The invention relates to a heart valve prosthesis and, more particularly, to a heart valve prosthesis having an adaptive seal that minimizes perivalvular leakage following implantation.
Perivalvular leakage (PVL) is a complication that is related to the replacement of heart valves. It occurs when blood flows through a channel or gap between the structure of an implanted valve and the cardiac or arterial tissue due to a lack of appropriate sealing.
Intimate apposition of replacement heart valves and the surrounding cardiac or arterial walls seals the valve and minimizes PVL. In certain cases, however, a seal cannot be achieved, leaving irregular gaps of different sizes and shapes between the valve and the cardiac or arterial walls. This may result from inadequate sizing, incomplete expansion of the valve, an irregularly deformed valve, or highly eccentric or irregular calcification pattern on the leaflets or valve annulus.
PVL has been shown to greatly affect the clinical outcome of transcatheter aortic valve replacement procedures, and the severity of perivalvular leakage has been correlated with patient mortality. What is therefore needed is a replacement bioprosthetic heart valve which permits a conforming engagement or fit with the surrounding cardiac or arterial wall so as to substantially fill in the gaps or channels that often result in PVL.
Bioprosthetic heart valves having the adaptive seals described herein are preferably valves which comprise a biological tissue that has been treated so as to not require storage in liquid preservative solutions. While mechanical heart valves are capable of being stored in a dry state, valves having biological tissue typically require storage in liquid preservative solutions. Storage in liquid preservative solutions introduces a host of challenges for valves which include adaptive seals, particularly for those which are activated to expand upon exposure to liquid.
Significant advantages are provided by the bioprosthetic heart valves disclosed herein, in which the biological tissue is treated so as to permit dry storage of the valves without a liquid storage solution. The adaptive seals can be exposed on the heart valve without requiring encapsulation or a barrier from the environment, as would be required if the valves were to be stored in a liquid preservation solution. To that end, the adaptive seals can simply comprise the expandable material exposed or contained within a permeable or semi-permeable material that permits fluid to come into contact with the expandable material, while supporting or containing the expandable material. In a preferred embodiment, the replacement heart valve or the adaptive seal is not selectively encapsulated by a non-permeable barrier.
The simplicity of being able to provide an adaptive seal structure, without selective encapsulation, provides significant advantages over prior art heart valves in which the selective encapsulation of the adaptive seal in a liquid storage solution is a necessity. The selective encapsulation methods of the prior art are required to permit the tissue portion of the valve to be in contact with the liquid storage solution while at the same time segregating the adaptive seal portion from the liquid storage solution. If the adaptive seal is not selectively encapsulated from the liquid storage solution, it will expand and render the heart valve unusable.
The bioprosthetic heart valves contemplated within this disclosure can be any implantable heart valve which preferably comprises a biological tissue. Such valves include transcatheter valves, surgical valves, minimally-invasive valves, and the like. The biological tissue can be derived from animal sources, preferably, from pericardial tissue, and most preferably, from bovine pericardial tissue. The biological tissue is used to form the leaflets of the heart valve and is mounted to a supporting frame or stent to form a bioprosthetic heart valve. Because the valves are stored dry, the biological tissues are treated so as to preserve their pliability and flexibility in a dry state, e.g., without storage in a liquid storage solution.
The terms “dry” or “dehydrated”, as used herein, are understood to include residual moisture or humidity from the ambient environment and is intended to mean that the valves are not immersed in, or in contact with, a liquid or a storage solution.
In one embodiment, a method for manufacturing a bioprosthetic heart valve is described. The method comprises providing a bioprosthetic heart valve comprising a biological tissue that has been treated with a treatment solution comprising a polyhydric alcohol, the bioprosthetic heart valve having a periphery, an inflow portion and an outflow portion. The method further comprises coupling an adaptive seal to the bioprosthetic heart valve, the adaptive seal comprising an expandable material that expands after exposure to an initiating condition. The method further comprises packaging the bioprosthetic heart valve and the coupled adaptive seal in a package that does not contain a liquid storage solution in contact with the bioprosthetic heart valve and the coupled adaptive seal. In a preferred embodiment, the adaptive seal is not further encapsulated, segregated or enclosed from the biological tissue.
In accordance with a first aspect of the embodiment, the polyhydric alcohol is glycerol.
In accordance with a second aspect of the embodiment, the biological tissue is at least partially dehydrated following treatment with the treatment solution.
In accordance with a third aspect of the embodiment, the adaptive seal is a hydrophilic polymer or a hydrogel-coated wire.
In accordance with a fourth aspect of the embodiment, the hydrophilic polymer or the hydrogel-coated wire comprises a biodegradable cross-linker. Expansion of the adaptive seal is delayed for a period of time after exposure to the initiating condition.
In accordance with a fifth aspect of the embodiment, the initiating condition is one or more selected from the group consisting of: a change in temperature, a change in the electrical field, a change in the magnetic field, a change in the chemical environment, a change in pH, and contact with a liquid.
In accordance with a sixth aspect of the embodiment, the expandable material expands longitudinally, radially, or both longitudinally and radially relative to the bioprosthetic heart valve after exposure to the initiating condition.
In accordance with a seventh aspect of the embodiment, the bioprosthetic heart valve comprises a stent and the coupling comprises coating the stent with the adaptive seal or coupling patches within open cells defined by the stent.
In another embodiment, a packaged bioprosthetic heart valve is provided. The packaged bioprosthetic heart valve comprises a bioprosthetic heart valve, an adaptive seal coupled to the bioprosthetic heart valve, and a sealed package containing the bioprosthetic heart valve and the adaptive seal. The bioprosthetic heart valve comprises a dehydrated biological tissue leaflet structure coupled to a supporting frame, the bioprosthetic heart valve having a periphery, an inflow portion, and an outflow portion. The adaptive seal comprises an expandable material that expands after exposure to an initiating condition. The sealed package containing the bioprosthetic heart valve and the adaptive seal does not contain a liquid storage solution in contact with the bioprosthetic heart valve and the adaptive seal.
In accordance with a first aspect of the embodiment, the adaptive seal is a hydrophilic polymer or a hydrogel-coated wire.
In accordance with a second aspect of the embodiment, the adaptive seal is a hydrogel comprising a biodegradable cross-linker and expansion of the adaptive seal is delayed for a period of time after exposure to the initiating condition.
In accordance with a third aspect of the embodiment, the adaptive seal is a hydrogel-coated wire comprising a shape memory metal, the hydrogel-coated wire changing from a first configuration to a second configuration upon reaching or exceeding a transformation temperature.
In accordance with a fourth aspect of the embodiment, in the first configuration, the hydrogel-coated wire has one of a straight or a coiled configuration and in the second configuration, the hydrogel-coated wire has the other of the straight or coiled configuration.
In accordance with a fifth aspect of the embodiment, the adaptive seal is coupled to the bioprosthetic heart valve at a spaced distance from both of the inflow and outflow portions.
In accordance with a sixth aspect of the embodiment, the adaptive seal is provided circumferentially about the bioprosthetic heart valve.
In accordance with a seventh aspect of the embodiment, the bioprosthetic heart valve further comprises a sewing ring and the adaptive seal is coupled to and exposed from the sewing ring or contained within the sewing ring.
In accordance with an eighth aspect of the embodiment, the supporting frame is a stent comprising a plurality of struts and open cells.
In accordance with a ninth aspect of the embodiment, the adaptive seal is coupled to one or more struts of the supporting frame.
In accordance with a tenth aspect of the embodiment, the adaptive seal forms one of a coating on at least a portion of the stent.
In accordance with an eleventh aspect of the embodiment, the adaptive seal is provided as patches disposed within the open cells defined by the stent.
Other objects, features and advantages of the described preferred embodiments will become apparent to those skilled in the art from the following detailed description. It is to be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not limitation. Many changes and modifications within the scope of the present invention may be made without departing from the spirit thereof, and the invention includes all such modifications.
Illustrative embodiments of the present disclosure are described herein with reference to the accompanying drawings, in which:
Like numerals refer to like parts throughout the several views of the drawings.
Specific, non-limiting embodiments of the present invention will now be described with reference to the drawings. It should be understood that such embodiments are by way of example only and merely illustrative of but a small number of embodiments within the scope of the present invention. Various changes and modifications obvious to one skilled in the art to which the present invention pertains are deemed to be within the spirit, scope and contemplation of the present invention as further defined in the appended claims.
The external peripheral surface of the heart valve 100 is shown to be in discontinuous engagement with the inner surface of the arterial wall 1 as shown by the gaps or voids 2 between them. These gaps result because the inner surface of the arterial wall 1 is typically an irregular surface. To provide a conforming fit or engagement between the heart valve 100 and the inner surface of the arterial wall 1, an adaptive seal 130 is provided around the external peripheral surface of the heart valve 100. The adaptive seal 130 preferably comprises an expandable or swellable material, such as hydrogels (e.g., zwitterionic hydrogels), super absorbent polymers (SAPs), elastomeric materials or other swellable or absorbent polymer or elastomeric materials. Preferably, the adaptive seal 130 does not comprise silicone or other lubricious materials or polymers that would potentially cause the implanted valve 100 to slip or dislodge from its initial site of implantation.
The adaptive seal 130 can be coupled to the outer periphery of the stent 120, as shown in
As shown in
In a preferred embodiment, the adaptive seal 130 comprises a hydrogel material. The hydrogel can be provided as a colloidal gel, such as a hydrocolloid, a coating, a film, or a foam, or it can be provided on a substrate, such as on a cloth or about a shape memory metal or metal coil. While the embodiments depicted in
In a preferred embodiment, the adaptive seal 130 comprises a substrate and an expandable material, such as hydrogels, such as zwitterionic hydrogels, SAPs, elastomeric materials or other swellable or absorbent polymer or elastomeric material disposed on the substrate. The substrate can be an impermeable material, such as a film (e.g., a MYLAR® polyester film), or it can be permeable material, such as a densely-woven cloth. In either case, the substrate is expandable, elastically or otherwise, such that it can be wrapped around the external periphery of the heart valve in a collapsed state and expand as the heart valve is deployed to an expanded state. In embodiments where the hydrogel material is disposed on an inelastic material, such as a metal film or coil, the inelastic material assumes a particular geometry (e.g., folded, coiled, etc.) that permits expansion.
Additionally, the substrate is preferably positioned outwardly of the stent 120 and between the stent 120 and the hydrogel material. In the embodiment depicted in
A hydrogel is generally understood to refer to a polymer or other material that expands or swells in response to an initiating condition, such as changes in temperature, electrical field, magnetic field, chemical environment, pH, and/or phase changes, for example, contact with a liquid. In a preferred embodiment, the adaptive seal does not comprise, or is not, a silicone polymer or other lubricous material. One type of hydrogel is a hydrophilic polymer which physically expands or swells when it contacts and absorbs a liquid, such as water. The extent of the physical expansion or swelling by a hydrophilic polymer is typically limited by the covalent or physical cross-links that oppose the absorption of water once the hydrogel reaches an equilibrium swelling state. Thus, the extent of expansion may be designed or tuned to preferred dimensions based on chemically modifying these crosslinkages. Hydrophilic polymers are highly absorbent and possess a degree of flexibility that is very similar to natural tissue due to their substantial water content.
Examples of hydrophilic polymers, e.g., hydrogels, include, but are not limited to, poly(ethylene oxide), poly(hydroxyethyl methacrylate), poly(vinyl alcohol), polyacrylamide, poly(vinylpyrrolidone), poly(ethyloxazoline), poly(propylene oxide), poly(ethylene glycol)poloxamines, polyacrylamide, hydroxypropylmethacrylate (HPMA), poly(ethylene glycol), polymethacrylate, poly(methyl methacrylate) polylactic acid, carboxymethyl cellulose, hydroxyethyl cellulose, methylhydroxypropyl cellulose, polysucrose, hyaluronate, chondroitin sulfate, dextran, alginate, chitosan, gelatin, and derivatives, mixtures, and copolymers thereof.
Hydrogels can be sensitive to stimuli and respond to changes in the surrounding environment, e.g., an initiating condition, such as changes in temperature, electrical field, magnetic field, chemical environment, pH, and/or phase changes, for example, contact with a liquid. The hydrogels contemplated for use in connection with bioprosthetic heart valves, as described herein, are initially provided in the contracted state and expand or swell only after exposure to an initiating condition. The rate and extent of swelling of the hydrogel can be configured by chemically modifying the hydrogel. For example, where it is desired to control or delay the start or the rate of swelling or expansion of the hydrogel upon exposure to the initiating condition, the hydrogel can be crosslinked with cross-linkers that degrade in response to being exposed to the same or a different initiating condition that causes the hydrogel to expand or swell.
Thus, in a preferred embodiment the rate and extent of expansion of the hydrogel is controlled and fine-tuned by chemically modifying the hydrogel or by incorporating degradable cross-linkers. In a preferred embodiment, the adaptive seal is or comprises a delayed-swelling hydrogel which will not expand for a period of time after exposure to an initiating condition. This period of time is preferably at least 1 minute, more preferably at least 2 minutes, and most preferably at least 5 minutes. The delayed-swelling hydrogel can be produced by incorporating biodegradable cross-linkers in the hydrogel polymer to generate a delayed swelling hydrogel. Once the hydrogel is exposed to an initiating condition, the biodegradable cross-linkers can degrade at a desired rate to permit swelling at a corresponding rate after an initial exposure to the initiating condition. The cross-linkers can be selected to slowly degrade upon exposure to a physiological fluid, such as blood. As the cross-linkers degrade, the hydrogel will expand and swell.
While the rate of hydrogel expansion can be controlled, it is understood that the hydrogel preferably reaches its full expansion, e.g., an equilibrium state, within a period of time to permit the implanting physician to confirm the absence of PVL of the implanted heart valve. In a preferred embodiment, the adaptive seal reaches its full expansion within 5 hours of implantation, preferably within 1 hour of implantation, and most preferably within 15 minutes of implantation. Thus, the biodegradable cross-linkers of the hydrogel are preferably completely degraded or severed within 5 hours, preferably within 1 hour, and most preferably within 15 minutes of exposure to the initiating condition.
In the embodiment depicted in
The hydrogel-coated wire 330a is formed as a plurality of loops. When the heart valve 300 is in its compressed or unexpanded configuration, as depicted in
Suitable hydrogel-coated wires include Azur Peripheral HYDROCOIL® (MicroVention Terumo, Inc., Aliso Viejo, Calif.), which is a platinum coil with an expandable poly(acrylamide-co-acrylic acid) hydrogel and overcoiled with a stretched platinum coil. An advantage of using the hydrogel-coated wire 330a is that it stays substantially close to the stent 320 in both the expanded and the compressed states such that it does not significantly add material bulk. This permits the fabrication of transcatheter heart valves having substantially narrower delivery profiles than would be expected when such valves include a PVL skirt, for example.
In a preferred embodiment, at least one end of the hydrogel-coated wires is attached to the stent 320 by crimping. In another preferred embodiment, the hydrogel-coated wires are crimped in one, two, three, or four locations along the stent 320. As depicted in
While
One advantage afforded by the replacement heart valve 400 is that the manufacturing of the valve portion consisting of the biological tissue 410, the supporting frame 420 and the sewing ring 425 can be done separately from the manufacture of the cloth-covered frame stent 430 to constitute the adaptive seal. In the embodiment depicted in
Expandable bioprosthetic heart valves are known in the art and the illustrated heart valve 600 illustrated in
The delivery system 602 includes an elongated catheter 604 having an expansion balloon 646 near a distal end thereof. The bioprosthetic heart valve 600 mounts around the balloon 646 and is expanded thereby. The system further includes proximal connectors 608 for delivery of balloon inflation fluid, passage of a guide wire, or other such functions. In the exemplary embodiment, the bioprosthetic heart valve 600 includes a plurality of balloon expandable struts in between three axially-oriented commissure bars 605. Bioprosthetic tissue mounts within the framework created by the struts and bars 605, such as with supplementary fabric.
In most cases, it is desirable to reduce the delivery profile of the collapsed delivery configuration as depicted in
As the delivery system is inserted into the vasculature of the patient's body, both the bioprosthetic heart valve 600 and the adaptive seal 610 will be exposed to blood and other bodily fluids. As explained above, it is undesirable for the adaptive seal 610 to swell or expand substantially, if at all, immediately upon exposure to blood because such expansion will interfere with the ability to deliver the bioprosthetic heart valve 600 through the patient's vasculature and to advance the valve 600 out of the delivery sheath. Thus, in a preferred embodiment, the adaptive seal 610 is chemically tuned such that it will respond to one or a plurality of initiating conditions, such as, for example, exposure to liquid and an additional condition, such as pH, temperature, a change in the electrical or magnetic field, or a change in the chemical environment, after a predetermined period of time of such exposure. In another embodiment, the adaptive seal 610 will include a biodegradable cross-linker which degrades at a predetermined rate upon exposure to an initiating condition.
Once the bioprosthetic heart valve 600 is delivered proximate to the intended site of implantation, the sheath is removed. Upon removal of the sheath and before significant expansion of the heart valve 600, the adaptive seal 610 coils or wraps around the external periphery of the heart valve 600 in a second configuration. The adaptive seal 610 can be comprised of a hydrogel material disposed on either a shape memory metal or other material that is configured to elastically wrap around the heart valve 600 once it is exposed from the sheath. In a preferred embodiment, the length of the adaptive seal 610 is longer than the circumference of the fully-expanded valve 600 such that a portion of the adaptive seal 610 overlaps. In this manner, gaps between the two ends of the adaptive seal 610 can be avoided.
As indicated above, the adaptive seal 610 preferably comprises a shape-memory material or metal, such as Nitinol, which is coated with a hydrogel and which is configured to coil around the outer circumference of the valve 600 based reaching or exceeding a transformation temperature. In a preferred embodiment, the transformation temperature is between about 24-25° C., about 25-26° C., about 26-27° C., about 27-28° C., about 28-29° C., about 29-30° C., about 30-31° C., about 31-32° C., about 32-33° C., about 33-34° C., about 34-35° C., about 35-36° C., and about 36-37° C. In embodiments where the valve 600 comprises a self-expanding stent made of shape-memory material or metal, the transformation temperature for the stent is higher than the transformation temperature for the adaptive seal 610 so as to ensure that the adaptive seal 610 coils around the valve 600 before the valve 600 begins to expand or is substantially or fully expanded.
With respect to the embodiments depicted in
As indicated above, the biological tissues suitable for the heart valves described herein are treated so as to permit storage without a liquid preservative solution, e.g., dry storage. To that end, the biological tissue can be contacted or immersed in a treatment solution comprising a polyhydric alcohol or polyol, preferably a glycerol. The glycerol can be provided in an aqueous, non-aqueous or a substantially non-aqueous solution. In a preferred embodiment, the non-aqueous solution (the solvent is not water) or the substantially non-aqueous solution is an alcoholic solution. In a preferred embodiment, the alcoholic solution comprises one or a combination of lower alcohols, preferably C1-C3 alcohols. The biological tissue following treatment with the treatment solution is dehydrated or substantially dehydrated. In a preferred embodiment, the water content of the biological tissue following treatment with the treatment solution is reduced at least about 10%, preferably at least about 25%, preferably at least about 50%, preferably at least about 75%, preferably at least about 80%, and preferably at least about 90%.
The time of contact between the biological tissue and the treatment solution depends on the thickness and type of tissue. Once the biological tissue has been sufficiently exposed to the treatment solution, the tissue is removed from the solution and exposed to ambient air or an inert environment (e.g., nitrogen), at standard room temperature and humidity so as not to adversely affect tissue properties. Preferably, the drying is performed in a clean room or in a laminar flow bench at ambient room conditions for about 1 to 4 hours. In a preferred embodiment, the treatment solution is a solution of glycerol and a C1-C3 alcohol, wherein the treatment solution comprises about 60-95% by volume glycerol. Suitable treatment for the biological tissues are described in U.S. Pat. No. 8,007,992, issued Aug. 30, 2011, to Edwards Lifesciences Corp., the entire contents of which are incorporated herein by reference as if fully set forth herein. In another preferred embodiment, the tissue can be treated as described in U.S. Pat. No. 6,534,004, issued Mar. 18, 2003, issued to The Cleveland Clinic Foundation, the entire contents of which are incorporated herein by reference in its entirety as if fully set forth herein.
In a preferred embodiment, the adaptive seal is made of a material that expands after exposure to one or more initiating conditions. The adaptive seal is preferably a hydrophilic polymer or a hydrogel-coated wire that is made up of a hydrogel material that expands or swells when exposed to an aqueous liquid, such as saline or blood. Preferably, the hydrogel material does not fully expand or swell until after a period of contact with the initiating condition (e.g., fluid), which provides physicians the ability to deliver and control the implantation of the device at the desired location. This can be accomplished by utilizing hydrogels or hydrogel-coated wires in which the hydrogel material has been cross-linked with a degradable cross-linker. Thus, the substantial expansion of the adaptive seal takes place after initial contact with the initiating condition. Alternatively, the seal can be made of a hydrogel that initially expands slowly and then expands more rapidly after a period of time has elapsed from exposure to the initiating condition. In a preferred embodiment, the rapid expansion of the adaptive seal occurs about 30 seconds, about 60 seconds, about 2 minutes, or about 5 minutes after exposure to the initiating condition. In embodiments where the initiating condition is exposure to fluid, preferably an aqueous fluid such as blood, the adaptive seal is provided in a substantially dehydrated state.
The adaptive seal described herein can be provided in the form of a cloth, a film, a coating, a foam, or a hydrogel-coated wire and comprise an expandable material that impregnates a suitable substrate, is chemically coupled to a suitable substrate, or is contained within a permeable or semi-permeable barrier that permits the entry of fluid but contains the expandable material. The expandable material is preferably a hydrogel or an organic polymer that is cross-linked via covalent, ionic or hydrogen bonds to create a three-dimensional open lattice structure which entraps water molecules to form a gel. Alternatively, the adaptive seal is a hydrogel-coated wire, such as HYDROCOIL® (MicroVention Terumo, Inc., Aliso Viejo, Calif.), which is a platinum coil with an expandable poly(acrylamide-co-acrylic acid) hydrogel and overcoiled with a stretched platinum coil. When positioned in situ, the adaptive seal expands from its reduced radial profile to an increased radial profile. U.S. Patent Application Publication No. 2013/0190857, published Jul. 25, 2013, to Endoluminal Sciences Pty. Ltd. is incorporated herein by reference in its entirety.
The bioprosthetic heart valve and adaptive seal can preferably be packaged in double sterile barrier packaging consisting of a rigid tray (PETG) with a TYVEK® non-woven polyolefin lid. The package is sealed in a cleanroom and sterilized in 100% ethylene oxide. Suitable packaging systems for the bioprosthetic heart valves disclosed herein are described in U.S. Patent Application Publication No. 2011/0214398, published Sep. 8, 2011, to Edwards Lifesciences Corp., and is incorporated herein by reference in its entirety. In embodiments where the bioprosthetic heart valve is provided along with a delivery device, suitable packaging systems are described in U.S. Patent Application Publication No. 2013/0152659, published Jun. 20, 2013; U.S. Patent Application Publication No. 2012/0158128, Jun. 21, 2012, and U.S. Patent Application Publication No. 2012/0239142, published Sep. 20, 2012, all to Edwards Lifesciences Corp, and all incorporated by reference herein in their entireties.
The invention described and claimed herein is not to be limited in scope by the specific preferred embodiments disclosed herein, as these embodiments are intended as illustrations of several aspects of the invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 14/533,922, filed Nov. 5, 2014, which claims the benefit of U.S. Patent Application No. 61/900,827, filed Nov. 6, 2013, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3143742 | Cromie | Aug 1964 | A |
3320972 | High et al. | May 1967 | A |
3371352 | Siposs et al. | Mar 1968 | A |
3546710 | Shumakov et al. | Dec 1970 | A |
3574865 | Hamaker | Apr 1971 | A |
3755823 | Hancock | Sep 1973 | A |
3839741 | Haller | Oct 1974 | A |
3997923 | Possis | Dec 1976 | A |
4035849 | Angell et al. | Jul 1977 | A |
4078468 | Civitello | Mar 1978 | A |
4079468 | Liotta et al. | Mar 1978 | A |
4084268 | Ionescu et al. | Apr 1978 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4172295 | Batten | Oct 1979 | A |
4217665 | Bex et al. | Aug 1980 | A |
4218782 | Rygg | Aug 1980 | A |
4259753 | Liotta et al. | Apr 1981 | A |
RE30912 | Hancock | Apr 1982 | E |
4340091 | Skelton et al. | Jul 1982 | A |
4343048 | Ross et al. | Aug 1982 | A |
4364126 | Rosen et al. | Dec 1982 | A |
4388735 | Ionescu et al. | Jun 1983 | A |
4441216 | Ionescu et al. | Apr 1984 | A |
4451936 | Carpentier et al. | Jun 1984 | A |
4470157 | Love | Sep 1984 | A |
4490859 | Black et al. | Jan 1985 | A |
4501030 | Lane | Feb 1985 | A |
4506394 | Bedard | Mar 1985 | A |
4535483 | Klawitter et al. | Aug 1985 | A |
4566465 | Arhan et al. | Jan 1986 | A |
4605407 | Black et al. | Aug 1986 | A |
4626255 | Reichart et al. | Dec 1986 | A |
4629459 | Ionescu et al. | Dec 1986 | A |
4680031 | Alonso | Jul 1987 | A |
4687483 | Fisher et al. | Aug 1987 | A |
4705516 | Barone et al. | Nov 1987 | A |
4725274 | Lane et al. | Feb 1988 | A |
4731074 | Rousseau et al. | Mar 1988 | A |
4778461 | Pietsch et al. | Oct 1988 | A |
4790843 | Carpentier et al. | Dec 1988 | A |
4851000 | Gupta | Jul 1989 | A |
4888009 | Lederman et al. | Dec 1989 | A |
4914097 | Oda et al. | Apr 1990 | A |
4960424 | Grooters | Oct 1990 | A |
4993428 | Arms | Feb 1991 | A |
5010892 | Colvin et al. | Apr 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5147391 | Lane | Sep 1992 | A |
5163955 | Love et al. | Nov 1992 | A |
5258023 | Reger | Nov 1993 | A |
5316016 | Adams et al. | May 1994 | A |
5326370 | Love et al. | Jul 1994 | A |
5326371 | Love et al. | Jul 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5360014 | Sauter et al. | Nov 1994 | A |
5360444 | Kusuhara | Nov 1994 | A |
5376112 | Duran | Dec 1994 | A |
5396887 | Imran | Mar 1995 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5423887 | Love et al. | Jun 1995 | A |
5425741 | Lemp et al. | Jun 1995 | A |
5431676 | Dubrul et al. | Jul 1995 | A |
5449384 | Johnson | Sep 1995 | A |
5449385 | Religa et al. | Sep 1995 | A |
5469868 | Reger | Nov 1995 | A |
5488789 | Religa et al. | Feb 1996 | A |
5489296 | Love et al. | Feb 1996 | A |
5489297 | Duran | Feb 1996 | A |
5489298 | Love et al. | Feb 1996 | A |
5500016 | Fisher | Mar 1996 | A |
5533515 | Coller et al. | Jul 1996 | A |
5549663 | Cottone, Jr. | Aug 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5562729 | Purdy et al. | Oct 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5573007 | Bobo, Sr. | Nov 1996 | A |
5578076 | Krueger et al. | Nov 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5626607 | Malecki et al. | May 1997 | A |
5628789 | Vanney et al. | May 1997 | A |
5693090 | Unsworth et al. | Dec 1997 | A |
5695503 | Krueger et al. | Dec 1997 | A |
5713952 | Vanney et al. | Feb 1998 | A |
5716370 | Williamson, IV et al. | Feb 1998 | A |
5728064 | Burns et al. | Mar 1998 | A |
5728151 | Garrison et al. | Mar 1998 | A |
5735894 | Krueger et al. | Apr 1998 | A |
5752522 | Murphy | May 1998 | A |
5755782 | Love et al. | May 1998 | A |
5766240 | Johnson | Jun 1998 | A |
5800527 | Jansen et al. | Sep 1998 | A |
5814097 | Sterman et al. | Sep 1998 | A |
5814098 | Hinnenkamp et al. | Sep 1998 | A |
5824064 | Taheri | Oct 1998 | A |
5824068 | Bugge | Oct 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5855563 | Kaplan et al. | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5855801 | Lin et al. | Jan 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5895420 | Mirsch, II et al. | Apr 1999 | A |
5902308 | Murphy | May 1999 | A |
5908450 | Gross et al. | Jun 1999 | A |
5919147 | Jain | Jul 1999 | A |
5921934 | Teo | Jul 1999 | A |
5921935 | Hickey | Jul 1999 | A |
5924984 | Rao | Jul 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5972004 | Williamson, IV et al. | Oct 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
5984973 | Girard et al. | Nov 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6042554 | Rosenman et al. | Mar 2000 | A |
6042607 | Williamson, IV et al. | Mar 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6074418 | Buchanan et al. | Jun 2000 | A |
6081737 | Shah | Jun 2000 | A |
6083179 | Oredsson | Jul 2000 | A |
6099475 | Seward et al. | Aug 2000 | A |
6106550 | Magovern et al. | Aug 2000 | A |
6110200 | Hinnenkamp | Aug 2000 | A |
6117091 | Young et al. | Sep 2000 | A |
6126007 | Kari et al. | Oct 2000 | A |
6162233 | Williamson, IV et al. | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6176877 | Buchanan et al. | Jan 2001 | B1 |
6197054 | Hamblin, Jr. et al. | Mar 2001 | B1 |
6217611 | Klostermeyer | Apr 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6241765 | Griffin et al. | Jun 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6264611 | Ishikawa et al. | Jul 2001 | B1 |
6283127 | Sterman et al. | Sep 2001 | B1 |
6287339 | Vazquez et al. | Sep 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6312465 | Griffin et al. | Nov 2001 | B1 |
6328727 | Frazier et al. | Dec 2001 | B1 |
6350282 | Eberhardt | Feb 2002 | B1 |
6371983 | Lane | Apr 2002 | B1 |
6375620 | Oser et al. | Apr 2002 | B1 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6440164 | Di Matteo et al. | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6468305 | Otte | Oct 2002 | B1 |
6491624 | Lotfi | Dec 2002 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6585766 | Huynh et al. | Jul 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6682559 | Myers et al. | Jan 2004 | B2 |
6685739 | DiMatteo et al. | Feb 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6764508 | Roehe et al. | Jul 2004 | B1 |
6767362 | Schreck | Jul 2004 | B2 |
6773457 | Ivancev et al. | Aug 2004 | B2 |
6786925 | Schoon et al. | Sep 2004 | B1 |
6790229 | Berreklouw | Sep 2004 | B1 |
6790230 | Beyersdorf et al. | Sep 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6893459 | Macoviak | May 2005 | B1 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6939365 | Fogarty et al. | Sep 2005 | B1 |
7011681 | Vesely | Mar 2006 | B2 |
7025780 | Gabbay | Apr 2006 | B2 |
7070616 | Majercak et al. | Jul 2006 | B2 |
7097659 | Woolfson et al. | Aug 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7147663 | Berg et al. | Dec 2006 | B1 |
7153324 | Case et al. | Dec 2006 | B2 |
7195641 | Palmaz et al. | Mar 2007 | B2 |
7201771 | Lane | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7220274 | Quinn | May 2007 | B1 |
7238200 | Lee et al. | Jul 2007 | B2 |
7252682 | Seguin | Aug 2007 | B2 |
7261732 | Justino | Aug 2007 | B2 |
RE40377 | Williamson, IV et al. | Jun 2008 | E |
7422603 | Lane | Sep 2008 | B2 |
7513909 | Lane et al. | Apr 2009 | B2 |
7556647 | Drews et al. | Jul 2009 | B2 |
7569072 | Berg et al. | Aug 2009 | B2 |
7998151 | St. Goar et al. | Aug 2011 | B2 |
8142497 | Friedman | Mar 2012 | B2 |
8517027 | Haig | Aug 2013 | B2 |
8839957 | Murad et al. | Sep 2014 | B2 |
20010004715 | Duran et al. | Jun 2001 | A1 |
20010023372 | Chen et al. | Sep 2001 | A1 |
20010039435 | Roue et al. | Nov 2001 | A1 |
20010039436 | Frazier et al. | Nov 2001 | A1 |
20010041914 | Frazier et al. | Nov 2001 | A1 |
20010041915 | Roue et al. | Nov 2001 | A1 |
20010049492 | Frazier et al. | Dec 2001 | A1 |
20020020074 | Love et al. | Feb 2002 | A1 |
20020026238 | Lane et al. | Feb 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020123802 | Snyders | Sep 2002 | A1 |
20020138138 | Yang | Sep 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020188348 | DiMatteo et al. | Dec 2002 | A1 |
20020198594 | Schreck | Dec 2002 | A1 |
20030014104 | Cribier | Jan 2003 | A1 |
20030023300 | Bailey et al. | Jan 2003 | A1 |
20030023303 | Palmaz et al. | Jan 2003 | A1 |
20030036795 | Andersen et al. | Feb 2003 | A1 |
20030040792 | Gabbay | Feb 2003 | A1 |
20030055495 | Pease et al. | Mar 2003 | A1 |
20030100920 | Akin et al. | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030109924 | Cribier | Jun 2003 | A1 |
20030114913 | Spenser et al. | Jun 2003 | A1 |
20030130729 | Paniagua et al. | Jul 2003 | A1 |
20030149478 | Figulla et al. | Aug 2003 | A1 |
20030167089 | Lane | Sep 2003 | A1 |
20030217415 | Crouch et al. | Nov 2003 | A1 |
20030236568 | Hojeibane et al. | Dec 2003 | A1 |
20040019374 | Hojeibane et al. | Jan 2004 | A1 |
20040034411 | Quijano et al. | Feb 2004 | A1 |
20040044406 | Woolfson et al. | Mar 2004 | A1 |
20040106976 | Bailey et al. | Jun 2004 | A1 |
20040122514 | Fogarty et al. | Jun 2004 | A1 |
20040122516 | Fogarty et al. | Jun 2004 | A1 |
20040167573 | Williamson et al. | Aug 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040193261 | Berreklouw | Sep 2004 | A1 |
20040206363 | McCarthy et al. | Oct 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040225355 | Stevens | Nov 2004 | A1 |
20040236411 | Sarac et al. | Nov 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20040260390 | Sarac et al. | Dec 2004 | A1 |
20050010285 | Lambrecht et al. | Jan 2005 | A1 |
20050027348 | Case et al. | Feb 2005 | A1 |
20050033398 | Seguin | Feb 2005 | A1 |
20050043760 | Fogarty et al. | Feb 2005 | A1 |
20050043790 | Seguin | Feb 2005 | A1 |
20050060029 | Le et al. | Mar 2005 | A1 |
20050065594 | DiMatteo et al. | Mar 2005 | A1 |
20050065614 | Stinson | Mar 2005 | A1 |
20050075584 | Cali | Apr 2005 | A1 |
20050075713 | Biancucci et al. | Apr 2005 | A1 |
20050075717 | Nguyen et al. | Apr 2005 | A1 |
20050075718 | Nguyen et al. | Apr 2005 | A1 |
20050075719 | Bergheim | Apr 2005 | A1 |
20050075720 | Nguyen et al. | Apr 2005 | A1 |
20050075724 | Svanidze et al. | Apr 2005 | A1 |
20050080454 | Drews et al. | Apr 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137687 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137690 | Salahieh et al. | Jun 2005 | A1 |
20050137692 | Haug et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050159811 | Lane | Jul 2005 | A1 |
20050165479 | Drews et al. | Jul 2005 | A1 |
20050182486 | Gabbay | Aug 2005 | A1 |
20050192665 | Spenser et al. | Sep 2005 | A1 |
20050199401 | Patel et al. | Sep 2005 | A1 |
20050203616 | Cribier | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050203618 | Sharkawy et al. | Sep 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050222674 | Paine | Oct 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050240263 | Fogarty et al. | Oct 2005 | A1 |
20050251252 | Stobie | Nov 2005 | A1 |
20050261765 | Liddicoat | Nov 2005 | A1 |
20050283231 | Haug et al. | Dec 2005 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060052867 | Revuelta et al. | Mar 2006 | A1 |
20060058871 | Zakay et al. | Mar 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060085060 | Campbell | Apr 2006 | A1 |
20060095125 | Chinn et al. | May 2006 | A1 |
20060122634 | Ino et al. | Jun 2006 | A1 |
20060149360 | Schwammenthal et al. | Jul 2006 | A1 |
20060154230 | Cunanan et al. | Jul 2006 | A1 |
20060167543 | Bailey et al. | Jul 2006 | A1 |
20060195184 | Lane et al. | Aug 2006 | A1 |
20060195185 | Lane et al. | Aug 2006 | A1 |
20060195186 | Drews et al. | Aug 2006 | A1 |
20060207031 | Cunanan et al. | Sep 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060271172 | Tehrani | Nov 2006 | A1 |
20060271175 | Woolfson et al. | Nov 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20060287719 | Rowe et al. | Dec 2006 | A1 |
20070005129 | Damm et al. | Jan 2007 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070016285 | Lane et al. | Jan 2007 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20070016288 | Gurskis et al. | Jan 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070078509 | Lotfy | Apr 2007 | A1 |
20070078510 | Ryan | Apr 2007 | A1 |
20070100440 | Figulla et al. | May 2007 | A1 |
20070129794 | Realyvasquez | Jun 2007 | A1 |
20070142906 | Figulla et al. | Jun 2007 | A1 |
20070142907 | Moaddeb et al. | Jun 2007 | A1 |
20070150053 | Gurskis et al. | Jun 2007 | A1 |
20070156233 | Kapadia et al. | Jul 2007 | A1 |
20070162103 | Case et al. | Jul 2007 | A1 |
20070162107 | Haug et al. | Jul 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070179604 | Lane | Aug 2007 | A1 |
20070185565 | Schwammenthal et al. | Aug 2007 | A1 |
20070198097 | Zegdi | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070203576 | Lee et al. | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070225801 | Drews et al. | Sep 2007 | A1 |
20070233237 | Krivoruchko | Oct 2007 | A1 |
20070239266 | Birdsall | Oct 2007 | A1 |
20070239269 | Dolan et al. | Oct 2007 | A1 |
20070239273 | Allen | Oct 2007 | A1 |
20070244544 | Birdsall et al. | Oct 2007 | A1 |
20070255398 | Yang et al. | Nov 2007 | A1 |
20070260305 | Drews et al. | Nov 2007 | A1 |
20070265701 | Gurskis et al. | Nov 2007 | A1 |
20070270944 | Bergheim et al. | Nov 2007 | A1 |
20070282436 | Pinchuk | Dec 2007 | A1 |
20070288089 | Gurskis et al. | Dec 2007 | A1 |
20080033543 | Gurskis et al. | Feb 2008 | A1 |
20080119875 | Ino et al. | May 2008 | A1 |
20080154356 | Obermiller et al. | Jun 2008 | A1 |
20080319543 | Lane | Dec 2008 | A1 |
20090036903 | Ino et al. | Feb 2009 | A1 |
20090088836 | Bishop et al. | Apr 2009 | A1 |
20090164005 | Dove et al. | Jun 2009 | A1 |
20090192599 | Lane et al. | Jul 2009 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20110004299 | Navia et al. | Jan 2011 | A1 |
20110214398 | Liburd et al. | Sep 2011 | A1 |
20110311493 | Dove et al. | Dec 2011 | A1 |
20120290079 | Murad et al. | Nov 2012 | A1 |
20130190857 | Mitra et al. | Jul 2013 | A1 |
20130197622 | Mitra et al. | Aug 2013 | A1 |
20130331929 | Mitra et al. | Dec 2013 | A1 |
20140277413 | Richter et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
0125393 | Nov 1984 | EP |
0143246 | Jun 1985 | EP |
116573 | Nov 1958 | SU |
1697790 | Dec 1991 | SU |
9213502 | Aug 1992 | WO |
9742871 | Nov 1997 | WO |
9843556 | Oct 1998 | WO |
0141828 | Jun 2001 | WO |
2008073582 | Jun 2008 | WO |
2014145564 | Sep 2014 | WO |
Entry |
---|
Diew Saijun, et al., “Water Absorption and Mechanical Properties of Water-Swellable Natural Rubber,” Songklanakarin J. Sci. Technol., 31 (5), pp. 561-565, Sep.-Oct. 2009. |
Holger Wack, et al., “Water-Swellable material—Application in Self-Healing Systems,” Proceedings of the First International Conference on Self Healing Materials Apr. 18-20, 2007, Noordwijk aan Zee, The Netherlands. |
http://en.wikipedia.org/wiki/Expandable_water_toy, Expanadable Water Toy, Accessed on Mar. 29, 2013. |
http://www.dermasciences.com/pedf/XtrasorbBrochure2011.pdf, Moist Wound healing Dressing, May 15, 2013. |
http://www.scapa.com/files/pages/Scapa_Cable_Solutions_online.pdf, Scapa Cable Solutions Online, May 15, 2013. |
Norton, J., et al., “Extremely Water Absorbent Nonwovens Produced with Hyrdophilic Water based Emulsion Polymer”. |
Omidian H., et al., “Recent Developments in Superporous Hydrogels,” J Pharm. Pharmacol., 59 (3), pp. 317-327, 2007. |
Philippe Genereux, et al., “Paravalvular Leak After Transcatheter Aortic Valve Replacement: The New Achilles' Heel? A Comprehensive Review of the Litereature,” J AM Coll Cardiol., vol. 61, No. 11, pp. 1125-1136, 2013. |
T. Bussemer, et al., “Evaluation of the Swelling, Hydration and Rupturing Properties of the Swelling Layer of a Rupturable Pulsatile Drug Delivery System,” European Journal of Pharmaceutics and Biopharmaceutics 56, pp. 261-270, 2003. |
Estler, C.J. et al., “Lehrbuch der allgemeinen und systematischen Pharmakologie und Toxikologie”, Schattauer, 1986. |
Hof, Herbert et al., “Duale Reihe/ Medizinische Mikrobiologie”, George Thieme Verlag, 2000, Ed.3. |
Gilbert, Thomas W. et al., “Decellularization of tissues and organs”, Biomaterials, vol. 7, Mar. 7, 2006. |
Glycerin, http://de.wikipedia.org/wiki/Glycerin. |
Number | Date | Country | |
---|---|---|---|
20180042690 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
61900827 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14533922 | Nov 2014 | US |
Child | 15792441 | US |