Designs and methods to improve performance and biocompatibility aspects of batteries are described. In some examples, electrolytes are provided in a polymer form and a laminate structure with cavities is used.
Recently, the number of medical devices and their functionality has begun to rapidly develop. These medical devices may include, for example, implantable pacemakers, electronic pills for monitoring and/or testing a biological function, surgical devices with active components, contact lenses, infusion pumps, and neurostimulators. Added functionality and an increase in performance to many of the aforementioned medical devices have been theorized and developed. However, to achieve the theorized added functionality, many of these devices now require self-contained energization means that are compatible with the size and shape requirements of these devices, as well as the energy requirements of the new energized components.
Some medical devices may include electrical components such as semiconductor devices that perform a variety of functions and may be incorporated into many biocompatible and/or implantable devices. However, such semiconductor components require energy and thus, energization elements should preferably also be included in such biocompatible devices. The topology and relatively small size of the biocompatible devices may create challenging environments for the definition of various functionalities. In many examples, it may be important to provide safe, reliable, compact and cost-effective means to energize the semiconductor components within the biocompatible devices. Therefore, a need exists for biocompatible energization elements formed for implantation within or upon biocompatible devices where the structure of the millimeter- or smaller-sized energization elements provides enhanced function for the energization element while maintaining biocompatibility.
One such energization element used to power a device may be a battery. When using a battery in biomedical type applications, it may be important that the battery structure and design inherently provide resistance to incursions and excursions of materials. A polymer electrolyte battery design may afford such resistance. Therefore a need exists for novel examples of polymer electrolyte batteries that are biocompatible for use as biocompatible energization elements.
Accordingly, polymer battery designs and related strategies and designs for use in biocompatible energization elements have been disclosed.
One general aspect includes a biomedical device which includes an electroactive component and a battery. The battery may include a polymer electrolyte, where the polymer electrolyte includes an ionic species. The battery also includes a manganese dioxide cathode. The battery also includes a first laminate layer including a first cavity, where the first cavity contains an amount of the polymer electrolyte. The battery also includes a second laminate layer including a second cavity where the second cavity contains an amount of the manganese dioxide cathode. The biomedical device also includes a first encapsulating layer, where the first encapsulating layer encapsulates at least the electroactive component and the battery.
Implementations may include one or more of the following features. The biomedical device where the battery further includes: an anode current collector; a cathode current collector; and an anode; where the anode includes zinc, and where the anode and the anode current collector are a single layer. The biomedical device may also include a polymer electrolyte, where the electrolyte includes poly (vinylidene fluoride). In some examples, the polymer electrolyte includes zinc ion. In some examples, the battery may include manganese dioxide, and in some examples, the manganese dioxide cathode includes jet milled electrolytic manganese dioxide. The battery may be formed from a cathode slurry made from the manganese dioxide with polymeric binders and fillers such as poly(vinylidene fluoride) and carbon black. The battery may have an anode formed from zinc, where the zinc may be in a foil form in some examples.
The battery may include a seal in encapsulating films that enclose more than 90 percent of the battery portions not used for making external contacts. When formed with these layers, a laminated structure may be formed with hermetically sealed encapsulating such that thickness of the battery is less than 1 mm. In some examples, the battery is less than 500 microns thick. The battery in some further examples may have a thickness less than 250 microns.
Batteries may be formed in sheets and individual batteries may be cut out or singulated from the sheets. In some examples, the shape of the cut out batteries may be curvilinear
One general aspect includes a method for forming a battery which involves obtaining a cathode collector film, where the cathode contact film includes titanium. The method also includes coating the cathode collector film with a carbon coating. The method also includes obtaining a first laminate layer, where the first laminate layer includes a first body and at least a first release layer and pressure sensitive adhesive upon surfaces of the body. The method also includes cutting a hole in the first laminate layer. The method also includes adhering the cathode collector film with the carbon coating to the first laminate layer, where the hole in the first laminate layer and the cathode collector film with carbon coating create a first cavity. The method also includes depositing a manganese dioxide slurry into the first cavity and upon the carbon coating. The method also includes drying the manganese dioxide deposit. The method also includes obtaining a second laminate layer, where the second laminate layer includes a second body and at least a second release layer and pressure sensitive adhesive upon surfaces of the second body. The method also includes cutting a hole in the second laminate layer. The method also includes adhering a zinc foil to the second laminate layer, where the hole in the second laminate layer and the zinc foil create a second cavity. The method also includes depositing a polymer electrolyte including ionic constituents into the second cavity. The method also includes drying the polymer electrolyte. The method also includes laminating the first laminate layer to the second laminate layer, where the first cavity and the second cavity align at least in a respective portion and the polymer electrolyte and the manganese dioxide deposit are laminated together. The method also includes cutting material from the laminate layers in a region peripheral to the first cavity and the second cavity. The method also includes encapsulating the zinc foil, polymer, manganese dioxide deposit, cathode collector, first laminate layer and second laminate layer in a biocompatible encapsulating film. The method of also includes the method further including singulating a battery element.
The foregoing and other features and advantages of the invention will be apparent from the following, more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings.
Methods of forming and using biocompatible batteries with polymer primary battery chemistry are disclosed in this application. The polymer electrolyte is a key component that creates a battery with improved ability to contain battery chemistry within encapsulation and to lower the forces upon internal battery components contained within packaging or encapsulation. In the following sections, detailed descriptions of various examples are described. The descriptions of examples are exemplary embodiments only, and various modifications and alterations may be apparent to those skilled in the art. Therefore, the examples do not limit the scope of this application. The anode formulations, and the structures that they are formed into, may be designed for use in biocompatible batteries. In some examples, these biocompatible batteries may be designed for use in, or proximate to, the body of a living organism.
An important need for the performance of biocompatible batteries relates to the sensitivity of these batteries to their environment, and in particular to the moisture in their environment. Batteries that have aqueous electrolyte formulations may be significantly sensitive in these ways. In some cases, if encapsulation strategies do not prevent movement of water, water may move out of the battery into its surrounding environment, and this may result in the electrolyte drying up with significant impact to battery performance parameters such as internal resistance. In some other cases, water may diffuse into batteries if encapsulation strategies allow water to cross them, even in small quantities. The result of water diffusing into these batteries may result in diluting the electrolyte with an impact on battery performance and in swelling of the battery body which may result in rupture of the battery encapsulation with potentially significant impacts. Methods to formulate polymeric battery electrolytes may result in batteries that are relatively insensitive to ingress or egress of materials such as moisture. Such improvements may improve performance and/or decrease requirements on sealing and encapsulating processes.
A battery with a polymer electrolyte which results in batteries that are relatively insensitive to their environment may have numerous benefits above and beyond the basic need for such an insensitive battery. For example, such a polymer electrolyte, may have significantly improved biocompatibility since the electrolyte cannot leak out as easily. As well, the resulting electrolyte and in some examples the separator that it forms may be more resilient to downstream processing steps which may be necessary in the processing of a biomedical device, for example, high temperature and low vacuum necessary for over molding. There may be numerous manners to form polymer based electrolytes with these properties.
In the description and claims below, various terms may be used for which the following definitions will apply:
“Anode” as used herein refers to an electrode through which electric current flows into a polarized electrical device. The direction of electric current is typically opposite to the direction of electron flow. In other words, the electrons flow from the anode into, for example, an electrical circuit.
“Binder” as used herein refers to a polymer that is capable of exhibiting elastic responses to mechanical deformations and that is chemically compatible with other energization element components. For example, binders may include electroactive materials, electrolytes, polymers, etc.
“Biocompatible” as used herein refers to a material or device that performs with an appropriate host response in a specific application. For example, a biocompatible device does not have toxic or injurious effects on biological systems.
“Cathode” as used herein refers to an electrode through which electric current flows out of a polarized electrical device. The direction of electric current is typically opposite to the direction of electron flow. Therefore, the electrons flow into the cathode of the polarized electrical device, and out of, for example, the connected electrical circuit.
“Coating” as used herein refers to a deposit of material in thin forms. In some uses, the term will refer to a thin deposit that substantially covers the surface of a substrate it is formed upon. In other more specialized uses, the term may be used to describe small thin deposits in smaller regions of the surface.
“Electrode” as used herein may refer to an active mass in the energy source. For example, it may include one or both of the anode and cathode.
“Energized” as used herein refers to the state of being able to supply electrical current or to have electrical energy stored within.
“Energy” as used herein refers to the capacity of a physical system to do work. Many uses of the energization elements may relate to the capacity of being able to perform electrical actions.
“Energy Source” or “Energization Element” or “Energization Device” as used herein refers to any device or layer which is capable of supplying energy or placing a logical or electrical device in an energized state. The energization elements may include batteries. The batteries may be formed from alkaline type cell chemistry and may be solid-state batteries or wet cell batteries.
“Fillers” as used herein refer to one or more energization element separators that do not react with either acid or alkaline electrolytes. Generally, fillers may include substantially water insoluble materials such as carbon black; coal dust; graphite; metal oxides and hydroxides such as those of silicon, aluminum, calcium, magnesium, barium, titanium, iron, zinc, and tin; metal carbonates such as those of calcium and magnesium; minerals such as mica, montmorollonite, kaolinite, attapulgite, and talc; synthetic and natural zeolites such as Portland cement; precipitated metal silicates such as calcium silicate; hollow or solid polymer or glass microspheres, flakes and fibers; etc.
“Functionalized” as used herein refers to making a layer or device able to perform a function including, for example, energization, activation, and/or control.
“Mold” as used herein refers to a rigid or semi-rigid object that may be used to form three-dimensional objects from uncured formulations. Some exemplary molds include two mold parts that, when opposed to one another, define the structure of a three-dimensional object.
“Power” as used herein refers to work done or energy transferred per unit of time.
“Rechargeable” or “Re-energizable” as used herein refer to a capability of being restored to a state with higher capacity to do work. Many uses may relate to the capability of being restored with the ability to flow electrical current at a certain rate for certain, reestablished time periods.
“Reenergize” or “Recharge” as used herein refer to restoring to a state with higher capacity to do work. Many uses may relate to restoring a device to the capability to flow electrical current at a certain rate for a certain reestablished time period.
“Released” as used herein and sometimes referred to as “released from a mold” means that a three-dimensional object is either completely separated from the mold, or is only loosely attached to the mold, so that it may be removed with mild agitation.
“Stacked” as used herein means to place at least two component layers in proximity to each other such that at least a portion of one surface of one of the layers contacts a first surface of a second layer. In some examples, a coating, whether for adhesion or other functions, may reside between the two layers that are in contact with each other through said coating.
“Traces” as used herein refer to energization element components capable of connecting together the circuit components. For example, circuit traces may include copper or gold when the substrate is a printed circuit board and may typically be copper, gold or printed film in a flexible circuit. A special type of “Trace” is the current collector. Current collectors are traces with electrochemical compatibility that make the current collectors suitable for use in conducting electrons to and from an anode or cathode in the presence of electrolyte.
The methods and apparatus presented herein relate to forming biocompatible energization elements for inclusion within or on flat or three-dimensional biocompatible devices. A particular class of energization elements may be batteries that are fabricated in layers. The layers may also be classified as laminate layers. A battery formed in this manner may be classified as a laminar battery.
There may be other examples of how to assemble and configure batteries according to the present invention, and some may be described in following sections. However, for many of these examples, there are selected parameters and characteristics of the batteries that may be described in their own right. In the following sections, some characteristics and parameters will be focused upon.
Exemplary Biomedical Device Construction with Biocompatible Energization Elements
An example of a biomedical device that may incorporate the energization elements, batteries, of the present invention may be an electroactive focal-adjusting contact lens. Referring to
Referring to
In reference to concepts of the present invention, the battery elements may be formed in a two-dimensional form as depicted in
A Planar Polymer Electrolyte Battery Example
Referring to
A polymer electrolyte 240 may be formed upon the cathode. In some examples, the electrolyte may be coated on top of the cathode or the anode. In other examples, the electrolyte may be applied by screen printing methods or dip coating methods. There may be numerous manners to apply the polymer electrolyte 240. The polymer electrolyte 240 may also function as a separator of the battery device.
On the other surface of the polymer electrolyte 240 may be the anode 250. The anode 250 may be a deposited film, a paste, a foil or solid film adhered to the polymer electrolyte 240. The anode 250 may be connected to the anode collector 260. A portion of the anode collector 260 may extend past the encapsulation 280 to create the anode collector contact 270. There may be numerous manners to form the exemplary structure depicted and the order of steps may vary; therefore, while a film may be described as formed upon another layer it may be assumed that the order may also be reversed. Furthermore, some elements may optionally be removed; such as, the anode collector 260 may be the same layer as the anode 250 in some examples.
Custom Shapes of Flat Battery Elements
In some examples of biocompatible batteries, the batteries may be formed as flat elements. Referring to
In some examples of flat-formed batteries, the outlines of the battery form may be dimensionally and geometrically configured to fit in custom products. In addition to examples with rectangular or circular outlines, custom “free-form” or “free shape” outlines may be formed which may allow the battery configuration to be optimized to fit within a given product.
In the Exemplary Biomedical Device Case of a Variable Optic, a “Free-Form” Example of a flat outline may be arcuate in form. The free form may be of such geometry that when formed to a three-dimensional shape, it may take the form of a conical, annular skirt that fits within the constraining confines of a contact lens. It may be clear that similar beneficial geometries may be formed where medical devices have restrictive 2D or 3D shape requirements.
Electrical Requirements of Microbatteries
Another area for design considerations may relate to electrical requirements of the device, which may be provided by the battery. In order to function as a power source for a medical device, an appropriate battery may need to meet the full electrical requirements of the system when operating in a non-connected or non-externally powered mode. An emerging field of non-connected or non-externally powered biomedical devices may include, for example, vision-correcting contact lenses, health monitoring devices, pill cameras, and novelty devices. Recent developments in integrated circuit (IC) technology may permit meaningful electrical operation at very low current levels, for example, Pico amps of standby current and micro amps of operating current. IC's may also permit very small devices.
Microbatteries for biomedical applications may be required to meet many simultaneous, challenging requirements. For example, the microbattery may be required to have the capability to deliver a suitable operating voltage to an incorporated electrical circuit. This operating voltage may be influenced by several factors including the IC process “node,” the output voltage from the circuit to another device, and a particular current consumption target which may also relate to a desired device lifetime.
With respect to the IC process, nodes may typically be differentiated by the minimum feature size of a transistor, such as its “so-called” transistor channel. This physical feature, along with other parameters of the IC fabrication, such as gate oxide thickness, may be associated with a resulting rating standard for “turn-on” or “threshold” voltages of field-effect transistors (FET's) fabricated in the given process node. For example, in a node with a minimum feature size of 0.5 microns, it may be common to find FET's with turn-on voltages of 5.0V. However, at a minimum feature size of 90 nm, the FET's may turn-on at 1.2, 1.8, and 2.5V. The IC foundry may supply standard cells of digital blocks, for example, inverters and flip-flops that have been characterized and are rated for use over certain voltage ranges. Designers chose an IC process node based on several factors including density of digital devices, analog/digital mixed signal devices, leakage current, wiring layers, and availability of specialty devices such as high-voltage FET's. Given these parametric aspects of the electrical components, which may draw power from a microbattery, it may be important for the microbattery power source to be matched to the requirements of the chosen process node and IC design, especially in terms of available voltage and current.
In some examples, an electrical circuit powered by a microbattery, may connect to another device. In non-limiting examples, the microbattery-powered electrical circuit may connect to an actuator or a transducer. Depending on the application, these may include a light-emitting diode (LED), a sensor, a microelectromechanical system (MEMS) pump, or numerous other such devices. In some examples, such connected devices may require higher operating voltage conditions than common IC process nodes. For example, a variable-focus lens may require 35V to activate. The operating voltage provided by the battery may therefore be a critical consideration when designing such a system. In some examples of this type of consideration, the efficiency of a lens driver to produce 35V from a 1V battery may be significantly less than it might be when operating from a 2V battery. Further requirements, such as die size, may be dramatically different considering the operating parameters of the microbattery as well.
Individual battery cells may typically be rated with open-circuit, loaded, and cutoff voltages. The open-circuit voltage is the potential produced by the battery cell with infinite load resistance. The loaded voltage is the potential produced by the cell with an appropriate, and typically also specified, load impedance placed across the cell terminals. The cutoff voltage is typically a voltage at which most of the battery has been discharged. The cutoff voltage may represent a voltage, or degree of discharge, below which the battery should not be discharged to avoid deleterious effects such as excessive gassing. The cutoff voltage may typically be influenced by the circuit to which the battery is connected, not just the battery itself, for example, the minimum operating voltage of the electronic circuit. In one example, an alkaline cell may have an open-circuit voltage of 1.6V, a loaded voltage in the range 1.0 to 1.5V, and a cutoff voltage of 1.0V. The voltage of a given microbattery cell design may depend upon other factors of the cell chemistry employed. And, different cell chemistry may therefore have different cell voltages.
Cells may be connected in series to increase voltage; however, this combination may come with tradeoffs to size, internal resistance, and battery complexity. Cells may also be combined in parallel configurations to decrease resistance and increase capacity; however, such a combination may tradeoff size and shelf life.
Battery capacity may be the ability of a battery to deliver current, or do work, for a period of time. Battery capacity may typically be specified in units such as micro amp-hours. A battery that may deliver 1 micro amp of current for 1 hour has 1 micro amp-hour of capacity. Capacity may typically be increased by increasing the mass (and hence volume) of reactants within a battery device; however, it may be appreciated that biomedical devices may be significantly constrained on available volume. Battery capacity may also be influenced by electrode and electrolyte material.
Depending on the requirements of the circuitry to which the battery is connected, a battery may be required to source current over a range of values. During storage prior to active use, a leakage current on the order of Pico amps to nan amps may flow through circuits, interconnects, and insulators. During active operation, circuitry may consume quiescent current to sample sensors, run timers, and perform such low power consumption functions. Quiescent current consumption may be on the order of nano amps to milliamps. Circuitry may also have even higher peak current demands, for example, when writing flash memory or communicating over radio frequency (RF). This peak current may extend to tens of milliamps or more. The resistance and impedance of a microbattery device may also be important to design considerations.
Shelf life typically refers to the period of time which a battery may survive in storage and still maintain useful operating parameters. Shelf life may be particularly important for biomedical devices for several reasons. Electronic devices may displace non-powered devices, as for example may be the case for the introduction of an electronic contact lens. Products in these existing market spaces may have established shelf life requirements, for example, three years, due to customer, supply chain, and other requirements. It may typically be desired that such specifications not be altered for new products. Shelf life requirements may also be set by the distribution, inventory, and use methods of a device including a microbattery. Accordingly, microbatteries for biomedical devices may have specific shelf life requirements, which may be, for example, measured in the number of years.
In some examples, three-dimensional biocompatible energization elements may be rechargeable. For example, an inductive coil may also be fabricated on the three-dimensional surface. The inductive coil could then be energized with a radio-frequency (“RF”) fob. The inductive coil may be connected to the three-dimensional biocompatible energization element to recharge the energization element when RF is applied to the inductive coil. In another example, photovoltaics may also be fabricated on the three-dimensional surface and connected to the three-dimensional biocompatible energization element. When exposed to light or photons, the photovoltaics will produce electrons to recharge the energization element.
In some examples, a battery may function to provide the electrical energy for an electrical system. In these examples, the battery may be electrically connected to the circuit of the electrical system. The connections between a circuit and a battery may be classified as interconnects. These interconnects may become increasingly challenging for biomedical microbatteries due to several factors. In some examples, powered biomedical devices may be very small thus allowing little area and volume for the interconnects. The restrictions of size and area may impact the electrical resistance and reliability of the interconnections.
In other respects, a battery may contain a liquid electrolyte which could boil at high temperature. This restriction may directly compete with the desire to use a solder interconnect which may, for example, require relatively high temperatures such as 250 degrees Celsius to melt. Although in some examples, the battery chemistry, including the electrolyte, and the heat source used to form solder based interconnects, may be isolated spatially from each other. In the cases of emerging biomedical devices, the small size may preclude the separation of electrolyte and solder joints by sufficient distance to reduce heat conduction.
Interconnects
Interconnects may allow current to flow to and from the battery in connection with an external circuit. Such interconnects may interface with the environments inside and outside the battery, and may cross the boundary or seal between those environments. These interconnects may be considered as traces, making connections to an external circuit, passing through the battery seal, and then connecting to the current collectors inside the battery. As such, these interconnects may have several requirements. Outside the battery, the interconnects may resemble typical printed circuit traces. They may be soldered to, or otherwise connect to, other traces. In an example, where the battery is a separate physical element from a circuit board comprising an integrated circuit, the battery interconnect may allow for connection to the external circuit. This connection may be formed with solder, conductive tape, conductive ink or epoxy, or other means. The interconnect traces may need to survive in the environment outside the battery, for example, not corroding in the presence of oxygen.
As the interconnect passes through the battery seal, it may be of critical importance that the interconnect coexist with the seal and permit sealing. Adhesion may be required between the seal and interconnect in addition to the adhesion which may be required between the seal and battery package. Seal integrity may need to be maintained in the presence of electrolyte and other materials inside the battery. Interconnects, which may typically be metallic, may be known as points of failure in battery packaging. The electrical potential and/or flow of current may increase the tendency for electrolyte to “creep” along the interconnect. Accordingly, an interconnect may need to be engineered to maintain seal integrity.
Inside the battery, the interconnects may interface with the current collectors or may actually form the current collectors. In this regard, the interconnect may need to meet the requirements of the current collectors as described herein, or may need to form an electrical connection to such current collectors.
One class of candidate interconnects and current collectors is metal foils. Such foils are available in thickness of 25 microns or less, which make them suitable for very thin batteries. Such foil may also be sourced with low surface roughness and contamination, two factors which may be critical for battery performance. The foils may include zinc, nickel, brass, copper, titanium, other metals, and various alloys.
Modular Battery Components
In some examples, a modular battery component may be formed according to some aspects and examples of the present invention. In these examples, the modular battery assembly may be a separate component from other parts of the biomedical device. In the example of an ophthalmic contact lens device, such a design may include a modular battery that is separate from the rest of a media insert. There may be numerous advantages of forming a modular battery component. For example, in the example of the contact lens, a modular battery component may be formed in a separate, non-integrated process which may alleviate the need to handle rigid, three-dimensionally formed optical plastic components. In addition, the sources of manufacturing may be more flexible and may operate in a more parallel mode to the manufacturing of the other components in the biomedical device. Furthermore, the fabrication of the modular battery components may be decoupled from the characteristics of three-dimensional (3D) shaped devices. For example, in applications requiring three-dimensional final forms, a modular battery system may be fabricated in a flat or roughly two-dimensional (2D) perspective and then shaped to the appropriate three-dimensional shape. A modular battery component may be tested independently of the rest of the biomedical device and yield loss due to battery components may be sorted before assembly. The resulting modular battery component may be utilized in various media insert constructs that do not have an appropriate rigid region upon which the battery components may be formed; and, in a still further example, the use of modular battery components may facilitate the use of different options for fabrication technologies than might otherwise be utilized, such as, web-based technology (roll to roll), sheet-based technology (sheet-to-sheet), printing, lithography, and “squeegee” processing. In some examples of a modular battery, the discrete containment aspect of such a device may result in additional material being added to the overall biomedical device construct. Such effects may set a constraint for the use of modular battery solutions when the available space parameters require minimized thickness or volume of solutions.
Battery shape requirements may be driven at least in part by the application for which the battery is to be used. Traditional battery form factors may be cylindrical forms or rectangular prisms, made of metal, and may be geared toward products which require large amounts of power for long durations. These applications may be large enough that they may comprise large form factor batteries. In another example, planar (2D) solid-state batteries are thin rectangular prisms, typically formed upon inflexible silicon or glass. These planar solid-state batteries may be formed in some examples using silicon wafer-processing technologies. In another type of battery form factor, low power, flexible batteries may be formed in a pouch construct, using thin foils or plastic to contain the battery chemistry. These batteries may be made flat (2D), and may be designed to function when bowed to a modest out-of-plane (3D) curvature.
In some of the examples of the battery applications in the present invention where the battery may be employed in a variable optic lens, the form factor may require a three-dimensional curvature of the battery component where a radius of that curvature may be on the order of approximately 8.4 mm. The nature of such a curvature may be considered to be relatively steep and for reference may approximate the type of curvature found on a human fingertip. The nature of a relative steep curvature creates challenging aspects for manufacture. In some examples of the present invention, a modular battery component may be designed such that it may be fabricated in a flat, two-dimensional manner and then formed into a three-dimensional form of relative high curvature.
Battery Module Thickness
In designing battery components for biomedical applications, tradeoffs amongst the various parameters may be made balancing technical, safety and functional requirements. The thickness of the battery component may be an important and limiting parameter. For example, in an optical lens application the ability of a device to be comfortably worn by a user may have a critical dependence on the thickness across the biomedical device. Therefore, there may be critical enabling aspects in designing the battery for thinner results. In some examples, battery thickness may be determined by the combined thicknesses of top and bottom sheets, spacer sheets, and adhesive layer thicknesses. Practical manufacturing aspects may drive certain parameters of film thickness to standard values in available sheet stock. In addition, the films may have minimum thickness values to which they may be specified base upon technical considerations relating to chemical compatibility, moisture/gas impermeability, surface finish, and compatibility with coatings that may be deposited upon the film layers.
In some examples, a desired or goal thickness of a finished battery component may be a component thickness that is less than 220 μm. In these examples, this desired thickness may be driven by the three-dimensional geometry of an exemplary ophthalmic lens device where the battery component may need to be fit inside the available volume defined by a hydrogel lens shape given end user comfort, biocompatibility, and acceptance constraints. This volume and its effect on the needs of battery component thickness may be a function of total device thickness specification as well as device specification relating to its width, cone angle, and inner diameter. Another important design consideration for the resulting battery component design may relate to the volume available for active battery chemicals and materials in a given battery component design with respect to the resulting chemical energy that may result from that design. This resulting chemical energy may then be balanced for the electrical requirements of a functional biomedical device for its targeted life and operating conditions
Battery Module Flexibility
Another dimension of relevance to battery design and to the design of related devices that utilize battery based energy sources is the flexibility of the battery component. There may be numerous advantages conferred by flexible battery forms. For example, a flexible battery module may facilitate the previously mentioned ability to fabricate the battery form in a two-dimensional (2D) flat form. The flexibility of the form may allow the two-dimensional battery to then be formed into an appropriate 3D shape to fit into a biomedical device such as a contact lens.
In another example of the benefits that may be conferred by flexibility in the battery module, if the battery and the subsequent device is flexible then there may be advantages relating to the use of the device. In an example, a contact lens form of a biomedical device may have advantages for insertion/removal of the media insert based contact lens that may be closer to the insertion/removal of a standard, non-filled hydrogel contact lens.
The number of flexures may be important to the engineering of the battery. For example, a battery which may only flex one time from a planar form into a shape suitable for a contact lens may have significantly different design from a battery capable of multiple flexures. The flexure of the battery may also extend beyond the ability to mechanically survive the flexure event. For example, an electrode may be physically capable of flexing without breaking, but the mechanical and electrochemical properties of the electrode may be altered by flexure. Flex-induced changes may appear instantly, for example, as changes to impedance, or flexure may introduce changes which are only apparent in long-term shelf life testing.
Battery Module Width
There may be numerous applications into which the biocompatible energization elements or batteries of the present invention may be utilized. In general, the battery width requirement may be largely a function of the application in which it is applied. In an exemplary case, a contact lens battery system may have constrained needs for the specification on the width of a modular battery component. In some examples of an ophthalmic device where the device has a variable optic function powered by a battery component, the variable optic portion of the device may occupy a central spherical region of about 7.0 mm in diameter. The exemplary battery elements may be considered as a three-dimensional object, which fits as an annular, conical skirt around the central optic and formed into a truncated conical ring. If the required maximum diameter of the rigid insert is a diameter of 8.50 mm, and tangency to a certain diameter sphere may be targeted (as for example in a roughly 8.40 mm diameter), then geometry may dictate what the allowable battery width may be. There may be geometric models that may be useful for calculating desirable specifications for the resulting geometry which in some examples may be termed a conical frustum flattened into a sector of an annulus.
Flattened battery width may be driven by two features of the battery element, the active battery components and seal width. In some examples relating to ophthalmic devices a target thickness may be between 0.100 mm and 0.500 mm per side, and the active battery components may be targeted at approximately 0.800 mm wide. Other biomedical devices may have differing design constraints but the principles for flexible flat battery elements may apply in similar fashion.
Battery Element Internal Seals
It may be important in examples of polymer electrolyte batteries to incorporate sealing mechanisms that retard or prevent the movement of moisture or other chemicals into the battery body. Moisture barriers may be designed to keep the internal moisture level at a designed level, within some tolerance. In some examples, a moisture barrier may be divided into two sections or components; namely, the package and the seal. Polymer electrolytes may have an inherent advantage in that any leaking of moisture into the polymer electrolyte from external regions may have minimal impact, and may even improve battery performance in some examples. Thus, the importance of packaging requirements may be inherently reduced for polymer electrolyte batteries.
Nevertheless, the package may refer to the main material of the enclosure. In some examples, the package may comprise a bulk material. The Water Vapor Transmission Rate (WVTR) may be an indicator of performance, with ISO, ASTM standards controlling the test procedure, including the environmental conditions operant during the testing. Ideally, the WVTR for a good battery package may be “zero.” Exemplary materials with a near-zero WVTR may be glass and metal foils. Plastics, on the other hand, may be inherently porous to moisture, and may vary significantly for different types of plastic. Engineered materials, laminates, or co-extrudes may usually be hybrids of the common package materials.
The seal may be the interface between two of the package surfaces. The connecting of seal surfaces finishes the enclosure along with the package. In many examples, the nature of seal designs may make them difficult to characterize for the seal's WVTR due to difficulty in performing measurements using an ISO or ASTM standard, as the sample size or surface area may not be compatible with those procedures. In some examples, a practical manner to testing seal integrity may be a functional test of the actual seal design, for some defined conditions. Seal performance may be a function of the seal material, the seal thickness, the seal length, the seal width, and the seal adhesion or intimacy to package substrates.
In some examples, seals may be formed by a welding process that may involve thermal, laser, solvent, friction, ultrasonic, or arc processing. In other examples, seals may be formed through the use of adhesive sealants such as glues, epoxies, acrylics, natural rubber, and synthetic rubber. Other examples may derive from the utilization of gasket type material that may be formed from cork, natural and synthetic rubber, polytetrafluoroethylene (PTFE), polypropylene, and silicones to mention a few non-limiting examples.
In some examples, the batteries according to the present invention may be designed to have a specified operating life. The operating life may be estimated by determining a practical amount of moisture permeability that may be obtained using a particular battery system and then estimating when such a moisture leakage may result in an end of life condition for the battery.
Additional Package and Substrate Considerations in Biocompatible Battery Modules
There may be numerous packaging and substrate considerations that may dictate desirable characteristics for package designs used in biocompatible laminar microbatteries. For example, the packaging may desirably be predominantly foil and/or film based where these packaging layers may be as thin as possible, for example, 10 to 50 microns. Additionally, the packaging may provide a sufficient diffusion barrier to moisture gain or loss during the shelf life. In many desirable examples, the packaging may provide a sufficient diffusion barrier to oxygen ingress to limit degradation of zinc anodes by direct oxidation.
In some examples, the packaging may provide a finite permeation pathway to hydrogen gas that may evolve due to direct reduction of water by zinc. And, the packaging may desirably sufficiently contain and may isolate the contents of the battery such that potential exposure to a user may be minimized.
In the present invention, packaging constructs may include the following types of functional components: top and bottom packaging layers, pressure sensitive adhesive (PSA) layers, spacer layers, interconnect zones, filling ports, and secondary packaging.
In some examples, top and bottom packaging layers may comprise metallic foils or polymer films. Top and bottom packaging layers may comprise multi-layer film constructs containing a plurality of polymer and/or barrier layers. Such film constructs may be referred to as coextruded barrier laminate films. An example of a commercial coextruded barrier laminate film of particular utility in the present invention may be 3M® Scotchpak 1109 backing which consists of a polyethylene terephthalate (PET) carrier web, a vapor-deposited aluminum barrier layer, and a polyethylene layer including a total average film thickness of 33 microns. Numerous other similar multilayer barrier films may be available and may be used in alternate examples of the present invention.
In design constructions including a PSA, packaging layer surface roughness may be of particular importance because the PSA may also need to seal opposing packaging layer faces. Surface roughness may result from manufacturing processes used in foil and film production, for example, processes employing rolling, extruding, embossing and/or calendaring, among others. If the surface is too rough, PSA may be not able to be applied in a uniform thickness when the desired PSA thickness may be on the order of the surface roughness Ra (the arithmetic average of the roughness profile). Furthermore, PSA's may not adequately seal against an opposing face if the opposing face has roughness that may be on the order of the PSA layer thickness. In the present invention, packaging materials having a surface roughness, Ra, less than 10 microns may be acceptable examples. In some examples, surface roughness values may be 5 microns or less. And, in still further examples, the surface roughness may be 1 micron or less. Surface roughness values may be measured by a variety of methods including but not limited to measurement techniques such as white light interferometry, stylus profilometry, and the like. There may be many examples in the art of surface metrology that surface roughness may be described by a number of alternative parameters and that the average surface roughness, Ra, values discussed herein may be meant to be representative of the types of features inherent in the aforementioned manufacturing processes.
Current Collectors and Electrodes
In some examples of zinc carbon and Leclanche cells, the cathode current collector may be a sintered carbon rod. This type of material may face technical hurdles for thin electrochemical cells of the present invention. In some examples, printed carbon inks may be used in thin electrochemical cells to replace a sintered carbon rod for the cathode current collector, and in these examples, the resulting device may be formed without significant impairment to the resulting electrochemical cell. Typically, said carbon inks may be applied directly to packaging materials which may comprise polymer films, or in some cases metal foils. In the examples where the packaging film may be a metal foil, the carbon ink may need to protect the underlying metal foil from chemical degradation and/or corrosion by the electrolyte. Furthermore, in these examples, the carbon ink current collector may need to provide electrical conductivity from the inside of the electrochemical cell to the outside of the electrochemical cell, implying sealing around or through the carbon ink. Due to the porous nature of carbon inks, this may be not easily accomplished without significant challenges. Carbon inks also may be applied in layers that have finite and relatively small thickness, for example, 10 to 20 microns. In a thin electrochemical cell design in which the total internal package thickness may only be about 100 to 150 microns, the thickness of a carbon ink layer may take up a significant fraction of the total internal volume of the electrochemical cell, thereby negatively impacting electrical performance of the cell. Further, the thin nature of the overall battery and the current collector in particular may imply a small cross-sectional area for the current collector. As resistance of a trace increases with trace length and decreases with cross-sectional area, there may be a direct tradeoff between current collector thickness and resistance. The bulk resistivity of carbon ink may be insufficient to meet the resistance requirement of thin batteries. Inks filled with silver or other conductive metals may also be considered to decrease resistance and/or thickness, but they may introduce new challenges such as incompatibility with novel electrolytes. In consideration of these factors, in some examples it may be desirable to realize efficient and high performance thin electrochemical cells of the present invention by utilizing a thin metal foil as the current collector, or to apply a thin metal film to an underlying polymer packaging layer to act as the current collector. Such metal foils may have significantly lower resistivity, thereby allowing them to meet electrical resistance requirements with much less thickness than printed carbon inks.
In some examples, one or more of the top and/or bottom packaging layers may serve as a substrate for a sputtered current collector metal or metal stack. For example, 3M® Scotchpak 1109 backing may be metallized using physical vapor deposition (PVD) of one or more metallic layers useful as a current collector for a cathode. Exemplary metal stacks useful as cathode current collectors may be Ti—W (titanium-tungsten) adhesion layers and Ti (titanium) conductor layers. Exemplary metal stacks useful as anode current collectors may be Ti—W adhesion layers, Au (gold) conductor layers, and In (indium) deposition layers. The thickness of the PVD layers may be less than 500 nm in total. If multiple layers of metals are used, the electrochemical and barrier properties may need to be compatible with the battery. For example, copper may be electroplated on top of a seed layer to grow a thick layer of conductor. Additional layers may be plated upon the copper. However, copper may be electrochemically incompatible with certain electrolytes especially in the presence of zinc. Accordingly, if copper is used as a layer in the battery, it may need to be sufficiently isolated from the battery electrolyte. Alternatively, copper may be excluded or another metal substituted.
In some other examples, top and/or bottom packaging foils may also function as current collectors. For example, a 25 micron brass foil may be useful as an anode current collector for a zinc anode. The brass foil may be optionally electroplated with indium prior to electroplating with zinc. In one example, cathode current collector packaging foils may comprise titanium foil, Hastelloy C-276 foil, chromium foil, and/or tantalum foil. In certain designs, one or more packaging foils may be fine blanked, embossed, etched, textured, laser machined, or otherwise processed to provide desirable form, surface roughness, and/or geometry to the final cell packaging.
Cathode Mixture
There may be numerous cathode chemistry mixtures that may be consistent with the concepts of the present invention. In some examples, a cathode mixture, which may be a term for a chemical formulation used to form a battery's cathode, may be applied as a paste, gel, suspension, or slurry, and may comprise a transition metal oxide such as manganese dioxide, some form of conductive additive which, for example, may be a form of conductive powder such as carbon black or graphite, and a water-soluble polymer such as polyvinylpyrrolidone (PVP) or some other binder additive. In some examples, other components may be included such as one or more of binders, electrolyte salts, corrosion inhibitors, water or other solvents, surfactants, rheology modifiers, and other conductive additives, such as, conductive polymers. Once formulated and appropriately mixed, the cathode mixture may have a desirable rheology that allows it to either be dispensed onto desired portions of the separator and/or cathode current collector, or squeegeed through a screen or stencil in a similar manner. In some examples, the cathode mixture may be dried before being used in later cell assembly steps, while in other examples, the cathode may contain some or all of the electrolyte components, and may only be partially dried to a selected moisture content.
The transition metal oxide may, for example, be manganese dioxide. The manganese dioxide which may be used in the cathode mixture may be, for example, electrolytic manganese dioxide (EMD) due to the beneficial additional specific energy that this type of manganese dioxide provides relative to other forms, such as natural manganese dioxide (NMD) or chemical manganese dioxide (CMD). Furthermore, the EMD useful in batteries of the present invention may need to have a particle size and particle size distribution that may be conducive to the formation of depositable or printable cathode mixture pastes/slurries. Specifically, the EMD may be processed to remove significant large particulate components that may be considered large relative to other features such as battery internal dimensions, separator thicknesses, dispense tip diameters, stencil opening sizes, or screen mesh sizes. Particle size optimization may also be used to improve performance of the battery, for example, internal impedance and discharge capacity.
Milling is the reduction of solid materials from one average particle size to a smaller average particle size, by crushing, grinding, cutting, vibrating, or other processes. Milling may also be used to free useful materials from matrix materials in which they may be embedded, and to concentrate minerals. A mill is a device that breaks solid materials into smaller pieces by grinding, crushing, or cutting. There may be several means for milling and many types of materials processed in them. Such means of milling may include: ball mill, bead mill, mortar and pestle, roller press, and jet mill among other milling alternatives. One example of milling may be jet milling. After the milling, the state of the solid is changed, for example, the particle size, the particle size disposition and the particle shape. Aggregate milling processes may also be used to remove or separate contamination or moisture from aggregate to produce “dry fills” prior to transport or structural filling. Some equipment may combine various techniques to sort a solid material into a mixture of particles whose size is bounded by both a minimum and maximum particle size. Such processing may be referred to as “classifiers” or “classification.”
Milling may be one aspect of cathode mixture production for uniform particle size distribution of the cathode mixture ingredients. Uniform particle size in a cathode mixture may assist in viscosity, rheology, electroconductivity, and other properties of a cathode. Milling may assist these properties by controlling agglomeration, or a mass collection, of the cathode mixture ingredients. Agglomeration—the clustering of disparate elements, which in the case of the cathode mixture, may be carbon allotropes and transition metal oxides—may negatively affect the filling process by leaving voids.
Also, filtration may be another important step for the removal of agglomerated or unwanted particles. Unwanted particles may include over-sized particles, contaminates, or other particles not explicitly accounted for in the preparation process. Filtration may be accomplished by means such as filter-paper filtration, vacuum filtration, chromatography, microfiltration, and other means of filtration.
In some examples, EMD may have an average particle size of 7 microns with a large particle content that may contain particulates up to about 70 microns. In alternative examples, the EMD may be sieved, further milled, or otherwise separated or processed to limit large particulate content to below a certain threshold, for example, 25 microns or smaller.
The cathode may also comprise silver dioxide or nickel oxyhydroxide. Such materials may offer increased capacity and less decrease in loaded voltage during discharge relative to manganese dioxide, both desirable properties in a battery. Batteries based on these cathodes may have current examples present in industry and literature. A novel microbattery utilizing a silver dioxide cathode may include a biocompatible electrolyte, for example, one comprising zinc chloride and/or ammonium chloride instead of potassium hydroxide.
Some examples of the cathode mixture may include a polymeric binder. The binder may serve a number of functions in the cathode mixture. The primary function of the binder may be to create a sufficient inter-particle electrical network between EMD particles and carbon particles. A secondary function of the binder may be to facilitate mechanical adhesion and electrical contact to the cathode current collector. A third function of the binder may be to influence the rheological properties of the cathode mixture for advantageous dispensing and/or stenciling/screening. Still, a fourth function of the binder may be to enhance the electrolyte uptake and distribution within the cathode.
The choice of the binder polymer as well as the amount to be used may be beneficial to the function of the cathode in the electrochemical cell of the present invention. If the binder polymer is too soluble in the electrolyte to be used, then the primary function of the binder—electrical continuity—may be drastically impacted to the point of cell non-functionality. On the contrary, if the binder polymer is insoluble in the electrolyte to be used, portions of EMD may be ionically insulated from the electrolyte, resulting in diminished cell performance such as reduced capacity, lower open circuit voltage, and/or increased internal resistance.
The binder may be hydrophobic; it may also be hydrophilic. Examples of binder polymers useful for the present invention comprise PVP, polyisobutylene (PIB), rubbery triblock copolymers comprising styrene end blocks such as those manufactured by Kraton Polymers, styrene-butadiene latex block copolymers, polyacrylic acid, hydroxyethylcellulose, carboxymethylcellulose, fluorocarbon solids such as polytetrafluoroethylene, among others.
A solvent may be one component of the cathode mixture. A solvent may be useful in wetting the cathode mixture, which may assist in the particle distribution of the mixture. One example of a solvent may be toluene. Also, a surfactant may be useful in wetting, and thus distribution, of the cathode mixture. One example of a surfactant may be a detergent, such as Triton™ QS-44. Triton™ QS-44 may assist in the dissociation of aggregated ingredients in the cathode mixture, allowing for a more uniform distribution of the cathode mixture ingredients.
A conductive carbon may typically be used in the production of a cathode. Carbon is capable of forming many allotropes, or different structural modifications. Different carbon allotropes have different physical properties allowing for variation in electroconductivity. For example, the “springiness” of carbon black may help with adherence of a cathode mixture to a current collector. However, in energization elements requiring relatively low amounts of energy, these variations in electroconductivity may be less important than other favorable properties such as density, particle size, heat conductivity, and relative uniformity, among other properties. Examples of carbon allotropes include: diamond, graphite, graphene, amorphous carbon (informally called carbon black), buckminsterfullerenes, glassy carbon (also called vitreous carbon), carbon aerogels, and other possible forms of carbon capable of conducting electricity. One example of a carbon allotrope may be graphite.
Once the cathode mixture has been formulated and processed, the mixture may be dispensed, applied, and/or stored onto a surface such as the hydrogel separator, or the cathode current collector, or into a volume such as the cavity in the laminar structure. Filing onto a surface may result in a volume being filled over time. In order to apply, dispense, and/or store the mixture, a certain rheology may be desired to optimize the dispensing, applying, and/or storing process. For example, a less viscous rheology may allow for better filling of the cavity while at the same time possibly sacrificing particle distribution. A more viscous rheology may allow for optimized particle distribution, while possibly decreasing the ability to fill the cavity and possibly losing electroconductivity.
Anodes and Anode Corrosion Inhibitors
The anode for the laminar battery of the present invention may, for example, comprise zinc. In traditional zinc-carbon batteries, a zinc anode may take the physical form of a can in which the contents of the electrochemical cell may be contained. For the battery of the present invention, a zinc can may be an example but there may be other physical forms of zinc that may prove desirable to realize ultra-small battery designs.
Electroplating of zinc is a process type in numerous industrial uses, for example, for the protective or aesthetic coating of metal parts. In some examples, electroplated zinc may be used to form thin and conformal anodes useful for batteries of the present invention. Furthermore, the electroplated zinc may be patterned in many different configurations, depending on the design intent. A facile means for patterning electroplated zinc may be processing with the use of a photomask or a physical mask. In the case of the photomask, a photoresist may be applied to a conductive substrate, the substrate on which zinc may subsequently be plated. The desired plating pattern may be then projected to the photoresist by means of a photomask, thereby causing curing of selected areas of photoresist. The uncured photoresist may then be removed with appropriate solvent and cleaning techniques. The result may be a patterned area of conductive material that may receive an electroplated zinc treatment. While this method may provide benefit to the shape or design of the zinc to be plated, the approach may require use of available photopatternable materials, which may have constrained properties to the overall cell package construction. Consequently, new and novel methods for patterning zinc may be required to realize some designs of thin microbatteries of the present invention.
An alternative means of patterning zinc anodes may be by means of a physical mask application. A physical mask may be made by cutting desirable apertures in a film having desirable barrier and/or packaging properties. Additionally, the film may have pressure-sensitive adhesive applied to one or both sides. Finally, the film may have protective release liners applied to one or both adhesives. The release liner may serve the dual purpose of protecting the adhesive during aperture cutting and protecting the adhesive during specific processing steps of assembling the electrochemical cell, specifically the cathode filling step. In some examples, a zinc mask may comprise a PET film of approximately 100 microns thickness to which a pressure-sensitive adhesive may be applied to both sides in a layer thickness of approximately 10-20 microns. Both PSA layers may be covered by a PET release film which may have a low surface energy surface treatment, and may have an approximate thickness of 50 microns. In these examples, the multi-layer zinc mask may comprise PSA and PET film. PET films and PET/PSA zinc mask constructs as described herein may be desirably processed with precision nanosecond laser micromachining equipment, such as, Oxford Lasers E-Series laser micromachining workstation, to create ultra-precise apertures in the mask to facilitate later plating. In essence, once the zinc mask has been fabricated, one side of the release liner may be removed, and the mask with apertures may be laminated to the anode current collector and/or anode-side packaging film/foil. In this manner, the PSA creates a seal at the inside edges of the apertures, facilitating clean and precise masking of the zinc during electroplating.
The zinc mask may be placed and then electroplating of one or more metallic materials may be performed. In some examples, zinc may be electroplated directly onto an electrochemically compatible anode current collector foil such as brass. In alternate design examples where the anode side packaging comprises a polymer film or multi-layer polymer film upon which seed metallization has been applied, zinc, and/or the plating solutions used for depositing zinc, may not be chemically compatible with the underlying seed metallization. Manifestations of lack of compatibility may include film cracking, corrosion, and/or exacerbated H2 evolution upon contact with cell electrolyte. In such a case, additional metals may be applied to the seed metal to affect better overall chemical compatibility in the system. One metal that may find particular utility in electrochemical cell constructions may be indium. Indium may be widely used as an alloying agent in battery grade zinc with its primary function being to provide an anti-corrosion property to the zinc in the presence of electrolyte. In some examples, indium may be successfully deposited on various seed metallizations such as Ti—W and Au. Resulting films of 1-3 microns of indium on said seed metallization layers may be low-stress and adherent. In this manner, the anode-side packaging film and attached current collector having an indium top layer may be conformable and durable. In some examples, it may be possible to deposit zinc on an indium-treated surface, the resulting deposit may be very non-uniform and nodular. This effect may occur at lower current density settings, for example, 20 amps per square foot (ASF). As viewed under a microscope, nodules of zinc may be observed to form on the underlying smooth indium deposit. In certain electrochemical cell designs, the vertical space allowance for the zinc anode layer may be up to about 5-10 microns thick, but in some examples, lower current densities may be used for zinc plating, and the resulting nodular growths may grow taller than the desired maximum anode vertical thickness. It may be that the nodular zinc growth stems from a combination of the high overpotential of indium and the presence of an oxide layer of indium.
In some examples, higher current density DC plating may overcome the relatively large nodular growth patterns of zinc on indium surfaces. For example, 100 ASF plating conditions may result in nodular zinc, but the size of the zinc nodules may be drastically reduced compared to 20 ASF plating conditions. Furthermore, the number of nodules may be vastly greater under 100 ASF plating conditions. The resulting zinc film may ultimately coalesce to a more or less uniform layer with only some residual feature of nodular growth while meeting the vertical space allowance of about 5-10 microns.
An added benefit of indium in the electrochemical cell may be reduction of H2 formation, which may be a slow process that occurs in aqueous electrochemical cells containing zinc. The indium may be beneficially applied to one or more of the anode current collector, the anode itself as a co-plated alloying component, or as a surface coating on the electroplated zinc. For the latter case, indium surface coatings may be desirably applied in-situ by way of an electrolyte additive such as indium trichloride or indium acetate. When such additives may be added to the electrolyte in small concentrations, indium may spontaneously plate on exposed zinc surfaces as well as portions of exposed anode current collector. Zinc and similar anodes commonly used in commercial primary batteries may typically be found in sheet, rod, and paste forms. The anode of a miniature, biocompatible battery may be of similar form, e.g. thin foil, or may be plated as previously mentioned. The properties of this anode may differ significantly from those in existing batteries, for example, because of differences in contaminants or surface finish attributed to machining and plating processes. Accordingly, the electrodes and electrolyte may require special engineering to meet capacity, impedance, and shelf life requirements. For example, special plating process parameters, plating bath composition, surface treatment, and electrolyte composition may be needed to optimize electrode performance.
Polymer Electrolytes and Separators
There may be a number of different types of electrolyte formulations that are consistent with a polymer battery system. In a first class of examples, the electrolyte may be called a polymer electrolyte. In the polymer electrolyte systems the polymer backbone has regions that become involved in the conduction mechanisms of the ions. As well, these regions of the polymer backbone also facilitate the dissolution of the salt ions into the electrolyte bulk. In general, higher levels of dissolved ions in an electrolyte bulk may result in better battery performance characteristics. There may be numerous polymer and copolymer systems utilized to form the polymer backbone of the polymer electrolyte systems. In a non-limiting example polyethylene oxide (PEO) may be a common polymer constituent. The ionic conductivity of the system may improve at higher operating temperature conditions, but may be relatively poor at room temperature operating conditions. In some examples a sheet form of a polymer electrolyte may be formed including the presence of ionic species. The sheet form may be applied to an electrode with high temperature lamination processing. In other examples, the electrolyte formulation may be coated upon an electrode surface. Each of these processing options may be useful to enhance the binding of the electrolyte to electrodes which may generally result in poor adhesion under other processing conditions.
In another class of examples, plasticized polymer electrolytes may be utilized in polymer electrolyte battery systems. There may be many polymer systems that may be useful to form plasticized polymer electrolytes including as non-limiting examples PEO, poly(methyl methacrylate) (PMMA) and poly(vinyl chloride) amongst other polymer systems. The selected polymer backbone creates a two-dimensional or three-dimensional matrix into which a solvent and ionic solute system may be incorporated. The incorporation of the solvent system with dissolved ionic species “plasticizes” the polymer electrolyte. Unlike the first class of polymer electrolyte systems, the backbone of a plasticized polymer electrolyte system may not participate in the ionic transport across the electrolyte. The presence of the solvent is another difference from the first class of polymer electrolyte systems and does act to facilitate ionic transfer. In some examples, the ionic transport and related ionic conductivities of the battery structure may be higher in a plasticized polymer electrolyte system for these reasons. In some examples, the matrix of the plasticized polymer electrolyte system may improve characteristics related to the interfaces that are formed between the electrolyte and its neighboring layers. As with the first class of polymer electrolytes, the plasticized polymer electrolyte system may be laminated under high temperature conditions to improve adherence to the electrodes.
In an example, a plasticizer for use with poly (vinylidenefluoride) (PVDF) polymer or poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) copolymer electrode member compositions is propylene carbonate (PC). The effective proportion of this plasticizer, may depend not only on characteristics of a desired matrix polymer itself. The effective proportion may also be heavily influenced by the amounts and properties of other components of the composition, such as the volume and particle size of the active electrode material. For example, an effective amount of PC in a positive electrode formulation with PVDF-HFP may vary from about 60 percent to 300 percent by weight of the electrode matrix polymer component. Thus, in view of the numerous composition variables that are adjustable, the amount of plasticizer in any formulation may be determined empirically in the rather broad range of effective amounts and may depend upon use conditions or on tested electrical results.
In another exemplary class of electrolyte systems, gel electrolyte systems may be another type of electrolyte system used in polymer electrolyte batteries. A gel is a type of polymerization product that has different properties than a solidified polymer network. Gels consist of a solid three-dimensional network. The network typically may be formed by a copolymerization of branched monomers. The three dimensional network spans a volume of a liquid and binds it in place through surface tension effects. There may be numerous polymer systems that may form a gel electrolyte system such as PMMA, polyacrylonitrile (PAN), poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) and numerous other examples. The gel electrolytes may typically exhibit high ionic conductivity. High temperature lamination may be used to affix the gel polymer electrolyte to electrode surfaces with good adhesion characteristics. After the high temperature lamination processing, an electrolyte composition may be added to the attached gel polymer background much as a sponge absorbs a liquid composition.
The various classes of polymer electrolyte layers may be used in examples of polymer electrolyte batteries. Given a system including a type of anode material, ions consistent with transport of the anode material away from the anode may be included in the electrolyte as it is formed or in some examples, such as with the gel polymer electrolyte system, added later. The polymer network of each of the classes creates a layer that may act as a separator for the batteries as well.
In an example, a polymer electrolyte/separator film may be prepared by casting a portion of a coating composition onto a polished silicon wafer using a common spin-coating apparatus operated at a desired speed, such as 600 rpm, for a desired time, such as for 2 sec, to obtain a film of a desired thickness and uniformity. The film may be dried at room temperature for an appropriate time, such as for about 10 minutes within the confines of the coating apparatus. The coating composition may be prepared by suspending about 1.5 g of an 88:12 VDF:HFP copolymer of about 380×103 MW Kynar FLEX 2801 in about 9 g of anhydrous tetrohydrofuran (THF) and adding to this mixture about 1.5 g of a 1M solution of zinc acetate, or other appropriate electrolyte salts, in a 1:1 mixture by weight of ethylene carbonate (EC):propylene carbonate (PC). The completed mixture may be warmed to an elevated temperature, such as about 60 degrees C. for a period of time, such as 30 minutes, to facilitate dissolution. Occasional agitation of the solution may help to maintain the solution's fluidity. The resulting film may be used as a polymer electrolyte film according to the various examples to form battery cells presented in this discussion.
It may be useful in some examples to create a porous membrane that is made from a polymer backbone which is then impregnated with electrolyte. In a non-limiting example, a casting solution may be formed by mixing a roughly two-to-one ratio of poly(vinylidene fluoride) (PVDF) and poly(dimethylsiloxane) (PDMS) into a solvent mixture comprising N—N Dimethyl Acetamide (DMAc) and glycerol. The ratio of the DMAc to glycerol may be varied and may affect characteristics such as the porosity of the resulting separator layer. An excess of the solvent mixture may be used to allow for the shrinkage of the resulting layer in the cavity to form a thin separator layer. The resulting solution may be cast upon an electrolyte, rolled into a sheet, or extruded into a shape in some examples. Other manners of dispensing the casting solution may be consistent with the processes described herein. Thereafter, the structure may be immersed into a room temperature water bath for 20-40 hours to allow for the glycerol to dissolve out of the separator layer and result in a layer with a desired porosity. The polymer electrolyte layer may then be impregnated with a solution containing an appropriate solvent such as water and an electrolyte such as a zinc based salt.
Another means of producing a battery cell containing a polymer electrolyte with pores for incorporated electrolyte may be to start with a gel polymer such as a PVDF based system described above. Electrodes may be laminated to the polymer electrolyte with a heated double-roll laminator device at about 110 degrees C. and about 10 kg/cm roll pressure. After cooling, the laminate cell structure may be immersed in an appropriate solvent to extract electrode related plasticizer. In some examples, the solvent may include acetone, diethyl ether or NMP. The resulting structure may then be air dried until the surface solvent evaporates and thereafter may be placed in a circulating air oven at elevated temperature such as about 70 degrees C. for an hour or so to continue the removal of solvent, moisture and residual plasticizer. The processing may result in a well bonded work piece which may then be packaged in an hermetically sealed multilayer foil/polymer envelope in a helium atmosphere along with a measure of electrolyte such as a zinc salt dissolved in an appropriate solvent. The solvent and electrolyte may diffuse into the microporous membrane and impregnate it with electrically conductive electrolyte.
Another means of producing a battery cell containing a polymer electrolyte with pores for incorporated electrolyte may be to start with a commercial available microporous separator membrane. A laminated electrochemical battery cell may be prepared by assembling the electrodes including the cathode and the anode respectively along with a Celgard 2300 microporous separator which may contain the electrolyte. The electrodes may be laminated to the separator with a heated double-roll laminator device at about 110 degrees C. and about 10 kg/cm roll pressure.
Exemplary Illustrated Processing of Energization Element—Polymer Electrolyte
Referring to
Next at
One example of a completed cathode mixture formulation may be formed as follows. A cathode powder blend composed of 88 percent Erachem MnO2 powder, jet-milled by Hosikowa, may be combined with Super P Li carbon black, to a 5 percent composition and with Kynar 2801 PVDF to a 7 percent composition. An amount of zinc acetate may be dissolved in NMP such that when mixed with the cathode powder blend, the amount of zinc acetate is in a ratio of 1:10 for the zinc acetate mass to PVDF mass. When mixed the resulting slurry may be suspended in the NMP and this amount of NMP creates a formulation with 27 percent solids.
The resulting slurry may be mixed with a magnetic stir bar for 10 to 20 hours at a rate such as at roughly 400 rpm. The mixed slurry may be degassed. Degassing may be processed with a Thinky ARE-250 planetary centrifugal mixer at 2000 rpm for about 2 minutes.
The slurry may next be applied with a doctor blade to a thickness of about 30-80 microns. The slurry deposit may be made upon a sheet of 12.5 micron thick grade I titanium foil such as that available from Arnold Magnetics, which may be coated with a 1-3 micron thick layer of carbon. The cathode coating on the titanium foil may be dried in a heated laboratory oven for numerous hours, such as for a period of 18-24 hours where the temperature may In an example, be 50 degrees C.
Further enablement for the formulations and processing of cathode mixtures in biomedical devices may be found as set forth in U.S. patent application Ser. No. 14/746,204 filed Jun. 22, 2015, which is incorporated herein by reference.
Next, at
There may be numerous manners to apply the polymer electrolyte layer such as by spray coating, printing, or squeegee or knife edge layering Here again, the deposited layer may be dried to remove an amount of the solvent.
Referring to
In some examples the surface layer of the polymer electrolyte may have an additional amount of solvent or polymer electrolyte reapplied to aid in bonding between the polymer electrolyte and the anode layer. In other examples, the bonding process may proceed with no solvent or polymer electrolyte reapplication. There may be numerous manners to apply the zinc anode; however, in an example, a foil of zinc may be laminated to the polymer electrolyte. In some examples, the lamination process will apply heat and pressure while evacuating the gas phase around the region being applied. Lamination of electrodes with coated polymer electrolytes may be carried out between heated pressure rollers at a temperature and pressure level which does not significantly affect the polymer structure. For example, lamination may be carried out between 70 degrees C. and 130 degrees C., preferably between 100 degrees C. and 125 degrees C., and more preferably at about 110 degrees C. The pressure, in some examples, may be a linear pressure load between about 20 and 180 kilograms per centimeter (kg/cm), preferably between about 55 and 125 kg/cm. It may be apparent that the optimum temperature and pressure conditions will depend on the particular laminator construction and mode of its use.
In some examples, rolls of material may be processed in the manners described in
Referring to
The function of the formed battery as well as its biocompatibility may depend strongly on encapsulating the polymer electrolyte battery structure in manners that isolate the battery structure from its environment while allowing battery contacts to be made to devices outside the encapsulation. The various means of encapsulation as have been discussed in sections on sealing and packaging heretofore may be used to perform the encapsulating step 460 illustrated in
Further enablement for the formulations and processing of anodes in biomedical devices may be found as set forth in U.S. patent application Ser. No. 14/827,613 filed Aug. 17, 2015, which is incorporated herein by reference.
In some examples, a pair of encapsulating films may be used to surround the battery element. The films may be precut in various locations to expose the regions where collector contacts are located. Thereafter, the two films may be brought around the battery element and joined together is a seal. In some examples, the seal may be formed by thermally treating the sealing layers to flow into each other and form a seal. In other related examples, a laser may be used to form a seal. There may be other sealing materials, such as glues and adhesives that may be added upon the formed seal to improve the seal integrity.
There may be other post processing that is performed upon the battery elements. In examples where rolls of material are treated to form the encapsulated battery elements, a subsequent process may singulate or cut out the battery elements from the resulting sheet that is formed. A laser may be used to cut out the batteries. In other examples a die may be used to punch out the battery elements with a specifically shaped cutting surface. As mentioned previously, some singulated battery designs may be rectilinear whereas other designs may be curvilinear, matching a curve of a contact lens insert piece for example.
Exemplary Performance Results for Polymer Electrolyte Batteries.
Exemplary samples of polymer electrolyte batteries have been formed utilizing the processing example referred to in relation to
A Cavity Based Approach to Polymer Primary Batteries
A cavity based laminate approach may provide means to manufacture polymer batteries of the type presented herein, an approach which may be particularly useful for batteries of curvilinear shape.
Further enablement for the cavity based devices and processing biomedical devices may be found as set forth in U.S. patent application Ser. No. 14/746,160 filed Jun. 22, 2015, which is incorporated herein by reference.
The cavity may allow for features that provide registration marks for the alignment of the various processing steps. Additionally, for processing involving knife edge layer deposition, the presence of an aligned cavity may facilitate efficient utilization of chemicals and foils. The laminate structure may also support the contact films regardless of the thickness of such films for a particular battery design.
The laminate layers used to form a cavity may also be subjected to punch type singulation in multiple steps. For example, the desired boundary region around a battery element may be cut out with a punch where the collector and anode contacts are not singulated. Thus, the batteries may be encapsulated in sheet form. This may be of particular value for curvilinear shaped battery elements.
Referring to
Beginning with
Polyisobutylene (PIB) may be a commercially-available material that may be formulated into PSA compositions meeting many if not all requirements. Furthermore, PIB may be an excellent barrier sealant with very low water absorbance and low oxygen permeability. An example of PIB useful in the examples of the present invention may be Oppanol® B15 by BASF Corporation.
Next,
During later processing, the periphery 601 of the device may be enveloped with sealing layers. The layers may enclose the components of the biocompatible energization element from the top and the bottom; the anode and cathode collector contacts are not sealed at the ends so that external contact may be made.
Referring to
Referring to
Referring to
Well-designed sealing structures and the associated sealing materials may improve biocompatibility of the energization device as materials may be maintained in zones that have no interaction with biologically contacting surfaces. In addition, well-formed seals may improve the ability of the battery to receive forces of various kinds and not rupture exposing the contents of the cavity or cavities of a battery.
The polymer electrolyte composition inherently improves biocompatibility of the energization element as well as its resiliency to effect from external diffusion into the battery. The solid-state aspect of the polymer backbone and its containment of ions whether in solvent or not minimizes forces that may cause loss of electrolyte by diffusion out of the device.
The examples herein have discussed polymer electrolyte primary battery devices which have been formed according to the various manners described in the present invention. At a higher level, in some examples, these battery devices may be incorporated into biomedical devices such as ophthalmic lenses as discussed in reference to
In the examples of contact lenses, the battery device may be connected to an electroactive element where the battery resides within an insert with the electroactive element or outside the insert. The insert, the electroactive element and the battery as a whole may be encapsulated with appropriate hydrogel formulations to afford biocompatibility of the biomedical device. In some examples, the hydrogel may contain formulations that retain the wetting aspects of the encapsulating hydrogel. Thus, numerous aspects of biocompatibility related to the shell that contains components are relevant to the biocompatibility of the biomedical device as a whole. These aspects may include oxygen permeability, wettability, chemical compatibility, and solute permeability as a few non-limiting examples.
The battery and the insert may interact with wet environments, and therefore the strategies for biocompatibility of the battery alone are very relevant to the overall biomedical device. In some examples it may be envisioned that seals prevent ingress and egress of materials into the insert and into the battery device. In these examples, the design of the hydrogel encapsulating layer may be altered to allow wettability and permeability around the insert and the battery device, for example. In some other examples, gas evolution may allow some gas species to pass through battery devices, through hydrogel encapsulation and into the biomedical device environment. The portions of a biomedical device, whether for an ophthalmic device or for other devices, that contact fluids and cell layers of a user may be designed for matching of the interface layers of the biomedical device to the biologic environment that the biomedical device will reside in or on.
External Encapsulating Layers of Electroactive Devices and Batteries
In some examples, a preferred encapsulating material that may form an encapsulating layer in a biomedical device may include a silicone containing component. In an example, this encapsulating layer may form a lens skirt of a contact lens. A “silicone-containing component” is one that contains at least one [—Si—O—] unit in a monomer, macromer or prepolymer. Preferably, the total Si and attached O are present in the silicone-containing component in an amount greater than about 20 weight percent, and more preferably greater than 30 weight percent of the total molecular weight of the silicone-containing component. Useful silicone-containing components preferably comprise polymerizable functional groups such as acrylate, methacrylate, acrylamide, methacrylamide, vinyl, N-vinyl lactam, N-vinylamide, and styryl functional groups.
In some examples, the ophthalmic lens skirt, also called an insert-encapsulating layer, that surrounds the insert may be comprised of standard hydrogel ophthalmic lens formulations. Exemplary materials with characteristics that may provide an acceptable match to numerous insert materials may include, the Narafilcon family (including Narafilcon A and Narafilcon B), and the Etafilcon family (including Etafilcon A). A more technically inclusive discussion follows on the nature of materials consistent with the art herein. One ordinarily skilled in the art may recognize that other material other than those discussed may also form an acceptable enclosure or partial enclosure of the sealed and encapsulated inserts and should be considered consistent and included within the scope of the claims.
Suitable silicone containing components include compounds of Formula I
where
R1 is independently selected from monovalent reactive groups, monovalent alkyl groups, or monovalent aryl groups, any of the foregoing which may further comprise functionality selected from hydroxy, amino, oxa, carboxy, alkyl carboxy, alkoxy, amido, carbamate, carbonate, halogen or combinations thereof; and monovalent siloxane chains comprising 1-100 Si—O repeat units which may further comprise functionality selected from alkyl, hydroxy, amino, oxa, carboxy, alkyl carboxy, alkoxy, amido, carbamate, halogen or combinations thereof;
where b=0 to 500, where it is understood that when b is other than 0, b is a distribution having a mode equal to a stated value;
wherein at least one R1 comprises a monovalent reactive group, and in some examples between one and 3 R1 comprise monovalent reactive groups.
As used herein “monovalent reactive groups” are groups that may undergo free radical and/or cationic polymerization. Non-limiting examples of free radical reactive groups include (meth)acrylates, styryls, vinyls, vinyl ethers, C1-6alkyl(meth)acrylates, (meth)acrylamides, C1-6alkyl(meth)acrylamides, N-vinyllactams, N-vinylamides, C2-5alkenyls, C2-5alkenylphenyls, C2-5alkenylnaphthyls, C2-6alkenylphenylC1-6alkyls, O-vinylcarbamates and O-vinylcarbonates. Non-limiting examples of cationic reactive groups include vinyl ethers or epoxide groups and mixtures thereof. In one embodiment the free radical reactive groups comprises (meth)acrylate, acryloxy, (meth)acrylamide, and mixtures thereof.
Suitable monovalent alkyl and aryl groups include unsubstituted monovalent C1 to C16alkyl groups, C6-C14 aryl groups, such as substituted and unsubstituted methyl, ethyl, propyl, butyl, 2-hydroxypropyl, propoxypropyl, polyethyleneoxypropyl, combinations thereof and the like.
In one example, b is zero, one R1 is a monovalent reactive group, and at least 3 R1 are selected from monovalent alkyl groups having one to 16 carbon atoms, and in another example from monovalent alkyl groups having one to 6 carbon atoms. Non-limiting examples of silicone components of this embodiment include 2-methyl-,2-hydroxy-3-[3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]propoxy]propyl ester (“SiGMA”),
In another example, b is 2 to 20, 3 to 15 or in some examples 3 to 10; at least one terminal R1 comprises a monovalent reactive group and the remaining R1 are selected from monovalent alkyl groups having 1 to 16 carbon atoms, and in another embodiment from monovalent alkyl groups having 1 to 6 carbon atoms. In yet another embodiment, b is 3 to 15, one terminal R1 comprises a monovalent reactive group, the other terminal R1 comprises a monovalent alkyl group having 1 to 6 carbon atoms and the remaining R1 comprise monovalent alkyl group having 1 to 3 carbon atoms. Non-limiting examples of silicone components of this embodiment include (mono-(2-hydroxy-3-methacryloxypropyl)-propyl ether terminated polydimethylsiloxane (400-1000 MW)) (“OH-mPDMS”), monomethacryloxypropyl terminated mono-n-butyl terminated polydimethylsiloxanes (800-1000 MW), (“mPDMS”).
In another example, b is 5 to 400 or from 10 to 300, both terminal R1 comprise monovalent reactive groups and the remaining R1 are independently selected from monovalent alkyl groups having 1 to 18 carbon atoms, which may have ether linkages between carbon atoms and may further comprise halogen.
In one example, where a silicone hydrogel lens is desired, the lens of the present invention will be made from a reactive mixture comprising at least about 20 and preferably between about 20 and 70% wt silicone containing components based on total weight of reactive monomer components from which the polymer is made.
In another embodiment, one to four R1 comprises a vinyl carbonate or carbamate of the formula:
wherein: Y denotes O—, S— or NH—;
R denotes, hydrogen or methyl; d is 1, 2, 3 or 4; and q is 0 or 1.
The silicone-containing vinyl carbonate or vinyl carbamate monomers specifically include: 1,3-bis[4-(vinyloxycarbonyloxy)but-1-yl]tetramethyl-disiloxane; 3-(vinyloxycarbonylthio) propyl-[tris (trimethylsiloxy)silane]; 3-[tris(trimethylsiloxy)silyl] propyl allyl carbamate; 3-[tris(trimethylsiloxy)silyl] propyl vinyl carbamate; trimethylsilylethyl vinyl carbonate; trimethylsilylmethyl vinyl carbonate, and
Where biomedical devices with modulus below about 200 are desired, only one R1 shall comprise a monovalent reactive group and no more than two of the remaining R1 groups will comprise monovalent siloxane groups.
Another class of silicone-containing components includes polyurethane macromers of the following formulae:
(*D*A*D*G)a*D*D*E1;
E(*D*G*D*A)a*D*G*D*E1 or;
E(*D*A*D*G)a*D*A*D*E1 Formulae IV-VI
wherein:
D denotes an alkyl diradical, an alkyl cycloalkyl diradical, a cycloalkyl diradical, an aryl diradical or an alkylaryl diradical having 6 to 30 carbon atoms,
G denotes an alkyl diradical, a cycloalkyl diradical, an alkyl cycloalkyl diradical, an aryl diradical or an alkylaryl diradical having 1 to 40 carbon atoms and which may contain ether, thio or amine linkages in the main chain;
* denotes a urethane or ureido linkage;
a is at least 1;
A denotes a divalent polymeric radical of formula:
R11 independently denotes an alkyl or fluoro-substituted alkyl group having 1 to 10 carbon atoms, which may contain ether linkages between carbon atoms; y is at least 1; and p provides a moiety weight of 400 to 10,000; each of E and E1 independently denotes a polymerizable unsaturated organic radical represented by formula:
wherein: R5 is hydrogen or methyl; R13 is hydrogen, an alkyl radical having 1 to 6 carbon atoms, or a —CO—Y—R15 radical wherein Y is —O—, Y—S— or —NH—; R14 is a divalent radical having 1 to 5 carbon atoms; X denotes —CO— or —OCO—; Z denotes —O— or —NH—; Ar denotes an aromatic radical having 6 to 30 carbon atoms; w is 0 to 6; x is 0 or 1; y is 0 or 1; and z is 0 or 1.
A preferred silicone-containing component is a polyurethane macromer represented by the following formula:
wherein R16 is a diradical of a diisocyanate after removal of the isocyanate group, such as the diradical of isophorone diisocyanate. Another suitable silicone containing macromer is compound of formula X (in which x+y is a number in the range of 10 to 30) formed by the reaction of fluoroether, hydroxy-terminated polydimethylsiloxane, isophorone diisocyanate and isocyanatoethylmethacrylate.
Other silicone containing components suitable for use in this invention include macromers containing polysiloxane, polyalkylene ether, diisocyanate, polyfluorinated hydrocarbon, polyfluorinated ether and polysaccharide groups; polysiloxanes with a polar fluorinated graft or side group having a hydrogen atom attached to a terminal difluoro-substituted carbon atom; hydrophilic siloxanyl methacrylates containing ether and siloxanyl linkanges and crosslinkable monomers containing polyether and polysiloxanyl groups. In some examples, the polymer backbone may have zwitterions incorporated into it. These zwitterions may exhibit charges of both polarity along the polymer chain when the material is in the presence of a solvent. The presence of the zwitterions may improve wettability of the polymerized material. In some examples, any of the foregoing polysiloxanes may also be used as an encapsulating layer in the present invention.
Biomedical Devices Using Batteries with Polymer Electrolytes
The biocompatible batteries may be used in biocompatible devices such as, for example, implantable electronic devices, such as pacemakers and micro-energy harvesters, electronic pills for monitoring and/or testing a biological function, surgical devices with active components, ophthalmic devices, microsized pumps, defibrillators, stents, and the like.
Specific examples have been described to illustrate sample embodiments for the cathode mixture for use in biocompatible batteries. These examples are for said illustration and are not intended to limit the scope of the claims in any manner. Accordingly, the description is intended to embrace all examples that may be apparent to those skilled in the art.
Although shown and described is what is believed to be the most practical and preferred embodiments, it is apparent that departures from specific designs and methods described and shown will suggest themselves to those skilled in the art and may be used without departing from the spirit and scope of the invention. The present invention is not restricted to the particular constructions described and illustrated, but should be constructed to cohere with all modifications that may fall within the scope of the appended claims.
This application is a division of U.S. patent application Ser. No. 14/949,963 filed on Nov. 24, 2015, which is a Continuation in Part of U.S. patent application Ser. No. 14/827,589 filed on Aug. 17, 2015, which claims the benefit of U.S. Provisional Application No. 62/040,178 filed Aug. 21, 2014.
Number | Name | Date | Kind |
---|---|---|---|
754804 | Pratt | Mar 1904 | A |
787657 | Quimby | Apr 1905 | A |
1390765 | Cox | Sep 1921 | A |
1559562 | Edison | Nov 1925 | A |
2871281 | Moulton et al. | Jan 1959 | A |
2991324 | Vogt | Jul 1961 | A |
3291296 | Lemkelde | Dec 1966 | A |
3306776 | Tamminen | Feb 1967 | A |
3353998 | Langguth et al. | Nov 1967 | A |
3375136 | Biggar | Mar 1968 | A |
3431327 | George | Mar 1969 | A |
3642539 | Kawakami | Feb 1972 | A |
4118860 | Buckler | Oct 1978 | A |
4125686 | Kinsman | Nov 1978 | A |
4254191 | Kniazzeh | Mar 1981 | A |
4268132 | Neefe | May 1981 | A |
4294891 | Flitsch et al. | Oct 1981 | A |
4408023 | Gould et al. | Oct 1983 | A |
4522897 | Walsh | Jun 1985 | A |
4592944 | Clark et al. | Jun 1986 | A |
4601545 | Kern | Jul 1986 | A |
4772517 | Muenstedt et al. | Sep 1988 | A |
4783237 | Aine et al. | Nov 1988 | A |
4787903 | Grendahl | Nov 1988 | A |
4816031 | Pfoff | Mar 1989 | A |
4846031 | Voytilla et al. | Jul 1989 | A |
4921728 | Takiguchi et al. | May 1990 | A |
4939000 | Dodds et al. | Jul 1990 | A |
4977046 | Bleszinski, Jr. | Dec 1990 | A |
5112703 | Koenig | May 1992 | A |
5168018 | Yoshizawa et al. | Dec 1992 | A |
5219497 | Blum | Jun 1993 | A |
5227805 | King et al. | Jul 1993 | A |
5358539 | Dawson | Oct 1994 | A |
5430693 | Ganter et al. | Jul 1995 | A |
5435874 | Takeuchi et al. | Jul 1995 | A |
5478420 | Gauci et al. | Dec 1995 | A |
5492782 | Higley | Feb 1996 | A |
5540741 | Gozdz et al. | Jul 1996 | A |
5549988 | Reichert et al. | Aug 1996 | A |
5568353 | Bai et al. | Oct 1996 | A |
5596567 | Demuro et al. | Jan 1997 | A |
5600180 | Kusaka et al. | Feb 1997 | A |
5607485 | Gozdz et al. | Mar 1997 | A |
5682210 | Weirich | Oct 1997 | A |
5712721 | Large | Jan 1998 | A |
5792574 | Mitate et al. | Aug 1998 | A |
5928808 | Eshraghi | Jul 1999 | A |
6004691 | Eshraghi | Dec 1999 | A |
6134188 | Ganter et al. | Oct 2000 | A |
6168884 | Neudecker et al. | Jan 2001 | B1 |
6217171 | Auten et al. | Apr 2001 | B1 |
6242132 | Neudecker et al. | Jun 2001 | B1 |
6269266 | Chiao et al. | Jul 2001 | B1 |
6273904 | Chen | Aug 2001 | B1 |
6277520 | Moutsios | Aug 2001 | B1 |
6282668 | Neudecker | Aug 2001 | B1 |
6316142 | Delnick | Nov 2001 | B1 |
6322589 | Cumming | Nov 2001 | B1 |
6355501 | Fung et al. | Mar 2002 | B1 |
6364482 | Roffman et al. | Apr 2002 | B1 |
6379835 | Kucherovsky | Apr 2002 | B1 |
6434429 | Kraus et al. | Aug 2002 | B1 |
6447669 | Lain | Sep 2002 | B1 |
6470215 | Kraus et al. | Oct 2002 | B1 |
6477410 | Henley et al. | Nov 2002 | B1 |
6490487 | Kraus et al. | Dec 2002 | B1 |
6517974 | Kobayashi et al. | Feb 2003 | B1 |
6544171 | Beetz et al. | Apr 2003 | B2 |
6553262 | Lang et al. | Apr 2003 | B1 |
6574509 | Kraus et al. | Jun 2003 | B1 |
6599778 | Pogge et al. | Jul 2003 | B2 |
6622043 | Kraus et al. | Sep 2003 | B1 |
6638304 | Azar | Oct 2003 | B2 |
6770176 | Benson et al. | Aug 2004 | B2 |
6852254 | Spaulding et al. | Feb 2005 | B2 |
6893395 | Kraus et al. | May 2005 | B1 |
6924036 | Polastri et al. | Aug 2005 | B2 |
7324287 | Gollier | Jan 2008 | B1 |
7404636 | Blum et al. | Jul 2008 | B2 |
7407728 | Wenneis et al. | Aug 2008 | B2 |
7410700 | Wang | Aug 2008 | B2 |
7423801 | Kaufman et al. | Sep 2008 | B2 |
7548040 | Lee et al. | Jun 2009 | B2 |
7581124 | Jacobson et al. | Aug 2009 | B1 |
7755583 | Meredith | Jul 2010 | B2 |
7794511 | Johnson et al. | Sep 2010 | B2 |
7794643 | Watanabe et al. | Sep 2010 | B2 |
7798301 | Keating et al. | Sep 2010 | B2 |
7876573 | Motohara et al. | Jan 2011 | B2 |
7901811 | Hambitzer et al. | Mar 2011 | B2 |
7959769 | Zhang et al. | Jun 2011 | B2 |
7968991 | Wong et al. | Jun 2011 | B2 |
7985500 | Root | Jul 2011 | B2 |
7991934 | Yao et al. | Aug 2011 | B2 |
7993773 | Snyder et al. | Aug 2011 | B2 |
8014164 | Yang | Sep 2011 | B2 |
8014166 | Yazdani | Sep 2011 | B2 |
8061130 | Shibasaki | Nov 2011 | B2 |
8309397 | Shim, II et al. | Nov 2012 | B2 |
8343216 | Brady et al. | Jan 2013 | B2 |
8433409 | Martin et al. | Apr 2013 | B2 |
8579435 | Blum et al. | Nov 2013 | B2 |
8857983 | Pugh et al. | Oct 2014 | B2 |
8950862 | Pugh et al. | Feb 2015 | B2 |
9102111 | Pugh et al. | Aug 2015 | B2 |
9110310 | Pugh et al. | Aug 2015 | B2 |
9134546 | Pugh et al. | Sep 2015 | B2 |
9195075 | Pugh et al. | Nov 2015 | B2 |
9233513 | Pugh et al. | Jan 2016 | B2 |
9296158 | Pugh et al. | Mar 2016 | B2 |
9601780 | Kato | Mar 2017 | B2 |
9746695 | Flitsch et al. | Aug 2017 | B2 |
20020009649 | Sato et al. | Jan 2002 | A1 |
20020041027 | Sugizaki | Apr 2002 | A1 |
20020041999 | Moutsios et al. | Apr 2002 | A1 |
20020058151 | Uchikoba et al. | May 2002 | A1 |
20020110728 | Gozdz et al. | Aug 2002 | A1 |
20020162631 | Wien et al. | Nov 2002 | A1 |
20030002160 | Johnson et al. | Jan 2003 | A1 |
20030021601 | Goldstein | Jan 2003 | A1 |
20030059526 | Benson et al. | Mar 2003 | A1 |
20030064292 | Neudecker et al. | Apr 2003 | A1 |
20030068559 | Armstrong et al. | Apr 2003 | A1 |
20030069666 | Nagler | Apr 2003 | A1 |
20030137922 | Ro et al. | Jul 2003 | A1 |
20030146414 | Ndzebet | Aug 2003 | A1 |
20030165744 | Schubert | Sep 2003 | A1 |
20030207978 | Yadav | Nov 2003 | A1 |
20040000732 | Spaulding et al. | Jan 2004 | A1 |
20040027536 | Blum et al. | Feb 2004 | A1 |
20040062985 | Aamodt | Apr 2004 | A1 |
20040084790 | Blum et al. | May 2004 | A1 |
20040091779 | Kang | May 2004 | A1 |
20040131925 | Jenson et al. | Jul 2004 | A1 |
20040239784 | Ibe | Dec 2004 | A1 |
20040239874 | Swab et al. | Dec 2004 | A1 |
20040241528 | Sarpeshkar et al. | Dec 2004 | A1 |
20040242794 | Kanazawa | Dec 2004 | A1 |
20040258982 | Coffey | Dec 2004 | A1 |
20050009959 | Bair et al. | Jan 2005 | A1 |
20050031959 | Kato et al. | Feb 2005 | A1 |
20050036109 | Blum et al. | Feb 2005 | A1 |
20050069760 | Somatomo | Mar 2005 | A1 |
20050099594 | Blum et al. | May 2005 | A1 |
20050147877 | Tarnowski et al. | Jul 2005 | A1 |
20050185135 | Blum et al. | Aug 2005 | A1 |
20050208381 | Boulton | Sep 2005 | A1 |
20050231377 | Sunderman et al. | Oct 2005 | A1 |
20050231677 | Meredith | Oct 2005 | A1 |
20050255079 | Santerre et al. | Nov 2005 | A1 |
20050271796 | Neudecker et al. | Dec 2005 | A1 |
20060001137 | Hundt et al. | Jan 2006 | A1 |
20060024567 | Heller et al. | Feb 2006 | A1 |
20060026201 | Cabillic | Feb 2006 | A1 |
20060026505 | Mani et al. | Feb 2006 | A1 |
20060038536 | Lafollette et al. | Feb 2006 | A1 |
20060065989 | Druffel et al. | Mar 2006 | A1 |
20060066808 | Blum et al. | Mar 2006 | A1 |
20060095128 | Blum et al. | May 2006 | A1 |
20060099496 | Aamodt | May 2006 | A1 |
20060127761 | Phillips et al. | Jun 2006 | A1 |
20060152912 | Karrer et al. | Jul 2006 | A1 |
20060166088 | Hokanson et al. | Jul 2006 | A1 |
20060181676 | Tucker et al. | Aug 2006 | A1 |
20060202359 | Chen | Sep 2006 | A1 |
20060204839 | Richards et al. | Sep 2006 | A1 |
20060210877 | Manko et al. | Sep 2006 | A1 |
20060226556 | Kurita et al. | Oct 2006 | A1 |
20060234121 | Kim et al. | Oct 2006 | A1 |
20060255441 | Ohta | Nov 2006 | A1 |
20060265058 | Silvestrini | Nov 2006 | A1 |
20060267167 | McCain | Nov 2006 | A1 |
20060267768 | Sabeta | Nov 2006 | A1 |
20070052876 | Kaufman et al. | Mar 2007 | A1 |
20070090869 | Adewole et al. | Apr 2007 | A1 |
20070125644 | Heller | Jun 2007 | A1 |
20070128420 | Maghribi | Jun 2007 | A1 |
20070141463 | Stevanovic | Jun 2007 | A1 |
20070156184 | Root | Jul 2007 | A1 |
20070159562 | Haddock et al. | Jul 2007 | A1 |
20070231575 | Watanabe et al. | Oct 2007 | A1 |
20070242171 | Mori | Oct 2007 | A1 |
20070242173 | Blum et al. | Oct 2007 | A1 |
20070285385 | Albert et al. | Dec 2007 | A1 |
20080002149 | Fritsch et al. | Jan 2008 | A1 |
20080020127 | Whiteford et al. | Jan 2008 | A1 |
20080020874 | Huang et al. | Jan 2008 | A1 |
20080024848 | Kawano et al. | Jan 2008 | A1 |
20080024858 | Kaufman et al. | Jan 2008 | A1 |
20080042227 | Asano et al. | Feb 2008 | A1 |
20080048180 | Abe et al. | Feb 2008 | A1 |
20080058652 | Payne | Mar 2008 | A1 |
20080079396 | Yamazaki et al. | Apr 2008 | A1 |
20080086206 | Nasiatka et al. | Apr 2008 | A1 |
20080101267 | Kurokawa | May 2008 | A1 |
20080187824 | Tomantschger | Aug 2008 | A1 |
20080208335 | Blum et al. | Aug 2008 | A1 |
20080212007 | Meredith | Sep 2008 | A1 |
20080241683 | Fensore et al. | Oct 2008 | A1 |
20080261390 | Chen et al. | Oct 2008 | A1 |
20080280184 | Yao et al. | Nov 2008 | A1 |
20090002012 | Doong et al. | Jan 2009 | A1 |
20090003383 | Watanabe et al. | Jan 2009 | A1 |
20090033863 | Blum et al. | Feb 2009 | A1 |
20090042065 | Simon et al. | Feb 2009 | A1 |
20090042066 | Simon et al. | Feb 2009 | A1 |
20090046349 | Haddock et al. | Feb 2009 | A1 |
20090050267 | Conlon et al. | Feb 2009 | A1 |
20090057289 | Williams | Mar 2009 | A1 |
20090079641 | Cruzado et al. | Mar 2009 | A1 |
20090091818 | Haddock et al. | Apr 2009 | A1 |
20090092903 | Johnson | Apr 2009 | A1 |
20090098281 | Zhang | Apr 2009 | A1 |
20090105817 | Bretthauer et al. | Apr 2009 | A1 |
20090142656 | Nathan et al. | Jun 2009 | A1 |
20090175016 | Legen et al. | Jul 2009 | A1 |
20090182426 | Von et al. | Jul 2009 | A1 |
20090202899 | Pyszczek | Aug 2009 | A1 |
20090204207 | Blum et al. | Aug 2009 | A1 |
20090204454 | Lagudi | Aug 2009 | A1 |
20090206498 | Tepedino, Jr. et al. | Aug 2009 | A1 |
20090243125 | Pugh et al. | Oct 2009 | A1 |
20090244477 | Pugh et al. | Oct 2009 | A1 |
20090256977 | Haddock et al. | Oct 2009 | A1 |
20090269392 | Tauber et al. | Oct 2009 | A1 |
20090278503 | Hundt et al. | Nov 2009 | A1 |
20090288405 | Shibasaki | Nov 2009 | A1 |
20100001926 | Amirparviz et al. | Jan 2010 | A1 |
20100002190 | Clarke et al. | Jan 2010 | A1 |
20100062342 | Li | Mar 2010 | A1 |
20100072643 | Pugh | Mar 2010 | A1 |
20100073534 | Yano et al. | Mar 2010 | A1 |
20100076553 | Pugh | Mar 2010 | A1 |
20100078837 | Pugh | Apr 2010 | A1 |
20100078838 | Pugh et al. | Apr 2010 | A1 |
20100079724 | Pugh et al. | Apr 2010 | A1 |
20100103368 | Amirparviz et al. | Apr 2010 | A1 |
20100103369 | Pugh et al. | Apr 2010 | A1 |
20100109175 | Pugh et al. | May 2010 | A1 |
20100110372 | Pugh et al. | May 2010 | A1 |
20100149777 | Yamamoto et al. | Jun 2010 | A1 |
20100178543 | Gruner et al. | Jul 2010 | A1 |
20100211186 | Senders et al. | Aug 2010 | A1 |
20100261071 | Lopatin et al. | Oct 2010 | A1 |
20100266895 | Tucholski | Oct 2010 | A1 |
20100295135 | Masuoka et al. | Nov 2010 | A1 |
20100310932 | Leysieffer | Dec 2010 | A1 |
20110007656 | He et al. | Jan 2011 | A1 |
20110039150 | Wang et al. | Feb 2011 | A1 |
20110045112 | Pugh et al. | Feb 2011 | A1 |
20110065706 | Wensley et al. | Mar 2011 | A1 |
20110074281 | Farquhar et al. | Mar 2011 | A1 |
20110076567 | Bouillon | Mar 2011 | A1 |
20110076568 | Bouillon | Mar 2011 | A1 |
20110086077 | McCrea et al. | Apr 2011 | A1 |
20110091778 | Kambara | Apr 2011 | A1 |
20110134683 | Yamazaki et al. | Jun 2011 | A1 |
20110143225 | Sakai et al. | Jun 2011 | A1 |
20110174431 | Darmes et al. | Jul 2011 | A1 |
20110230963 | Cuevas | Sep 2011 | A1 |
20110284912 | Sekine et al. | Nov 2011 | A1 |
20110287318 | Loveness et al. | Nov 2011 | A1 |
20110311877 | Matsuda et al. | Dec 2011 | A1 |
20120024295 | Mihin | Feb 2012 | A1 |
20120026598 | Pugh et al. | Feb 2012 | A1 |
20120057244 | Pugh et al. | Mar 2012 | A1 |
20120088129 | Kaneda | Apr 2012 | A1 |
20120092612 | Binder | Apr 2012 | A1 |
20120100412 | Kwon et al. | Apr 2012 | A1 |
20120107666 | Bailey | May 2012 | A1 |
20120115041 | West | May 2012 | A1 |
20120156259 | Rau et al. | Jun 2012 | A1 |
20120162600 | Pugh | Jun 2012 | A1 |
20120171599 | Nakagawa et al. | Jul 2012 | A1 |
20120188467 | Escuti et al. | Jul 2012 | A1 |
20120196187 | Fujinami et al. | Aug 2012 | A1 |
20120218508 | Pugh et al. | Aug 2012 | A1 |
20120234453 | Pugh et al. | Sep 2012 | A1 |
20120235277 | Pugh et al. | Sep 2012 | A1 |
20120236254 | Pugh et al. | Sep 2012 | A1 |
20120236524 | Pugh | Sep 2012 | A1 |
20120242953 | Pugh et al. | Sep 2012 | A1 |
20120245444 | Otis et al. | Sep 2012 | A1 |
20120259188 | Besling et al. | Oct 2012 | A1 |
20120282519 | Freitag et al. | Nov 2012 | A1 |
20130019540 | Magnus | Jan 2013 | A1 |
20130023005 | Chen et al. | Jan 2013 | A1 |
20130024575 | Taylor et al. | Jan 2013 | A1 |
20130034760 | Otts | Feb 2013 | A1 |
20130065122 | Chiang et al. | Mar 2013 | A1 |
20130089769 | Proctor | Apr 2013 | A1 |
20130155371 | Zhang | Jun 2013 | A1 |
20130194540 | Pugh et al. | Aug 2013 | A1 |
20130196214 | Scott | Aug 2013 | A1 |
20130215380 | Pugh et al. | Aug 2013 | A1 |
20130245754 | Blum et al. | Sep 2013 | A1 |
20130245755 | Fehr et al. | Sep 2013 | A1 |
20130266855 | Kim et al. | Oct 2013 | A1 |
20130266873 | Ishii et al. | Oct 2013 | A1 |
20130309547 | Bazzarella | Nov 2013 | A1 |
20140000101 | Pugh | Jan 2014 | A1 |
20140002788 | Otts | Jan 2014 | A1 |
20140017557 | Lockett et al. | Jan 2014 | A1 |
20140036226 | Blum et al. | Feb 2014 | A1 |
20140047742 | Schloss | Feb 2014 | A1 |
20140121557 | Gannon | May 2014 | A1 |
20140147742 | Anastas | May 2014 | A1 |
20140148899 | Fehr et al. | May 2014 | A1 |
20140227574 | Savinell et al. | Aug 2014 | A1 |
20140272522 | Pugh et al. | Sep 2014 | A1 |
20140306361 | Pugh et al. | Oct 2014 | A1 |
20140323968 | Rogers et al. | Oct 2014 | A1 |
20140342247 | Kishida et al. | Nov 2014 | A1 |
20150212339 | Pugh et al. | Jul 2015 | A1 |
20150214567 | Etzkorn | Jul 2015 | A1 |
20150287960 | Andry | Oct 2015 | A1 |
20150288023 | Andry et al. | Oct 2015 | A1 |
20150288024 | Andry et al. | Oct 2015 | A1 |
20150309337 | Flitsch et al. | Oct 2015 | A1 |
20150323811 | Zhang et al. | Nov 2015 | A1 |
20150378176 | Flitsch et al. | Dec 2015 | A1 |
20160028101 | Flitsch et al. | Jan 2016 | A1 |
20160054589 | Flitsch et al. | Feb 2016 | A1 |
20160054590 | Otts et al. | Feb 2016 | A1 |
20160056440 | Flitsch et al. | Feb 2016 | A1 |
20160056459 | Flitsch et al. | Feb 2016 | A1 |
20160056498 | Birch et al. | Feb 2016 | A1 |
20170229730 | Flitsch et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
073391 | Nov 2010 | AR |
073742 | Dec 2010 | AR |
2009293178 | Mar 2010 | AU |
2009293182 | Mar 2010 | AU |
2014201529 | Oct 2014 | AU |
PI0919346 | Dec 2015 | BR |
2389907 | Dec 2003 | CA |
2737861 | Mar 2010 | CA |
2737865 | Mar 2010 | CA |
1344022 | Apr 2002 | CN |
1520983 | Aug 2004 | CN |
1808744 | Jul 2006 | CN |
101041258 | Sep 2007 | CN |
101062581 | Oct 2007 | CN |
101094626 | Dec 2007 | CN |
100403477 | Jul 2008 | CN |
101395520 | Mar 2009 | CN |
101669059 | Mar 2010 | CN |
101983122 | Mar 2011 | CN |
102005612 | Apr 2011 | CN |
102159381 | Aug 2011 | CN |
102159382 | Aug 2011 | CN |
102171028 | Aug 2011 | CN |
102196789 | Sep 2011 | CN |
102202874 | Sep 2011 | CN |
102271899 | Dec 2011 | CN |
102727218 | Oct 2012 | CN |
102959769 | Mar 2013 | CN |
203300756 | Nov 2013 | CN |
203733888 | Jul 2014 | CN |
102196789 | Nov 2014 | CN |
19858172 | Jun 2000 | DE |
102007048859 | Apr 2009 | DE |
581964 | Feb 1994 | EP |
918248 | May 1999 | EP |
1183745 | Mar 2002 | EP |
1262307 | Dec 2002 | EP |
1313159 | May 2003 | EP |
1342560 | Sep 2003 | EP |
1262307 | Nov 2003 | EP |
1342560 | Sep 2004 | EP |
1736291 | Dec 2006 | EP |
1747879 | Jan 2007 | EP |
1736291 | Mar 2007 | EP |
1747879 | Mar 2007 | EP |
1760515 | Mar 2007 | EP |
1849574 | Oct 2007 | EP |
1849589 | Oct 2007 | EP |
1892788 | Feb 2008 | EP |
1342560 | Jul 2008 | EP |
1849589 | Mar 2009 | EP |
1262307 | Feb 2010 | EP |
1760515 | Aug 2011 | EP |
2349697 | Aug 2011 | EP |
2349698 | Aug 2011 | EP |
2485294 | Aug 2012 | EP |
2508935 | Oct 2012 | EP |
2564454 | Mar 2013 | EP |
2605314 | Jun 2013 | EP |
2620802 | Jul 2013 | EP |
2631962 | Aug 2013 | EP |
2779272 | Sep 2014 | EP |
2812750 | Dec 2014 | EP |
2996187 | Mar 2016 | EP |
2740170 | Apr 2016 | EP |
3016194 | May 2016 | EP |
743731 | Jan 1956 | GB |
1307393 | Feb 1973 | GB |
211275 | Apr 2011 | IL |
211309 | Apr 2011 | IL |
222620 | Dec 2012 | IL |
S52146650 | Dec 1977 | JP |
S57136774 | Aug 1982 | JP |
S58116764 | Jul 1983 | JP |
S63105319 | Jul 1988 | JP |
H0128680 | Nov 1989 | JP |
H0765817 | Mar 1995 | JP |
H08162823 | Jun 1996 | JP |
H08508826 | Sep 1996 | JP |
H08264203 | Oct 1996 | JP |
H09266636 | Oct 1997 | JP |
H10209185 | Aug 1998 | JP |
H10219185 | Aug 1998 | JP |
H10229095 | Aug 1998 | JP |
H11135712 | May 1999 | JP |
2000228213 | Aug 2000 | JP |
2000299542 | Oct 2000 | JP |
2001028036 | Jan 2001 | JP |
2001110445 | Apr 2001 | JP |
2002093385 | Mar 2002 | JP |
2002118198 | Apr 2002 | JP |
2002537580 | Nov 2002 | JP |
2003202525 | Jul 2003 | JP |
2004505667 | Feb 2004 | JP |
2004305313 | Nov 2004 | JP |
2005142050 | Jun 2005 | JP |
2005523483 | Aug 2005 | JP |
2005535942 | Nov 2005 | JP |
2006507541 | Mar 2006 | JP |
2006093659 | Apr 2006 | JP |
2006317321 | Nov 2006 | JP |
2007533098 | Nov 2007 | JP |
2007313594 | Dec 2007 | JP |
2008502016 | Jan 2008 | JP |
2008506031 | Feb 2008 | JP |
2008053134 | Mar 2008 | JP |
2008072111 | Mar 2008 | JP |
2008088019 | Apr 2008 | JP |
2008512348 | Apr 2008 | JP |
2008178226 | Jul 2008 | JP |
2008529208 | Jul 2008 | JP |
2008227068 | Sep 2008 | JP |
2008281095 | Nov 2008 | JP |
2009007629 | Jan 2009 | JP |
2009087895 | Apr 2009 | JP |
2010034254 | Feb 2010 | JP |
2010073533 | Apr 2010 | JP |
2010517081 | May 2010 | JP |
2010209855 | Sep 2010 | JP |
2010536158 | Nov 2010 | JP |
2011082586 | Apr 2011 | JP |
2011512565 | Apr 2011 | JP |
2011515157 | May 2011 | JP |
2011516922 | May 2011 | JP |
2011516927 | May 2011 | JP |
2011517659 | Jun 2011 | JP |
2012009820 | Jan 2012 | JP |
2012502823 | Feb 2012 | JP |
2012503222 | Feb 2012 | JP |
2012504065 | Feb 2012 | JP |
2012504257 | Feb 2012 | JP |
2012044074 | Mar 2012 | JP |
2012056758 | Mar 2012 | JP |
2012507747 | Mar 2012 | JP |
2013516255 | May 2013 | JP |
2013532010 | Aug 2013 | JP |
2013533046 | Aug 2013 | JP |
2013176558 | Sep 2013 | JP |
2013239263 | Nov 2013 | JP |
5591567 | Sep 2014 | JP |
5788668 | Oct 2015 | JP |
100625892 | Sep 2006 | KR |
20070009231 | Jan 2007 | KR |
20100102969 | Sep 2010 | KR |
20100132003 | Dec 2010 | KR |
20110069113 | Jun 2011 | KR |
20110073530 | Jun 2011 | KR |
20130096676 | Aug 2013 | KR |
2116891 | Aug 1998 | RU |
2307429 | Sep 2007 | RU |
2310952 | Nov 2007 | RU |
2320378 | Mar 2008 | RU |
2380794 | Jan 2010 | RU |
2563842 | Sep 2015 | RU |
10201400548X | Oct 2014 | SG |
10201506558 | Mar 2016 | SG |
200532278 | Oct 2005 | TW |
200629549 | Aug 2006 | TW |
200916832 | Apr 2009 | TW |
200950960 | Dec 2009 | TW |
201003172 | Jan 2010 | TW |
201024827 | Jul 2010 | TW |
201026489 | Jul 2010 | TW |
201029830 | Aug 2010 | TW |
201140756 | Nov 2011 | TW |
I384672 | Feb 2013 | TW |
WO-9423334 | Oct 1994 | WO |
WO1997017737 | May 1997 | WO |
WO-0004601 | Jan 2000 | WO |
WO2000057504 | Sep 2000 | WO |
WO2002029836 | Apr 2002 | WO |
WO-03035166 | May 2003 | WO |
WO2003069700 | Aug 2003 | WO |
WO-03078300 | Sep 2003 | WO |
WO-03090611 | Nov 2003 | WO |
WO-2004015460 | Feb 2004 | WO |
WO-2004015460 | Jun 2004 | WO |
WO2003069700 | Aug 2004 | WO |
WO-2004093786 | Nov 2004 | WO |
WO2005064712 | Jul 2005 | WO |
WO-2005088388 | Sep 2005 | WO |
WO-2005098994 | Oct 2005 | WO |
WO-2006050171 | May 2006 | WO |
WO-2006077192 | Jul 2006 | WO |
WO2006078103 | Jul 2006 | WO |
WO-2006078472 | Jul 2006 | WO |
WO-2006050171 | Sep 2006 | WO |
WO-2005098994 | Nov 2006 | WO |
WO-2006115649 | Nov 2006 | WO |
WO-2007050402 | May 2007 | WO |
WO-2006115649 | Jun 2007 | WO |
WO-2007072781 | Jun 2007 | WO |
WO-2007081959 | Jul 2007 | WO |
WO2007102692 | Sep 2007 | WO |
WO-2008010390 | Jan 2008 | WO |
WO2008039806 | Apr 2008 | WO |
WO-2007081959 | May 2008 | WO |
WO2008039806 | Jul 2008 | WO |
WO-2008091859 | Jul 2008 | WO |
WO-2008103906 | Aug 2008 | WO |
WO-2008109867 | Sep 2008 | WO |
WO-2008109867 | Oct 2008 | WO |
WO-2008103906 | Nov 2008 | WO |
WO2009012463 | Jan 2009 | WO |
WO2009018315 | Feb 2009 | WO |
WO-2009025763 | Feb 2009 | WO |
WO-2007050402 | Mar 2009 | WO |
WO-2009038897 | Mar 2009 | WO |
WO-2009038897 | Jun 2009 | WO |
WO-2009105261 | Aug 2009 | WO |
WO-2009109867 | Sep 2009 | WO |
WO-2009113296 | Sep 2009 | WO |
WO-2009117506 | Sep 2009 | WO |
WO-2009117506 | Jan 2010 | WO |
WO-2010033679 | Mar 2010 | WO |
WO-2010033683 | Mar 2010 | WO |
WO-2010039610 | Apr 2010 | WO |
WO-2010051203 | May 2010 | WO |
WO-2010051225 | May 2010 | WO |
WO-2010058574 | May 2010 | WO |
WO-2010033679 | Jun 2010 | WO |
WO-2010051225 | Jun 2010 | WO |
WO-2010062504 | Jun 2010 | WO |
WO-2010039610 | Jul 2010 | WO |
WO-2010082993 | Jul 2010 | WO |
WO-2010082993 | Sep 2010 | WO |
WO-2010119754 | Oct 2010 | WO |
WO-2010133317 | Nov 2010 | WO |
WO-2011007548 | Jan 2011 | WO |
WO-20110005216 | Jan 2011 | WO |
WO2011015866 | Feb 2011 | WO |
WO-2011083105 | Jul 2011 | WO |
WO-2010133317 | Oct 2011 | WO |
WO2011137239 | Nov 2011 | WO |
WO-2011153158 | Dec 2011 | WO |
WO-2011163080 | Dec 2011 | WO |
WO-2012013774 | Feb 2012 | WO |
WO-2012018583 | Feb 2012 | WO |
WO-2012023774 | Feb 2012 | WO |
WO2012046854 | Apr 2012 | WO |
WO-2012129210 | Sep 2012 | WO |
WO-2013019525 | Feb 2013 | WO |
WO03065481 | Aug 2013 | WO |
WO-2013112748 | Aug 2013 | WO |
WO2013128206 | Sep 2013 | WO |
WO2014010526 | Jan 2014 | WO |
WO-2014049089 | Apr 2014 | WO |
WO2014071571 | May 2014 | WO |
Entry |
---|
Geduld, Herb, “Zinc Plating”, XP055290076, Columbia Chemical Corp., Macedonia, OH Jan. 1, 1988. |
Fernando Yanez et al., “Macromolecule release and smoothness of semi-interpenetrating PVP-pHEMA networks for comfortable soft contact lenses”, European Journal of Pharmaceutics, Elsevier Science Publishers B.V., Amsterdam, NL, vol. 69, No. 3, Aug. 1, 2008, pp. 1094-1103, XP023519572, ISSN: 0939-6411. |
Elena A. Belyaeva et al., “Mechanism(s) of Toxic Action of Zn2+ and Selenite: A Study on AS-30D Hepatoma Cells and Isolated Mitochondria”, Biochemistry Research International, vol. 42, No. 6, Jan. 1, 2011, pp. 361-13. |
Albano et al., “Design of an Implantable power supply for an intraocular sensor, using POWER (power optimization for wireless energy requirements)” Journal of Power Soureces, Elsevier SA, CH, vol. 170, No. 1, Apr. 11, 2007, pp. 216-224. |
Stani A. et al., “Development of flat plate rechargeable alkaline manganese dioxide-zinc cells”, Journal of Power Sources, Elsevier SA, vol. 153, No. 2, Jun. 28, 2005, pp. 405-412. |
A. M. Gaikwad, B. V. Khau, G. Davies, B. Hertzberg, D. A. Steingart, and A. C. Arias, “A High Areal Capacity Flexible Lithium-Ion Battery with a Strain-Compliant Design,” Advanced Energy Materials, vol. 55, iss. 3, 2015. |
A. M. Gaikwad, A. C. Arias, and D. A. Steingart, “Recent Progress on Printed Flexible Batteries: Mechanical Challenges, Printing Technologies, and Future Prospects,” Energy Technology, 2015. |
A. E. Ostfeld, I. Deckman, A. M. Gaikwad, C. M. Lochner, and A. C. Arias, “Screen printed passive components for flexible power electronics,” Scientific reports, vol. 5, 2015. |
Y. Oka et al., “Preparation of cathode film with use of aqueous solvent system”, 224th ECS Meeting (Abstract #851), Oct. 27, 2013, Nov. 1, 2013, XP055442472, San Francisco, CA, USA *part “Experimental procedures”*. |
Breakthrough Technologies Driving Successful Energy Harvesting-Powered Products, PSMA Energy Harvesting Forum, Mar. 2014. [retrieved on Jan. 22, 2018] Retrieved from the Internet[URL:http://www.psma.com/sites/default/files/uploads/tech-forums-energy-harvesting/presentations/is 1-1-1-energy-harvesting-market -requirements-economicsv]. |
Bruno L.J.S., et al., “Correlation Between Morphological Properties and Ionic Conductivity in an Electrolyte Based on Poly(Vinylidene Fluoride) and Poly(2-hydroxyethyl Methacrylate),” Materials Research, Feb. 2014, vol. 17 (1), pp. 115-120, XP055227556. |
Cohen Addad J.P., et al., “NMR Study of the Demixing Process in Concentrated polyisobutylene Solutions,” Journal of Polymer Science: Polymer Physics Edition, Sep. 1981, vol. 19 (9), pp. 1395-1403. |
Davies C., “Opto-Electronic Contact Lenses Promise Wireless Displays,” Nov. 2009. Retrieved from the Internet:[URL:http://www.slashgear.com/opto-electronic-contact-lenses-promise-wireless-- -displays-2564454/ ]. |
Extended European Search Report for Application No. EP13156428, dated Jun. 6, 2013, 9 pages. |
Extended European Search Report for Application No. EP15181836, dated Dec. 1, 2015, 12 pages. |
Extended European Search Report for Application No. EP15181868, dated Jan. 12, 2016, 12 pages. |
Extended European Search Report for Application No. EP15181875, dated Jun. 14, 2016, 12 pages. |
Extended European Search Report for Application No. EP15181799, dated Jun. 14, 2016, 23 pages. |
Extended European Search Report for Application No. EP15181817, dated Feb. 15, 2016, 13 pages. |
Extended European Search Report for Application No. EP15181854, dated May 18, 2016, 11 pages. |
Extended European Search Report for Application No. EP15181855, dated May 3, 2016, 13 pages. |
Extended European Search Report for Application No. EP15181857, dated Dec. 9, 2015, 8 pages. |
Extended European Search Report for Application No. EP15181860, dated Feb. 17, 2016, 15 pages. |
Extended European Search Report for Application No. EP15181862, dated Apr. 18, 2016, 12 pages. |
Extended European Search Report for Application No. EP15181863, dated Apr. 22, 2016, 14 pages. |
Extended European Search Report for Application No. EP15181865, dated Aug. 2, 2016, 21 pages. |
Extended European Search Report for Application No. EP15181872, dated Apr. 5, 2016, 12 pages. |
Extended European Search Report for Application No. EP15181874, dated Feb. 19, 2016, 11 pages. |
Extended European Search Report for Application No. EP16200268, dated Jan. 20, 2017, 8 pages. |
Extended European Search Report for Application No. EP16200270, dated Jan. 5, 2017, 8 pages. |
Extended European Search Report for Application No. EP17205191, dated Jan. 30, 2018, 14 pages. |
Extended European Search Report for Application No. 13152733.5, dated Apr. 30, 2013, 7 pages. |
Extended European Search Report for Application No. 13155410, dated Jun. 5, 2013, 5 pages. |
Extended European Search Report for Application No. 13156410, dated Jun. 13, 2013, 8 pages. |
Extended European Search Report for Application No. 14159971, dated Jun. 5, 2014, 6 pages. |
Gosalia K.C., “Novel Compact Antennas for Biomedical Implants and Wireless Applications,” PhD Dissertation, North Carolina State University, 2004, [retrieved on Dec. 22, 2014] Retrieved from the Internet:[URL:http://respitory.lib.ncsu.edu/ir/bitstream/1840.16/4508/1/etd.pdf?-origin=publication.sub.--detail]. |
Herb G., Zinc Plating [Online], Jan. 1,1988 [retrieved on Jul, 20, 2016]. Retrieved from the Internet: (URL:http://infohouse.p2ric.orgjref/29/28085.pdf), XP055290076. |
Hill J., “How to Uniformly Disperse Nanoparticles in Battery Cathode Coatings,” Advanced Materials and Processes, May 2010, vol. 168 (5), pp. 34-36. |
International Preliminary Report for Patentability for Application No. PCT/US2013/023005, dated Jul. 29, 2014, 5 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2009/057284, dated Mar. 22, 2011, 10 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2009/057289, dated Mar. 22, 2011, 6 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2012/026849, dated Sep. 3, 2013, 8 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2012/029769, dated Sep. 24, 2013, 10 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2012/048229, dated Feb. 4, 2014, 7 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2013/023097, dated Jul. 29, 2014, 11 pages. |
International Preliminary Report on Patentability for Application No, PCT/US2013/023182, dated Jul. 29, 2014, 8 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2013/023190, dated Jul. 20. 2014, 8 pages. |
International Search Report and Written Opinion for Application No. PCT/US2013/023190, dated Apr. 15, 2013, 10 pages. |
International Search Report for Application No. PCT/US2009/057284, dated May 4, 2010, 6 pages. |
International Search Report for Application No. PCT/US2009/057289, dated Dec. 23. 2009, 3 pages. |
International Search Report for Application No. PCT/US2012/023190, dated Apr. 15. 2013, 4 pages. |
International Search Report for Application No. PCT/US2012/026849, dated Jul. 2, 2012, 5 pages. |
International Search Report for Application No. PCT/US2012/029769, dated Oct. 2, 2012, 8 pages. |
International Search Report for Application No. PCT/US2012/029796, dated Oct. 2, 2012, 4 pages. |
International Search Report for Application No. PCT/US2012/048229, dated Nov. 21, 2012, 3 pages. |
International Search Report for Application No. PCT/US2013/023005, dated Apr. 26, 2013, 4 pages. |
International Search Report for Application No. PCT/US2013/023097, dated Aug. 7, 2013, 6 pages. |
International Search Report for Application No. PCT/US2013/023182, dated Apr. 29, 2013, 4 pages. |
Loy M., et al., “ISM-Band and Short Range Device Antennas,” Texas Instruments Application Report, Aug. 2005. Retrieved from the Internet:[URL:http://www.ti.com/lit/an/swra046a/swra046a.pdf]. |
Neudecker B.J., et al., “Power Fibers: Thin-Film Batteries on Fiber Substrates,” Report Documented by ITN Energy Systems, Inc., Littleton, CO, 2003, pp. 1-9. |
Orca S., “Micro Machines and Opto-Electronics on a Contact Lens”, Nov. 2009. Retrieved from the Internet:[URL:http://hplusmagazine.com/2009/11/20/micro-machines-and-opto-electronics-contact-lense/]. |
Pandey J., et al., “A Fully Integrated RF-Powered Contact Lens With a Single Element Display,” IEEE Transactions on Biomedical Circuits and Systems, Dec. 2010, vol. 4 (6), pp. 454-461. |
Pandey J., et al., “Toward an Active Contact Lens: Integration of a Wireless Power Harvesting IC,” Biomedical Circuits and Systems Conference, 2009, BioCAS 2009, pp. 125-128. Retrieved from the Internet:[URL: https://wireless.ee.washington.edu/wp-content/uploads/sites/17/2013/03/biocas2009_jnpyudobpo.pdf. |
Partial European Search Report for Application No. EP15181799.6, dated Feb. 29, 2016, 9 pages. |
Partial European Search Report for Application No. EP15181865, dated Apr. 11, 2016, 7 pages. |
Parviz B.A., “Augmented Reality in a Contact Lens, A New Generation of Contact Lenses Built With Very Small Circuits and LEDs Promises Bionic Eyesight,” IEEE Spectrum.org/biomedical/bionics, [retrieved Jul. 10, 2012]. |
Parviz B.A., “Augmented Reality in a Contact Lens,” IEEE Spectrum, Sep. 2009. Retrieved from the Internet:[URL:https://spectrum.ieee.org/biomedical/bionics/augmented-reality-in-a-contact-lens]. |
Ratta V., “Crystallization, Morphology, Thermal Stability and Adhesive Properties of Novel High Performance Semicrystalline Polyimides,” Virginia Tech University, Chapter 4, PhD Dissertation defended Apr. 26, 1999. |
Singapore Search Report for Application No. SG-201300387-6, dated Jul. 4, 2013. |
Singapore Written Opinion for Application No. SG11201404171Y, dated Mar. 31, 2015. |
Tafur, J.P., et al., “Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties,” Membranes (Basel), Dec. 2015, vol. 5(4), pp. 752-771. |
Williams A., “Swiss Startup Puts MEMS Sensor in Contact Lens,” Electronics Weekly.com, Mar. 25, 2010. Retrieved from the Internet:[URL:https://www.electronicsweekly.com/technology-startups/general-technology-startups/swiss-startup-puts-mems-sensor-2010-03/swiss-startup-puts-mems-sensor.html]. |
Written opinion for Application No. PCT/US2009/057284, dated May 4, 2010, 9 pages. |
Written Opinion for Application No. PCT/US2009/057289, dated Mar. 22, 2011, 5 pages. |
Written Opinion for Application No. PCT/US2012/026849, dated Aug. 31, 2013, 7 pages. |
Written Opinion for Application No. PCT/US2012/029769, dated Sep. 21, 2013, 9 pages. |
Written Opinion for Application No. PCT/US2012/048229, dated Feb. 2, 2014, 6 pages. |
Written Opinion for Application No. PCT/US2013/023005, dated Jul. 26, 2014, 7 pages. |
Written Opinion for Application No. PCT/US2013/023097, dated Jul. 26, 2014, 10 pages. |
Written Opinion for Application No. PCT/US2013/023182, dated Jul. 26, 2014, 7 pages. |
Benefits of PVC (Year: 2018), 1 page. |
Beynw E., “3D System Integration Technologies”, 2006, IEEE, International Symposium on VLSI Technology, System and Applications, 2006, 9 pages. |
Extended European Search Report for Application No. 18160035.4, dated Jun. 27, 2018, 20 pages. |
Extended European Search Report for Application No. EP13702567.2, dated Aug. 2, 2018, 8 pages. |
Extended European Search Report for Application No. EP18169197, dated Jul. 27, 2018, 8 pages. |
Partial European Search Report for Application No. 18160035.4, dated Apr. 19, 2018, 17 pages. |
Shi S., et al., “Flexible Asymmetric Supercapacitors Based on Ultrathin Two-dimensional Nanosheets With Outstanding Electrochemical Performance and Aesthetic Property—Supplementary Information (SI),” Scientific Reports, Feb. 11, 2014, vol. 3, Article No. 2598, pp. 1-10, XP055485252, Retrieved from the Internet: URL: https://media.nature.com/original/nature-assets/srep/2013/130906/srep02598/exiref/srep02598-s1.pdf. |
Jani Miettinen et al., “System Design Issue for 3D System-in-Package (SiP)”, 2004, vol. 1, p. 610-615. |
Number | Date | Country | |
---|---|---|---|
20180191035 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62040178 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14949963 | Nov 2015 | US |
Child | 15907621 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14827589 | Aug 2015 | US |
Child | 14949963 | US |