Biometric imaging devices and associated methods

Information

  • Patent Grant
  • 10244188
  • Patent Number
    10,244,188
  • Date Filed
    Thursday, September 24, 2015
    9 years ago
  • Date Issued
    Tuesday, March 26, 2019
    5 years ago
Abstract
Systems, devices, and methods for identifying an individual in both cooperative and non-cooperative situations are provided. In one aspect, for example, a system for identifying an individual can include an active light source capable of emitting electromagnetic radiation having at least one wavelength of from about 700 nm to about 1200 nm, and an imager device positioned to receive the electromagnetic radiation upon reflection from an individual to generate an electronic representation of the individual. The system can also include an image processing module functionally coupled to the imager device to receive the electronic representation. The image processing module processes the electronic representation into an individual representation having at least one substantially unique identification trait. The imager device can include a semiconductor device layer having a thickness of less than about 10 microns, at least two doped regions forming a junction, and a textured region positioned to interact with the electromagnetic radiation, and can have an external quantum efficiency of at least about 33% for at least one wavelength of greater than 800 nm.
Description
BACKGROUND

Biometrics is the study of signatures of a biological origin that can uniquely identify individuals. Biometric technology has increased in interest in recent years, and can be classified in two groups, cooperative identification and non-cooperative identification. Cooperative biometric identification methods obtain biometric readings with the individual's knowledge, and typically detect biological signatures such as finger prints, palm prints, and iris scans. Non-cooperative biometric identification methods obtain biometric readings without the person's knowledge, and typically detect facial, speech, and thermal signatures of an individual. This disclosure focuses on devices and methods that can detect various biometric signatures of both cooperative and non-cooperative individuals, through the use of imaging devices.


Facial and iris detection are some of the more common signatures used by security applications for identifying individuals. These methods of detection involve two independent steps, an enrollment phase where biometric data is collected and stored in a database and a query step, where unknown biometric data is compared to the database to identify the individual. In both of these steps, a camera can be used to collect and capture the images of the individual's face or iris. The images are processed using algorithms that deconstruct the image into a collection of mathematical vectors which, in aggregate, constitute a unique signature of that individual.


Digital imaging devices are often utilized to collect such image data. For example, charge-coupled devices (CCDs) are widely used in digital imaging, and have been later improved upon by complementary metal-oxide-semiconductor (CMOS) imagers having improved performance. Many traditional CMOS imagers utilize front side illumination (FSI). In such cases, electromagnetic radiation is incident upon the semiconductor surface containing the CMOS devices and circuits. Backside illumination CMOS imagers have also been used, and in many designs electromagnetic radiation is incident on the semiconductor surface opposite the CMOS devices and circuits.


As a major caveat to biometric signature acquisition, however, pigmentation of the skin and/or iris can affect the ability to collect robust data, both in the enrollment phase as well as in the future query phase. The pigmentation can mask or hide the unique structural elements that define the values of the signature mathematical vectors.


SUMMARY

The present disclosure provides systems, devices, and methods for identifying an individual in both cooperative and non-cooperative situations. In one aspect, for example, a system for identifying an individual can include a light source capable of emitting electromagnetic radiation having at least one wavelength of from about 700 nm to about 1200 nm, and an imager device positioned to receive the electromagnetic radiation upon reflection from an individual to generate an electronic representation of the individual. The system can also include an image processing module functionally coupled to the imager device to receive the electronic representation. The image processing module processes the electronic representation into an individual representation having at least one substantially unique identification trait. The imager device can include a semiconductor device layer having a thickness of less than about 10 microns, at least two doped regions forming a junction, and a textured region positioned to interact with the electromagnetic radiation. The imaging device has an external quantum efficiency of at least about 33% for electromagnetic radiation having at least one wavelength of greater than 800 nm.


Various light sources are contemplated, and any light source capable of delivering electromagnetic radiation within the ranges utilized by the present devices and systems is considered to be within the present scope. In one aspect, for example, the light source can be an active light source. In yet another aspect, the light source may be a passive light source or in other words ambient light from the surroundings. In another aspect, the active light source can be two or more active light sources each emitting infrared electromagnetic radiation at distinct peak emission wavelengths. In one specific aspect, the two or more active light sources can emit infrared electromagnetic radiation at about 850 nm and about 940 nm. In another aspect the two or more active light sources can emit infrared electromagnetic radiation at about 850 nm and about 1060 nm.


The semiconductor device layer used in the imager device can include any useful semiconductor material. In one aspect, however, the semiconductor device layer can be comprised of silicon. In one specific aspect, a silicon-based imager device having device layer with a thickness less than about 10 microns can have a response time of from about 0.1 ms to about 1 ms and an external quantum efficiency of at least about 33% for electromagnetic radiation having at least one wavelength of greater than 800 nm. In another aspect, the response time can be from about 0.1 ms to about 16 ms. In yet another specific aspect, a silicon-based imager device having a semiconductor device layer with a thickness less than about 10 microns can have a response time of from about 0.1 ms to about 1 ms and an external quantum efficiency of at least about 11% for electromagnetic radiation having at least one wavelength of greater than 940 nm.


In another aspect, the imager device is capable of capturing the electronic representation with sufficient detail to identify the at least one substantially unique identification trait using electromagnetic radiation emitted from the active light source having at least one wavelength of from about 700 nm to about 1200 nm and having a scene radiance impinging on the individual at 3 meters that is at least 0.1 mW/mm2. In yet another aspect, the imager device is capable of capturing the electronic representation with sufficient detail to identify the at least one substantially unique identification trait using electromagnetic radiation emitted from the active light source having at least one wavelength of from about 800 nm to about 1000 nm and having a scene radiance impinging on the individual at 3 meters that is from about 1.0 mW/mm2 to about 100 mW/mm2. In a further aspect, the imager device can operate on an electronic global shutter to capture the electronic representation.


In yet another aspect, the system can include an analysis module functionally coupled to the image processing module, wherein the analysis module is operable to compare the at least one substantially unique identification trait with a known identification trait to facilitate identification of the individual.


In a further aspect, the system can include an automatic pan and zoom module operable to move at least one of the light source or the imager device in order to track the individual.


In some aspects, the imager device can include at least two imager devices. In one specific aspect, the at least two imager devices includes a first imager device positioned and operable to generate a facial electronic representation of the individual and a second imager device positioned and operable to generate an iris electronic representation of the individual. In another specific aspect, the system can include an automatic pan and zoom module operable to move at least one of the light source or the imager device and a process module to analyze the facial electronic representation and provide the pan and zoom module coordinates for the face and iris.


In some aspects, the system can be configured to be concealed from the individual being identified. In one aspect, for example, the system can be concealed from the individual behind an infrared transparent medium that is visually opaque. The infrared transparent medium can be a plane of glass or plastic being at least partially coated with an infrared transparent paint or other infrared transparent medium. In one aspect metal particles can be impregnated into at least a portion of the infrared transparent medium. In yet another aspect, quantum dots may be disposed on the infrared transparent medium such that infrared light is transmitted through the medium and visible light is filtered. In another aspect, the system can be activated by a trigger from the individual, whether the individual has knowledge of the trigger or not. The trigger can be a transistor or sensor integrated in the system that is capable of activating the system. Such triggers can be a thermal sensor, motion sensor, photosensor and other like sensors.


The system can also be designed to be of a small size. For example, in one aspect the light source, the imager device, and the image processing module can collectively have a size of less than about 160 cubic centimeters. In another aspect, the light source, the imager device, and the image processing module can collectively have a size of less than about 16 cubic centimeters. In yet another aspect, the imager device can have an optical format of about 1/7 inches.


It is also contemplated that the present systems and devices can be utilized in a variety of other systems, devices, and situations. For example, in one aspect the present system can be integrated into an electronic device. While any electronic device is contemplated, non-limiting examples can include a mobile smart phone, a cellular phone, a laptop computer, a tablet computer, other personal electronic devices and the like. Various situations are also contemplated wherein such integration can be useful. For example, in one aspect such an electronic device can provide positive identification of an individual in order to unlock the electronic device. In another aspect, positive identification of the individual can be used to verify the individual in a financial transaction. In another aspect, the positive identification can be used to determine citizenship of the individual or to verify passport or license status.


The present disclosure additionally provides methods of identifying an individual. In one aspect, such a method can include emitting infrared electromagnetic radiation having at least one wavelength of from about 700 nm to about 1200 nm toward the individual, receiving the infrared electromagnetic radiation reflected from the individual into an imager device to generate an electronic representation of the individual, processing the electronic representation into an individual representation having at least one substantially unique identification trait, and using the at least one substantially unique identification trait to identify the individual. The imager device can include a semiconductor device layer having a thickness of less than about 10 microns, at least two doped regions forming a junction, and a textured region positioned to interact with the electromagnetic radiation. The imaging device can have an external quantum efficiency of at least about 33% for electromagnetic radiation having at least one wavelength of greater than 800 nm.


In one specific aspect, the at least one substantially unique identification trait can include an electronic representation of an iris of the individual sufficient to identify the individual. In one specific aspect, the electronic representation of the iris can be captured by the imager device at a distance of from about 0.5 meters to about 15 meters from the individual. In yet another specific aspect, the electronic representation of the iris can be captured by the imager device at a distance of from about 2 meters to about 10 meters from the individual. In a further specific aspect, the electronic representation of the iris can be captured at a distance of greater than 2 meters from the imager device to the individual using the infrared electromagnetic radiation having a wavelength of at least 940 nm and an intensity that is below 10,000 mW/mm2/steradian.


In yet another aspect, emitting infrared electromagnetic radiation can further include emitting infrared electromagnetic radiation from at least two active light sources, each emitting at distinct peak emission wavelengths. In such cases, electronic representations from each active light source can be processed into individual representations each having at least one substantially unique identification trait, and each individual representation can then be compared with one another to verify identification results of the individual.


In one aspect, capturing the electronic representation by the imager device can be accomplished by a global electronic shutter mechanism. In one specific aspect, the global electronic shutter can be operated with an integration time of from about 0.1 ms to about 1 ms. In another specific aspect, the individual can be moving with respect to the imager device and the integration time is sufficient to capture the electronic representation with sufficient detail to identify the at least one substantially unique identification trait.


In another aspect, the method can include comparing the at least one substantially unique identification trait with a known identification trait to facilitate identification of the individual. A variety of known identification traits are contemplated, non-limiting examples of which can include facial features, iris features, thermal signatures, and the like, including combinations thereof. Furthermore, in one aspect comparing the at least one substantially unique identification trait further includes comparing the at least one substantially unique identification trait against a plurality of known identification traits.


In yet another aspect, the individual representation can be a facial representation, and the facial representation can be analyzed to locate a specific facial feature and the imager device can be panned and/or zoomed to image the specific facial feature or iris feature.


In a further aspect, the method can include moving the emitted infrared electromagnetic radiation and/or the imager device relative to movements of the individual in order to track the individual during receiving of the infrared electromagnetic radiation.


In yet another aspect, the method can further include receiving the electronic representation, selecting a portion of the electronic representation, zooming the imager device to substantially correspond to the portion of the electronic representation and generating a secondary electronic representation of the individual, and processing the secondary electronic representation into a secondary individual representation having at least one substantially unique identification trait.


In a further aspect, an electronic device having an integrated user authorization system is provided, wherein the user authorization system includes an imager device including a semiconductor device layer having a thickness of less than about 10 microns, at least two doped regions forming a junction, and a textured region positioned to interact with the electromagnetic radiation, wherein the imaging device has an external quantum efficiency of at least about 33% for electromagnetic radiation having at least one wavelength of greater than 800 nm. The imager device is positioned to capture an electronic representation of an identification trait of a user of the device, wherein the imager device is operable to at least periodically capture the electronic representation. The system can further include a storage register operable to store a known identification trait of an authorized user, and an analysis module electrically coupled to the imager device and the storage register, the analysis module being operable to compare the electronic representation of the identification trait to the known identification trait to verify that the user is the authorized user. In another aspect, the system can further include a light source operable to emit electromagnetic radiation having at least one wavelength of from about 700 nm to about 1200 nm toward the user. In yet another aspect, the analysis module and the imager device can be integrated monolithically together separate from the CPU of the electronic device. It should be noted that the analysis module can be physically separate from the imager device and operate independently from the CPU of the electronic device. In a further aspect, the imager device can be operable to continuously verify the user is the authorized user. In yet a further aspect, the system can include a switch to toggle the imager device between infrared light capture and visible light capture modes. Various switches are contemplated herein, for example, a transistor, an infrared or color filter and others know by those skilled in the art.





BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature and advantage of the present invention, reference is being made to the following detailed description of preferred embodiments and in connection with the accompanying drawings, in which:



FIG. 1 is a representation of a system for identifying an individual in accordance with one aspect of the present disclosure.



FIG. 2 is a schematic view of an imager device in accordance with another aspect of the present disclosure.



FIG. 3 is a graphical representation of the absorption characteristics of a fast (or thin) photodetector device based on standard silicon compared to the absorption characteristics of a photodetecting device based on silicon but having a textured region in accordance with another aspect of the present disclosure.



FIG. 4 is a schematic view of a photosensitive device in accordance with another aspect of the present disclosure.



FIG. 5 is a schematic view of a photosensitive array device in accordance with another aspect of the present disclosure.



FIG. 6 is a schematic diagram of a six transistor imager in accordance with another aspect of the present disclosure.



FIG. 7a is a photograph showing an iris captured with an photoimager having a rolling shutter in accordance with another aspect of the present disclosure.



FIG. 7b is a photograph showing an iris captured with an photoimager having a global shutter in accordance with another aspect of the present disclosure.



FIG. 8 is an illustration of a time of flight measurement in accordance with another aspect of the present disclosure.



FIG. 9a is a schematic view of a pixel configuration for a photoimager array in accordance with another aspect of the present disclosure.



FIG. 9b is a schematic view of a pixel configuration for a photoimager array in accordance with another aspect of the present disclosure.



FIG. 9c is a schematic view of a pixel configuration for a photoimager array in accordance with another aspect of the present disclosure.



FIG. 10 is a schematic diagram of an eleven transistor imager in accordance with another aspect of the present disclosure.



FIG. 11 is a schematic view of a photosensitive device comprising a bolometer in accordance with another aspect of the present disclosure.



FIG. 12 is a representation of an integrated system for identifying an individual in accordance with one aspect of the present disclosure.



FIG. 13 is a flow diagram of a method in accordance with another aspect of the present disclosure.





DETAILED DESCRIPTION

Before the present disclosure is described herein, it is to be understood that this disclosure is not limited to the particular structures, process steps, or materials disclosed herein, but is extended to equivalents thereof as would be recognized by those ordinarily skilled in the relevant arts. It should also be understood that terminology employed herein is used for the purpose of describing particular embodiments only and is not intended to be limiting.


Definitions

The following terminology will be used in accordance with the definitions set forth below.


It should be noted that, as used in this specification and the appended claims, the singular forms “a,” and, “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a dopant” includes one or more of such dopants and reference to “the layer” includes reference to one or more of such layers.


As used herein, “quantum efficiency” (QE) is defined as the percentage of photons incident on an optoelectronic device that are converted into electrons. External QE (EQE) is defined as the current obtained outside of the device per incoming photon. As such, EQE therefore depends on both the absorption of photons and the collection of charges. The EQE is lower than the QE due to recombination effects and optical losses (e.g. transmission and reflection losses).


As used herein, the terms “electromagnetic radiation” and “light” can be used interchangeably, and can represent wavelengths across a broad range, including visible wavelengths (approximately 350 nm to 800 nm) and non-visible wavelengths (longer than about 800 nm or shorter than 350 nm). The infrared spectrum is often described as including a near infrared portion of the spectrum including wavelengths of approximately 800 to 1300 nm, a short wave infrared portion of the spectrum including wavelengths of approximately 1300 nm to 3 micrometers, and a mid to long wave infrared (or thermal infrared) portion of the spectrum including wavelengths greater than about 3 micrometers up to about 30 micrometers. These are generally and collectively referred to herein as “infrared” portions of the electromagnetic spectrum unless otherwise noted.


As used herein, “response time” refers to the rise time or fall time of a detector device. In one aspect, “rise time” is the time difference between the 10% point and the 90% point of the peak amplitude output on the leading edge of the electrical signal generated by the interaction of light with the device. “Fall time” is measured as the time difference between the 90% point and the 10% point of the trailing edge of the electrical signal. In some aspects, fall time can be referred to as the decay time.


As used herein, “shutter speed” refers to the time duration of a camera's shutter remain open while an image is captured. The shutter speed directly proportional to the exposure time, i.e. the duration of light reaching the image sensor. In other words, the shutter speed controls the amount of light that reaches the photosensitive imager. The slower the shutter speed, the longer the exposure time. Shutter speeds are commonly expressed in seconds and fractions of seconds. For example, 4, 2, 1, ½, ¼, ⅛, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000, 1/2000, 1/4000, 1/8000. Notably, each speed increment halves the amount of light incident upon the imager.


As used herein, the term “textured region” refers to a surface having a topology with nano- to micron-sized surface variations. Such a surface topology can be formed by any appropriate technique, including, without limitation, irradiation of a laser pulse or laser pulses, chemical etching, lithographic patterning, interference of multiple simultaneous laser pulses, reactive ion etching, and the like. While the characteristics of such a surface can be variable depending on the materials and techniques employed, in one aspect such a surface can be several hundred nanometers thick and made up of nanocrystallites (e.g. from about 10 to about 50 nanometers) and nanopores. In another aspect, such a surface can include micron-sized structures (e.g. about 0.5 μm to about 60 μm). In yet another aspect, the surface can include nano-sized and/or micron-sized structures from about 5 nm and about 500 μm. It should be mentioned that the textured region can be ordered or disordered.


As used herein, the terms “surface modifying” and “surface modification” refer to the altering of a surface of a semiconductor material using a variety of surface modification techniques. Non-limiting examples of such techniques include plasma etching, reactive ion etching, porous silicon etching, lasing, chemical etching (e.g. anisotropic etching, isotropic etching), nanoimprinting, material deposition, selective epitaxial growth, and the like, including combinations thereof. In one specific aspect, surface modification can include processes using primarily laser radiation or laser radiation in combination with a dopant, whereby the laser radiation facilitates the incorporation of the dopant into a surface of the semiconductor material. Accordingly, in one aspect surface modification includes doping of a substrate such as a semiconductor material.


As used herein, the term “target region” refers to an area of a substrate that is intended to be doped or surface modified. The target region of the substrate can vary as the surface modifying process progresses. For example, after a first target region is doped or surface modified, a second target region may be selected on the same substrate.


As used herein, the term “fluence” refers to the amount of energy from a single pulse of laser radiation that passes through a unit area. In other words, “fluence” can be described as the energy surface density of one laser pulse.


As used herein, the term “detection” refers to the sensing, absorption, and/or collection of electromagnetic radiation.


As used herein, the term “scene radiance” refers to the areal density of light impinging on a known area or scene.


As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. For example, an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result. For example, a composition that is “substantially free of” particles would either completely lack particles, or so nearly completely lack particles that the effect would be the same as if it completely lacked particles. In other words, a composition that is “substantially free of” an ingredient or element may still actually contain such item as long as there is no measurable effect thereof.


As used herein, the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “a little above” or “a little below” the endpoint.


As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.


Concentrations, amounts, and other numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to about 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3, and 4 and sub-ranges such as from 1-3, from 2-4, and from 3-5, etc., as well as 1, 2, 3, 4, and 5, individually.


This same principle applies to ranges reciting only one numerical value as a minimum or a maximum. Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described.


The Disclosure


Security has generally become a top priority for many businesses, communities, governments, and the like. One key component in establishing effective security is the rapid identification of individuals. For example, implementation of biometric scanning procedures in major thoroughfares such as airports, major cities, and the like can facilitate the identification and tracking of individuals for the safety of the populace as well as, in some cases, the safety of the individual being identified and tracked. As one example, such a system can be utilized to identify abducted or runaway children. In other cases, fugitives and suspected criminals can be located and apprehended. Also, such systems can be useful for identifying authorized users and allowing access for authorized users for financial transactions, personal electronic devices that can reduce the incidence of voter fraud, financial fraud, other forms of identity theft, and the like.


As has been described, one problem inherent to biometric systems imaging facial and ocular features is interference due to pigmentation. To avoid this potential interference, a biometric imaging device capturing light wavelengths in the range of 800 nm to 1300 nm can be used. For electromagnetic radiation in this wavelength range pigmentation is substantially transparent, and therefore electromagnetic photons pass freely through the pigment and reflect off of structural elements of interest for the identification. In the eye, for example, near infrared electromagnetic photons pass through the iris pigment and reflect off of iris ligament structures.


Conventional imagers, however, including both CCDs and CMOS image sensors, are based on silicon photodetectors and have very low sensitivity to near infrared light in the wavelength range of interest. As such, in many cases these systems are limited to applications where the low sensitivity and image capture speed limitations are not an issue. When attempting to capture an iris signature from a distance and/or with a short integration time, IR light needs to be greatly increased in intensity to compensate for the poor IR sensitivity of traditional imagers. High intensity IR can be damaging to ocular tissue and potentially may cause other negative side effects.


The present disclosure provides an efficient biometric device that can operate in low light conditions with good signal to noise ratio and high quantum efficiencies in the visible and infrared (IR) spectrum. Using an IR light source, as opposed to purely visible light, the present system can image the textured patterns of the iris, remove existing light variations, and reduce pattern interference from corneal reflections, thereby capturing more precise iris information.


In one aspect, as is shown in FIG. 1 for example, a system for identifying an individual can include at least one active light source 102 capable of emitting electromagnetic radiation 104 having at least one wavelength of from about 700 nm to about 1200 nm and an imager device 106 positioned to receive the electromagnetic radiation upon reflection 108 from an individual 110 to generate an electronic representation of the individual. An image processing module 112 can be functionally coupled to the imager device 106 to receive the electronic representation. The image processing module 112 functions to process the electronic representation, using known algorithms to those skilled in the art, into an individual representation having at least one substantially unique identification trait. This substantially unique identification trait is used to identify the individual 110. Additionally, it is noted that such a system can be utilized in cooperative as well as non-cooperative identification situations.



FIG. 2 shows one exemplary embodiment of an imager device that is capable of operation in low light conditions with good signal to noise ratio and high quantum efficiencies in the visible and IR light spectrum. The imager device 200 can include a semiconductor device layer 202 having a device layer with a thickness of less than about 10 microns, at least two doped regions 204, 206 forming a junction, and a textured region 208 positioned to interact with incoming electromagnetic radiation 210. Numerous configurations are contemplated, and any type of junction configuration is considered to be within the present scope. For example, the first and second doped regions can be distinct from one another, contacting one another, overlapping one another, etc. In some cases, an intrinsic region can be located at least partially between the first and second doped regions. In some aspects, the semiconductor device layer can be less than about 50 microns thick. Additionally, in some aspects the semiconductor device layer can be disposed on a bulk semiconductor layer or semiconductor support layer.


The textured region 208 is shown located on a side of the semiconductor device layer 202 that is opposite to the first doped region 204 and the second doped region 206. In this case, electromagnetic radiation that passes through the semiconductor device layer 202 to contact the textured region 208 can be reflected back through the semiconductor device layer, thus effectively increasing the absorption path length of the semiconductor material. The textured region can be associated with an entire surface of the semiconductor material or only a portion thereof. Additionally, in some aspects the textured region can be specifically positioned to maximize the absorption path length of the semiconductor material. In other aspects, a third doping can be included near the textured region to improve the collection of carriers generated near the textured region.


The imager device can have a semiconductor device layer with a thickness of less than about 10 microns and an external quantum efficiency of at least about 33% for electromagnetic radiation having at least one wavelength of greater than 800 nm. In another aspect, the imager device can have a response time of from about 0.1 ms to about 1 ms and an external quantum efficiency of at least about 33% for electromagnetic radiation having at least one wavelength greater than about 800 nm. In another aspect, the response time can be from about 0.1 ms to about 16 ms. Other thicknesses of device layers are additionally contemplated. In one aspect, for example, the device layer thickness can be less than 50 microns. In another aspect, the device layer thickness can be less than 5 microns. In yet another aspect, the device layer thickness can be less than 1 micron. A lower limit for thickness of the device layer can be any thickness that allows functionality of the device. In one aspect, however, the device layer can be at least 10 nm thick. In another aspect, the device layer can be at least 100 nm thick. In yet another aspect, the device layer can be at least 500 nm thick. Additionally, in another aspect, the imager device can have an external quantum efficiency of at least about 23% for electromagnetic radiation having at least one wavelength greater than about 850 nm. In yet another aspect, the imager device can have an external quantum efficiency of at least about 11% for electromagnetic radiation having at least one wavelength greater than about 940 nm. In another aspect, the imager device can have a response time of from about 0.1 ms to about 1 ms and an external quantum efficiency of at least about 11% for electromagnetic radiation having at least one wavelength greater than about 940 nm.


In yet another aspect, the imager device can have an external quantum efficiency of at least about 46% for electromagnetic radiation having at least one wavelength of greater than 800 nm. In another aspect, the imager device can have a response time of from about 0.1 ms to about 1 ms and an external quantum efficiency of at least about 46% for electromagnetic radiation having at least one wavelength greater than about 800 nm. Additionally, in another aspect, the imager device can have a semiconductor device layer having a thickness of less than 10 microns, and the imager can have an external quantum efficiency of at least about 32% for electromagnetic radiation having at least one wavelength greater than about 850 nm. In still another aspect, the imager device can have a semiconductor device layer having a thickness of less than 10 microns, and the imager can have an external quantum efficiency of at least 50% or at least 60% for electromagnetic radiation having at least one wavelength greater than about 850 nm. In yet another aspect, the imager device can have an external quantum efficiency of at least about 15% for electromagnetic radiation having at least one wavelength greater than about 940 nm. In another aspect, the imager device can have a response time of from about 0.1 ms to about 1 ms and an external quantum efficiency of at least about 15% for electromagnetic radiation having at least one wavelength greater than about 940 nm. Further details regarding such photosensitive devices have been described in U.S. application Ser. No. 13/164,630, filed on Jun. 20, 2011, which is incorporated herein by reference in its entirety.


It should be noted that, while the device shown in FIG. 2 has a frontside illuminated architecture, backside illuminated architectures are also contemplated and are considered to be within the present scope. Additionally, whether frontside illuminated or backside illuminated, the textured region 208 can be positioned on a side of the semiconductor device layer 202 opposite the incoming electromagnetic radiation 210 as shown. The textured region can also be positioned on a side of the semiconductor device layer adjacent the incoming electromagnetic radiation (not shown). In other words, in this case the electromagnetic radiation would contact the textured region prior to passing into the semiconductor device layer. Additionally, it is contemplated that the textured region can be positioned on both an opposite side and an adjacent side of the semiconductor device layer.


The present imaging device can be utilized to capture an electronic representation that is capable of being used to identify an individual at short distances as well as long distances. The device can capture the electronic representation at short distances such as, for example, from about 2 cm or less to about 10 cm, or up to 50 cm, or up to 0.5 m. The device can also capture the electronic representation at from short distances to long distances such as, for example, up to 1 m, up to 3 m, up to 6 m, up to 10 m, or up to 15 m or more.


The semiconductor utilized to construct the imager can be any useful semiconductor material from which such an imager can be made having the properties described herein. In one aspect, however, the semiconductor device layer is silicon. It is noted, however, that silicon photo detectors have limited detectability of IR wavelengths of light, particularly for thin film silicon devices. Traditional silicon materials require substantial absorption depths in order to detect photons having wavelengths longer than about 700 nm. While visible light can be readily absorbed in the first few microns of a silicon layer, absorption of longer wavelengths (e.g. 900 nm) in silicon at a thin wafer depth (e.g. approximately 100 μm) is poor if at all. The present imager devices can increase the electromagnetic radiation absorption range of silicon, thus allowing the absorption of visible and IR light even at shallow depths and in silicon thin films.


Returning to FIG. 2, for example, the textured region 208 can increase the absorption, increase the external quantum efficiency, and decrease response times, particularly in the infrared wavelengths. Such unique and novel devices can allow for fast shutter speeds thereby capturing images of moving objects in the visible and infrared spectrums. Such an increased sensitivity in a silicon-based device can thus reduce processing cost of photodetectors, reduce the power needed in light sources, increase the depth resolution in 3D types imaging, and improve the biometric measurements of an individual.



FIG. 3 shows an absorption/responsivity graph where the dashed line 302 represents the absorption characteristics of a photodiode based on a traditional standard fast silicon device, and the solid line 304 represents the absorption characteristics of a silicon-based photodiode device but including a textured region. Notably, the absorption of a standard fast silicon imager in the infrared (i.e. the 800 nm to 1200 nm region) results in relatively low responsivity compared to the imager device with the textured region. It is noted that an imager is a collection of multiple photodiodes.


While it is contemplated that the present system can include optics for increasing the capture distance between the device and the individual, the imager device having the textured region allows the system to function at low IR light intensity levels even at such long distances. This reduces energy expenditure and thermal management issues, as well as potentially decreasing side effects that can result from high intensity IR light. In one aspect, for example, the imager device can capture the electronic representation of an individual with sufficient detail to identify a substantially unique identification trait using electromagnetic radiation emitted from the active light source having at least one wavelength of from about 700 nm to about 1200 nm and having a scene radiance impinging on the individual at 3 meters that is at least 0.1 mW/mm2. In another aspect, the imager device can capture the electronic representation of an individual with sufficient detail to identify a substantially unique identification trait using electromagnetic radiation emitted from the active light source having at least one wavelength of from about 800 nm to about 1000 nm and having a scene radiance impinging on the individual at 3 meters that is from about 0.1 mW/mm2 to about 100 mW/mm2. In another aspect the imager device can capture the electronic representation of an individual with sufficient detail to identify a substantially unique identification trait using electromagnetic radiation emitted from the active light source having at least one wavelength of from about 800 nm to about 1000 nm and having a scene radiance impinging on the individual at 3 meters that is from about 1 mW/mm2 to about 10 mW/mm2. In yet another aspect, at distances of greater than 2 meters the electromagnetic radiation having a wavelength of at least 940 nm and should have optical power below the eye damage threshold of 10,000 mW/mm2/steradian. It should be noted that in one aspect the substantially unique identification trait is an iris pattern of the individual.


As has been described, in some aspects the thickness of the silicon material in the device can dictate the responsivity and response time. Standard silicon devices need to be thick, i.e. greater than 100 μm in order to detect wavelengths in the infrared spectrum, and such detection with thick devices results in a slow response and high dark current. The textured region is positioned to interact with electromagnetic radiation to increase the absorption of infrared light in a device, thereby improving the infrared responsivity while allowing for fast operation. Diffuse scattering and reflection can result in increased path lengths for absorption, particularly if combined with total internal reflection, resulting in large improvements of responsivity in the infrared for silicon photodiodes, photodetectors, photodiode arrays, imagers, and the like. Because of the increased path lengths for absorption, thinner silicon materials can be used to absorb electromagnetic radiation up into the infrared regions. One advantage of thinner silicon material devices is that charge carriers are more quickly swept from the device, thus decreasing the response time. Conversely, thick silicon material devices sweep charge carriers therefrom more slowly, at least in part due to diffusion.


It is noted, however, that the silicon device layer can be of any thickness that allows electromagnetic radiation detection and conversion functionality, and thus any such thickness of silicon device layer is considered to be within the present scope. With that being said, thin silicon layer materials can be particularly beneficial in decreasing the response time and/or the capacitance of the device. As has been described, charge carriers can be more quickly swept from thinner silicon material layers as compared to thicker silicon material layers. The thinner the silicon, the less material the electron/holes have to traverse in order to be collected, and the lower the probability of a generated charge carrier encountering a defect that could trap or slow the collection of the carrier. Thus one objective to implementing a fast photo response is to utilize a thin silicon material for the semiconductor device layer of the imager. Such a device can be nearly depleted of charge carriers by the built in potential of the photodiode and any applied bias to provide for a fast collection of the photo generated carriers by drift in an electric field. Charge carriers remaining in any undepleted region of the photodiode are collected by diffusion transport, which is slower than drift transport. For this reason, it can be desirable to have the thickness of any region where diffusion may dominate to be much thinner than the depleted drift regions. In silicon materials having the proper doping provides a depletion region of about 10 μm with no applied bias. As such, in some aspects it can be useful to utilize a silicon material layer having a thickness of less than about 100 μm, less than about 10 μm or less than about 5 μm. In another aspect, the silicon material can have a thickness and substrate doping concentration such that an applied bias generates an electrical field sufficient for saturation velocity of the charge carriers. It should be noted that operating a photodiode, as disclosed herein, at a zero bias can result in low noise but at a longer response time. When bias is applied however, the dark current is increased, resulting in higher noise, but with a decreased response time. The increased dark current can be compensated if the incident radiation signal is strong. The amount of dark current increase can be minimized, however, with a thinner device layer.


The semiconductor device layer in general can be of any thickness that allows electromagnetic radiation detection and conversion functionality, and thus any such thickness of semiconductor material is considered to be within the present scope. In some aspects, the textured region increases the efficiency of the device such that the semiconductor device layer can be thinner than has previously been possible. Decreasing the thickness of the semiconductor device layer reduces the amount of semiconductor material required to make such a device. In one aspect, for example, the semiconductor device layer has a thickness of from about 500 nm to about 50 μm. In another aspect, the semiconductor device layer has a thickness of less than or equal to about 100 μm. In yet another aspect, the semiconductor device layer has a thickness of from about 500 nm to about 20 μm. In another aspect, the semiconductor device layer has a thickness of from about 500 nm to about 10 μm. In a further aspect, the semiconductor device layer can have a thickness of from about 500 nm to about 50 μm. In yet a further aspect, the semiconductor device layer can have a thickness of from about 500 nm to about 2 μm. In other aspect the semiconductor device layer can have a thickness of less than 10 microns, 5 microns, or 1 microns.


In one aspect a silicon semiconductor device layer has a thickness of from about 100 nm to about 100 μm. In another aspect, the silicon material has a thickness of from about 0.5 μm to about 50 μm. In yet another aspect, the silicon material has a thickness of from about 5 μm to about 10 μm. In a further aspect, the silicon material has a thickness of from about 1 μm to about 5 μm.


As has been described, the response time of a photosensitive imaging device is limited by the transit time of the photo generated carriers across the thickness of the device layer. As further explanation, the RC time constant of the load resistance, (R) and the capacitance (C) of the entire electronic device structure can be kept less than this transit time by using small load resistors and keeping the capacitance of the photodiodes small by limiting the doping density of the silicon material and area of the photodiodes. For example, photodiodes doped at 1015/cm3 can have a capacitance that may be 10 nF/cm2 without any applied bias. Small area photodiodes with 50 ohm load resistors can have very fast RC time constants. A photodiode with an area of 0.01 cm2 can have a RC time constant of 0.5 nanoseconds. Given that the response time will be limited by the maximum charge carrier transit time across the photodiode, then diffusion rates can place an upper limit on the response time for photodiodes of different thickness. For example, if the photodiodes have a thickness of less than d=100 μm, then the diffusion transit time can be calculated by Equation (II) below, where D is the diffusion coefficient for electrons.










d
2


2

D





(
II
)








The response time is bound by an upper limit of 2 μs. For light having a wavelength of about 900 nm, only about 35% is absorbed in the first pass or a device thinner than 100 μm and approximately 30% is reflected at the first surface, thereby giving a responsivity on the order 10% or 0.1 A/W. The responsivity, R, can be increased at least five fold by using multiple internal reflections to achieve a value of R=0.5 A/W.


Thus, the devices of the present disclosure increase the absorption path length of silicon materials by increasing the absorption path length for longer wavelengths as compared to traditional silicon devices. The absorption depth in silicon photodetectors is the depth into silicon at which the radiation intensity is reduced to about 36% of the value at the surface of the silicon material. The increased absorption path length results in an apparent reduction in the absorption depth, or a reduced apparent or effective absorption depth. For example, the effective absorption depth of silicon can be reduced such that longer wavelengths can be absorbed at depths of less than or equal to about 100 μm. By increasing the absorption path length, such devices are able to absorb longer wavelengths (e.g. >1000 nm for silicon) within a thin semiconductor material. In addition to decreasing the effective absorption depth, the response time can be decreased using thinner semiconductor materials.


In one aspect, a photodiode can have a thickness of less than about d=10 μm. Using equation (I) above, the resultant upper response time limit is about 20 ns. For light having a wavelength of about 700 nm with about 33% absorbed in the first pass and about 30% being reflected at the first surface, the responsivity can be on the order 10% or 0.3 Ampere/Watt. The responsivity, R, can be increased at least two fold by using multiple internal reflections as described herein to achieve a value of R=0.6 A/W.


In one aspect, for example, an imager device has a response time of from about 0.1 ms to about 1 ms. In another aspect, an imager device has a responsivity of from about 0.4 A/W to about 0.55 A/W for at least one wavelength of from about 800 nm to about 1200 nm relative to standard silicon. In yet another aspect, an imager device has a responsivity of from about 0.1 A/W to about 0.55 A/W for at least one wavelength of from about 1000 nm to about 1200 nm relative to standard silicon. In another aspect, the optoelectronic device has an increased external quantum efficiency of at least 10% for at least one wavelength of from about 550 nm to about 1200 nm relative to a silicon device with comparable thickness and response time.


As has been described, photosensitive imaging devices according to aspects of the present disclosure can exhibit lower levels of dark current as compared to traditional devices. Although a variety of reasons are possible, one exemplary reason may be that a thinner silicon material layer can have fewer crystalline defects responsible for the generation of dark current. In one aspect, for example, the dark current of an photosensing imaging device during operation is from about 100 pA/cm2 to about 10 nA/cm2. In another aspect, the maximum dark current of an imaging device during operation is less than about 1 nA/cm2.


Accordingly, imager devices according to aspects of the present disclosure provide, among other things, enhanced response in the infrared light portion of the optical spectrum and improved response and quantum efficiency in converting electromagnetic radiation to electrical signals. As such, high quantum efficiencies and increase response times can be obtained in the infrared for devices thinner than about 100 μm. In other words, the sensitivity and response are higher than that found in thicker devices at infrared wavelengths.


In addition to silicon, other semiconductor materials are contemplated for use in the imager devices of the present disclosure. Non-limiting examples of such semiconductor materials can include group IV materials, compounds and alloys comprised of materials from groups II and VI, compounds and alloys comprised of materials from groups III and V, and combinations thereof. More specifically, exemplary group IV materials can include silicon, carbon (e.g. diamond), germanium, and combinations thereof. Various exemplary combinations of group IV materials can include silicon carbide (SiC) and silicon germanium (SiGe). Exemplary silicon materials, for example, can include amorphous silicon (a-Si), microcrystalline silicon, multicrystalline silicon, and monocrystalline silicon, as well as other crystal types. In another aspect, the semiconductor material can include at least one of silicon, carbon, germanium, aluminum nitride, gallium nitride, indium gallium arsenide, aluminum gallium arsenide, and combinations thereof.


Exemplary combinations of group II-VI materials can include cadmium selenide (CdSe), cadmium sulfide (CdS), cadmium telluride (CdTe), zinc oxide (ZnO), zinc selenide (ZnSe), zinc sulfide (ZnS), zinc telluride (ZnTe), cadmium zinc telluride (CdZnTe, CZT), mercury cadmium telluride (HgCdTe), mercury zinc telluride (HgZnTe), mercury zinc selenide (HgZnSe), and combinations thereof.


Exemplary combinations of group III-V materials can include aluminum antimonide (AlSb), aluminum arsenide (AlAs), aluminum nitride (AlN), aluminum phosphide (AlP), boron nitride (BN), boron phosphide (BP), boron arsenide (BAs), gallium antimonide (GaSb), gallium arsenide (GaAs), gallium nitride (GaN), gallium phosphide (GaP), indium antimonide (InSb), indium arsenide (InAs), indium nitride (InN), indium phosphide (InP), aluminum gallium arsenide (AlGaAs, AlxGa1-xAs), indium gallium arsenide (InGaAs, InxGa1-xAs), indium gallium phosphide (InGaP), aluminum indium arsenide (AlInAs), aluminum indium antimonide (AlInSb), gallium arsenide nitride (GaAsN), gallium arsenide phosphide (GaAsP), aluminum gallium nitride (AlGaN), aluminum gallium phosphide (AlGaP), indium gallium nitride (InGaN), indium arsenide antimonide (InAsSb), indium gallium antimonide (InGaSb), aluminum gallium indium phosphide (AlGaInP), aluminum gallium arsenide phosphide (AlGaAsP), indium gallium arsenide phosphide (InGaAsP), aluminum indium arsenide phosphide (AlInAsP), aluminum gallium arsenide nitride (AlGaAsN), indium gallium arsenide nitride (InGaAsN), indium aluminum arsenide nitride (InAlAsN), gallium arsenide antimonide nitride (GaAsSbN), gallium indium nitride arsenide antimonide (GaInNAsSb), gallium indium arsenide antimonide phosphide (GaInAsSbP), and combinations thereof.


Additionally, various types of semiconductor materials are contemplated, and any such material that can be incorporated into an electromagnetic radiation detection device is considered to be within the present scope. In one aspect, for example, the semiconductor material is monocrystalline. In another aspect, the semiconductor material is multicrystalline. In yet another aspect, the semiconductor material is microcrystalline. It is also contemplated that the semiconductor material can be amorphous. Specific nonlimiting examples include amorphous silicon or amorphous selenium.


The semiconductor materials of the present disclosure can also be made using a variety of manufacturing processes. In some cases the manufacturing procedures can affect the efficiency of the device, and may be taken into account in achieving a desired result. Exemplary manufacturing processes can include Czochralski (Cz) processes, magnetic Czochralski (mCz) processes, Float Zone (FZ) processes, epitaxial growth or deposition processes, and the like. It is contemplated that the semiconductor materials used in the present invention can be a combination of monocrystalline material with epitaxially grown layers formed thereon.


A variety of dopant materials are contemplated for the formation of the multiple doped regions, the textured region, or any other doped portion of the imager device, and any such dopant that can be used in such processes is considered to be within the present scope. It should be noted that the particular dopant utilized can vary depending on the material being doped, as well as the intended use of the resulting material.


A dopant can be either electron donating or hole donating. In one aspect, non-limiting examples of dopants can include S, F, B, P, N, As, Se, Te, Ge, Ar, Ga, In, Sb, and combinations thereof. It should be noted that the scope of dopants should include, not only the dopants themselves, but also materials in forms that deliver such dopants (i.e. dopant carriers). For example, S dopants includes not only S, but also any material capable being used to dope S into the target region, such as, for example, H2S, SF6, SO2, and the like, including combinations thereof. In one specific aspect, the dopant can be S. Sulfur can be present at an ion dosage level of between about 5×1014 and about 1×1016 ions/cm2. Non-limiting examples of fluorine-containing compounds can include ClF3, PF5, F2 SF6, BF3, GeF4, WF6, SiF4, HF, CF4, CHF3, CH2F2, CH3F, C2F6, C2HF5, C3F8, C4F8, NF3, and the like, including combinations thereof. Non-limiting examples of boron-containing compounds can include B(CH3)3, BF3, BCl3, BN, C2B10H12, borosilica, B2H6, and the like, including combinations thereof. Non-limiting examples of phosphorous-containing compounds can include PF5, PH3, and the like, including combinations thereof. Non-limiting examples of chlorine-containing compounds can include Cl2, SiH2Cl2, HCl, SiCl4, and the like, including combinations thereof. Dopants can also include arsenic-containing compounds such as AsH3 and the like, as well as antimony-containing compounds. Additionally, dopant materials can include mixtures or combinations across dopant groups, i.e. a sulfur-containing compound mixed with a chlorine-containing compound. In one aspect, the dopant material can have a density that is greater than air. In one specific aspect, the dopant material can include Se, H2S, SF6, or mixtures thereof. In yet another specific aspect, the dopant can be SF6 and can have a predetermined concentration range of about 5.0>10−8 mol/cm3 to about 5.0×10−4 mol/cm3. SF6 gas is a good carrier for the incorporation of sulfur into the semiconductor material via a laser process without significant adverse effects on the silicon material. Additionally, it is noted that dopants can also be liquid solutions of n-type or p-type dopant materials dissolved in a solution such as water, alcohol, or an acid or basic solution. Dopants can also be solid materials applied as a powder or as a suspension dried onto the wafer.


Accordingly, the first doped region and the second doped region can be doped with an electron donating or hole donating species to cause the regions to become more positive or negative in polarity as compared to each other and/or the semiconductor device layer. In one aspect, for example, either doped region can be p-doped. In another aspect, either doped region can be n-doped. In one aspect, for example, the first doped region can be negative in polarity and the second doped region can be positive in polarity by doping with p+ and n− dopants. In some aspects, variations of n(−−), n(−), n(+), n(++), p(−−), p(−), p(+), or p(++) type doping of the regions can be used. Additionally, in some aspects the semiconductor material can be doped in addition to the first and second doped regions. The semiconductor material can be doped to have a doping polarity that is different from one or more of the first and second doped regions, or the semiconductor material can be doped to have a doping polarity that is the same as one or more of the first and second doped regions. In one specific aspect, the semiconductor material can be doped to be p-type and one or more of the first and second doped regions can be n-type. In another specific aspect, the semiconductor material can be doped to be n-type and one or more of the first and second doped regions can be p-type. In one aspect, at least one of the first or second doped regions has a surface area of from about 0.1 μm2 to about 32 μm2.


As has been described, the textured region can function to diffuse electromagnetic radiation, to redirect electromagnetic radiation, and to absorb electromagnetic radiation, thus increasing the QE of the device. The textured region can include surface features to increase the effective absorption length of the silicon material. The surface features can be cones, pyramids, pillars, protrusions, micro lenses, quantum dots, inverted features and the like. Factors such as manipulating the feature sizes, dimensions, material type, dopant profiles, texture location, etc. can allow the diffusing region to be tunable for a specific wavelength. In one aspect, tuning the device can allow specific wavelengths or ranges of wavelengths to be absorbed. In another aspect, tuning the device can allow specific wavelengths or ranges of wavelengths to be reduced or eliminated via filtering.


As has been described, a textured region according to aspects of the present disclosure can allow a silicon material to experience multiple passes of incident electromagnetic radiation within the device, particularly at longer wavelengths (i.e. infrared). Such internal reflection increases the effective absorption length to be greater than the thickness of the semiconductor device layer. This increase in absorption length increases the quantum efficiency of the device, leading to an improved signal to noise ratio. The textured region can be associated with the surface nearest the impinging electromagnetic radiation, or the textured region can be associated with a surface opposite in relation to impinging electromagnetic radiation, thereby allowing the radiation to pass through the silicon material before it hits the textured region. Additionally, the textured region can be doped. In one aspect, the textured region can be doped to the same or similar doping polarity as the silicon device layer so as to provide a doped contact region on the backside of the device.


The textured region can be formed by various techniques, including lasing, chemical etching (e.g. anisotropic etching, isotropic etching), nanoimprinting, additional material deposition, reactive ion etching, and the like. One effective method of producing a textured region is through laser processing. Such laser processing allows discrete locations of the semiconductor device layer to be textured. A variety of techniques of laser processing to form a textured region are contemplated, and any technique capable of forming such a region should be considered to be within the present scope. Laser treatment or processing can allow, among other things, enhanced absorption properties and thus increased electromagnetic radiation focusing and detection.


In one aspect, for example, a target region of the silicon material can be irradiated with laser radiation to form a textured region. Examples of such processing have been described in further detail in U.S. Pat. Nos. 7,057,256, 7,354,792 and 7,442,629, which are incorporated herein by reference in their entireties. Briefly, a surface of a semiconductor material such as silicon is irradiated with laser radiation to form a textured or surface modified region. Such laser processing can occur with or without a dopant material. In those aspects whereby a dopant is used, the laser can be directed through a dopant carrier and onto the silicon surface. In this way, dopant from the dopant carrier is introduced into a target region of the silicon material. Such a region incorporated into a silicon material can have various benefits in accordance with aspects of the present disclosure. For example, the target region typically has a textured surface that increases the surface area of the laser treated region and increases the probability of radiation absorption via the mechanisms described herein. In one aspect, such a target region is a substantially textured surface including micron-sized and/or nano-sized surface features that have been generated by the laser texturing. In another aspect, irradiating the surface of the silicon material includes exposing the laser radiation to a dopant such that irradiation incorporates the dopant into the semiconductor. Various dopant materials are known in the art, and are discussed in more detail herein. It is also understood that in some aspects such laser processing can occur in an environment that does not substantially dope the silicon material (e.g. an argon atmosphere).


Thus the surface of the silicon material that forms the textured region is chemically and/or structurally altered by the laser treatment, which may, in some aspects, result in the formation of surface features appearing as nanostructures, microstructures, and/or patterned areas on the surface and, if a dopant is used, the incorporation of such dopants into the semiconductor material. In some aspects, such features can be on the order of 50 nm to 20 μm in size and can assist in the absorption of electromagnetic radiation. In other words, the textured surface can increase the probability of incident radiation being absorbed by the silicon material.


In another aspect, at least a portion of the textured region and/or the semiconductor material can be doped with a dopant to generate a back surface field. A back surface field can function to repel generated charge carriers from the backside of the device and toward the junction to improve collection efficiency and speed. The addition of a back surface field can increase charge carrier collection and depletion. The presence of a back surface field also acts to suppress dark current contribution from the surface of a device.


While the imager device can operate in the absence of a bias at high speeds, in one aspect a reverse bias can be applied across the electrical contacts associated with the imager. Such a reverse bias can function to decrease the response time of the device by more quickly sweeping charge carriers from the silicon material. Accordingly, for those situations whereby a bias is used, any bias voltage capable of sweeping charge carriers from the silicon material is considered to be within the present scope. In one aspect, for example, the reverse bias is from about 0.001 V to about 20 V. In another aspect, the reverse bias is from about 0.001 V to about 10 V. In yet another aspect, the reverse bias is from about 0.001 V to about 5 V. In a further aspect, the reverse bias is from about 0.001 V to about 3 V. In yet a further aspect, the reverse bias is from about 3 V to about 5 V. In some aspects, the reverse bias can be absent, or in other words, 0 V is applied across the first and second contacts. In such cases, the charge carriers can be depleted from the silicon material by the junction potential created by the first and second doped regions.


In another aspect, as is shown in FIG. 4, a semiconductor device layer 402 can have a first doped region 404, a second doped region 406, and a textured region 408 on an opposing surface to the doped regions. An antireflective layer 410 can be coupled to the semiconductor device layer 402 on the opposite surface as the textured layer 408. In some aspects, the antireflective layer 410 can be on the same side of the semiconductor device layer 402 as the textured region (not shown). Furthermore, in some aspects a lens can be optically coupled to the semiconductor device layer and positioned to focus incident electromagnetic radiation into the semiconductor device layer.


In another aspect of the present disclosure, a photodiode array is provided as the imager device. Such an array can include a semiconductor device layer having an incident light surface, at least two photodiodes in the semiconductor device layer, where each photodiode includes a first doped region and a second doped region forming a junction, and a textured region coupled to the semiconductor device layer and positioned to interact with electromagnetic radiation. The textured region can be a single textured region or multiple textured regions. Additionally, the photodiode array has a response time of from about 0.1 ms to about 1 ms and an external quantum efficiency of at least 33% for electromagnetic radiation having at least one wavelength greater than about 800 nm. The photodiode array can have a pixel count, or also commonly known as the pixel resolution equal to or greater than about 320×280. In another embodiment the pixel resolution is greater than 1 MP (megapixel), greater than 5 MP, greater than 15 MP and even greater than 25 MP.


As is shown in FIG. 5, for example, a semiconductor device layer 502 can include at least two photodiodes 504 each having a first doped region 506 and a second doped region 508. A textured region 510 can be positioned to interact with electromagnetic radiation. FIG. 5 shows a separate textured region for each photodiode. In some aspects, however, a single textured region can be used to increase the absorption path lengths of multiple photodiodes in the array. Furthermore, an isolation structure 512 can be positioned between the photodiodes to electrically and/or optically isolate the photodiodes from one another. In another aspect, the photodiode array can be electronically coupled to electronic circuitry to process the signals generated by each photodiode.


Various imager configurations and components are contemplated, and any such should be considered to be within the present scope. Non-limiting examples of such components can include a carrier wafer, electrical contacts, an antireflective layer, a dielectric layer, circuitry layer, a via(s), a transfer gate, an infrared filter, a color filter array (CFA), an infrared cut filter, an isolation feature, and the like. Additionally, such devices can have light absorbing properties and elements as has been disclosed in U.S. patent application Ser. No. 12/885,158, filed on Sep. 17, 2010 which is incorporated by reference in its entirety. It is further understood that the imager can be a CMOS (Complementary Metal Oxide Semiconductor) imaging sensor or a CCD (Charge Coupled Device).


Imager device can include a number of transistors per pixel depending on the desired design of the device. In one aspect, for example, an imager device can include at least three transistors. In other aspects, an imaging device can have four, five, or six or more transistors. For example, FIG. 6 shows an exemplary schematic for a six-transistor (6-T) architecture that will allow global shutter operation according to one aspect of the present disclosure. The imager can include a photodiode (PD), a global reset (Global_RST), a global transfer gate (Global_TX), a storage node, a transfer gate (TX1), reset (RST), source follower (SF), floating diffusion (FD), row select transistor (RS), power supply (Vaapix) and voltage out (Vout). Due to the use of extra transfer gate and storage node, correlated-double-sampling (CDS) is allowed. Therefore, the read noise should be able to match typical CMOS 4T pixels.


While a rolling shutter is considered to be within the present scope, the use of a global shutter can be beneficial for use in the present devices and systems. For example, FIGS. 7a-b show images of the iris of a subject captured by an IR sensitive imager device. As can be seen in FIG. 7a, an image of an iris captured using a rolling shutter is somewhat distorted due to movements during capture. These distortions may affect identification of the individual. FIG. 7b, on the other hand, shows an image of an iris captured using a global shutter that is a more defined and does not show such distortion. The global shutter operates by electronically activating all pixels at precisely the same time, allowing them to integrate the light from the scene at the same time and then stop the integration at the same time. This eliminates rolling shutter distortion. The global shutter image was taken under the same conditions as the rolling shutter. Thus, it would be advantages to utilize a global shutter with the photoimaging device to obtain undistorted images, particularly if the subject is in motion.


In another aspect of the present disclosure, the biometric system can include a three dimensional (3D) photosensing imager. Such a 3D-type imager can be useful to image surface details of an individual for identification, such as facial features, body features, stride or body position features, and the like. Time-of-flight (TOF) is one technique developed for use in radar and LIDAR (Light Detection and Ranging) systems to provide depth information that can be utilized for such 3D imaging. The basic principle of TOF involves sending a signal to an object and measuring a property of the returned signal from a target. The measured property is used to determine the TOF. Distance to the target is therefore derived by multiplication of half the TOF and the velocity of the signal.



FIG. 8 illustrates a TOF measurement with a target having multiple surfaces that are separated spatially. Equation (III) can be used to measure the distance to a target where d is the distance to the target and c is the speed of light.









d
=


TOF
*
c

2





(
III
)








By measuring the time (e.g. TOF) it takes for light emitted from a light source 802 to travel to and from a target 804, the distance between the light source (e.g. a light emitting diode (LED)) and the surface of the target can be derived. For such an imager, if each pixel can perform the above TOF measurement, a 3D image of the target can be obtained. The distance measurements become difficult with TOF methods when the target is relatively near the source due to the high speed of light. In one aspect, therefore, a TOF measurement can utilize a modulated LED light pulse and measure the phase delay between emitted light and received light. Based on the phase delay and the LED pulse width, the TOF can be derived. As such, the TOF concept can be utilized in both CMOS and CCD sensors to obtain depth information from each pixel in order to capture an image used for identification of an individual.


As one example, a 3D pixel, such as a TOF 3D pixel with enhanced infrared response can improve depth accuracy, which in turn can show facial features in a three dimensional scale. In one aspect, a photoimager array can include at least one 3D infrared detecting pixel and at least one visible light detecting pixel arranged monolithically in relation to each other. FIGS. 9a-c show non-limiting example configurations of pixel arrangements of such arrays. FIG. 9a shows one example of a pixel array arrangement having a red pixel 902, a blue pixel 904, and a green pixel 906. Additionally, two 3D TOF pixels 908 having enhanced responsivity or detectability in the IR regions of the light spectrum are included. The combination of two 3D pixels allows for better depth perception. In FIG. 9b, the pixel arrangement shown includes an imager as described in FIG. 9a and three arrays of a red pixel, a blue pixel, and two green pixels. Essentially, one TOF pixel replaces one quadrant of a RGGB pixel design. In this configuration, the addition of several green pixels allows for the capture of more green wavelengths that is needed for green color sensitivity need for the human eye, while at the same time capturing the infrared light for depth perception. It should be noted that the present scope should not be limited by the number or arrangements of pixel arrays, and that any number and/or arrangement is included in the present scope. FIG. 9c shows another arrangement of pixels according to yet another aspect.


In some aspects, the TOF pixel can have an on-pixel optical narrow band pass filter. The narrow band pass filter design can match the modulated light source (either LED or laser) emission spectrum and may significantly reduce unwanted ambient light that can further increase the signal to noise ratio of modulated IR light. Another benefit of increased infrared QE is the possibility of high frame rate operation for high speed 3D image capture. An integrated IR cut filter can allow a high quality visible image with high fidelity color rendering. Integrating an infrared cut filter onto the sensor chip can also reduce the total system cost of a camera module (due to the removal of typical IR filter glass) and reduce module profile (good for mobile applications). This can be utilized with TOF pixels and non-TOF pixels.



FIG. 10 shows an exemplary schematic of a 3D TOF pixel according to one aspect of the present disclosure. The 3D TOF pixel can have 11 transistors for accomplishing the depth measurement of the target. In this embodiment, the 3D pixel can include a photodiode (PD), a global reset (Global_RST), a first global transfer gate (Global_TX1), a first storage node, a first transfer gate (TX1), a first reset (RST1), a first source follower (SF1), a first floating diffusion (FD1), a first row select transistor (RS1), a second global transfer gate (Global_TX2), a second storage node, a second transfer gate (TX2), a second reset (RST2), a second source follower (SF2), a second floating diffusion (FD2), a second row select transistor (RS2), power supply (Vaapix) and voltage out (Vout). Other transistors can be included in the 3D architecture and should be considered within the scope of the present invention. The specific embodiment with 11 transistors can reduce motion artifacts due to the global shutter operation, thereby giving more accurate measurements.


In another aspect, thermal imaging can be utilized for identification of an individual or a group of individuals exhibiting thermal-related characteristics. As is shown in FIG. 11 for example, such an imager can include a silicon device layer 1102 having a first doped region 1104 and a second doped region 1106 forming at least one junction. Numerous configurations are contemplated, and any type of junction configuration is considered to be within the present scope. For example, the first and second doped regions can be distinct from one another, contacting one another, overlapping one another, etc. In some cases, an intrinsic region can be located at least partially between the first and second doped regions. The device can also include a textured region 1108 coupled to the silicon device layer 1102 and positioned to interact with incoming electromagnetic radiation 1110. In this case, the textured region 1108 is located on a side of the silicon device layer 1102 that is opposite to the first doped region 1104 and the second doped region 1106. The textured region 1108 can be associated with an entire surface of the silicon material or only a portion thereof. Further a thermal sensing layer 1112, such as a bolometer or microbolometer, can be coupled to the silicon device layer 1102. In one aspect, a cavity or void is disposed between the thermal sensing layer and the silicon material (not shown). Further details relating to such a device can be found in U.S. Pat. No. 7,847,253, which is incorporated by reference in its entirety. Such a device as shown in FIG. 11 can have the benefits of measuring facial and/or iris features as well as the thermal signature or feature of an individual.


As has been described, the system for identifying an individual can include a light source that is either a passive light source (e.g. sunlight, ambient room lighting) or an active light source (e.g. an LED or lightbulb) that is capable of emitting IR light. The system can utilize any source of light that can be beneficially used to identify an individual. As such, in one aspect the light source is an active light source. Active light sources are well known in the art that are capable of emitting light, particularly in the IR spectrum. Such active light sources can be continuous or pulsed, where the pulses can be synchronized with light capture at the imaging device. While various light wavelengths can be emitted and utilized to identify an individual, IR light in the range of from about 700 nm to about 1200 nm can be particularly useful. Additionally, in some aspects the active light source can be two or more active light sources each emitting infrared electromagnetic radiation at distinct peak emission wavelengths. While any distinct wavelength emissions within the IR range can be utilized, non-limiting examples include 850 nm, 940 nm, 1064 nm, and the like. In some aspects, the two or more active light sources can interact with the same imager device, either simultaneously or with an offset duty cycle. Such configurations can be useful for independent capture of one or more unique features of the individual for redundant identification. This redundant identification can help insure accurate authorization or identification of the individual. In other aspects, the two or more active light sources can each interact with a different imager device.


In some aspects, the system including the imager device and the light source can be in a fixed position. This may be useful in situations, for example, where the environment facilitates individuals walking directly toward the imager device. In some cases, a fixed position imager device can be associated with a zoom lens to allow zooming along a fixed viewing axis. In other aspects, it can be beneficial to allow movement of the imager device and/or the light source. Thus, a system capable of panning and/or tilting and zooming can track an individual during the identification process. It is noted that for purposes of the present disclosure, panning includes movement of a device in any direction. For example, in one aspect a system can include a pan and zoom module. Such a module allows the system to locate a feature of the individual, such as the iris, zoom in on that feature to optimize the imager device (e.g. camera) and/or light source angle to capture an electronic representation for identification purposes. Such a movement system can be manually or automatically operated.


In one specific aspect, the identification system can include at least two imager devices. The imager devices can be mounted together in a manner that allows dependent or independent movement. In one aspect, the imager devices can be utilized to each capture an identification feature of an individual for redundant identification testing. For example, each imager can capture an independent image using the same or different light sources and compare the identification results. In other aspects, the two or more imagers can function together to capture the electronic representation of the individual. For example, in one aspect, the system can include a first imager device positioned and operable to generate a facial electronic representation of the individual and a second imager device positioned and operable to generate an iris electronic representation of the individual. In such a configuration, the system can also include an image processing circuit that finds the location of the eye from the facial electronic representation and then providing that location to circuit that controls the pan, tilt and zoom functions.


The system can also include an analysis module functionally coupled to the imager device to compare the substantially unique identification trait with a known identification trait to facilitate identification of the individual. For example, the analysis module can obtain known data regarding the identity of an individual from a source such as a database and compare this known data to the electronic representation being captured by the imager device. Various algorithms are known that can analyze the image to define the biometric boundaries/measurements and convert the biometric measurements to a unique code. The unique code can then be stored in the database to be used for comparison to make positive identification of the individual. Such an algorithm has been described for iris detection in U.S. Pat. Nos. 4,641,349 and 5,291,560, which are incorporated by reference in their entirety. It should be noted that the image processing module and the analysis module can be the same or different modules. It is understood that the system described herein can be utilized with any of the identification algorithm.


In another aspect, the system can utilize an automatic pan and zoom module to move at least one of the imager device or the light source and a process module to analyze a facial electronic representation. The process module can provide pan and zoom module coordinates for the face and iris for further zooming, movement, and image capture.


Furthermore, it is noted that in various aspects the present systems can be sized to suit a variety of applications. This is further facilitated by the potential thin film design and the increased sensitivity of the imager devices to IR light and the corresponding decrease in the intensity of IR emission, thus allowing reduction in the size of the light source. In one aspect, for example, the light source, the imager device, and the image processing module collectively have a size of less than about 160 cubic centimeters. In yet another aspect, the light source, the imager device, and the image processing module collectively have a size of less than about 16 cubic centimeters. In yet another aspect, the imager device can have an optical format of about 1/7 inches.


In another aspect, the system can be activated by a trigger from the individual, whether the individual has knowledge of the trigger or not. The trigger can be a transistor or sensor integrated in the system that is capable of activating the system. Such triggers can be a thermal sensor, motion sensor, photosensor and other like sensors.


The systems according to aspects of the present disclosure can additionally be designed to be concealed from an individual being identified. It should be noted, that other systems that incorporate imager devices having enhanced QE for electromagnetic radiation having wavelengths in the range of about 800 nm to about 1200 nm can also be concealed from an individual by a transparent IR medium as described herein. The increased responsivity or enhanced QE of the present imager devices can allow an IR light signal to be reflected off of an individual and captured behind an optically opaque but IR transparent surface, medium, or material. For example, an imager device can be located behind an IR transparent material such as glass or plastic being at least partially coated with an infrared transparent paint or other IR transparent medium substrate. In some aspects, the IR transparent medium is visually opaque. In one aspect, metal particles can be impregnated into at least a portion of the infrared transparent medium. In yet another aspect, quantum dots may be disposed on a portion of the IR transparent medium such that the IR light is transmitted through the medium while other light is filtered out. The IR transparent material can be any material that allows the transmission of IR light. The IR light source can be directed toward the individual to be identified from either side of the IR transparent material. Reflections of the IR light source are then captured by the imager device for identity processing. It is noted that the concealment of an IR imager in such a manner can be utilized in association with any method or technique using an IR imaging system, and should not be limited to identification of an individual. It is also noted that, in addition to locating the imager behind an IR transparent material, concealment can also be accomplished through the obscured placement of an IR imager having a small footprint. Given the small footprint and the desired electronic devices, the system disclosed herein can consume small amount of power from the electronic device. In one aspect, the system can use less than 5 watts, less than 3 watts and even less than 1 watt of power.


In other aspects, the identification system can be integrated into an electronic device. Non-limiting examples of such devices can include mobile smart phones, cellular phones, laptop computers, desktop computers, tablet computers, ATMs, and the like. In one specific aspect, positive identification of the individual is operable to unlock the electronic device. In this example, the electronic device stores an encrypted authorized user's facial and iris identification trait in a storage registry and an individual's identification traits are captured by an authorization system incorporated into the electronic device. The authorization system can compare the individual's identification trait with the stored authorized user's identification trait for positive identification. This aspect is beneficial for verifying an individual in a financial or legal transaction or any other transaction that requires identification and/or signature. It is contemplated herein, that ATM financial transactions may include a user authorization system where the encrypted authorized user's identification trait is stored on an ATM debit card, such that the ATM device can compare the individual's identification trait with the authorized user trait stored on the card for a positive identification. A similar system can be utilized for credit cards or any other item of commerce.


In another example, a financial transaction may be accomplished via a cell phone device where the authorization system is continuously verifying the authorized user during the duration of the financial transaction via a front side or cameo imaging devices incorporated into the cell phone. Furthermore, in a cell phone embodiment, the imager device can include a switch such that the user can toggle between infrared light capture and visible light capture modes.


In FIG. 12, an electronic device can include an integrated user authorization system 1200 that can be configured to continuously verify and authorize a user. Such a system can include an imager device 1202 including a semiconductor device layer having a thickness of less than about 10 microns, at least two doped regions forming a junction, and a textured region positioned to interact with the electromagnetic radiation, wherein the imaging device has an external quantum efficiency of at least about 33% for electromagnetic radiation having at least one wavelength of greater than 800 nm, where the imager device is positioned to capture an electronic representation of an identification trait of a user of the device. The imager device at least periodically captures an electronic representation of the user. The system can also include a storage register 1206 operable to store a known identification trait of an authorized user and an analysis module 1208 electrically coupled to the imager device and the storage register, where the analysis module is operable to use algorithms to generated an electronic representation and compare the electronic representation of the identification trait to the known identification trait to verify that the user is the authorized user. Thus an authorized user can continuously use the device while an unauthorized user will be precluded from doing so. In one aspect, the system can include a light source operable to emit electromagnetic radiation having at least one wavelength of from about 700 nm to about 1200 nm toward the user.


In another aspect, a second imager device 1204 can be incorporated into the system. The second imager device can be an IR enhanced imaging device configured to detect electromagnetic radiation having a wavelength in the range of about 800 nm to about 1200 nm. The second imager device can be configured to exclusively track an individual iris, face or both. In another aspect the second imager device can be configured to detect visible light and can be cameo type imager. In another embodiment, a trigger 1210 (e.g. motion sensor) and a switch 1212 can optionally be incorporated in the user authorization system allowing the system to be activated and toggled between a first imager device and a second imager device. Furthermore, a first or second imager device can include a lens or optic element for assisting in the capturing the electronic representation of an individual.


Given the continuous nature of the user authorization system, it can be beneficial to separate the authorization system from the processing system of the electronic device in order to decrease CPU load. One technique for doing so includes monolithically integrating the analysis module and the imager device together on the same semiconductor device layer and separate from the CPU of the electronic device. In this way the authorization system functions independently from the CPU of the electronic device.


Furthermore, in some aspects the authorization system can include a toggle to switch the imager device between IR light capture and visible light capture. As such, the imager can switch between authorizing the user and capturing visible light images.


Furthermore, it can be beneficial to encrypt the known identification trait for security reasons. Such encryption can protect an authorized user from identity theft or unauthorized use of an electronic device.


In another aspect of the present disclosure, a method of identifying an individual is provided. As is shown in FIG. 13, such a method can include emitting infrared electromagnetic radiation having at least one wavelength of from about 700 nm to about 1200 nm toward the individual 1302, receiving the infrared electromagnetic radiation reflected from the individual into an imager device to generate an electronic representation of the individual 1304, processing the electronic representation into an individual representation having at least one substantially unique identification trait 1306, and using the at least one substantially unique identification trait to identify the individual 1308. The imager device includes a semiconductor device layer, at least two doped regions forming a junction, and a textured region positioned to interact with the electromagnetic radiation, wherein the imaging device has an external quantum efficiency of at least about 30% for electromagnetic radiation having at least one wavelength of greater than 800 nm.


A variety of identification traits can be utilized to identify an individual, and any identification trait capable of being utilized for such identification is considered to be within the present scope. Non-limiting examples of such identification traits include facial features, iris patterns, body posture, gait, thermal images, and the like. In one specific aspect, the substantially unique identification trait can include an electronic representation of an iris sufficient to identify the individual. As has been described, the enhanced responsivity of the present system can facilitate the capture of an electronic representation of the iris across a wide range of distances. In one aspect, for example, the electronic representation of the iris can be captured by the imager device at a distance of from about 0.5 m to about 15 m from the individual. In another aspect, the electronic representation of the iris can be captured by the imager device at a distance of from about 2 m to about 10 m from the individual. In a further aspect, the electronic representation of the iris can be captured at a distance of greater than 2 m from the imager device to the individual using the infrared electromagnetic radiation at an intensity that is below 10,000 mW/mm2/steradians.


Of course, it is to be understood that the above-described arrangements are only illustrative of the application of the principles of the present disclosure. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present disclosure and the appended claims are intended to cover such modifications and arrangements. Thus, while the present disclosure has been described above with particularity and detail in connection with what is presently deemed to be the most practical embodiments of the disclosure, it will be apparent to those of ordinary skill in the art that numerous modifications, including, but not limited to, variations in size, materials, shape, form, function and manner of operation, assembly and use may be made without departing from the principles and concepts set forth herein.

Claims
  • 1. A system for identifying an individual, comprising: an active light source capable of emitting electromagnetic radiation having at least one wavelength of from about 800 nanometers (nm) to about 1200 nm;an imager device positioned to receive the electromagnetic radiation upon reflection from an individual to generate an electronic representation of the individual, the imager device comprising: at least one infrared light detecting pixel having a silicon semiconductor device layer exhibiting a thickness of less than about 10 microns, the semiconductor device layer comprising at least two doped regions forming a junction and a textured region having a topology comprising a plurality of nanostructures or microstructures formed by one of lasing and chemical etching, the textured region being positioned to interact with the electromagnetic radiation so as to increase the path length within the semiconductor device layer, wherein the imager device has a quantum efficiency of at least about 33% for electromagnetic radiation having at least one wavelength of greater than 800 nm and a responsivity in a range from about 0.1 Amps/Watt (A/W) to about 0.55 A/W for at least one wavelength in a range from about 1000 nm to about 1200 nm, wherein the at least one infrared light detecting pixel further comprises a thermal sensing layer disposed on a side of the semiconductor device layer opposite the incoming electromagnetic radiation for capturing thermal images of the individual; andat least one visible light detecting pixel configured to detect at least one wavelength in the range of from about 350 nm to about 800 nm for capturing visible light images of the individual; andan image processing module functionally coupled to the imager device and operable to receive the electronic representation, wherein the image processing module is operable to process the electronic representation into an individual representation having at least one substantially unique identification trait.
  • 2. The system of claim 1, wherein the semiconductor device layer is coupled to a bulk semiconductor.
  • 3. The system of claim 1, wherein the active light source is two or more active light sources each emitting infrared electromagnetic radiation at distinct peak emission wavelengths.
  • 4. The system of claim 3, wherein the two or more active light sources emit infrared electromagnetic radiation at about 850 nm and about 940 nm.
  • 5. The system of claim 1, wherein the imager device is capable of capturing the electronic representation with sufficient detail to identify the at least one substantially unique identification trait using electromagnetic radiation emitted from the active light source having at least one wavelength of from about 800 nm to about 1200 nm and having a scene radiance impinging on the individual at 3 meters that is at least 0.1 milliWatts/millimeter squared (mW/mm2).
  • 6. The system of claim 1, wherein the imager device is silicon-based and has a response time of from about 0.1 millisecond (ms) to about 1 ms and a quantum efficiency of at least about 33% for electromagnetic radiation having at least one wavelength of greater than 800 nm.
  • 7. The system of claim 1, wherein the imager device is silicon-based and has a response time of from about 0.1 millisecond (ms) to about 1 ms and a quantum efficiency of at least about 11% for electromagnetic radiation having at least one wavelength of greater than 940 nm.
  • 8. The system of claim 1, further comprising an analysis module functionally coupled to the image processing module, wherein the analysis module is operable to compare the at least one substantially unique identification trait with a known identification trait to facilitate identification of the individual.
  • 9. The system of claim 1, further comprising an automatic pan and zoom module operable to move at least one of the light source or the imager device in order to track the individual.
  • 10. The system of claim 1, wherein the imager device includes at least two imager devices.
  • 11. The system of claim 10, wherein the at least two imager devices includes a first imager device positioned and operable to generate a facial electronic representation of the individual and a second imager device positioned and operable to generate an iris electronic representation of the individual.
  • 12. The system of claim 11, further comprising: an automatic pan and zoom module operable to move at least one of the active light source or the imager device; anda process module to analyze the facial electronic representation and provide the pan and zoom module coordinates for the face and iris.
  • 13. The system of claim 12, wherein the system is concealed behind an infrared transparent and optically opaque medium from the individual.
  • 14. The system of claim 1, wherein the light source, the imager device, and the image processing module collectively has a size of less than about 160 cubic centimeters.
  • 15. The system of claim 1, further comprising an electronic device into which the system is integrated, wherein the electronic device includes at least one of a mobile smart phone, a cellular phone, a laptop computer, and a tablet computer.
  • 16. The system of claim 15, wherein positive identification of the individual is operable to verify the individual in a financial transaction.
  • 17. A method of identifying an individual, comprising: emitting infrared electromagnetic radiation having at least one wavelength of from about 800 nanometers (nm) to about 1200 nm toward the individual;receiving the infrared electromagnetic radiation reflected from the individual into an imager device to generate an electronic representation of the individual, the imager device comprising: at least one infrared light detecting pixel having a silicon semiconductor device layer exhibiting a thickness of less than about 10 microns, the semiconductor device layer comprising at least two doped regions forming a junction and a textured region having a topology comprising a plurality of nanostructures or microstructures formed by one of lasing and chemical etching, the textured region being positioned to interact with the electromagnetic radiation so as to increase the path length within the semiconductor device layer, wherein the imager device has a quantum efficiency of at least about 33% for electromagnetic radiation having at least one wavelength of greater than 800 nm and a responsivity in a range from about 0.1 Amps/Watt (A/W) to about 0.55 A/W for at least one wavelength in a range from about 1000 nm to about 1200 nm, wherein the at least one infrared light detecting pixel further comprises a thermal sensing layer disposed on a side of the semiconductor device layer opposite the incoming electromagnetic radiation for capturing thermal images of the individual; andat least one visible light detecting pixel configured to detect at least one wavelength in the range of from about 350 nm to about 800 nm for capturing visible light images of the individual;processing the electronic representation into an individual representation having at least one substantially unique identification trait; andusing the at least one substantially unique identification trait to identify the individual.
  • 18. The method of claim 17, wherein the at least one substantially unique identification trait includes an electronic representation of an iris sufficient to identify the individual.
  • 19. The method of claim 18, wherein the electronic representation of the iris is captured by the imager device at a distance of from about 0.5 meter (m) to about 15 m from the individual.
  • 20. The method of claim 17, wherein emitting infrared electromagnetic radiation further includes emitting infrared electromagnetic radiation from at least two active light sources each emitting at distinct peak emission wavelengths.
  • 21. The method of claim 20, wherein electronic representations from each active light source are processed into individual representations each having at least one substantially unique identification trait, and wherein each individual representation is compared to verify identification results of the individual.
  • 22. The method of claim 17, further comprising moving the emitted infrared electromagnetic radiation and the imager device relative to movements of the individual in order to track the individual during receiving of the infrared electromagnetic radiation.
  • 23. The system of claim 1, wherein the imager device has a quantum efficiency of at least about 46% for electromagnetic radiation having at least one wavelength of greater than 800 nm.
  • 24. The method of claim 17, wherein the imager device has a quantum efficiency of at least about 46% for electromagnetic radiation having at least one wavelength of greater than 800 nm.
PRIORITY DATA

The present application claims benefit of U.S. Patent Application bearing the Ser. No. 13/549,107, filed on Jul. 13, 2012, entitled “Biometric Imaging Devices and Associated Methods”, which claims benefit of U.S. Provisional Application bearing the Ser. No. 61/507,488, entitled “Biometric Imaging Devices and Associated Methods”, filed on Jul. 13, 2011, which is incorporated herein by reference.

US Referenced Citations (676)
Number Name Date Kind
3487223 St. John Dec 1969 A
3922571 Smith Nov 1975 A
3973994 Redfield Aug 1976 A
3994012 Warner, Jr. Nov 1976 A
4017887 Davies et al. Apr 1977 A
4105955 Hayashi Aug 1978 A
4149174 Shannon Apr 1979 A
4176365 Kroger Nov 1979 A
4181538 Narayan et al. Jan 1980 A
4201450 Trapani May 1980 A
4242149 King et al. Dec 1980 A
4253882 Dalal Mar 1981 A
4277793 Webb Jul 1981 A
4322571 Stanbery Mar 1982 A
4343832 Smith Aug 1982 A
4346164 Tabarelli et al. Aug 1982 A
4419533 Czubatyj et al. Dec 1983 A
4452826 Shields et al. Jun 1984 A
4493942 Sheng et al. Jan 1985 A
4514582 Tiedje et al. Apr 1985 A
4536608 Sheng et al. Aug 1985 A
4546945 Nessfield Oct 1985 A
4568960 Petroff et al. Feb 1986 A
4593303 Dyck et al. Jun 1986 A
4593313 Nagasaki Jun 1986 A
4617593 Dudley Oct 1986 A
4630082 Sakai Dec 1986 A
4648936 Ashby et al. Mar 1987 A
4663188 Kane May 1987 A
4672206 Suzuki Jun 1987 A
4673770 Mandelkorn Jun 1987 A
4679068 Lillquist et al. Jul 1987 A
4703996 Glass et al. Nov 1987 A
4723086 Leibovich et al. Feb 1988 A
4751571 Lillquist Jun 1988 A
4773944 Nath et al. Sep 1988 A
4775425 Guha et al. Oct 1988 A
4777490 Sharma et al. Oct 1988 A
4829013 Yamazaki May 1989 A
4838952 Dill et al. Jun 1989 A
4883962 Elliot Nov 1989 A
4886958 Merryman Dec 1989 A
4887255 Handa et al. Dec 1989 A
4894526 Bethea et al. Jan 1990 A
4910568 Taki et al. Mar 1990 A
4910588 Kinoshita et al. Mar 1990 A
4964134 Westbrook et al. Oct 1990 A
4965784 Land et al. Oct 1990 A
4968372 Maass Nov 1990 A
4999308 Nishiura et al. Mar 1991 A
5021100 Ishihara et al. Jun 1991 A
5021854 Huth Jun 1991 A
5080725 Green et al. Jan 1992 A
5081049 Green et al. Jan 1992 A
5089437 Shima et al. Feb 1992 A
5100478 Kawabata Mar 1992 A
5114876 Weiner May 1992 A
5127964 Hamakawa et al. Jul 1992 A
5164324 Russell et al. Nov 1992 A
5182231 Hongo et al. Jan 1993 A
5208822 Haus et al. May 1993 A
5223043 Olson et al. Jun 1993 A
5234790 Lang et al. Aug 1993 A
5236863 Iranmanesh Aug 1993 A
5244817 Hawkins et al. Sep 1993 A
5296045 Banerjee et al. Mar 1994 A
5309275 Nishimura et al. May 1994 A
5322988 Russell et al. Jun 1994 A
5346850 Kaschmitter et al. Sep 1994 A
5351446 Langsdorf Oct 1994 A
5370747 Noguchi et al. Dec 1994 A
5373182 Norton Dec 1994 A
5381431 Zayhowski Jan 1995 A
5383217 Uemura Jan 1995 A
5390201 Tomono et al. Feb 1995 A
5410168 Hisa Apr 1995 A
5413100 Barthelemy et al. May 1995 A
5449626 Hezel Sep 1995 A
5454347 Shibata et al. Oct 1995 A
5502329 Pezzani Mar 1996 A
5507881 Sichanugrist et al. Apr 1996 A
5523570 Hairston Jun 1996 A
5559361 Pezzani Sep 1996 A
5569615 Yamazaki et al. Oct 1996 A
5569624 Weiner Oct 1996 A
5578858 Mueller et al. Nov 1996 A
5580615 Itoh et al. Dec 1996 A
5583704 Fujii Dec 1996 A
5589008 Kepper Dec 1996 A
5589704 Levine Dec 1996 A
5597621 Hummel et al. Jan 1997 A
5600130 VanZeghbroeck Feb 1997 A
5627081 Tsuo et al. May 1997 A
5635089 Singh et al. Jun 1997 A
5640013 Ishikawa et al. Jun 1997 A
5641362 Meier Jun 1997 A
5641969 Cooke et al. Jun 1997 A
5705413 Harkin et al. Jan 1998 A
5705828 Noguchi et al. Jan 1998 A
5708486 Miyawaki et al. Jan 1998 A
5710442 Watanabe et al. Jan 1998 A
5714404 Mititsky et al. Feb 1998 A
5727096 Ghirardi et al. Mar 1998 A
5731213 Ono Mar 1998 A
5751005 Wyles et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5766127 Pologe et al. Jun 1998 A
5766964 Rohatgi et al. Jun 1998 A
5773820 Osajda et al. Jun 1998 A
5779631 Chance Jul 1998 A
5781392 Clark Jul 1998 A
5792280 Ruby et al. Aug 1998 A
5802091 Chakrabarti et al. Aug 1998 A
5808350 Jack et al. Sep 1998 A
5859446 Nagasu et al. Jan 1999 A
5861639 Bernier Jan 1999 A
5871826 Mei Feb 1999 A
5898672 Ginzboorg Apr 1999 A
5918140 Wickboldt et al. Jun 1999 A
5923071 Saito Jul 1999 A
5935320 Graef et al. Aug 1999 A
5942789 Morikawa Aug 1999 A
5943584 Shim et al. Aug 1999 A
5963790 Matsuno et al. Oct 1999 A
5977515 Uraki et al. Nov 1999 A
5977603 Ishikawa Nov 1999 A
5995606 Civanlar et al. Nov 1999 A
6019796 Mei Feb 2000 A
6048588 Engelsberg Apr 2000 A
6049058 Dulaney et al. Apr 2000 A
6071796 Voutsas Jun 2000 A
6072117 Matsuyama et al. Jun 2000 A
6080988 Ishizuya et al. Jun 2000 A
6082858 Grace Jul 2000 A
6097031 Cole Aug 2000 A
6106689 Matsuyama Aug 2000 A
6107618 Fossum et al. Aug 2000 A
6111300 Cao et al. Aug 2000 A
6117499 Wong et al. Sep 2000 A
6121130 Chua et al. Sep 2000 A
6128379 Smyk Oct 2000 A
6131511 Wachi et al. Oct 2000 A
6131512 Verlinden et al. Oct 2000 A
6147297 Wettling et al. Nov 2000 A
6160833 Floyd et al. Dec 2000 A
6168965 Malinovich et al. Jan 2001 B1
6194722 Fiorini et al. Feb 2001 B1
6204506 Akahori et al. Mar 2001 B1
6229192 Gu May 2001 B1
6242291 Kusumoto et al. Jun 2001 B1
6252256 Ugge et al. Jun 2001 B1
6272768 Danese Aug 2001 B1
6290713 Russell Sep 2001 B1
6291302 Yu Sep 2001 B1
6313901 Cacharelis Nov 2001 B1
6320296 Fujii et al. Nov 2001 B1
6327022 Nishi Dec 2001 B1
6331445 Janz et al. Dec 2001 B1
6331885 Nishi Dec 2001 B1
6333485 Haight et al. Dec 2001 B1
6340281 Haraguchi Jan 2002 B1
6372536 Fischer et al. Apr 2002 B1
6372591 Mineji et al. Apr 2002 B1
6372611 Horikawa Apr 2002 B1
6379979 Connolly Apr 2002 B1
6420706 Lurie et al. Jul 2002 B1
6429036 Nixon et al. Aug 2002 B1
6429037 Wenham et al. Aug 2002 B1
6457478 Danese Oct 2002 B1
6465860 Shigenaka et al. Oct 2002 B2
6475839 Zhang et al. Nov 2002 B2
6479093 Lauffer et al. Nov 2002 B2
6483116 Kozlowski et al. Nov 2002 B1
6483929 Marakami et al. Nov 2002 B1
6486046 Fujimura et al. Nov 2002 B2
6486522 Bishay et al. Nov 2002 B1
6493567 Krivitski et al. Dec 2002 B1
6498336 Tian et al. Dec 2002 B1
6500690 Yamagishi et al. Dec 2002 B1
6504178 Carlson et al. Jan 2003 B2
6562705 Ohara May 2003 B1
6580053 Voutsas Jun 2003 B1
6583936 Kaminsky et al. Jun 2003 B1
6586318 Lu Jul 2003 B1
6597025 Lauter et al. Jul 2003 B2
6607927 Ramappa et al. Aug 2003 B2
6624049 Yamazaki Sep 2003 B1
6639253 Duane et al. Oct 2003 B2
6653554 Ishihara Nov 2003 B2
6667528 Cohen et al. Dec 2003 B2
6677655 Fitzergald Jan 2004 B2
6677656 Francois Jan 2004 B2
6683326 Iguchi et al. Jan 2004 B2
6689209 Falster et al. Feb 2004 B2
6690968 Mejia Feb 2004 B2
6734455 Li May 2004 B2
6753585 Kindt Jun 2004 B1
6756104 Sokol et al. Jun 2004 B2
6759262 Theil et al. Jul 2004 B2
6790701 Shigenaka et al. Sep 2004 B2
6796144 Shepard et al. Sep 2004 B2
6800541 Okumura Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6803555 Parrish et al. Oct 2004 B1
6815685 Wany Nov 2004 B2
6818535 Lu et al. Nov 2004 B2
6822313 Matsushita Nov 2004 B2
6825057 Heyers et al. Nov 2004 B1
6864156 Conn Mar 2005 B1
6864190 Han et al. Mar 2005 B2
6867806 Lee et al. Mar 2005 B1
6876003 Nakamura et al. Apr 2005 B1
6897118 Poon et al. May 2005 B1
6900839 Kozlowski et al. May 2005 B1
6907135 Gifford Jun 2005 B2
6911375 Guarini et al. Jun 2005 B2
6919587 Ballon et al. Jul 2005 B2
6923625 Sparks Aug 2005 B2
6927432 Holm et al. Aug 2005 B2
6984816 Holm et al. Jan 2006 B2
7008854 Forbes Mar 2006 B2
7041525 Clevenger et al. May 2006 B2
7057256 Carey, III et al. Jun 2006 B2
7075079 Wood Jul 2006 B2
7091411 Falk et al. Aug 2006 B2
7109517 Zaidi Sep 2006 B2
7112545 Railkar et al. Sep 2006 B1
7126212 Enquist et al. Oct 2006 B2
7132724 Merrill Nov 2006 B1
7202102 Yao Apr 2007 B2
7211214 Chou May 2007 B2
7211501 Liu et al. May 2007 B2
7235812 Chu et al. Jun 2007 B2
7247527 Shimomura et al. Jul 2007 B2
7247812 Tsao Jul 2007 B2
7256102 Nakata et al. Aug 2007 B2
7271445 Forbes Sep 2007 B2
7271835 Iizuka et al. Sep 2007 B2
7285482 Ochi Oct 2007 B2
7314832 Kountz et al. Jan 2008 B2
7315014 Lee et al. Jan 2008 B2
7354792 Carey, III et al. Apr 2008 B2
7358498 Geng et al. Apr 2008 B2
7375378 Manivannan et al. May 2008 B2
7390689 Mazur et al. Jun 2008 B2
7413909 Hutchens et al. Aug 2008 B2
7425471 Bruland et al. Sep 2008 B2
7432148 Li et al. Oct 2008 B2
7442629 Mazur et al. Oct 2008 B2
7446359 Lee et al. Nov 2008 B2
7446807 Hong Nov 2008 B2
7456452 Wells et al. Nov 2008 B2
7482532 Yi et al. Jan 2009 B2
7498650 Lauxtermann Mar 2009 B2
7504325 Koezuka et al. Mar 2009 B2
7504702 Mazur et al. Mar 2009 B2
7511750 Murakami Mar 2009 B2
7521737 Augusto Apr 2009 B2
7528463 Forbes May 2009 B2
7542085 Altice, Jr. et al. Jun 2009 B2
7547616 Fogel et al. Jun 2009 B2
7551059 Farrier Jun 2009 B2
7560750 Niira et al. Jul 2009 B2
7564631 Li et al. Jul 2009 B2
7569503 Pan Aug 2009 B2
7582515 Choi et al. Sep 2009 B2
7586601 Eb stein Sep 2009 B2
7592593 Kauffman et al. Sep 2009 B2
7595213 Kwon et al. Sep 2009 B2
7605064 Kizilyalli et al. Oct 2009 B2
7605397 Kindem et al. Oct 2009 B2
7615808 Pain et al. Nov 2009 B2
7618839 Rhodes Nov 2009 B2
7619269 Ohkawa Nov 2009 B2
7629234 Bruland Dec 2009 B2
7629582 Hoffman et al. Dec 2009 B2
7648851 Fu et al. Jan 2010 B2
7649156 Lee Jan 2010 B2
7687740 Bruland et al. Mar 2010 B2
7705879 Kerr et al. Apr 2010 B2
7728274 Pilla et al. Jun 2010 B2
7731665 Lee et al. Jun 2010 B2
7741666 Nozaki et al. Jun 2010 B2
7745901 McCaffrey et al. Jun 2010 B1
7763913 Fan et al. Jul 2010 B2
7772028 Adkisson et al. Aug 2010 B2
7781856 Mazur et al. Aug 2010 B2
7800192 Venezia et al. Sep 2010 B2
7800684 Tatani Sep 2010 B2
7816220 Mazur et al. Oct 2010 B2
7828983 Weber et al. Nov 2010 B2
7847253 Carey et al. Dec 2010 B2
7847326 Park et al. Dec 2010 B2
7855406 Yamaguchi et al. Dec 2010 B2
7875498 Elbanhawy et al. Jan 2011 B2
7880168 Lenchenkov Feb 2011 B2
7884439 Mazur et al. Feb 2011 B2
7884446 Mazur et al. Feb 2011 B2
7897942 Bereket Mar 2011 B1
7910964 Kawahito et al. Mar 2011 B2
7923801 Tian et al. Apr 2011 B2
7935941 Bruland et al. May 2011 B2
7968834 Veeder Jun 2011 B2
8008205 Fukushima et al. Aug 2011 B2
8013411 Cole Sep 2011 B2
8030726 Sumi Oct 2011 B2
8035343 Seman, Jr. Oct 2011 B2
8058615 McCaffrey Nov 2011 B2
8076746 McCarten et al. Dec 2011 B2
8080467 Carey et al. Dec 2011 B2
8088219 Knerer et al. Jan 2012 B2
8093559 Rajavel Jan 2012 B1
RE43169 Parker Feb 2012 E
8164126 Moon et al. Apr 2012 B2
8207051 Sickler et al. Jun 2012 B2
8247259 Grolier et al. Aug 2012 B2
8259293 Andreou et al. Sep 2012 B2
8268403 Akiyama et al. Sep 2012 B2
8288702 Veeder Oct 2012 B2
8355545 Corcoran et al. Jan 2013 B2
8445950 Iida et al. May 2013 B2
8445985 Hiyama et al. May 2013 B2
8456546 Oike Jun 2013 B2
8470619 Bour Jun 2013 B2
8476681 Haddad et al. Jul 2013 B2
8530264 De Munck et al. Sep 2013 B2
8564087 Yamamura et al. Oct 2013 B2
8603902 Mazer et al. Dec 2013 B2
8604405 Liu et al. Dec 2013 B2
8629485 Yamamura et al. Jan 2014 B2
8649568 Sato Feb 2014 B2
8680591 Haddad et al. Mar 2014 B2
8698272 Vineis Apr 2014 B2
8729678 Shim et al. May 2014 B2
8742528 Yamamura et al. Jun 2014 B2
8884226 Miyazaki et al. Nov 2014 B2
8906670 Gray Dec 2014 B2
8916945 Sakamoto et al. Dec 2014 B2
8928784 Watanabe et al. Jan 2015 B2
8994135 Yamamura et al. Mar 2015 B2
9064762 Yamaguchi Jun 2015 B2
9184204 Hu Nov 2015 B2
9190551 Yamamura et al. Nov 2015 B2
9276143 Mazur Mar 2016 B2
9369641 Hu Jun 2016 B2
9419159 Sakamoto et al. Aug 2016 B2
9478572 Miyanami Oct 2016 B2
9559215 Ahmed Jan 2017 B1
9659984 Ohkubo et al. May 2017 B2
9673250 Haddad Jun 2017 B2
20010017344 Aebi Aug 2001 A1
20010022768 Takahashi Sep 2001 A1
20010044175 Barret et al. Nov 2001 A1
20010044251 Cho et al. Nov 2001 A1
20010044266 Katsuoka Nov 2001 A1
20020020893 Lhorte Feb 2002 A1
20020024618 Imai Feb 2002 A1
20020034845 Fujimura et al. Mar 2002 A1
20020056845 Iguchi et al. May 2002 A1
20020060322 Tanabe et al. May 2002 A1
20020079290 Holdermann Jun 2002 A1
20020117699 Roy Aug 2002 A1
20020126333 Hosono et al. Sep 2002 A1
20020148964 Dausch et al. Oct 2002 A1
20020176650 Zhao et al. Nov 2002 A1
20020182769 Campbell Dec 2002 A1
20030016708 Albrecht et al. Jan 2003 A1
20030024269 Shepard et al. Feb 2003 A1
20030025156 Y amazaki et al. Feb 2003 A1
20030029495 Mazur et al. Feb 2003 A1
20030030083 Lee et al. Feb 2003 A1
20030045074 Seibel et al. Mar 2003 A1
20030045092 Shin Mar 2003 A1
20030057357 Uppal et al. Mar 2003 A1
20030111106 Nagano et al. Jun 2003 A1
20030132449 Hosono et al. Jul 2003 A1
20030183270 Falk et al. Oct 2003 A1
20030210332 Frame Nov 2003 A1
20030213515 Sano et al. Nov 2003 A1
20030214595 Mabuchi Nov 2003 A1
20030228883 Kusakari et al. Dec 2003 A1
20040014307 Shin et al. Jan 2004 A1
20040016886 Ringermacher et al. Jan 2004 A1
20040041168 Hembree et al. Mar 2004 A1
20040046224 Rossel et al. Mar 2004 A1
20040077117 Ding et al. Apr 2004 A1
20040080638 Lee Apr 2004 A1
20040112426 Hagino Jun 2004 A1
20040130020 Kuwabara et al. Jul 2004 A1
20040161868 Hong Aug 2004 A1
20040169834 Richter et al. Sep 2004 A1
20040222187 Lin Nov 2004 A1
20040252931 Belleville et al. Dec 2004 A1
20040256561 Beuhler et al. Dec 2004 A1
20050032249 Im et al. Feb 2005 A1
20050040440 Murakami Feb 2005 A1
20050051822 Manning Mar 2005 A1
20050062041 Terakawa et al. Mar 2005 A1
20050063566 Beek Mar 2005 A1
20050088634 Kosugi Apr 2005 A1
20050093100 Tze-Chiang et al. May 2005 A1
20050101100 Kretchmer et al. May 2005 A1
20050101160 Garg et al. May 2005 A1
20050127401 Mazur Jun 2005 A1
20050134698 Schroeder et al. Jun 2005 A1
20050150542 Madan Jul 2005 A1
20050158969 Binnis et al. Jul 2005 A1
20050184291 Cole et al. Aug 2005 A1
20050184353 Mouli Aug 2005 A1
20050211996 Krishna et al. Sep 2005 A1
20050226287 Shah et al. Oct 2005 A1
20050227390 Shtein et al. Oct 2005 A1
20050227457 Kondo et al. Oct 2005 A1
20060006482 Rieve et al. Jan 2006 A1
20060011954 Ueda et al. Jan 2006 A1
20060011955 Baggenstoss Jan 2006 A1
20060060848 Chang et al. Mar 2006 A1
20060071254 Rhodes Apr 2006 A1
20060079062 Mazur et al. Apr 2006 A1
20060086956 Furukawa et al. Apr 2006 A1
20060097172 Park May 2006 A1
20060102901 Im et al. May 2006 A1
20060118781 Rhodes Jun 2006 A1
20060121680 Tanaka Jun 2006 A1
20060128087 Bamji Jun 2006 A1
20060132633 Nam et al. Jun 2006 A1
20060138396 Lin et al. Jun 2006 A1
20060145148 Hirai et al. Jul 2006 A1
20060145176 Lee Jul 2006 A1
20060160343 Chong et al. Jul 2006 A1
20060166475 Mantl Jul 2006 A1
20060175529 Harmon et al. Aug 2006 A1
20060180885 Rhodes Aug 2006 A1
20060181627 Farrier Aug 2006 A1
20060210122 Cleveland Sep 2006 A1
20060214121 Schrey et al. Sep 2006 A1
20060228897 Timans Oct 2006 A1
20060231853 Tanaka Oct 2006 A1
20060231914 Carey et al. Oct 2006 A1
20060238632 Shah Oct 2006 A1
20060244090 Roy et al. Nov 2006 A1
20060255340 Manivannan et al. Nov 2006 A1
20060257140 Seger Nov 2006 A1
20070035849 Li et al. Feb 2007 A1
20070035879 Hall et al. Feb 2007 A1
20070051876 Sumi et al. Mar 2007 A1
20070052050 Dierickx Mar 2007 A1
20070063219 Sa'ar et al. Mar 2007 A1
20070076481 Tennant Apr 2007 A1
20070102709 Burgener et al. May 2007 A1
20070103580 Noto May 2007 A1
20070115554 Breitung et al. May 2007 A1
20070123005 Hiura et al. May 2007 A1
20070125951 Snider et al. Jun 2007 A1
20070131275 Kinsey et al. Jun 2007 A1
20070138590 Wells et al. Jun 2007 A1
20070145505 Kim et al. Jun 2007 A1
20070178672 Tanaka et al. Aug 2007 A1
20070187670 Hsu et al. Aug 2007 A1
20070189583 Shimada Aug 2007 A1
20070194356 Moon et al. Aug 2007 A1
20070194401 Nagai et al. Aug 2007 A1
20070195056 Lloyd Aug 2007 A1
20070200940 Gruhlke et al. Aug 2007 A1
20070201859 Sarrat Aug 2007 A1
20070235827 Altice Oct 2007 A1
20070237504 Nakashiba Oct 2007 A1
20070243701 Ito et al. Oct 2007 A1
20070247414 Roberts Oct 2007 A1
20070262366 Baek et al. Nov 2007 A1
20070290283 Park et al. Dec 2007 A1
20070293056 Setsuhara et al. Dec 2007 A1
20070296060 Tanabe et al. Dec 2007 A1
20070298533 Yang et al. Dec 2007 A1
20080002863 Northcott Jan 2008 A1
20080020555 Shimomura et al. Jan 2008 A1
20080026550 Werner et al. Jan 2008 A1
20080036022 Hwang et al. Feb 2008 A1
20080044943 Mazur Feb 2008 A1
20080076240 Veschetti et al. Mar 2008 A1
20080099804 Venezia May 2008 A1
20080121280 Carnel et al. May 2008 A1
20080121805 Tweet et al. May 2008 A1
20080135099 Yu Jun 2008 A1
20080142686 Konno et al. Jun 2008 A1
20080170173 Park et al. Jul 2008 A1
20080173620 Grek Jul 2008 A1
20080174685 Shan et al. Jul 2008 A1
20080178932 Den Boer et al. Jul 2008 A1
20080179762 Cho et al. Jul 2008 A1
20080191296 Wang et al. Aug 2008 A1
20080191310 Wu et al. Aug 2008 A1
20080192132 Bechtel et al. Aug 2008 A1
20080196761 Nakano et al. Aug 2008 A1
20080198251 Xu et al. Aug 2008 A1
20080202576 Hieslmair Aug 2008 A1
20080213936 Hatai Sep 2008 A1
20080223436 den Boer et al. Sep 2008 A1
20080242005 Dozen et al. Oct 2008 A1
20080251812 Yoo Oct 2008 A1
20080257409 Li et al. Oct 2008 A1
20080258604 Mazur et al. Oct 2008 A1
20080266434 Sugawa et al. Oct 2008 A1
20080266435 Agranov et al. Oct 2008 A1
20080281174 Dietiker Nov 2008 A1
20080303932 Wang et al. Dec 2008 A1
20080309913 Fallon Dec 2008 A1
20090002528 Manabe et al. Jan 2009 A1
20090009596 Kerr et al. Jan 2009 A1
20090014056 Hockaday Jan 2009 A1
20090027640 Shibazaki Jan 2009 A1
20090036783 Kishima Feb 2009 A1
20090038669 Atanackovic Feb 2009 A1
20090039397 Chao Feb 2009 A1
20090050944 Hong Feb 2009 A1
20090056797 Barnett et al. Mar 2009 A1
20090057536 Hirose Mar 2009 A1
20090065051 Chan et al. Mar 2009 A1
20090078316 Khazeni et al. Mar 2009 A1
20090090988 Ohgishi Apr 2009 A1
20090095887 Saveliev Apr 2009 A1
20090096049 Oshiyama et al. Apr 2009 A1
20090097290 Chandrasekaran Apr 2009 A1
20090101197 Morikawa Apr 2009 A1
20090109305 Dai et al. Apr 2009 A1
20090114630 Hawryluk May 2009 A1
20090142879 Isaka et al. Jun 2009 A1
20090146240 Carey, III et al. Jun 2009 A1
20090151785 Naum et al. Jun 2009 A1
20090160983 Lenchenkov Jun 2009 A1
20090174026 Carey et al. Jul 2009 A1
20090179199 Sano et al. Jul 2009 A1
20090180010 Adikisson et al. Jul 2009 A1
20090194671 Nozaki et al. Aug 2009 A1
20090200454 Barbier et al. Aug 2009 A1
20090200586 Mao et al. Aug 2009 A1
20090200625 Venezia et al. Aug 2009 A1
20090200626 Qian et al. Aug 2009 A1
20090200631 Tai et al. Aug 2009 A1
20090206237 Shannon et al. Aug 2009 A1
20090211627 Meier et al. Aug 2009 A1
20090213883 Mazur et al. Aug 2009 A1
20090218493 McCaffrey et al. Sep 2009 A1
20090223561 Kim et al. Sep 2009 A1
20090227061 Bateman et al. Sep 2009 A1
20090242019 Ramamoorthy et al. Oct 2009 A1
20090242032 Yamazaki et al. Oct 2009 A1
20090242933 Hu et al. Oct 2009 A1
20090256156 Hsieh Oct 2009 A1
20090256226 Tatani Oct 2009 A1
20090261255 Nakamura et al. Oct 2009 A1
20090273695 Mabuchi Nov 2009 A1
20090278967 Toumiya Nov 2009 A1
20090283807 Adkisson et al. Nov 2009 A1
20090294787 Nakaji et al. Dec 2009 A1
20090308450 Adibi et al. Dec 2009 A1
20090308457 Smith et al. Dec 2009 A1
20100000597 Cousins Jan 2010 A1
20100013036 Carey Jan 2010 A1
20100013039 Qian et al. Jan 2010 A1
20100013593 Luckhardt Jan 2010 A1
20100024871 Oh et al. Feb 2010 A1
20100032008 Adekore Feb 2010 A1
20100037952 Lin Feb 2010 A1
20100038523 Venezia et al. Feb 2010 A1
20100038542 Carey et al. Feb 2010 A1
20100040981 Kiesel et al. Feb 2010 A1
20100044552 Chen Feb 2010 A1
20100051809 Onat et al. Mar 2010 A1
20100052088 Carey Mar 2010 A1
20100053382 Kuniba Mar 2010 A1
20100055887 Piwczyk Mar 2010 A1
20100059385 Li Mar 2010 A1
20100059803 Gidon et al. Mar 2010 A1
20100072349 Veeder Mar 2010 A1
20100074396 Schmand et al. Mar 2010 A1
20100083997 Hovel Apr 2010 A1
20100084009 Carlson et al. Apr 2010 A1
20100096718 Hynecek et al. Apr 2010 A1
20100097609 Jaeger et al. Apr 2010 A1
20100102206 Cazaux et al. Apr 2010 A1
20100102366 Lee et al. Apr 2010 A1
20100108864 Ohta et al. May 2010 A1
20100109060 Mao et al. May 2010 A1
20100116312 Peumans et al. May 2010 A1
20100117181 Kim et al. May 2010 A1
20100118172 McCarten et al. May 2010 A1
20100128161 Yamaguchi May 2010 A1
20100128937 Yoo et al. May 2010 A1
20100133635 Lee et al. Jun 2010 A1
20100140733 Lee et al. Jun 2010 A1
20100140768 Zafiropoulo Jun 2010 A1
20100143744 Gupta Jun 2010 A1
20100147383 Carey et al. Jun 2010 A1
20100171948 Mazur et al. Jul 2010 A1
20100190292 Alberts Jul 2010 A1
20100200658 Olmstead Aug 2010 A1
20100201834 Maruyama et al. Aug 2010 A1
20100213582 Couillard et al. Aug 2010 A9
20100219506 Gupta Sep 2010 A1
20100224229 Pralle et al. Sep 2010 A1
20100240169 Petti et al. Sep 2010 A1
20100245647 Honda et al. Sep 2010 A1
20100258176 Kang et al. Oct 2010 A1
20100264473 Adkisson et al. Oct 2010 A1
20100289885 Lu et al. Nov 2010 A1
20100290668 Friedman Nov 2010 A1
20100300505 Chen Dec 2010 A1
20100300507 Heng et al. Dec 2010 A1
20100313932 Kroll et al. Dec 2010 A1
20110003424 De Ceuster et al. Jan 2011 A1
20110019050 Yamashita Jan 2011 A1
20110025842 King et al. Feb 2011 A1
20110056544 Ji et al. Mar 2011 A1
20110073976 Vaillant Mar 2011 A1
20110095387 Carey et al. Apr 2011 A1
20110104850 Weidman et al. May 2011 A1
20110127567 Seong Jun 2011 A1
20110140221 Venezia et al. Jun 2011 A1
20110150304 Abe et al. Jun 2011 A1
20110194100 Thiel Aug 2011 A1
20110220971 Haddad Sep 2011 A1
20110227138 Haddad Sep 2011 A1
20110241148 Hiyama et al. Oct 2011 A1
20110241152 Hsiao et al. Oct 2011 A1
20110251478 Wieczorek Oct 2011 A1
20110260059 Jiang et al. Oct 2011 A1
20110266644 Yamamura et al. Nov 2011 A1
20110292380 Bamji Dec 2011 A1
20110303999 Sakamoto et al. Dec 2011 A1
20120001841 Gokingco et al. Jan 2012 A1
20120024363 Carey et al. Feb 2012 A1
20120024364 Carey, III et al. Feb 2012 A1
20120025199 Chen et al. Feb 2012 A1
20120038811 Ellis-monaghan et al. Feb 2012 A1
20120043637 King et al. Feb 2012 A1
20120049242 Atanackovic et al. Mar 2012 A1
20120049306 Ohba et al. Mar 2012 A1
20120080733 Doan et al. Apr 2012 A1
20120111396 Saylor et al. May 2012 A1
20120147241 Yamaguchi Jun 2012 A1
20120153127 Hirigoyen et al. Jun 2012 A1
20120153128 Roy et al. Jun 2012 A1
20120171804 Moslehi et al. Jul 2012 A1
20120187190 Wang et al. Jul 2012 A1
20120188431 Takimoto Jul 2012 A1
20120217602 Enomoto Aug 2012 A1
20120222396 Clemen Sep 2012 A1
20120228473 Yoshitsugu Sep 2012 A1
20120274744 Wan Nov 2012 A1
20120291859 Vineis et al. Nov 2012 A1
20120300037 Laudo Nov 2012 A1
20120305063 Moslehi et al. Dec 2012 A1
20120312304 Lynch et al. Dec 2012 A1
20120313204 Haddad et al. Dec 2012 A1
20120313205 Haddad et al. Dec 2012 A1
20120326008 Mckee et al. Dec 2012 A1
20130001553 Vineis et al. Jan 2013 A1
20130020468 Mitsuhashi et al. Jan 2013 A1
20130026531 Seo et al. Jan 2013 A1
20130082343 Fudaba et al. Apr 2013 A1
20130135439 Kakuko et al. May 2013 A1
20130168792 Haddad et al. Jul 2013 A1
20130168803 Haddad et al. Jul 2013 A1
20130200251 Velichko Aug 2013 A1
20130207212 Mao et al. Aug 2013 A1
20130207214 Haddad et al. Aug 2013 A1
20130285130 Ting Oct 2013 A1
20140054662 Yanagita et al. Feb 2014 A1
20140198240 Rhoads Jul 2014 A1
20140247378 Sharma et al. Sep 2014 A1
20140352779 Smirnov et al. Dec 2014 A1
20140374868 Lee et al. Dec 2014 A1
20150076468 Yamaguchi et al. Mar 2015 A1
20170141258 McFarland May 2017 A1
20170244920 Ohkubo et al. Aug 2017 A1
Foreign Referenced Citations (121)
Number Date Country
3666484 Jun 1985 AU
1507075 Jun 2004 CN
1614789 May 2005 CN
101053065 Oct 2007 CN
101241923 Aug 2008 CN
101404307 Apr 2009 CN
101423942 May 2009 CN
101465361 Jun 2009 CN
101478013 Jul 2009 CN
101634026 Jan 2010 CN
101634027 Jan 2010 CN
101818348 Sep 2010 CN
201725796 Jan 2011 CN
102270646 Dec 2011 CN
19838439 Apr 2000 DE
0473439 Mar 1992 EP
0566156 Oct 1993 EP
1347670 Sep 2003 EP
1630871 Jan 2006 EP
1873840 Jan 2008 EP
2073270 May 2012 EP
2509107 Oct 2012 EP
2827707 Jan 2003 FR
2030766 Apr 1980 GB
S5771188 May 1982 JP
S57173966 Oct 1982 JP
S63116421 May 1988 JP
H02152226 Jun 1990 JP
H02237026 Sep 1990 JP
H03183037 Aug 1991 JP
H04318970 Nov 1992 JP
H06104414 Apr 1994 JP
1994244444 Sep 1994 JP
H06244444 Sep 1994 JP
H06267868 Sep 1994 JP
H06267868 Sep 1994 JP
H06275641 Sep 1994 JP
H0774240 Mar 1995 JP
H07235658 May 1995 JP
H07183484 Jul 1995 JP
9148594 Jun 1997 JP
H09298308 Nov 1997 JP
11077348 Mar 1999 JP
11097724 Apr 1999 JP
2000164914 Jun 2000 JP
2001007381 Jan 2001 JP
2001189478 Jul 2001 JP
2001339057 Dec 2001 JP
2002043594 Feb 2002 JP
2002134640 May 2002 JP
2002190386 Jul 2002 JP
2003058269 Feb 2003 JP
2003104121 Apr 2003 JP
2003163360 Jun 2003 JP
2003258285 Sep 2003 JP
2004047682 Feb 2004 JP
2004273886 Sep 2004 JP
2004273887 Sep 2004 JP
2006033493 Feb 2006 JP
2006147991 Jun 2006 JP
2006173381 Jun 2006 JP
2006210701 Aug 2006 JP
2006261372 Sep 2006 JP
2007122237 May 2007 JP
2007165909 Jun 2007 JP
2007180642 Jul 2007 JP
2007180643 Jul 2007 JP
2007258684 Oct 2007 JP
2007305675 Nov 2007 JP
2008099158 Apr 2008 JP
2008167004 Jul 2008 JP
2008187003 Aug 2008 JP
2008283219 Nov 2008 JP
2008294698 Dec 2008 JP
2009021479 Jan 2009 JP
2009152569 Jul 2009 JP
2009253683 Oct 2009 JP
2010278472 Dec 2010 JP
2011091128 May 2011 JP
2012054321 Mar 2012 JP
2012212349 Nov 2012 JP
20010061058 Apr 2001 KR
2005039273 Apr 2005 KR
20060020400 Mar 2006 KR
20080014301 Feb 2008 KR
100825808 Apr 2008 KR
20080097709 Nov 2008 KR
20100026463 Mar 2010 KR
20100118864 Nov 2010 KR
20110079323 Jul 2011 KR
20060052278 May 2016 KR
200627675 Aug 2006 TW
200818529 Apr 2008 TW
WO 9114284 Sep 1991 WO
WO 0131842 Mar 2001 WO
WO 0135601 May 2001 WO
WO 2002041363 May 2002 WO
WO 03059390 Jul 2003 WO
WO 2005029599 Mar 2005 WO
WO 2006043690 Apr 2006 WO
WO 2006054758 May 2006 WO
WO 2006086014 Aug 2006 WO
2008091242 Jul 2008 WO
WO 2008091242 Jul 2008 WO
WO 2008099524 Aug 2008 WO
WO 2008145097 Dec 2008 WO
2009100023 Aug 2009 WO
WO 2009100023 Aug 2009 WO
2009147085 Dec 2009 WO
WO 2009147085 Dec 2009 WO
WO 2009147085 Dec 2009 WO
WO 2010033127 Mar 2010 WO
2011003871 Jan 2011 WO
WO 2011003871 Jan 2011 WO
2011035188 Mar 2011 WO
2011119618 Mar 2011 WO
WO 2011035188 Mar 2011 WO
WO 2011119618 Mar 2011 WO
WO 2012027290 Mar 2012 WO
WO 2012117931 Sep 2012 WO
WO 2012174752 Dec 2012 WO
Non-Patent Literature Citations (253)
Entry
Huang et al., “Microstructured Silicon Photodetector”, Jul. 2006, Applied Physics Letters, vol. 89, Iss. 3, pp. 1-3.
A. Arndt, J.F. Allison, J.G. Haynos, and A. Meulenberg, Jr., “Optical Properties of the COMSAT Non-reflective Cell,” 11th IEEE Photovoltaic Spec. Conf., p. 40, 1975.
Asom et al., Interstitial Defect Reactions in Silicon; Appl. Phys. Lett.; Jul. 27, 1987; pp. 256-258; vol. 51(4); American Institute of Physics.
Berger, Michael; Moth Eyes Inspire Self-Cleaning Antireflection Nanotechnology Coatings; 2008; 3 pages; Nanowerk LLC.
Berger, O., Inns, D. and Aberle, A.E. “Commercial White Paint as Back Surface Reflector for Thin-Film Solar Cells”, Solar Energy Materials & Solar Cells, vol. 91, pp. 1215-1221,2007.
Bernhard, C.G., “Structural and Functional Adaptation in a Visual System” Endevor vol. 26, pp. 79-84, May 1967.
Betta et al.; Si-PIN X-Ray Detector Technology; Nuclear Instruments and Methods in Physics Research; 1997; pp. 344-348; vol. A, No. 395; Elsevier Science B.V.
Boden, S.A. et al.; Nanoimprinting for Antireflective Moth-Eye Surfaces; 4 pages; 2008.
Bogue: “From bolometers to beetles: the development of the thermal imaging sensors;” sensor Review; 2007; pp. 278-281; Emerald Group Publishing Limited (ISSN 0260-2288).
Borghesi et al.; “Oxygen Precipitation in Silicon,” J. Appl. Phys., v. 77(9), pp. 4169-4244 (May 1, 1995).
Born, M. and E.Wolf, “Princip les of Optics, 7th Ed.”, Cambridge University Press, 1999, pp. 246-255.
Brieger,S., O.Dubbers, S.Fricker, A.Manzke, C.Pfahler, A.Plettl, and P.Zlemann, “An Approach for the Fabrication of Hexagonally Ordered Arrays of Cylindrical Nanoholes in Crystalline and Amorphous Silicon Based on the Self-Organization of Polymer Micelles”, Nanotechnology, vol. 17, pp. 4991-4994, 2006, doi:10.1088/0957-4884/17/19/036.
Buttgen, B.; “Demodulation Pixel Based on Static Drift Fields”; IEEE Transactions on Electron Devices, vol. 53, No. 11, Nov. 2006.
Carey et al., “Femtosecond-Laser-Assisted Microstructuring of Silicon Surfaces”, Optics and Photonics News, 2003. 14, 32-36.
Carey, et al. “Femtosecond Laser-Assisted Microstructuring of Silicon for Novel Detector, Sensing and Display Technologies”, LEOS 2003, 481-482, Tuscon, AR.
Carey, et al. “Femtosecond Laser-Assisted Microstructuring of Silicon for Novel Detector, Sensing and Display Technologies”, LEOS; 2002, 97-98, Glasgos, Scotland, 2002.
Carey, et al., “Fabrication of Micrometer-Sized Conical Field Emitters Using Femtosecond Laser-Assisted Etching of Silicon,” Proc. IVMC 2001, 75-76, UC Davis, Davis, CA.
Carey, et al., “Field Emission from Silicon. Microstructures Formed by Femtosecond Laser Assisted Etching,” Proc. CLEO 2001 (Baltimore, MD 2001) 555-557.
Carey, et al., “High Sensitivity Silicon-Based VIS/NIR Photodetectors”, Optical Society of America (2003) 1-2.
Carey, III; “Femtosecond-laser Microstructuring of Silicon for Novel Optoelectronic Devices”; Harvard University, Jul. 2004; (Thesis).
Chang, S.W., V.P.Chuang, S.T.Boles, and C.V.Thompson, “Metal-Catalyzed Etching of Vertically Aligned Polysilicon and Amorphous Silicon Nanowire Arrays by Etching Direction Confinement”, Advanced Functional Materials, vol. 20, No. 24, pp. 4364-4370, 2010.
Chen, Q. et al.; Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting; Applied Physics Letters 94; pp. 263118-1-263118-3; 2009; American Institute of Physics.
Chien et al, “Pulse Width Effect in Ultrafast Laser Processing of Materials,” Applied Physics A, 2005, 1257-1263, 81, Springer Berlin, Heidelberg, Germany.
Chiang, Wen Jen et al., “Silicon Nanocrystal-Based Photosensor on Low-Temperature Polycrystalline-Silicone Panels”, Applied Physics Letters, 2007, 51120-1-51120-3, Ltt. 91, American Inst. of Physics, Melville, NY.
Chichkiv, B.N. et al, “Femtosecond, picosecond and nanosecond laser ablation of solids” Appl. Phys. A 63, 109-115; 1996.
Cilingiroglu et al., “An evaluation of MOS Interface-Trap Charge Pump as and Ultralow Constant-Current Generator,” IEEE Journal of Solid-State Circuit, 2003, vol. 38, No. 1, Jan. 2003, 71-83.
Clapham, P.B. et al, “Reduction of Lens Reflexion by the Moth Eye Principle” Nature, vol. 244. Aug. 1973, pp. 281-282.
Cmosis; “Global Shutter Image Sensors for Machine Vision Application”; Image Sensors Europe 2010, Mar. 23-25, 2010; .COPYRGT. copyright 2010.
Cotter, Jeffrey E.; Optical intensity of light in layers of silicon with rear diffuse reflectors; Journal of Applied Physics; Jul. 1, 1998; pp. 618-624; vol. 84, No. 1; American Institute of Physics.
Crouch et al., “Comparison of Structure and Properties of Femtosecond and Nanosecond Laser-Structured Silicon” Appl. Phys. Lett., 2004, 84,1850-1852.
Crouch et al., “Infrared Absorption by Sulfur-Doped Silicon Formed by Femtosecond Laser Irradiation”, Appl. Phys. A, 2004, 79, 1635-1641.
Despeisse, et al.; “Thin Film Silicon Solar Cell on Highly Textured Substrates for High Conversion Efficiency”; 2004.
Detection of X-ray and Gamma-ray Photons Using Silicon Diodes; Dec. 2000; Detection Technology, Inc.; Micropolis, Finland.
Dewan, Rahul et al.; Light Trapping in Thin-Film Silicon Solar Cells with Submicron Surface Texture; Optics Express; vol. 17, No. 25; Dec. 7, 2009; Optical Society of America.
Deych et al.; Advances in Computed Tomography and Digital Mammography; Power Point; Nov. 18, 2008; Analogic Corp.; Peabody, MA.
Dobie, et al.; “Minimization of reflected light in photovoltaic modules”; Mar. 1, 2009.
Dobrzanski, L.A. et al.; Laser Surface Treatment of Multicrystalline Silicon for Enhancing Optical Properties; Journal of Materials Processing Technology; p. 291-296; 2007; Elsevier B.V.
Dolgaev et al., “Formation of Conical Microstructures Upon Laser Evaporation of Solids”, Appl. Phys. A, 2001, 73, 177-181.
Duerinckx, et al.; “Optical Path Length Enhancement for >13% Screenprinted Thin Film Silicon Solar Cells”; 2006.
Dulinski, Wojciech et al.; Tests of backside illumincated monolithic CMOS pixel sensor in an HPD set-up; Nuclear Instruments and methods in Physics Research; Apr. 19, 2005; pp. 274-280; Elsevier B.V.
Forbes; “Texturing, reflectivity, diffuse scattering and light trapping in silicon solar cells”; 2012.
Forbes, L. and M.Y. Louie, “Backside Nanoscale Texturing to Improve IR Response of Silicon Photodetectors and Solar Cells,” Nanotech, vol. 2, pp. 9-12, Jun. 2010.
Fowlkes et al., “Surface Microstructuring and Long-Range Ordering of Silicon Nanoparticles”, Appl. Phys. Lett., 2002, 80 (20), 3799-3801.
Gjessing, J. et al.; 2D back-side diffraction grating for impored light trapping in thin silicon solar cells; Optics Express; vol. 18, No. 6; pp. 5481-5495; Mar. 15, 2010; Optical Society of America.
Gjessing, J. et al.; 2D blazed grating for light trapping in thin silicon solar cells; 3 pages; 2010; Optical Society of America.
Gloeckler et al. Band-Gap Grading in Cu(In,Ga)Se2 Solar Cells, Journal of Physics and Chemistry of Solids; 2005; pp. 189-194; vol. 66.
Goetzberger, et al.; “Solar Energy Materials & Solar Cells”; vol. 92 (2008) pp. 1570-1578.
Han et al., “Evaluation of a Small Negative Transfer Gate Bias on the Performance of 4T CMOS Image Sensor Pixels,” 2007 International Image Sensor Workshop, 238-240, Ogunquit, Maine.
Haug, et al.; “Light Trapping effects in thin film silicon solar cells”; 2009.
Her et al., “Microstructuring of Silicon with Femtosecond Laser Pulses,” Applied Physics Letters, 1998, 1673-1675, vol. 73, No. 12, American Institute of Physics.
Her et al., “Novel Conical Microstructures Created in Silicon With Femtosecond Laser Pulses”, CLEO 1998, 511-512, San Francisco, CA.
Her, et al., “Femtosecond laser-induced formation of spikes on silicon,” Applied Physics A, 2000, 70, 383-385.
Hermann, S. et al.; Impact of Surface Topography and Laser Pulse Duration for Laser Ablation of Solar Cell Front Side Passivating SiNx Layers; Journal of Applied Physics; vol. 108, No. 11; pp. 114514-1-114514-8; 2010; American Institute of Physics.
High—Performance Technologies for Advanced Biomedical Applications; .COPYRGT. 2004Brochure; pp. 1-46; PerkinElmerOptoelectronics.
Holland; Fabrication of Detectors and Transistors on High-Resistivity Silicon; Nuclear Instruments and Methods in Physics Research, vol. A275, pp. 537-541 (1989).
Hong et al., “Cryogenic processed metal-semiconductor-metal (MSM) photodetectors on MBE grown ZnSe,”, 1999, IEEE Transactions on Electron Devices, vol. 46, No. 6, pp. 1127-1134.
Hsieh et al., “Focal-Plane-Arrays and CMOS Readout Techniques of Infrared Imaging Systems,” IEE Transactions on Circuits and Systems for Video Technology, 1997, vol. 7, No. 4, Aug. 1997, 594-605.
Hu et al., “Solar Cells from Basic to Advanced Systems,” McGraw Hill Book Co., 1983, 39, New York, New York.
Huang, et al.; “Microstructured silicon photodetector”; Applied Physics Letters 89, 033506; 2006 American Institute of Physics; 2006.
Huang, et al.; “Key Technique for texturing a uniform pyramid structure with a layer of silicon nitride on monocrystalline silicon wafer” Applied Surface Science; 2013 pp. 245-249.
Hüpkes, J. et al.; Light Scattering and Trapping in Different Thin Film Photovoltaic Devices; 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany (Sep. 21-25, 2009); pp. 2766-2769.
Igalson et al. Defect States in the CIGS Solar cells by Photocapacitance and Deep Level Optical Spectroscopy; Bulletin of the Polish Academy of Sciences Technical Sciences; 2005; pp. 157-161; vol. 53(2).
“Infrared Absorption by Sulfur-Doped Silicon formed by Femtosecond Laser Irradiation”; Springer Berline/Heidelberg, vol. 79, Nov. 2004.
Jansen, H. et al., “The Black Silicon Method: a universal method for determining the parameter setting of a flourine-based reactive ion etcher in deep silicon trench etching with profile control”,J. Micromech. Microeng. vol. 5, 1995 pp. 115-120.
Job et al., “Doping of Oxidized Float Zone Silincon by Thermal Donors—A low Thermal Budget Doping Method for Device Applications?” Mat. Res. Soc. Symp. Pro.; v. 719, F9.5.1-F9.5.6 (2002).
Joy, T. et al.; Development of a Production-Ready, Back-Illuminated CMOS Image Sensor with Small Pixels; Electron Devices Meeting; pp. 1007-1010; 2007; IEEE.
Juntunen et al.; Advanced Photodiode Detector for Medical CT Imaging: Design and Performance; 2007; pp. 2730-2735; IEEE.
Kim et al.; “Strong Sub-Band-Gap Infrared Absorption in Silicon Supersaturated with Sulfur”; 2006 Appl. Phys. Lett. 88, 241902-1-241902-3.
Koh et al., “Simple nanostructuring on silicon surfaceby means of focused beam patterning and wet etching”, Applied Surface Science, 2000 pp. 599-603.
Kolasinski et al., “Laser Assisted and Wet Chemical Etching of Silicon Nanostructures,” J. Vac. Sci. Technol., A 24(4), Jul./Aug. 2006, 1474-1479.
Konstantatos et al., “Engineering the Temproal Response of Photoconductive Photodetectors via Selective Introduction of Surface Trap States,” Nano Letters, v. 8(5), pp. 1446-1450 (Apr. 2, 2008).
Konstantatos et al., “PbS Colloidal Quantum Dot Photoconductive Photodetectors: Transport, Traps, and Gain,” Appl. Phys. Lett., v. 91, pp. 173505-1-173505-3 (Oct. 23, 2007).
Kray, D. et al.; Laser-doped Silicon Soalr Cells by Laser Chemical Processing (LCP) exceeding 20% Efficiency; 33rd IEEE Photovoltaic Specialist Conference; 3 pages; May 2008; IEEE.
Kroning et al.; X-ray Imaging Systems for NDT and General Applications; 2002; Fraunhofer Institute for Nondestructive Testing; Saarbrucken and Dresden, Germany.
Kryski; A High Speed 4 Megapixel Digital CMOS Sensor; 2007 International Image Sensor Workshop; Jun. 6-10, 2007.
Li, “Design and Simulation of an Uncooled Double-Cantilever Microbolometer with the Potential for .about.mK NETD,” 2004, Sensors and Actuators A, 351-359, vol. 112, Elsevier B.V.
Li et al., “Gettering in High Resistive Float Zone Silicon Wafers,” Transaction on Nuclear Science, vol. 36(1), pp. 290-294 (Feb. 1, 1989).
Li, Hongsong et al.; An experimental study of the correlation between surface roughness and light scattering for rough metallic surfaces; Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies II; 2005; pp. 25780V-1-25780V-15; vol. 5878; SPIE Bellingham, WA.
Lin, A. et al.; Optimization of Random Diffraction Gratings in Thin-Film Solar Cells Using Genetic Algorithms; 2007; 1 page; SSEL Annual Report.
Low Dose Technologies; Power Point.
Madzharov, et al.; “Light trapping in thin-firm silicon solar cells for superstrate and substrate configuration” Abstract #1614, 218.sup.th ECS Meeting .COPYRGT. 2010 the Electrochemical Society.
“Masimo Rainbow SET Pulse CO-Oximetry,” 2010, Masimo Corporation, Irvine, California, http://www.masimo.com/Rainbow/about.htm.
Mateus; C.F.R. et al.; Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating; Photonics Technology Letters; vol. 16, Issue No. 2; pp. 518-520; Feb. 2004; IEEE.
Matsuno, Shigeru et al.; Advanced Technologies for High Efficiency Photovoltaic Systems; Mitsubishi Electric Advance; vol. 122; pp. 17-19; Jun. 2008.
Meynants, et al.; “Backside illuminated global shutter COMOS image sensors”; 2011 International Image Sensor Workshop; Jun. 11, 2011.
Moloney, A.M. et al.; Novel Black Silicon PIN Photodiodes; 8 pages; Jan. 25, 2006; SPIE.
Moon et al. Selective emitter using porous silicon for crystalline silicon solar cells. Solar Energy Materials & Solar Cells, v. 93, pp. 846-850 (2009).
Moses; Nuclear Medical Imaging—Techniques and Challenges; Power Point; Feb. 9, 2005; Lawrence Berkeley National Laboratory Department of Functional Imaging.
Murkin, JM and Arangol, M, “Near Infrared spectroscopy as an index of rain and tissue oxygenation,” Bri. J. of Anathesia (BJA/PGA Supplement):13-i13 (2009).
Munday, J.N. et al.; Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings; Nano Letters; vol. 11, No. 6; pp. 2195-2201; Oct. 14, 2010; American Chemical Society.
Myers, Richard et al., “Enhancing Near-IR Avalanche Photodiodes Performance by Femtosecond Laser Microstructuring” Harvard Dept. of Physics.
Nauka et al., Intrinsic Gettering in Oxygen-Free Silicon; App. Phys. Lett., vol. 46(7), Apr. 4, 1985.
Nauka et al., “New Intrinsic Gettering Process in Silicon Based on Interactions of Silicon Interstitials,” J. App. Phys., vol. 60(2), pp. 615-621, Jul. 15, 1986.
Nayak et al, “Semiconductor Laesr Crystallization of a--Si:H,” SPIE Digital Library, 2003, 277-380, vol. 4977, Bellingham, Washington. 2003.
Nayak et al, “Ultrafast-Laser-Assisted Chemical Restructuring of Silicon and Germanium Surfaces,” Applied Surface Science, 2007, 6580-6583, vol. 253, Issue 15, Elsevier B.V.
Nayak et al, “Semiconductor Laser Crystallization of a--Si:H on Conducting Tin-Oxide-Coated Glass for Solar Cell and Display Applications,” Applied Physics A, 2005, 1077-1080, 80, Springer Berlin, Heidelberg, Germany.
Nayak, B.K. et al.; Ultrafast Laser Textured Silicon Solar Cells; Mater. Res. Soc. Symp. Proc.; vol. 1123; 6 pages; 2009; Materials Research Society.
Nayak, et al.; “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures”; Progress in Photovoltaics: Research and Applications; 2011.
Oden, et al.; “Optical and Infrared Detection Using Microcantilevers;” SPIE Digital Library on Oct. 13, 2010; vol. 2744; 10 pages.
Pain, Bedabrata; Backside Illumination Technology for SOI-CMOS Image Sensors; 2009 IISW Symposium on Backside Illujination of Solid-State Image Sensors, Bergen Norway; Jun. 25, 2009; pp. 1-23.
Pain, Bedabrata; “A Back-Illuminated Megapixel CMOS Image Sensor”; http://hdl.handle.net/2014/39312; May 1, 2005.
Palm et al. CIGSSe Thin Film PB Modules: From Fundamental Investigators to Advanced Performance and Stability; Thin Solid Films; 2004; pp. 544-551; vol. 451-2.
Payne, D.N.R. et al.; Characterization of Experimental Textured ZnO:Al Films for Thin Film Solar Cell Applications and Comparison with Commercial and Plasmonic Alternatives; Photovoltaic Specialists Conference (PVSC); pp. 1560-1564; 2010; IEEE.
Pedraza et al., “Silicon Microcolumn Arrays Grown by Nanosecond Pulsed-Excimer Laser Irradiation”, Appl. Phys. Lett., 1999, 74 (16), 2322-2324, American Institute of Physics.
Pedraza et al., “Surface Nanostructuring of Silicon”, Appl. Phys. A, 2003, 77, 277-284.
Rashkeev et al., “Hydrogen passivation and Activation of Oxygen Complexes in Silicon,” American Institute of Physics, vol. 78(11), pp. 1571-1573 (Mar. 12, 2001).
Russell, et al.; “Nanosecond Eximer Laser Processing for Novel Microelectronic Fabrication”; Nanosecond Excimer Laser Processing; 6 pages; 1989.
Russell, Ramirez and Kelley, “Nanosecond Excimer Laser Processing for Novel Microelectronic Devices,” US Navy, SPAWAR, San Diego, Techical Report, 2003.
Russell, Ramirez, Kelley, “Nanosecond Excimer Laser Processing for Novel Microelectronic Fabrication,” SSC Pacific Technical Reports , pp. 228-233, 2003, vol. 4, US Navy.
Sai, H. et al.; Enhancement of Light Trapping in Thin-Film Hydrogenated Microcrystalline Si Solar Cells Using Back Reflectors with Self-Ordered Dimple Pattern; Applied Physics Letters; vol. 93; 2008; American Institute of Physics.
Sanchez et al., “Whiskerlike Structure Growth on Silicon Exposed to ArF Excimer Laser Irradiation”, Appl. Phys. Lett., 1996, 69 (5), 620-622.
Sanchez et al., “Dynamics of the Hydrodynamical Growth of Columns on Silicon Exposed to ArF Excimer-Laser Irradiation”, Appl. Phys. A, 66, 83-86 (1998).
Sarnet et al.; “Femtosecond laser for black silicon and photovoltaic cells”; Feb. 21, 2008, Proc. of SPIE; vol. 6881; pp. 1-15.
Senoussaoui, N. et al.; Thin-Film Solar Cells with Periodic Grating Coupler; Thin Solid Films; pp. 397-401; 2003; Elsevier B.V.
Serpenguzel et al., “Temperature Dependence of Photluminescence in Non-Crystalline Silicon”, Photonics West (San Jose, CA, 2004) 454-462.
Shen et al., “Formation of Regular Arrays of Silicon Micorspikes by Femotsecond Laser Irradiation Through a Mask”, Appl. Phys. Lett., 82, 1715-1717 (2003).
Solar Energy Research Institute, “Basic Photovoltaic Principles and Methods,” Van Nostrand Reinhold Co., NY 1984, pp. 45-47 and 138-142.
Solhusvik, J. et al. “A 1280x960 3.75um pixel CMOS imager with Triple Exposure HDR,” Proc. of 2009 International Image Sensor Workshop, Bergen, Norway, Jun. 22-28, 2009.
Stone et al.; The X-ray Sensitivity of Amorphous Selenium for Mammography;.Am. Assoc. Phys. Med.; Mar. 2002; pp. 319-324; vol. 29 No. 3; Am. Assoc. Phys. Med.
Szlufcik, J. et al.; Simple Integral Screenprinting process for selective emitter polycrystalline silicon solar cells; Applied Physics Letters; vol. 59, No. 13; Sep. 23, 1991; American Institute of Physics.
Tabbal et al., “Formation of Single Crystal Sulfur Supersaturated Silicon Based Junctions by Pulsed Laser Melting”. 2007, J. Vac. Sci. Technol. B25(6), 1847-1852.
Takayanagi, et al.; “A 600.times.600 Pixel, 500, fps CMOS Image Sensor with a 4.4 jum Pinned Photodiode 5-Transistor Global Shutter Pixel”; 2007 International Image Sensor Workshop; Jun. 6-10, 2007.
Tower, John R. et al.; Large Format Backside Illuminated CCD Imager for Space Surveillance; IEEE Transactions on Electron Devices, vol. 50, No. 1; Jan. 2003; pp. 218-224.
Tull; “Femtosecond Laser Ablation of Silicon: Nanoparticles, Doping and Photovotaics”; Harvard University, Jun. 2007 (Thesis).
Uehara et al., “A High-Sensitive Digital Photosensor Using MOS Interface-Trap Charge Pumping,” IEICE Electronics Express, 2004, vol. 1, No. 18, 556-561.
Wilson, “Depth Distributions of Sulfur Implanted Into Silicon as a Function of Ion energy, Ion Fluence, and Anneal Temperature,” 1984, Appl. Phys. 55(10, 3490-3494.
Winderbaum, S. et al.; Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cells; Solar Energy Materials and Solar Cells; 1997; pp. 239-248; Elsevier Science B.V.
Wu et al., “Black Silicon” Harvard UPS 1999.
Wu et al., “Black Silicon: A New Light Absorber,” APS Centennial Meeting (Mar. 23, 1999).
Wu et al., “Femtosecond laser-gas-solid interactions,” Thesis presented to the Department of Physics at Harvard University, pp. 1-113, 126-136, Aug. 2000.
Wu et al., “Visible Luminescence From Silicon Surfaces Microstructured in Air”. Appl. Phys. Lett., vol. 81, No. 11, 1999-2001 (2002).
Wu, et al “Near-Unity Below-Band-Gap Absorption by Microstructured Silicon,” 2001, Applied Physics Letters, 1850-1852, vol. 78, No. 13, American Institute of Physics.
Xu, Y., et al, “Infrared Detection Using Thermally Isolated Diode,” Sensors and Actuators A, Elsevier Sequoia S.A., 1993, vol. 36, 209-217, Lausanne, Switzerland.
Yablonovitch, et al.; “Intensity Enhancement in Textured Optical Sheets for Solar Cells”; .COPYRGT. 1982 IEEE.
Yamamoto, K. et al.; NIR Sensitivity Enhancement by Laser Treatment for Si Detectors; Nuclear Instruments and Methods in Physics Research A; pp. 520-523; Mar. 31, 2010; Elsevier.
Yan, B.; Light Trapping Effect from Randomized Textures of Ag/ZnO Back Reflector on Hyrdrogenated Amorphous and Nanocrystalline Silicon Based Solar Cells; Thin Film Solar Technology II; vol. 7771; 2010; SPIE.
Yasutomi, et al.; “Two-Stage Charge Transfer Pixel Using Pinned Diodes for Low-Noise Global Shutter Imaging”; 2009 International Image Sensor Workshop; Mar. 28, 2009.
Younkin et al., “Infrared Absorption by Conical Silicon Microstructures Made in a Variety of Background Gases Using Femtosecond-Laser Pulses”, J. Appl. Phys., 93, 2626-2629 (2003).
Younkin, “Surface Studies and Microstructure Fabrication Using Femtosecond Laser Pulses,” Thesis presented to the Division of Engineering & Applied sciences at Harvard University (Aug. 2001).
Yuan, et al.; “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules”; American Institute of Physics; Applied Physics Letters 95. 1230501 (2009) 3 pages.
Zaidi, S.H. et al.; Diffraction Grating Structures in Solar Cells; Photovoltaic Specialists Conference, 2000; 4 pages; Sep. 2000; IEEE.
Zhang et al, “Ultra-Shallow P+-Junction Formation in Silicon by Excimer Laser Doping: a Heat and Mass Transfer Perspective,” Int. J. Heat Mass Transfer, 1996, 3835-3844, vol. 39, No. 18, Elsevier Science Ltd., Great Britain.
Zhu et al., “Evolution of Silicon Surface Microstructures by Picosecond and Femtosecond Laser Irradiations,” Applied Surface Science, 2005, 102-108, Elsevie, Amsterdam, NL.Ultra-Shallow P+-Junction Formation in Silicon by Excimer Laser Doping: a Heat and Mass Transfer Perspective, Int. J. Heat Mass Transfer, 1996, 3835-3844, vol. 39, No. 18, Elsevier Science Ltd., Great Britain.
Zhong, S. et al. “Excellent Light Trapping in Ultrathin Solar Cells,” AFM-Journal, May 2016 pp. 1-11.
Ziou et al., “Depth from defocus using the hermite transform”, Image Processing, 1998. ICIP 98. Intl. Conference on Chicago, IL. Oct. 1998 pp. 958-962.
English translation of Japanese Office Action in corresponding JP Application No. 2014-520387 dated Jul. 26, 2016 (6 pages).
Extended European Search Report in corresponding EP Application No. 14740538.5 dated Aug. 12, 2016 (11 pages).
Campbell, Stephen A., “The Science and Engineering of Microeletronic Fabrication, 2nd Ed.”, Oxford University Press, 2001, pp. 406-411.
Carey, P.G. et al., “In-situ Doping of Silicon Using Gas Immersion Laser Doping (GILD) Process,” Appl. Surf. Sci. 43, 325-332 (1989).
Gibbons, J., “Ion Implantation in Semiconductors—Part II; Damage Production and Annealing”, Proceedings of the IEEE vol. 60, No. 9 pp. 1062-1096. Jun. 1972.
Ohring, Milton.“The Materials of Science of Thin Films”; pp. 176-179; Academic Press, 1992.
Agranov, et al., Pixel continues to shrink . . . Small Pixels for Novel CMOS Image Sensors, 4 pages.
Byung Jun Park et al, Jpn. J. Appl. Phys. 46 2454, 2007, 5 pages.
Choubey et al., On Evolution of CMOS Image Sensors, Proceedings of the 8th International Conference on Sensing Technology, Sep. 2-4, 2014, Liverpool, UK, pages.
Fontaine, A Review of the 1.4 μm Pixel Generation, Technology Analysis Group Chipworks Inc., 2011, 4 pages.
Fontaine, Ray, A Survey of Enabling Technologies in Successful Consumer Digital Imaging Products (Part 3: Pixel Isolation Structures), http://www.techinsights.com, Jul. 24, 2017, 13 pages.
http://electroiq.com/insights-from-leading-edge/2016/09/iftle-303-sony-introduces-ziptronix-dbi-technology-in-samsung-galaxy-s7, “Omnivision was the first to sample BSI in 2007 but costs were too high and adoption was thus very low”, (2016).
http://joseph-tang.blogspot.com/2017/, Oshiyama et al. , Near-infrared Sensitivity Enhancement of a Back-illuminated Complementary Metal Oxide Semiconductor Image Sensor with a Pyramid Surface for Diffraction Structure, (2017).
https://blogs.yahoo.co.jp/miyabiman_now/25628945.html.
IMEC, 3D Integrated Image Sensors for Smart Imaging Systems, Piet De Moor, 2010, 32 pages.
Itonaga et al., “Extremely-low-noise CMOS Image Sensor with high saturation capacity,” 2011 International Electron Devices Meeting, Washington, DC, 2011, pp. 8.1.1-8.1.4.
Kitamura et al., “Suppression of crosstalk by using backside deep trench isolation for 1.12μm backside illuminated CMOS image sensor,” 2012 International Electron Devices Meeting, San Francisco, CA, 2012, pp. 24.2.1-24.2.4.
Korean Intellectual Property Office (KIPO), CMOS Image Sensor, KIPO, 2004, 29 pages.
Lee et al., SNR Performance Comparison of 1.4μm Pixel : FSI, Light-guide, and BSI, 2011, 3 pages.
Minoglou et al., “Reduction of Electrical Crosstalk in Hybrid Backside Illuminated CMOS Imagers using Deep Trench Isolation,” 2008 International Interconnect Technology Conference, Burlingame, CA, USA, 2008, pp. 129-131.
Munck, Generic building blocks for 3D integration and their application on hybrid CMOS image sensors, Katholieke Universiteit Leuven, Kapeldreef 75—B-3001 Heverlee, Sep. 2008, 328 pages.
Park et al., “Deep Trench Isolation for Crosstalk Suppression in Active Pixel Sensors with 1.7μm Pixel Pitch”, in Japanese Journal of Applied Physics, vol. 46, No. 4B, pp. 2454-5457, 2007.
Rao, et al., Monolithic and Fully-Hybrid Backside Illuminated CMOS Imagers for Smart Sensing, IMEC, Kapeldreef 75, B-3001 Leuven, Belgium, 4 pages.
STMicroelctronics, BSI—technical challenges, IISW-2009, Bergen. Jun. 25, 2009, 37 pages.
Tournier, et al., Pixel-to-Pixel isolation by Deep Trench technology, STMicroelectronics, 850, rue Jean Monnet—F-38926 Crolles Cedex—France, 2011, 4 pages.
Tournier, et al., Pixel-to-Pixel isolation by Deep Trench technology: Application to CMOS Image Sensor, https://www.researchgate.net/publication/268300742, 2011, 5 pages.
Xiong , Y., et al, “Depth from focusing and defocusing”, Computer Vision and Pattern Recognition, 1993. Proceedings CVPR '93., 1993 IEEE , Los Alamitos, CA, USA.IEEE Comput. Soc, Jun. 15, 1993 (Jun. 15, 1993), pp. 68-73.
Yaung et al., “High performance 300mm backside illumination technology for continuous pixel shrinkage,” 2011 International Electron Devices Meeting, Washington, DC, 2011, pp. 8.2.1-8.2.4.
Aberle, Progress with polycrystalline silicon thin-film solar cells on glass at UNSW. Journal of Crystal Growth 287,386-390 (2006).
Amoruso et al., Emission of nanoparticles during ultrashort laser irradiation of silicon targets. Europhysics Letters 67, 404-410 (2004).
Arango et al., Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles. Applied Physics Letters 74, 1698-1700 (1999).
Beek et al., Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Advanced Materials 16, 1009-1013 (2004).
Bentini et al., Surface doping of semiconductors by pulsed-laser irradiation in reactive atmosphere. Applied Physics A: Materials Science & Processing. 1988;45(4):317-324.
Blood et al., Electrical Characterization of Semiconductors. Reports on Progress in Physics 41, 157-257 (1978).
Bouhdata, A. et al. “Modeling of the Spectral Response of Pin Photodetectors Impact of Exposed Zone Thickness, Surface Recombination Velocity and Trap Concentration”, Microelectronics Reliability 44, pp. 223-228 (2004).
Brus, Luminescence of Silicon Materials-Chains, Sheets, Nanoclystals, Nanowires, Microcrystals, and Porous Silicon. Journal of Physical Chemistry 98,3575-3581 (1994).
Bucksbaum et al., Rapid Melting and Regrowth Velocities in Silicon Heated by Ultraviolet Picosecond Laser-Pulses, Physical Review Letters 53, 182-185 (1984).
Bulgakov et al., Silicon clusters produced by femtosecond laser ablation: non-thermal emission and gas-phase condensation. Applied Physics AMaterials Science & Processing 79, 1591-1594 (2004).
Campbell et al., Light Trapping Properties of Pyramidally Textured Surfaces. Journal of Applied Physics 62, 243-249 (1987).
Carey et al, “High Sensitivity Silicon-Based VIS/NIR Photodetectors”, CLEO 2004 (San Francisco, CA 2004) pp. 1-2 cited by other.
Carey et al. “High Sensitivity Silicon-Based VISNIR Photodetectors” CLEO 2004 (San Francisco CA 2003) 1-2.
Carey et al., In-situ doping of silicon using the gas immersion laser doping (GILD) process. Applied Surface Science. vol. 43, Issues 1-4, Dec. 2, 1989, pp. 325-332.
Carey et al., Visible and near-infared responsivity of femtosecondlaser microstrnctured silicon photodiodes. Opt. Lett. 2005;30: 1773- 5.
Carey, Femtosecond-laser microstructuring of silicon for novel optoelectronic devices. Thesis. The Division of Engineering and Applied Sciences. Harvard University. Cambridge, MA. Jul. 2004 162 pages.
Cifre, Polycrystalline Silicon Films Obtained by Hot-Wire Chemical-Vapor-Deposition. Applied Physics aMaterials Science & Processing 59, 645-651 (1994).
Contreras et al., Progress toward 20% efficiency in Cu(In,Ca)Se-2 polycrystalline thin-film solar cells. Progress in Photovoltaics 7, 311-316 (1999).
Cuadra et al., Present status of intermediate band solar cell research. Thin Solid Films 451-52, 593-599 (2004).
Curtins et al., High-Rate Deposition of Amorphous Hydrogenated Silicon-Effect of Plasma Excitation-Frequency. Electronics Letters 23, 228-230 (1987).
Delley et al., Quantum Confinement in Si Nanocrystals. Physical Review B 47, 1397-1400 (1993).
Glezer et al., Ultrafast-laser driven micro-explosions in transparent materials. Applied Physics Letters 71, 882-884 ( 1997).
Glover et al., Probing paiticle synthesis during femtosecond laser ablation: initial phase transition kinetics. Applied Physics B Lasers and Optics 78, 995-1000 (2004).
Glover, Hydrodynamics of particle formation following femtosecond laser ablation. Journal of the Optical Society of America B-Optical Physics 20, 125-131 (2003).
Goetzbergeret al., Crystalline Silicon Solar Cells (ed.), Chapter 6, High Efficiency Solar Cells. New York: John Wiley & Sons Ltd, 1994.
Green, Recent developments in photovoltaics. Solar Energy 76, 3-8 (2004).
Greenham et al., Charge sepai⋅ation and transport in conjugatedpolymerjsemiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Physical Review B 54, 17628-17637 (1996).
Halls et al., Efficient Photodiodes from Interpenelsating Polymer Networks. Nature 376, 498-500 (1995).
Hansen, Henri et al. “The Black Silicon Method: A Universal Method for determining the Parameter Setting of a Fluorine-Based Reactive Ion Etcher in Depp Silicon Trench Etching With Profile Control”, J. Micromedch. Microeng. 5 (1'995) pp. 115-120.
Heisterkamp et al., Pulse energy dependence of subcellular dissection by femtosecond laser pulses. Optics Express 13, 3690-3696 (2005).
Herny, Limiting Efficiencies of Ideal Single and Multiple Energy Gap Terrestrial Solar-Cells. Journal of Applied Physics 51, 4494-4500 (1980).
Huang et al., “A uniform 290 nm periodic Square Strcuture on ZnO Fabricated by Two-Beam Femtosecond Laser Ablation,” Nanotechnolgoy, 8 pp. 1-6 (2007).
Keppner et al., Passivation Properties of Amorphous and Microcrystalline Silicon Layers Deposited by Vhf-Gd for Crystalline Silicon Solar-Cells. Solar Energy Materials and Solar Cells 34, 201-209 (1994).
Luque et al., Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters 78, 5014-5017 (1997).
Marti et al., Limiting efficiencies for photovoltaic energy conversion in multigap systems. Solar Energy Materials and Solar Cells 43, 203-222 (1996).
Meier et al., Recent progress in micromorph solar cells. Journal of Non-Crystalline Solids 230, 1250-1256 (1998).
Meier etal., Complete Microclystalline P-1-N. SolarCell-Crystalline or Amorphous Cell Behavior. Applied Physics Letters 65, 860-862 (1994).
Mo et al., Sulfm point defects in crystalline and amorphous silicon. Physical Review B 70 (2004).
Morneault, K. et al., “ISDN Q.921-User Adaptation Layer,” Network Working Group, Request for Comments: 3057, The Internet Society, pp. 1-66, (2001).
Morneault, K. et al., “SS7 MTP2-User Adaptation Layer,” Network Working Group, Internet Draft, The Internet Engineering Task Force, pp. 1-94, (Feb. 2001).
Myers et al., Enhancing nearinfrared avalanche photodiode performance by femtosecond laser microstructuring. Applied Optics 45, 8825-8831 (2006).
Nayak et al.; “Femtosecond Laser-Induced Micro-Structuring of Thin a-Si:H Films”, Material Research Society Symposium proceeedings; vol. 850; Nov. 28-Dec. 2, 2004; pp. MM1.8.1-MM 1.8.5.
Nirmal et al., Lwninescence photophysics in semiconductor nanocrystals. Accounts of Chemical Research 32. 407-414 (1999).
Ong et al., “Framework Architecture for Signaling Transport,” Network Working Group, Request for Comments: 2719, The Internet Society, pp. 1-24, (Oct. 1999).
O'Regan et al., A Low-Cost, High-Efficiency Solar-Cell Based on DyeSensitized Colloidal Tio2 Films. Nature 353, 737-740 (1991).
Pavesi, Optical gain in silicon nanocrystals. Nature 408, 440-444 (2000).
Rath et al., Limited influence of grain boundary defects in hot-wire CVD polysilicon films on solar cell performance. Journal of Noncrystalline Solids 230, 1277-1281 (1998).
Reber et al., Crystalline silicon thin-film solar cellsrecent results at Fraunhofer ISE, Solar Energy 77, 865-875 (2004).
Sarnet et al., Laser doping for microelectronics and microtechnology. Proc.of SPIE vol. 5448 pp. 669-680.
Schaffer et al., Micromachining bulk glass by use offemtosecond laser pulses with nanojoule energy. Optics Letters 26, 93-95(2001).
Schuppler et al., Size, Shape, and Composition of Luminescent Species in Oxidized Si Nanocrystals and H-Passivated Porous Si. Physical Review B 52, 4910-4925 (1995).
Serpenguzel et al., “Temperature Dependence of Photoluminescence in Non-Crystalline Silicon”, Photonics West (San Jose, CA, 2004) 454-462.
Seto, Electrical Properties of Polyclystalline Silicon Films. Jomnal of Applied Physics 46, 5247-5254 (1975).
Shali et al., Thin-film silicon solar cell technology. Progress in Photovoltaics 12, 113-142 (2004).
Sheehy et al., Chalcogen doping of silicon via intense femtosecondlaser irradiation. Materials Science and Engineering B-Solid State Materials for Advanced Technology 137, 289-294 (2007).
Sheehy et al., Role of the Background Gas in the Morphology and Optical Properties of Laser-Microstructured Silicon. Chem Mater. 2005; 17(14):3582-6.
Shen et al., “Femtosecond laser-induced formation of submicrometer spikes on silicon in water”, Appllied Physics Letter, vol. 85(23 ), p. 5694 (2004).
Shockley et al., Detailed Balance Limit ofEfficiency of p-n. Junction Solar Cells. Journal of Applied Physics 32,510-519 (1961).
Sidebottom, G. et al., “SS7 MTP3-User Adaptation Layer (M3UA),” Network Working Group, Internet Draft, The Internet Engineering Task Force, pp. 1-128, (Feb. 2001).
Sipe et al., Laser-Induced Periodic Surface-Structure .1. Theory. Physical Review B 27, 1141-1154 (1983).
Slaoui et al., Advanced inorganic materials for photovoltaics. Mrs Bulletin 32, 211-218 (2007).
Staebler et al., Stability of N-I-P. Amorphous-Silicon Solar-Cells. Applied Physics Letters 39, 733-735 (1981).
Stalmans et al. Porous silicon in crystalline silicon solar cells: a review and the effect on the internal quantum efficiency. Progress in Photovoltaics 6 233-246 (1998).
Stewart, R. et al. “Stream Control Transmission Protocol”, Network Working Group, pp. 1-134 (Oct. 2000).
Stocks et al., Texturing ofpolycrystalline silicon. Solar Energy Materials and Solar Cells 40, 33-42 (1996).
Stupca et al., Enhancement of polycrystalline silicon solar cells using ultrathin films of silicon nanoparticle. Applied Physics Letters 91, 063107 (2007).
Svrcek et al., Ex situ prepared Si nanocrystals embedded in silica glass: Formation and characterization. Journal of Applied Physics 95, 3158-3163 (2004).
Svrcek et al., Silicon nanocrystals as light converter for solar cells. Thin Solid Films 451-52, 384-388 (2004).
Tiwari et al., A silicon nanocrystals based memo1y. Applied Physics Letters 68, 1377-1379 (1996).
Torres et al., Device grade microcrystalline silicon owing to reduced oxygen contamination, Applied Physics Letters 69, 1373-1375 (1996).
Tull et al., Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas. Applied Physics a-Materials Science & Processing 83, 341-346 (2006).
Tull et al., Silicon surface morphologies after femtosecond laser irradiation, Mrs Bulletin 31, 626-633 (2006).
van der Zel, L. “SF6 and the Environment,” EPRI, Nov. 2003.
Vigue, F. et al. “Visible-blind Ultraviolet Photodetectors based on ZnMgBeSe” Journal of Electronic Materials, vol. 30, No. 6, pp. 4190-4192 (2001).
Wilson et al., Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals. Science 262, 1242-1244 (1993).
Wronski, Electronic Properties of Amorphous Silicon in Solar-Cell Operation leee Transactions on Electron Devices 24, 351-357 (1977).
Wu et al., “13.9%—efficient CdTe polycrystalline thin-film solar cells with an infrared transmission of˜so%”, Progress in Photovoltaics 14, 471-483 (2006).
Younkin, R. et al. “Infrared absorption by conical silicon microstrnctures made in a variety of background gases using femtosecond-laserpulses,” Proc. CLEO 2001 (Baltimore, MD, 2001) p. 556.
Yu et al., Polymer Photovoltaic CellsEnhanced Efficiencies Via a Network oflnternal Donor-Acceptor Heterojunctions. Science 270, 1789-1791 (1995).
Zhao et al., 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters 73, 1991-1993 (1998).
Related Publications (1)
Number Date Country
20160119555 A1 Apr 2016 US
Provisional Applications (1)
Number Date Country
61507488 Jul 2011 US
Continuations (1)
Number Date Country
Parent 13549107 Jul 2012 US
Child 14864592 US