The present invention claims priority of Korean patent application number 10-2007-0059907, filed on Jun. 19, 2007, which is incorporated by reference in its entirety.
1. Field of the Invention
The present invention relates to a biomolecule detector based on field effect transistor arrays containing reference electrodes and detection method for biomolecules using the same.
2. Description of the Prior Art
As a biosensor device using electric signals among biosensors for detecting biomolecules, there is a field effect based biosensor including a field effect transistor (FET). As compared to other method, the above FET based biomolecule detector has been in the limelight in that a widely spread semiconductor process can be used, a signal response time is fast, a signal processing occurs locally, being not much affected by noise signals and others, and it is easy to graft onto integrated circuit technology and microelectromechanical system (MEMS) technology. Particularly when making an array through assembling some FETs, not only deviation inevitably occurring in a manufacturing process for each FET can be reduced, but a multiplex processing capable of measuring some samples (or analytes) at the same time is possible according to a detection device construction of the FET array.
Recently, researches have been widely carried out on developing a detector such as a lab-on-a-chip for detecting biomolecules using a very small device. The FET biosensor is proper as a biosensor available to such as lab-on-a-chip due to above features. Such a very small detector includes, as the core, a microfluidic mover for supplying an extremely small quantity of liquid analyte including biomolecules to be detected to the detector and controlling it, and a detection unit having a fast response time. Since it is difficult to smoothly control the small quantity of liquid analyte including biomolecules with the mechanical method, an electrical control method using an external electric field has drawn a person's attention. However, in the control method using external electric field, it is important not to render a detector affected by the external electric field.
The present invention has been made to solve the above problems of the prior art, and an object of the present invention is to provide means for finding an optimum position where a field effect transistor (FET) based biosensor can normally detect biomolecule samples in a space applied with an external electric field.
Another object of the present invention is to provide a label-free detector requiring no pre-treatment of the biomolecule samples as a biomolecule detector using an FET positioned on an optimum position.
In order to accomplish the above objects, there is provided a biomolecule detector using a FET array comprising: a passage for a liquid sample including biomolecules; means for flowing the biomolecules through the passage by applying an external voltage to the liquid sample in the passage; an FET array contacting the liquid sample in the flowing passage; and at least one reference electrode capable of applying a reference voltage to the FET array, wherein the FET has no gate electrode.
In a particular embodiment, a larger potential value between potentials due to external voltage and reference voltage at the position of the FET array in the passage is lower than or equal to a value of maximum designing voltage which can be maximally applied to the gate region of the FET for normal operation.
Herein, the position of the FET array in the passage is in a place apart from a low-potential end between both ends of the passage, thereby avoiding bubble generation or a sudden change in pH occurring in electrolysis.
In a particular embodiment, the reference electrode is disposed between the FETs constituting the array.
In accordance with another aspect of the present invention, there is provided a biomolecule detection method using a field effect transistor (FET) array, the method comprising the steps of: (a) positioning the FET array which has no gate electrode at one point in a passage; (b) flowing biomolecules having a known concentration in a liquid sample through the passage by applying an external voltage to the liquid sample containing the biomolecules and being filled in the passage; and (c) measuring electric signals occurring upon applying a voltage to a reference electrode of the FET array in the step (a) to determine a position of the FET array suitable to measuring the electric signals in the passage.
By adapting the detection method comprising the steps (a) to (c) to a liquid sample containing the biomolecules having known concentration, an optimum position of the FET array can be determined. In other embodiment, after determining the optimum position of the FET array, unknown biomolecules is flown so as to detect an electric signal. In particular, after the steps (a) to (c), the method further comprising the steps of: positioning the FET array in the step (a) at the position determined in the step (c) to be suitable to measuring the electric signals, flowing biomolecules in a liquid sample through the passage in the step (a) by applying an external voltage, and measuring electric signals occurring upon applying voltage to the FET array.
In a particular embodiment, the electric signal detection in the step (c) is implemented to measure a change in voltage or electric current occurring between source/drain regions of the FET array in the step (a) by the applying the reference voltage.
Meanwhile, the biomolecules have electric charges in a liquid. As unlimited examples of the biomolecules, there are nucleic acids such as deoxyribonucleic acids (DNAs) and ribonucleic acids (RNAs), proteins, or peptide nucleic acids (PNAs).
The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments are described for illustrative purpose so the invention is not limited thereto.
A FET for use in detecting electric signals in the present invention includes a gate, source, and drain regions, but has the construction in which a gate electrode is removed from the gate region. Applying a gate voltage generating electric signals between the source and drain regions is carried out by a reference electrode, to which a reference voltage corresponding to the gate voltage is applied. The detection principle for biomolecules by the FET is shown in
The biomolecules such as DNA or proteins are charged in a solution state. Thus, when a liquid sample containing the biomolecules comes into contact with the FET, electric signals (e.g., voltage, electric current, etc.) between the source and drain regions transmitted along a channel of the FET are also affected and become different from the case where there is no contact of the liquid sample. In brief, the principle of electrical detection of biomolecules using the FET is to detect a change in electric signal detected by the FET if the liquid sample contains charged biomolecules.
In order to detect electric signals, the dimension of the reference voltage applied in the biomolecule detector using the FET should be i) lower than a normal designing gate voltage capable of operating the FET device normally and ii) larger than a threshold voltage of the FET device. Meanwhile, if the detector is applied with an external electric field, it should be also considered iii) the dimension of a voltage by the external electric field. The item iii) is related to the control of the biomolecule so that it is very important.
When the small quantity of biomolecule is flown, the smooth control is difficult with only pneumatic or other mechanical method, so that the biomolecule is controlled by applying an external voltage. For example, the biomolecule is controlled using electrophoresis, electroosmosis or electrowetting. As a microfluidic controller using electrophoresis or electroosmosis, an electrokinetic pump is representative one. As an electrowetting based device, there is an electrowetting-on-dielectric (EWOD). Further, a combination type between an electric control manner such as electrophoresis, electroosmosis or electrowetting and the mechanical control manner can be effective control means.
Like this, an external electric field is applied to control the biomolecule, so that it is apparent that the behavior of the FET is much affected according to a position of the FET in a flowing passage. However, as set forth before, although the FET in a type of array has many advantages, since the FET in array type is essentially larger than a single FET, it becomes more difficult to find a point where the FET array is normally operated in a region applied with external electric field. Problems occurring in the process of positioning the FET array in the passage applied with external electric field are indicated in schematic form in
The inventors first carried out computer simulation to find out whether or not it is possible to find a section where the FET array is stably operated in a region applied with external voltage.
The position where the FET can be normally operated in the flowing passage, to which the external voltage is applied, is restrictive, and should satisfy the following strict conditions.
The larger one between an electric potential value occurring by the external voltage at a specified position in the passage and the reference voltage (3.4V in
In
However, if the reference electrode is disposed in a space between the FETs constituting the FET array, the region where the FET can be normally operated becomes greatly enlarged (the structure in which the reference electrode is inserted into the internal space of the FET is called “the FET array including the reference electrode”.). In the FET array including the reference electrode of
Even if the external voltage applied to the flowing passage of the biomolecule becomes larger, the region where the FET array including the reference electrode can be normally operated in the flowing passage is characteristically maintained stably.
Such a simulation result gives an intensive hint that when using the FET array including the reference electrode, even in the case of applying high external electric field, a method of normally operating the FET array can be easily found. However, although the FET array including the reference electrode is used, if the FET array is disposed at a position in the passage where the electric potential by the external voltage is very high, it is impossible to obtain a normal operation.
From the simulation results of
In the present invention, the FET array including the reference electrode is not essentially limited to a linear type, but may be diversely combined with other types according to the whole scale of the desired FET array, and the dimensions of the reference electrode and the FET device. Further, in the FET array including the reference electrode, the array constituted by the reference electrodes may be different from the array constituted by the FETs.
In accordance with another aspect of the present invention, provided is a method of properly positioning the FT array including the reference electrode in order to measure electric signals in the flowing passage of the biomolecule sample. In the method, the liquid sample is used which contains previously known biomolecules in a predetermined concentration. The FET array including the reference electrode is positioned in the flowing passage of the biomolecules which is flown through the passage by applying the external voltage to the passage. Then, the reference electrode is applied with a voltage and electric signals between the source and drain regions of the FET is measured. If necessary, the measurement repeats while moving the position of the FET array including the reference electrode until the measurement of the electric signals is carried out normally.
Using the pre-fabricated liquid sample, the optimum position of the FET array including the reference electrode can be determined. If the optimum position is determined, an electric signal at that position is measured to determine the existence and concentration of the unknown biomolecule sample.
A particular embodiment realizing the principle of the present invention will now be provided.
The present invention will be described with reference to the following experimental example. The example is for illustrative purpose, and it is not intended to limit the scope of the present invention.
The linear FET array consisting of nine FET devices as shown in
As a sample including the biomolecules to be detected, a liquid sample in which 19mer oligonucleotide is mixed at the concentration of 50 μM in solution of 0.01 mM KCL and HCl was used. In order to provide an electrokinetic pump to both ends of the passage having a length of 5 cm, through which the liquid sample is positioned, the liquid sample was flown using a syringe pump while applying the external voltage of 120V. In the state where the reference electrode has applied the reference voltage of 3.4V to the FET, a difference of voltage applied to the source/drain regions injecting the sample containing the oligonucleotide and not containing it was measured twice.
From the example, it can be seen that the existence of the biomolecules in the liquid sample flowing under the environment that high external electric field is applied can be detected using the FET array. The biomolecule detector and the method thereof of the present invention can also be adapted to charged biomolecules different from those used in this example, or the biomolecule sample having a concentration range out of the range used in this example. The skilled in the art can detect the biomolecules while changing the particular experimental conditions within the scope of the technical spirit of the present invention, which case also pertains to the scope of the present invention.
According to the present invention, using the FET array, the existence and concentration of the biomolecules in the sample can be electrically detected under the circumstance where high external voltage is applied to flow the biomolecules. Using the FET array, the deviation for each FET can be reduced and the multiplex processing is also possible to measure the plurality of analyzing samples at the same time. The electrical measuring method of the present invention is a label-free type requiring no pre-treatment, and can be advantageously adapted to the analysis system of the small quantity of liquid sample such as a lab-on-a-chip and others.
Although preferred embodiments of the present invention have been described for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2007-0059907 | Jun 2007 | KR | national |