Biopsy device having integrated vacuum

Information

  • Patent Grant
  • 11534148
  • Patent Number
    11,534,148
  • Date Filed
    Friday, September 13, 2019
    5 years ago
  • Date Issued
    Tuesday, December 27, 2022
    2 years ago
Abstract
A biopsy device includes a housing body, and a cannula assembly that has a first elongate cannula and a second elongate cannula coaxial with the first elongate cannula. The second elongate cannula has a lumen and a side wall having a vacuum side port in fluid communication with the lumen. A vacuum source is positioned in the housing body. The vacuum source has a chamber side wall having a chamber vacuum port. A seal is interposed in sealing engagement between the chamber vacuum port and the second elongate cannula. A trigger slide assembly is coupled to the housing body, and coupled to the cannula assembly, and is configured to move the second elongate cannula to align the vacuum side port of the second elongate cannula with the chamber vacuum port of the vacuum source to supply vacuum from the vacuum source to the lumen of the second elongate cannula.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to biopsy devices, and, more particularly, to a handheld single insertion single sample (SISS) biopsy device having integrated vacuum.


2. Description of the Related Art

Biopsy devices typically include a power source and a sample retrieval mechanism. The sample retrieval mechanism may be in the form of a biopsy probe assembly configured with a sample retrieval opening for receiving tissue samples from the patient. Some practitioners that perform biopsy procedures prefer a self-contained handheld biopsy device over that of a large console system. There are essentially two types of self-contained handheld biopsy devices: the partially disposable biopsy device and the fully disposable biopsy device.


A typical partially disposable biopsy device has a reusable handheld driver to which a disposable probe is releasably attached. The reusable handheld driver is typically battery powered, and includes electrical motor drives and an on-board vacuum pump to aid in sample acquisition and/or retrieval. Often, such biopsy devices are configured for single insertion multiple sample (SIMS) procedures. The disposable probe is used on a single patient, and then discarded, while the handheld driver is retained for reuse.


A typical fully disposable biopsy device has one or more mechanical drives, such as spring/latch arrangements, which permit the biopsy device to be manually cocked and fired for tissue sample acquisition. Such simple biopsy devices often are configured to acquire a single sample per insertion. Also, many of the fully disposable biopsy devices do not have vacuum to assist in sample acquisition. While some attempts have been made to include a vacuum assist feature in a fully disposable biopsy device, the vacuum produced typically is not sufficient to approach the performance of that of a partially disposable biopsy device as described above. Also, in a typical fully disposable biopsy device having vacuum assist, such vacuum is generated simultaneously with movement of the cutting cannula to sever the tissue sample, and thus the vacuum may be of limited value in acquiring the tissue sample.


What is needed in the art is a biopsy device that may be fully disposable, while having efficient vacuum application to aid in sample acquisition, and which is configured to be easy to use.


SUMMARY OF THE INVENTION

The present invention provides a biopsy device that is fully disposable, while having efficient vacuum application to aid in sample acquisition, and which is configured to be easy to use.


The invention, in one form, is directed to a biopsy device having a housing body, a cannula assembly, a vacuum source and a trigger slide assembly. The housing body defines a longitudinal axis. The cannula assembly has a first elongate cannula having a first side wall configured to define a first lumen and an elongate side opening that extends through the first side wall. A second elongate cannula is coaxial with the first elongate cannula. The second elongate cannula has a second side wall configured to define a second lumen and a cutting edge. The second side wall has a vacuum side port in fluid communication with the second lumen. A vacuum source is positioned in the housing body. The vacuum source has a chamber side wall having a chamber vacuum port. A seal is interposed in sealing engagement between the chamber vacuum port and the second elongate cannula. A trigger slide assembly is coupled to the housing body, and is coupled to the cannula assembly. The trigger slide assembly is configured to move the second elongate cannula to align the vacuum side port of the second elongate cannula with the chamber vacuum port of the vacuum source to supply vacuum from the vacuum source to the second lumen of the second elongate cannula.


The invention, in another form, is directed to a biopsy device that includes a housing body defining a longitudinal axis. A first cannula assembly has a first elongate cannula that extends along the longitudinal axis. The first elongate cannula has a first side wall configured to define a first lumen and has an elongate side opening that extends through the first side wall. A second cannula assembly includes a second cannula body coupled to a second elongate cannula that is slidably received in the first lumen of the first elongate cannula. The second cannula body has a drive tab and a proximal latch mechanism configured to releasably latch the second elongate cannula in a retracted position. The second elongate cannula has a second side wall having a second lumen, and has a vacuum side port that extends through the second side wall and is in fluid communication with the second lumen. A cannula drive spring is configured to compress when the proximal latch mechanism is moved to the retracted position and configured to decompress to propel the second cannula assembly in a distal direction when the proximal latch mechanism is released from the retracted position. A vacuum source is positioned in the housing body. The vacuum source is configured to store a vacuum. The vacuum source includes a chamber side wall defining a volume. The chamber side wall has a chamber vacuum port. A vacuum seal is interposed in sealing engagement between the chamber vacuum port and the second elongate cannula. A trigger slide assembly has a slider body coupled to the housing body and coupled to the drive tab of the second cannula body. The trigger slide assembly is configured such that: a first proximal movement of the slider body in a proximal direction retracts the second cannula assembly a first distance to latch the proximal latch mechanism of the second cannula assembly in the retracted position and compress the cannula drive spring; a second proximal movement of the slider body in the proximal direction retracts the second cannula assembly a second distance cumulative with the first distance to radially align the vacuum side port of the second elongate cannula with the chamber vacuum port of the vacuum source to supply vacuum from the vacuum source to the second lumen of the second elongate cannula; and a third movement of the slider body releases the proximal latch mechanism such that the cannula drive spring decompresses to propel the second elongate cannula of the second cannula assembly in a distal direction.


The invention in another form is directed to a biopsy device. The biopsy device includes a housing body defining a longitudinal axis. A cannula assembly has an actuator body and an elongate cannula affixed to the actuator body. The elongate cannula has a side wall defining a lumen, and has a vacuum side port that extends through the side wall and is in fluid communication with the lumen. The actuator body has a drive tab and a proximal latch mechanism. The proximal latch mechanism is configured to selectively engage the housing body to releasably latch the cannula assembly in a retracted position. A cannula drive spring is coupled between the housing body and the actuator body. The cannula drive spring is configured to be compressed when the proximal latch mechanism is moved to the retracted position and configured to decompress to propel the elongate cannula in a distal direction when the proximal latch mechanism is released from the retracted position. A vacuum source is coupled to the housing body and is configured to store a vacuum. The vacuum source includes a vacuum chamber housing having a chamber open end, a chamber end wall, a chamber side wall extending between the chamber open end and the chamber end wall, and a chamber vacuum port. The chamber side wall has a perimeter defining a U-shaped area in cross-section that extends longitudinally between the chamber open end and the chamber end wall to define a U-shaped volume. A trigger slide assembly has a slider body operatively coupled to the drive tab of the cannula assembly and to the vacuum source.


The invention in another form is directed to a biopsy device that includes a housing body and a cannula assembly having an actuator body and an elongate cannula affixed to the actuator body. The elongate cannula has a side wall defining a lumen, and has a vacuum side port that extends through the side wall and in fluid communication with the lumen. The actuator body has a drive tab and a proximal latch mechanism. The proximal latch mechanism is configured to selectively engage the housing body to releasably latch the cannula assembly in a retracted position. A cannula drive spring is coupled between the housing body and the actuator body. The cannula drive spring is configured to be compressed when the proximal latch mechanism is moved to the retracted position and is configured to decompress to propel the elongate cannula in a distal direction when the proximal latch mechanism is released from the retracted position. A vacuum source is coupled to the housing body and is configured to store a vacuum. The vacuum source includes a vacuum chamber housing having a chamber side wall having a chamber vacuum port. A trigger slide assembly has a slider body slidably coupled to the housing body, and operatively coupled to the drive tab of the actuator body of the cannula assembly. The trigger slide assembly is configured such that: a first proximal movement of the slider body retracts the cannula assembly a first distance to latch the cannula assembly in the retracted position and to compress the cannula drive spring; a second proximal movement of the slider body retracts the cannula assembly a second distance cumulative with the first distance to align the vacuum side port of the elongate cannula with the chamber vacuum port of the vacuum source to supply vacuum from the vacuum source to the second lumen of the elongate cannula; and a third movement of the slider body in a distal direction releases the proximal latch mechanism such that the cannula drive spring decompresses to propel the cannula assembly in the distal direction.





BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a perspective view of a biopsy device in accordance with an embodiment of the present invention;



FIG. 2 is a side view of the biopsy device of FIG. 1;



FIG. 3 is an exploded view of the biopsy device of FIG. 1;



FIG. 4 is a section view of the biopsy device of FIG. 2, taken along plane 4-4;



FIG. 5 is a section view corresponding to the section view of FIG. 4, showing the latch mechanisms of the inner cannula assembly and the vacuum source in their respective latched (primed) positions;



FIG. 6 is a section view of the biopsy device of FIG. 2, taken along plane 6-6;



FIG. 7 is a section view of the biopsy device of FIGS. 1 and 2, taken along the plane 7-7 of FIG. 1, and showing the vacuum source, the inner cannula assembly, the vacuum prime handle mechanism, and the slider body of the trigger slide assembly in their respective home positions;



FIG. 8 is a section view corresponding to the section of FIG. 7, showing the vacuum source in the primed position and the vacuum prime handle mechanism fully retracted;



FIG. 9 is a section view corresponding to the section of FIG. 7, showing the vacuum source in the primed position and the vacuum prime handle mechanism in the return primed position;



FIG. 10 is a section view corresponding to the section of FIG. 7, showing the slider body of the trigger slide assembly in a first retracted primed position, and the inner cannula assembly in the primed (cocked) position;



FIG. 11 is an enlarged view of a portion of the section view of FIG. 10 showing the vacuum source with the chamber vacuum port closed by the cutting cannula side wall;



FIG. 12 is a section view corresponding to the section of FIG. 7, showing the slider body of the trigger slide assembly and the inner cannula assembly in a further retracted, vacuum application position;



FIG. 13 is an enlarged view of a portion of the section view of FIG. 12, showing the vacuum source with the chamber vacuum port open and in fluid communication with the vacuum side port of the cutting cannula side wall;



FIG. 14 is a section view corresponding to the section of FIG. 7, showing the inner cannula assembly in the primed (cocked) position, and with the slider body of the trigger slide assembly returned to the home position; and



FIG. 15 is an enlarged view of a portion of the section view of FIG. 14, showing the slider body of the trigger slide assembly ready to deflect the cannula latch mechanism downwardly for release upon a distal movement of the slider body beyond its home position.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates an embodiment of the invention and such exemplification is not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings, and more particularly to FIGS. 1-7, there is shown a biopsy device 10 in accordance with an embodiment of the present invention. Biopsy device 10 is configured as a single insertion single sample (SISS) biopsy device, which is fully disposable.


As shown in FIGS. 1-3, biopsy device 10 generally includes a housing 12, a trigger slide assembly 14, a cannula assembly 16, and a vacuum source 18. In describing biopsy device 10, for convenience, reference will be made to distal direction D1 and proximal direction D2.


Housing 12 includes a housing body 20 that defines a longitudinal axis 22. Housing body 20 has a proximal end wall 24, a distal end wall 26, an upper surface 28, and an interior wall 30. Interior wall 30 is located between proximal end wall 24 and distal end wall 26. Interior wall 30 separates the housing body 20 into a proximal chamber 32 and a distal chamber 34. A chamber cover 36 is removably attached to housing body 20 to enclose proximal chamber 32.


Proximal end wall 24 has a pair of handle link openings 24-1, 24-2.


Referring also to FIGS. 4 and 5, interior wall 30 has two piston link openings 30-1, 30-2, a piston latch opening 30-3, and a cannula latch opening 30-4.


As best shown in FIG. 3, upper surface 28 of the housing body 20 has an elongate slide slot 38 that defines a first slide slot edge 38-1 and a second slide slot edge 38-2. Second slide slot edge 38-2 is spaced apart from the first slide slot edge 38-1 in a direction perpendicular to the longitudinal axis 22.


Trigger slide assembly 14 is coupled to housing body 20 at elongate slide slot 38. Trigger slide assembly 14 includes a slider body 40 having a pair of opposed channels 40-1, 40-2 configured to respectively receive the first slide slot edge 38-1 and the second slide slot edge 38-2 of the elongate slide slot 38 of the housing body 20. Trigger slide assembly 14 is biased in the distal direction D1 by a biasing spring 42.


Referring also to FIGS. 7-10, 12 and 14, and using a proximal end 40-3 of slider body 40 as a point of reference, slider body 40 has four positions, namely: a home position 40-4, a first proximal position 40-5, a second proximal position 40-6, and a distal-most position 40-7. The four positions of slider body 40 will be described in more detail below.


As best shown in FIG. 3, cannula assembly 16 includes a cannula support rod 44, an outer cannula assembly 46, and an inner cannula assembly 48.


Cannula support rod 44 is disposed in housing body 20 on and co-extensive with the longitudinal axis 22. Cannula support rod 44 has a proximal end 44-1 connected to the interior wall 30 of the housing body 20. Cannula support rod 44 provides radial support along longitudinal axis 22 for the stationary outer cannula assembly 46 as well as the movable inner cannula assembly 48.


Outer cannula assembly 46 has an end cap body 50 and an elongate outer cannula 52 that extends along the longitudinal axis 22. End cap body 50 is connected to housing body 20 at distal end wall 26 of the housing body 20. As such, outer cannula 52 is stationary relative to housing body 20. Outer cannula 52 is coaxial with cannula support rod 44, and is received over a portion of cannula support rod 44.


Outer cannula 52 has an end 52-1, a penetrating tip 52-2, and a side wall 52-3 that extends between the end 52-1 and penetrating tip 52-2. The end 52-1 is affixed to end cap body 50. Side wall 52-3 is configured to define a lumen 52-4 and has an elongate side opening 52-5 that extends through side wall 52-3. Elongate side opening 52-5 is thus in fluid communication with the lumen 52-4. Elongate side opening 52-5 is configured to receive a tissue sample during a biopsy procedure.


Inner cannula assembly 48 includes an actuator body 54, a cannula support rod seal 56, and an elongate cutting cannula 58.


Referring also to FIG. 7 in conjunction with FIG. 3, actuator body 54 has a drive tab 54-1, a proximal latch mechanism 54-2, a cannula mount 54-3 and proximal axial bore 54-4. Drive tab 54-1 is configured to engage slider body 40 of trigger slide assembly 14 for longitudinal movement therewith, e.g., in the proximal direction D2.


Referring also to FIG. 10, together, proximal latch mechanism 54-2 of actuator body 54 and cannula latch opening 30-4 of interior wall 30 of housing body 20 form a snap featured detent. Proximal latch mechanism 54-2 is configured to pass through the cannula latch opening 30-4 of interior wall 30 of housing body 20, to thereby releasably latch the elongate cutting cannula 58 in a retracted (primed, or sometimes referred to as cocked) position. More particularly, proximal latch mechanism 54-2 is in the form of a cantilever arm 54-5 having at its free end a latch head 54-6 configured to catch a portion of interior wall 30 (see also FIG. 5) adjacent cannula latch opening 30-4 in proximal chamber 32 to releasably latch the elongate cutting cannula 58 in the retracted (primed, or cocked) position.


Cutting cannula 58 is coaxial with cannula support rod 44 and outer cannula 52. More particularly, in the present embodiment, cutting cannula 58 is radially interposed between cannula support rod 44 and outer cannula 52, with cutting cannula 58 being slidably received in the lumen 52-4 of outer cannula 52 and slidably receiving cannula support rod 44.


As best shown in FIG. 3, cutting cannula 58 has an end portion 58-1, a distal cutting edge 58-2, and a side wall 58-3 (see also FIG. 11) that extends between end portion 58-1 and distal cutting edge 58-2. End portion 58-1 is affixed to the cannula mount 54-3, with end portion 58-1 being in fluid communication with the proximal axial bore 54-4 of actuator body 54.


Side wall 58-3 defines an inner lumen 58-4. Inner lumen 58-4 is slidably received over the cannula support rod 44. Cannula support rod seal 56, in the form of a rubber O-ring, is positioned within proximal axial bore 54-4 of the actuator body 54. Cannula support rod 44 is received through the aperture of cannula support rod seal 56, with cannula support rod seal 56 being radially interposed between actuator body 54 and cannula support rod 44. As such, cannula support rod seal 56 is configured to be axially stationary within proximal axial bore 54-4 of actuator body 54, while being axially movable along the cannula support rod 44 with actuator body 54.


Referring also to FIGS. 12 and 13, cutting cannula 58 further includes a vacuum side port 58-5 that extends through the side wall 58-3 at the end portion 58-1 and is in fluid communication with inner lumen 58-4. With cutting cannula 58 positioned in lumen 52-4 of outer cannula 52, vacuum side port 58-5 is further in fluid communication with a distal portion of outer cannula 52 that includes elongate side opening 52-5.


Referring again also to FIGS. 3 and 7-9, a cannula drive spring 60, e.g., in the form of a coil spring, is positioned in distal chamber 34 of housing body 20, between interior wall 30 of housing body 20 and the actuator body 54 of the inner cannula assembly 48. Referring also to FIGS. 10, 12, and 14, cannula drive spring 60 is configured to compress to store energy when the inner cannula assembly 48 is moved in the proximal direction D2 to the retracted position, at which time latch head 54-6 of proximal latch mechanism 54-2 passes through the cannula latch opening 30-4 of interior wall 30 of housing body 20 to thereby releasably latch inner cannula assembly 48 (including elongate cutting cannula 58) in a retracted position. Likewise, cannula drive spring 60 is configured to decompress to release the stored energy to propel the inner cannula assembly 48 in a distal direction D1 when proximal latch mechanism 54-2 is released from its latched state.


As best shown in FIGS. 3 and 7-9, supplemental to vacuum source 18 is a vacuum prime handle mechanism 62. Vacuum prime handle mechanism 62 is configured to prime, i.e., charge, vacuum source 18 with a supply of vacuum. Vacuum prime handle mechanism 62 includes a handle base 64 and a pair of elongate handle links 66, 68 that extend in the distal direction D1 from handle base 64. Handle base 64 may include one or more parametrical gripping ridges 64-1.


The pair of elongate handle links 66, 68 is positioned to pass through the respective pair of handle link openings 24-1, 24-2 of the proximal end wall 24 and into the proximal chamber 32. Each of the pair of elongate handle links 66, 68 has a respective longitudinal slot 66-1, 68-1. Each of the pair of elongate handle links 66, 68 also is configured to pass through a respective link opening of the piston link openings 30-1, 30-2 in the interior wall 30 of the housing body 20 to engage vacuum source 18, as will be more fully described below.


Referring again to FIGS. 3 and 6, vacuum source 18 includes a vacuum chamber housing 70 having a chamber open end 72, a chamber end wall 74, and a chamber side wall 76. Chamber side wall 76 has a perimeter 76-1 corresponding to exterior surface 70-1 defining a U-shaped area in cross-section that extends longitudinally between the chamber open end 72 and the chamber end wall 74 to define a U-shaped volume 76-2. The U-shape construction of chamber side wall 76 facilitates the ability for inner cannula assembly 48 to be moveably tucked within the same footprint as that of vacuum source 18, thereby efficiently utilizing space within biopsy device 10.


Referring also to FIGS. 8-13, chamber side wall 76 has a chamber vacuum port 76-3. Referring particularly to FIGS. 11 and 13, vacuum side port 58-5 of elongate cutting cannula 58 is configured for selective fluid engagement with chamber vacuum port 76-3 of vacuum chamber housing 70. Chamber vacuum port 76-3 is configured as an elevated protrusion of the chamber side wall 76, with the elevated protrusion having an aperture that extends through the elevated protrusion of the chamber side wall 76 to the U-shaped volume 76-2. A vacuum chamber housing seal 78, in the form of a rubber O-ring, is interposed in sealing engagement between chamber vacuum port 76-3 of vacuum chamber housing 70 and elongate cutting cannula 58. When chamber vacuum port 76-3 of vacuum chamber housing 70 and vacuum side port 58-5 of elongate cutting cannula 58 are radially aligned, vacuum chamber housing seal 78 is interposed in sealing engagement between chamber vacuum port 76-3 of vacuum chamber housing 70 and vacuum side port 58-5 of elongate cutting cannula 58 so as to facilitate the establishment of vacuum in inner lumen 58-4 of cutting cannula 58.


Referring particularly to FIGS. 3 and 6, chamber side wall 76 has a first U-shaped wall section 76-4, a second U-shaped wall section 76-5, a first inverted U-shaped wall section 76-6 and a second inverted U-shaped wall section 76-7. Second U-shaped wall section 76-5 is smaller than the first U-shaped wall section 76-4 to define an upper elongate recessed trough 80 at exterior surface 70-1 at an upper portion of chamber side wall 76 of the vacuum chamber housing 70. Second U-shaped wall section 76-5 is located between the first inverted U-shaped wall section 76-6 and the second inverted U-shaped wall section 76-7 around perimeter 76-1 of the upper portion of chamber side wall 76.


As best shown in FIGS. 3 and 6, elongated recessed trough 80 is configured to receive inner cannula assembly 48, including actuator body 54 and cutting cannula 58. More particularly, actuator body 54 includes a lower curved surface that is radially supported along the longitudinal extent of recessed trough 80, and cutting cannula 58 is received in elongated recessed trough 80 without contacting chamber side wall 76. Referring again also to FIGS. 10-13, chamber vacuum port 76-3 extends outwardly from chamber side wall 76 from within elongate recessed trough 80 in a direction toward cutting cannula 58.


Referring to FIGS. 2, 3, 6, and 7, vacuum source 18 further includes a vacuum plunger mechanism 82. Vacuum plunger mechanism 82 includes a U-shaped piston 84 positioned in U-shaped volume 76-2. U-shaped piston 84 has a proximal surface 84-1 and a distal surface 84-2. A chamber seal 85, in the form of a U-shaped rubber O-ring, is configured for sealing engagement between an interior surface 76-8 of the chamber side wall 76 and the U-shaped piston 84.


Referring to FIGS. 2 and 5-10, a piston latch mechanism 84-3 extends in the proximal direction D2 from proximal surface 84-1, and is in the form of a cantilever arm 84-4 having at its free end a latch head 84-5. Together, piston latch mechanism 84-3 of U-shaped piston 84 and piston latch opening 30-3 of interior wall 30 of housing body 20 form a snap featured detent.


Referring particularly to FIGS. 8 and 9, when U-shaped piston 84 is moved, i.e., retracted, in the proximal direction D2 to prime vacuum source 18, vacuum is accumulated in vacuum chamber housing 70 and thus vacuum chamber housing 70 is considered to be primed. Piston latch mechanism 84-3 is configured to pass through the piston latch opening 30-3 of interior wall 30 of housing body 20 to thereby releasably latch U-shaped piston 84 in a retracted (primed) position. More particularly, piston latch mechanism 84-3 latch head 84-5 is configured to catch a portion of interior wall 30 adjacent piston latch opening 30-3 in proximal chamber 32 to releasably latch U-shaped piston 84 in the retracted (primed) position.


Referring to FIGS. 8-10, 12 and 14, when vacuum source 18 is primed, vacuum chamber housing 70 in conjunction with U-shaped piston 84 define approximately 20 cubic centimeters of vacuum storage, and with vacuum pressure at full charge in the range of −5.0 psi to −6.0 psi (−34.4 k Pa to −41.4 k Pa).


Referring again to FIG. 3, vacuum source 18 is configured with a check valve 89 to allow vacuum to accumulate in vacuum chamber housing 70 on retraction of U-shaped piston 84 in the proximal direction D2, but also to equalize pressure when U-shaped piston 84 is released and moved in the distal direction D1 toward chamber end wall 74 in preparation for a vacuum re-prime operation. Check valve 89 is configured to facilitate fluid flow in only one direction, and may be, for example, in the form of a ball/spring valve. As shown in FIG. 3, check valve 89 is located on chamber end wall 74 of vacuum chamber housing 70. Alternatively, it is contemplated that check valve 89 may be built into U-shaped piston 84.


Referring to FIGS. 3, 5, 6, 8-10, 12 and 14, a pair of piston link rods 86, 88 extends proximally from proximal surface 84-1 of the U-shaped piston 84. Each of the pair of piston link rods 86, 88 has a respective proximal end 86-1, 88-1 and a bore 86-2, 88-2 extending distally from the proximal end 86-1, 88-1. Each of the pair of piston link rods 86, 88 is configured to pass through a respective piston link opening 30-1, 30-2 (see FIGS. 4 and 5) in interior wall 30 of housing body 20 and into proximal chamber 32 (see FIGS. 8-10). Each of a pair of bias springs 90, 92 is respectively received over the pair of elongate handle links 66, 68, and is positioned between the proximal end wall 24 of the housing body 20 and a respective proximal end 86-1, 88-1 of the pair of piston link rods 86, 88. A pair of joining features 86-3, 88-3, e.g., tabs, clips, pins, etc., may be affixed to, or integral with, a respective piston link rod of the pair of piston link rods 86, 88 of vacuum plunger mechanism 82 and is configured to be slidably engaged within a respective longitudinal slot 66-1, 68-1 of a respective elongate handle link 66, 68 of vacuum prime handle mechanism 62. In the present embodiment, each of the pair of joining features 86-3, 88-3 is formed as a part of a snap tab located on a respective piston link rod of the pair of piston link rods 86, 88 and is configured to engage a respective longitudinal slot 66-1, 68-1 of a respective elongate handle link 66, 68 of vacuum prime handle mechanism 62. Alternatively, it is contemplated that joining features 86-3, 88-3 may be a separate fastener, e.g., a pin.


The operation of biopsy device 10 now will be described with primary reference to FIGS. 7-15, and with overall reference to FIG. 3.



FIG. 7 shows biopsy device 10 with all components in their respective home position. More particularly, the home position 40-4 of slider body 40 is the position to which slider body 40 will always return when no external force is applied to slider body 40. Also, a home position 64-2 of handle base 64 of vacuum prime handle mechanism 62 is the position where handle base 64 is immediately adjacent to the proximal-most portion of housing body 20.


Referring to FIG. 8, to ready biopsy device 10 for performing a biopsy procedure, vacuum source 18 is primed, i.e., vacuum is stored in vacuum chamber housing 70. To prime vacuum source 18, the user pulls handle base 64 in the proximal direction D2 to its proximal-most position 64-3, which in turn causes a proximal retraction in the proximal direction D2 of vacuum plunger mechanism 82 to a fully retracted (prime) position.


More particularly, a proximal movement of handle base 64 toward proximal-most position 64-3 results in a proximal movement of the handle links 66, 68. Since handle links 66, 68 are slidably coupled to piston link rods 86, 88, the proximal movement of handle links 66, 68 result in a proximal movement of vacuum plunger mechanism 82 to the vacuum primed position, wherein when handle base 64 reaches proximal-most position 64-3, piston latch mechanism 84-3 passes through the piston latch opening 30-3 of interior wall 30 of housing body 20 and releasably latches U-shaped piston 84 in a retracted (primed) position. Simultaneously, springs 90, 92 are compressed.


Referring to FIG. 9, after priming vacuum source 18, handle base 64 is moved in the distal direction D1 to the proximal intermediate position 64-4. Because handle links 66, 68 are fixedly attached to handle base 64, the movement of handle base 64 also results in movement of handle links 66, 68. However, since handle links 66, 68 are slidably joined to piston link rods 86, 88 via longitudinal slot 66-1, 68-1, and while U-shaped piston 84 is latched in a retracted (primed) position, handle links 66, 68 are free to move in the distal direction D1 within piston link rods 86, 88 until handle links 66, 68 are collapsed into piston link rods 86, 88 to a point of resistance. The point of resistance may be defined, for example, by the length of longitudinal slots 66-1, 68-1, or alternatively, when the distal end of handle links 66, 68 encounter the proximal surface 84-1 of U-shaped piston 84 within piston link rods 86, 88.


Thus, with handle base 64 at proximal intermediate position 64-4, distal movement of handle base 64 is restricted. However, if it is desired to re-prime and/or de-prime vacuum source 18, the user may do so by firmly applying pressure (e.g., a firm bump with the hand) in the distal direction D1 to handle base 64 to overcome the latch force of piston latch mechanism 84-3, and with springs 90, 92 decompressing, U-shaped piston 84 is moved back to its home position (see FIG. 7).


After priming vacuum source 18 (FIG. 9), biopsy device 10 is ready for insertion of cannula assembly 16 into the tissue of the patient for positioning at the biopsy site. In particular, cannula assembly 16 is inserted into the patient such that elongate side opening 52-5 of outer cannula 52 is positioned adjacent the tissue to be sampled at the biopsy site.


Referring to FIGS. 10, 12 and 14, next slider body 40 of trigger slide assembly 14 will be moved sequentially from home position 40-4 to first proximal position 40-5 (FIG. 10), then to second proximal position 40-6 (FIG. 12), then back to home position 40-4 (FIG. 9), and then to distal-most position 40-7 (see FIG. 14), to effect a tissue sample capture sequence.


Again, home position 40-4 (see, e.g., FIG. 9) of slider body 40 is the position to which slider body 40 will always return when no external force is applied to slider body 40. Thus, if at any time slider body 40 is released by the user, either intentionally or inadvertently, slider body 40 will always return to the home position 40-4 and the sequence can be resumed from home position 40-4.


Referring to FIG. 10, first proximal position 40-5 is the position of slider body 40 where a prime (cocking) of inner cannula assembly 48, including cutting cannula 58, occurs. As slider body 40 is moved in the proximal direction D2, slider body 40 engages drive tab 54-1 of actuator body 54 of inner cannula assembly 48 to which cutting cannula 58 is fixedly attached. Thus, a longitudinal movement of slider body 40 in the proximal direction D2 will result in a corresponding movement is proximal direction D2 of inner cannula assembly 48 having cutting cannula 58.


This proximal movement of the slider body to first proximal position 40-5 retracts the inner cannula assembly 48 a first distance to latch the proximal latch mechanism 54-2 of the elongate cutting cannula 58 in a retracted (primed, or cocked) position and compresses the cannula drive spring 60. More particularly, proximal latch mechanism 54-2 passes through the cannula latch opening 30-4 of interior wall 30 of housing body 20 to releasably latch the elongate cutting cannula 58 in the retracted (primed, or cocked) position. In the primed (cocked) position, elongate cutting cannula 58 has been retracted to open elongate side opening 52-5 of outer cannula 52.


Referring also to FIG. 11, when slider body 40 of trigger slide assembly 14 is in any position other than in the second proximal position 40-6, cutting cannula 58 will block chamber vacuum port 76-3 of vacuum chamber housing 70, and thus prevent the supply of vacuum stored in vacuum chamber housing 70 from escaping.


Thus, referring now to FIG. 12, in order to apply vacuum to elongate side opening 52-5 of outer cannula 52 during the biopsy procedure, slider body 40 is moved to the second proximal position 40-6, which is spaced a distance more proximal than first proximal position 40-5. Thus, the second proximal movement of the slider body to second proximal position 40-6 retracts the inner cannula assembly 48 a second distance cumulative with the first proximal distance associated with first proximal position 40-5, so as to radially align vacuum side port 58-5 of elongate cutting cannula 58 with the chamber vacuum port 76-3 of the vacuum source 18 (see FIG. 13) such that vacuum is transferred from vacuum chamber housing 70 of vacuum source 18 to the inner lumen 58-4 of cutting cannula 58, and in turn to elongate side opening 52-5 of outer cannula 52, so as to apply vacuum to the tissue adjacent elongate side opening 52-5 so as to draw the tissue into elongate side opening 52-5 prior to releasing cutting cannula 58.


The user will maintain slider body 40 of trigger slide assembly 14 at the second proximal position 40-6 only so long as deemed necessary to establish the vacuum at elongate side opening 52-5 of outer cannula 52 and draw the tissue to be sampled into elongate side opening 52-5 of outer cannula 52. This time period may be, for example, from 0.5 to 2 seconds, as determined by the practitioner. The user will then release slider body 40, and biasing spring 42 will return slider body 40 to home position 40-4.


Referring to FIGS. 14 and 15, distal-most position 40-7 of slider body 40 is a position distal to home position 40-4, and is the position where a firing (de-priming) of inner cannula assembly 48, including cutting cannula 58, has occurred, i.e., to sever a tissue sample received into elongate side opening 52-5 of outer cannula 52. As shown in FIGS. 14 and 15, slider body 40 includes a depression feature 40-8 configured such that when slider body 40 is moved distally from home position 40-4 toward distal-most position 40-7, depression feature 40-8 engages latch head 54-6 of proximal latch mechanism 54-2 of inner cannula assembly 48 and forces latch head 54-6 of proximal latch mechanism 54-2 downwardly to release distal contact of latch head 54-6 with interior wall 30 at cannula latch opening 30-4. As such, cannula drive spring 60 is released (i.e., fired, or de-primed; see FIG. 7) from the compressed state to propel inner cannula assembly 48, including cutting cannula 58, in the distal direction D1, such that distal cutting edge 58-2 of cutting cannula travels past elongate side opening 52-5 of outer cannula 52 to sever a tissue sample previously received into elongate side opening 52-5 of outer cannula 52 and capture the tissue sample within cannula assembly 16.


As this time, cannula assembly 16 of biopsy device 10 is removed from the patient. The inner cannula assembly 48 having cutting cannula 58 is then retracted to remove the captured tissue sample from elongate side opening 52-5 of outer cannula 52.


If a further sample from this same patient is desired, then the process described above may be repeated.


Following acquisition of all desired samples from the patient, it is recommended that biopsy device 10 be disposed of in its entirety in a safe manner.


While this invention has been described with respect to at least one embodiment, those skilled in the art will recognize that the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.

Claims
  • 1. A biopsy device, comprising: a housing body defining a longitudinal axis;a cannula assembly having a first elongate cannula having a first side wall configured to define a first lumen and an elongate side opening that extends through the first side wall, and a second elongate cannula coaxial with the first elongate cannula, the second elongate cannula having a second side wall configured to define a second lumen and a cutting edge, the second side wall having a vacuum side port in fluid communication with the second lumen;a vacuum source positioned in the housing body, the vacuum source having a chamber side wall having a chamber vacuum port, the vacuum source having a seal interposed in sealing engagement between the chamber vacuum port and the second elongate cannula; anda trigger slide assembly coupled to the housing body, and coupled to the cannula assembly, and configured to move the second elongate cannula to align the vacuum side port of the second elongate cannula with the chamber vacuum port of the vacuum source to supply vacuum from the vacuum source to the second lumen of the second elongate cannula;wherein the vacuum source comprises a vacuum chamber housing having a chamber open end, a chamber end wall, and the chamber side wall, the chamber side wall having a perimeter that defines an elongate recessed trough having a longitudinal extent, and wherein the second elongate cannula is positioned within the elongate recessed trough without contacting the chamber side wall.
  • 2. The biopsy device of claim 1, wherein the chamber side wall has a perimeter defining a U-shaped area in cross-section that extends longitudinally between the chamber open end and the chamber end wall to define a U-shaped volume.
  • 3. The biopsy device of claim 2, comprising: a vacuum plunger mechanism having a U-shaped piston that is positioned in the U-shaped volume of the vacuum chamber housing; anda chamber seal configured for sealing engagement between an interior surface of the chamber side wall and the U-shaped piston.
  • 4. The biopsy device of claim 3, wherein: the housing body includes an interior wall having a piston latch opening; andthe vacuum plunger mechanism includes a piston latch mechanism that extends from a proximal surface of the U-shaped piston, the piston latch mechanism configured to pass through the piston latch opening of the interior wall and releasably latch the U-shaped piston in a retracted position when the U-shaped piston is moved in a proximal direction.
  • 5. The biopsy device of claim 4, wherein: the interior wall of the housing body has a pair of link openings; andthe U-shaped piston includes a pair of piston link rods that extend proximally from the proximal surface of the U-shaped piston, each of the pair of piston link rods having a proximal end and a bore extending distally from the proximal end, and the pair of piston link rods configured to pass through the corresponding pair of link openings in the interior wall of the housing body, and further comprising:a vacuum prime handle mechanism having a handle base and a pair of elongate handle links that extend from the handle base, each of the pair of elongate handle links having a longitudinal slot, the pair of elongate handle links being slidably received into the bores of the pair of piston link rods; anda pair of joining features configured to connect the pair of piston link rods with the pair of elongate handle links in sliding engagement.
  • 6. The biopsy device of claim 1, wherein the chamber vacuum port extends outwardly from the chamber side wall from within the elongate recessed trough and in a direction toward the second elongate cannula.
  • 7. The biopsy device of claim 1, wherein the second elongate cannula is positioned within the first lumen of the first elongate cannula, the first elongate cannula being stationary with respect to the housing body, and the second elongate cannula being movable within the first lumen relative to the housing body, the second lumen of the second elongate cannula being in fluid communication with the first lumen of the first elongate cannula.
  • 8. The biopsy device of claim 1, comprising a cannula support rod affixed to the housing body, and being coaxial with the first elongate cannula and the second elongate cannula, the cannula support rod being received in the second lumen of the second elongate cannula.
  • 9. A biopsy device, comprising: a housing body defining a longitudinal axis;a first cannula assembly having a first elongate cannula that extends along the longitudinal axis, the first elongate cannula having a first side wall configured to define a first lumen and having an elongate side opening that extends through the first side wall;a second cannula assembly including a second cannula body coupled to a second elongate cannula that is slidably received in the first lumen of the first elongate cannula, the second cannula body having a drive tab and a proximal latch mechanism configured to releasably latch the second elongate cannula in a retracted position,the second elongate cannula having a second side wall having a second lumen, and having a vacuum side port that extends through the second side wall and is in fluid communication with the second lumen, anda cannula drive spring configured to compress when the proximal latch mechanism is moved to the retracted position and configured to decompress to propel the second cannula assembly in a distal direction when the proximal latch mechanism is released from the retracted position;a vacuum source positioned in the housing body, the vacuum source configured to store a vacuum, the vacuum source including a chamber side wall defining a volume, the chamber side wall having a chamber vacuum port, and having a vacuum seal interposed in sealing engagement between the chamber vacuum port and the second elongate cannula; anda trigger slide assembly having a slider body coupled to the housing body and coupled to the drive tab of the second cannula body, and configured such that: a first proximal movement of the slider body in a proximal direction retracts the second cannula assembly a first distance to latch the proximal latch mechanism of the second cannula assembly in the retracted position and compress the cannula drive spring;a second proximal movement of the slider body in the proximal direction retracts the second cannula assembly a second distance cumulative with the first distance to radially align the vacuum side port of the second elongate cannula with the chamber vacuum port of the vacuum source to supply the vacuum from the vacuum source to the second lumen of the second elongate cannula; anda third movement of the slider body releases the proximal latch mechanism such that the cannula drive spring decompresses to propel the second elongate cannula of the second cannula assembly in the distal direction.
  • 10. The biopsy device of claim 9, wherein the third movement of the slider body is in the distal direction opposite the proximal direction.
  • 11. The biopsy device of claim 9, wherein the chamber side wall defines a U-shaped volume, wherein a portion of the chamber side wall defines an elongate recessed trough having a longitudinal extent, and wherein the second elongate cannula is positioned within the elongate recessed trough external to the chamber side wall and without contacting the chamber side wall.
  • 12. The biopsy device of claim 9, wherein the chamber side wall of the vacuum source has a perimeter defining a U-shaped area in cross-section that extends longitudinally to define a U-shaped volume, and comprising a vacuum plunger mechanism having a U-shaped piston that is positioned in the U-shaped volume, and a chamber seal configured for sealing engagement between an interior surface of the chamber side wall and the U-shaped piston.
  • 13. The biopsy device of claim 12, wherein: the housing body includes an interior wall having a piston latch opening; andthe vacuum plunger mechanism includes a piston latch mechanism that extends from a proximal surface of the U-shaped piston, the piston latch mechanism configured to pass through the piston latch opening of the interior wall and releasably latch the U-shaped piston in a retracted position when the U-shaped piston is moved in the proximal direction to the retracted position.
  • 14. The biopsy device of claim 13, comprising: a pair of piston link rods that extend proximally from the proximal surface of the U-shaped piston, each of the pair of piston link rods having a proximal end and a bore extending distally from the proximal end;a vacuum prime handle mechanism having a handle base and a pair of elongate handle links that extend from the handle base; anda pair of joining features configured to connect the pair of piston link rods to the pair of elongate handle links in sliding engagement.
  • 15. The biopsy device of claim 9, wherein the chamber side wall has a perimeter that defines an elongate recessed trough having a longitudinal extent, and wherein the second elongate cannula is positioned within the elongate recessed trough external to the chamber side wall and without contacting the chamber side wall.
  • 16. The biopsy device of claim 15, wherein the chamber vacuum port extends outwardly from the chamber side wall from within the elongate recessed trough and in a direction toward the second elongate cannula.
  • 17. The biopsy device of claim 16, wherein the first elongate cannula is stationary with respect to the housing body, and the second elongate cannula is movable within the first lumen relative to the housing body, the second lumen of the second elongate cannula being in fluid communication with the elongate side opening of the first elongate cannula.
  • 18. The biopsy device of claim 9, comprising a cannula support rod affixed to the housing body, and being coaxial with the first elongate cannula and the second elongate cannula, the cannula support rod being received in the second lumen of the second elongate cannula.
  • 19. The biopsy device of claim 9, wherein the chamber side wall has a perimeter defining a U-shaped area in cross-section, and the chamber side wall extends longitudinally between a chamber open end and a chamber end wall of the vacuum source to define a U-shaped volume.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 15/034,339, filed May 4, 2016, which is a U.S. national phase of International Application No. PCT/US2013/068548, filed Nov. 5, 2013.

US Referenced Citations (594)
Number Name Date Kind
737293 Summerfeldt Aug 1903 A
1585934 Muir May 1926 A
1663761 Johnson Mar 1928 A
2953934 Sundt Sep 1960 A
3019733 Braid Feb 1962 A
3224434 Molomut et al. Dec 1965 A
3289669 Dwyer et al. Dec 1966 A
3477423 Griffith Nov 1969 A
3512519 Hall May 1970 A
3561429 Jewett et al. Feb 1971 A
3565074 Foti Feb 1971 A
3606878 Kellogg Sep 1971 A
3727602 Hyden et al. Apr 1973 A
3732858 Banko May 1973 A
3785380 Brumfield Jan 1974 A
3800783 Jamshidi Apr 1974 A
3844272 Banko Oct 1974 A
3882849 Jamshidi May 1975 A
3889682 Denis et al. Jun 1975 A
3916948 Benjamin Nov 1975 A
3996935 Banko Dec 1976 A
4275730 Hussein Jun 1981 A
4282884 Boebel Aug 1981 A
4306570 Matthews Dec 1981 A
4354092 Manabe et al. Oct 1982 A
4393879 Milgrom Jul 1983 A
4445509 Auth May 1984 A
4490137 Moukheibir Dec 1984 A
4549554 Markham Oct 1985 A
4577629 Martinez Mar 1986 A
4589414 Yoshida et al. May 1986 A
4603694 Wheeler Aug 1986 A
4605011 Naslund Aug 1986 A
4616215 Maddalena Oct 1986 A
4617430 Bryant Oct 1986 A
4620539 Andrews et al. Nov 1986 A
4643197 Greene et al. Feb 1987 A
4645153 Granzow et al. Feb 1987 A
4678459 Onik et al. Jul 1987 A
4696298 Higgins et al. Sep 1987 A
4702260 Wang Oct 1987 A
4706687 Rogers Nov 1987 A
4776346 Beraha et al. Oct 1988 A
4792327 Swartz Dec 1988 A
4832044 Garg May 1989 A
4844064 Thimsen et al. Jul 1989 A
4844087 Garg Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4881551 Taylor Nov 1989 A
4893635 de Groot et al. Jan 1990 A
4907598 Bauer Mar 1990 A
4907599 Taylor Mar 1990 A
4924878 Nottke May 1990 A
RE33258 Onik et al. Jul 1990 E
4940061 Terwilliger et al. Jul 1990 A
4952817 Bolan et al. Aug 1990 A
4958625 Bates et al. Sep 1990 A
4967762 DeVries Nov 1990 A
4986278 Ravid et al. Jan 1991 A
4986279 O'Neill Jan 1991 A
4986807 Farr Jan 1991 A
4989614 Dejter, Jr. et al. Feb 1991 A
5025797 Baran Jun 1991 A
5048538 Terwilliger et al. Sep 1991 A
5057822 Hoffman Oct 1991 A
5078603 Cohen Jan 1992 A
5121751 Panalletta Jun 1992 A
5125413 Baran Jun 1992 A
5138245 Mattinger et al. Aug 1992 A
5146921 Terwilliger et al. Sep 1992 A
5156160 Bennett Oct 1992 A
5158528 Walker et al. Oct 1992 A
5172702 Leigh et al. Dec 1992 A
5176628 Charles et al. Jan 1993 A
D333183 Cerola Feb 1993 S
5183052 Terwilliger Feb 1993 A
5197484 Kornberg et al. Mar 1993 A
5211627 William May 1993 A
5223012 Best et al. Jun 1993 A
D337821 Tan Jul 1993 S
5225763 Krohn et al. Jul 1993 A
5234000 Hakky et al. Aug 1993 A
5236334 Bennett Aug 1993 A
5242404 Conley et al. Sep 1993 A
5249583 Mallaby Oct 1993 A
5254117 Rigby et al. Oct 1993 A
5282476 Terwilliger Feb 1994 A
5282477 Bauer Feb 1994 A
5290253 Kira Mar 1994 A
5305762 Acorn et al. Apr 1994 A
5324306 Makower et al. Jun 1994 A
5334183 Wuchinich Aug 1994 A
5335671 Clement Aug 1994 A
5335672 Bennett Aug 1994 A
5368029 Holcombe et al. Nov 1994 A
5368045 Clement et al. Nov 1994 A
5383874 Jackson et al. Jan 1995 A
5397462 Higashijima et al. Mar 1995 A
5400798 Baran Mar 1995 A
5439474 Li Aug 1995 A
5458112 Weaver Oct 1995 A
5469860 De Santis Nov 1995 A
5471994 Guirguis Dec 1995 A
5479486 Saji Dec 1995 A
5485917 Early Jan 1996 A
5492130 Chiou Feb 1996 A
5511556 DeSantis Apr 1996 A
5526822 Burbank et al. Jun 1996 A
5535755 Heske Jul 1996 A
5546957 Heske Aug 1996 A
5554151 Hinchliffe Sep 1996 A
5560373 De Santis Oct 1996 A
5564436 Hakky et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5575293 Miller et al. Nov 1996 A
5591170 Spievack et al. Jan 1997 A
5601583 Donahue et al. Feb 1997 A
5601585 Banik et al. Feb 1997 A
5602449 Krause et al. Feb 1997 A
5612738 Kim Mar 1997 A
5617874 Baran Apr 1997 A
5649547 Ritchart et al. Jul 1997 A
5655542 Weilandt Aug 1997 A
5655657 Roshdy Aug 1997 A
5665101 Becker et al. Sep 1997 A
5669394 Bergey et al. Sep 1997 A
5699909 Foster Dec 1997 A
5700265 Romano Dec 1997 A
5709697 Ratcliff et al. Jan 1998 A
5720760 Becker et al. Feb 1998 A
5735264 Siczek et al. Apr 1998 A
5752923 Terwilliger May 1998 A
5755714 Murphy-Chutorian May 1998 A
5766135 Terwilliger Jun 1998 A
5769086 Ritchart et al. Jun 1998 A
5769795 Terwilliger Jun 1998 A
5775333 Burbank et al. Jul 1998 A
5779649 Herbert Jul 1998 A
5788651 Weilandt Aug 1998 A
5792167 Kablik et al. Aug 1998 A
5807282 Fowler Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817034 Milliman et al. Oct 1998 A
5823970 Terwilliger Oct 1998 A
5827305 Gordon Oct 1998 A
5830219 Bird et al. Nov 1998 A
D403405 Terwilliger Dec 1998 S
5857982 Milliman et al. Jan 1999 A
5871699 Ruggeri Feb 1999 A
5879365 Whitfield et al. Mar 1999 A
5908233 Heskett et al. Jun 1999 A
5913857 Ritchart et al. Jun 1999 A
5916198 Dillow Jun 1999 A
5916229 Evans Jun 1999 A
5928164 Burbank et al. Jul 1999 A
5944673 Gregoire et al. Aug 1999 A
5951490 Fowler Sep 1999 A
5951575 Bolduc et al. Sep 1999 A
5964716 Gregoire et al. Oct 1999 A
5971939 DeSantis et al. Oct 1999 A
5976164 Bencini et al. Nov 1999 A
5980469 Burbank et al. Nov 1999 A
5980545 Pacala et al. Nov 1999 A
5989197 Avaltroni Nov 1999 A
6007495 Matula Dec 1999 A
6007497 Huitema Dec 1999 A
6007556 Kablik et al. Dec 1999 A
6017316 Ritchart et al. Jan 2000 A
6018227 Kumar et al. Jan 2000 A
6019733 Farascioni Feb 2000 A
6022324 Skinner Feb 2000 A
6022325 Siczek et al. Feb 2000 A
6027458 Janssens Feb 2000 A
6032673 Savage et al. Mar 2000 A
6036657 Milliman et al. Mar 2000 A
6050955 Bryan et al. Apr 2000 A
6055870 Jaeger May 2000 A
6071247 Kennedy Jun 2000 A
6077230 Gregoire et al. Jun 2000 A
6083176 Terwilliger Jul 2000 A
6083237 Huitema et al. Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6106484 Terwilliger Aug 2000 A
6110129 Terwilliger Aug 2000 A
6120462 Hibner et al. Sep 2000 A
6123957 Jernberg Sep 2000 A
6126617 Weilandt et al. Oct 2000 A
6142955 Farascioni et al. Nov 2000 A
6162187 Buzzard et al. Dec 2000 A
6165136 Nishtala Dec 2000 A
6193673 Viola et al. Feb 2001 B1
6196978 Weilandt et al. Mar 2001 B1
6213957 Milliman et al. Apr 2001 B1
6220248 Voegele et al. Apr 2001 B1
6231522 Voegele et al. May 2001 B1
6241687 Voegele et al. Jun 2001 B1
6267759 Quick Jul 2001 B1
6273861 Bates et al. Aug 2001 B1
6273862 Privitera et al. Aug 2001 B1
6280398 Ritchart et al. Aug 2001 B1
6283925 Terwilliger Sep 2001 B1
6322523 Weilandt et al. Nov 2001 B2
6328701 Terwilliger Dec 2001 B1
6331166 Burbank et al. Dec 2001 B1
6358217 Bourassa Mar 2002 B1
6402701 Kaplan et al. Jun 2002 B1
6419641 Mark et al. Jul 2002 B1
6428486 Ritchart et al. Aug 2002 B2
6428487 Burdorff et al. Aug 2002 B1
6432064 Hibner et al. Aug 2002 B1
6432065 Burdorff et al. Aug 2002 B1
6434507 Clayton et al. Aug 2002 B1
6436054 Viola et al. Aug 2002 B1
6461302 Thompson Oct 2002 B1
6471659 Eggers et al. Oct 2002 B2
6482158 Mault Nov 2002 B2
6485436 Truckai et al. Nov 2002 B1
6488636 Bryan et al. Dec 2002 B2
6494844 Van Bladel et al. Dec 2002 B1
6527731 Weiss et al. Mar 2003 B2
6527736 Attinger et al. Mar 2003 B1
6540694 Van Bladel et al. Apr 2003 B1
6540761 Houser Apr 2003 B2
6544194 Kortenbach et al. Apr 2003 B1
6551255 Van Bladel et al. Apr 2003 B2
6554779 Viola et al. Apr 2003 B2
6585664 Burdorff et al. Jul 2003 B2
6585694 Smith et al. Jul 2003 B1
6586585 Bastian Jul 2003 B1
6592530 Farhadi Jul 2003 B1
D478987 Groenke et al. Aug 2003 S
6620111 Stephens et al. Sep 2003 B2
6626848 Neuenfeldt Sep 2003 B2
6626849 Huitema et al. Sep 2003 B2
6632182 Treat Oct 2003 B1
6638235 Miller et al. Oct 2003 B2
6656133 Voegele et al. Dec 2003 B2
6659105 Burbank et al. Dec 2003 B2
6659338 Dittmann et al. Dec 2003 B1
6683439 Takano et al. Jan 2004 B2
6689071 Burbank et al. Feb 2004 B2
6689072 Kaplan et al. Feb 2004 B2
6695786 Wang et al. Feb 2004 B2
6695791 Gonzalez Feb 2004 B2
6702832 Ross et al. Mar 2004 B2
6712773 Viola Mar 2004 B1
6712774 Voegele et al. Mar 2004 B2
6719691 Kritzman et al. Apr 2004 B2
6752768 Burdorff et al. Jun 2004 B2
6753671 Harvey Jun 2004 B1
6755802 Bell Jun 2004 B2
6758824 Miller et al. Jul 2004 B1
6758848 Burbank et al. Jul 2004 B2
6764495 Lee et al. Jul 2004 B2
6808505 Kadan Oct 2004 B2
6832990 Kortenbach et al. Dec 2004 B2
6840950 Stanford et al. Jan 2005 B2
6849080 Lee et al. Feb 2005 B2
6850159 Mudge Feb 2005 B1
6860860 Viola Mar 2005 B2
6875183 Cervi Apr 2005 B2
6887210 Quay May 2005 B2
6908440 Fisher Jun 2005 B2
D508458 Solland et al. Aug 2005 S
6926676 Turturro et al. Aug 2005 B2
6969358 Baltschun et al. Nov 2005 B2
6984213 Horner et al. Jan 2006 B2
7004174 Eggers et al. Feb 2006 B2
7010332 Irvin et al. Mar 2006 B1
7025732 Thompson et al. Apr 2006 B2
7066893 Hibner et al. Jun 2006 B2
D525583 Vu Jul 2006 S
7108660 Stephens et al. Sep 2006 B2
7131951 Angel Nov 2006 B2
7153274 Stephens et al. Dec 2006 B2
7156814 Williamson, IV et al. Jan 2007 B1
7156815 Leigh et al. Jan 2007 B2
7169114 Krause Jan 2007 B2
7182754 Brigham et al. Feb 2007 B2
7189206 Quick et al. Mar 2007 B2
7189207 Viola Mar 2007 B2
7219867 Kalis et al. May 2007 B2
7226424 Ritchart et al. Jun 2007 B2
7229417 Foerster et al. Jun 2007 B2
7244236 Merkle Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7276032 Hibner Oct 2007 B2
7311673 Mueller, Jr. et al. Dec 2007 B2
7328794 Lubs et al. Feb 2008 B2
7347828 Francese et al. Mar 2008 B2
7347829 Mark et al. Mar 2008 B2
7374544 Freeman et al. May 2008 B2
7390306 Mark Jun 2008 B2
7397654 Mori Jul 2008 B2
7402140 Spero et al. Jul 2008 B2
7405536 Watts Jul 2008 B2
7407054 Seiler et al. Aug 2008 B2
7419472 Hibner et al. Sep 2008 B2
7432813 Postma Oct 2008 B2
7442171 Stephens et al. Oct 2008 B2
7445604 Cash Nov 2008 B2
7452367 Rassman et al. Nov 2008 B2
7458940 Miller Dec 2008 B2
7464040 Joao Dec 2008 B2
7473232 Teague Jan 2009 B2
7481775 Weikel, Jr. et al. Jan 2009 B2
7490048 Joao Feb 2009 B2
7491177 Hibner Feb 2009 B2
7494473 Eggers et al. Feb 2009 B2
7497833 Miller Mar 2009 B2
7510534 Burdorff et al. Mar 2009 B2
7510563 Cesarini et al. Mar 2009 B2
7513877 Viola Apr 2009 B2
7517321 McCullough et al. Apr 2009 B2
7517322 Weikel, Jr. et al. Apr 2009 B2
7549978 Carlson et al. Jun 2009 B2
7556622 Mark et al. Jul 2009 B2
7557536 Lobert et al. Jul 2009 B2
7573212 Avis Aug 2009 B2
7575557 Morton et al. Aug 2009 B2
7588176 Timm et al. Sep 2009 B2
7591790 Pflueger Sep 2009 B2
7608048 Goldenberg Oct 2009 B2
7611475 Spero et al. Nov 2009 B2
7645240 Thompson et al. Jan 2010 B2
7648466 Stephens et al. Jan 2010 B2
7651505 Lubock et al. Jan 2010 B2
7658718 Miller et al. Feb 2010 B2
7662109 Hibner Feb 2010 B2
7666200 Heisler Feb 2010 B2
7670299 Beckman et al. Mar 2010 B2
7693567 Tsonton et al. Apr 2010 B2
7708721 Khaw May 2010 B2
7717861 Weikel et al. May 2010 B2
7727164 Cicenas et al. Jun 2010 B2
7740594 Hibner Jun 2010 B2
7740596 Hibner Jun 2010 B2
7740597 Cicenas et al. Jun 2010 B2
7758515 Hibner Jul 2010 B2
7762961 Heske et al. Jul 2010 B2
7785535 Chen et al. Aug 2010 B2
7794411 Ritchart et al. Sep 2010 B2
7799116 Schwindt Sep 2010 B2
7806834 Beckman et al. Oct 2010 B2
7819819 Quick et al. Oct 2010 B2
7828746 Teague Nov 2010 B2
7828747 Heske et al. Nov 2010 B2
7828748 Hibner Nov 2010 B2
7837630 Nicoson et al. Nov 2010 B2
7837632 Stephens et al. Nov 2010 B2
7841991 Douglas et al. Nov 2010 B2
7846109 Parihar et al. Dec 2010 B2
7847515 Schroeck et al. Dec 2010 B2
7854706 Hibner Dec 2010 B2
7854707 Hibner et al. Dec 2010 B2
7860556 Saadat Dec 2010 B2
7862517 Tsonton et al. Jan 2011 B2
7862518 Parihar Jan 2011 B2
7867173 Hibner et al. Jan 2011 B2
7871384 Thompson et al. Jan 2011 B2
7883476 Miller et al. Feb 2011 B2
7883494 Martin Feb 2011 B2
7906076 Fischer Mar 2011 B2
7914462 Hutchins et al. Mar 2011 B2
7914464 Burdorff et al. Mar 2011 B2
7959580 Mccullough et al. Jun 2011 B2
7963928 Krause Jun 2011 B2
7974681 Wallace et al. Jul 2011 B2
3002713 Heske et al. Aug 2011 A1
7987766 Price Aug 2011 B1
7988642 Hardin et al. Aug 2011 B2
3012102 McCullough et al. Sep 2011 A1
8013572 Rodgers Sep 2011 B2
8016772 Heske et al. Sep 2011 B2
8016844 Privitera et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8034003 Pesce et al. Oct 2011 B2
8042689 Fröjd et al. Oct 2011 B2
8048003 Nicoson et al. Nov 2011 B2
8052614 Heske et al. Nov 2011 B2
8052615 Reuber et al. Nov 2011 B2
8057402 Hibner et al. Nov 2011 B2
8073008 Mehta et al. Dec 2011 B2
8075495 Andreyko et al. Dec 2011 B2
8075496 Deck et al. Dec 2011 B2
8075568 Selis Dec 2011 B2
8083671 Boulais et al. Dec 2011 B2
8083687 Parihar Dec 2011 B2
8109885 Heske et al. Feb 2012 B2
8109886 Miller et al. Feb 2012 B2
8118755 Hibner et al. Feb 2012 B2
8128577 Viola Mar 2012 B2
8129955 White et al. Mar 2012 B2
8152738 Li et al. Apr 2012 B2
8157744 Jorgensen et al. Apr 2012 B2
8162850 Parihar et al. Apr 2012 B2
8162851 Heske et al. Apr 2012 B2
D659828 Horning et al. May 2012 S
8167818 Miller May 2012 B2
8172771 Miller et al. May 2012 B2
8172773 Heske et al. May 2012 B2
8177728 Hibner et al. May 2012 B2
8177729 Hibner et al. May 2012 B2
8183825 Sa May 2012 B2
8187204 Miller et al. May 2012 B2
8187294 Miller et al. May 2012 B2
8190238 Moll et al. May 2012 B2
8192370 Miller Jun 2012 B2
8202229 Miller et al. Jun 2012 B2
8206316 Hibner et al. Jun 2012 B2
8206409 Privitera et al. Jun 2012 B2
8241331 Arnin Aug 2012 B2
8251916 Speeg et al. Aug 2012 B2
8251917 Almazan Aug 2012 B2
8261847 Ford et al. Sep 2012 B2
8262585 Thompson et al. Sep 2012 B2
8262586 Anderson et al. Sep 2012 B2
8267868 Taylor et al. Sep 2012 B2
8277393 Miller et al. Oct 2012 B2
8282573 Shabaz et al. Oct 2012 B2
8282574 Coonahan et al. Oct 2012 B2
8283890 Videbaek Oct 2012 B2
8287465 Hardin et al. Oct 2012 B2
8287466 Weikel, Jr. et al. Oct 2012 B2
8313444 Thompson et al. Nov 2012 B2
8317725 Quick et al. Nov 2012 B2
8343069 Uchiyama et al. Jan 2013 B2
8357103 Mark et al. Jan 2013 B2
8366635 Parihar et al. Feb 2013 B2
8366636 Videbaek Feb 2013 B2
8430824 Videbaek et al. Apr 2013 B2
8430825 Mark Apr 2013 B2
8430827 Nicoson et al. Apr 2013 B2
8480595 Speeg et al. Jul 2013 B2
8485987 Videbaek et al. Jul 2013 B2
8485989 Videbaek Jul 2013 B2
8491496 Hibner Jul 2013 B2
8506504 Field et al. Aug 2013 B2
8529468 Hoffa et al. Sep 2013 B2
8529593 Berberich Sep 2013 B2
8540646 Mendez-Coll Sep 2013 B2
8574167 Smith et al. Nov 2013 B2
8591435 Ritchart et al. Nov 2013 B2
8594339 Dufresne et al. Nov 2013 B2
8597205 Seiger et al. Dec 2013 B2
8597206 Videback Dec 2013 B2
8600299 Randall et al. Dec 2013 B2
8672860 Moore et al. Mar 2014 B2
8690793 Ranpura et al. Apr 2014 B2
8696650 Quick et al. Apr 2014 B2
8702621 Mccullough et al. Apr 2014 B2
8702622 McCullough et al. Apr 2014 B2
8702623 Parihar et al. Apr 2014 B2
8708928 Videbaek Apr 2014 B2
8708929 Videbaek Apr 2014 B2
8708930 Videbaek Apr 2014 B2
8721563 Taylor et al. May 2014 B2
8728003 Taylor et al. May 2014 B2
8728004 Heske et al. May 2014 B2
8764664 Callahan et al. Jul 2014 B2
8771200 Thompson et al. Jul 2014 B2
8795195 Daw et al. Aug 2014 B2
8808197 Videbaek et al. Aug 2014 B2
8858463 Seiger et al. Oct 2014 B2
8864680 Videbæk et al. Oct 2014 B2
8926527 Jørgensen et al. Jan 2015 B2
8932233 Haberstich et al. Jan 2015 B2
8951208 Almazan Feb 2015 B2
8951209 Heske et al. Feb 2015 B2
8956306 Hibner Feb 2015 B2
8961430 Coonahan et al. Feb 2015 B2
8992440 Reuber et al. Mar 2015 B2
9023292 Rostaing et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9072502 Heske et al. Jul 2015 B2
9095326 Ritchie et al. Aug 2015 B2
9161743 Mccullough et al. Oct 2015 B2
9162884 Hoon et al. Oct 2015 B2
9173641 Chudzik et al. Nov 2015 B2
9220573 Kendrick et al. Dec 2015 B2
9282949 Videbaek Mar 2016 B2
9332972 Boutaghou et al. May 2016 B2
9345457 Speeg et al. May 2016 B2
9345458 Videbaek et al. May 2016 B2
9421002 Heske et al. Aug 2016 B2
9439631 Heske et al. Sep 2016 B2
9439632 Almazan Sep 2016 B2
9445790 Zinn et al. Sep 2016 B2
9451968 Miller et al. Sep 2016 B2
9456809 Jorgensen et al. Oct 2016 B2
9566045 Videbaek et al. Feb 2017 B2
9638770 Dietz et al. May 2017 B2
9655599 Chudzik et al. May 2017 B2
20010007925 Ritchart et al. Jul 2001 A1
20010012919 Terwilliger Aug 2001 A1
20010034530 Malackowski et al. Oct 2001 A1
20010044595 Reydel et al. Nov 2001 A1
20010047183 Privitera et al. Nov 2001 A1
20020000403 Tanaka et al. Jan 2002 A1
20020067151 Tanishita Jun 2002 A1
20020068878 Jasonni et al. Jun 2002 A1
20020107043 Adamson et al. Aug 2002 A1
20020120212 Ritchart et al. Aug 2002 A1
20030093103 Malackowski et al. May 2003 A1
20030163142 Paltieli et al. Aug 2003 A1
20040030367 Yamaki et al. Feb 2004 A1
20040092992 Adams et al. May 2004 A1
20040158172 Hancock Aug 2004 A1
20040162505 Kaplan et al. Aug 2004 A1
20040220495 Cahir et al. Nov 2004 A1
20040230188 Cioanta et al. Nov 2004 A1
20050004492 Burbank et al. Jan 2005 A1
20050004559 Quick et al. Jan 2005 A1
20050010131 Burbank et al. Jan 2005 A1
20050020909 Moctezuma de la Barrera et al. Jan 2005 A1
20050049521 Miller et al. Mar 2005 A1
20050101879 Shidham et al. May 2005 A1
20050113715 Schwindt et al. May 2005 A1
20050113716 Mueller, Jr. et al. May 2005 A1
20050124914 Dicarlo et al. Jun 2005 A1
20050177117 Crocker et al. Aug 2005 A1
20050193451 Quistgaard et al. Sep 2005 A1
20050209530 Pflueger Sep 2005 A1
20050275378 Canino et al. Dec 2005 A1
20050288605 Pellegrino et al. Dec 2005 A1
20060030784 Miller et al. Feb 2006 A1
20060074344 Hibner Apr 2006 A1
20060074345 Hibner Apr 2006 A1
20060116603 Shibazaki et al. Jun 2006 A1
20060122535 Daum Jun 2006 A1
20060178666 Cosman et al. Aug 2006 A1
20060184063 Miller Aug 2006 A1
20060241515 Jones et al. Oct 2006 A1
20070016101 Feldman et al. Jan 2007 A1
20070055173 DeLonzor et al. Mar 2007 A1
20070090788 Hansford et al. Apr 2007 A1
20070106176 Mark et al. May 2007 A1
20070161925 Quick et al. Jul 2007 A1
20070167943 Janssen et al. Jul 2007 A1
20070213590 Squicciarini Sep 2007 A1
20070213632 Okazaki et al. Sep 2007 A1
20070270710 Frass et al. Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20070293788 Entrekin et al. Dec 2007 A1
20080004545 Garrison Jan 2008 A1
20080007217 Riley Jan 2008 A1
20080030170 Dacquay et al. Feb 2008 A1
20080064925 Gill et al. Mar 2008 A1
20080103411 Van Bladel et al. May 2008 A1
20080125634 Ryan et al. May 2008 A1
20080146965 Privitera et al. Jun 2008 A1
20080161720 Nicoson et al. Jul 2008 A1
20080200835 Monson et al. Aug 2008 A1
20080208194 Bickenbach Aug 2008 A1
20080221443 Ritchie et al. Sep 2008 A1
20080221444 Ritchie et al. Sep 2008 A1
20080221478 Ritchie et al. Sep 2008 A1
20080221479 Ritchie et al. Sep 2008 A1
20080228104 Uber et al. Sep 2008 A1
20090030442 Potter et al. Jan 2009 A1
20090062624 Neville Mar 2009 A1
20090082695 Whitehead Mar 2009 A1
20090087249 Flagle et al. Apr 2009 A1
20090146609 Santos Jun 2009 A1
20090204022 Schwindt Aug 2009 A1
20090281453 Tsonton et al. Nov 2009 A1
20100030020 Sanders et al. Feb 2010 A1
20100063416 Cicenas et al. Mar 2010 A1
20100152610 Parihar et al. Jun 2010 A1
20110105946 Sorensen et al. May 2011 A1
20110152715 Delap et al. Jun 2011 A1
20110160611 Ritchart et al. Jun 2011 A1
20110224577 Park Sep 2011 A1
20120080332 Shelton, IV et al. Apr 2012 A1
20120191009 Hoon et al. Jul 2012 A1
20120253225 Boutaghou et al. Oct 2012 A1
20120265096 Mendez-Coll Oct 2012 A1
20130023789 Anderson et al. Jan 2013 A1
20130165815 Zinn et al. Jun 2013 A1
20130289441 Videbaek et al. Oct 2013 A1
20140358032 Videbaek et al. Dec 2014 A1
20140371585 Thompson et al. Dec 2014 A1
20150018712 Seiger et al. Jan 2015 A1
20150190124 Mccullough et al. Jul 2015 A1
20150223787 Coonahan et al. Aug 2015 A1
20150238174 Reuber et al. Aug 2015 A1
20160256138 Videbaek et al. Sep 2016 A1
20160262733 Schlarb et al. Sep 2016 A1
20160317133 Orts et al. Nov 2016 A1
20160367229 Jorgensen et al. Dec 2016 A1
20160367230 Almazan Dec 2016 A1
20160374650 Heske et al. Dec 2016 A1
20170042517 Heske et al. Feb 2017 A1
20170181732 Videbaek et al. Jun 2017 A1
Foreign Referenced Citations (60)
Number Date Country
101011268 Aug 2007 CN
101032420 Sep 2007 CN
3924291 Jan 1991 DE
4041614 Oct 1992 DE
3924291 Jul 2000 DE
10034297 Apr 2001 DE
10026303 Feb 2002 DE
20204363 May 2002 DE
10235480 Feb 2004 DE
0433717 Jun 1991 EP
0890339 Jan 1999 EP
0995400 Apr 2000 EP
1074271 Feb 2001 EP
1520518 Apr 2005 EP
1579809 Sep 2005 EP
1604615 Dec 2005 EP
1642535 Apr 2006 EP
1665989 Jun 2006 EP
1829487 Sep 2007 EP
2095772 Sep 2009 EP
2106750 Oct 2009 EP
1569561 Oct 2010 EP
1345429 Dec 1963 FR
2739293 Apr 1997 FR
2018601 Oct 1979 GB
1-126957 Sep 1987 JP
H10508504 Aug 1998 JP
2005530554 Oct 2005 JP
2006509545 Mar 2006 JP
2006528907 Dec 2006 JP
2007502159 Feb 2007 JP
9508945 Apr 1995 WO
9628097 Sep 1996 WO
9734531 Sep 1997 WO
9825522 Jun 1998 WO
9831285 Jul 1998 WO
9835615 Aug 1998 WO
9846290 Oct 1998 WO
9933501 Jul 1999 WO
0004832 Feb 2000 WO
0030546 Jun 2000 WO
0059378 Oct 2000 WO
0172230 Oct 2001 WO
0222023 Mar 2002 WO
0232318 Apr 2002 WO
02069808 Sep 2002 WO
WO-2004052212 Jun 2004 WO
2005013830 Feb 2005 WO
2006015302 Feb 2006 WO
2007047128 Apr 2007 WO
2007095330 Aug 2007 WO
2007112751 Oct 2007 WO
2008021687 Feb 2008 WO
2008040812 Apr 2008 WO
2008131362 Oct 2008 WO
2010107424 Sep 2010 WO
2010120294 Oct 2010 WO
2011019343 Feb 2011 WO
2013158072 Oct 2013 WO
2014153410 Sep 2014 WO
Non-Patent Literature Citations (1)
Entry
MAXIM; Maxim8606; USB/AC Adapter, Li+ Linear Battery Charger with Integrated 50m Omega Battery Switch in TDFN; http://datasheets.maxim-ic.com/en/ds/MAX8606.pdf; Dec. 2008; pp. 1-14; Rev 1.
Related Publications (1)
Number Date Country
20200000446 A1 Jan 2020 US
Divisions (1)
Number Date Country
Parent 15034339 US
Child 16570097 US