This invention relates to the functionalisation of biomaterials, in particular the surfaces of biomedical devices made from biomaterials, such as implants, through the use of bi-functional semi-dendrimers.
Biomaterials are polymeric, metallic and/or ceramic materials destined to contact body tissues in biomedical applications. They are used for the manufacture of medical devices which are implanted in the human or animal body to replace damaged tissues. In many clinical applications, the successful implantation of a medical device depends on its integration with the surrounding tissues. The control of interactions between the biomaterial solid surfaces of an implant and the chemical, biochemical and cellular components of the biological environment, which surround the is implant, is a fundamental step of this integration process. Indeed, biomedical implants can integrate with the surrounding tissue only by allowing the adhesion, proliferation and differentiation of the tissue cells responsible for the regeneration of the tissue at the implant/tissue interface [1]. Furthermore, in the case of implants for bony tissue, integration is also achieved by binding of the mineralised extracellular matrix to the implant surface [2].
Methods have been developed to functionalise the surface of biomedical implants with molecules able to bind specific proteins [3, 4] to encourage the adhesion of cells or the deposition of mineral phase [5, 6, 7]. For example, the mineralization of biomaterial surfaces has been pursued by etching methods [6] or by coating of the surface with calcium-binding phospholipids such as phosphatidylserine [7]. These methods rely on the adsorption [7] or grafting [3, 4, 5] of relevant biomolecules on the biomaterial surface through linear spacers or by chemical treatment of the surface [6]. More recently, synthetic molecules such as agmatine have been used which can mimic the amino acid sequences recognised by specific cell receptors such as the RGD domain [8].
Other biomaterial surface treatments have been developed to create a nanotopography which can mimic that of the tissue extracellular matrix [9, 10]. However, most of these treatments produce surface modifications of the biomaterials which lack the ordered three-dimensional (3D) molecular nanoarchitecture and/or the molecular flexibility typical of the naturally occurring tissue extracellular matrix.
Indeed, it is widely recognised that the specificity of the biorecognition process can be enhanced if the underlying chemical and biochemical interactions are accompanied by an appropriate nanostructure, which improves the exposure of the functionalities to the surrounding environment and/or mimics the architectures of biological structures which have naturally evolved to facilitate specific bio-interactions [1].
Dendrimers and semi-dendrimbers are highly and 3-D ordered, hyperbranched polymers forming nanostructures with controllable physico-chemical properties [11, 12]. They can be obtained from monomeric molecules of different types sharing the ability of developing into branching macromolecules. Dendrimers have been obtained from synthetic molecules (e.g. polyamido amine, PAMAM) as well as from amino acids (e.g. polylysine) and carbohydrates [11, 12, 13]. There are two main methods to synthesise dendrimers [11]:
When the synthesis is performed in the liquid phase, although the shape and symmetry of the dendrimer depends on the physico-chemical properties of the molecules used for its synthesis, the polymer branching generally leads to an open ball, spherical structure [11]. Conversely, when the synthesis is performed in the solid phase the branching polymer develops a dome-like (semi-sphere) or tree-like structure, the semi-dendrimer [12].
By both methods (i) and (ii) it is possible to obtain dendrimers (or semi-dendrimers) with several branching levels (referred to as generations, Gn). The synthesis of dendrimers up to nine generations (G9) has indeed been reported.
From a biotechnological perspective both dendrimers and semi-dendrimers offer a unique opportunity to expose functionalities suited to favour bio-interactions and a nanostructure to control distance and steric specificity [14].
Dendrimers have been mainly proposed as carriers for the delivery of nucleic acids and drugs [15]. In particular, PAMAM dendrimers can bind DNA because of their overall positive charge which establishes ionic interactions with the negative charge of nucleic acids [15]. However, it has been shown that dendrimer nanoarchitecture also contributes to their DNA-binding potential [16]. The ability of PAMAM dendrimers to bind DNA has been exploited to capture DNA and other nucleic acids. For these applications, microchannel surfaces have been functionalised with dendrimers for that purpose [17]. Semi-dendrimers have been investigated as a possible way to increase the affinity of specific bioligands to cell receptors by functionalising the last branching generation of the dendrimer with the targeted bioligand [14].
The binding of dendrimers to solid surfaces is usually obtained by prior functionalisation of the surface with a silanisation reaction which grafts a linear molecule exposing an amino group at its end [3, 4, 17]. Later, the amino group is bridged to the dendrimer by glutaraldehyde; the aldehyde group of glutaraldehyde reacts with the amino groups of both the silanising molecule and dendrimers such as the PAMAMs [17].
According to the present invention there is provided a biomaterial having a functionalised surface which comprises bi-functional semi-dendrimers. The biomaterial may be ceramic, metallic and/or polymeric. It will usually be in the form of a solid, but could be a semi-solid or hydrogel.
According to another embodiment of the present invention there is provided a method of making a biomaterial having a functionalised surface which comprises bi-functional semi-dendrimers, said method comprising adsorbing, grafting or synthesising in situ bi-functional semi-dendrimers onto the surface of a biomaterial.
According to still another embodiment of the present invention there is provided a biomedical device which is coated with or formed from a biomaterial having a functionalised surface which comprises bi-functional semi-dendrimers. The biomedical device may be a medical implant, for example, such as a stent, artificial hip joint or replacement heart valve.
The biomaterials of the present invention are capable of specific bio-interactions with chemical, biochemical and cellular components of the human and animal biological systems relevant to implants and tissue engineering constructs. The functionalised surface of the biomaterial and/or of the biomedical device coated with or formed from the biomaterial may be a 3D nano-structured surface which mimics that of the tissue extracellular matrix. A bi- (or dual) functionality in the semi-dendrimer structure is created by a core molecule exposing a chemical or biochemical group different from that exposed on the last branching generation of the semi-dendrimer. In general, the chemical or biochemical group exposed by the core molecule at the root of the molecular tree (the first functionality) will facilitate the grafting of the semi-dendrimer to the surface of the biomaterial, while the functionality exposed on the last branching generation (the second functionality of the bi-functional semi-dendrimer) will regulate its bio-interactions.
The present invention will now be described in more detail by reference to the following Examples and the accompanying Figures:—
Methods. Polylysine and PAMAM semi-dendrimers are synthesised using is commercially-available solid-phase matrices. In the case of PAMAM semi-dendrimers, the synthesis is based on the conventional dendrimer synthesis divergent method where a Michael's addition reaction is followed by the elongation of the molecular branch with a diamide addition. Different amino acids are used as core molecules to obtain semi-dendrimers exposing suitable functional groups at their root, such as —NH2, —SH and —OH. Such functional groups become exposed after the semi-dendrimer is cleaved from the solid phase synthesis matrix and are made available for grafting onto the biomaterial surface. The second functionality is obtained by adding amino acid or other molecules able to support a specific bio-interaction. Typical examples of biomolecules exposed at the last branching generation of the semi-dendrimers are reported in Table 1 and include, for example, the addition of a phosphoserine group able to bind calcium (see Example 3).
aSee reference 7
bSee references 3, 4, 6
cSee reference 8
A typical protocol of synthesis for a bi-functional PAMAM semi-dendrimer includes the following steps:
Attachment of the Rink-Amide-Linker and the core molecule (Fmoc-Gly) or peptide (Fmoc-ending peptide)
In the case of the bi-functional polylysine semi-dendrimers, the method consists of a conventional solid-phase polypeptide synthesis where, by a sequence of amino acid protection/deprotection steps, polylysine molecules are added to form branched polymeric structures of up to five branching generations. The synthesis was performed by the following protocol:
Synthesis of a polylysine semi-dendrimer using an automated peptide synthesiser
Vials were then loaded onto the peptide synthesiser as follows:—
Cleavage of peptide from peptide synthesis resin
Results.
Method. Bi-functional semi-dendrimers of Example 1 are in-situ synthesised onto the biomaterial surface as described in Example 1. Prior to in-situ synthesis the biomaterial surface can be activated by conventional chemical methods to obtain functional groups, such as —OH, —NH2 or —SH groups, which are required for the grafting of the core molecule or peptide. Activation methods include, for example, silanisation reactions the use of dialdehyde and surface etching (such as, alkali etching and plasma etching).
Typical examples of biomaterial surface activation as reported in the literature [3, 4, 6] are:
After activation the biomaterial surface is equilibrated with methanol for 30 min at room temperature. The in-situ solid phase synthesis of the bi-functional semi-dendrimer is then performed as reported in Example 1.
Alternatively, bi-functional semi-dendrimers are grafted onto solid surfaces of biomaterials by different chemical reactions including the use of (i) the aldehyde group of a dialdehyde (e.g. glutaraldehyde and genipin) to the semi-dendrimer —OH or —NH2, (ii) the reaction of —SH groups exposed on the solid surface as well as on the semi-dendrimer core structure. Metal oxides and gold surfaces, as well as polymeric materials, can be functionalised by these methods. A typical example of a grafting protocol includes the following steps:
In a third method, biomaterial functionalisation can be achieved by physical adsorption of the semi-dendrimers of Example 1 on the exposed surface. This is achieved by incubating the biomaterial surface in a semi-dendrimer solution for different times at room temperature. Different incubation times and semi-dendrimer solution concentrations will lead to coatings of different thickness. Electrostatic and/or hydrophobic as well as hydrogen bonding drive this process depending on the physico-chemical characteristics of the exposed surface and adsorbing semi-dendrimers. The formed semi-dendrimer mono- or multi-layer can also be stabilised by its treatment with crosslinking agents, thereby forming a nanostructured network on the surface. Crosslinking agents include, for example, dialdehydes (e.g. glutaraldehyde, formaldehyde, genipin, etc). The crosslinking can be obtained by incubation of the semi-dendrimer-coated biomaterial in a crosslinking agent solution (e.g. 2.5% by volume glutaraldehyde) or in its saturated atmosphere. Crosslinking of semi-dendrimers functionalised with peptide sequences recognised as a substrate by the clotting enzyme Factor XIII can also be obtained by incubation with solutions of this enzyme or by direct contact with blood.
Results. The semi-dendrimers are in-situ synthesised or grafted on the surface of a biomaterial, such as polymeric and metal biomaterials, to enhance bio-specificity. When compared to a non-functionalised surface (
Method. Bi-functional semi-dendrimers are synthesised as described in Example 1 and their top branching generation functionalised by the addition of a phosphoserine amino acid as shown in
Mineralization experiments were performed by incubating uncoated biomaterial (e.g. titanium oxide) surfaces and phosphoserine exposing semi-dendrimer-coated surfaces in simulated body fluid for 48 and 72 hours, 37° C., static conditions. The simulated body fluid composition included: 71 mM NaCl, 5 mM KCl, 1.64 mM Na2HPO4, 2.36 mM CaCl2 dissolved in 0.05 M TES buffer, pH 7.2.
Results.
Method. Bi-functional semi-dendrimers are synthesised as described in Example 1 and their top branching generation exposes a bioligand recognised by cell receptors which include, for example, integrin. The semi-dendrimers are in-situ synthesised or grafted on the surface of a biomaterial as described in Example 2.
Results. Cells were able to adhere and spread uniformly on a smooth titanium surface functionalised with bi-functional semi-dendrimers, while they form clusters on non-functionalised smooth metal surfaces.
Method. Bi-functional semi-dendrimers are synthesised as described in Example 1 and their top branching generation exposes an antibacterial agent, such as antibiotic molecules. The semi-dendrimers are in-situ synthesised or grafted on the surface of a biomaterial as described in Example 2 to prevent bacterial infections. Antibacterial agents including, for example, antibiotic and silver ions were bound to the surface exposed bi-functional semi-dendrimer either by non-specific interactions (e.g. electrostatic and/or hydrophobic) or by covalent bonding or by entrapment in the semi-dendrimer branching.
Results.
Number | Date | Country | Kind |
---|---|---|---|
0624423.0 | Dec 2006 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2007/050741 | 12/5/2007 | WO | 00 | 10/12/2009 |