1. Field of the Invention
This application relates generally to devices and methods to provide a set of sensory feedback information capabilities from robotic or prosthetic finger tips comparable to those provided by the human skin.
2. General Background and State of the Art
Present generations of robots lack most of the sensorial abilities of humans. This limitation prevents industrial robots from being used to carry on delicate tasks of enormous practical relevance (such as assembly operations) and, even more, it prevents the development of evoluted robots for off-factory jobs (agriculture, home, assistance to the disabled, etc). Future generations of robots may be increasingly featured by the massive use of dedicated sensors that will enhance substantially the limited ability of present robots to interact with the external world. Taction, vision and proximity are the sensory needs that, in combination or alone, are commonly accepted as desirable features of robots. Research on visual pattern recognition received considerable attention in recent years. Tactile recognition (the ability to recognize objects by manipulation) is an inherently active process. Unlike visual sensors (passive and located remotely from the object), tactile sensors must be put in contact with the object to be recognized and, even more, such contact should be competently organized in order to extract the maximum degree of information from manipulative acts.
Humans who have suffered amputations of their hands and arms are generally provided with prosthetic limbs. Increasingly these prosthetics incorporate electromechanical actuators to operate articulations similar to biological joints, particularly to control the fingers to grasp and hold objects. Recent research has revealed how arrays of biological tactile receptors distributed throughout the soft tissues of the finger tip are used normally by the nervous system to provide rapid adjustments of grip force. Due to limitations in currently available tactile sensing technology discussed below, currently available prosthetic fingers provide little or no sensing capabilities and cannot make use of these highly effective biological control strategies.
Tactile sensors are generally known and can be grouped into a number of different categories depending upon their construction, the most common groups are piezoresistive, piezoelectric, capacitive and elastoresistive structures. The common feature of all of these devices is the transduction of local asperities (unevenness or a projection from a surface) into electrical signals. Tactile sensors are commonly used in the field of robotics and in particular with those robotic devices which pick up and place objects in accordance with programmed instructions; the so-called “pick and place” class of robot. Unfortunately, while it would be desirable for the above-listed groups of tactile sensors to respond in much the same way that the human finger does, many of them can provide only limited information about a contact with an object. This requires large numbers of separate structures or electrical characteristics that require extensive circuitry in order to obtain an output indicative of the surface which has been contacted. For robotics, the difficulties associated with their non-linear response mechanisms, their fragile structure, and the high cost of assembling many discrete components limits their use of the above groups in an industrial environment. There are difficulties with calibration, environmental survivability, and other factors which render them less than optimal for many applications in less restricted environments, particularly those associated with motor-actuated prosthetic hands and telerobotic systems intended to augment human performance.
The present biomimetic tactile sensor may possess softness, elasticity and some mechanical resistance that mimics natural human skin. Furthermore, it may detect and discriminate various aspects of contact with external objects, including the direction and magnitude of force, the extent and shape of the object, and small movements associated with impending slip.
An exemplary embodiment comprises a device through which a set of information is generated concerning tactile interaction between a manipulator and an object to be manipulated and recognized. The tactile information may be generated either by robot or prosthetic finger tips. A key feature of the embodiment may be that it confers a very high sensitivity to incremental changes in the distribution of pressure.
The sensory device may have a biomimetic shape of the core and covering skin and pulp that results in distinctive and readily detectable patterns of impedance changes across an array of electrodes disposed on the core, to take advantage of the various distortions of the pulp produced by the contact parameters to be detected and discriminated. Because of the overall biomimetic design of the sensor assembly, the stimulus features that may be most readily detected by the feature extraction circuitry are those features that may be most useful for automatic adjustment of contact force to achieve and maintain stable and efficient grasp of an object. Features of disclosed sensory devices that may be associated with this strategy include the complex mechanical contours of the core, the elasticity and points of attachment of the investing skin, the specific shapes and dispositions of the electrodes on the core surface, conditions of use in which at least some electrodes are nearly or completely occluded by direct contact with the overlying skin, and the extraction of information from complex temporospatial patterns of impedance changes among those electrodes using trainable algorithms such as neural networks.
Exemplary sensory devices may also include a sensor assembly whose basic form and function are similar to that of a human finger tip. A prosthetic hand or anthropomorphic robotic manipulandum could combine several such finger tips at the ends of appendages whose movements may be controlled by actuators. Similar padlike structures with sensors might also be deployed on grip contact surfaces akin to the palmar eminences over the heads of the metacarpal bones etc. One or more such sensor assemblies could be built with various sizes and shapes and mounted in varying numbers and positions on a variety of manipulanda, locomotor supports and other mechanical apparatus that must interact with external objects and surfaces according to information derived from contact sensors.
One embodiment of the present device may consist of a set of sensors that work by measuring the electrical impedance among a plurality of electrodes. The electrodes may be deployed on a substantially rigid core that is protected from direct contact with external objects by overlying deformable structures. A feature of this design may be the location of mechanically vulnerable connections between the electrodes and the signal processing circuitry, which are wholly contained within the substantially rigid core. A related feature may be that this design enables methods of manufacture and repair that are simple and efficient.
The plurality of sensors and their associated mechanical structures have similarities to the biological relationships among the cutaneous neural receptors, the distal phalanx, overlying finger pulp and covering skin and nail. Information may be extracted from such a plurality of sensors whereby such information can be related to canonical physical representations used to describe stimuli to be sensed, and/or used to control automatic adjustments of grip forces similar to the neural reflexes whereby humans maintain stable grip on complex objects.
It is understood that other embodiments of the biomimetic tactile sensor systems and methods will become readily apparent to those skilled in the art from the following detailed description, wherein it is shown and described only exemplary embodiments by way of illustration. As will be realized, the biomimetic tactile sensor systems and methods are capable of other and different embodiments and its several details are capable of modification in various other respects. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
The detailed description set forth below is intended as a description of exemplary embodiments of the tactile sensory system and method and is not intended to represent the only embodiments in which the biomimetic tactile sensor systems and methods can be practiced. The term “exemplary” used throughout this description means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments. The detailed description includes specific details for the purpose of providing a thorough understanding of the tactile sensory systems and methods. However, it will be apparent to those skilled in the art that the tactile sensory systems and methods may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the tactile sensory systems and methods.
It is a general property of biological sensory receptors that they are highly evolved structures in which the receptors themselves and the tissues in which they are located may contain many features designed to enhance their sensitivity and the quantity of information that they can provide to the central nervous system. The skin contains multiple types of mechanoreceptors to transduce a variety of mechanical events that occur during contact with physical objects. These receptors are concentrated in sites such as the finger tips, where their sensitivity is enhanced by the mechanical properties of the skin, underlying pulp and bone, and adjacent fingernails. U.S. Pat. No. 4,980,646, to Zemel, is incorporated herein by reference and teaches a tactile sensor based on changes in the local electrical resistance presented by a layer of weakly conductive fluid whose shape is deformed by external forces applied to a deformable membrane. Zemel describes the application of a voltage gradient across the entire extent of the fluid by means of electrodes arranged on either side of the array of sensing strips, and the measurement of the local strength of that gradient by differential voltage measurements between adjacent pairs of electrode strips. U.S. Pat. No. 4,555,953 to Dario et al., which is incorporated by reference in its entirety, teaches different techniques and materials that have been utilized for the construction of artificial skin-like sensors.
The input-output properties of these biological transducers differ generally from engineered transducers. Engineered transducers are usually designed to produce a linear response to a single mechanical variable such as normal or tangential force at a single point. The signals from arrays of such transducers can be combined according to simple, analytical algorithms to extract orthogonal physical parameters of touch such as total force, center of force, directional force vector and two-point resolution. Biological touch receptors are highly nonlinear and nonorthogonal. Their signals are combined by adaptive neural networks to provide subconscious adjustment of motor output as well as high level conscious perception associated with haptic identification of objects. Neurophysiologists and psychologists often correlate the activity of somatosensory receptors and design measures of psychophysical percepts according to canonical physical parameters, but there is little evidence that the nervous system actually extracts direct representations of such parameters as an intermediate stage between sensation and performance. In fact, information theory suggests that such an intermediate representation would add noise and reduce information content, which would place such a strategy at an evolutionary disadvantage. Engineered sensors and their signal processing systems use linear, orthogonal representations because the downstream control systems generally have been based on such inputs. This strategy may work well for engineered systems such as industrial robots that must perform accurately for highly constrained and predictable tasks. It is difficult to apply to anthropomorphic robots and prosthetic limbs that must perform a broad and unpredictable range of tasks associated with activities of daily living. The problem may further be complicated by environmental factors in such environments (e.g. temperature, moisture, sharp edges etc.), which tend to damage or bias sensitive and/or physically exposed transducers.
Exemplary embodiments of the present sensory devices have features comparable to features found in biological systems. In particular, they may use biomimetic mechanical structures similar to those found in the finger tip to endow a set of simple, robust electronic sensors with a wide range of modalities and sensitivities similar to those found in biological mechanoreceptors. An exemplary embodiment may employ a larger number of small, local electrodes deployed in a curved array whose shape and mechanical properties mimic those of a biological finger tip. Each sensing electrode may be energized to provide an independent measure of the local mechanical deformations of the overlying membrane based on its impedance with respect to a remote common electrode. Further improvements are described to enhance the sensitivity and dynamic range of each sensing electrode by contouring the inner surface of the overlying membrane. Yet another exemplary embodiment teaches a novel method of detecting deformation of the membrane by energizing the membrane and detecting the capacitive coupling to each sensing electrode through a dielectric fluid or gas. In further embodiments, neural networks may compute directly the actuator adjustments required to maintain stable grip of objects with a variety of shapes and force vectors in a manner similar to that employed by neural control of the human hand.
Various aspect of the present exemplary biomimetic sensing devices can incorporate features described in the following articles, which are all incorporated herein by reference: Johansson R S, Westling G. (“Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip”, Experimental Brain Research. 66:141-154, 1987); Westling G, Johansson R S. “Responses in glabrous skin mechanoreceptorsd during precision grip in humans”, Experimental Brain Research. 66:128-140, 1987); Flanagan J R, Burstedt M K O, Johansson R S “Control of fingertip forces in multi-digit manipulation” Journal of Neurophysiology. 81:1706-1717, 1999); Birznieks I, Jenmalm P, Goodwin A W, Johansson R S. “Encoding of direction of fingertip forces by human tactile afferents” Journal of Neuroscience. 21:8222-8237, 2001); Johansson R S, Birznieks “First spikes in ensembles of human tactile afferents code complex spatial fingertip events” Nature Neuroscience 7:170-177, 2004) which are all incorporated by reference in their entirety.
Mechanical Platform
Referring to
The skin 6 may be a deformable and/or elastic material similar to human glabrous skin in its mechanical properties and possessing advantageous properties such as toughness to resist wear, texture and tackiness to improve grip, and colorizable for cosmesis. As described below, it may be advantageous to incorporate bumps, ridges and/or other features into the internal and/or external surface(s) of the skin. Suitable materials may include but are not limited to polymers such as silicone elastomers and polyurethanes, among many others familiar to biomedical engineers and prosthetists. In a preferred embodiment, the core 2 may be made of a mechanically tough material such as zirconia ceramic or titanium metal that can function as part of the mechanical linkage of the prosthesis or robot on which the sensor assembly is deployed. The following references, which are incorporated by reference in their entirety, teach various features that may be utilized in the present tactile sensor devices and methods: U.S. Pat. No. 6,871,395 to Scher et al. teaches connecting electrically conductive elastomer to electronics and U.S. Pat. No. 6,529,122 to Magnussen et al. teaches measuring contact resistance between workpieces, U.S. Pat. No. 5,905,430 to Yoshino et al. for detecting state of contact between a contact member and a workpiece, U.S. Pat. No. 5,033,291 to Podoloff et al. for flexible tactile sensor for measuring foot pressure distributions; U.S. Pat. No. 5,014,224 to Hans for determining location and amount of exerted pressure; U.S. Pat. No. 4,817,440 to Curtin for identifying contact force and the contact pattern; U.S. Pat. No. 4,526,043 to Boie et al. for Conformable tactile sensor; and U.S. Pat. No. 4,481,815 to Overton for determining a parameter of an object being contacted by the tactile sensor.
In one exemplary embodiment, the choice of material for the pulp 4 may be chosen to be a deformable, volume-conductive liquid or gel whose electrical conductivity is sufficiently low that the resistance measured between two or more electrodes in contact with the pulp changes when the pulp is mechanically deformed. Suitable materials may include aqueous and nonaqueous gels with ionic conductors, liquid crystal materials, and many others that would be obvious to one normally skilled in the art. Advantageously, the pulp 4 can be injected through a hypodermic needle into the space between the skin 6 and the core 2 and its electrodes 8 after the skin 6 is attached to the seal 7. This makes it possible to control accurately the thickness and pressure of the pulp 4 and to refurbish the sensor assembly 1 by replacing the skin 6 and/or pulp 4 without affecting the electrodes 8 or detection circuitry 20.
Sensing Elements
Sensing may be accomplished by measuring changes in the electrical impedance among electrodes 8 whose distribution and location on the contoured surface of the core 2 may be a key factor in the sensing properties of the sensor assembly 1. One embodiment of detection circuitry 20 is illustrated schematically in
The sensing assembly 1 may have the greatest sensitivity to a small change in the distribution of pressure in those electrodes that are near the edge of a population of electrodes 8 in which the skin 6 has been compressed against the central electrodes of the population. Such a change may cause electrodes along this edge to change between the states of having a small distance between skin and electrode to having a zero distance, for which the resistance theoretically becomes infinite. Other embodiments are described below in which the impedance measured at an electrode 8 decreases as the distance between the electrode 8 and the skin 6 decreases.
Each electrode 8 may be electrically insulated from the others and from the overlying pulp 4 except for a specifically defined contact area with the pulp comprising the electrode 8. Each electrode 8 may be connected to detection circuitry 20 by means of a lead 10. This can be accomplished by various feedthroughs and coatings such as are commonly employed in hybrid microelectronic circuits and hermetic packages.
Electronic Signal Processing
Detection circuitry 20 may be mounted within a recess in the core 2 that provides mechanical support and protection. As illustrated schematically in
One alternative mode of operation of the sensor assembly 1 may be to detect small changes in the distribution of pressure, which as noted above that may tend to produce the greatest incremental change in impedances 24 among the subpopulation of electrodes 8 that are in or near contact with the overlying skin 6. The incremental sensitivity of the detection circuitry 20 to such changes may be different for the two modes of measurement just described. If the energization signal 22 is a voltage, then the measured current asymptotically approaches zero as the thickness of the overlying pulp decreases when it is compressed with increasing contact force. If the energization signal 22 is a current, then the measured voltage exponentially may rise toward the compliance voltage of the available power supply as the thickness of the overlying pulp is compressed towards the contact. These two relationships have implications for the detectability of incremental changes by the subsequent feature algorithms of the analysis logic 30 as described below. Any signal detection should cope with the inevitable consequences of electrical noise in the various electrically active and passive components such as are well-known to those normally skilled in the art.
One exemplary configuration for impedance measurement may be between each electrode 8 and a common contact (designated by the ground symbol in
In yet another exemplary embodiment, the pulp 4 can be a volume conductor with a fairly high resistivity such as 100 (ohm)(cm) and the skin 6 can be a conductor that is connected to the “ground” or reference voltage of the detection circuitry. In this case, the electrical impedance 24 between each electrode 8 and the skin 6 may be approximately proportional to the distance between them, declining rapidly to approximately zero as they actually touch each other. Still other combinations of conductive and dielectric materials for the pulp 4 and skin 6 and related detection circuitry 20 are included within the scope of the system.
In an alternate embodiment, the pulp 4 can be made from a dielectric material and the skin 6 can be an electrical conductor such as a woven metal fabric or metal- or carbon-filled polymer. Suitable dielectric materials for the pulp 4 may include but are not limited to gases such as air, liquids such as mineral oil, and gels such as silicone polymers. In this embodiment, the impedance 24 between each electrode 8 and the overlying skin 6 may be essentially that of a capacitor whose value increases with the inverse of the distance between the electrode 8 and the overlying skin 6. Thus, the mechanical factors in the design and performance of the sensor assembly 1 may be generally similar to those of the first embodiment in which the pulp 4 is a conductor and the skin 6 is a dielectric. The impedance of a capacitor is related inversely to the value of its capacitance and inversely to the frequency of the electrical signal applied to it. In this alternate embodiment, the impedance between any one or more electrodes 8 and the skin 6 may be readily measured by applying an energization signal 22 between them that may be an alternating current or voltage and measuring the alternating voltage or current, respectively. It may generally be advantageous for the skin 6 to be connected to the “ground” or reference voltage for all of the individual detection circuits 20 associated with the various electrodes 8.
In the above alternate embodiment, if such a conductive skin 6 actually touches an electrode 8, the impedance 24 between them may go abruptly to approximately zero because of ohmic conductance between them. If that is not desired, such contact can be prevented and the maximal value of the capacitance between them can be stabilized by coating the inside surface of the conductive skin with a thin and flexible dielectric layer such as poly-paraxylylene (commercial tradename Parylene). If the skin 6 is composed of a woven metal fabric, a vapor-deposited coating of Parylene on both the inside and outside surface of the skin 6 can advantageously be used to seal the fabric so that the dielectric material used for the pulp 4 does not leak out and to avoid making electrical contact with external objects.
Yet another exemplary embodiment in which the deformation of the skin 6 and pulp 4 may be detected as variable capacitance as illustrated in
For use in the variable capacitance sensing assembly 1 illustrated in
Feature Extraction
The positioning of the electrodes 8 with respect to the contours of the core 2 and overlying pulp 4 and skin 6 may cause distinct patterns of change in the various impedances 24 measured by the detection circuitry 20 as the sensor assembly 1 contacts various objects and surfaces with various force vectors. Analysis logic 30 may incorporate feature extraction algorithms to make inferences about the nature of the contact according to the patterns so detected. It may be useful to identify how different aspects of any particular stimulus parameter to be sensed will influence the array of electrodes comprising the sensor assembly 1. If such influences result in sufficiently distinct output patterns across all of the elements of the sensor, then it may be feasible to employ algorithms known as neural networks that may function similar to those embodied in the nervous system in order to identify the nature of the contact state in terms of feature of contacted objects and spatiotemporal distribution of contact forces. That is, neural networks can be trained by learning to respond in a useful manner to those features of any stimulus that must be discriminated.
The following is an exemplary list of stimulus features, their effects on the electrical impedances 24 may be measured among various electrodes 8, and associated feature extraction algorithms that can be incorporated or trained into said analysis logic 30. The examples are all described with reference to the first exemplary embodiment in which the pulp 4 may be a moderately resistive volume conductor and the skin 6 is a dielectric, but similar feature extraction algorithms can be applied to the temporospatial patterns of impedance that can be measured by the sensor assembly for the various alternate embodiments described above, as will be obvious to one normally skilled in the art. Most are illustrated with reference to
Contact Force
As the total force increases on central area of the sensor assembly 1, the pulp 4 may be squeezed laterally into the region near the seal 7 at the perimeter note increasing space between skin 6 and electrodes 8 at positions a and b. The pulp 4 overlying the electrodes 8 in the compressed central area of the sensor assembly 1 becomes thinner, causing the impedance measurements associated with those electrodes to become higher note decreased space between skin 6 and electrodes 8 at positions d, e and f. The sum of all such impedance increases is related to the total force of contact; that sum will be dominated by the nonlinear increase in impedance as electrodes approach the skin.
Centroid and Area of Force
The impedance increases associated with the contact force measurement above can be related to the position of the electrodes 8 in the array in order to estimate where the center of force is located on the surface of the sensor assembly and the radius of curvature of the contacting object. For example, a sharp object might produce a local deformation of the skin that would cause large changes of impedance for only one or a few electrodes close to the point of contact. If the pulp 4 is an incompressible material, any decrease in its thickness over one or more electrodes 8 may be accompanied by a bulging increase in its thickness over other electrodes 8 at a distance from the region of contact.
Eccentricity of Force
If the contacting object is not radially symmetrical, the distribution of impedance changes detected by the electrodes will be similarly asymmetrical. This asymmetry can be detected to make inferences about the shape of the contacting object.
Vector of Force
In most object-manipulation tasks, the force between the sensor assembly 1 and the contacted object may not be oriented normal to the surface of the sensor assembly 1. In biological skin, shear force components change the stress and strain distributions within the fingertip that are sensed by receptors located within dermal and subdermal tissues but also by the distribution of pressure around the perimeter of the finger pad, particularly where the skin is anchored by the nail bed. This is described in the above-referenced and incorporated journal article (Birznieks, Jenmalm, Goodwin & Johansson 2001).
In an exemplary embodiment, those electrodes 8 located on the most convex portions of the core 2 near the seals 7 of the skin 6 may detect large increases in impedance when shear forces are directed away from them (see electrodes at positions h and i in
Vernier Detection of Force Shifts
The detection of imminent slip is essential to the maintenance of efficient and effective grip on objects, in which it may be generally desirable to produce only the minimal force on the object required to initiate and maintain stable grasp. In the biological fingertip, imminent slip is detected by localized, tiny shifts in the distribution of shear forces in the skin. The relationship between electrode impedance and thickness of the overlying pulp may be inherently highly nonlinear, as described above. For example, if the inner surface of the nonconductive, elastomeric skin actually touches and covers an electrode, its impedance with respect to any other contact may increase abruptly towards infinity. By incorporating protruding textural elements 5 such as bumps and ridges onto the inner surface of an elastomeric skin 6, the distribution of impedances across the array of electrodes may undergo large changes when the skin is compressed against the core. In
Contact Transients and Vibration
Biological skin contains specialized Pacinian receptors that are highly sensitive to the acceleration component of skin deformation, making them useful to detect transient mechanical events that occur when making and breaking contact between a held object such as a tool and another object, and vibration of skin induced by the motion of skin ridges sliding over a textured object surface. The impedance of the electrodes in embodiments of the present system may undergo only very small changes when lightly loaded, but it may be possible to detect such changes by means of their synchronous phasing across the entire array of electrodes. Various signal averaging techniques to enhance the detection of the correlated component of weak and noisy signals from an array of sensors are well known in the prior art. Alternatively as depicted in
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the tactile sensory systems and methods. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the tactile sensory systems and methods. Thus, the tactile sensory systems and methods are not intended to be limited to the embodiments shown herein but are to be accorded the widest scope consistent with the principles and novel features disclosed herein.
This patent application the claims the benefit of the filing date of U.S. provisional application Ser. No. 60/786,607, filed Mar. 28, 2006, entitled “Biomimetic Tactile Sensor” the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4306148 | Ringwall et al. | Dec 1981 | A |
4481815 | Overton | Nov 1984 | A |
4492949 | Peterson et al. | Jan 1985 | A |
4521685 | Rebman | Jun 1985 | A |
4526043 | Boie | Jul 1985 | A |
4555953 | Dario | Dec 1985 | A |
4555954 | Kim | Dec 1985 | A |
4574438 | Diepers et al. | Mar 1986 | A |
4584625 | Kellogg | Apr 1986 | A |
4616511 | Gindy et al. | Oct 1986 | A |
4621533 | Gindy | Nov 1986 | A |
4634917 | Dvorsky et al. | Jan 1987 | A |
4640137 | Trull et al. | Feb 1987 | A |
4694231 | Alvite | Sep 1987 | A |
4712037 | Verbeek et al. | Dec 1987 | A |
4715235 | Fukui | Dec 1987 | A |
4745812 | Amazeen et al. | May 1988 | A |
4747313 | Okada | May 1988 | A |
4813732 | Klem | Mar 1989 | A |
4814562 | Langston | Mar 1989 | A |
4817440 | Curtin | Apr 1989 | A |
4866412 | Rzepczynski | Sep 1989 | A |
4886361 | Furstenau | Dec 1989 | A |
4945305 | Blood | Jul 1990 | A |
4964302 | Grahn et al. | Oct 1990 | A |
4980646 | Zemel | Dec 1990 | A |
5010774 | Kikuo et al. | Apr 1991 | A |
5014224 | Hans | May 1991 | A |
5033291 | Podoloff | Jul 1991 | A |
5060527 | Burgess | Oct 1991 | A |
5138216 | Woodruff et al. | Aug 1992 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5200679 | Graham | Apr 1993 | A |
5209126 | Grahn | May 1993 | A |
5225959 | Stearns | Jul 1993 | A |
5237879 | Speeter | Aug 1993 | A |
5255345 | Shaefer | Oct 1993 | A |
5261266 | Lorenz et al. | Nov 1993 | A |
5312439 | Loeb | May 1994 | A |
5313840 | Chen et al. | May 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5373747 | Ogawa et al. | Dec 1994 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5501498 | Ulrich | Mar 1996 | A |
5510812 | O'Mara et al. | Apr 1996 | A |
5563354 | Kropp | Oct 1996 | A |
5604314 | Grahn | Feb 1997 | A |
5744953 | Hansen | Apr 1998 | A |
5760530 | Kolesar | Jun 1998 | A |
5871248 | Okogbaa et al. | Feb 1999 | A |
5886615 | Burgess | Mar 1999 | A |
5905430 | Yoshino | May 1999 | A |
5905485 | Podoloff | May 1999 | A |
5953683 | Hansen et al. | Sep 1999 | A |
5965880 | Wolf et al. | Oct 1999 | A |
5983725 | Fischer et al. | Nov 1999 | A |
6003390 | Cousy | Dec 1999 | A |
6007728 | Liu et al. | Dec 1999 | A |
6067862 | Murray et al. | May 2000 | A |
6154580 | Kuriyama et al. | Nov 2000 | A |
6163739 | Park et al. | Dec 2000 | A |
6175764 | Loeb et al. | Jan 2001 | B1 |
RE37065 | Grahn | Feb 2001 | E |
6188331 | Zee et al. | Feb 2001 | B1 |
6231520 | Maezawa | May 2001 | B1 |
6286226 | Jin | Sep 2001 | B1 |
6400139 | Khalfin et al. | Jun 2002 | B1 |
6443509 | Levin et al. | Sep 2002 | B1 |
6445284 | Cruz-Hernandez et al. | Sep 2002 | B1 |
6528991 | Ashe | Mar 2003 | B2 |
6529122 | Magnussen | Mar 2003 | B1 |
6584217 | Lawless et al. | Jun 2003 | B1 |
6593756 | Schmidt et al. | Jul 2003 | B1 |
6622575 | Nagata | Sep 2003 | B1 |
6624626 | Khalfin | Sep 2003 | B2 |
6690963 | Ben-Haim et al. | Feb 2004 | B2 |
6769313 | Weiss | Aug 2004 | B2 |
6848320 | Miyajima et al. | Feb 2005 | B2 |
6871395 | Scher | Mar 2005 | B2 |
6886415 | Kurogi et al. | May 2005 | B1 |
6888537 | Benson et al. | May 2005 | B2 |
6898299 | Brooks | May 2005 | B1 |
6915701 | Tarler | Jul 2005 | B1 |
6955094 | Tarler | Oct 2005 | B1 |
6996456 | Cordell et al. | Feb 2006 | B2 |
7004039 | Ford | Feb 2006 | B1 |
7006895 | Green | Feb 2006 | B2 |
7016560 | Ticknor | Mar 2006 | B2 |
7066376 | Scher et al. | Jun 2006 | B2 |
7069791 | Hashimoto et al. | Jul 2006 | B2 |
7103447 | Di Profio et al. | Sep 2006 | B2 |
7107124 | Green | Sep 2006 | B2 |
7112755 | Kitano et al. | Sep 2006 | B2 |
7198908 | Ochi et al. | Apr 2007 | B2 |
7209028 | Boronkay et al. | Apr 2007 | B2 |
7324872 | Nagasaka | Jan 2008 | B2 |
7347110 | Chen et al. | Mar 2008 | B1 |
7357035 | Liu et al. | Apr 2008 | B2 |
7361919 | Setlak | Apr 2008 | B2 |
7366332 | Shimamura et al. | Apr 2008 | B2 |
7367232 | Vaganov et al. | May 2008 | B2 |
7373843 | Ganapathi et al. | May 2008 | B2 |
20030051561 | Weiss | Mar 2003 | A1 |
20040187071 | Zhang et al. | Sep 2004 | A1 |
20050021154 | Brimalm | Jan 2005 | A1 |
20050134562 | Grant | Jun 2005 | A1 |
20050234292 | Faulkner et al. | Oct 2005 | A1 |
20050239191 | Prins | Oct 2005 | A1 |
20050253206 | Bureau | Nov 2005 | A1 |
20060010090 | Brockway | Jan 2006 | A1 |
20060014912 | Araki | Jan 2006 | A1 |
20060115348 | Kramer | Jun 2006 | A1 |
20060161225 | Sormann et al. | Jul 2006 | A1 |
20060175770 | Linzell | Aug 2006 | A1 |
20070060815 | Martin et al. | Mar 2007 | A1 |
20070207903 | Csabai | Sep 2007 | A1 |
20070227267 | Loeb et al. | Oct 2007 | A1 |
20070265515 | Brister et al. | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
1611841 (A1) | Jan 2006 | EP |
1626331 (A2) | Feb 2006 | EP |
1633248 (A1) | Mar 2006 | EP |
1835380 (A1) | Sep 2007 | EP |
1835552 (A1) | Sep 2007 | EP |
1901048 (A2) | Mar 2008 | EP |
1942323 (A1) | Jul 2008 | EP |
WO 2004112609 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070227267 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
60786607 | Mar 2006 | US |