGCATAAACCCGAAATAA



interferon
AAGGAAACATGAGTGGAAATTTCACCTATATCATTGACAAGTTAATTCCAAACACGAACTA



(alpha, beta
CTGTGTATCTGTTTATTTAGAGCACAGTGATGAGCAAGCAGTAATAAAGTCTCCCTTAAAAT



and omega)
GCACCCTCCTTCCACCTGGCCAGGAATCAGAATCAGCAGAATCTGCCAAAATAGGAGGAAT



receptor 2.
AATTACTGTGTTTTTGATAGCATTGGTCTTGACAAGCACCATAGTGACACTGAAATGGATTG



GenBank:
GTTATATATGCTTAAGAAATAGCCTCCCCAAAGTCTTGAGGCAAGGTCTCGCTAAGGGCTG



CR541817.1
GAATGCAGTGGCTATTCACAGGTGCAGTCATAATGCACTACAGTCTGAAACTCCTGAGCTC




AAACAGTCGTCCTGCCTAAGCTTCCCCAGTAGCTGGGATTACAAGCGTGCATCCCTGTGCCC




CAGTGATTAA





33

Homo

AGTGGGAAAGGAGAGGAGAGGGACTATACTTCCTCCTCCCTGGGGCCCCCTGCAGAGCATC




sapiens

TGGGAAGCAAGGCTTCCCTACATCCTCCATGCACCCCCTTAGAGTTTTCAATTCCTTTCCTCG



STAT5A
TGATCCTGCCAACTAAGACACTGTGACCACACAGAGAAGGTGGGGAGAACGCAGACATTTT



gene for
GGCTTCTGCAGCTTTGAAGTTCTTTTTTTTTTTTTCCTCTGAAGTTAAAAGAATGAAACTGGG



signal
AGAGGTAGTAAGGGGCAAGAAAGGAGAGTGGAAATGGAGAGAAAAGGGCAGCTCTGAGA



transducer
AGCAGCTGGGGAGGGAGGCAGATGAGAATGCACCCCCCCCAACAGAACATGCAGTCTTGG



and activator
CCCAGCTGTGCTGTGAGTGGGCAGCTGGGCTGGCCCCTCCTCTGGTGCTGCCAACCCGCTGC



of
CAGGCAGAGGGGAGGCCCAGAGGAGAGGGAAGCTGGGCAAAGGGGATGGAAGGCGTCCA



transcription
GCCCGACCTTACCAAACCCCTTGGGCCTCGTGGGAAGGGGCCTCTTGGAGAGGGGGACTGA



5A.
GGCTCTAGACAGGATATTCACTGCTGTGGCAAGGCCTGTAGAGAGTTTCGAAGTTAGGAGG



GenBank:
ACTCAAGACGGTCCCTCCCTGGACTTTTCTGAAGGTAGAACCAGCCTCATAAGTAACTAGGC



AJ412877.1
TGGGTGAACGGGGGCGCTGGCTAGTTTATGGATCACAGTCGGCTGGTGAGGCCACGTGCCT




ACTGTGTGGCCCTGGGTGGCCCCGGGCAAGCCCCTTTCCCTCTCAGGACTTCCATTTCTTAC




CTGCAAAATTGTGGAGAGGGGGAGGGCTGAAACACATGACTGCCAAGATTCTTTCCAGTTC




CTCCGTCAGGGTTGAGTTTAGATGGCCGGAGTAAAAGAAGGAGGGAGGTGCTGCGGTGGTG




GGGGTGATCTTGGCTTCACTAGAATCCCCAGTTCTTCCCCTCTCTACAGTTTTGTCTCTGAGG




TCACAAAACCTGTGGCCCCCAAGACACACATGCGCACACACGCGCGTGCACACACACACCC




CACACATTTATTTTTTAATCTAGGGGCTCAAAAGATGACACGCGCCAGAGCTGGAAGGCGT




CGCCAATTGGTCCACTTTTCCCTCCTCCCTTTTTGCGGATGAGAAAACTGAGGCCCAGGTTT




GGGATTTCCAGAGCCCGGGATTTCCCGGCAACGCCCGACAACCACATTCCCCCGGCTATTCT




GACCCGCCCCGGTTCCGGGACGCTCCCTGGGAGCCGCCGCCGAGGGCCTGCTGGGACTCCC




GGGGGACCCCGCCGTCGGGGCAGCCCCCACGCCCGGCGCCGCCCGCCGGGAACGGCCGCC




GCTGTTGCGCACTTGCAGGGGAGCCGGCGACTGAGGGCGAGGCAGGGAGGGAGCAAGCGG




GGCTGGGAGGGCTGCTGGCGCGGGCTCGCGCGCTGTGTATGGTCTATCGCAGGCAGCTGAC




CTTTGAGGAGGAAATCGCTGCTCTCCGCTCCTTCCTGTAGTAACAGCCGCCGCTGCCGCCGC




CGCCAGGAACCCCGGCCGGGAGCGAGAGCCGCGGGGCGCAGAGCCGGCCCGGCTGCCGGA




CGGTGCGGCCCCACCAGGTGGGTGACCCGGTGGCGCGTCCTCGGCGGCGCGCCGAGAGGG




GACACTCTACTGCCGCCCCGGCACCTCCGGCACCCGGAGCTCGACGGCCGGGCGCAGCGCG




GGGATCAGTCCCCGGCACTGCGAGGGAGTTGGCCCAGCGCAGACGAGGGACGGGGGGACG




TGGGGACAGGGGTCGGGGATGAAAGGCAGAGGCCAGGGAGGGCGCCGTCCTGGCACGCCT




CGGAGAGGGAGCACCTGTCGGGCTGGACCCGGGGAGGCACTAGTGCACAGATGGGGGAGC




AGCCGAAGAGGGGAGCGCCCAAGTC





34

Homo

GTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGTT




sapiens clone

GGCATGGAAGGGAGAGGACCGTACCGGATCTACGACCCTGGGGGCAGCGTGCCCTCAGGA



ccsbBroadEn_15702
GAGGCATCCGCAGCTTTTGAGCGCCTAGTGAAGGAGAATTCCCGGCTGAAGGAAAAAATGC



TNIP1 gene.
AAGGGATAAAGATGTTAGGGGAGCTTTTGGAAGAGTCCCAGATGGAAGCGACCAGGCTCC



GenBank:
GGCAGAAGGCAGAGGAGCTAGTGAAGGACAACGAGCTGCTCCCACCACCTTCTCCCTCCTT



KJ906032.1
GGGCTCCTTCGACCCCCTGGCTGAGCTCACAGGAAAGGACTCAAATGTCACAGCATCTCCC




ACAGCCCCTGCATGCCCCAGTGACAAGCCAGCACCAGTCCAGAAGCCTCCATCCAGTGGCA




CCTCCTCTGAATTTGAAGTGGTCACTCCTGAGGAGCAGAATTCACCAGAGAGCAGCAGCCA




TGCCAATGCGATGGCGCTGGACCCCCTGCCCCGTGAGGACGGCAACCTGATGCTGCACCTG




CAGCGCCTGGAGACCACGCTGAGTGTGTGTGCCGAGGAGCCGGACCACGGCCAGCTCTTCA




CCCACCTGGGCCGCATGGCCCTGGAGTTCAACCGACTGGCATCCAAGGTGCACAAGAATGA




GCAGCGCACCTCCATTCTGCAGACCCTGTGTGAGCAGCTTCGGAAGGAGAACGAGGCTCTG




AAGGCCAAGTTGGATAAGGGCCTGGAACAGCGGGATCAGGCTGCCGAGAGGCTGCGGGAG




GAAAATTTGGAGCTCAAGAAGTTGTTGATGAGCAATGGCAACAAAGAGGGTGCGTCTGGGC




GGCCAGGCTCACCGAAGATGGAAGGGACAGGCAAGAAGGCAGTGGCTGGACAGCAGCAGG




CTAGTGTGACGGCAGGTAAGGTCCCAGAGGTGGTGGCCTTGGGCGCAGCCGAGAAGAAGG




TGAAGATGCTGGAGCAGCAGCGCAGTGAGCTGCTGGAAGTGAACAAGCAGTGGGACCAGC




ATTTCCGGTCCATGAAGCAGCAGTATGAGCAGAAGATCACTGAGCTGCGTCAGAAGCTGGC




TGATTTGCAGAAGCAGGTGACTGACCTGGAGGCCGAGCGGGAGCAGAAGCAGCGTGACTTT




GACCGCAAGCTCCTCCTGGCCAAGTCCAAGATTGAAATGGAGGAGACCGACAAGGAGCAG




CTGACAGCAGAGGCCAAGGAGCTGCGCCAAAAGGTCAAGTACCTGCAGGATCAGCTGAGC




CCACTCACCCGACAGCGTGAGTACCAGGAAAAGGAGATCCAGCGGCTCAACAAGGCCCTG




GAGGAAGCACTGAGCATCCAAACCCCGCCATCATCTCCACCAACAGCATTTGGGAGCCCAG




AAGGAGCAGGGGCCCTCCTAAGGAAACAGGAGCTGGTCACGCAGAATGAGTTGCTGAAAC




AGCAGGTGAAGATCTTCGAGGAGGACTTCCAGAGGGAGCGCAGTGATCGTGAGCGCATGA




ATGAGGAGAAGGAAGAGCTGAAGAAGCAAGTGGAGAAGCTGCAGGCCCAGGTCACCCTGT




CAAATGCCCAGCTAAAAGCATTCAAAGATGAGGAGAAGGCAAGAGAAGCCCTCAGACAGC




AGAAGAGGAAAGCAAAGGCCTCAGGAGAGCGTTACCATGTGGAGCCCCACCCAGAACATC




TCTGCGGGGCCTACCCCTACGCCTACCCGCCCATGCCAGCCATGGTGCCACACCATGGCTTC




GAGGACTGGTCCCAGATCCGCTACCCCCCTCCCCCCATGGCCATGGAGCACCCGCCCCCACT




CCCCAACTCGCGCCTCTTCCATCTGCCGGAATACACCTGGCGTCTACCCTGTGGAGGGGTTC




GAAATCCAAATCAGAGCTCCCAAGTGATGGACCCTCCCACAGCCAGGCCTACAGAACCAGA




GTCTCCAAAAAATGACCGTGAGGGGCCTCAGTNNCCAACTTTCTTGTACAAAGTTGGCATTA




TAAGAAAGCATTGCTTATCAATTTGTTGCAACGAAC





35

Homo

GTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGTT




sapiens clone

GGCACCATGGCGGAGCTGCGCGTGCTCGTAGCTGTCAAGAGGGTCATCGACTACGCCGTGA



CCSBHm_00036156
AGATCCGAGTGAAGCCTGACAGGACCGGTGTGGTCACGGATGGTGTGAAGCACTCCATGAA



ETFB
CCCCTTCTGTGAGATCGCGGTGGAGGAGGCTGTGCGGCTCAAGGAGAAGAAGCTGGTGAAG



(ETFB)
GAGGTCATCGCCGTCAGCTGTGGGCCTGCACAGTGCCAGGAGACGATTCGTACCGCCCTGG



mRNA.
CCATGGGTGCAGACCGAGGTATCCACGTGGAGGTGCCCCCAGCAGAAGCAGAACGCTTGGG



GenBank:
TCCCCTGCAGGTGGCTCGGGTCCTGGCCAAGCTGGCAGAGAAGGAGAAGGTGGACCTGGTG



KR712152.1
CTGCTGGGCAAACAGGCCATCGATGATGACTGTAACCAGACAGGGCAGATGACAGCTGGAT




TTCTTGACTGGCCACAGGGCACATTCGCCTCCCAGGTGACGCTGGAGGGGGACAAGTTGAA




AGTGGAGTGGGAGATCGATGGGGGCCTGGAGACCCTGCGCCTGAAGCTGCCAGCTGTGGTG




ACAGCTGACCTGAGGCTCAACGAGCCCCGCTACGCCACGCTGCCCAACATCATGAAAGCCA




AGAAGAAGAAGATCGAGGTGATCAAGCCTGGGGACCTGGGTGTGGACCTGACCTCCAAGCT




CTCTGTGATCAGTGTGGAGGACCCGCCCCAGCGCACGGCCGGCGTCAAGGTGGAGACCACT




GAGGACCTGGTGGCCAAGCTGAAGGAGATTGGGCGGATTTTGCCAACTTTCTTGTACAAAG




TTGGCATTATAAGAAAGCATTGCTTATCAATTTGTTGCAACGAAC





36

Homo

GTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGTT




sapiens clone

GGCATGGTTGGGTTCAAGGCCACAGATGTGCCCCCTACTGCCACTGTGAAGTTTCTTGGGGC



CCSBHm_00012307
TGGCACAGCTGCCTGCATCGCAGATCTCATCACCTTTCCTCTGGATACTGCTAAAGTCCGGT



UCP2
TACAGATCCAAGGAGAAAGTCAGGGGCCAGTGCGCGCTACAGCCAGCGCCCAGTACCGCG



(UCP2)
GTGTGATGGGCACCATTCTGACCATGGTGCGTACTGAGGGCCCCCGAAGCCTCTACAATGG



mRNA.
GCTGGTTGCCGGCCTGCAGCGCCAAATGAGCTTTGCCTCTGTCCGCATCGGCCTGTATGATT



GenBank:
CTGTCAAACAGTTCTACACCAAGGGCTCTGAGCATGCCAGCATTGGGAGCCGCCTCCTAGC



KR710423.1
AGGCAGCACCACAGGTGCCCTGGCTGTGGCTGTGGCCCAGCCCACGGATGTGGTAAAGGTC




CGATTCCAAGCTCAGGCCCGGGCTGGAGGTGGTCGGAGATACCAAAGCACCGTCAATGCCT




ACAAGACCATTGCCCGAGAGGAAGGGTTCCGGGGCCTCTGGAAAGGGACCTCTCCCAATGT




TGCTCGTAATGCCATTGTCAACTGTGCTGAGCTGGTGACCTATGACCTCATCAAGGATGCCC




TCCTGAAAGCCAACCTCATGACAGATGACCTCCCTTGCCACTTCACTTCTGCCTTTGGGGCA




GGCTTCTGCACCACTGTCATCGCCTCCCCTGTAGACGTGGTCAAGACGAGATACATGAACTC




TGCCCTGGGCCAGTACAGTAGCGCTGGCCACTGTGCCCTTACCATGCTCCAGAAGGAGGGG




CCCCGAGGCTTCTACAAAGGGTTCATGCCCTCCTTTCTCCGCTTGGGTTCCTGGAACGTGGT




GATGTTCGTCACCTATGAGCAGCTGAAACGAGCCCTCATGGCTGCCTGCACTTCCCGAGAG




GCTCCCTTCTGCCCAACTTTCTTGTACAAAGTTGGCATTATAAGAAAGCATTGCTTATCAATT




TGTTGCAACGAAC









In certain embodiments, the anti-CD47 antibody or antibody fragment thereof directly causes autonomous tumor cell death.


In certain embodiments, a method of monitoring the efficacy of a therapy for cancer in a patient undergoing the therapy is disclosed comprising, administering to the patient an anti-CD47 antibody or antibody binding fragment thereof, obtaining a biological sample from the patient and quantifying the amount of at least one biomarker in the biological sample, wherein the at least one biomarker is selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2;


quantifying the amounts of at least one biomarker in a baseline standard wherein the baseline standard is obtained from the patient prior to therapy; comparing the amounts of the at least one biomarker in the biological sample with the amount of at least one biomarker in the baseline standard; and determining that therapy is effective when the amount of at least one biomarker in the biological sample obtained from the patient is greater than the amounts of at least one biomarker present in the baseline standard.


In certain embodiments, the at least one biomarker is quantified on biological samples taken on two or more occasions from the patient.


In certain embodiments, the one of the two or more occasions is prior to commencement of therapy and one of the two or more occasions is after commencement of therapy.


In certain embodiments, the effect the therapy has on an individual is determined based a change in the amount of the biomarkers in biological samples taken on two or more occasions.


In certain embodiments, the biological samples are taken at intervals over the course of therapy with an anti-CD47 antibody.


In certain embodiments, a method is disclosed to determine increased tumor cell death or resistance in the presence of an anti-CD47 antibody, comprising: transfecting mRNA encoding an RNA-guided endonuclease into a tumor cell line, wherein the RNA-guided endonuclease is expressed from the transfected mRNA; introducing a DNA vector that encodes a specific guide RNA, wherein the specific guide RNA directs the RNA-guided endonuclease to at least one targeted locus in the tumor cell genome; cleaving the at least one targeted locus in the tumor cell genome with the RNA-guided endonuclease; generating a genetic modification at the site of the cleavage; expanding the resulting genetically modified tumor cells; treating genetically modified tumor cells with an anti-CD47 antibody; and assaying genetically modified tumor cells to determine if targeted gene locus is responsible for cell death or gene-mediated resistance.


In some embodiments, the tumor cell is a solid tumor or a hematological tumor. In some embodiments, the targeted locus is selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2.


Checkpoints and Checkpoint Inhibition

Therapeutic antibodies targeting the T cell checkpoints, PD-1, PD-L1 and CTLA-4 to enhance the cytotoxic activity of the adaptive T cell immune response have raised the prospect of long-term remission or even cure for patients with metastatic diseases (Hodi et al., 2010; McDermott et al., 2015). Despite positive results, there remains a significant patient population that either fails to respond to these checkpoint inhibitors (primary resistance) or those that respond, but eventually develop disease progression (acquired resistance) (Pitt et al., 2016; Restifo et al., 2016; Sharma et al., 2017). Recent studies suggest that resistance mechanisms can be both tumor cell intrinsic, including a lack of unique tumor antigen proteins or inhibition of tumor antigen presentation, and tumor cell extrinsic, involving the absence of infiltrating T cells, redundant inhibitory checkpoints and/or the presence of immunosuppressive cells in the tumor microenvironment (Sharma et al., 2017). Even in tumors considered sensitive to checkpoint inhibitors, or when combining anti-CTLA-4 and anti-PD-1/PDL-1 agents, approximately 50% of patients do not experience tumor shrinkage and the median treatment duration or progression-free survival for all treated patients remains relatively short around 2-5 months (Kazandjian et al., 2016). In addition, several of the most prevalent solid tumors and the majority of hematological malignancies have shown disappointing results with these checkpoint inhibitors. In particular, hormone receptor-positive breast cancer, colorectal cancer (non-microsatellite instability) and prostate cancer do not appear to be sensitive to this type of immune manipulation and could benefit from a different immunotherapy approach (Le et al., 2015; Dirix et al., 2015; Topalian et al., 2012; Graff et al., 2016). These findings highlight the need for alternative or synergistic approaches that target additional checkpoints to activate the innate immune response in addition to the adaptive immune response to further improve clinical outcomes.


CD47 Biology and Role as Innate Immune Checkpoint

CD47, also known as integrin associated protein (IAP), is a 50 kDa cell surface Ig superfamily member containing an extracellular IgV domain, 5 transmembrane domains, and a short C-terminal cytoplasmic tail, that is expressed on most cells and overexpressed on many cancer subtypes (Lindberg et al., 1993; Reinhold et al., 1995; Majeti et al., 2009; Willingham, 2012). The functional activities of CD47 are defined by its two distinct ligands, signal regulatory protein alpha (SIRPα) and thrombospondin 1 (TSP1) (Gao et al., 1994; Barclay et al., 2006). TSP is present on plasma and is synthesized by many cells, including platelets. SIRPα is expressed on many hematopoietic cells, including macrophages, dendritic cells, granulocytes and on a number of other cell types including neurons and glia. The CD47/SIRPα interaction functions as a marker of self, regulating macrophage and dendritic cell phagocytosis of target cells sending a “don't eat me signal” to the phagocyte. The binding of CD47 to SIRPα initiates an inhibitory signaling cascade resulting in inhibition of phagocytosis following phosphorylation of its cytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs) (Oldenborg et al., 2000; Oldenborg et al., 2001; Okazawa et al., 2005), recruitment and binding of SHP1 and SHP2, Src homology domain-containing protein tyrosine phosphatases (Veillette et al., 1998; Oldenborg et al., 2001), inhibition of non-muscle myosin IIA and ultimately phagocytic function (Tsai and Discher et al., 2008; Barclay and van den Berg, 2014; Murata et al., 2014; Veillette and Chen, 2018; Matazaki et al., 2009). Several anti-CD47 mouse antibodies have been described that block the interaction of CD47 and SIRPα, including B6H12 (Seiffert et al., 1999; Latour et al., 2001; Subramanian et al., 2006, Liu et al., 2002; Rebres et al., 2005), BRIC126 (Vernon-Wilson et al., 2000; Subramanian et al., 2006), CC2C6 [Seiffert et al., 1999) and 1F7 (Rebres et al., 2005). B6H12 and BRIC126 have also been shown to cause phagocytosis of human tumor cells by human and mouse macrophages (Willingham et al., 2012; Chao et al., 2012; EP 2242512 B1]. This increase in phagocytic activity resulting from blocking the CD47/SIRPα is the primary mechanism of action for the CD47 antibodies currently in early clinical studies (Barclay et al., 2014; Weiskopf et al., 2017). This mechanism serves as one of the most important checkpoints regulating innate immune activation. Anti-CD47 mAbs have also been shown to promote an adaptive immune response to tumors in vivo Tseng et al., 2013; Soto-Pantoja et al., 2014; Liu et al., 2015). Cancer cells thus use CD47 to mask themselves in “selfness” to evade both the innate and adaptive immune systems.


Inducing Death of Tumor Cells

Some soluble anti-CD47 mAbs initiate a cell death program on binding to CD47 on tumor cells, resulting in collapse of mitochrondrial membrane potential, loss of ATP generating capacity, increased cell surface expression of phosphatidylserine (detected by increased staining for annexin V) and cell death without the participation of caspases or fragmentation of DNA. Such soluble anti-CD47 mAbs have the potential to treat a variety of solid and hematological cancers. Several soluble anti-CD47 mAbs which have been shown to induce tumor cell death, including MABL-1, MABL-2 and fragments thereof (U.S. Pat. No. 8,101,719; Uno et al. Oncol Rep. 17: 1189-94, 2007; Kikuchi et al. Biochem Biophys Res. Commun. 315: 912-8, 2004), Ad22 (Pettersen et al. J. Immuno. 166: 4931-4942, 2001; Lamy et al. J. Biol. Chem. 278: 23915-23921, 2003), and 1F7 (Manna et al. J. Immunol. 170: 3544-3553, 2003; Manna et al. Cancer Research, 64: 1026-1036, 2004). Some of the anti-CD47 mAbs of the disclosure described herein induce cell death of human tumor cells.


Induction of cell death refers to the ability of certain of the soluble anti-CD47 antibodies, murine antibodies, chimeric antibodies, humanized antibodies, or antigen-binding fragments thereof (and competing antibodies and antigen-binding fragments thereof) disclosed herein to kill cancer cells via a cell autonomous mechanism without participation of complement or other cells including, but not limited to, T cells, neutrophils, natural killer cells, macrophages, or dendritic cells.


The terms “inducing cell death” or “kills” or “killing” and the like, are used interchangeably herein and refers to the functional characteristics of the anti-CD47 Abs as described herein.


As used herein, the term “induces death of human tumor cells” refers to increased binding of annexin V (in the presence of calcium) and increased 7-aminoactinomycin D (7-AAD) or propidium iodide uptake in response to treatment with an anti-CD47 mAb. These features may be quantitated in three cell populations: annexin V positive (annexin V+), annexin V positive/7-AAD negative (annexin V+/7-AAD) and annexin V positive/7-AAD positive (annexin V+/7-AAD) by flow cytometry. Induction of cell death may be defined by a greater than 2-fold increase in each of the above cell populations in human tumor cells caused by soluble anti-CD47 mAb compared to the background obtained with the negative control antibody, (humanized, isotype-matched antibody) or untreated cells.


Another indicator of cell death is loss of mitochondrial function and membrane potential by the tumor cells as assayed by one of several available measures (potentiometric fluorescent dyes such as DiO-C6 or JC1 or formazan-based assays such as MTT or WST-1).


As used herein, the term “causes loss of mitochondrial membrane potential” refers to a statistically significant (p<0.05) decrease in mitochondrial membrane potential by a soluble anti-CD47 mAb compared to the background obtained with a negative control, humanized isotype-matched antibody or no treatment.


Among the present humanized or chimeric mAbs, those that induce cell death of human tumor cells cause increased annexin V binding similar to the findings reported for anti-CD47 mAbs Ad22 (Pettersen et al. J. Immunol. 166: 4931-4942, 2001; Lamy et al. J. Biol. Chem. 278: 23915-23921, 2003); 1F7 (Manna and Frazier J. Immunol. 170:3544-3553, 2003; Manna and Frazier Cancer Res. 64:1026-1036, 2004); and MABL-1 and 2 (U.S. Pat. No. 7,531,643 B2; U.S. Pat. No. 7,696,325 B2; U.S. Pat. No. 8,101,719 B2).


Cell viability assays are described in NCI/NIH guidance manual that describes numerous types of cell-based assays that can be used to assess induction of cell death caused by CD47 antibodies: “Cell Viability Assays”, Terry L Riss, PhD, Richard A Moravec, B S, Andrew L Niles, M S, Helene A Benink, PhD, Tracy J Worzella, M S, and Lisa Minor, PhD. Contributor Information, published May 1, 2013.


Induction of Programmed Cell Death III (PCDIII)

A number of anti-CD47 antibodies (CD47 mAbs), including Ad22, 1F7, MABL-1, MABL-2, and CC2C6, indicated that some, but not all, soluble CD47 mAbs, as well as some additional immobilized CD47 mAbs, can directly elicit a type of cell death of multiple types of tumor cells that is characteristic programmed cell death III (PCDIII) (Lie, 1999; Manna, 2003: Manna et al., 2004; Mateo et al., 1999; Mateo et al., 2002; Uno et al., 2005; Bras et al., 2007; Martinez-Torres et al., 2015; Leclair et al., 2018). PCDIII is caspase-independent and includes cellular features such as production of reactive oxygen species (ROS), loss of mitochondrial membrane potential (ΔΨm) and exposure of phosphatidylserine (PS) on the plasma membrane without the interaction with any immune effector cell (cell autonomous) and without nuclear features including chromatin condensation, DNA fragmentation and degradation (Kikuchi et al., 2005; Pettersen et al., 1999; Manna et al., 2003; Manna et al., 2004; Sagawa et al., 2011; Uno et al., 2007; Mateo et al., 1999; Mateo et al., 2002; Roue et al., 2003]. It is noteworthy that the anti-CD47 antibodies which induce cell death do not kill resting leukocytes, which also express CD47, but only those cells that are “activated” by transformation. Thus, normal circulating cells, many of which express CD47, are spared while cancer cells are selectively killed by the CD47 antibodies that possess this direct killing activity (Manna and Frazier, 2003).


Induction of Immunogenic Cell Death (ICD)

The concept of immunogenic cell death (ICD) has emerged in recent years. This form of cell death, unlike non-immunogenic cell death, stimulates an adaptive immune response against tumor antigens presented to T cells (Casares, 2005; Krysko, 2012; Kroemer, 2012). ICD is induced by specific chemotherapy drugs, including anthracyclines (doxorubicin, daurorubicin and mitoxantrone) and oxaliplatin, but not by cisplatin and other chemotherapy drugs. ICD is also induced by bortezomib, cardiac glycosides, photodynamic therapy and radiation (Galluzi, 2016). ICD is characterized by the release or surface exposure of damage-associated molecular patterns (DAMPs) from dying cells that function as adjuvants for the immune system (Kroemer 2013). The distinctive characteristics of ICD of tumor cells are the release from or exposure on tumor cell surfaces these DAMPs including: 1) the pre-apoptotic cell surface exposure of calreticulin, 2) the secretion of adenosine triphosphate (ATP), 3) release of high mobility group box 1 (HMGB1), 4) annexin A1 release, 5) type I interferon release and 6) C-X-C motif chemokine ligand 10 (CXCL10) release. These ligands are endogenous damage-associated molecular patterns (DAMPs), which include the cell death-associated molecules (CDAMs). Importantly, each of these ligands induced during ICD binds to specific receptors, referred to as pattern recognition receptors (PRRs), that contribute to an anti-tumor immune response. ATP binds the purinergic receptors PY2, G-protein coupled, 2 (P2RY2) and PX2, ligand-gated ion channel, 7 (P2RX7) on dendritic cells causing dendritic cell recruitment and activation, respectively. Annexin A1 binds to formyl peptide receptor 1 (FPR1) on dendritic cells causing dendritic cell homing. Calreticulin expressed on the surface of tumor cells binds to LRP1 (CD91) on dendritic cells promoting antigen uptake by dendritic cells. HMGB1 binds to toll-like receptor 4 (TLR4) on dendritic cells to cause dendritic cell maturation. As a component of ICD, tumor cells release type I interferon leading to signaling via the type I interferon receptor and the release of the CXCL10 which favors the recruitment of effector CXCR3+ T cells Together, the actions of these ligands on their receptors facilitate recruitment of DCs into the tumor, the engulfment of tumor antigens by DCs and optimal antigen presentation to T cells. Kroemer et al. have proposed that a precise combination of the CDAMs mentioned above elicited by ICD can overcome the mechanisms that normally prevent the activation of anti-tumor immune responses (Kroemer et al., 2016). When mouse tumor cells treated in vitro with ICD-inducing modalities are administered in vivo to syngeneic mice, they provide effective vaccination that leads to an anti-tumor adaptive immune response, including memory. This vaccination effect cannot be tested in xenograft tumor models because the mice used in these studies lack a complete immune system. The available data indicate that ICD effects induced by chemotherapy or radiation will promote an adaptive anti-tumor immune response in cancer patients. The components of ICD are described in more detail below.


In 2005, it was reported that tumor cells which were dying in response to anthracycline chemotherapy in vitro caused an effective anti-tumor immune response when administered in vivo in the absence of adjuvant (Casares, et al. 2005). This immune response protected mice from subsequent re-challenge with viable cells of the same tumor and caused regression of established tumors. Anthracyclines (doxorubicin, daunorubicin and idarubicin) and mitomycin C induced tumor cell apoptosis with caspase activation, but only apoptosis induced by anthracyclines resulted in immunogenic cell death. Caspase inhibition did not inhibit cell death induced by doxorubicin but did suppress the immunogenicity of tumor cells dying in response to doxorubicin. The central roles of dendritic cells and CD8+ T cells in the immune response elicited by doxorubicin-treated apoptotic tumor cells was established by the demonstration that depletion of these cells abolished the immune response in vivo. Calreticulin is one of the most abundant proteins in the endoplasmic reticulum (ER). Calreticulin was shown to rapidly translocate pre-apoptotically from the ER lumen to the surface of cancer cells in response to multiple ICD inducers, including anthracyclines (Obeid et al., 2007, Kroemer et al., 2013). Blockade or knockdown of calreticulin suppressed the phagocytosis of anthracycline-treated tumor cells by dendritic cells and abolished their immunogenicity in mice. The exposure of calreticulin caused by anthracyclines or oxaliplatin is activated by an ER stress response that involves the phosphorylation of the eukaryotic translation initiation factor eIF2a by the PKR-like ER kinase. Calreticulin, which has a prominent function as an “eat-me” signal (Gardai, et al. 2005) binds to LRP1 (CD91) on dendritic cells and macrophages resulting in phagocytosis of the calreticulin expressing cell, unless the calreticulin-expressing cell expresses a don't eat me signal, such as CD47. Calreticulin also signals through CD91 on antigen presenting cells to cause the release of proinflammatory cytokines and to program Th17 cell responses. In summary, calreticulin expressed as part of ICD stimulates antigen presenting cells to engulf dying cells, process their antigens and prime an immune response.


In addition to calreticulin, protein disulfide-isomerase A3 (PDIA3), also called Erp57, was shown to translocate from the ER to the surface of tumor cells following treatment with mitoxantrone, oxaliplatin and irradiation with UVC light (Panaretakis et al., 2008; Panaretakis et al., 2009). A human ovarian cancer cell line, primary ovarian cancer cells and a human prostate cancer cell line expressed cell-surface calreticulin, HSP70 and HSP90 following treatment with the anthracyclines doxorubicin and idarrubicin (Fucikova et al., 2011). HSP70 and HSP90 bind to the PRR LRP1 on antigen presenting cells; the PRR to which PDIA3 binds has not been identified (Galluzi et al., 2016). TLR4 was shown to be required for cross-presentation of dying tumor cells and to control tumor antigen processing and presentation. Among proteins that were known to bind to and stimulate TLR4, HMGB1 was uniquely released by mouse tumor cells in which ICD was induced by irradiation or doxorubicin (Apetoh et al., 2007). The highly efficient induction of an in vivo anti-tumor immune by doxorubicin treatment of mouse tumor cells required the presence of HMGB1 and TLR4, as demonstrated by abrogation of the immune response by inhibition of HMGB1 and knock-out TLR4. These preclinical findings are clinically relevant. Patients with breast cancer who carry a TLR4 loss-of-function allele relapse more quickly after radiotherapy and chemotherapy than those carrying the normal TLR4 allele.


Ghiringhelli et al. showed that mouse tumor cells treated with oxaliplatin, doxorubicin and mitoxantrone in vitro released ATP and that the ATP binds to the purinergic receptors PY2, G-protein coupled, 2 (P2RY2) and PX2, ligand-gated ion channel, 7 (P2RX7) on dendritic cells (Ghiringhelli, et al., 2009). Binding of ATP to P2RX7 on DCs triggers the NOD-like receptor family, pyrin domain containing—3 protein (NLRP3)-dependent caspase-1 activation complex (inflammasome), allowing for the secretion of interleukin-β (IL-1β), which is essential for the priming of interferon-gamma-producing CD8+ T cells by dying tumor cells. Therefore, the ATP-elicited production of IL-1β by DCs appears to be one of the critical factors for the immune system to perceive cell death induced by certain chemotherapy drugs as immunogenic. This paper also reports that HMGB1, at TLR4 agonist, also contributes to the stimulation of the NLRP3 inflammasome in DCs and the secretion of IL-1β. These preclinical results have been shown to have clinical relevance; in a breast cancer cohort, the presence of the P2RX7 loss-of-function allele had a significant negative prognostic impact of metastatic disease-free survival. ATP binding to P2RY2 causes the recruitment of myeloid cells into the tumor microenvironment (Vacchelli et al., 2016).Michaud et al. demonstrated that autophagy is required for the immunogenicity of chemotherapy-induced cell death (Michaud, et al. 2011). Release of ATP from dying tumor cells required autophagy and autophagy-competent, but not autophagy-deficient, mouse tumors attracted dendritic cells and T lymphocytes into the tumor microenvironment in response to chemotherapy that induces ICD.


Ma et al. addressed the question of how chemotherapy-induced cell death leads to efficient antigen presentation to T cells (Ma et al., 2013). They found that at specific kind of tumor infiltrating lymphocyte, CD11c+CD11b+Ly6Chi cells, are particularly important for the induction of anticancer immune responses by anthracyclines. ATP released by dying cancer cells recruited myeloid cells into tumors and stimulated the local differentiation of CD11c+CD11b+Ly6Chi cells. These cells were shown to be particularly efficient in capturing and presenting tumor cell antigens and, after adoptive transfer into naïve mice, conferring protection to challenge with living tumor cells of the same cell line. It has been shown that anthracyclines stimulate the rapid production of type I interferons by tumor cells after activation of TLR3 (Sistugu et al., 2014). Type I interferons bind to IFNγ and IFNγ receptors on cancer cells and trigger autocrine and paracrine signaling pathways that result in release of CXCL10. Tumors lacking TLR3 or Ifnar failed to respond to chemotherapy unless type I IFN or CXCL10, respectively, was supplied. These preclinical findings have clinical relevance. A type I IFN-related gene expression signature predicted clinical responses to anthracycline-based chemotherapy in independent cohorts of breast cancer patients.


Another receptor on dendritic cells that is involved in chemotherapy-induced anticancer immune response was recently identified: formyl peptide receptor-1, which binds annexin A1 (Vacchelli et al., 2015). Vacchelli et al designed a screen to identify candidate genetic defects that negatively affect responses to chemotherapy. They identified a loss-of-function allele of the gene encoding formyl peptide receptor 1 (FPR1) that was associated with poor metastatis-free survival and overall survival in breast and colorectal cancer patients receiving adjuvant chemotherapy. The therapeutic effects of anthracyclines were abrogated in tumor-bearing Fpr1−/− mice due to impaired antitumor immunity. FPR1-deficient DCs did not approach dying tumor cells and, therefore, could not elicit antitumor T cell immunity. Two anthracyclines, doxorubicin and mitoxantrone, stimulated the secretion of annexin A1, one of four known ligands of FPR1. FPR1 and annexin A1 promoted stable interactions between dying cancer cells and human or mouse leukocytes.


In addition to anthracyclines and oxaliplatin, other drugs have been shown to induce immunogenic cell death. Cardiac glycosides, including clinically used digoxin and digitoxin, were also shown to be efficient inducers of immunogenic cell death of tumor cells (Menger et al., 2012). Other chemotherapy agents and cancer drugs that have been reported to induce DAMP expression or release are bleomycin, bortezomib, cyclophosphamide, paclitaxel, vorinistat and cisplatin (Garg et al., 2015, Menger et al., 2012, Martins et al., 2011). Importantly, these results have clinical relevance. Administration of digoxin during chemotherapy had a significant positive impact on the overall survival of patients with breast, colorectal, head and neck, and hepatocellular cancers, but failed to improve overall survival of lung and prostate cancer patients.


The anti-CD20 monoclonal antibody rituximab has improved outcomes in multiple B-cell malignancies. The success of rituximab, referred to as a type I anti-CD20 mAb, led to the development of type II anti-CD20 mAbs, including obinutuzumab and tositumomab. Cheadle et al investigated the induction of immunogenic cell death by anti-CD20 mAbs (Cheadle et al., 2013). They found that the cell death induced by obinutuzumab and tositumomab is a form of immunogenic cell death characterized by the release of HMGB1, HSP90 and ATP. A type I anti-CD20 mAb did not cause release of HMGB1, HSP90 and ATP. Incubation of supernatants from a human tumor cell line treated with obinutuzumab caused maturation of human dendritic cells, consistent with the previously described effects of HMGB1 and ATP on dendritic cells. In contrast to the results reported by Cheadle et al, Zhao et al reported that both type I and II anti-CD20 mAbs increased HMGB1 release from human diffuse large B cell lymphoma cell lines, but did not cause ATP release or cell surface expression of calreticulin [Zhao 2015]. A number of anti-CD47 mAbs have been shown to cause release from or exposure on tumor cell surfaces of the DAMPs listed above, characteristics of ICD alone and in combination with certain chemotherapeutic agents (WO Publications 2018/175790 and 2017/049251; and US Patent Publication 2018/0142019). These same antibodies also cause cell death characteristic of PCDIII.


Gene Expression Associated with PCDIII and ICD


The anti-CD47 antibodies which induce cell death characteristic of both PCDIII and ICD/DAMP induction whereby tumor cells undergo mitochondrial depolarization, increased production of ROS and phosphatidylserine exposure while at the same time exhibiting the surface exposure and release of DAMPs, results in significant and unique changes in gene expression. The tumor cells undergoing CD47 antibody induced PCDIII/ICD display significant changes in expression of genes that involved pathways related to ER stress, autophagy and JAK/STAT signaling, indicative of a cell experiencing critical organelle stress. These changes can be used as biomarkers to determine either responsiveness to treatment with these antibodies ex vivo prior to treatment of the patient or to determine responsiveness to treatment.


Synthetic Lethality

As described herein, synthetic lethality is defined as the simultaneous disruption of two or more genes (Gene 1 and Gene 2, and Gene 3, Gene 4 . . . , etc.) which can cause cell death, whereas the disruption of either gene (Gene 1 or Gene 2) in isolation does not result in cell death. This concept has been leveraged in gene knockout screens to uncover novel genes whose inactivation causes a lethal phenotype which is dependent on the mutations already present in a tumor cell (Wang et al. 2014, Zhou et al 2014). Current gene loss-of-function screens are commonly carried out by utilizing the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system. CRISPR/Cas9 is a two-component technology, consisting of single guide RNAs (sgRNA) and the Cas9 DNA nuclease. The sgRNA acts as a targeting agent, directing cleavage of genomic DNA by Cas9. These DNA cleavage events trigger mistake-prone DNA repair pathways, which frequently produce insertions or deletions into the DNA sequence. This causes frameshifting in the gene protein-coding regions, which often results in complete loss-of-function of the gene. CRISPR/Cas9 technology can be applied in high-throughput screening formats in which thousands of sgRNAs (the “library”) are combined into a cell population all at once (‘pooled format”). Pooled screening quantitatively compares the relative abundance of individual sgRNAs in the population before and after prolonged culture, either in the absence or presence of (drug) selection. Those sgRNAs targeting genes that upon inactivation cause a lethal phenotype will be reduced in the population over time. The sgRNAs targeting genes that upon inactivation increase tumor cell survival in the presence of drug selection will increase in the population over time. In this latter case, mediators of resistance to therapy can be identified. The abundance of each individual gRNA can be determined by using high-throughput sequencing of genomic DNA, and the fold change or depletion can be determined among the different populations.


Definitions

As used herein, the term “patient” as used herein refers to a human, for whom a classification as a responder to a next generation immune checkpoint inhibitor is desired, and for whom further treatment can be provided.


As used herein, the term “the baseline standard” is a unit of measurement which allows for calibration of the biological effects which may occur after the administration of a therapy; i.e. an anti-CD47 antibody or antigen binding fragment thereof which induces tumor cell death.


As used herein, the term “biomarker” is a biological molecule found in blood, other body fluids, or tissues that is a sign of a normal or abnormal process, a condition, or disease. A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes or pharmacologic responses to a therapeutic intervention, e.g., the administration of an anti-CD47 antibody or antigen binding fragment thereof. The term “biomarker” can be used interchangeably with molecular marker and/or signature molecule and may be categorized as DNA biomarkers, DNA tumor biomarkers, protein biomarkers, and other general biomarkers.


As used herein, the terms “tumor” or “tumor tissue” refer to an abnormal mass of tissue that results from excessive cell division. A tumor or tumor tissue comprises “tumor cells” which are neoplastic cells with abnormal growth properties and no useful bodily function. Tumors, tumor tissue and tumor cells may be benign or malignant. A tumor or tumor tissue may also comprise “tumor-associated non-tumor cells”, e.g., vascular cells which form blood vessels to supply the tumor or tumor tissue. Non-tumor cells may be induced to replicate and develop by tumor cells, for example, the induction of angiogenesis in a tumor or tumor tissue.


As used herein, the term “malignancy” refers to a non-benign tumor or a cancer. As used herein, the term “cancer” connotes a type of hyperproliferative disease which includes a malignancy characterized by deregulated or uncontrolled cell growth.


The following examples are included to demonstrate preferred embodiments of the disclosure. The following examples are presented only by way of illustration and to assist one of ordinary skill in using the disclosure. The examples are not intended in any way to otherwise limit the scope of the disclosure. Those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the disclosure.


EXAMPLES
Example 1
NanoString Gene Expression Profiling of Human Leukemia Cells Undergoing Anti-CD47 Induced Cell Death (PCDIII/ICD)

NanoString gene expression profiling was performed on a purified population of cells that were actively undergoing anti-CD47-mediated cell death as determined by PS exposure. Jurkat human leukemia cells were treated with 10 μg/ml of an anti-CD47 antibody which induces tumor cell death as disclosed herein, an anti-CD47 antibody that does not induce tumor cell death, Hu-5F9, and an IgG2 antibody (control). Cells treated with an anti-CD47 antibody that induce tumor cell death were sorted with Annexin V conjugated beads to enrich for cells undergoing cell death. Cells treated with IgG2 Ab or Hu-5F9 or an anti-CD47 Ab that does not induce tumor cell death were not sorted. RNA was harvested from Annexin V+ enriched cells, which were treated with an anti-CD47 Ab that does induce tumor cell death and from control cells treated with IgG2 Ab and Hu-5F9 at selected timepoints between 2 hours and 48 hours. The RNA was submitted for NanoString gene expression profiling. A custom NanoString gene expression profiling panel was designed based on a previously obtained RNAseq dataset from an anti-CD47 Ab which induces cell death.


As shown in FIG. 1A, the gene set enrichment analysis data demonstrated that a treatment with an anti-CD47 tumor cell death inducing antibody upregulated genes that were distinct from control cells or cells treated with an anti-CD47 antibody that does not induce tumor cell death (Hu5F9). The genes that were upregulated with an anti-CD47 Ab that induces tumor cell death antibody were analyzed by NanoString gene expression profiling and were grouped into functional pathways as shown in FIG. 1B. Pathways know to be involved in CD47-mediated cell death which are represented include ER stress/Unfolded Protein Response, phosphatidylserine exposure/apoptosis, cAMP/PKA, and mitochondrial stress, all of which are consistent with PCDIII. Pathways identified which are consistent with ICD include ATP and HMGB1 secretion and autophagy and JAK/STAT signaling.


Example 2
Synthetic Lethal Targeting of CD47 Signaling Pathways

As described herein, a CRISPR/Cas9-based gene knockout screen will be used to identify genes by which inactivation will lead to either increased tumor cell death (synthetic lethality) or will lead to increased resistance to cell death (mediators of resistance) in the presence of anti-CD47 antibody therapy. To carry out a whole genome CRISPR/Cas9 gene knockout screen in the presence of anti-CD47 therapy, human tumor cell lines will be generated to express Cas9 nuclease using a lentiviral based expression system. Next, a library of sgRNAs in recombinant lentiviral vectors will be used to infect the Cas9-expressing tumor cells. Successfully transduced cells will be selected either by monitoring co-expression of fluorescent proteins, or antibiotic resistance. Once sgRNA-bearing cells are selected, they will be split into two treatment groups, either control IgG antibody in solution or anti-CD47 antibody in soluble form. The sgRNA-library harboring cells will be cultured in the presence of antibody for at least 14 days and genomic DNA isolated and analyzed by next generation sequencing to determine sgRNA abundance before and after antibody treatment. Validation of single gene synthetic lethality or resistance when in combination with CD47 antibody treatment will be determined by generation of individual sgRNA lentiviral vectors and transduction into Cas9-expressing tumor cells followed by treatment with control or anti-CD47 antibody. If cell death increases above baseline in the anti-CD47 group, but not in the IgG control antibody group, this would be evidence of a synthetic lethal interaction. If cell death decreases below baseline levels in the anti-CD47 group, but not in the IgG control antibody group, this would be evidence of a gene mediating resistance to anti-CD47 therapy.


OTHER EMBODIMENTS

The detailed description set-forth above is provided to aid those skilled in the art in practicing the present disclosure. However, the disclosure described and claimed herein is not to be limited in scope by the specific embodiments herein disclosed because these embodiments are intended as illustration of several aspects of the disclosure. Any equivalent embodiments are intended to be within the scope of this disclosure. Indeed, various modifications of the disclosure in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description, which do not depart from the spirit or scope of the present inventive discovery. Such modifications are also intended to fall within the scope of the appended claims.


Also provided are embodiments wherein any embodiment above can be combined with any one or more of these embodiments, provided the combination is not mutually exclusive. Also provided herein are uses in the treatment of indications or one or more symptoms thereof as disclosed herein and uses in the manufacture of medicaments for the treatment of indications or one or more symptoms thereof as disclosed herein, equivalent in scope to any embodiment disclosed above, or any combination thereof that is not mutually exclusive.

Claims
  • 1. A method of treating of cancer in a patient with at least one biomarker having an amount greater than the amount of a baseline standard comprising: administering an effective amount of an anti-CD47 antibody to the patient, wherein at least one biomarker is selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2.
  • 2. A method of diagnosing and treating a cancer in a patient who has not received therapy, comprising: a. obtaining a biological sample from a patient and administering an anti-CD47 antibody to the biological sample in vitro;b. quantifying the amount of at least one biomarker: i. in said biological sample treated with an anti-CD47 antibody, andii. in an untreated biological sample,
  • 3. The method of claim 2, wherein the quantifying is performed by measuring the amount of the biomarker in each sample by one or more methods selected from NanoString gene expression profiling, RNAseq, qPCR, and microarray.
  • 4. The method of claim 1 or 2, wherein the cancer is a solid tumor, leukemia, a lymphoma, sarcoma, or multiple myeloma.
  • 5. The method of claim 4, wherein the solid tumor is selected from ovarian cancer, breast cancer, endometrial cancer, colon cancer (colorectal cancer), rectal cancer, bladder cancer, urothelial cancer, lung cancer (non-small cell lung cancer, adenocarcinoma of the lung, squamous cell carcinoma of the lung), bronchial cancer, bone cancer, prostate cancer, pancreatic cancer, gastric cancer, adrenocortical carcinoma, hepatocellular carcinoma, adult (primary) liver cancer, gall bladder cancer, bile duct cancer, esophageal cancer, renal cell carcinoma, thyroid cancer, squamous cell carcinoma of the head and neck (head and neck cancer), testicular cancer, cancer of the endocrine gland, cancer of the adrenal gland, cancer of the pituitary gland, cancer of the skin, cancer of soft tissues, cancer of blood vessels, cancer of brain, cancer of nerves, cancer of eyes, cancer of meninges, cancer of oropharynx, cancer of hypopharynx, cancer of cervix, and cancer of uterus, glioblastoma, meduloblastoma, astrocytoma, glioma, meningioma, gastrinoma, neuroblastoma, melanoma, and myelodysplastic syndrome.
  • 6. The method of claim 4 wherein the leukemia is selected from systemic mastocytosis, acute lymphocytic (lymphoblastic) leukemia (ALL), T-cell—ALL, acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), myeloproliferative disorder/neoplasm, myelodysplastic syndrome, monocytic cell leukemia, and plasma cell leukemia.
  • 7. The method of claim 4 wherein the lymphoma is selected from histiocytic lymphoma and T-cell lymphoma, B cell lymphomas, including Hodgkin's lymphoma and non-Hodgkin's lymphoma, such as low grade/follicular non-Hodgkin's lymphoma (NHL), cell lymphoma (FCC), mantle cell lymphoma (MCL), diffuse large cell lymphoma (DLCL), small lymphocytic (SL) NHL, intermediate grade/follicular NHL, intermediate grade diffuse NHL, high grade immunoblastic NHL, high grade lymphoblastic NHL, high grade small non-cleaved cell NHL, bulky disease NHL, and Waldenstrom's Macroglobulinemia.
  • 8. The method of claim 4, wherein the sarcoma is selected from osteosarcoma, Ewing's sarcoma, leiomyosarcoma, synovial sarcoma, alveolar soft part sarcoma, angiosarcoma, liposarcoma, fibrosarcoma, rhabdomyosarcoma, and chrondrosarcoma
  • 9. The method of claim 1 or 2, wherein the biological sample is a core biopsy, free needle aspirate, pleural effusion, resection, ascites, whole blood, blood serum, plasma, bone marrow, or other bodily fluid, or dilution thereof.
  • 10. The method of claim 1 or 2 wherein at least two biomarkers are selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2 or variants thereof.
  • 11. The method of claim 1 or 2 wherein at least three biomarkers are selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2 or variants thereof.
  • 12. The method of claim 1 or 2 wherein at least four biomarkers are selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2 or variants thereof.
  • 13. The method of claim 1 or 2 wherein at least five biomarkers are selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2 or variants thereof.
  • 14. The method of claim 1 or 2 wherein at greater that five biomarkers are selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2 or variants thereof.
  • 15. The method of claim 1 or 2, wherein the anti-CD47 antibody directly causes autonomous tumor cell death.
  • 16. The method of claim 1 or 2, wherein the anti-CD47 antibody is selected from combination of a heavy chain (HC) and a light chain (LC), wherein the combination is selected from: a heavy chain comprising the amino acid sequence of SEQ ID NO:1 and a light chain comprising the amino acid sequence SEQ ID NO:2;a heavy chain comprising the amino acid sequence of SEQ ID NO:3 and a light chain comprising the amino acid sequence SEQ ID NO:4;a heavy chain comprising the amino acid sequence of SEQ ID NO:5 and a light chain comprising the amino acid sequence SEQ ID NO:6;a heavy chain comprising the amino acid sequence of SEQ ID NO:7 and a light chain comprising the amino acid sequence SEQ ID NO:6;a heavy chain comprising the amino acid sequence of SEQ ID NO:8 and a light chain comprising the amino acid sequence SEQ ID NO:9; anda heavy chain comprising the amino acid sequence of SEQ ID NO:7 and a light chain comprising the amino acid sequence SEQ ID NO:10.
  • 17. A method of monitoring efficacy of a therapy for cancer in a patient undergoing the therapy, comprising: a. administering to the patient an anti-CD47 antibody or antigen binding fragment thereof,b. obtaining a biological sample from the patient and quantifying the amount of at least one biomarker in the biological sample, wherein the at least one biomarker is selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2 or variants thereof;c. quantifying the amounts of at least one biomarker in a baseline standard wherein the baseline standard is obtained from the patient prior to therapy;d. comparing the amounts of the at least one biomarker in the biological sample with the amount of at least one biomarker in the baseline standard; ande. determining that therapy is effective when the amount of at least one biomarker in the biological sample obtained from the patient is greater than the amounts of at least one biomarker present in the baseline standard.
  • 18. The method of claim 17, wherein the at least one biomarker is quantified on biological samples taken on two or more occasions from the patient.
  • 19. The method of claim 18, wherein one of the two or more occasions is prior to commencement of therapy and one of the two or more occasions is after commencement of therapy.
  • 20. The method of claim 17, wherein an effect the therapy has on an individual is determined based a change in the amount of the biomarkers in the biological samples taken on two or more occasions.
  • 21. The method of claim 17, wherein the biological samples are taken at intervals over the course of therapy with an anti-CD47 antibody or antigen binding fragment thereof.
  • 22. A method to determine increased tumor cell death in the presence of an anti-CD47 antibody, comprising: a. transfecting mRNA encoding an RNA-guided endonuclease into a tumor cell line, wherein the RNA-guided endonuclease is expressed from the transfected mRNA;b. introducing a DNA vector that encodes a specific guide RNA, wherein the specific guide RNA directs the RNA-guided endonuclease to at least one targeted locus in the tumor cell genome;c. cleaving the at least one targeted locus in the tumor cell genome with the RNA-guided endonuclease;d. generating a genetic modification at the site of the cleavage; expanding the resulting genetically modified tumor cells;e. treating genetically modified tumor cells with an anti-CD47 antibody or antigen binding fragment thereof; andf. assaying genetically modified tumor cells to determine if targeted gene locus is responsible for cell death or gene-mediated resistance.
  • 23. The method of claim 22, wherein the tumor cell is a solid tumor or a hematological tumor.
  • 24. The method of claim 22, wherein the targeted locus is selected from XBP1, PPP1R15A, UBR4, TRIB3, GYS1, PCK2, SCAP, SREBF1, RAPGEF1, TLN1, PARD6A, RND1, XKR8, ANO6, SLC26A6, PTPN4, ATG9A, MAP1LC3B, AMBRA1, MUL1, STAT3, IFNAR2, STAT5A, TNIP1, ETFB, UCP2 or variants thereof.
Parent Case Info

This application claims the benefit of priority of U.S. Provisional Application No. 62/758,368, filed Nov. 9, 2018, the disclosure of which is hereby incorporated by reference as if written herein in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/060620 11/8/2019 WO 00
Provisional Applications (1)
Number Date Country
62758368 Nov 2018 US