Biometric personal data key (PDK) authentication

Information

  • Patent Grant
  • 10698989
  • Patent Number
    10,698,989
  • Date Filed
    Saturday, February 20, 2016
    8 years ago
  • Date Issued
    Tuesday, June 30, 2020
    4 years ago
Abstract
Systems and methods verifying a user during authentication of an integrated device. In one embodiment, the system includes an integrated device and an authentication unit. The integrated device stores biometric data of a user and a plurality of codes and other data values comprising a device ID code uniquely identifying the integrated device and a secret decryption value in a tamper proof format, and when scan data is verified by comparing the scan data to the biometric data, wirelessly sends one or more codes and other data values including the device ID code. The authentication unit receives and sends the one or more codes and the other data values to an agent for authentication, and receives an access message from the agent indicating that the agent successfully authenticated the one or more codes and other data values and allows the user to access an application.
Description
FIELD OF THE INVENTION

The present invention relates generally to computerized authentication, and more specifically, to an authentication responsive to biometric verification of a user being authenticated.


BACKGROUND

Conventional user authentication techniques are designed to prevent access by unauthorized users. One technique is to require a user being authenticated to provide secret credentials, such as a password, before allowing access. Similarly, a PIN number can be required by an ATM machine before allowing a person to perform automated bank transactions. A difficulty with this technique is that it requires the user to memorize or otherwise keep track of the credentials. A uses often has multiple sets of credentials (e.g., passwords and PINs) and it can be quite difficult to keep track of them all.


Another technique that does not require the user to memorize credentials is to provide the user with an access object such as a key (e.g., an electronic key) that the user can present to obtain access. For example, a user can be provided with a small electronic key fob that allows access to a building or other secured location. A difficulty with using access objects is that authentication merely proves that the access object itself is valid; it does not verify that the legitimate user is using the access object. That is, illegitimate user can use a stolen access object to enter a secured location because the user's identity is never checked.


Some hybrid authentication techniques require the user to provide both an access object and credentials. The user is authenticated only upon providing both items. Of course, this solution does not resolve the problem of making the user memorize credentials.


Therefore, there is a need for systems and methods for verifying a user that is being authenticated that does not suffer from the limitations described above. Moreover, the solution should ease authentications by wirelessly providing an identification of the user.


SUMMARY

The present invention addresses the above needs by providing systems and methods for authentication responsive to biometric verification of a user being authenticated. In one embodiment, an integrated device includes a persistent storage to persistently stores a code such as a device identifier (ID) and biometric data for a user in a tamper-resistant format, and a verification module, in communication with the persistent storage, to receive scan data from a biometric scan for comparison against the biometric data, and if the scan data matches the biometric data, wirelessly sending a code for authentication.


In one embodiment, a method for verifying a user during authentication of an integrated device, includes persistently storing biometric data for the user in a tamper-resistant format; responsive to receiving a request for biometric verification of the user, receiving scan data from a biometric scan; comparing the scan data to the biometric data to determine whether the data match; and responsive to a determination that the scan data matches the biometric data, wirelessly sending a code for authentication.


Other embodiments include corresponding systems, apparatus, and computer programming products, configured to perform the actions of the methods, encoded on computer storage devices. These and other embodiments may each optionally include one or more of the following features. For instance the operations further include registering an age verification for the user in association with the code. For instance the operations further include establishing a secure communication channel prior to sending the code for authentication. For instance the operations further include receiving a request for the code without a request for biometric verification, and responsive to receiving the request for the code without a request for biometric verification, sending the code without requesting the scan data. For instance, the features include: the code is registered with a trusted authority, and the code can be authenticated to a third party by the trusted authority; the code uniquely identifies the integrated device; the code indicates that the biometric verification was successful; persistently storing biometric data includes permanently storing biometric data; the biometric data and the scan data are both based on a fingerprint scan by the user, an LED to be activated for requesting the biometric scan.


In one embodiment, a method for authenticating a verified user, includes receiving a code associated with a biometrically verified user; requesting authentication of the code; receiving an authentication result; and in response to the authentication result being positive, providing access to an application.


In one embodiment, a system includes an integrated device (e.g. a biometric key) to store biometric data for a user in a tamper resistant format, and if scan data can be verified as being from the user by comparing the scan data to the biometric data, wirelessly sending a code; and an authentication module to receive the code and send the code to a trusted authority for authentication, and responsive to the code being authenticated, allowing the user to access an application.


Other embodiments include corresponding systems, apparatus, and computer programming products, configured to perform the actions of the methods, encoded on computer storage devices. These and other embodiments may each optionally include one or more of the following features. For instance, the operations further include registering the code with a trusted authority, wherein requesting authentication of the code includes providing the code to the trusted authority and wherein receiving an authentication result comprises receiving the authentication result from the trusted authority. For instance the operations further include registering a date of birth or age with the trusted authority. For instance the operations further include establishing a secure communications channel with an integrated device, wherein the code associated with the biometrically verified user is received from the integrated device. For instance the features include: the integrated device receives an authentication request from the authentication module, and in response, requests a biometric scan from the user to generate the scan data; when the integrated device cannot verify the scan data as being from the user, it does not send the code.


Advantageously, user authentication is bolstered with highly reliable biometric verification of the user in an integrated device. Furthermore, a keyless environment relieves authorized users from having to memorize credentials, and of having to physically enter credentials or keys. In addition, the integrated device can be authenticated for an application that is open to the public (i.e., in an open loop system).


The features and advantages described in the specification are not all inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specifications, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes and may not have been selected to delineate or circumscribe the inventive matter.





BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings.



FIG. 1 is a schematic diagram illustrating a biometric key for providing authentication information for a biometrically verified user according to one embodiment of the present invention.



FIG. 2 is a block diagram illustrating functional modules within the biometric key according to one embodiment of the present invention.



FIG. 3 is a block diagram illustrating a system for providing authentication information for a biometrically verified user.



FIG. 4 is a flow chart illustrating a method for providing authentication information for a biometrically verified user.



FIG. 5 is a flow chart illustrating a method for enrolling biometric data of the user with the biometric key.



FIG. 6 is a flow chart illustrating a method for verifying a subject presenting the biometric key according to one embodiment of the present invention.



FIG. 7 is a flow chart illustrating a method for authenticating a verified user of the biometric key according to one embodiment of the present invention.





DETAILED DESCRIPTION

Systems and methods for authentication responsive to biometric verification of a user being authenticated are described. Generally, biometric verification uses biometric data to ensure that the user of, for example, a biometric key, is the person registered as an owner. Biometric data is a digital or analog representation of characteristics unique to the user's body. For example, a fingerprint of a subject can be compared against previously-recorded biometric data for verification that the subject is the registered owner of the biometric key. Then, the biometric key itself can be authenticated.


Although the embodiments below are described using the example of biometric verification using a fingerprint, other embodiments within the spirit of the present invention can perform biometric verification using other types of biometric data. For example, the biometric data can include a palm print, a retinal scan, an iris scan, hand geometry recognition, facial recognition, signature recognition, or voice recognition.



FIG. 1 is a schematic diagram illustrating an example of a biometric key 100 for providing authentication information for a biometrically verified user according to one embodiment of the present invention. In one embodiment, the biometric key 100 comprises a frame 110, a scan pad 120, and an LED 130. In one embodiment, biometric key 100 has a small form factor (e.g., the size of an automobile remote control) such that it can be unobtrusively carried by a user. In one embodiment, the biometric key 100 is integrated into another object or device. A device having an integrated biometric key 100 is occasionally referred to herein as an “integrated device.” For example, in one embodiment, the biometric key 100 is integrated into a mobile phone (e.g. a cellular phone or smartphone), tablet, laptop, mp3 player, mobile gaming device, watch, key fob or other mobile device, thereby making the biometric key 100 unobtrusive to carry.


Frame 110 can be formed by plastic, metal or another suitable material. Frame 110 is shaped to secure scan pad 120, and includes a perforation for attachment to, for example a key chain or clip. In one embodiment, frame 110 is formed from a unitary molding to protect biometric data. Accordingly, frame 110 cannot be opened to expose the underlying components unless it is broken.


Scan pad 120 can be, for example, an optical scanner using a charge coupled device, or a capacitive scanner. Scan pad 120 can be sized to fit a thumb or other finger. Biometric key 100 of the present embodiment includes LED 130 that lights up to request a fingerprint scan from a user. In one embodiment, LED 130 can also confirm that user verification and/or authentication has completed.


Biometric key 100 can authenticate a user for various purposes. For example, biometric key 100 can allow keyless entry into homes and autos. In another example, biometric key 100 can log a user onto a computer system or point of sale register without typing in credentials. In still another example, biometric key 100 can verify that an enrolled user is above a certain age (e.g., before allowing access to a slot machine in a casino). In some embodiments, biometric key 100 operates without biometric verification, and request a fingerprint scan from a user only when biometric verification is needed for the particular use.



FIG. 2 is a block diagram illustrating biometric key 100 according to one embodiment of the present invention. Biometric key 100 comprises control module 210, biometric portion 220, RF communication module 230, persistent storage 240, and battery 250. Biometric key 100 can be formed from a combination of hardware and software components as described above. In one embodiment, biometric key 100 comprises a modified key fob.


Control module 210 coordinates between several functions of biometric key 100. In one embodiment, control module 210 provides a verification code upon successful verification of the user. More specifically, once biometric portion 220 indicates that a fingerprint scan matches biometric data that was collected during enrollment, control module 210 can trigger RF communication module 230 for sending a code indicating that the user was verified. In another embodiment, control module 210 can work in the opposite direction by detecting a request for verification from RF communication module 230, and then requesting verification of the user from biometric portion 210. Note that control module 210 of FIG. 2 is merely a grouping of control functions in a central architecture, and in other embodiments, the control functions can be distributed between several modules around biometric key 100.


Biometric portion 220 comprises enrollment module 222, validation module 224, and biometric data base 226. In one embodiment, enrollment module 222 registers a user with biometric key 100 by persistently storing biometric data associated with the user. Further, enrollment module 222 registers biometric key 100 with a trusted authority by providing the code (e.g., device ID) to the trusted authority. Or conversely, the trusted authority can provide the code to biometric key 100 to be stored therein.


Validation module 224 can comprise scan pad 120 (FIG. 1) to capture scan data from a user's fingerprint (e.g., a digital or analog representation of the fingerprint). Using the scan data, validation module 214 determines whether the user's fingerprint matches the stored biometric data from enrollment. Conventional techniques for comparing fingerprints can be used. For example, the unique pattern of ridges and valleys of the fingerprints can be compared. A statistical model can be used to determine comparison results. Validation module 224 can send comparison results to control module 210.


In other embodiments, validation module 224 can be configured to capture biometric data for other human characteristics. For example, a digital image of a retina, iris, and/or handwriting sample can be captured. In another example, a microphone can capture a voice sample.


Persistent storage 226 persistently stores biometric data from one or more users which can be provided according to specific implementations. In one embodiment, at least some of persistent storage 226 is a memory element that can be written to once but cannot subsequently be altered. Persistent storage 226 can include, for example, a ROM element, a flash memory element, or any other type of non-volatile storage element. Persistent storage 226 is itself, and stores data in, a tamper-proof format to prevent any changes to the stored data. Tamper-proofing increases reliability of authentication because it does not allow any changes to biometric data (i.e., allows reads of stored data, but not writes to store new data or modify existing data). Furthermore, data can be stored in an encrypted form.


In one embodiment, persistent storage 226 also stores the code that is provided by the key 100 responsive to successful verification of the user. As described above, in one embodiment the code is a device ID or other value that uniquely identifies biometric key 100. In one embodiment, the code is providing during the manufacturing process and the biometric data are provided during an enrollment of the user. In other embodiments, the code is provided during enrollment and/or the biometric data are provided during manufacturing. Further, in some embodiments persistent storage 226 stores other data utilized during the operation of biometric key 100. For example, persistent storage 226 can store encryption/decryption keys utilized to establish secure communications links.


Radio frequency (RF) communication module 230 is, for example, a transceiver or other mechanism for wireless communication. RF communication module 230 can send and receive data (e.g., the code) as modulated electromagnetic signals. In one embodiment, RF communication 220 can be optimized for low-power usage by, for example, using short-range transceivers. RF communication module 230 can actively send out connection requests, or passively detect connection requests.


Battery 260 can be a conventional power source suitable for the components of biometric key 100. Battery 260 can be either replaceable or rechargeable. Alternatively, battery 260 can be embedded within key 100 such that the key must be discarded or recycled upon expiration of the battery.



FIG. 3 is a block diagram illustrating a system 300 for providing authentication information for a biometrically verified user. System 300 comprises an authentication module 310 in communication with biometric key 100, a trusted key authority 320, and an application 330.


Authentication module 310 is coupled in communication with biometric key via line 311 (i.e., a wireless medium such as EM signals), and with trusted key authority 320 via line 312 (e.g., a secure data network such as the Internet, or a cell network). Authentication module 310 can include one or more of, for example, a computerized device, software executing on a computerized device, and/or a reader/decoder circuit. In one embodiment, authentication module 310 servers as a gatekeeper to application 330 by requiring the code indicating successful biometric verification of the user prior to allowing access to the application. Further, in one embodiment, authentication module 310 provides the code to trusted key authority 320 in order to verify that it belongs to a legitimate key (e.g., when application 330 is security-critical). Authentication module 310 can send a message to application 330, or otherwise allow access to the application, responsive to a successful authentication by trusted key authority 320.


Application 330 is a resource that can be accessed by a verified and authenticated user. Application 330 can be, for example, a casino machine, a keyless lock, a garage door opener, an ATM machine, a hard drive, computer software, a web site, a file, a financial account (e.g. a savings account, checking account, brokerage account, credit card account, credit line, etc.) and the like. In one embodiment, a file includes medical information such as a medical record, insurance information or other healthcare information. Application 330 can execute on the same system as authentication module 310 or on another system in communication with the system of the authentication module. In one embodiment, application module 330 allows access by a user after receiving a message from authentication module 310. At that point, application 330 can allow direct use by the user, or require that communications continue to pass through authentication module 310 for continued authentication.


Trusted key authority 320 is a third-party authority that is present in some embodiments in order to provide enhanced security. In one embodiment, trusted key authority 320 verifies that a code from a biometric key is legitimate. To do so, the trusted key authority 320 stores a list of codes for legitimate biometric keys. The list can be batched or updated each time a new user/key is enrolled. In one embodiment, trusted key authority 320 can also store a profile associated with a biometric key. The profile describes the user associated with the key, the key itself, the trusted key authority, and/or other relevant information. In one embodiment, the functionality of trusted key authority 320 is provided by a server or other computerized device.


In an open system, where unknown users can attempt authentication (e.g., in a public grocery store), trusted key authority 320 provides verification that a key presenting a certain code is legitimate. By contrast, in a closed system, only known users are legitimate (e.g., owners of a home), the trusted key authority 320 can be maintained locally and serves to verify that the key belongs to one of the limited number of users that can use the system.



FIG. 4 is a flow chart illustrating a method 400 for authenticating a biometrically verified user using a trusted key authority (e.g., authority 320). A biometric key (e.g., biometric key 100) is registered 410 with the trusted key authority. The code (e.g., device ID) of the key is stored by the trusted key authority. Additionally, a user is enrolled 420 with the biometric key as described below with reference to FIG. 5.


In various situations, authentication of the key is needed 430 (e.g., by authentication module 310). In one embodiment, authentication can be required prior to allowing access to an application (e.g., application 330). For example, a user can be standing proximate to a slot machine in a casino which requires that a user be over the age of 21. The slot machine can detect the biometric key in the user's pocket, and, in response, spawn a conspicuous pop-up window on the slot machine requesting age verification. Alternatively, the biometric key can blink an LED. In other embodiments, biometric verification is not necessary and only the key itself is authenticated.


The biometric key establishes communication with the authentication module using various techniques. In one embodiment, the key and authentication module engage in preliminary data exchanges to determine who and/or what they are (e.g., to ascertain that they belong to the same system). These data exchanges can include challenge-response dialogs, hashing algorithms, and the like in order to ensure that the biometric key and authentication module are themselves legitimate. Further, in one embodiment the key and authentication module establish a secure communications channel. The key performs the biometric verification of the user 440 as described below with reference to FIG. 6. If the biometric verification of the user is successful, the key provides its code over the secure communications channel.


The code is utilized to authenticate the biometric key itself 450, 460 as described below with reference to FIG. 7 and profile information is received. Responsive to successful authentication of the key, access is allowed 470 to the application. In the slot machine example, a new pop-up window can be spawned to indicate a successful age verification.



FIG. 5 is a flow chart illustrating a method 500 for enrolling biometric data of the user with the biometric key according to one embodiment of the present invention. An agent checks 510 an identification of the user and establishes a profile. The agent can be, for example, a government official, a notary, and/or an employee of a third party which operates the trusted key authority, or another form of witness. The agent can follow standardized procedures such as requiring identification based on a state issued driver license, or a federally issued passport in order to establish a true identity of the user.


The profile describes the user and can include, for example, the user's name, date of birth, age, passwords, account numbers, preferences etc. In some embodiments, the profile stores no or only limited information about the user. For example, the agent might store the date of birth of the user in the profile, but not store any other information about the user. In addition, the profile describes the biometric key and/or key authority. For the biometric key, the profile can store a value indicating the status of the key, such as whether the key is in-service, out-of-service, abandoned, lost, stolen etc. For the key authority, the profile can store a value identifying the key authority.


The agent also collects and persistently stores 520 biometric data from the user. To do so, a fingerprint or eye retina can be scanned and converted to data which is then persistently stored in the biometric key. In one embodiment, the agent does not retain the biometric data. Since this step occurs under control of the agent, the agent can be certain that the biometric data stored within the key matches the user who presented the identification. The agent also obtains the code (e.g., device ID) from the biometric key in which the biometric data was stored. The agent associates the code and the profile using a table and/or other data structure.



FIG. 6 is a flow chart illustrating a method 600 for verifying a subject presenting the biometric key according to one embodiment of the present invention. In response to an authentication request, a user scan is requested 610 (e.g., by a blinking LED). Once the subject provides a fingerprint, scan data is received 620. Scan data is compared for a match 630 to previously-stored biometric data. If there is no match, then verification fails 650.


If there is a match, the subject is verified 640 as the user. The code indicating a successful verification is wirelessly sent 650 from the biometric key (e.g., by RF communication module 230).



FIG. 7 is a flow chart illustrating a method 700 for authenticating a biometric key according to one embodiment of the present invention. The code is wirelessly received 710. A request for authentication of the code is sent to the trusted key authority 720. The trusted key authority determines whether the code is authentic 730 (i.e., it was created through an established enrollment process) and has a valid status (e.g., has not expired). If authentication is successful, the trusted key authority sends an access message to the application to allow user access and/or provide additional information from the profile 740 (such as the user's age). If authentication is not successful, authentication fails 750 and the message to the application indicates that the user should be denied access.


In some embodiments, the biometric key provides multiple codes and/or other data values. For example, the key can provide a device ID code that the authentication module can provide to the trusted key authority in order to authenticate the key, and the key can provide a secret decryption value that can be used to communicate with the biometric key. As used herein, the term “code” is intended to include one or more of these values, depending upon the specific embodiment.


The order in which the steps of the methods of the present invention are performed is purely illustrative in nature. The steps can be performed in any order or in parallel, unless otherwise indicated by the present disclosure. The methods of the present invention may be performed in hardware, firmware, software, or any combination thereof operating on a single computer or multiple computers of any type. Software embodying the present invention may comprise computer instructions in any form (e.g., source code, object code, interpreted code, etc.) stored in any computer-readable storage medium (e.g., a ROM, a RAM, a magnetic media, a compact disc, a DVD, etc.). Such software may also be in the form of an electrical data signal embodied in a carrier wave propagating on a conductive medium or in the form of light pulses that propagate through an optical fiber.


While particular embodiments of the present invention have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made without departing from this invention in its broader aspect and, therefore, the appended claims are to encompass within their scope all such changes and modifications, as fall within the true spirit of this invention.


In the above description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that the invention can be practiced without these specific details. In other instances, structures and devices are shown in block diagram form in order to avoid obscuring the invention.


Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.


Some portions of the detailed description are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.


The present invention also relates to an apparatus for performing the operations herein. This apparatus can be specially constructed for the required purposes, or it can comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program can be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.


The algorithms and modules presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems can be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatuses to perform the method steps. The required structure for a variety of these systems will appear from the description below. In addition, the present invention is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages can be used to implement the teachings of the invention as described herein. Furthermore, as will be apparent to one of ordinary skill in the relevant art, the modules, features, attributes, methodologies, and other aspects of the invention can be implemented as software, hardware, firmware or any combination of the three. Of course, wherever a component of the present invention is implemented as software, the component can be implemented as a standalone program, as part of a larger program, as a plurality of separate programs, as a statically or dynamically linked library, as a kernel loadable module, as a device driver, and/or in every and any other way known now or in the future to those of skill in the art of computer programming. Additionally, the present invention is in no way limited to implementation in any specific operating system or environment.


It will be understood by those skilled in the relevant art that the above-described implementations are merely exemplary, and many changes can be made without departing from the true spirit and scope of the present invention. Therefore, it is intended by the appended claims to cover all such changes and modifications that come within the true spirit and scope of this invention.

Claims
  • 1. A method comprising: receiving, at a smartphone, an identification (ID) code from a third-party trusted authority, the ID code uniquely identifying the smartphone among a plurality of smartphones;persistently storing biometric data and the ID code on the smartphone, wherein the biometric data is one selected from a group consisting of facial recognition, a fingerprint scan, and a retinal scan of a legitimate user;receiving, at the smartphone, scan data from a biometric scan using the smartphone;comparing, using the smartphone, the scan data to the biometric data;determining whether the scan data matches the biometric data; andresponsive to a determination that the scan data matches the biometric data, wirelessly sending, from the smartphone, the ID code for comparison by the third-party trusted authority against one or more previously registered ID codes maintained by the third-party trusted authority, a transaction being completed responsive to the third-party trusted authority successfully authenticating the ID code, wherein the transaction being completed includes accessing one or more from a group consisting of a casino machine, a keyless lock, an ATM machine, a web site, a file and a financial account.
  • 2. The method of claim 1, further comprising: Receiving a request for biometric verification, and responsive to a determination that the scan data does not match the biometric data, indicating the smartphone cannot verify the scan data as being from the legitimate user, the smartphone does not send the ID code.
  • 3. The method of claim 1, wherein completing the transaction includes accessing an application.
  • 4. The method of claim 1, wherein the transaction being completed responsive to the third-party trusted authority successfully authenticating the ID code includes the third-party trusted authority sending an indication that the third-party trusted authority authenticated the ID code to another party.
  • 5. A smartphone comprising: a persistent storage having an input that receives an identification (ID) code from a third-party trusted authority, and biometric data, wherein the biometric data is one selected from a group consisting of facial recognition, a fingerprint scan, and a retinal scan, of a legitimate user, the ID code uniquely identifying the smartphone among a plurality of smartphones, the persistent storage storing the biometric data and the ID code, the persistent storage having an output configured to provide a first set of biometric data and the ID code for use on the smartphone;a validation module, coupled to communicate with the persistent storage to receive the biometric data from the persistent storage, the validation module having a scan pad to capture scan data from a biometric scan, the validation module comparing the scan data to the biometric data to determine whether the scan data matches the biometric data; anda wireless transceiver that, responsive to a determination that the scan data matches the biometric data, sends the ID code for comparison by the third-party trusted authority against one or more previously registered ID codes maintained by the third-party trusted authority, a transaction being completed responsive to the third-party trusted authority successfully authenticating the ID code, wherein the transaction being completed includes accessing one or more from a group consisting of a casino machine, a keyless lock, an ATM machine, a web site, a file and a financial account.
  • 6. The smartphone of claim 5, wherein the ID code is transmitted to the third-party trusted authority over a network.
  • 7. A system, comprising: a smartphone that persistently stores biometric data and an ID code, wherein the biometric data is one selected from a group consisting of facial recognition, a fingerprint scan, and a retinal scan data of a legitimate user, and the ID code is received from a third-party trusted authority, the ID code uniquely identifying the smartphone among a plurality of smartphones, the smartphone configured to indicate that a biometric authentication is requested, the smartphone configured to wirelessly send the ID code to the third-party trusted authority for authentication responsive to determining that scan data from a biometric scan performed using the smartphone matches the biometric data of the legitimate user, wherein a transaction is completed responsive to successful authentication of the ID code by the third-party trusted authority, wherein the transaction being completed includes accessing one or more from a group consisting of a casino machine, a keyless lock, an ATM machine, a web site, a file and a financial account; andthe third-party trusted authority operated by a third party, the third-party trusted authority storing a plurality of legitimate ID codes and authenticating the ID code received based on a comparison of the ID code received and the legitimate ID codes included in the plurality of the legitimate ID codes.
  • 8. The system of claim 7, wherein the smartphone receives an authentication request, and in response, requests biometric scan from a user to generate the scan data and, when the smartphone cannot verify the scan data as being from the legitimate user, the smartphone does not send the ID code.
  • 9. The system of claim 7, wherein completing the transaction includes accessing an application.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority, under 35 U.S.C. § 120, to U.S. patent application Ser. No. 14/521,982, filed Oct. 23, 2014, entitled “Biometric Personal Data Key (PDK) Authentication, which claims priority to U.S. patent application Ser. No. 13/710,109 filed Dec. 10, 2012 and entitled “Biometric Personal Data Key (PDK) Authentication” which claims priority to U.S. patent application Ser. No. 11/314,199, filed Dec. 20, 2005 and entitled “Biometric Personal Data Key (PDK) Authentication,” which claims the benefit of U.S. Provisional Application No. 60/637,538, filed on Dec. 20, 2004, and of U.S. Provisional Application No. 60/652,765, filed on Feb. 14, 2005, the entireties of which are hereby incorporated by reference. Applicants hereby notify the USPTO that the claims of the present application are different from those of the aforementioned related applications. Therefore, Applicant rescinds any disclaimer of claim scope made in the parent application or any other predecessor application in relation to the present application. The Examiner is therefore advised that any such disclaimer and the cited reference that it was made to avoid may need to be revisited at this time. Furthermore, the Examiner is also reminded that any disclaimer made in the present application should not be read into or against the parent application, the grandparent application or any other related application.

US Referenced Citations (794)
Number Name Date Kind
3739329 Lester Jun 1973 A
3761883 Alvarez et al. Sep 1973 A
4430705 Cannavino et al. Feb 1984 A
4661821 Smith Apr 1987 A
4759060 Hayashi et al. Jul 1988 A
4993068 Piosenka et al. Feb 1991 A
5187352 Blair et al. Feb 1993 A
5224164 Elsner Jun 1993 A
5296641 Stelzel Mar 1994 A
5307349 Shloss et al. Apr 1994 A
5317572 Satoh May 1994 A
5325285 Araki Jun 1994 A
5392287 Tiedemann, Jr. et al. Feb 1995 A
5392433 Hammersley et al. Feb 1995 A
5410588 Ito Apr 1995 A
5416780 Patel May 1995 A
5422632 Bucholtz et al. Jun 1995 A
5428684 Akiyama et al. Jun 1995 A
5450489 Ostrover et al. Sep 1995 A
5473690 Grimonprez et al. Dec 1995 A
5481265 Russell Jan 1996 A
5506863 Meidan et al. Apr 1996 A
5517502 Bestler et al. May 1996 A
5541583 Mandelbaum Jul 1996 A
5563947 Kikinis Oct 1996 A
5589838 McEwan Dec 1996 A
5594227 Deo Jan 1997 A
5598474 Johnson Jan 1997 A
5611050 Theimer et al. Mar 1997 A
5619251 Kuroiwa et al. Apr 1997 A
5623552 Lane Apr 1997 A
5629980 Stefik et al. May 1997 A
5644354 Thompson et al. Jul 1997 A
5666412 Handelman et al. Sep 1997 A
5689529 Johnson Nov 1997 A
5692049 Johnson et al. Nov 1997 A
5719387 Fujioka Feb 1998 A
5729237 Webb Mar 1998 A
5760705 Glessner et al. Jun 1998 A
5760744 Sauer Jun 1998 A
5773954 VanHorn Jun 1998 A
5784464 Akiyama et al. Jul 1998 A
5799085 Shona Aug 1998 A
5825876 Peterson, Jr. Oct 1998 A
5835595 Fraser et al. Nov 1998 A
5838306 O'Connor et al. Nov 1998 A
5854891 Postlewaite et al. Dec 1998 A
5857020 Peterson, Jr. Jan 1999 A
5886634 Muhme Mar 1999 A
5892825 Mages et al. Apr 1999 A
5892900 Ginter et al. Apr 1999 A
5894551 Huggins et al. Apr 1999 A
5898880 Ryu Apr 1999 A
5910776 Black Jun 1999 A
5917913 Wang Jun 1999 A
5928327 Wang et al. Jul 1999 A
5991399 Graunke et al. Nov 1999 A
5991749 Morrill, Jr. Nov 1999 A
6016476 Maes et al. Jan 2000 A
6018739 McCoy Jan 2000 A
6025780 Bowers Feb 2000 A
6035038 Campinos et al. Mar 2000 A
6035329 Mages et al. Mar 2000 A
6038334 Hamid Mar 2000 A
6040786 Fujioka Mar 2000 A
6041410 Hsu Mar 2000 A
6042006 Van Tilburg et al. Mar 2000 A
6055314 Spies et al. Apr 2000 A
6070796 Sirbu Jun 2000 A
6088730 Kato et al. Jul 2000 A
6104290 Naguleswaran Aug 2000 A
6104334 Allport Aug 2000 A
6110041 Walker et al. Aug 2000 A
6121544 Petsinger Sep 2000 A
6134283 Sands et al. Oct 2000 A
6138010 Rabe et al. Oct 2000 A
6148142 Anderson Nov 2000 A
6148210 Elwin et al. Nov 2000 A
6161179 Seidel Dec 2000 A
6177887 Jerome Jan 2001 B1
6185316 Buffam Feb 2001 B1
6209089 Selitrennikoff et al. Mar 2001 B1
6219109 Raynesford et al. Apr 2001 B1
6219439 Burger Apr 2001 B1
6219553 Panasik Apr 2001 B1
6237848 Everett May 2001 B1
6240076 Kanerva et al. May 2001 B1
6247130 Fritsch Jun 2001 B1
6249869 Drupsteen et al. Jun 2001 B1
6256737 Bianco et al. Jul 2001 B1
6266415 Campinos et al. Jul 2001 B1
6270011 Gottfried Aug 2001 B1
6279111 Jensenworth et al. Aug 2001 B1
6279146 Evans et al. Aug 2001 B1
6295057 Rosin et al. Sep 2001 B1
6325285 Baratelli Dec 2001 B1
6336121 Lyson et al. Jan 2002 B1
6336142 Kato et al. Jan 2002 B1
6343280 Clark Jan 2002 B2
6345347 Biran Feb 2002 B1
6363485 Adams et al. Mar 2002 B1
6367019 Ansell et al. Apr 2002 B1
6369693 Gibson Apr 2002 B1
6370376 Sheath Apr 2002 B1
6381747 Wonfor et al. Apr 2002 B1
6385596 Wiser et al. May 2002 B1
6392664 White et al. May 2002 B1
6397387 Rosin et al. May 2002 B1
6401059 Shen et al. Jun 2002 B1
6411307 Rosin et al. Jun 2002 B1
6424249 Houvener Jul 2002 B1
6424715 Saito Jul 2002 B1
6425084 Rallis et al. Jul 2002 B1
6434403 Ausems et al. Aug 2002 B1
6434535 Kupka et al. Aug 2002 B1
6446130 Grapes Sep 2002 B1
6463534 Geiger et al. Oct 2002 B1
6480101 Kelly et al. Nov 2002 B1
6480188 Horsley Nov 2002 B1
6484946 Matsumoto et al. Nov 2002 B2
6487663 Jaisimha et al. Nov 2002 B1
6490443 Freeny, Jr. Dec 2002 B1
6510350 Steen, III et al. Jan 2003 B1
6522253 Saltus Feb 2003 B1
6523113 Wehrenberg Feb 2003 B1
6529949 Getsin et al. Mar 2003 B1
6546418 Schena et al. Apr 2003 B2
6550011 Sims, III Apr 2003 B1
6563465 Frecska May 2003 B2
6563805 Ma et al. May 2003 B1
6564380 Murphy May 2003 B1
6577238 Whitesmith et al. Jun 2003 B1
6593887 Luk et al. Jul 2003 B2
6597680 Lindskog et al. Jul 2003 B1
6607136 Atsmon et al. Aug 2003 B1
6628302 White et al. Sep 2003 B2
6632992 Hasegawa Oct 2003 B2
6633981 Davis Oct 2003 B1
6645077 Rowe Nov 2003 B2
6647417 Hunter et al. Nov 2003 B1
6657538 Ritter Dec 2003 B1
6658566 Hazard Dec 2003 B1
6667684 Waggamon et al. Dec 2003 B1
6669096 Saphar et al. Dec 2003 B1
6671808 Abbott et al. Dec 2003 B1
6683954 Searle Jan 2004 B1
6697944 Jones et al. Feb 2004 B1
6709333 Bradford et al. Mar 2004 B1
6711464 Yap et al. Mar 2004 B1
6714168 Berenbaum Mar 2004 B2
6715246 Frecska et al. Apr 2004 B1
6728397 McNeal Apr 2004 B2
6737955 Ghabra et al. May 2004 B2
6758394 Maskatiya et al. Jul 2004 B2
6771969 Chinoy et al. Aug 2004 B1
6775655 Peinado et al. Aug 2004 B1
6785474 Hirt et al. Aug 2004 B2
6788640 Celeste Sep 2004 B2
6788924 Knutson et al. Sep 2004 B1
6795425 Raith Sep 2004 B1
6804825 White et al. Oct 2004 B1
6806887 Chernock et al. Oct 2004 B2
6839542 Sibecas et al. Jan 2005 B2
6850147 Prokoski et al. Feb 2005 B2
6853988 Dickinson et al. Feb 2005 B1
6859812 Poynor Feb 2005 B1
6861980 Rowitch et al. Mar 2005 B1
6873975 Hatakeyama et al. Mar 2005 B1
6879567 Callaway et al. Apr 2005 B2
6879966 Lapsley et al. Apr 2005 B1
6886741 Salveson May 2005 B1
6889067 Willey May 2005 B2
6891822 Gubbi et al. May 2005 B1
6892307 Wood et al. May 2005 B1
6930643 Byrne et al. Aug 2005 B2
6947003 Fluor Sep 2005 B2
6950941 Lee et al. Sep 2005 B1
6957086 Bahl et al. Oct 2005 B2
6963270 Gallagher, III et al. Nov 2005 B1
6963971 Bush et al. Nov 2005 B1
6973576 Giobbi Dec 2005 B2
6975202 Rodriguez et al. Dec 2005 B1
6980087 Zukowski Dec 2005 B2
6983882 Cassone Jan 2006 B2
6999032 Pakray et al. Feb 2006 B2
7012503 Nielsen Mar 2006 B2
7031945 Donner Apr 2006 B1
7049963 Waterhouse et al. May 2006 B2
7055171 Martin et al. May 2006 B1
7058806 Smeets et al. Jun 2006 B2
7061380 Orlando et al. Jun 2006 B1
7068623 Barany et al. Jun 2006 B1
7072900 Sweitzer et al. Jul 2006 B2
7079079 Jo et al. Jul 2006 B2
7090126 Kelly et al. Aug 2006 B2
7100053 Brown et al. Aug 2006 B1
7111789 Rajasekaran et al. Sep 2006 B2
7112138 Hedrick et al. Sep 2006 B2
7119659 Bonalle et al. Oct 2006 B2
7123149 Nowak et al. Oct 2006 B2
7130668 Chang et al. Oct 2006 B2
7137008 Hamid Nov 2006 B1
7137012 Kamibayashi et al. Nov 2006 B1
7139914 Arnouse Nov 2006 B2
7155416 Shatford Dec 2006 B2
7159114 Zajkowski et al. Jan 2007 B1
7159765 Frerking Jan 2007 B2
7167987 Angelo Jan 2007 B2
7168089 Nguyen et al. Jan 2007 B2
7167797 Zai et al. Feb 2007 B2
7191466 Hamid et al. Mar 2007 B1
7209955 Major et al. Apr 2007 B1
7218944 Cromer et al. May 2007 B2
7225161 Lam et al. May 2007 B2
7230908 Vanderaar et al. Jun 2007 B2
7231068 Tibor Jun 2007 B2
7231451 Law et al. Jun 2007 B2
7242923 Perera et al. Jul 2007 B2
7249177 Miller Jul 2007 B1
7272723 Abbott et al. Sep 2007 B1
7277737 Vollmer et al. Oct 2007 B1
7278025 Saito Oct 2007 B2
7295119 Rappaport et al. Nov 2007 B2
7305560 Giobbi Dec 2007 B2
7310042 Seifert Dec 2007 B2
7314164 Bonalle Jan 2008 B2
7317799 Hammersmith et al. Jan 2008 B2
7319395 Puzio et al. Jan 2008 B2
7330108 Thomas Feb 2008 B2
7333002 Bixler et al. Feb 2008 B2
7336181 Nowak et al. Feb 2008 B2
7336182 Baranowski et al. Feb 2008 B1
7337326 Palmer et al. Feb 2008 B2
7341181 Bonalle Mar 2008 B2
7349557 Tibor Mar 2008 B2
7356393 Schlatre et al. Apr 2008 B1
7356706 Scheurich Apr 2008 B2
7361919 Setlak Apr 2008 B2
7370366 Lacan et al. May 2008 B2
7380202 Lindhorst et al. May 2008 B1
7382799 Young et al. Jun 2008 B1
7387235 Gilbert et al. Jun 2008 B2
7401731 Pletz et al. Jul 2008 B1
7424134 Chou Sep 2008 B2
7447911 Chou et al. Nov 2008 B2
7458510 Zhou Dec 2008 B1
7460836 Smith et al. Dec 2008 B2
7461444 Deaett et al. Dec 2008 B2
7466232 Neuwirth Dec 2008 B2
7472280 Giobbi Dec 2008 B2
7512806 Lemke Mar 2009 B2
7525413 Jung et al. Apr 2009 B2
7529944 Hamid May 2009 B2
7545312 Kiang et al. Jun 2009 B2
7565329 Lapsley et al. Jul 2009 B2
7573382 Choubey et al. Aug 2009 B2
7573841 Lee et al. Aug 2009 B2
7574734 Fedronic et al. Aug 2009 B2
7583238 Cassen et al. Sep 2009 B2
7583643 Smith et al. Sep 2009 B2
7587611 Johnson et al. Sep 2009 B2
7595765 Hirsch Sep 2009 B1
7603564 Adachi Oct 2009 B2
7606733 Shmueli et al. Oct 2009 B2
7617523 Das et al. Nov 2009 B2
7620184 Marque Pucheu Nov 2009 B2
7624417 Dua Nov 2009 B2
7640273 Wallmeier et al. Dec 2009 B2
7644443 Matsuyama et al. Jan 2010 B2
7646307 Plocher et al. Jan 2010 B2
7652892 Shiu et al. Jan 2010 B2
7676380 Graves et al. Mar 2010 B2
7711152 Davida et al. May 2010 B1
7715593 Adams et al. May 2010 B1
7724717 Porras et al. May 2010 B2
7724720 Korpela et al. May 2010 B2
7764236 Hill et al. Jul 2010 B2
7765181 Thomas et al. Jul 2010 B2
7773754 Buer et al. Aug 2010 B2
7774613 Lemke Aug 2010 B2
7780082 Handa et al. Aug 2010 B2
7796551 Machiraju et al. Sep 2010 B1
7813822 Hoffberg Oct 2010 B1
7865448 Pizarro Jan 2011 B2
7883417 Bruzzese et al. Feb 2011 B2
7904718 Giobbi et al. Mar 2011 B2
7943868 Anders et al. May 2011 B2
7957536 Nolte Jun 2011 B2
7961078 Reynolds et al. Jun 2011 B1
7984064 Fusari Jul 2011 B2
7996514 Baumert et al. Aug 2011 B2
8026821 Reeder et al. Sep 2011 B2
8036152 Brown et al. Oct 2011 B2
8077041 Stern et al. Dec 2011 B2
8081215 Kuo et al. Dec 2011 B2
8082160 Collins, Jr. et al. Dec 2011 B2
8089354 Perkins Jan 2012 B2
8112066 Ben Ayed Feb 2012 B2
8135624 Ramalingam et al. Mar 2012 B1
8171528 Brown May 2012 B1
8193923 Rork et al. Jun 2012 B2
8215552 Rambadt Jul 2012 B1
8248263 Shervey et al. Aug 2012 B2
8258942 Lanzone et al. Sep 2012 B1
8294554 Shoarinejad et al. Oct 2012 B2
8296573 Bolle et al. Oct 2012 B2
8307414 Zerfos et al. Nov 2012 B2
8325011 Butler et al. Dec 2012 B2
8340672 Brown et al. Dec 2012 B2
8352730 Giobbi Jan 2013 B2
8373562 Heinze et al. Feb 2013 B1
8387124 Smetters et al. Feb 2013 B2
8390456 Puleston et al. Mar 2013 B2
8395484 Fullerton Mar 2013 B2
8410906 Dacus et al. Apr 2013 B1
8421606 Collins, Jr. et al. Apr 2013 B2
8424079 Adams et al. Apr 2013 B2
8432262 Talty et al. Apr 2013 B2
8433919 Giobbi et al. Apr 2013 B2
8484696 Gatto et al. Jul 2013 B2
8494576 Bye et al. Jul 2013 B1
8508336 Giobbi et al. Aug 2013 B2
8519823 Rinkes Aug 2013 B2
8522019 Michaelis Aug 2013 B2
8558699 Butler et al. Oct 2013 B2
8577091 Ivanov et al. Nov 2013 B2
8646042 Brown Feb 2014 B1
8678273 McNeal Mar 2014 B2
8738925 Park et al. May 2014 B1
8799574 Corda Aug 2014 B2
8856539 Weiss Oct 2014 B2
8914477 Gammon Dec 2014 B2
8918854 Giobbi Dec 2014 B1
8931698 Ishikawa et al. Jan 2015 B2
8979646 Moser et al. Mar 2015 B2
9037140 Brown May 2015 B1
9049188 Brown Jun 2015 B1
9230399 Yacenda Jan 2016 B2
9235700 Brown Jan 2016 B1
9276914 Woodward et al. Mar 2016 B2
9305312 Kountotsis et al. Apr 2016 B2
9405898 Giobbi Aug 2016 B2
9418205 Giobbi Aug 2016 B2
9542542 Giobbi et al. Jan 2017 B2
9679289 Brown Jun 2017 B1
9892250 Giobbi Feb 2018 B2
10073960 Brown Sep 2018 B1
10110385 Rush et al. Oct 2018 B1
20010024428 Onouchi Sep 2001 A1
20010026619 Howard Oct 2001 A1
20010027121 Boesen Oct 2001 A1
20010027439 Holtzman et al. Oct 2001 A1
20010044337 Rowe et al. Nov 2001 A1
20020004783 Paltenghe et al. Jan 2002 A1
20020007456 Peinado et al. Jan 2002 A1
20020010679 Felsher Jan 2002 A1
20020013772 Peinado Jan 2002 A1
20020014954 Fitzgibbon et al. Feb 2002 A1
20020015494 Nagai et al. Feb 2002 A1
20020019811 Lapsley et al. Feb 2002 A1
20020022455 Salokannel et al. Feb 2002 A1
20020023032 Pearson Feb 2002 A1
20020023217 Wheeler Feb 2002 A1
20020026424 Akashi Feb 2002 A1
20020037732 Gous et al. Mar 2002 A1
20020052193 Chetty May 2002 A1
20020055908 Di Giorgio et al. May 2002 A1
20020056043 Glass May 2002 A1
20020062249 Iannacci May 2002 A1
20020068605 Stanley Jun 2002 A1
20020071559 Christensen Jun 2002 A1
20020073042 Maritzen et al. Jun 2002 A1
20020080969 Giobbi Jun 2002 A1
20020083318 Larose Jun 2002 A1
20020086690 Takahashi et al. Jul 2002 A1
20020089890 Fibranz et al. Jul 2002 A1
20020091646 Lake Jul 2002 A1
20020095586 Doyle Jul 2002 A1
20020095587 Doyle Jul 2002 A1
20020098888 Rowe et al. Jul 2002 A1
20020100798 Farrugia et al. Aug 2002 A1
20020103027 Rowe et al. Aug 2002 A1
20020104006 Boate Aug 2002 A1
20020104019 Chatani Aug 2002 A1
20020105918 Yamada et al. Aug 2002 A1
20020108049 Xu et al. Aug 2002 A1
20020109580 Shreve Aug 2002 A1
20020111919 Weller et al. Aug 2002 A1
20020116615 Nguyen Aug 2002 A1
20020124251 Hunter et al. Sep 2002 A1
20020128017 Virtanen Sep 2002 A1
20020129262 Kutaragi Sep 2002 A1
20020138438 Bardwell Sep 2002 A1
20020138767 Hamid et al. Sep 2002 A1
20020140542 Prokoski et al. Oct 2002 A1
20020141586 Margalit et al. Oct 2002 A1
20020143623 Dayley Oct 2002 A1
20020143655 Elston et al. Oct 2002 A1
20020144117 Faigle Oct 2002 A1
20020147653 Shmueli et al. Oct 2002 A1
20020148892 Bardwell Oct 2002 A1
20020150282 Kinsella Oct 2002 A1
20020152391 Willins et al. Oct 2002 A1
20020153996 Chan et al. Oct 2002 A1
20020158121 Stanford-Clark Oct 2002 A1
20020158750 Almalik Oct 2002 A1
20020158765 Pape et al. Oct 2002 A1
20020160820 Winkler Oct 2002 A1
20020174348 Ting Nov 2002 A1
20020177460 Beasley et al. Nov 2002 A1
20020178063 Gravelle et al. Nov 2002 A1
20020191816 Maritzen et al. Dec 2002 A1
20020196963 Bardwell Dec 2002 A1
20020199120 Schmidt Dec 2002 A1
20030022701 Gupta Jan 2003 A1
20030034877 Miller et al. Feb 2003 A1
20030036416 Pattabiraman et al. Feb 2003 A1
20030036425 Kaminkow et al. Feb 2003 A1
20030046228 Berney Mar 2003 A1
20030046552 Hamid Mar 2003 A1
20030051173 Krueger Mar 2003 A1
20030054868 Paulsen et al. Mar 2003 A1
20030054881 Hedrick et al. Mar 2003 A1
20030055689 Block et al. Mar 2003 A1
20030063619 Montano et al. Apr 2003 A1
20030079133 Breiter et al. Apr 2003 A1
20030088441 McNerney May 2003 A1
20030109274 Budka et al. Jun 2003 A1
20030115351 Giobbi Jun 2003 A1
20030115474 Khan Jun 2003 A1
20030117969 Koo et al. Jun 2003 A1
20030117980 Kim et al. Jun 2003 A1
20030120934 Ortiz Jun 2003 A1
20030127511 Kelly et al. Jul 2003 A1
20030128866 McNeal Jul 2003 A1
20030137404 Bonneau, Jr. et al. Jul 2003 A1
20030139190 Steelberg et al. Jul 2003 A1
20030146835 Carter Aug 2003 A1
20030149744 Bierre Aug 2003 A1
20030163388 Beane Aug 2003 A1
20030167207 Berardi et al. Sep 2003 A1
20030169697 Suzuki et al. Sep 2003 A1
20030172037 Jung Sep 2003 A1
20030174839 Yamagata et al. Sep 2003 A1
20030176218 LeMay et al. Sep 2003 A1
20030186739 Paulsen et al. Oct 2003 A1
20030195842 Reece Oct 2003 A1
20030213840 Livingston et al. Nov 2003 A1
20030223394 Parantainen et al. Dec 2003 A1
20030225703 Angel Dec 2003 A1
20030226031 Proudler et al. Dec 2003 A1
20030233458 Kwon et al. Dec 2003 A1
20040002347 Hoctor et al. Jan 2004 A1
20040015403 Moskowitz et al. Jan 2004 A1
20040022384 Flores Feb 2004 A1
20040029620 Karaoguz Feb 2004 A1
20040029635 Giobbi Feb 2004 A1
20040030764 Birk et al. Feb 2004 A1
20040030894 Labrou et al. Feb 2004 A1
20040035644 Ford et al. Feb 2004 A1
20040039909 Cheng Feb 2004 A1
20040048570 Oba et al. Mar 2004 A1
20040048609 Kosaka Mar 2004 A1
20040059682 Hasumi et al. Mar 2004 A1
20040059912 Zizzi Mar 2004 A1
20040064728 Scheurich Apr 2004 A1
20040068656 Lu Apr 2004 A1
20040073792 Noble et al. Apr 2004 A1
20040081127 Gardner et al. Apr 2004 A1
20040082385 Silva et al. Apr 2004 A1
20040098597 Giobbi May 2004 A1
20040114563 Shvodian Jun 2004 A1
20040117644 Colvin Jun 2004 A1
20040123106 D'Angelo et al. Jun 2004 A1
20040123127 Teicher Jun 2004 A1
20040127277 Walker et al. Jul 2004 A1
20040128162 Schlotterbeck et al. Jul 2004 A1
20040128389 Kopchik Jul 2004 A1
20040128500 Cihula et al. Jul 2004 A1
20040128508 Wheeler et al. Jul 2004 A1
20040129787 Saito Jul 2004 A1
20040137912 Lin Jul 2004 A1
20040158746 Hu et al. Aug 2004 A1
20040166875 Jenkins et al. Aug 2004 A1
20040167465 Mihai et al. Aug 2004 A1
20040193925 Safriel Sep 2004 A1
20040203923 Mullen Oct 2004 A1
20040208139 Iwamura Oct 2004 A1
20040209690 Bruzzese et al. Oct 2004 A1
20040209692 Schober et al. Oct 2004 A1
20040214582 Lan et al. Oct 2004 A1
20040215615 Larsson et al. Oct 2004 A1
20040217859 Pucci et al. Nov 2004 A1
20040218581 Cattaneo Nov 2004 A1
20040222877 Teramura et al. Nov 2004 A1
20040230488 Beenau et al. Nov 2004 A1
20040234117 Tibor Nov 2004 A1
20040243519 Perttila et al. Dec 2004 A1
20040246103 Zukowski Dec 2004 A1
20040246950 Parker et al. Dec 2004 A1
20040252659 Yun et al. Dec 2004 A1
20040253996 Chen et al. Dec 2004 A1
20040254837 Roshkoff Dec 2004 A1
20040255139 Giobbi Dec 2004 A1
20040255145 Chow Dec 2004 A1
20050001028 Zuili Jan 2005 A1
20050002028 Kasapi et al. Jan 2005 A1
20050005136 Chen Jan 2005 A1
20050006452 Aupperle Jan 2005 A1
20050025093 Yun et al. Feb 2005 A1
20050028168 Marcjan Feb 2005 A1
20050035897 Perl et al. Feb 2005 A1
20050039027 Shapiro Feb 2005 A1
20050040961 Tuttle Feb 2005 A1
20050047386 Yi Mar 2005 A1
20050049013 Chang et al. Mar 2005 A1
20050050208 Chatani Mar 2005 A1
20050050324 Corbett et al. Mar 2005 A1
20050054431 Walker et al. Mar 2005 A1
20050055242 Bello et al. Mar 2005 A1
20050055244 Mullan et al. Mar 2005 A1
20050058292 Diorio et al. Mar 2005 A1
20050074126 Stanko Apr 2005 A1
20050076242 Breuer Apr 2005 A1
20050081040 Johnson et al. Apr 2005 A1
20050086115 Pearson Apr 2005 A1
20050089000 Bae et al. Apr 2005 A1
20050090200 Karaoguz et al. Apr 2005 A1
20050091338 de la Huerga Apr 2005 A1
20050094657 Sung et al. May 2005 A1
20050097037 Tibor May 2005 A1
20050105600 Culum et al. May 2005 A1
20050105734 Buer May 2005 A1
20050108164 Salafia et al. May 2005 A1
20050109836 Ben-Aissa May 2005 A1
20050109841 Ryan et al. May 2005 A1
20050113070 Okabe May 2005 A1
20050114149 Rodriguez et al. May 2005 A1
20050114150 Franklin May 2005 A1
20050116020 Smolucha et al. Jun 2005 A1
20050119979 Murashita et al. Jun 2005 A1
20050124294 Wentink Jun 2005 A1
20050138390 Adams et al. Jun 2005 A1
20050138576 Baumert et al. Jun 2005 A1
20050139656 Arnouse Jun 2005 A1
20050141451 Yoon et al. Jun 2005 A1
20050152394 Cho Jul 2005 A1
20050154897 Holloway et al. Jul 2005 A1
20050169292 Young Aug 2005 A1
20050180385 Jeong et al. Aug 2005 A1
20050182661 Allard et al. Aug 2005 A1
20050182975 Guo et al. Aug 2005 A1
20050187792 Harper Aug 2005 A1
20050195975 Kawakita Sep 2005 A1
20050200453 Turner Sep 2005 A1
20050201389 Shimanuki et al. Sep 2005 A1
20050210270 Rohatgi et al. Sep 2005 A1
20050212657 Simon Sep 2005 A1
20050215233 Perera et al. Sep 2005 A1
20050216313 Claud et al. Sep 2005 A1
20050216639 Sparer et al. Sep 2005 A1
20050220046 Falck et al. Oct 2005 A1
20050229007 Bolle et al. Oct 2005 A1
20050229240 Nanba Oct 2005 A1
20050242921 Zimmerman et al. Nov 2005 A1
20050243787 Hong et al. Nov 2005 A1
20050251688 Nanavati et al. Nov 2005 A1
20050253683 Lowe Nov 2005 A1
20050264416 Maurer Dec 2005 A1
20050269401 Spitzer et al. Dec 2005 A1
20050272403 Ryu et al. Dec 2005 A1
20050281320 Neugebauer Dec 2005 A1
20050282558 Choi et al. Dec 2005 A1
20050284932 Sukeda et al. Dec 2005 A1
20060001525 Nitzan et al. Jan 2006 A1
20060014430 Liang et al. Jan 2006 A1
20060022042 Smets et al. Feb 2006 A1
20060022046 Iwamura Feb 2006 A1
20060022800 Krishna et al. Feb 2006 A1
20060025180 Rajkotia et al. Feb 2006 A1
20060026673 Tsuchida Feb 2006 A1
20060030353 Jun Feb 2006 A1
20060034250 Kim et al. Feb 2006 A1
20060041746 Kirkup et al. Feb 2006 A1
20060058102 Nguyen et al. Mar 2006 A1
20060063575 Gatto et al. Mar 2006 A1
20060069814 Abraham et al. Mar 2006 A1
20060072586 Callaway, Jr. et al. Apr 2006 A1
20060074713 Conry et al. Apr 2006 A1
20060076401 Frerking Apr 2006 A1
20060078176 Abiko et al. Apr 2006 A1
20060087407 Stewart et al. Apr 2006 A1
20060089138 Smith et al. Apr 2006 A1
20060097949 Luebke et al. May 2006 A1
20060111955 Winter et al. May 2006 A1
20060113381 Hochstein et al. Jun 2006 A1
20060136728 Gentry et al. Jun 2006 A1
20060136742 Giobbi Jun 2006 A1
20060143441 Giobbi Jun 2006 A1
20060144943 Kim Jul 2006 A1
20060156027 Blake Jul 2006 A1
20060158308 McMullen et al. Jul 2006 A1
20060165060 Dua Jul 2006 A1
20060170565 Husak et al. Aug 2006 A1
20060173991 Piikivi Aug 2006 A1
20060187029 Thomas Aug 2006 A1
20060190348 Ofer et al. Aug 2006 A1
20060190413 Harper Aug 2006 A1
20060194598 Kim et al. Aug 2006 A1
20060195576 Rinne et al. Aug 2006 A1
20060198337 Hoang et al. Sep 2006 A1
20060205408 Nakagawa et al. Sep 2006 A1
20060208066 Finn et al. Sep 2006 A1
20060208853 Kung et al. Sep 2006 A1
20060222042 Teramura et al. Oct 2006 A1
20060229909 Kaila et al. Oct 2006 A1
20060237528 Bishop et al. Oct 2006 A1
20060238305 Loving et al. Oct 2006 A1
20060268891 Heidari-Bateni et al. Nov 2006 A1
20060273176 Audebert et al. Dec 2006 A1
20060274711 Nelson, Jr. et al. Dec 2006 A1
20060279412 Holland et al. Dec 2006 A1
20060286969 Talmor et al. Dec 2006 A1
20060290580 Noro et al. Dec 2006 A1
20060293925 Flom Dec 2006 A1
20060294388 Abraham et al. Dec 2006 A1
20070005403 Kennedy et al. Jan 2007 A1
20070007331 Jasper et al. Jan 2007 A1
20070008070 Friedrich Jan 2007 A1
20070008916 Haugli et al. Jan 2007 A1
20070016800 Spottswood et al. Jan 2007 A1
20070019845 Kato Jan 2007 A1
20070029381 Braiman Feb 2007 A1
20070032288 Nelson et al. Feb 2007 A1
20070033072 Bildirici Feb 2007 A1
20070033150 Nwosu Feb 2007 A1
20070038751 Jorgensen Feb 2007 A1
20070050259 Wesley Mar 2007 A1
20070060095 Subrahmanya et al. Mar 2007 A1
20070060319 Block et al. Mar 2007 A1
20070064742 Shvodian Mar 2007 A1
20070069852 Mo et al. Mar 2007 A1
20070072636 Worfolk et al. Mar 2007 A1
20070073553 Flinn et al. Mar 2007 A1
20070084523 McLean Apr 2007 A1
20070087682 DaCosta Apr 2007 A1
20070087834 Moser et al. Apr 2007 A1
20070100939 Bagley et al. May 2007 A1
20070109117 Heitzmann et al. May 2007 A1
20070112676 Kontio et al. May 2007 A1
20070118891 Buer May 2007 A1
20070133478 Armbruster et al. Jun 2007 A1
20070136407 Rudelic Jun 2007 A1
20070152826 August et al. Jul 2007 A1
20070156850 Corrion Jul 2007 A1
20070158411 Krieg, Jr. Jul 2007 A1
20070159301 Hirt et al. Jul 2007 A1
20070159994 Brown et al. Jul 2007 A1
20070169121 Hunt et al. Jul 2007 A1
20070174809 Brown et al. Jul 2007 A1
20070176756 Friedrich Aug 2007 A1
20070187266 Porter et al. Aug 2007 A1
20070192601 Spain et al. Aug 2007 A1
20070194882 Yokota et al. Aug 2007 A1
20070204078 Boccon-Gibod et al. Aug 2007 A1
20070205860 Jones et al. Sep 2007 A1
20070205861 Nair et al. Sep 2007 A1
20070213048 Trauberg Sep 2007 A1
20070214492 Gopi et al. Sep 2007 A1
20070218921 Lee et al. Sep 2007 A1
20070219926 Korn Sep 2007 A1
20070220272 Campisi et al. Sep 2007 A1
20070229268 Swan et al. Oct 2007 A1
20070245157 Giobbi et al. Oct 2007 A1
20070245158 Giobbi et al. Oct 2007 A1
20070247366 Smith et al. Oct 2007 A1
20070260883 Giobbi et al. Nov 2007 A1
20070260888 Giobbi et al. Nov 2007 A1
20070266257 Camaisa et al. Nov 2007 A1
20070268862 Singh et al. Nov 2007 A1
20070271194 Walker et al. Nov 2007 A1
20070271433 Takemura Nov 2007 A1
20070277044 Graf et al. Nov 2007 A1
20070285212 Rotzoll Dec 2007 A1
20070285238 Batra Dec 2007 A1
20070288263 Rodgers Dec 2007 A1
20070288752 Chan Dec 2007 A1
20070293155 Liao et al. Dec 2007 A1
20070294755 Dadhia et al. Dec 2007 A1
20070296544 Beenau et al. Dec 2007 A1
20080001783 Cargonja et al. Jan 2008 A1
20080005432 Kagawa Jan 2008 A1
20080008359 Beenau et al. Jan 2008 A1
20080011842 Curry et al. Jan 2008 A1
20080012685 Friedrich et al. Jan 2008 A1
20080012767 Caliri et al. Jan 2008 A1
20080016004 Kurasaki et al. Jan 2008 A1
20080019578 Saito et al. Jan 2008 A1
20080028453 Nguyen et al. Jan 2008 A1
20080046715 Balazs et al. Feb 2008 A1
20080061941 Fischer et al. Mar 2008 A1
20080071577 Highley Mar 2008 A1
20080072063 Takahashi et al. Mar 2008 A1
20080088475 Martin Apr 2008 A1
20080090548 Ramalingam Apr 2008 A1
20080095359 Schreyer et al. Apr 2008 A1
20080109895 Janevski May 2008 A1
20080111752 Lindackers et al. May 2008 A1
20080129450 Riegebauer Jun 2008 A1
20080148351 Bhatia et al. Jun 2008 A1
20080149705 Giobbi et al. Jun 2008 A1
20080150678 Giobbi et al. Jun 2008 A1
20080156866 McNeal Jul 2008 A1
20080164997 Aritsuka et al. Jul 2008 A1
20080169909 Park et al. Jul 2008 A1
20080186166 Zhou et al. Aug 2008 A1
20080188308 Shepherd et al. Aug 2008 A1
20080201768 Koo et al. Aug 2008 A1
20080209571 Bhaskar et al. Aug 2008 A1
20080218416 Handy et al. Sep 2008 A1
20080222701 Saaranen et al. Sep 2008 A1
20080228524 Brown Sep 2008 A1
20080235144 Phillips Sep 2008 A1
20080238625 Rofougaran et al. Oct 2008 A1
20080250388 Meyer et al. Oct 2008 A1
20080251579 Larsen Oct 2008 A1
20080278325 Zimman et al. Nov 2008 A1
20080289032 Aoki et al. Nov 2008 A1
20080313728 Pandrangi et al. Dec 2008 A1
20080314971 Faith et al. Dec 2008 A1
20080316045 Sriharto et al. Dec 2008 A1
20090002134 McAllister Jan 2009 A1
20090016573 McAfee, II et al. Jan 2009 A1
20090024584 Dharap et al. Jan 2009 A1
20090033464 Friedrich Feb 2009 A1
20090033485 Naeve et al. Feb 2009 A1
20090036164 Rowley Feb 2009 A1
20090045916 Nitzan et al. Feb 2009 A1
20090052389 Qin et al. Feb 2009 A1
20090076849 Diller Mar 2009 A1
20090081996 Duggal et al. Mar 2009 A1
20090096580 Paananen Apr 2009 A1
20090140045 Evans Jun 2009 A1
20090157512 King Jun 2009 A1
20090176566 Kelly Jul 2009 A1
20090199206 Finkenzeller et al. Aug 2009 A1
20090237245 Brinton et al. Sep 2009 A1
20090237253 Neuwirth Sep 2009 A1
20090239667 Rowe et al. Sep 2009 A1
20090310514 Jeon et al. Dec 2009 A1
20090313689 Nystrom et al. Dec 2009 A1
20090319788 Zick et al. Dec 2009 A1
20090320118 Muller et al. Dec 2009 A1
20090322510 Berger et al. Dec 2009 A1
20090328182 Malakapalli et al. Dec 2009 A1
20100007498 Jackson Jan 2010 A1
20100023074 Powers et al. Jan 2010 A1
20100037255 Sheehan et al. Feb 2010 A1
20100077214 Jogand-Coulomb et al. Mar 2010 A1
20100117794 Adams et al. May 2010 A1
20100134257 Puleston et al. Jun 2010 A1
20100169442 Liu et al. Jul 2010 A1
20100169964 Liu et al. Jul 2010 A1
20100174911 Isshiki Jul 2010 A1
20100188226 Seder et al. Jul 2010 A1
20100277283 Burkart et al. Nov 2010 A1
20100277286 Burkart et al. Nov 2010 A1
20100291896 Corda Nov 2010 A1
20100305843 Yan et al. Dec 2010 A1
20100328033 Kamei Dec 2010 A1
20110072034 Sly et al. Mar 2011 A1
20110072132 Shafer et al. Mar 2011 A1
20110082735 Kannan et al. Apr 2011 A1
20110116358 Li et al. May 2011 A9
20110126188 Bernstein et al. May 2011 A1
20110227740 Wohltjen Sep 2011 A1
20110238517 Ramalingam et al. Sep 2011 A1
20110246790 Koh et al. Oct 2011 A1
20110266348 Denniston, Jr. Nov 2011 A1
20110307599 Saretto et al. Dec 2011 A1
20120086571 Scalisi et al. Apr 2012 A1
20120182123 Butler et al. Jul 2012 A1
20120212322 Idsoe Aug 2012 A1
20120226907 Hohberger Sep 2012 A1
20130019295 Park et al. Jan 2013 A1
20130019323 Arvidsson et al. Jan 2013 A1
20130044111 VanGilder et al. Feb 2013 A1
20130111543 Brown et al. May 2013 A1
20130276140 Coffing et al. Oct 2013 A1
20130331063 Cormier et al. Dec 2013 A1
20140074696 Glaser Mar 2014 A1
20140266713 Sehgal et al. Sep 2014 A1
20160210614 Hall Jul 2016 A1
20170085564 Giobbi et al. Mar 2017 A1
Foreign Referenced Citations (10)
Number Date Country
H10-49604 Feb 1998 JP
0062505 Oct 2000 WO
0122724 Mar 2001 WO
0135334 May 2001 WO
0175876 Oct 2001 WO
0177790 Oct 2001 WO
05050450 Oct 2001 WO
05086802 Oct 2001 WO
2004038563 May 2004 WO
2007087558 Aug 2007 WO
Non-Patent Literature Citations (81)
Entry
“Rajendran Jeyaprakash, Jin Lee, Subir Biswas, Jae Mook Kim, Secured Smart Card Using Palm Vein Biometric On-card-Process, Aug. 28-30, 2008, IEEE Xplore, INSPEC #10205191” (Year: 2008).
“Geetha Govindan, Suresh Kumar Bakakrishnan, Rejith Lalitha Ratheendran, Saji Koyippurathu Sivadasan, Real time security management using RFID, Biometric and Smart Messages, Aug. 20-22, 2009, IEEE Xplore, INSPEC # 10906130” (Year: 2009).
“Sweta Singh, Akhilesh Singh, Rakesh Kumar, A constraint-based biometric scheme on ATM and swiping machine, Mar. 11-13, 2016, IEEE Xplore, INSPEC $ 16156324” (Year: 2016).
Vainio, Juha., “Bluetooth Security”, dated 2000, Helskinki University of Technology, p. 1-20.
Katz et al., “Smart Cards and Biometrics in Privacy-Sensitive Secure Personal Identification System”, dated 2002, Smart Card Alliance, p. 1-29.
Dai et al., “Toward Blockchain-Based Accounting and Assurance”, 2017, Journal of Information Systems, pp. 5-21 (Year: 2017).
Alliance Activities: Publications: Identity-Smart Card Alliance, Smart Card Alliance, 1997-2007, [online] [Retrieved on Jan. 7, 2007] Retrieved from the Internet, https://www.smartcardalliance.org/pages/publications-identity.
Antonoff, Michael, Visiting Video Valley, Sound Vision, pp. 116 and 118-119, Nov. 2001.
Applying Biometrics to Door Access, Security Magazine, Sep. 26, 2002 [online] [Retrieved on Jan. 7, 2007] Retrieved from the Internet http://www.securitymagazine.com/CDA/Articles/Technologies/3ae610eaa34d8010VgnVCM100000f932a8c0.
BioPay, LLC, Frequently Asked Questions (FAQs) About BioPay, BioPay, LLC, 2007, [online] [Retrieved on Jan. 1, 2007] Retrieved from the Internet http://www.biopay.com/faqs-lowes.asp.
Bluetooth, www.bluetoothcom, Printed Jlllle l, 2000.
Blum, Jonathan , Digital Rights Managment May Solve The Napster Problem, Technoloav Investor Industrvsector (Oct. 2000),24-27.
Content protection plan targets wireless home networks, www.eetimes.com, Jan. 11, 2002.
Debow, Credit/Debit Debuts in Midwest Smart Card Test, Computers in Banking, v6, n11, p. 10, Nov. 1989.
Dennis, Digital Passports Need Not Infringe Civil Liberties, Newsbytes, Dec. 2, 1999, 2 pages.
Farouk, Authentication Mechanisms in Grid Computing Environment Comparative Study, 2012, IEEE, p. 1-6.
Fasca, Chad. The Circuit, Electronic News 45(45). (Nov. 8, 1999),20.
Firecrest Shows How Truly Commercially-Minded Companies Will Exploit the Internet, Computergram International, Jan. 18, 1996. 2pgs.
Kontzer, Tony , Thomson Bets on Smart Cards for Video Encryption, www.informationweek.com, Jun. 7, 2001 (Also listed under Press Release).
Lake, Matt. Downloading for Dollars, Sound Vision. (Nov. 2000),137-138.
Lewis, Sony and Visa in On-Line Entertainment Venture, New York Times, v145, Nov. 16, 1995. 1 pg.
Liu et al. 2001. A Practical Guide to Biometric Security Technology. IT Professional 3, 1 (Jan. 2001), 27-32. DOI=10.1109/6294_899930 http://dx.doi.org/10.1109/6294.899930.
McIver, R. et al., Identification and Verification Working Together, BioscryptTM, Aug. 27, 2004, [online] [Retrieved on Jan. 7, 2007] Retrieved from the Internet http://www.ibia.org/membersadmin/whitepapers/pdf/15/Identification%20and%20Verification%20Working%20Together.pdf.
Micronas and Thomson multimedia Showcase a New Copy Protection System That Will Drive the Future of Digital Television, www.micronas.com, Jan. 8, 2002.
Nilsson, J. et al., Match-On-Card for Java Cards, Precise Biometrics, White Paper, Apr. 2004, [online] [Retrieved on Jan. 7, 2007] Retrieved from the Internet http://www.ibia.org/membersadmin/whitepapers/pdf/17/Precise%20Match-on-Card%20for%20Java%20Cards.pdf.
Nordin, B., Match-On-Card Technology, PreciseTM Biometrics, White Paper, Apr. 2004, [online] [Retrieved on Jan. 7, 2007] Retrieved from the Internet http://www.ibia.org/membersadmin/whitepapers/pdf/17/Precise%20Match-on-Card%20technology.pdf.
Paget, Paul, The Security Behind Secure Extranets, Enterprise Systems Journal, (Dec. 1999), 4 pgs.
PCT International Search Report and Written Opinion, PCT/US04/38124, dated Apr. 7, 2005, 10 pages.
PCT International Search Report and Written Opinion, PCT/US05/07535, dated Dec. 6, 2005, 6 pages.
PCT International Search Report and Written Opinion, PCT/US05/43447, dated Feb. 22, 2007, 7 pages.
PCT International Search Report and Written Opinion, PCT/US05/46843, dated Mar. 1, 2007, 10 pages.
PCT International Search Report and Written Opinion, PCT/US07/11103, dated Apr. 23, 2008, 9 pages.
PCT International Search Report and Written Opinion, PCT/US07/11105, dated Oct. 20, 2008, 10 pages.
PCT International Search Report PCT/US07/11104, Jun. 26, 2008, 9 pages.
PCT International Search Report, PCT/US07/11102, dated Oct. 3, 2008, 11 pages.
Pope, Oasis Digital Signature Services: Digital Signing without the Headaches, Internet Computing IEEE, vol. 10, 2006, pp. 81-84.
SAFModuleTM: A Look Into Strong Authentication, saflink Corporation, [online] [Retrieved on Jan. 7, 2007] Retrieved from the Internet http://www.ibia.org/membersadmin/whitepapers/pdf/6/SAFmod_WP.pdf.
Sapsford, Jathon, E-Business: Sound Waves Could Help Ease Web-Fraud Woes, Wall Street Journal, (Aug. 14, 2000), B1.
Say Hello to Bluetooth, Bluetooth Web site 4 pages.
Smart Card Alliance Report, Contactless Technology for Secure Physical Access: Technology and Standsards Choices, Smart Card Alliance, Oct. 2002, p. 1-48.
Smart Cards and Biometrics White Paper, Smart Card Alliance, May 2002, [online] [Retrieved on Jan. 7, 2007] Retrieved from the Internet http://www.securitymanagement.com/library/smartcard_faqtech0802.pdf.
Thomson multimedia unveils copy protection proposal designed to provide additional layer of digital content security, www.thomson-multimedia.com, May 30, 2001. 2 pgs.
Van Winkle, William, Bluetooth the King of Connectivity, Laptop Buyers Guide and Handbook (Jan. 2000), 148-153.
Wade, W., Using Fingerprints to Make Payments at POS Slowly Gaining Popularity, Credit Union Journal, International Biometric Group, Apr. 21, 2003, online. Retrieved on Jan. 7, 2007. http://www.biometricgroup.com/in_the_news/04.21.03.html.
Wallace, Bob, The Internet Unplugged, InformationWeek, 765(22), (Dec. 13, 1999), 22-24.
Weber, Thomas E., In the Age of Napster, Protecting Copyright is a Digital Arms Race, Wall Street Journal, (Jul. 24, 2000), B1.
What is a File, Apr. 30, 1998, http://unixhelp.ed.ac.uk/editors/whatisafile.html.accessed Mar. 11, 2010 via http://waybackmachine.org/19980615000000*/http://unixhelp.ed.ac.uk/editors/whatisafile.html.
Yoshida, Junko, Content Protection Plan Targets Wireless Home Networks, www.eetimes.com, Jan. 11, 2002, 2 pgs.
Chen, et al. “On Enhancing Biometric Authentication with Data Protection.” KES2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No. 00TH8516), vol. 1, 2000, pp. 249-252 vol. 1.
Noore, A. “Highly Robust Biometric Smart Card Design.” IEEE Transactions on Consumer Electronics, vol. 46, No. 4, 2000, pp. 1059-1063.
Anonymous, “Applying Biometrics to Door Access,” Security Magazine, Sep. 26, 2002, retrieved from http://www.securitymagazine.com/CDA/Articles/Technologies/3ae610eaa34d8010VgnVCM100000f932a8c0___ on Jan. 7, 2007, 5 pgs.
Anonymous, “IEEE 802.15.4-2006—Wikipedia, the free encyclopedia,” Wikipedia, last modified Mar. 21, 2009, retrieved from http://en.wikipedia.org/wiki/IEEE_802.15.4-2006 on Apr. 30, 2009, 5 pgs.
Apple et al., “Smart Card Setup Guide,” 2006, downloaded from http://manuals.info.apple.com/en_US/Smart_Card_Setup_Guide.pdf on or before May 3, 2012, 16 pgs.
Balanis, “Antenna Theory: A Review,” Jan. 1992, Proceedings of the IEEE, vol. 80, No. 1, p. 13.
Beaufour, “Personal Servers as Digital Keys,” Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM'04), Mar. 14-17, 2004, pp. 319-328.
Blueproximity, “BlueProximity—Leave it—it's locked, come back, it's back too . . . ” Aug. 26, 2007, retrieved from http://blueproximity.sourceforge.net/ via http://www.archive.org/ on or before Oct. 11, 2011, 1 pg.
Bohrsatom et al., “Automatically unlock PC when entering proximity,” Dec. 7, 2005, retrieved from http://salling.com/forums/viewtopic.php?t=3190 on or before Oct. 11, 2011, 3 pgs.
Brown, “Techniques for Privacy and Authentication in Personal Communication Systems,” Personal Communications, IEEE, Aug. 1995, vol. 2, No. 4, pp. 6-10.
Cisco Systems, Inc., “Antenna Patterns and Their Meaning,” 1992-2007, p. 10.
Costa, “Imation USB 2.0 Micro Hard Drive,” Nov. 22, 2005, retrieved from http://www.pcmag.com/article2/0,2817,1892209,00.asp on or before Oct. 11, 2011, 2 pgs.
Dagan, “Power over Ethernet (PoE) Midspan—The Smart Path to Providign Power for IP Telephony,” Product Manager, Systems, Aug. 2005, Power Dsine Inc., 28 pgs.
Derfler, “How Networks Work,” Bestseller Edition, 1996, Ziff-Davis Press, Emeryville, CA, all pages.
Giobbi, Specification of U.S. Appl. No. 60/824,758, filed Sep. 6, 2006, all pages.
Gralla, “How the Internet Works,” Millennium Edition, 1999, Que Corporation, Indianapolis, IN, all pages.
Hendron, “File Security, Keychains, Encryptioin, and More with Mac OS X (10.3+)” Apr. 4, 2005, downloaded from http://www.johnhendron.net/documents/OSX_Security.pdf on or before May 3, 2012, 30 pgs.
International Search Report and Written Opinion for International Application No. PCT/US07/00349, dated Mar. 19, 2008, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US08/83060, dated Dec. 29, 2008, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US08/87835, dated Feb. 11, 2009, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US09/34095, dated Mar. 25, 2009, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2009/039943, dated Jun. 1, 2009, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/037609, dated Dec. 9, 2014, 13 pgs.
Lee et al., “Effects of dielectric superstrates on a two-layer electromagnetically coupled patch antenna,” Antennas and Propagation Society International Symposium, Jun. 1989, AP-S. Digest, vol. 2, pp. 26-30, found at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1347.
Muller, “Desktop Encyclopedia of the Internet,” 1999, Artech House Inc., Norwood, MA, all pages.
National Criminal Justice Reference Service, “Antenna Types,” Dec. 11, 2006, online at http://ncjrs.gov/pdfffiles1/nij/185030b.pdf, retrieved from http://web.archive.org/web/*/http://www.ncjrs.gov/pdffiles1/nij/185030b.pdf on Jan. 12, 2011, 1 pg.
Nel et al., “Generation of Keys for use with the Digital Signature Standard (DSS),” Communications and Signal Processing, Proceedings of the 1993 IEEE South African Symposium, Aug. 6, 1993, pp. 6-11.
Nerd Vittles, “magicJack: Could It Be the Asterisk Killer?” Aug. 1, 2007, retrieved from http://nerdvittles.com/index.php?p=187 on or before Oct. 11, 2011, 2 pgs.
Nordin, “Match-on-Card Technology,” Precise Biometrics, white paper, Apr. 2004, retrieved from www.ibia.org/membersadmin/whitepapers/pdf/17/Precise%20Match-on-Card%20technology.pdf on Jan. 7, 2007, 7 pgs.
Pash, “Automate proximity and location-based computer actions,” Jun. 5, 2007, retrieved from http://lifehacker.com/265822/automate-proximity-and-location+based-computer-actions on or before Oct. 11, 2011, 3 pgs.
SplashID, “SplashID—Secure Password Manager for PDAs and Smartphones,” Mar. 8, 2007, retrieved from http://www.splashdata.com/splashid/ via http://www.archive.org/ on or before Oct. 11, 2011, 2 pgs.
Srivastava, “Is Internet security a major issue with respect to the slow acceptance rate of digital signatures,” Jan. 2, 2005, Computer Law & Security Report, pp. 392-404.
White, “How computers Work,” Millennium Edition, 1999, Que Corporation, Indianapolis, IN, all pages.
Related Publications (1)
Number Date Country
20160171200 A1 Jun 2016 US
Provisional Applications (2)
Number Date Country
60652765 Feb 2005 US
60637538 Dec 2004 US
Continuations (3)
Number Date Country
Parent 14521982 Oct 2014 US
Child 15049060 US
Parent 13710109 Dec 2012 US
Child 14521982 US
Parent 11314199 Dec 2005 US
Child 13710109 US