Biopsy apparatus having integrated fluid management

Information

  • Patent Grant
  • 8708928
  • Patent Number
    8,708,928
  • Date Filed
    Wednesday, April 15, 2009
    15 years ago
  • Date Issued
    Tuesday, April 29, 2014
    10 years ago
Abstract
A biopsy apparatus includes a driver assembly to be grasped by a user and a disposable biopsy probe assembly for releasable attachment to the driver assembly. The driver assembly includes a first vacuum path having a first one-way valve configured and arranged to permit a negative pressure fluid flow toward a vacuum source and to prevent a positive pressure fluid flow away from the vacuum source. The disposable biopsy probe assembly includes a second vacuum path having a second one-way valve configured and arranged to permit the negative pressure fluid flow from a sample basket and to redundantly prevent the positive pressure fluid flow toward the sample basket. In some embodiments, a fluid management tank may be fluidically interposed in the second vacuum path to prevent a flow of residual biopsy biological material from the sample basket to the vacuum source.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a U.S. national phase of International Application No. PCT/US2009/040663, filed Apr. 15, 2009, from which priority is claimed and which is incorporated herein by reference in its entirety.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a biopsy apparatus, and, more particularly, to a biopsy apparatus having integrated fluid management.


2. Description of the Related Art


A biopsy may be performed on a patient to help in determining whether the cells in a biopsied region are cancerous. One biopsy technique used to evaluate breast tissue, for example, involves inserting a biopsy probe into the breast tissue region of interest to capture one or more tissue samples from the region. Such a biopsy technique often utilizes a vacuum to pull the tissue to be sampled into a sample notch of the biopsy probe, after which the tissue is severed and collected. One type of vacuum assisted biopsy apparatus includes a hand-held driver assembly having a vacuum source, and a disposable biopsy probe assembly configured for releasable attachment to the driver assembly. However, in the presence of the desired negative pressure generated by the vacuum source, residual biopsy biological material, e.g., blood and particulate matter, may be drawn into the vacuum path from the patient along with the tissue sample, and thus potentially contaminating the hand-held driver assembly. Also, in the event of an undesirable positive pressure arising in the vacuum path, the potential exists for a reverse flow of fluid in a direction from the hand-held driver assembly to the patient via the disposable biopsy probe assembly.


SUMMARY OF THE INVENTION

The present invention provides a fully integrated hand-held biopsy apparatus having fluid management to reduce the potential for a transfer of contaminants during a biopsy procedure.


As used herein, the terms “first” and “second” preceding an element name, e.g., first vacuum path, second vacuum path, etc., are for identification purposes to distinguish between different elements having similar characteristic, and are not intended to necessarily imply order, unless otherwise specified, nor are the terms “first” and “second” intended to preclude the inclusion of additional similar elements.


The invention in one form is directed to a biopsy apparatus. The biopsy apparatus includes a driver assembly configured to be grasped by a user and a disposable biopsy probe assembly configured for releasable attachment to the driver assembly. The driver assembly includes an electromechanical power source, a vacuum source, and a first vacuum path permanently associated with the vacuum source. The first vacuum path has a proximal end and a distal end, the proximal end being fixedly coupled to the vacuum source in fluid communication therewith. The first vacuum path has a first one-way valve configured and arranged to permit a negative pressure fluid flow toward the vacuum source and to prevent a positive pressure fluid flow away from the vacuum source toward the distal end. The disposable biopsy probe assembly includes a transmission device, a biopsy probe, and a second vacuum path. The transmission device is configured for driving engagement with the electromechanical power source. The biopsy probe is drivably coupled to the transmission device, and the biopsy probe has a sample basket for receiving a biopsy tissue sample. The second vacuum path has a first end and a second end, the first end being configured for removable attachment to the distal end of the first vacuum path and the second end being coupled in fluid communication with the sample basket. The second vacuum path has a second one-way valve configured and arranged to permit the negative pressure fluid flow from the sample basket and to redundantly prevent the positive pressure fluid flow from the first end of the second vacuum path toward the sample basket.


In some embodiments, for example, the disposable biopsy probe assembly may further include a fluid management tank fluidically interposed in the second vacuum path between the first end and the second end. The fluid management tank includes a body and a filter arrangement contained within the body. The filter arrangement is configured to prevent a flow of residual biopsy biological material from the sample basket to the vacuum source.


The invention in another form is directed to a fluid management system for use in a biopsy apparatus that utilizes a biopsy probe having a sample basket configured to receive a biopsy tissue sample. The fluid management system includes a vacuum source, a non-disposable vacuum path, and a disposable vacuum path. The non-disposable vacuum path has a proximal end and a distal end, the proximal end being fixedly coupled to the vacuum source in fluid communication therewith. The non-disposable vacuum path includes a first one-way valve configured and arranged to permit a negative pressure fluid flow toward the vacuum source and to prevent a positive pressure fluid flow away from the vacuum source toward the distal end of the non-disposable vacuum path. The disposable vacuum path is temporarily coupled in fluid communication with the vacuum source via the non-disposable vacuum path. The disposable vacuum path has a first end and a second end, the first end being configured for removable attachment to the distal end of the non-disposable vacuum path and the second end being coupled in fluid communication with the sample basket. The disposable vacuum path includes a second one-way valve configured and arranged to permit the negative pressure fluid flow toward the vacuum source from the sample basket and to redundantly prevent the positive pressure fluid flow away from the distal end of the non-disposable vacuum path toward the sample basket.


The invention in another form is directed to a disposable biopsy probe assembly configured for releasable attachment to a driver assembly having an electromechanical power source, a vacuum source, and a first vacuum path permanently associated with the vacuum source. The disposable biopsy probe assembly includes a transmission device, a biopsy probe, a second vacuum path, and a fluid management tank. The transmission device is configured for driving engagement with the electromechanical power source. The biopsy probe is drivably coupled to the transmission device. The biopsy probe has a sample basket for receiving a biopsy tissue sample. The second vacuum path has a first end and a second end, the first end being configured for removable attachment to the first vacuum path and the second end being coupled in fluid communication with the sample basket. The second vacuum path has a one-way valve configured and arranged to permit a negative pressure fluid flow from the sample basket and to prevent a positive pressure fluid flow from the first end of the second vacuum path toward the sample basket. A fluid management tank is fluidically interposed in the second vacuum path between the first end and the second end. The fluid management tank includes a body and a filter arrangement contained within the body configured to prevent a flow of residual biopsy biological material from the sample basket to the vacuum source with the negative pressure fluid flow. The filter arrangement includes a plurality of fluid absorption layers arranged side by side, each fluid absorption layer being spaced apart from an adjacent fluid absorption layer, and each fluid absorption layer having a respective through opening, wherein adjacent through openings of the plurality of fluid absorption layers are offset to form a tortuous open fluid passageway through the plurality of fluid absorption layers.


In accordance with one or more aspects of the invention, the fluid connection interface between the driver assembly and the disposable biopsy probe assembly is automatic upon installation of the disposable biopsy probe assembly on the driver assembly. Thus, no specific operator actions are required to establish the connection between the vacuum path of the disposable biopsy probe assembly and the vacuum source of the driver assembly.


Also, in accordance with one or more aspects of the invention, the biopsy apparatus is provided with multiple levels of prevention of cross-contamination between the non-invasive reusable driver assembly and the disposable biopsy probe assembly. In addition, there is provided multiple levels of prevention of reverse flow (positive pressure flow) from the vacuum source towards the patient. Also, the prevention of cross-contamination is facilitated by having on the disposable biopsy probe assembly a fluid management tank to provide fully enclosed storage of biopsy fluids with reduced risk of post-procedure spillage and multiple stages of absorption of biopsy liquids from vacuum pathway, as well as doing so while permitting 360-degree turnability of the biopsy apparatus without compromising vacuum pathways.





BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a perspective view of a biopsy apparatus, configured in accordance with an embodiment of the present invention, with a disposable biopsy probe mounted to a driver assembly;



FIG. 2 is a perspective view of a biopsy apparatus of FIG. 1, with the disposable biopsy probe detached from the driver assembly;



FIG. 3 is a schematic representation of the biopsy apparatus of FIG. 1;



FIG. 4A is a perspective view of a vacuum seal element of the vacuum path of the driver assembly of FIG. 3;



FIG. 4B is a perspective view of a vacuum seal element of the vacuum path of the disposable biopsy probe of FIG. 3;



FIG. 5A is a perspective view of the fluid management tank of the disposable biopsy probe shown in FIGS. 2 and 3, with a portion broken away to expose a filter arrangement;



FIG. 5B is an exploded view of a plurality of fluid absorption layers of the filter arrangement of FIG. 5A; and



FIG. 5C is a perspective view of a porous filter element of the filter arrangement of FIG. 5A.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate an embodiment of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings, and more particularly to FIGS. 1 and 2, there is shown a biopsy apparatus 10 which generally includes a non-invasive, e.g., non-disposable, driver assembly 12 and a disposable biopsy probe assembly 14.


Referring also to FIG. 3, driver assembly 12 and disposable biopsy probe assembly 14 collectively include a fluid management system 16 that includes a vacuum source 18, first vacuum path 20 and a second vacuum path 22. Vacuum source 18 and a first vacuum path 20 are permanently associated with driver assembly 12, and a second vacuum path 22 is permanently associated with disposable biopsy probe assembly 14, as more fully described below, to help facilitate the safe and effective collection of a biopsy tissue sample.


As used herein, the term “non-disposable” is used to refer to a device that is intended for use on multiple patients during the lifetime of the device, and the term “disposable” is used to refer to a device that is intended to be disposed of after use on a single patient. Also, the term “vacuum path” means a fluid passageway used to facilitate a vacuum between two points, the fluid passageway passing through one or more components, such as for example, one or more of tubing, conduits, couplers, and interposed devices. Also, the term “permanently associated” means a connection that is not intended for releasable attachment on a routine basis during the lifetime of the components. Thus, for example, driver assembly 12 including vacuum source 18 and first vacuum path 20 is reusable as a unit in its entirety, whereas disposable biopsy probe assembly 14 and second vacuum path 22 are disposable as a unit in its entirety.


Driver assembly 12 includes a housing 24 configured, and ergonomically designed, to be grasped by a user. Driver assembly 12 includes (contained within housing 24) vacuum source 18, first vacuum path 20, a controller 26, an electromechanical power source 28, and a vacuum monitoring mechanism 30. A user interface 32 is located to be mounted to, and externally accessible with respect to, housing 24.


Controller 26 is communicatively coupled to electromechanical power source 28, vacuum source 18, user interface 32, and vacuum monitoring mechanism 30. Controller 26 may include, for example, a microprocessor and associated memory for executing program instructions to perform functions associated with the retrieval of biopsy tissue samples, such as controlling one or more components of vacuum source 18 and electromechanical power source 28. Controller 26 also may execute program instructions to monitor one or more conditions and/or positions of components of biopsy apparatus 10, and to monitor the status of fluid management system 16 associated with driver assembly 12 and disposable probe assembly 14.


The user interface 32 includes control buttons 321 and visual indicators 322, with control buttons 321 providing user control over various functions of biopsy apparatus 10, and visual indicators 322 providing visual feedback of the status of one or more conditions and/or positions of components of biopsy apparatus 10.


The electromechanical power source 28 may include, for example, an electrical energy source, e.g., battery, 34 and an electrical drive assembly 36. Battery 34 may be, for example, a rechargeable battery. Battery 34 provides electrical power to all electrically powered components in biopsy device 10, and thus for simplicity in the drawings, such electrical couplings are not shown. For example, battery 34 is electrically coupled to vacuum source 18, controller 26, user interface 32 and electrical drive assembly 36.


In the present embodiment, electrical drive assembly 36 includes a first drive 361 and a second drive 362, each being respectively coupled to battery 34, and each of first drive 361 and second drive 362 respectively electrically and controllably coupled to user interface 32.


First drive 361 may include an electrical motor 381 and a motion transfer unit 401 (shown schematically by a line). Second drive 362 may include an electrical motor 382 and a motion transfer unit 402 (shown schematically by a line). Each electrical motor 381, 382 may be, for example, a direct current (DC) motor, stepper motor, etc. Motion transfer unit 401 of first drive 361 may be configured, for example, with a rotational-to-linear motion converter, such as a worm gear arrangement, rack and pinion arrangement, solenoid-slide arrangement, etc. Motion transfer unit 402 of second drive 362 may be configured to transmit rotary motion. Each of first drive 361 and second drive 362 may include one or more of a gear, gear train, belt/pulley arrangement, etc.


Vacuum source 18 is electrically coupled to battery 34, and has a vacuum source port 181 for establishing a vacuum. Vacuum source 18 is electrically and controllably coupled to user interface 32. Vacuum source 18 may further include, for example, a vacuum pump 182 driven by an electric motor 183. Vacuum pump 182 may be, for example, a peristaltic pump, a diaphragm pump, syringe-type pump, etc.


First vacuum path 20 of driver assembly 12 is permanently associated with vacuum source 18. First vacuum path 20, also sometimes referred to as a non-disposable vacuum path, has a proximal end 201 and a distal end 202, and includes, for example, conduits 203, a first one-way valve 204, and a particulate filter 205. Proximal end 201 is fixedly coupled to vacuum source 18 in fluid communication therewith, e.g., is fixedly connected to vacuum source port 181 of vacuum source 18. Referring also to FIG. 4A, distal end 202 includes a first vacuum seal element 206. In the present embodiment, first vacuum seal element 206 is a planar abutment surface that surrounds a first passageway 207 of first vacuum path 20.


First one-way valve 204 is configured and arranged to permit a negative pressure fluid flow toward vacuum source 18 and to prevent a positive pressure fluid flow away from vacuum source 18 toward the distal end 202 of first vacuum path 20. The first one-way valve 204 may be, for example, a check-valve, such as a ball valve or reed valve, that opens with a fluid flow toward vacuum source 18, and closes in the case of a reverse (positive) flow away from vacuum source 18.


In the present embodiment, particulate filter 205 is located between vacuum source 18 and distal end 202 of first vacuum path 20. Particulate filter 205 may be, for example, a mesh screen formed from metal or plastic. However, it is contemplated that particulate filter 205 may be located in fluid management system 16 between vacuum source 18 and a vacuum receiving component of biopsy probe assembly 14.


The vacuum monitoring mechanism 30 is coupled to vacuum source 18 to shut off vacuum source 18 when a sensed vacuum level has fallen below a threshold level. Vacuum monitoring mechanism 30 may include, for example, a vacuum monitor and control program executing on controller 26, and a pressure sensor 301 coupled to controller 26, and in fluid communication with first vacuum path 20 for detecting a pressure in first vacuum path 20. If, for example, the vacuum flow level in first vacuum path 20 falls below a predetermined level, indicating a restriction in fluid management system 16, controller 26 may respond by shutting off vacuum source 18, e.g., turning off electric motor 183. Alternatively, controller 26 may monitor the current supplied to electric motor 183, and if the current exceeds a predetermined amount, indicating a restriction in fluid management system 16, controller 26 may respond by shutting off vacuum source 18, e.g., turning off electric motor 183.


The disposable biopsy probe assembly 14 is configured for releasable attachment to driver assembly 12. As used herein, the term “releasable attachment” means a configuration that facilitates an intended temporary connection followed by selective detachment involving a manipulation of disposable biopsy probe assembly 14 relative to driver assembly 12, without the need for tools.


The disposable biopsy probe assembly 14 includes a frame 141 to which a transmission device 42, a biopsy probe 44, and the second vacuum path 22 are mounted. Biopsy probe 44 is drivably coupled to transmission device 42, and transmission device 42 is drivably coupled to electromechanical power source 28 of driver assembly 12.


In the embodiment shown, transmission device 42 includes a first driven unit 421 and a second driven unit 422 that are drivably engaged with various components of biopsy probe 44. Also, first driven unit 421 is drivably engaged with first drive 361 of electrical drive assembly 36 of driver assembly 12. Second driven unit 422 is drivably engaged with second drive 362 of electrical drive assembly 36 of driver assembly 12.


In the embodiment shown (see, e.g., FIGS. 1-3), biopsy probe 44 includes a sample basket 441 and a cutter cannula 442. Sample basket 441 has a sharpened tip 443 to aid in puncturing tissue and has a sample notch 444 in the form of a recessed region for receiving a biopsy tissue sample.


In operation, cutter cannula 442 is linearly driven by first driven unit 421 to traverse over sample notch 444 of sample basket 441. For example, first driven unit 421 may be in the form of a linear slide that is drivably engaged with first drive 361 of driver assembly 12, which in turn drives cutter cannula 442 in a first direction 46 to expose sample notch 444 of sample basket 441, and drives cutter cannula 442 in a second direction 48 opposite to first direction 46 to sever tissue prolapsed into sample notch 444. Also, first driven unit 421 and second driven unit 422 may be configured to operate in unison to advance both sample basket 441 and cutter cannula 442 in unison in a piercing shot operation to aid in inserting biopsy probe 44 into fibrous tissue.


The second driven unit 422 may include a flexible toothed rack 50 and a gear train 52. Flexible toothed rack 50 is connected to sample basket 441, and gear train 52 is engaged with the teeth of flexible toothed rack 50. In operation, second drive 362 transfers rotary motion to gear train 52, and in turn gear train 52 engages flexible toothed rack 50 to move sample basket 441 linearly to transport the tissue captured in sample notch 444 out of the body of the patient. Flexible toothed rack 50 is received in a coiling unit 54 when retracting, thereby enabling substantial reduction in the overall device length of biopsy apparatus 10 as compared to a rigid capture system. The severed tissue sample is transported out of the body of the patient and into tissue sample chamber 56 (mounted to frame 141), which scoops the tissue sample out of sample notch 444.


In the present embodiment, the second vacuum path 22, also sometimes referred to as a disposable vacuum path 22, has a first end 221 and a second end 222, and includes for example, conduits 223, a second one-way valve 224, and a fluid management tank 225. The first end 221 is configured for removable attachment to the distal end 202 of the first vacuum path 20 of driver assembly 12. The second end 222 is coupled in fluid communication with sample basket 441, and more particularly, is coupled in fluid communication with sample notch 444 of sample basket 441.


Referring also to FIG. 4B, the first end 221 of the disposable vacuum path 22 includes a second vacuum seal element 226. The first vacuum seal element 206 of the driver assembly 12 contacts the second vacuum seal element 226 of the disposable biopsy probe assembly 14 in sealing engagement when the disposable biopsy probe assembly 14 is attached to driver assembly 12. The second vacuum seal element 226 is a compliant, e.g., rubber, annular member that surrounds a second passageway 227 of the second vacuum path 22.


The second one-way valve 224 configured and arranged to permit the negative pressure fluid flow from sample basket 441 toward the first end 221 of the second vacuum path 22, and to redundantly (in conjunction with first one-way valve 204 of driver assembly 12) prevent any positive pressure fluid flow in a direction from the first end 221 of the second vacuum path 22 toward sample basket 441. In other words, the second one-way valve 224 provides a redundant second level of protection in preventing any positive pressure from reaching sample notch 444 of sample basket 441. In the present embodiment, the second one-way valve 224 may be, for example, a duckbill valve, e.g., a reed-type valve, that opens with a fluid flow out the bill portion of the duckbill valve, and closes with a reverse flow. As shown, the second one-way valve 224 may be positioned within the second vacuum seal element 226 at first end 221 of second vacuum path 22.


Referring also to FIG. 5A, fluid management tank 225 is fluidically interposed in the second vacuum path 22 between the first end 221 and the second end 222. Fluid management tank 225 includes a body 58 and a filter arrangement 60 contained within body 58 configured to prevent a flow of residual biopsy biological material, e.g., blood and particulate matter, from sample notch 444 of sample basket 441 to vacuum source 18 of driver assembly 12.


Body 58 of fluid management tank 225 has a first port 581 and a second port 582, with the second vacuum path 22 continuing between the first port 581 and the second port 582. The second port 582 of fluid management tank 225 is coupled to sample basket 441. Each of the second one-way valve 224 and the second vacuum seal element 226 of the second vacuum path 22 is coupled to the first port 581 of fluid management tank 225, and in the present embodiment, is mounted to an external surface of body 58 of fluid management tank 225.


As illustrated in FIGS. 5A and 5B, filter arrangement 60 includes a plurality of fluid absorption layers 62, individually identified as layers 621, 622, 623 and 624, arranged side by side, with each fluid absorption layer 621, 622, 623 and 624 being spaced apart from an adjacent fluid absorption layer e.g., 621 to 622, 622 to 623, 623, to 624. Each fluid absorption layer 621, 622, 623 and 624 has a respective through opening 641, 642, 643, 644, wherein adjacent through openings of through openings 641, 642, 643, 644 of the plurality of fluid absorption layers 62 are offset one to the next, e.g., in at least one of an X, Y, and Z direction, to form a tortuous open fluid passageway 66 through the plurality of fluid absorption layers 62. Each fluid absorption layer 621, 622, 623 and 624 may be, for example, a blotting paper.


As illustrated in FIGS. 5A and 5C, filter arrangement 60 may further include a porous filter element 68 arranged to be fluidically in series with the plurality of fluid absorption layers 62 along the second vacuum path 22 that defines second passageway 227. The porous filter element 68 exhibits increased restriction to fluid flow as an increased number of pores 70 in the porous filter element 68 become clogged by residual biopsy biological material, such as blood and tissue particles. When a volume of the fluid flow through fluid management tank 225 has been reduced to a predetermined level, vacuum monitoring mechanism 30 senses the vacuum restriction, and controller 26 responds to shut off vacuum source 18.


While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.

Claims
  • 1. A biopsy apparatus, comprising: (a) a driver assembly configured to be grasped by a user, including: an electromechanical power source; a vacuum source; and a first vacuum path permanently associated with said vacuum source, said first vacuum path having a proximal end and a distal end, said proximal end being fixedly coupled to said vacuum source in fluid communication therewith, said first vacuum path having a first one-way valve configured and arranged to permit a negative pressure fluid flow toward said vacuum source and to prevent a positive pressure fluid flow away from said vacuum source toward said distal end; and (b) a disposable biopsy probe assembly configured for releasable attachment to said driver assembly, said disposable biopsy probe assembly including: a transmission device configured to drive engagement with said electromechanical power source; a biopsy probe drivably coupled to said transmission device, said biopsy probe configured to collect; and a second vacuum path having a first end and a second end, said first end being configured for removable attachment to said distal end of said first vacuum path and said second end being coupled in fluid communication with said sample basket, said second vacuum path having a second one-way valve configured and arranged to permit the negative pressure fluid flow from said sample basket and to redundantly prevent the positive pressure fluid flow from said first end of said second vacuum path toward said sample basket.
  • 2. The biopsy apparatus of claim 1, wherein: said distal end of said first vacuum path includes a first vacuum seal element; andsaid first end of said second vacuum path includes a second vacuum seal element, said first vacuum seal element contacting said second vacuum seal element in sealing engagement simultaneously with said disposable biopsy probe assembly being attached to said driver assembly, said second one-way valve being positioned within said second vacuum seal element.
  • 3. The biopsy apparatus of claim 2, wherein the first vacuum seal element is a planar abutment surface that surrounds a first passageway of said first vacuum path, and said second vacuum seal element is a compliant annular member that surrounds a second passageway of the second vacuum path, said compliant annular member of said second vacuum seal element configured to contact said planar abutment surface of said first vacuum seal element in sealing engagement.
  • 4. The biopsy apparatus of claim 1, said disposable biopsy probe assembly including a fluid management tank fluidically interposed in said second vacuum path between said first end and said second end, said fluid management tank including body and a filter arrangement contained within the body configured to prevent a flow of residual biopsy biological material from said sample basket to said vacuum source.
  • 5. The biopsy apparatus of claim 4, further comprising: said biopsy probe having a sample basket for receiving said biopsy tissue sample;a first vacuum seal element located at said distal end of said first vacuum path;a second vacuum seal element located at the first end of said second vacuum path, said first vacuum seal element contacting said second vacuum seal element in sealing engagement when said disposable biopsy probe assembly is attached to said driver assembly; andsaid body of said fluid management tank having a first port and a second port, said second vacuum path continuing between said first port and said second port, said second port being coupled to said sample basket; andeach of said second one-way valve and said second vacuum seal being coupled to said first port and mounted to an external surface of said body of said fluid management tank.
  • 6. The biopsy apparatus of claim 4, wherein said filter arrangement includes a plurality of fluid absorption layers arranged side by side, each fluid absorption layer being spaced apart from an adjacent fluid absorption layer, each fluid absorption layer having a respective through opening, wherein adjacent through openings of said plurality of fluid absorption layers are offset to form a tortuous open fluid passageway through said plurality of fluid absorption layers.
  • 7. The biopsy apparatus of claim 6, wherein said filter arrangement further includes a porous filter element arranged to be fluidically in series with said plurality of fluid absorption layers along said second vacuum path, wherein said porous filter element exhibits increased restriction to fluid flow as an increased number of pores in said porous filter element become clogged by residual biopsy biological material.
  • 8. The biopsy apparatus of claim 7, further comprising a vacuum monitoring mechanism coupled to said vacuum source to shut off said vacuum source when a volume of said fluid flow through said fluid management tank has been reduced to a predetermined level.
  • 9. The biopsy apparatus of claim 8, wherein said vacuum monitoring mechanism includes a pressure sensor in fluid communication with said first vacuum path.
  • 10. The biopsy apparatus of claim 4, further comprising a particulate filter located between said vacuum source and said distal end of said first vacuum path.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2009/040663 4/15/2009 WO 00 9/23/2011
Publishing Document Publishing Date Country Kind
WO2010/120294 10/21/2010 WO A
US Referenced Citations (495)
Number Name Date Kind
737293 Summerfeldt Aug 1903 A
1585934 Muir May 1926 A
1663761 Johnson Mar 1928 A
2953934 Sundt Sep 1960 A
3019733 Braid Feb 1962 A
3224434 Molomut et al. Dec 1965 A
3289669 Dwyer et al. Dec 1966 A
3477423 Griffith Nov 1969 A
3512519 Hall May 1970 A
3561429 Jewett et al. Feb 1971 A
3565074 Foti Feb 1971 A
3606878 Kellogg Sep 1971 A
3727602 Hyden et al. Apr 1973 A
3732858 Banko May 1973 A
3785380 Brumfield Jan 1974 A
3800783 Jamshidi Apr 1974 A
3844272 Banko Oct 1974 A
3882849 Jamshidi May 1975 A
3889682 Denis et al. Jun 1975 A
4275730 Hussein Jun 1981 A
4282884 Boebel Aug 1981 A
4306570 Matthews Dec 1981 A
4354092 Manabe et al. Oct 1982 A
4393879 Milgrom Jul 1983 A
4445509 Auth May 1984 A
4490137 Moukheibir Dec 1984 A
4549554 Markham Oct 1985 A
4577629 Martinez Mar 1986 A
4589414 Yoshida et al. May 1986 A
4603694 Wheeler Aug 1986 A
4605011 Naslund Aug 1986 A
4616215 Maddalena Oct 1986 A
4617430 Bryant Oct 1986 A
4620539 Andrews et al. Nov 1986 A
4643197 Greene et al. Feb 1987 A
4645153 Granzow et al. Feb 1987 A
4678459 Onik et al. Jul 1987 A
4696298 Higgins et al. Sep 1987 A
4702260 Wang Oct 1987 A
4706687 Rogers Nov 1987 A
4776346 Beraha et al. Oct 1988 A
4792327 Swartz Dec 1988 A
4844087 Garg Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4893635 de Groot et al. Jan 1990 A
4907598 Bauer Mar 1990 A
RE33258 Onik et al. Jul 1990 E
4940061 Terwilliger et al. Jul 1990 A
4952817 Bolan et al. Aug 1990 A
4958625 Bates et al. Sep 1990 A
4967762 DeVries Nov 1990 A
4986278 Ravid et al. Jan 1991 A
4986279 O'Neill Jan 1991 A
4986807 Farr Jan 1991 A
4989614 Dejter, Jr. et al. Feb 1991 A
5025797 Baran Jun 1991 A
5048538 Terwilliger et al. Sep 1991 A
5057822 Hoffman Oct 1991 A
5078603 Cohen Jan 1992 A
5125413 Baran Jun 1992 A
5138245 Mattinger et al. Aug 1992 A
5146921 Terwilliger et al. Sep 1992 A
5158528 Walker et al. Oct 1992 A
5176628 Charles et al. Jan 1993 A
5223012 Best et al. Jun 1993 A
5225763 Krohn et al. Jul 1993 A
5234000 Hakky et al. Aug 1993 A
5236334 Bennett Aug 1993 A
5242404 Conley et al. Sep 1993 A
5249583 Mallaby Oct 1993 A
5282476 Terwilliger Feb 1994 A
5282477 Bauer Feb 1994 A
5290253 Kira Mar 1994 A
5324306 Makower et al. Jun 1994 A
5334183 Wuchinich Aug 1994 A
5368029 Holcombe et al. Nov 1994 A
5368045 Clement et al. Nov 1994 A
5383874 Jackson et al. Jan 1995 A
5397462 Higashijima et al. Mar 1995 A
5400798 Baran Mar 1995 A
5439474 Li Aug 1995 A
5458112 Weaver Oct 1995 A
5469860 DeSantis Nov 1995 A
5471994 Guirguis Dec 1995 A
5479486 Saji Dec 1995 A
5485917 Early Jan 1996 A
5492130 Chiou Feb 1996 A
5496860 Matsumoto et al. Mar 1996 A
5511556 DeSantis Apr 1996 A
5526822 Burbank et al. Jun 1996 A
5535755 Heske Jul 1996 A
5546957 Heske Aug 1996 A
5554151 Hinchliffe Sep 1996 A
5560373 De Santis Oct 1996 A
5564436 Hakky et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5575293 Miller et al. Nov 1996 A
5591170 Spievack et al. Jan 1997 A
5601585 Banik et al. Feb 1997 A
5602449 Krause et al. Feb 1997 A
5617874 Baran Apr 1997 A
5649547 Ritchart et al. Jul 1997 A
5655542 Weilandt Aug 1997 A
5655657 Roshdy Aug 1997 A
5665101 Becker et al. Sep 1997 A
5669394 Bergey et al. Sep 1997 A
5699909 Foster Dec 1997 A
5700265 Romano Dec 1997 A
5709697 Ratcliff et al. Jan 1998 A
5720760 Becker et al. Feb 1998 A
5735264 Siczek et al. Apr 1998 A
5752923 Terwilliger May 1998 A
5755714 Murphy-Chutorian May 1998 A
5766135 Terwilliger Jun 1998 A
5769086 Ritchart et al. Jun 1998 A
5769795 Terwilliger Jun 1998 A
5775333 Burbank et al. Jul 1998 A
5779649 Herbert Jul 1998 A
5788651 Weilandt Aug 1998 A
5792167 Kablik et al. Aug 1998 A
5807282 Fowler Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817034 Milliman et al. Oct 1998 A
5823970 Terwilliger Oct 1998 A
5827305 Gordon Oct 1998 A
5830219 Bird et al. Nov 1998 A
D403405 Terwilliger Dec 1998 S
5857982 Milliman et al. Jan 1999 A
5879365 Whitfield et al. Mar 1999 A
5908233 Heskett et al. Jun 1999 A
5913857 Ritchart et al. Jun 1999 A
5916198 Dillow Jun 1999 A
5916229 Evans Jun 1999 A
5928164 Burbank et al. Jul 1999 A
5944673 Gregoire et al. Aug 1999 A
5951490 Fowler Sep 1999 A
5951575 Bolduc et al. Sep 1999 A
5964716 Gregoire et al. Oct 1999 A
5971939 DeSantis et al. Oct 1999 A
5976164 Bencini et al. Nov 1999 A
5980469 Burbank et al. Nov 1999 A
5980545 Pacala et al. Nov 1999 A
6007495 Matula Dec 1999 A
6007497 Huitema Dec 1999 A
6007556 Kablik et al. Dec 1999 A
6017316 Ritchart et al. Jan 2000 A
6018227 Kumar et al. Jan 2000 A
6019733 Farascioni Feb 2000 A
6022324 Skinner Feb 2000 A
6022325 Siczek et al. Feb 2000 A
6027458 Janssens Feb 2000 A
6036657 Milliman et al. Mar 2000 A
6050955 Bryan et al. Apr 2000 A
6055870 Jaeger May 2000 A
6071247 Kennedy Jun 2000 A
6077230 Gregoire et al. Jun 2000 A
6083176 Terwilliger Jul 2000 A
6083237 Huitema et al. Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6106484 Terwilliger Aug 2000 A
6110129 Terwilliger Aug 2000 A
6120462 Hibner et al. Sep 2000 A
6123957 Jernberg Sep 2000 A
6126617 Weilandt et al. Oct 2000 A
6142955 Farascioni et al. Nov 2000 A
6162187 Buzzard et al. Dec 2000 A
6165136 Nishtala Dec 2000 A
6193673 Viola et al. Feb 2001 B1
6196978 Weilandt et al. Mar 2001 B1
6213957 Milliman et al. Apr 2001 B1
6220248 Voegele et al. Apr 2001 B1
6231522 Voegele et al. May 2001 B1
6241687 Voegele et al. Jun 2001 B1
6267759 Quick Jul 2001 B1
6273861 Bates et al. Aug 2001 B1
6273862 Privitera et al. Aug 2001 B1
6280398 Ritchart et al. Aug 2001 B1
6283925 Terwilliger Sep 2001 B1
6322523 Weilandt et al. Nov 2001 B2
6328701 Terwilliger Dec 2001 B1
6331166 Burbank et al. Dec 2001 B1
6358217 Bourassa Mar 2002 B1
6402701 Kaplan et al. Jun 2002 B1
6419641 Mark et al. Jul 2002 B1
6428486 Ritchart et al. Aug 2002 B2
6428487 Burdorff et al. Aug 2002 B1
6432064 Hibner et al. Aug 2002 B1
6432065 Burdorff et al. Aug 2002 B1
6434507 Clayton et al. Aug 2002 B1
6436054 Viola et al. Aug 2002 B1
6461302 Thompson Oct 2002 B1
6471659 Eggers et al. Oct 2002 B2
6482158 Mault Nov 2002 B2
6485436 Truckai et al. Nov 2002 B1
6488636 Bryan et al. Dec 2002 B2
6527736 Attinger et al. Mar 2003 B1
6540694 Van Bladel et al. Apr 2003 B1
6540761 Houser Apr 2003 B2
6544194 Kortenbach et al. Apr 2003 B1
6551255 Van Bladel et al. Apr 2003 B2
6554779 Viola et al. Apr 2003 B2
6585664 Burdorff et al. Jul 2003 B2
6585694 Smith et al. Jul 2003 B1
6586585 Bastian Jul 2003 B1
6638235 Miller et al. Oct 2003 B2
6656133 Voegele et al. Dec 2003 B2
6659105 Burbank et al. Dec 2003 B2
6659338 Dittmann et al. Dec 2003 B1
6683439 Takano et al. Jan 2004 B2
6689072 Kaplan et al. Feb 2004 B2
6695786 Wang et al. Feb 2004 B2
6702832 Ross et al. Mar 2004 B2
6712773 Viola Mar 2004 B1
6712774 Voegele et al. Mar 2004 B2
6752768 Burdorff et al. Jun 2004 B2
6753671 Harvey Jun 2004 B1
6755802 Bell Jun 2004 B2
6758824 Miller et al. Jul 2004 B1
6764495 Lee et al. Jul 2004 B2
6832990 Kortenbach et al. Dec 2004 B2
6849080 Lee et al. Feb 2005 B2
6860860 Viola Mar 2005 B2
6887210 Quay May 2005 B2
6908440 Fisher Jun 2005 B2
D508458 Solland et al. Aug 2005 S
6926676 Turturro et al. Aug 2005 B2
6984213 Horner et al. Jan 2006 B2
7004174 Eggers et al. Feb 2006 B2
7010332 Irvin et al. Mar 2006 B1
7025732 Thompson et al. Apr 2006 B2
D525583 Vu Jul 2006 S
7153274 Stephens et al. Dec 2006 B2
7156814 Williamson et al. Jan 2007 B1
7182754 Brigham et al. Feb 2007 B2
7189206 Quick et al. Mar 2007 B2
7189207 Viola Mar 2007 B2
7219867 Kalis et al. May 2007 B2
7226424 Ritchart et al. Jun 2007 B2
7252641 Thompson et al. Aug 2007 B2
7276032 Hibner Oct 2007 B2
7328794 Lubs et al. Feb 2008 B2
7347828 Francese et al. Mar 2008 B2
7347829 Mark et al. Mar 2008 B2
7374544 Freeman et al. May 2008 B2
7390306 Mark Jun 2008 B2
7397654 Mori Jul 2008 B2
7402140 Spero et al. Jul 2008 B2
7405536 Watts Jul 2008 B2
7407054 Seiler et al. Aug 2008 B2
7432813 Postma Oct 2008 B2
7452367 Rassman et al. Nov 2008 B2
7458940 Miller Dec 2008 B2
7464040 Joao Dec 2008 B2
7473232 Teague Jan 2009 B2
7481775 Weikel, Jr. et al. Jan 2009 B2
7490048 Joao Feb 2009 B2
7491177 Hibner Feb 2009 B2
7494473 Eggers et al. Feb 2009 B2
7497833 Miller Mar 2009 B2
7510534 Burdorff et al. Mar 2009 B2
7513877 Viola Apr 2009 B2
7517321 McCullough et al. Apr 2009 B2
7517322 Weikel, Jr. et al. Apr 2009 B2
7549978 Carlson et al. Jun 2009 B2
7575557 Morton et al. Aug 2009 B2
7648466 Stephens et al. Jan 2010 B2
7670299 Beckman et al. Mar 2010 B2
7717861 Weikel et al. May 2010 B2
7727164 Cicenas et al. Jun 2010 B2
7740594 Hibner Jun 2010 B2
7740596 Hibner Jun 2010 B2
7740597 Cicenas et al. Jun 2010 B2
7758515 Hibner Jul 2010 B2
7762961 Heske et al. Jul 2010 B2
7806834 Beckman et al. Oct 2010 B2
7828746 Teague Nov 2010 B2
7846109 Parihar et al. Dec 2010 B2
7854706 Hibner Dec 2010 B2
7862517 Tsonton et al. Jan 2011 B2
7862518 Parihar Jan 2011 B2
7871384 Thompson et al. Jan 2011 B2
7883476 Miller et al. Feb 2011 B2
7883494 Martin Feb 2011 B2
7906076 Fischer Mar 2011 B2
7914462 Hutchins et al. Mar 2011 B2
7974681 Wallace et al. Jul 2011 B2
8002713 Heske et al. Aug 2011 B2
8016844 Privitera et al. Sep 2011 B2
8052615 Reuber et al. Nov 2011 B2
8057402 Hibner et al. Nov 2011 B2
8073008 Mehta et al. Dec 2011 B2
8075495 Andreyko et al. Dec 2011 B2
8083687 Parihar Dec 2011 B2
8118755 Hibner et al. Feb 2012 B2
8152738 Li et al. Apr 2012 B2
8162850 Parihar et al. Apr 2012 B2
8172771 Miller et al. May 2012 B2
8187204 Miller et al. May 2012 B2
8190238 Moll et al. May 2012 B2
8206409 Privitera et al. Jun 2012 B2
8251916 Speeg et al. Aug 2012 B2
8277393 Miller et al. Oct 2012 B2
8282574 Coonahan et al. Oct 2012 B2
8287465 Hardin et al. Oct 2012 B2
8313444 Thompson et al. Nov 2012 B2
8343069 Uchiyama et al. Jan 2013 B2
8430825 Mark Apr 2013 B2
20010007925 Ritchart et al. Jul 2001 A1
20010011156 Viola et al. Aug 2001 A1
20010012919 Terwilliger Aug 2001 A1
20010014779 Burbank et al. Aug 2001 A1
20010034530 Malackowski et al. Oct 2001 A1
20010044595 Reydel et al. Nov 2001 A1
20010047183 Privitera et al. Nov 2001 A1
20020029007 Bryan et al. Mar 2002 A1
20020045839 Voegele et al. Apr 2002 A1
20020067151 Tanishita Jun 2002 A1
20020068878 Jasonni et al. Jun 2002 A1
20020082518 Weiss et al. Jun 2002 A1
20020107043 Adamson et al. Aug 2002 A1
20020115942 Stanford et al. Aug 2002 A1
20020120212 Ritchart et al. Aug 2002 A1
20020143269 Neuenfeldt Oct 2002 A1
20020156395 Stephens et al. Oct 2002 A1
20030023188 Kritzman et al. Jan 2003 A1
20030023239 Burbank et al. Jan 2003 A1
20030093103 Malackowski et al. May 2003 A1
20030130593 Gonzalez Jul 2003 A1
20030130677 Whitman et al. Jul 2003 A1
20030163142 Paltieli et al. Aug 2003 A1
20030229293 Hibner et al. Dec 2003 A1
20030233101 Lubock et al. Dec 2003 A1
20040015079 Berger et al. Jan 2004 A1
20040019297 Angel Jan 2004 A1
20040030367 Yamaki et al. Feb 2004 A1
20040034280 Privitera et al. Feb 2004 A1
20040049128 Miller et al. Mar 2004 A1
20040054299 Burdorff et al. Mar 2004 A1
20040082915 Kadan Apr 2004 A1
20040092980 Cesarini et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040167428 Quick et al. Aug 2004 A1
20040186393 Leigh et al. Sep 2004 A1
20040210161 Burdorff et al. Oct 2004 A1
20040215103 Mueller, Jr. et al. Oct 2004 A1
20040220495 Cahir et al. Nov 2004 A1
20040230135 Merkle Nov 2004 A1
20040249278 Krause Dec 2004 A1
20040267157 Miller et al. Dec 2004 A1
20050004492 Burbank et al. Jan 2005 A1
20050004559 Quick et al. Jan 2005 A1
20050010131 Burbank et al. Jan 2005 A1
20050020909 Moctezuma de la Barrera et al. Jan 2005 A1
20050027210 Miller Feb 2005 A1
20050049489 Foerster et al. Mar 2005 A1
20050049521 Miller et al. Mar 2005 A1
20050054947 Goldenberg Mar 2005 A1
20050065453 Shabaz et al. Mar 2005 A1
20050085838 Thompson et al. Apr 2005 A1
20050088120 Avis Apr 2005 A1
20050101879 Shidham et al. May 2005 A1
20050113715 Schwindt et al. May 2005 A1
20050113716 Mueller, Jr. et al. May 2005 A1
20050124914 Dicarlo et al. Jun 2005 A1
20050124915 Eggers et al. Jun 2005 A1
20050165329 Taylor et al. Jul 2005 A1
20050177117 Crocker et al. Aug 2005 A1
20050193451 Quistgaard et al. Sep 2005 A1
20050203439 Heske et al. Sep 2005 A1
20050209530 Pflueger Sep 2005 A1
20050215921 Hibner et al. Sep 2005 A1
20050275378 Canino et al. Dec 2005 A1
20050277829 Tsonton et al. Dec 2005 A1
20050277871 Selis Dec 2005 A1
20050288605 Pellegrino et al. Dec 2005 A1
20060030784 Miller et al. Feb 2006 A1
20060074344 Hibner Apr 2006 A1
20060074345 Hibner Apr 2006 A1
20060113958 Lobert et al. Jun 2006 A1
20060116603 Shibazaki et al. Jun 2006 A1
20060122535 Daum Jun 2006 A1
20060129063 Thompson et al. Jun 2006 A1
20060149162 Daw et al. Jul 2006 A1
20060173377 McCullough et al. Aug 2006 A1
20060178666 Cosman et al. Aug 2006 A1
20060184063 Miller Aug 2006 A1
20060241515 Jones et al. Oct 2006 A1
20060258956 Haberstich et al. Nov 2006 A1
20060260994 Mark et al. Nov 2006 A1
20070016101 Feldman et al. Jan 2007 A1
20070032741 Hibner et al. Feb 2007 A1
20070032743 Hibner Feb 2007 A1
20070055173 DeLonzor et al. Mar 2007 A1
20070073326 Miller et al. Mar 2007 A1
20070090788 Hansford et al. Apr 2007 A1
20070106176 Mark et al. May 2007 A1
20070118048 Stephens et al. May 2007 A1
20070118049 Viola May 2007 A1
20070149894 Heske et al. Jun 2007 A1
20070161925 Quick et al. Jul 2007 A1
20070167782 Callahan et al. Jul 2007 A1
20070167828 Saadat Jul 2007 A1
20070167943 Janssen et al. Jul 2007 A1
20070179401 Hibner Aug 2007 A1
20070213590 Squicciarini Sep 2007 A1
20070213630 Beckman et al. Sep 2007 A1
20070213632 Okazaki et al. Sep 2007 A1
20070219572 Deck et al. Sep 2007 A1
20070236180 Rodgers Oct 2007 A1
20070239067 Hibner et al. Oct 2007 A1
20070255173 Hibner Nov 2007 A1
20070270710 Frass et al. Nov 2007 A1
20070276288 Khaw Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20070292858 Chen et al. Dec 2007 A1
20070293788 Entrekin et al. Dec 2007 A1
20070293830 Martin Dec 2007 A1
20080004545 Garrison Jan 2008 A1
20080007217 Riley Jan 2008 A1
20080021487 Heisler Jan 2008 A1
20080021488 Berberich Jan 2008 A1
20080030170 Dacquay et al. Feb 2008 A1
20080064925 Gill et al. Mar 2008 A1
20080064984 Pflueger Mar 2008 A1
20080079391 Schroeck et al. Apr 2008 A1
20080103411 Van Bladel et al. May 2008 A1
20080110261 Randall et al. May 2008 A1
20080125634 Ryan et al. May 2008 A1
20080135443 Frojd et al. Jun 2008 A1
20080146962 Ritchie et al. Jun 2008 A1
20080146965 Privitera et al. Jun 2008 A1
20080154151 Ritchart et al. Jun 2008 A1
20080161682 Kendrick et al. Jul 2008 A1
20080161718 Schwindt Jul 2008 A1
20080161719 Miller et al. Jul 2008 A1
20080161720 Nicoson et al. Jul 2008 A1
20080183099 Jorgensen et al. Jul 2008 A1
20080195066 Speeg et al. Aug 2008 A1
20080200833 Hardin et al. Aug 2008 A1
20080200836 Speeg et al. Aug 2008 A1
20080208194 Bickenbach Aug 2008 A1
20080214955 Speeg et al. Sep 2008 A1
20080215056 Miller et al. Sep 2008 A1
20080221443 Ritchie et al. Sep 2008 A1
20080221444 Ritchie et al. Sep 2008 A1
20080221478 Ritchie et al. Sep 2008 A1
20080221479 Ritchie et al. Sep 2008 A1
20080221480 Hibner et al. Sep 2008 A1
20080228104 Uber et al. Sep 2008 A1
20080232604 Dufresne et al. Sep 2008 A1
20080234715 Pesce et al. Sep 2008 A1
20080281225 Spero et al. Nov 2008 A1
20080287826 Videbaek et al. Nov 2008 A1
20080306406 Thompson et al. Dec 2008 A1
20080308607 Timm et al. Dec 2008 A1
20080319341 Taylor et al. Dec 2008 A1
20090030405 Quick et al. Jan 2009 A1
20090062624 Neville Mar 2009 A1
20090082695 Whitehead Mar 2009 A1
20090087249 Flagle et al. Apr 2009 A1
20090088666 Miller et al. Apr 2009 A1
20090112118 Quick et al. Apr 2009 A1
20090125062 Arnin May 2009 A1
20090137927 Miller May 2009 A1
20090171242 Hibner Jul 2009 A1
20090171243 Hibner et al. Jul 2009 A1
20090204022 Schwindt Aug 2009 A1
20090227893 Coonahan et al. Sep 2009 A1
20100030020 Sanders et al. Feb 2010 A1
20100030108 Anderson et al. Feb 2010 A1
20100063416 Cicenas et al. Mar 2010 A1
20100106053 Videbaek et al. Apr 2010 A1
20100152610 Parihar et al. Jun 2010 A1
20100152611 Parihar et al. Jun 2010 A1
20100160820 Weikel, Jr. et al. Jun 2010 A1
20100160823 Parihar et al. Jun 2010 A1
20100210966 Videbæk Aug 2010 A1
20100234760 Almazan Sep 2010 A1
20100292607 Moore et al. Nov 2010 A1
20100312140 Smith et al. Dec 2010 A1
20100317995 Hibner et al. Dec 2010 A1
20100317997 Hibner et al. Dec 2010 A1
20100317998 Hibner et al. Dec 2010 A1
20100324449 Rostaing et al. Dec 2010 A1
20110004119 Hoffa et al. Jan 2011 A1
20110054350 Videbaek Mar 2011 A1
20110077551 Videbaek Mar 2011 A1
20110087131 Videbaek Apr 2011 A1
20110105945 Videbaek et al. May 2011 A1
20110105946 Sorensen et al. May 2011 A1
20110152715 Delap et al. Jun 2011 A1
20110160611 Ritchart et al. Jun 2011 A1
20110224577 Park Sep 2011 A1
20120191009 Hoon et al. Jul 2012 A1
20120215130 Field et al. Aug 2012 A1
Foreign Referenced Citations (55)
Number Date Country
101011268 Aug 2007 CN
101032420 Sep 2007 CN
3924291 Jan 1991 DE
4041614 Oct 1992 DE
10034297 Apr 2001 DE
10026303 Feb 2002 DE
20204363 May 2002 DE
20209525 Nov 2002 DE
10235480 Feb 2004 DE
0433717 Jun 1991 EP
0890339 Jan 1999 EP
0995400 Apr 2000 EP
1074271 Feb 2001 EP
1520518 Apr 2005 EP
1579809 Sep 2005 EP
1604615 Dec 2005 EP
1665989 Jun 2006 EP
1829487 Sep 2007 EP
2095772 Sep 2009 EP
2106750 Oct 2009 EP
1569561 Oct 2010 EP
1345429 Dec 1963 FR
2739293 Apr 1997 FR
2018601 Oct 1979 GB
1-126957 Sep 1987 JP
H10508504 Aug 1998 JP
2005530554 Oct 2005 JP
2006509545 Mar 2006 JP
2006528907 Dec 2006 JP
2007502159 Feb 2007 JP
9508945 Apr 1995 WO
9628097 Sep 1996 WO
9734531 Sep 1997 WO
9825522 Jun 1998 WO
9831285 Jul 1998 WO
9835615 Aug 1998 WO
9846290 Oct 1998 WO
9933501 Jul 1999 WO
0004832 Feb 2000 WO
0030546 Jun 2000 WO
0059378 Oct 2000 WO
0172230 Oct 2001 WO
0222023 Mar 2002 WO
0232318 Apr 2002 WO
02069808 Sep 2002 WO
2005013830 Feb 2005 WO
2006015302 Feb 2006 WO
2007047128 Apr 2007 WO
2007095330 Aug 2007 WO
2007112751 Oct 2007 WO
2008021687 Feb 2008 WO
2008040812 Apr 2008 WO
2008131362 Oct 2008 WO
2010107424 Sep 2010 WO
2011019343 Feb 2011 WO
Non-Patent Literature Citations (1)
Entry
Maxim; Maxim8606; USB/AC Adapter, Li+ Linear Battery Charger with Integrated 50m Omega Battery Switch in TDFN; http://datasheets.maxim-ic.com/en/ds/MAX8606.pdf; Dec/ 2008; Rev 1.
Related Publications (1)
Number Date Country
20120065541 A1 Mar 2012 US