Biopsy device

Information

  • Patent Grant
  • 11179142
  • Patent Number
    11,179,142
  • Date Filed
    Thursday, September 26, 2019
    5 years ago
  • Date Issued
    Tuesday, November 23, 2021
    3 years ago
Abstract
A biopsy device is configured such that: a first retraction of a charge handle moves a cannula slide and a sampling slide in unison in a proximal direction to charge and retain a sampling spring in a charged state, and to charge a vacuum system; a first return of the charge handle returns the charge handle to a home position; a second retraction of the charge handle moves the charge handle to a retracted position; a second return of the charge handle to the home position moves the cannula slide to charge a cannula retract spring and retain the cannula retract spring in a charged state; and a third retraction of the charge handle moves the carriage assembly as a whole in the proximal direction to charge a prime pierce spring and to retain the prime pierce spring in a charged state.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to biopsy devices, and, more particularly, to a handheld biopsy device having integrated vacuum assist to aid in tissue sample acquisition.


2. Description of the Related Art

A biopsy device has a sample retrieval mechanism configured to sever and remove a tissue sample from a patient. The sample retrieval mechanism may be in the form of a biopsy probe assembly that is configured with a biopsy needle having a sample retrieval opening. Some practitioners that perform biopsy procedures prefer a self-contained handheld biopsy device over that of a large console system. There are essentially two types of self-contained handheld biopsy devices: the partially disposable biopsy device and the fully disposable biopsy device.


A typical partially disposable biopsy device has a reusable handheld driver to which a disposable probe is releasably attached. The reusable handheld driver is typically battery powered, and includes electrical motor drives and an on-board vacuum pump to aid in sample acquisition and/or retrieval. Often, such biopsy devices are configured for single insertion multiple sample (SIMS) procedures. The disposable probe is used on a single patient, and then discarded, while the handheld driver is retained for reuse.


A typical fully disposable biopsy device has one or more mechanical drives, such as spring/latch arrangements, which permit the biopsy device to be manually cocked and fired for tissue sample acquisition. Such simple biopsy devices often are configured to acquire a single sample per insertion. Also, many of the fully disposable biopsy devices do not have vacuum to assist in sample acquisition. While some attempts have been made to include a vacuum assist feature in a fully disposable biopsy device, the vacuum produced typically is not sufficient to approach the performance of that of a partially disposable biopsy device as described above. Also, in a typical fully disposable biopsy device having vacuum assist, such vacuum is generated simultaneously with movement of the cutting cannula to sever the tissue sample, and thus the vacuum may be of limited value in acquiring the tissue sample.


What is needed in the art is a biopsy device that may be fully disposable, and which may generate a reserve of vacuum prior to a retraction of the cutting cannula to expose the sample retrieval opening of the biopsy needle, thus facilitating efficient vacuum application to aid in sample acquisition, and which is configured to be easy to use.


SUMMARY OF THE INVENTION

The present invention provides a biopsy device and a method of operating the biopsy device.


As used herein, the terms “first”, “second”, “third”, etc., that precede an element name, e.g., first latch member, second latch member, etc., are for identification purposes to distinguish between different elements having similar characteristic, and are not intended to necessarily imply order, unless otherwise specified, nor are such terms intended to preclude the inclusion of additional similar elements.


The invention in one form is directed to a biopsy device having a housing, a biopsy needle including a stylet and a cannula, a carriage assembly including a carriage slide, a cannula slide and a sampling slide. The carriage slide has a stylet mount end wall and the cannula slide has a cannula mount end wall. A charge handle is slidably mounted to the housing. The charge handle has a home position and a retracted position. The biopsy device further includes a vacuum system positioned in the housing and carried by the carriage assembly. The vacuum system is charged to generate a vacuum when a sampling spring is compressed. The vacuum system includes a first vacuum pump, a second vacuum pump, a manifold and a control valve. The first vacuum pump has a first vacuum port. The second vacuum pump has a second vacuum port. The manifold has a first vacuum draw port, a second vacuum draw port, and a first vacuum application port. The control valve has a third vacuum draw port and a second vacuum application port. The first vacuum port of the first vacuum pump is coupled in fluid communication with the first vacuum draw port of the manifold. The second vacuum port of the second vacuum pump is coupled in fluid communication with the second vacuum draw port of the manifold. The first vacuum application port of the manifold is coupled in fluid communication with the third vacuum draw port of the valve. The second vacuum draw port of the control valve is coupled in fluid communication with a first lumen of the stylet. The manifold has a first one-way valve coupled in fluid communication with the first vacuum draw port and a second one-way valve coupled in fluid communication with the second vacuum draw port. Each of the first one-way valve and the second one-way valve is configured to release positive pressure to the atmosphere and to close upon establishment of vacuum. The control valve is operated by actuation of a cannula retract button of an actuator mechanism to apply the vacuum to a side sample port of the stylet simultaneously with movement of the cannula in a proximal direction by a force generated by a cannula retract spring to open the side sample port of the stylet.


The invention in another form is directed to a biopsy device that includes a housing having an actuator mechanism. A carriage assembly is movable relative to the housing. The carriage assembly includes a stylet mount wall that mounts a stylet having a sample port, a cannula slide that mounts a cutting cannula, a sampling slide movably interposed between the stylet mount wall and the cannula slide, and a carriage latch cover member. The cannula slide is longitudinally spaced from and movable relative to the stylet mount wall. The cannula slide has a first latch member, the sampling slide has a second latch member, and the carriage latch cover member has a third latch member. A charge handle is slidably mounted to the housing. The charge handle has a home position and a retracted position. A sampling spring is interposed between the stylet mount wall and the sampling slide. A cannula retract spring is interposed between, and connected to each of, the sampling slide and the cannula slide. A prime pierce spring is interposed between the carriage assembly and a portion of the housing. A vacuum system is configured to selectively supply a vacuum to the sample port of the stylet. The biopsy device is configured such that a first retraction of the charge handle moves the cannula slide and the sampling slide in unison in a proximal direction to charge the sampling spring, to latch the second latch member of the sampling slide with the carriage latch cover member to retain the sampling spring in a charged state, and to charge the vacuum system to generate the vacuum. A first return of the charge handle returns the charge handle to the home position. A second retraction of the charge handle moves the charge handle to the retracted position. A second return of the charge handle to the home position moves the cannula slide in a distal direction away from the sampling slide to charge the cannula retract spring and to latch the first latch member of the cannula slide with the carriage latch cover member to retain the cannula retract spring in a charged state. A third retraction of the charge handle moves the carriage assembly as a whole in the proximal direction to charge the prime pierce spring and to latch the third latch member of the carriage latch cover member with the actuator mechanism to retain the prime pierce spring in a charged state.


The invention in another form is directed to a biopsy device that includes a stylet positioned to extend on a longitudinal axis. The stylet has a first side wall configured to define a first lumen and a side sample port that extends through the first side wall to the first lumen. A cannula is coaxial with the stylet. The cannula has a second side wall configured to define a second lumen and a distal cutting edge. A housing has a proximal end wall, an intermediate wall, and a distal end portion spaced along the longitudinal axis. The distal end portion has a needle opening. The housing is configured to define a housing chamber between the proximal end wall and the distal end portion. The intermediate wall is interposed between the proximal end wall and the distal end portion. The stylet and the cannula are received through the needle opening. A proximal direction is from the distal end portion toward to the proximal end wall and a distal direction is from the proximal end wall toward the distal end portion. A charge handle is slidably mounted to the housing. The charge handle is configured to move between a home position and a retracted position. An actuator mechanism has a pierce button, a cannula retract button, and a sample acquisition button, and has a carriage latch strike. A carriage assembly is positioned in the housing chamber. The carriage assembly is configured to move longitudinally as a whole relative to the housing. The carriage assembly includes a carriage slide, a carriage latch cover member, a cannula slide, and a sampling slide. Each of the cannula slide and the sampling slide is configured to be movable relative to the carriage slide. The carriage slide has a stylet mount end wall configured to mount the stylet. The cannula slide has a cannula mount end wall configured to mount the cannula and has a first latch arm that extends in the proximal direction from the cannula mount end wall. The sampling slide is movably interposed between the stylet mount end wall of the carriage slide and the cannula mount end wall of the cannula slide. The sampling slide has a second latch arm that extends in the distal direction. The carriage latch cover member has a first latch strike, a second latch strike, and a carriage latch arm. The first latch strike is configured to releasably engage the first latch arm. The second latch strike is configured to releasably engage the second latch arm. The carriage latch arm is configured to releasably engage the carriage latch strike of the actuator mechanism. A sampling spring is interposed between the stylet mount end wall and the sampling slide. The sampling spring is configured to store mechanical energy when in a compressed state and configured to bias the sampling slide in the distal direction. The sampling spring is held in the compressed state when the second latch arm is engaged with the second latch strike. A vacuum system is positioned in the housing and carried by the carriage assembly. The vacuum system is charged to generate a vacuum when the sampling spring is compressed. A cannula retract spring is interposed between, and is connected to each of, the sampling slide and the cannula slide. The cannula retract spring is configured to store mechanical energy in an extended state to bias the cannula slide in the proximal direction. The cannula retract spring is releasably held in the extended state when the first latch arm is engaged with the first latch strike and the second latch arm is engaged with the second latch strike. A prime pierce spring is interposed between the intermediate wall of the housing and the stylet mount end wall. The prime pierce spring is configured to store mechanical energy when in a compressed state and is configured to bias the carriage assembly as a whole in the distal direction. The prime pierce spring is held in the compressed state when the carriage latch arm is engaged with the carriage latch strike of the actuator mechanism.


The biopsy device also may include an indexing mechanism that is movably coupled to the cannula mount end wall of the cannula slide. The cannula mount end wall has an indexing window. The indexing mechanism is configured to selectively cover a portion of the indexing window. The charge handle has a charge handle latch arm configured to pass through the indexing window when the charge handle is moved to the retracted position, and when the indexing mechanism is positioned to cover a portion of the indexing window, a subsequent movement of the charge handle in the distal direction toward the home position causes the charge handle latch arm to engage the indexing mechanism to move the cannula slide in the distal direction away from the sampling slide to charge the cannula retract spring.


The invention in another form is directed to a biopsy device that includes a housing having a longitudinal axis. The housing is configured to define a housing chamber. An actuator mechanism has a cannula retract button, a sample acquisition button, and a carriage latch strike. A carriage assembly is positioned in the housing chamber. The carriage assembly includes a carriage slide having a carriage base and a stylet mount wall. The carriage assembly further includes a sampling slide, a cannula slide and a carriage latch cover member. The cannula slide is longitudinally spaced from and movable relative to the stylet mount wall. The cannula slide has a first latch arm. The carriage latch cover member has a first latch strike and a second latch strike. The first latch arm is configured to releasably engage the first latch strike. A stylet is fixedly connected to stylet mount wall. The stylet is configured to extend along the longitudinal axis, and has a side sample port. A vacuum source is carried by the carriage assembly. The vacuum source is configured to selectively apply a vacuum to the side sample port of the stylet. A cannula is fixedly connected to the cannula slide. The cannula is coaxial with the stylet. The cannula has a distal cutting edge. The sampling slide is movably interposed between the stylet mount wall and the cannula slide. The sampling slide has a second latch arm and a latch arm deflection member. The second latch arm is configured to releasably engage the second latch strike of the carriage latch cover member. The latch arm deflection member is configured to engage the first latch arm of the cannula slide and deflect the first latch arm toward the carriage base. A sampling spring is interposed between the stylet mount wall and the sampling slide. The sampling spring is held in the compressed state when the second latch arm is engaged with the second latch strike. A cannula retract spring is interposed between, and is connected to each of, the sampling slide and the cannula slide. The cannula retract spring is releasably held in an extended state to store mechanical energy when the first latch arm is engaged with the first latch strike and the second latch arm is engaged with the second latch strike. A cocking mechanism has a charge handle, a biasing spring, and an indexing mechanism. The charge handle is slidably mounted to the housing and biased by the biasing spring in the distal direction to a home position. The charge handle is configured to move between the home position and a retracted position. The charge handle and the indexing mechanism in combination are configured to selectively move each of the sampling slide and the cannula slide based on sequential actuations of the charge handle, wherein: a first retraction of the charge handle moves the sampling slide and the cannula slide in unison in the proximal direction to compress the sampling spring, to engage the second latch arm with the second latch strike to retain the sampling spring in the compressed state, and to charge the vacuum source, the charge handle configured to return to the home position by force exerted by the biasing spring and to sequence the indexing mechanism to a next selection position; and a second retraction of the charge handle moves the charge handle to the retracted position, and during a return of the charge handle to the home position by force exerted by the biasing spring, the charge handle engages the cannula slide and the cannula slide is moved in the distal direction which in turn extends the cannula retract spring to the extended state and the first latch arm releasably engages the first latch strike to retain the cannula retract spring in the extended state, the cannula being positioned to close the side sample port of the stylet. The actuator mechanism is configured such that an actuation of the cannula retract button releases the first latch arm from the first latch strike to in turn release the cannula retract spring to exert a retraction force to move the cannula in the proximal direction to open the side sample port of the stylet and to simultaneously apply the vacuum to the side sample port; and an actuation of the sample acquisition button releases the second latch arm from the second latch strike to release the sampling spring to exert a force to move the cannula in the distal direction to close the side sample port.


The invention in another form is directed to a method of operating a biopsy device which includes providing a housing having an actuator mechanism; providing a carriage assembly movable relative to the housing, the carriage assembly including a stylet mount wall that mounts a stylet, a cannula slide that mounts a cutting cannula, a sampling slide movably interposed between the stylet mount wall and the cannula slide, and a carriage latch cover member, the cannula slide being longitudinally spaced from and movable relative to the stylet mount wall; providing a charge handle to sequentially move at least one of the cannula slide, the sampling slide, and the carriage assembly as a whole, the charge handle having a home position and a retracted position; providing a sampling spring interposed between the stylet mount wall and the sampling slide; providing a cannula retract spring interposed between, and connected to each of, the sampling slide and the cannula slide; providing a prime pierce spring interposed between the carriage assembly and a portion of the housing; providing a vacuum system to selectively supply a vacuum to a sample port of the stylet; retracting the charge handle a first time to move the cannula slide and the sampling slide in unison in a proximal direction to charge a sampling spring, to latch the sampling slide with the carriage latch cover member to retain the sampling spring in a charged state, and to charge the vacuum system with a vacuum; returning the charge handle a first time to the home position; retracting the charge handle a second time to the retracted position; returning the charge handle a second time to the home position to move the cannula slide in a distal direction relative to the sampling slide to charge the cannula retract spring and to latch the cannula slide with the carriage latch cover member to retain the cannula retract spring in a charged state; and retracting the charge handle a third time to move the carriage assembly as a whole in the proximal direction to charge the prime pierce spring and to latch the carriage latch cover member with the actuator mechanism to retain the prime pierce spring in a charged state.


An advantage of the present invention is that the biopsy device is fully disposable.


Another advantage of the present invention is that the biopsy device is fully mechanical with no electrical component, thus requiring no electrical power source.


According to at least one aspect of the invention, another advantage is that the biopsy device generates a reserve of vacuum prior to a retraction of the cutting cannula to expose the sample port of the biopsy needle, thus facilitating efficient vacuum application to aid in sample acquisition.


Another advantage of the present invention is that the biopsy device is configured to be easy to use.


The above listed advantages may be realized individually, or collectively, depending on the aspects of the present invention that are utilized in a particular implementation.





BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a perspective view of a biopsy device of the present invention.



FIG. 2 is a top view of the biopsy device of FIG. 1.



FIG. 3 is a side view of the biopsy device of FIG. 1.



FIG. 4 is a partially exploded view of the biopsy device of FIG. 1, exposing the carriage assembly.



FIG. 5 is a fully exploded view of the biopsy device of FIG. 1.



FIG. 6 is a top view of the charge handle of the biopsy device of FIG. 1.



FIG. 7A is a top perspective view of the actuator mechanism of the biopsy device of FIG. 1.



FIG. 7B is a bottom perspective view of the actuator mechanism of the biopsy device of FIG. 1.



FIG. 8 is a perspective view of a prime pierce carriage of the carriage assembly of FIGS. 4 and 5, with the carriage latch cover member separated from the carriage slide.



FIG. 9 is a side view of the carriage latch cover member of FIGS. 4, 5, and 8.



FIG. 10 is an enlarged view of the carriage assembly of FIGS. 4 and 5.



FIG. 11 is an exploded view showing a portion of the carriage assembly of FIG. 10 that exposes the vacuum system, and with the carriage latch cover member removed.



FIG. 12A is a rear perspective view of the sampling slide of the carriage assembly of FIGS. 4, 5, and 10.



FIG. 12B is a front perspective view of the sampling slide of FIG. 12A.



FIG. 13 is a perspective view of the cannula slide and indexing mechanism of the carriage assembly of FIGS. 4, 5, and 10.



FIG. 14A is an enlarged perspective view of the cannula slide indexer of the indexing mechanism depicted in FIGS. 5 and 13.



FIG. 14B is an end view of the cannula slide indexer of FIG. 14A.



FIG. 15A is an enlarged perspective view of the sampling slide indexer of the indexing mechanism depicted in FIGS. 5 and 13.



FIG. 15B is a rear (proximal) view of the sampling slide indexer of FIG. 15A.



FIG. 16 shows the relative positions of the cannula slide indexer and the sampling slide indexer of the indexing mechanism depicted in FIGS. 5, 13, and 14A-15B, when the biopsy device is new from the manufacturer, as well as at the conclusion of a biopsy procedure.



FIG. 17 shows the relative positions of the cannula slide indexer and the sampling slide indexer of the indexing mechanism depicted in FIGS. 5, 13, and 14A-15B, following a first retraction (proximal) stroke of the charge handle of the biopsy device of FIG. 1, wherein the sampling spring and vacuum springs are charged, and prior to and during a second retraction (proximal) stroke and second return (distal) stroke of the charge handle.



FIG. 18 shows the relative positions of the cannula slide indexer and the sampling slide indexer of the indexing mechanism depicted in FIGS. 5, 13, and 14A-15B, after the second return (distal) stroke of the charge handle of the biopsy device of FIG. 1, wherein the cannula retract springs are charged, and prior to a third retraction (proximal) stroke of the charge handle to charge the prime pierce spring.



FIG. 19 is a top view of a subassembly formed by the sampling slide and cannula slide depicted in FIGS. 5, 12A and 13, prior to insertion of the subassembly into prime pierce carriage of FIG. 8.



FIG. 20 shows a top view of the biopsy device of FIG. 1 with the upper case portion removed, and with the carriage latch cover member separated from the carriage slide, so as to expose the positions of the sampling slide, the cannula slide, and the vacuum system of the carriage assembly, when the biopsy device is new with the charge handle in the home position, or after the biopsy device has been fully cycled in taking a biopsy tissue sample.



FIG. 21 shows the biopsy device depicted in FIG. 20, with the charge handle in the retracted position, and wherein with a first retraction (proximal) stroke of the charge handle, the sampling slide and the cannula slide are moved collectively in the proximal direction relative to carriage slide of the prime pierce carriage to simultaneously charge the vacuum springs of the vacuum system and the sampling spring.



FIG. 22 shows the biopsy device depicted in FIG. 21, wherein upon release of the charge handle from the retracted position of FIG. 21, the biasing springs discharge to effect a first return (distal) stroke of the charge handle to return the charge handle to the home position.



FIG. 23 shows the biopsy device depicted in FIG. 22, depicting a second retraction (proximal) stroke of the charge handle in the proximal direction to the retracted position in preparation for charging the cannula retract springs.



FIG. 24 shows the biopsy device depicted in FIG. 23, wherein upon release of the charge handle from the retracted position of FIG. 23, on the second return (distal) stroke, the charge handle engages and pulls the cannula slide in the distal direction away from the sampling slide to charge (extend) the cannula retract springs, and the charge handle returns to the home position.



FIG. 25 shows the biopsy device depicted in FIG. 24, depicting a third retraction (proximal) stroke of the charge handle in the proximal direction to move the carriage assembly as a whole in the proximal direction to charge (compress) the prime pierce spring.



FIG. 26 shows the biopsy device depicted in FIG. 25, wherein upon release of the charge handle from the retracted position of FIG. 25, the biasing springs discharge to effect a third return (distal) stroke of the charge handle to return the charge handle to the home position.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates an embodiment of the invention and such exemplification is not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings, and more particularly to FIGS. 1-5, there is shown a biopsy device 10 in accordance with an embodiment of the present invention. Biopsy device 10 is a self-contained and fully mechanical vacuum-assisted biopsy device that is configured as a single insertion single sample (SISS) biopsy device, and which is fully disposable. As used herein, the term “disposable” is used to refer to a device that is intended to be disposed of after use on a single patient. Accordingly, biopsy device 10 is intended for use in obtaining one or more tissue samples from a single patient during a single biopsy procedure, and is intended to be disposable in its entirety at the end of the biopsy procedure.


Referring to FIGS. 1-3, biopsy device 10 includes a housing 12, a biopsy needle 14, a charge handle 16, and an actuator mechanism 18. Biopsy needle 14 includes a stylet 20 and a cannula 22. In the present embodiment, housing 12, charge handle 16 and actuator mechanism 18 are made of plastic, and stylet 20 and cannula 22 are made from a metallic material, such as stainless steel. In describing the orientation of components and the operation of biopsy device 10 in more detail below, for convenience, reference will be made to a distal direction D1 and a proximal direction D2 with respect to a longitudinal axis 23. The proximal direction D2 is a longitudinal direction opposite to distal direction D1.


As shown in FIGS. 1-3, biopsy needle 14 extends away from housing 12 along longitudinal axis 23 in the distal direction D1. Each of stylet 20 and cannula 22 of biopsy needle 14 is positioned to extend on the longitudinal axis 23. In the present embodiment, as depicted in FIGS. 1-3, cannula 22 is external to stylet 20, such that cannula 22 is arranged as the outer tube of the coaxial arrangement of stylet 20 and cannula 22. Stylet 20 and cannula 22 are sized such that stylet 20 is slidably received in cannula 22 in a close sliding fit, wherein the inside diameter of cannula 22 is slightly larger than the outside diameter of stylet 20 in a tolerance range of 0.01 millimeters (mm) to 1.0 mm.


In describing the invention, common directional terms such as upper, lower, up, down, top, bottom, right, left, vertical, horizontal, etc., may be used with respect to the orientation of biopsy device 10 shown in FIGS. 1 and 3-5, for convenience, to aid the reader in understanding the invention as presented in the figures of the drawings.


In the orientation shown in FIG. 1, and referring also to FIGS. 4 and 5, housing 12 includes an upper case portion 24 and a lower case portion 25. Upper case portion 24 is jointed to lower case portion 25 by removable fasteners 27, such as screws. Upper case portion 24 of housing 12 has an opening 24-1, and opposing upper slots 24-2, 24-3. Opening 24-1 is configured to receive and mount actuator mechanism 18. Alternatively, actuator mechanism 18 may be formed integral with upper case portion 24 of housing 12 at the location of opening 24-1. Lower case portion 25 is configured with opposing guide rails 25-1, 25-2 which define a lower slot, which in conjunction with the opposing upper slots 24-2, 24-3 of upper case portion 24, slidably mount charge handle 16.


Upper case portion 24 and lower case portion 25 of housing 12 collectively define a proximal end wall 26 and a distal end portion 28 spaced from proximal end wall 26 along a longitudinal axis 23. The distal direction D1 is in a direction from proximal end wall 26 toward distal end portion 28, e.g., in a direction of the extent of biopsy needle 14 away from housing 12 and away from the user. The proximal direction D2 (opposite distal direction D1) is in a direction from distal end portion 28 toward proximal end wall 26, e.g., toward the user.


Housing 12 is configured to define a housing chamber 30 between proximal end wall 26 and distal end portion 28. In the present embodiment, lower case portion 25 of housing 12 further includes an intermediate wall 32 that is interposed between proximal end wall 26 and distal end portion 28. Referring to FIG. 1, distal end portion 28 has a needle opening 12-1 configured to receive biopsy needle biopsy needle 14, with longitudinal axis 23 passing through needle opening 12-1 and through the longitudinal extent of biopsy needle 14. Proximal end wall 26 faces the user when the user grasps the biopsy device 10 in a normal operating fashion.


Charge handle 16 and actuator mechanism 18 provide the user with fully accessible control features used to operate biopsy device 10 in an intuitive manner to obtain a tissue sample from suspect tissue of a patient via biopsy needle 14.


Charge handle 16 is used to ready biopsy device 10 for performing a biopsy procedure by facilitating the generation of vacuum and preparing biopsy needle 14 for severing and collecting the tissue sample.


As shown in FIGS. 4-6, charge handle 16 has a U-shaped charge handle body 34, a charge handle end wall 36, and a charge handle latch arm 38. Charge handle latch arm 38 extends in a cantilever manner in the proximal direction D2 from charge handle end wall 36. Charge handle end wall 36 laterally intersects U-shaped charge handle body 34 to define a handle mount opening 36-1 (see FIG. 5) having a half-circle shape located below charge handle end wall 36. During assembly, distal end portion 28 of lower case portion 25 is manipulated through handle mount opening 36-1, such that charge handle end wall 36 rests on the opposing guide rails 25-1, 25-2 of lower case portion 25 to slidably mount charge handle 16 in the laterally spaced lower case portion slots defined by the laterally spaced guide rails 25-1, 25-2 in conjunction with upper slots 24-2, 24-3 of upper case portion 24.


Charge handle latch arm 38 has a free end 38-1 having a laterally protruding catch 38-2. Charge handle latch arm 38 is configured to be longitudinally rigid, and laterally resilient in a direction substantially perpendicular to the longitudinal extent of charge handle latch arm 38. As used herein, the term “substantially perpendicular” is a direction having a range of deviation from perpendicular of plus or minus five degrees.


Referring to FIGS. 4-6, charge handle 16 is biased in distal direction D1 by a biasing mechanism formed by at least one biasing spring, and in the present embodiment, includes a pair of biasing springs 39-1, 39-2 interposed between housing 12 and charge handle 16. In the present embodiment, biasing springs 39-1, 39-2 are coil springs having a contracted relaxed state. In particular, biasing spring 39-1 is attached at its ends to spring attachment loop 25-3 of lower case portion 25 of housing 12 (see FIGS. 4 and 5) and to spring attachment loop 36-2 of charge handle end wall 36 of charge handle 16 (see FIG. 6). Likewise, biasing spring 39-2 is attached at its ends to spring attachment loop 25-4 of lower case portion 25 of housing 12 (see FIGS. 4 and 5) and to spring attachment loop 36-3 of charge handle end wall 36 of charge handle 16 (see FIG. 6). Charge handle 16 is configured to be grasped by a user's hand and to move between a home (distal) position, as depicted in FIGS. 1-3, and a retracted (proximal) position.


Referring again to FIGS. 1-3, actuator mechanism 18 is used to initialize the sequential operations of firing the biopsy needle in distal direction D1 to perform a piercing shot into tissue to be biopsied, to apply vacuum and open a sample port in biopsy needle 14, and to operate biopsy needle 14 to sever a tissue sample, as more fully described below.


Referring also to FIGS. 7A and 7B, actuator mechanism 18 includes three control buttons 40, individually identified as a pierce button 40-1, a cannula retract button 40-2, and a sample acquisition button 40-3, each of which is accessible to the user from the exterior of biopsy device 10. As shown in FIG. 7B, each of the control buttons 40 includes a mechanical extension that serves as respective actuator portions 42-1, 42-2, 42-3.


Also, as shown in FIG. 7B, actuator mechanism 18 further includes a carriage latch strike 44. In the present embodiment, carriage latch strike 44 is configured as an inverted ramp having a downwardly facing ramp surface 44-1 that diverges in the proximal direction D2 to define a proximal end face 44-2.


Referring again to FIGS. 4 and 5, biopsy device 10 further includes a carriage assembly 50 that is positioned and slidably contained in housing chamber 30 of housing 12. Carriage assembly 50 is configured to move longitudinally along longitudinal axis 23 as a whole relative to housing 12, and is configured to mount biopsy needle 14, as more fully described below.


As shown in FIGS. 4 and 5, carriage assembly 50 includes a prime pierce carriage 52, a cannula slide 58, a sampling slide 56, and a vacuum system 54. As used herein, the term “prime” is used to mean a function associated with readying, i.e., cocking, biopsy device 10 for performing a tissue piercing function by having both stylet 20 and cannula 22 retracted in preparation for “piercing”. The term “pierce” is used to mean a function associated with firing stylet 20 and cannula 22 simultaneously in distal direction D1 such that biopsy needle 14 punctures the tissue of a patient at the desired location. The term “slide” is a mechanical structure having a guide that is configured to move along a predefined path defined by another mechanical structure. In the present embodiment, each of prime pierce carriage 52, cannula slide 58, and sampling slide 56 are configured to move along a substantially linear path. The term “substantially linear path” is a path having a range of deviation from a straight line of plus or minus three degrees along the length of the path.


Referring now also to FIG. 8, prime pierce carriage 52 includes carriage slide 60 serving as a lower prime pierce carriage portion and a carriage latch cover member 62 serving as an upper prime pierce carriage portion. Referring also to FIG. 5, sampling slide 56 and cannula slide 58 are individually, as well as collectively, longitudinally movable relative to prime pierce carriage 52 formed by carriage slide 60 and carriage latch cover member 62. Each of prime pierce carriage 52, sampling side 56 and cannula slide 58 is formed of plastic.


Carriage slide 60 of prime pierce carriage 52 of carriage assembly 50 has a carriage base 64 and a stylet mount end wall 66. In the present embodiment, carriage base 64 and stylet mount end wall 66 are formed as a unitary carriage structure.


Carriage base 64 of carriage slide 60 is configured to define a U-shaped wall 64-1 having a U-shaped exterior surface 64-2 and a U-shaped interior surface 64-3, thus having a U-shaped cross-section that extends in the distal direction D1 from stylet mount end wall 66 to define a U-shaped distal edge 64-4, a pair of laterally spaced upper mounting edges 64-5, 64-6, and a pair of laterally spaced recessed slot edges 64-7, 64-8. Extending upwardly and proximally from U-shaped interior surface 64-3 is a longitudinally oriented prime pierce spring mount post 64-9.


U-shaped exterior surface 64-2 corresponds to the interior shape of housing chamber 30, and is in sliding contact with housing chamber 30, with housing chamber 30 serving as a longitudinal guide for carriage assembly 50. U-shaped distal edge 64-4 defines an open distal end 60-1 of carriage slide 60. The pair of laterally spaced upper mounting edges 64-5, 64-6 in conjunction with the pair of laterally spaced recessed slot edges 64-7, 64-8 further define an open top 60-2 of carriage slide 60.


Stylet mount end wall 66 has a stylet hole 66-1, a first pump mounting opening 66-2 and a second pump mounting opening 66-3, and a prime pierce spring opening 66-4. Prime pierce spring opening 66-4 is axially aligned with prime pierce spring mount post 64-9 of carriage base 64 of carriage slide 60. Stylet hole 66-1 is configured to fixedly mount stylet 20, e.g., by a press fit and/or adhesive coupling. First pump mounting opening 66-2 and second pump mounting opening 66-3 are configured to mount a pair of syringe-type vacuum pumps of vacuum system 54, as will be more fully described below.


As best shown in FIG. 8, and with reference to FIGS. 1-5, stylet 20 of biopsy needle 14 has a side wall 20-1 configured to define a lumen 20-2 and a side sample port 20-3 that extends through side wall 20-1 to lumen 20-2. Stylet 20 has an open first end 20-4 and a closed second end 20-5. The closed second end 20-5 defines a distal piercing tip. Lumen 20-2 is in fluid communication with the open first end 20-4 and side sample port 20-3.


A proximal portion 20-6 of stylet 20 extends in a proximal direction D2 away from stylet mount end wall 66 and a distal portion 20-7 of stylet 20 extends in the distal direction D1 away from stylet mount end wall 66. The distal portion 20-7 of stylet 20 extends in the distal direction D1 beyond the distal extent of carriage base 64 and carriage latch cover member 62, and is received through needle opening 12-1 of housing 12 (see also FIG. 1).


Carriage latch cover member 62 is configured to attach, e.g., a snap fit and/or adhesive, to the pair of laterally spaced upper mounting edges 64-5, 64-6 of carriage base 64. Carriage latch cover member 62 includes laterally spaced recessed slot edges 62-1, 62-2 that are respectively vertically opposed to the laterally spaced recessed slot edges 64-7, 64-8 of carriage base 64. Carriage latch cover member 62 covers the open top 60-2 of carriage slide 60, and extends over carriage base 64 of carriage slide 60 to define an interior region in which cannula slide 58 may move longitudinally relative to stylet mount end wall 66. In particular, the U-shaped interior surface 64-3 of U-shaped wall 64-1 of carriage slide 60 in conjunction with open distal end 60-1 of carriage slide 60 are configured to slidably receive and longitudinally guide sampling slide 56 and cannula slide 58.


Carriage latch cover member 62 is configured to facilitate a selective longitudinal coupling and uncoupling of carriage slide 60 with each of sampling slide 56 and cannula slide 58. Carriage latch cover member 62 has a latch strike 70, a latch strike 72, a carriage latch arm 74, and a deflector arm 76. Carriage latch cover member 62 further includes conduit mounts 62-3, 62-4.


In the present embodiment, each of latch strike 70 and latch strike 72 is configured as a latching notch. More particularly, each of latch strike 70 and latch strike 72 of carriage latch cover member 62 is configured as a rectangular opening having proximal and distal end walls oriented to be substantially perpendicular to longitudinal axis 23.


Carriage latch arm 74 is configured as a cantilever arm with a free end having an upwardly extending catch 78. Catch 78 is configured as ramp having an upwardly facing ramp surface 78-1 that diverges in the distal direction D1 to define a distal end face 78-2. Carriage latch arm 74 is configured to be longitudinally rigid, and vertically resilient in directions D3, D4 (e.g., up, down) substantially perpendicular to the longitudinal extent of carriage latch arm 74. Directions D3 and D4 are opposite directions.


When carriage assembly 50 is fully retracted in proximal direction D1 by operation of charge handle 16, as will be more fully described below, carriage latch arm 74 of carriage latch cover member 62 releasably engages the proximal end face 44-2 of carriage latch strike 44 of actuator mechanism 18 (see FIG. 7B) so as to couple, and prohibit relative movement between, carriage assembly 50 and housing 12, until carriage latch arm 74 is released by operation of pierce button 40-1 of actuator mechanism 18.


Referring also to FIG. 9, deflector arm 76 of carriage latch cover member 62 is configured to be longitudinally rigid, and also is laterally rigid in directions substantially perpendicular to the longitudinal extent of deflector arm 76. Deflector arm 76 is configured as a cantilever arm having a free end having a downwardly facing deflector head 80. Deflector head 80 has a downwardly facing ramp surface 80-1 that diverges in the distal direction D1 and terminates at a downwardly facing longitudinal surface 80-2.


Referring again to FIGS. 4 and 5, vacuum system 54 is mounted to, and carried by, carriage assembly 50, and is a completely self-contained within housing 12 of biopsy device 10. More particularly, referring also to FIG. 10, vacuum system 54 is mounted to prime pierce carriage 52 of carriage assembly 50.


Referring to FIGS. 5, 10 and 11, vacuum system 54 includes a vacuum pump 90, a vacuum pump 92, a manifold 94, a control valve 96, and flexible connection conduits 98-1, 98-2, 98-3, and 98-4.


Referring particularly to FIG. 11, vacuum pump 90 is a syringe-type vacuum pump. Vacuum pump 90 includes an elongate cylinder 100 having a first end 100-1 and a second end 100-2. Extending from first end 100-1 is a tip portion 100-3 that defines a first vacuum port 100-4. Second end 100-2 has a first opening 100-5. A first piston 102 is slidably received in elongate cylinder 100 through first opening 100-5. A first plunger 104 is attached to, or integrally formed with, first piston 102. First plunger 104 is configured to extend from second end 100-2 of elongate cylinder 100. First plunger 104 has a free end 104-1 having a head 104-2. A first vacuum spring 106 is interposed between second end 100-2 of elongate cylinder 100 and head 104-2 of first plunger 104. First vacuum spring 106 is configured to store mechanical energy when in a compressed state and, in the orientation shown, is configured to bias first piston 102 in the distal direction D1 to establish a vacuum at first vacuum port 100-4.


Vacuum pump 92 also is a syringe-type vacuum pump, and is configured identical to vacuum pump 90. Vacuum pump 92 includes an elongate cylinder 110 having a first end 110-1 and a second end 110-2. Extending from first end 110-1 is a tip portion 110-3 that defines a second vacuum port 110-4. Second end 110-2 defines a second opening 110-5. A second piston 112 is slidably received in elongate cylinder 110 through second opening 110-5. A second plunger 114 is attached to, or formed integrally with, second piston 112. Second plunger 114 configured to extend from second end 110-2 of elongate cylinder 110. Second plunger 114 has a free end 114-1 having a head 114-2. A second vacuum spring 116 is interposed between second end 110-2 of elongate cylinder 110 and head 114-2 of second plunger 114. Second vacuum spring 116 is configured to store mechanical energy when in a compressed state and, in the orientation shown, is configured to bias second piston 112 in the distal direction D1 to establish a vacuum at second vacuum port 110-4.


Manifold 94 has a first vacuum draw port 94-1, a second vacuum draw port 94-2, and a first vacuum application port 94-3. Manifold 94 has a first one-way valve 94-4 that is coupled in fluid communication with first vacuum draw port 94-1 and a second one-way valve 94-5 that is coupled in fluid communication with second vacuum draw port 94-2. Each of first one-way valve 94-4 and second one-way valve 94-5 is configured to release positive pressure to the atmosphere to facilitate a purge of positive pressure from vacuum pumps 90, 92 during the charging of sampling spring 182, and to close upon establishment of a vacuum by vacuum pumps 90, 92. In the present embodiment, each of first one-way valve 94-4 and second one-way valve 94-5 is a duckbill valve.


Control valve 96 has a third vacuum draw port 96-1, a second vacuum application port 96-2, and a button actuator 96-3. Button actuator 96-3 selectively controls fluid communication between third vacuum draw port 96-1 and second vacuum application port 96-2. Referring also to FIGS. 5, 7A and 7B, control valve 96 is operated by actuation of cannula retract button 40-2 of actuator mechanism 18, which in turn actuates button actuator 96-3 of control valve 96 to apply the vacuum at side sample port 20-3 of stylet 20 simultaneously with movement of cannula 22 in the proximal direction D2 relative to stylet 20 to ready biopsy device 10 for taking a tissue sample.


First vacuum port 100-4 of vacuum pump 90 is coupled in fluid communication with first vacuum draw port 94-1 of manifold 94 via flexible connection conduit 98-1. Second vacuum port 110-4 of vacuum pump 92 is coupled in fluid communication with second vacuum draw port 94-2 of manifold 94 via flexible connection conduit 98-2. Flexible connection conduits 98-1 and 98-2 may be in the form of a rubber tubular sleeve, and in the present embodiment, are integral with manifold 94. First vacuum application port 94-3 of manifold 94 is coupled in fluid communication with third vacuum draw port 96-1 of control valve 96 via flexible connection conduit 98-3. Second vacuum application port 96-2 of control valve 96 is coupled in fluid communication with lumen 20-2 at open first end 20-4 of stylet 20 via flexible connection conduit 98-4. Flexible connection conduits 98-3 and 98-4 may be in the form of rubber tubes, and are secured to carriage latch cover member 62 via conduit mounts 62-3, 62-4.


Referring again to FIGS. 5, 10 and 11, vacuum pump 90 is received and mounted, e.g., by press fit and/or adhesive, in first pump mounting opening 66-2 of stylet mount end wall 66 of stylet mounting slider 54, with a proximal cylinder portion 100-6 having first vacuum port 100-4 configured to extend in the proximal direction D2 from stylet mount end wall 66, and a distal cylinder portion 100-7 having second opening 100-5 configured to extend in the distal direction D1 from stylet mount end wall 66. Likewise, vacuum pump 92 is received and mounted, e.g., by press fit and/or adhesive, in second pump mounting opening 66-3 of stylet mount end wall 66 of stylet mounting slider 54, with a proximal cylinder portion 110-6 having second vacuum port 110-4 configured to extend in the proximal direction D2 from stylet mount end wall 66, and a distal cylinder portion 110-7 having second opening 110-5 configured to extend in the distal direction D1 from stylet mount end wall 66.


Referring to FIGS. 5 and 11, head 104-2 of plunger 104 of vacuum pump 90 and head 114-2 of plunger 114 of vacuum pump 92 are positioned to be engaged by cannula slide 58. During a first retraction of charge handle 16 in proximal direction D2, there is a corresponding movement of cannula slide 58 in the proximal direction D2, which in turn moves the respective piston/plunger combinations 102/104 and 112/114 of vacuum pumps 90, 92 in the proximal direction D2. As such, each of first vacuum spring 106 of vacuum pump 90 and second vacuum spring 116 of vacuum pump 92 is charged (compressed). The compression of first vacuum spring 106 of vacuum pump 90 and second vacuum spring 116 of vacuum pump 92 occurs simultaneously.


The charging of first vacuum spring 106 and second vacuum spring 116 is accompanied by an evacuation, i.e., purging, of air under positive pressure from elongate cylinders 100, 110 of vacuum pumps 90, 92 via one-way valves 94-4, 94-5 as respective piston/plunger combinations 102/104 and 112/114 are moved in the proximal direction D2. Upon a subsequent movement of cannula slide 58 in the distal direction D1, first vacuum spring 106 and second vacuum spring 116 begin to decompress, and thus bias and tend to move piston/plunger combinations 102/104 and 112/114 of vacuum pumps 90, 92 in the distal direction D1. This movement of piston/plunger combinations 102/104 and 112/114 of vacuum pumps 90, 92 in the distal direction D1 establishes a vacuum at first vacuum port 100-4 of vacuum pump 90 and second vacuum port 110-4 of vacuum pump 92, thereby closing via one-way valves 94-4, 94-5 of manifold 94.


Referring to FIGS. 4, 5, 12A and 12B, interposed between carriage slide 60 of prime pierce carriage 52 and cannula slide 58 is sampling slide 56. Referring also to FIG. 8, sampling slide 56 of carriage assembly 50 is configured to be slidably received in the open distal end 60-1 of prime pierce carriage 52.


Referring particularly to FIGS. 12A and 12B, sampling slide 56 has an intermediate slide wall 120, a pair of opposed side walls 122, 124, a latch arm 126, and a latch arm deflection member 128. Intermediate slide wall 120 has a needle hole 120-1, a first pump opening 120-2, a second pump opening 120-3, and a distal face 120-4. A pair of spring attachment loops 120-5, 120-6 extend distally from distal face 120-4.


Needle hole 120-1 is configured to slidably receive stylet 20 of biopsy needle 14, with needle hole 120-1 being sized and shaped to serve as a bearing guide surface against stylet 20. The inside diameter of needle hole 120-1 is slightly larger than the outside diameter of stylet 20 in a tolerance range of 0.01 millimeters (mm) to 1.0 mm.


First pump opening 120-2 is configured to slidably receive vacuum pump 90 in a loose fit, and in particular, first pump opening 120-2 is configured to freely pass elongate cylinder 100, first plunger 104, and first vacuum spring 106 of vacuum pump 90. Second pump opening 120-3 is configured to slidably receive vacuum pump 92 in a loose fit, and in particular, second pump opening 120-3 is configured to freely pass elongate cylinder 110, first plunger 114, and first vacuum spring 116.


The pair of opposed side walls 122, 124 are connected to, or formed integral with, an outer perimeter of intermediate slide wall 120. Side wall 122 extends in both the distal direction D1 and the proximal direction D2 from intermediate slide wall 120, and has a curved cross-section that defines a curved exterior surface 122-1. Likewise, side wall 124 extends in both the distal direction D1 and the proximal direction D2 from intermediate slide wall 120, and has a curved cross-section that defines a curved exterior surface 124-1. The shape of side walls 122, 124, in combination, correspond to the shape of U-shaped interior surface 64-3 of U-shaped wall 64-1 of carriage slide 60 (see also FIG. 8). Thus, the curved exterior surfaces 122-1, 124-1 of the pair of opposed side walls 122, 124 of intermediate slide wall 120 are in sliding contact with U-shaped interior surface 64-3 of U-shaped wall 64-1 of carriage slide 60, which serves as an internal longitudinal guide for sampling slide 56.


Referring again to FIGS. 12A and 12B, latch arm 126 is configured as a cantilever arm that extends in the distal direction D1 from intermediate slide wall 120, with a free end of the cantilever arm having an upwardly facing catch 130. Latch arm 126 is configured to be longitudinally rigid, and vertically resilient in up and down directions D3, D4 that are substantially perpendicular to the longitudinal extent of latch arm 126. Referring to FIG. 12B, latch arm 126 has a downwardly facing longitudinally extending bi-direction ramp 126-1 having a pair of longitudinally opposed ramp surfaces that define a central apex 126-2.


Referring again to FIG. 12A, catch 130 is configured as ramp having an upwardly facing ramp surface 130-1 that diverges in the distal direction D1 to define a distal end face 130-2. An extension portion 126-3 of latch arm 126 extends in distal direction D1 beyond distal end face 130-2 to define a proximally facing L-shaped notch having a floor substantially perpendicular to distal end face 130-2.


Catch 130 of latch arm 126 is configured to releasably engage latch strike 72 of carriage latch cover member 62 (see also FIGS. 8 and 10) so as to couple, and prohibit distal movement of sampling slide 56 with respect to carriage slide 60 of carriage assembly 50, until latch arm 126 is released from latch strike 72 of carriage latch cover member 62 by actuation of sample acquisition button 40-3.


As shown in FIG. 12B, latch arm deflection member 128 defines a retention channel 128-1 having a downwardly facing ramp surface 128-2 and a ceiling 128-3. Ceiling 128-3 extends substantially perpendicularly from intermediate slide wall 120 in distal direction D1. Downwardly facing ramp surface 128-2 diverges in the proximal direction D2 from an upper surface 128-4 of latch arm deflection member 128 to join ceiling 128-3.


Referring FIGS. 5, 8 and 13, cannula slide 58 of carriage assembly 50 also is configured to be slidably received in the open distal end 60-1 of prime pierce carriage 52.


As best shown in FIG. 13, cannula slide 58 has a cannula mount end wall 132 and a latch arm 134 that extends in the proximal direction D2 from cannula mount end wall 132. Referring to FIG. 5, cannula mount end wall 132 is longitudinally spaced distally along longitudinal axis 23 from stylet mount end wall 66 of carriage slide 60. Intermediate slide wall 120 is longitudinally interposed between, and spaced along longitudinal axis 23 from each of, stylet mount end wall 66 and cannula mount end wall 132.


Referring to FIGS. 13 and 16-18, cannula mount end wall 132 includes an indexing window 132-1, a proximal face 132-2, and a pair of spring attachment loops 132-3, 132-4. The pair of spring attachment loops 132-3, 132-4 extend proximally from proximal face 132-2.


Extending in proximal direction D2 from cannula mount end wall 132 is a longitudinally extending cannula mount tube 136 having a flared proximal end 136-1, an annular bearing surface 136-2, and a tubular aperture 136-3. Cannula 22 is fixedly mounted in cannula mount tube 136 of cannula mount end wall 132, e.g., by press fit and/or adhesive.


As shown in the breakaway portion of FIG. 13, cannula 22 has a side wall 22-1 configured to define a lumen 22-2, and has a distal cutting edge 22-3. A proximal portion 22-4 of cannula 22 extends in proximal direction D2 from cannula mount end wall 132 and a distal portion 22-5 of cannula 22 extends in a distal direction D1 from cannula mount end wall 132. Distal portion 22-5 of cannula 22 is slidably received through needle opening 12-1 of housing 12 (see FIG. 1).


Cannula mount end wall 132 further includes a pair of opposed side walls 138, 140, having a curved cross-section, and each having a respective curved exterior surface 138-1, 140-1 that corresponds to the shape of U-shaped interior surface 64-3 of U-shaped wall 64-1 of carriage slide 60 (see also FIGS. 5 and 8). The pair of opposed side walls 138, 140 of cannula mount end wall 132 is in sliding contact with U-shaped interior surface 64-3 of U-shaped wall 64-1 of carriage slide 60, which serves as a longitudinal guide for cannula slide 58 within prime pierce carriage 52.


Referring again to FIGS. 13 and 16-18, positioned centrally under cannula mount tube 136 is indexing window 132-1, which is formed as a rectangular opening that extends through cannula mount end wall 132. Indexing window 132-1 is laterally interposed between two vertically oriented guide channels identified as guide channel 142 and guide channel 144. Guide channels 142, 144 are vertically oriented to be parallel to proximal face 132-2 of cannula mount end wall 132. In the present embodiment, guide channel 142 is defined by a vertical structure 142-1 having a side slot 142-2, and guide channel 144 is defined by upper guide opening 144-1 and a lower guide opening 144-2.


Indexing window 132-1 is sized to freely receive charge handle latch arm 38 (see FIG. 6) without inducing a latching engagement. However, indexing window 132-1 may be selectively intersected, in part, by a portion of an indexing mechanism 150, as described in more detail below, such that the portion of indexing mechanism 150 intersecting indexing window 132-1 may be engaged by catch 38-2 of charge handle latch arm 38 of charge handle 16 on a return stroke of charge handle 16 in distal direction D1.


As shown in FIG. 13, latch arm 134 is configured as a cantilever arm that extends in the proximal direction D2 from cannula mount end wall 132, with a free end of the cantilever arm having an upwardly facing catch 146. Latch arm 134 is configured to be longitudinally rigid, and vertically resilient in up and down directions D3, D4 that are substantially perpendicular to the longitudinal extent of latch arm 134. Catch 146 is configured as ramp having an upwardly facing ramp surface 146-1 that diverges in the proximal direction D2 to define a proximal end face 146-2. In the present embodiment, an extension portion 134-1 of latch arm 134 extends in proximal direction D2 beyond proximal end face 146-2 to define a proximally facing L-shaped notch having a floor substantially perpendicular to proximal end face 146-2.


Catch 146 of latch arm 134 of cannula slide 58 is configured to selectively and releasably engage latch strike 70 of carriage latch cover member 62, and when so engaged, couples cannula slide 58 to carriage slide 60 to prohibit proximal movement of cannula slide 58 with respect to carriage slide 60 of carriage assembly 50, until latch arm 134 is released from latch strike 70 by actuation of cannula retract button 40-2 (see FIG. 1).


Referring to FIGS. 13-18, indexing mechanism 150 includes a cannula slide indexer 152 and a sampling slide indexer 154 which cooperate to coordinate the various stages of operation of biopsy device 10. Cannula slide indexer 152 is configured to pivot about cannula mount tube 136 of cannula slide 58, and sampling slide indexer 154 is configured to move linearly in directions D3 and D4, e.g., up and down, as guided by guide channels 142, 144 of cannula slide 58. Here directions D3 and D4 are opposite directions, e.g., up and down, and directions D3 and D4 are substantially perpendicular to longitudinal axis 23.


Referring to FIG. 13, cannula slide indexer 152 is selectively operated by a deflection of latch arm 134 of cannula slide 58. Referring also to FIGS. 14A, 14B, in the embodiment shown, cannula slide indexer 152 is configured as an integral structure that includes an axel 156, a lever arm 158, an actuator arm 160, and a torsion spring 162.


Axel 156 of cannula slide indexer 152 has a longitudinal extent 156-1 and a cylindrical opening 156-2 configured to be received over bearing surface 136-2 of cannula mount tube 136. The inside diameter of cylindrical opening 156-2 is slightly larger than the outside diameter of bearing surface 136-2 in a tolerance range of 0.01 millimeters (mm) to 1.0 mm so as to permit a pivoting (rotational) motion of cannula slide indexer 152 about cannula mount tube 136, and in turn, to permit pivoting motion about longitudinal axis 23. Axel 156 is retained on bearing surface 136-2 of cannula mount tube 136 by flared proximal end 136-1.


Lever arm 158 is radially offset from cylindrical opening 156-2 and in turn is radially offset from longitudinal axis 23 by a radial distance R1. Referring also to FIGS. 16-18, lever arm 158 is positioned and oriented to be selectively engaged by latch arm 134 of cannula slide 58. As best shown in FIGS. 14A and 14B, lever arm 158 has a tangential extent 158-1 and a longitudinal extent 158-2. Tangential extent 158-1 of lever arm 158 is oriented to tangentially extend in a cantilever manner in a direction D5 from axel 156 along a tangent of an imaginary circle corresponding to radial distance R1. Since cannula slide indexer 152 pivots about longitudinal axis 23, direction D5 is relative and the actual direction is dependent upon the angular rotational position of cannula slide indexer 152. Lever arm 158 is configured to be rigid, and may be defined as a plate 158-3 having tangential extent 158-1 and longitudinal extent 158-2, and having a free end 158-4 that defines a longitudinal engagement surface 158-5 having a radius. Longitudinal engagement surface 158-5 is positioned and oriented to be selectively engaged by a bottom surface of latch arm 134 of cannula slide 58 (see also FIGS. 13, and 16-18).


Actuator arm 160 is radially offset from cylindrical opening 156-2 and in turn is radially offset from longitudinal axis 23 by a radial distance R2. Actuator arm 160 has a tangential extent 160-1. Tangential extent 160-1 of actuator arm 160 is oriented to tangentially extend in a cantilever manner in a direction D6 from axel 156 along a tangent of an imaginary circle corresponding to radial distance R2. Since cannula slide indexer 152 pivots about longitudinal axis 23, direction D6 is relative and the actual direction is dependent upon the angular rotational position of cannula slide indexer 152. However, direction D6 is in a fixed relationship to direction D5, which are in substantially opposite directions, wherein the term “substantially opposite” means a range of linear (180 degrees) plus or minus 15 degrees. In the present embodiment, the angular range a of the fixed relationship of direction D5 relative to direction D6 with respect to longitudinal axis 23 may be in a range of 165 degrees to 180 degrees (linear). Actuator arm 160 is configured to be rigid, and may be defined as a triangular plate 160-2 having tangential extent 160-1, and having a free end 160-3 and a planar engagement surface 160-4.


Torsion spring 162 is radially offset from cylindrical opening 156-2 and in turn is radially offset from longitudinal axis 23 by a radial distance R3. Torsion spring 162 has an outward extent 162-1. Outward extent 162-1 of actuator arm 160 is oriented to extend in a cantilever manner from axel 156. In the orientation of components shown in FIGS. 5 and 13-14B, torsion spring 162 is configured to bias cannula slide indexer 152 to pivot in a clockwise direction about longitudinal axis 23. In particular, torsion spring 162 is configured to be resilient, and may be defined as curved cantilever arm 162-2 having a free end 162-3, wherein a contact surface 162-4 of cantilever arm 162-2 engages a fixed feature of cannula slide indexer 152, such as spring attachment loop 132-3 (see FIGS. 16-18), where cantilever arm 162-2 applies a counterclockwise force to spring attachment loop 132-3 to bias cannula slide indexer 152 to pivot in the clockwise direction.


Referring to FIGS. 13 and 15A-18, sampling slide indexer 154 is configured generally as an integral plate-like planar structure, and includes a base 164, a left slide 166, a right slide 168, a window blocking plate 170, a first cam arm 172, a second cam arm 174, and a cantilever spring 176. Left slide 166, right slide 168, window blocking plate 170, first cam arm 172, and second cam arm 174 extend vertically in direction D3 from base 164. Cantilever spring 176 is located below, in direction D4, from base 164.


Referring also to FIGS. 16-18, left slide 166 is sized and shaped to be slidably received in side slot 142-2 of guide channel 142 of cannula mount end wall 132 of cannula slide 58. Right slide 168 is sized and shaped to be slidably received in upper guide opening 144-1 and lower guide opening 144-2 of guide channel 144 of cannula mount end wall 132 of cannula slide 58.


Window blocking plate 170 may be formed integral with left slide 166. Window blocking plate 170 is configured as a vertically extending plate positioned and oriented to selectively intersect, and partially cover, indexing window 132-1 of cannula mount end wall 132 of cannula slide 58. Window blocking plate 170 includes a side surface 170-1 and a proximal surface 170-2.


First cam arm 172 is configured to vertically extend from base 164. First cam arm 172 is laterally interposed between, and spaced from, window blocking plate 170 and second cam arm 174. First cam arm 172 is positioned and oriented to be selectively engaged by engagement surface 160-4 of actuator arm 160 of cannula slide indexer 152. In particular, first cam arm 172 has a free end 172-1 having a radial engagement surface 172-2 that may be engaged by the planar engagement surface 160-4 of actuator arm 160 of cannula slide indexer 152.


Second cam arm 174 may be formed integral with right slide 168. Second cam arm 174 is configured to vertically extend from base 164. Second cam arm 174 is positioned and oriented to be selectively engaged by bi-direction ramp 126-1 of latch arm 126 of sampling slide 56. In particular, second cam arm 174 has a free end 174-1 having an engagement surface 174-2 that may be engaged by bi-direction ramp 126-1 of latch arm 126 of sampling slide 56.


Cantilever spring 176 is configured as a curved cantilever that extends below a lower portion of base 164, and in turn is located below, base 164, in direction D4. In the orientation of components shown in FIGS. 5, 13 and 15A-18, cantilever spring 176 is configured to bias sampling slide indexer 154 in direction D3 (in an upward direction). In particular, cantilever spring 176 is configured to be resilient, and is defined as curved cantilever arm 176-1 having a free end 176-2, wherein a contact surface 176-3 of cantilever arm 176-1 engages a fixed feature of cannula slide indexer 152, such as longitudinally extending pin 132-5 of cannula slide 58 (see FIGS. 16-18), where cantilever arm 176-1 applies a downward force in direction D4 to pin 132-5 to bias sampling slide indexer 154 upwardly in direction D3.


Referring again to FIG. 5, the motive force provided to power the various functions of biopsy device 10 is provided by at least one cannula retract spring (the present embodiment having a pair of cannula retract springs 180-1, 180-2), a sampling spring 182, and a prime pierce spring 184. Those skilled in the art will recognize that the effect of each of cannula retract springs 180-1, 180-2, sampling spring 182, and prime pierce spring 184 may be accomplished by a single spring, or by a plurality of springs.


Referring to FIG. 19, sampling slide 56 and cannula slide 58 are assembled as a subassembly prior to insertion into prime pierce carriage 52 over stylet 20 (see FIG. 8). In particular, cannula retract spring 180 (two shown in the present embodiment, as 180-1, 180-2), is interposed between, and connected to each of, intermediate slide wall 120 of sampling slide 56 and cannula mount end wall 132 of cannula slide 58. In particular, cannula retract spring 180-1, is attached at its ends to spring attachment loop 120-5 of intermediate slide wall 120 of sampling slide 56 and spring attachment loop 132-3 of cannula mount end wall 132 of cannula slide 58. Likewise, cannula retract spring 180-2, is attached at its ends to spring attachment loop 120-6 of intermediate slide wall 120 of sampling slide 56 and spring attachment loop 132-4 of cannula mount end wall 132 of cannula slide 58.


As shown in FIG. 19, latch arm deflection member 128 of sampling slide is configured for engagement with latch arm 134 of cannula slide 58, and when so engaged, latch arm deflection member 128 deflects, i.e., flexes, latch arm 134 downwardly toward carriage base 64. More particularly, referring also to FIGS. 12B and 13, extension portion 134-1 at the free end of latch arm 134 is positioned for engagement with intermediate slide wall 120 in retention channel 128-1 of intermediate slide wall 120 of sampling slide 56, such that when so engaged, a longitudinal movement of cannula slide 58 in the proximal direction D2 results in a corresponding longitudinal movement of sampling slide 56 in the proximal direction D2.


In turn, as shown in FIG. 17, a bottom surface of latch arm 134 of cannula slide 58 engages lever arm 158 to rotate cannula slide indexer 152 counterclockwise about longitudinal axis 23, thus lifting actuator arm 160 and permitting sampling slide indexer 154 to move upward in direction D3 by action of cantilever spring 176, thereby positioning window blocking plate 170 to block a portion, e.g., the lower left quadrant, of indexing window 132-1 of cannula slide 58, such that window blocking plate 170 may be engaged by catch 38-2 of charge handle latch arm 38 of charge handle 16 (see also FIG. 6).


When cannula slide 58 is moved in distal direction D1 away from sampling slide 56, latch arm 134 disengages from latch arm deflection member 128 and, due to its resiliency, latch arm 134 returns to its non-deflected position, i.e., latch arm 134 moves back to its original non-flexed position. In turn, as shown in FIG. 18, cannula slide indexer 152 rotates counterclockwise about longitudinal axis 23 to its full clockwise position via the torsional force exerted by torsion spring 162, thus moving sampling slide indexer 154 downwardly in direction D4, such that window blocking plate 170 no longer blocks a portion of indexing window 132-1 of cannula slide 58.


As shown in FIG. 19, sampling slide 56 is spaced a minimum allowable distance from cannula slide 58 and places each of cannula retract springs 180-1, 180-2 in a contracted state, but each of cannula retract springs 180-1, 180-2 may be in a slight state of extension. The term “slight state of extension” means the storage of a force that is less than 10 percent of the total force available from springs 180-1, 180-2 in a charged (extended) state. As used herein, the term “charge” or “charged” means the storage of mechanical energy by one or more springs. The term “charging” means the act of storing mechanical energy in a storage device in the form of one or more springs. Thus, cannula retract springs 180-1, 180-2 are charged to a charged state to store mechanical energy when cannula retract springs 180 are in an extended state.


Referring also to FIG. 5, cannula retract springs 180-1, 180-2 are releasably held in the charged (extended) state under the condition: (a) catch 130 of latch arm 126 of sampling slide 56 is engaged with latch strike 72 of carriage latch cover member 62 and (b) catch 146 of latch arm 134 of cannula slide 58 is engaged with latch strike 70 of carriage latch cover member 62. When catch 146 of latch arm 134 is released from latch strike 70, cannula retract springs 180 are released from the charged (extended) state and exert a contraction force to bias and move cannula mount end wall 132 of cannula slide 58, and in turn cannula 22, in the proximal direction D2 toward sampling slide 56, which in turn exposes side sample port 20-3 of stylet 20.


Referring again to FIG. 5, sampling spring 182 is interposed between stylet mount end wall 66 of carriage slide 60 of prime pierce carriage 52 and intermediate slide wall 120 of sampling slide 56. In the present embodiment, sampling spring 182 is a coil spring that is charged, via a compression of sampling spring 182, to store mechanical energy when held in a charged (compressed) state. Sampling spring 182 is held, i.e., retained, in the charged (compressed) state, when catch 130 of latch arm 126 of sampling slide 56 is engaged with latch strike 72 of carriage latch cover member 62. When released from the charged (compressed) state, sampling spring 182 exerts an expansion force to bias and move sampling slide 56, and in turn cannula slide 58 and cannula 22, in distal direction D1.


Referring to FIGS. 4 and 5, prime pierce spring 184 is interposed between intermediate wall 32 of housing 12 and prime pierce mount post 64-9 of carriage base 64 of carriage slide 60 of prime pierce carriage 52. Prime pierce spring 184 is charged to a charged state to store mechanical energy when prime pierce spring 184 is in a compressed state. Prime pierce spring 184 is releasably held in the charged (compressed) state when carriage latch arm 74 of carriage latch cover member 62 is engaged with carriage latch strike 44 of actuator mechanism 18 (see also FIG. 7B). At this stage, biopsy device 10 is described as being primed.


When prime pierce spring 184 is released from the charged (compressed) state, which enters a “pierce” condition, prime pierce spring 184 exerts an expansion force to fire, i.e., to rapidly move, carriage assembly 50 carrying biopsy needle 14, as a whole, in the distal direction D1. In other words, the firing of carriage assembly 50 carrying biopsy needle 14 simultaneously moves stylet 20 and cannula 22 in distal direction D1 such that biopsy needle 14 punctures the tissue of a patient at the desired location.


Referring again to FIG. 5, charge handle 16 and indexing mechanism 150 in combination form a cocking mechanism, as more fully described below.


Referring also to FIGS. 1 and 20-26, a user grasps charge handle 16 and manually effects a proximal stroke, i.e., a retraction, of charge handle 16 relative to housing 12 by pulling charge handle 16 in the proximal direction D2 from the home position to the retracted position, which in turn charges (extends) biasing springs 39-1, 39-2. While a plurality of biasing springs are shown in the present embodiment, those skilled in the art will recognize that the effect of biasing springs 39-1, 39-2 may be accomplished by a single spring or by multiple springs. The user releases charge handle 16, and biasing springs 39-1, 39-2 contract to effect movement of charge handle 16 relative to housing 12 in a return (distal) stroke in the distal direction D1 to return charge handle 16 to the home position.



FIGS. 20-26 shows biopsy 10 with the upper case portion 24 removed to expose carriage assembly 50, and with carriage latch cover member 62 disconnected from carriage slide 60 of prime pierce carriage 52 to expose sampling slide 56 and cannula slide 58, so as to show the various positional relationships of components during various stages of preparing biopsy device 10 for use in taking a biopsy sample from a patient.



FIG. 20 shows biopsy device 10 when biopsy device 10 is new, and after biopsy device has been fully cycled in taking a biopsy. As shown, all of the biasing springs 39-1, 39-2, vacuum springs 106, 116, cannula retract springs 180-1, 180-2, sampling spring 182, and prime pierce spring 184 are in a discharged state.


Referring to FIG. 21, on a first retraction (proximal) stroke of charge handle 16 in proximal direction D2, sampling slide 56 and cannula slide 58 are moved collectively in the proximal direction D2 relative to carriage slide 60 to simultaneously charge vacuum springs 106, 116 and sampling spring 182. In particular, at the onset of the first retraction (proximal) stroke of charging handle 16, cannula slide indexer 152 and sampling slide indexer 154 of indexing mechanism 150 are positioned as shown in FIG. 16, such that charge handle latch arm 38 of charge handle 16 is free to pass through indexing window 132-1 of cannula slide 58, and charge handle end wall 36 of charge handle 16 engages cannula mount end wall 132 of cannula slide 58. With latch arm 134 of cannula slide 58 engaged with, i.e., abutting, intermediate slide wall 120 of sampling slide 56 and with latch arm 134 of cannula slide 58 being deflected downwardly by latch arm deflection member 128 of sampling slide 56, sampling slide 56 and cannula slide 58 are moved collectively in the proximal direction D2 by the proximal movement of charge handle 16.


Thus, the first retraction (proximal) stroke of the charge handle 16 toward to the retracted position moves the sampling slide 56 and the cannula mount end wall 132 of cannula slide 58 that carries the cannula 22 in unison, by virtue of the latch arm 134 being engaged with the intermediate slide wall 120 of sampling slide 56, in the proximal direction D2 to charge (compress) sampling spring 182. Simultaneously, the proximal movement of cannula mount end wall 132 of cannula slide 58 moves the respective piston/plunger combinations 102/104 and 112/114 of vacuum pumps 90, 92 in the proximal direction D2 to charge (compress) first vacuum spring 106 of vacuum pump 90 and second vacuum spring 116 of vacuum pump 92.


When charge handle 16 is in the retracted position at the end of the first proximal stroke, catch 130 of latch arm 126 of sampling slide 56 pivots upwardly to engage latch strike 72 of carriage latch cover member 62 to retain sampling spring 182 in the charged (compressed) state. However, even though the upward pivoting latch arm 126 releases sampling slide indexer 154 for movement upward in direction D3, since charge handle latch arm 38 of charge handle 16 is inserted into indexing window 132-1 of cannula slide 58, charge handle latch arm 38 prevents sampling slide indexer 154 from extending vertically over a portion of indexing window 132-1.


At this time as well, vacuum springs 106, 116 are retained in their charged state only by the internally generated vacuum in vacuum pumps 90, 92. As the vacuum is released, e.g., by operation of button 40-2 of actuator mechanism 18, then vacuum springs 106, 116 will tend to return to their non-charged state.


The movement of cannula mount end wall 132 of cannula slide 58 during the first proximal stroke causes cannula 22 to be retracted to open side sample port 20-3 of stylet 20. Referring to FIG. 22, upon release of charge handle 16, biasing springs 39-1, 39-2 discharge to effect a first return (distal) stroke of charge handle 16 to return charge handle 16 to the home position, and to sequence the indexing mechanism 150 to the cannula retract position as depicted in FIG. 17 by removal of charge handle latch arm 38 from indexing window 132-1, thereby permitting sampling slide indexer 154 to move in upward direction D3 by the force exerted by cantilever spring 176, to in turn laterally positioning window blocking plate 170 of sampling slide indexer 154 over a portion, e.g., the lower left quadrant, of indexing window 132-1 of cannula slide 58.


Referring to FIG. 23, on a second retraction (proximal) stroke of charge handle 16 in proximal direction D2, charge handle latch arm 38 of charge handle 16 attempts to pass through indexing window 132-1 of cannula slide 58, however this time the tapered nose portion of catch 38-2 of charge handle latch arm 38 slidably engages side surface 170-1 of window blocking plate 170 of sampling slide indexer 154 (see FIG. 17), and deflects around window blocking plate 170 to then pass through indexing window 132-1 of cannula slide 58. Thus, with the second retraction of charge handle 16, charge handle latch arm 38 of charge handle 16 is releasably coupled to cannula mount end wall 132 of cannula slide 58 via indexing mechanism 150.


Referring to FIG. 24, upon release of charge handle 16, biasing springs 39-1, 39-2 discharge to effect a second return (distal) stroke of charge handle 16 to return charge handle to the home position. However, on the second return (distal) stroke, catch 38-2 of charge handle latch arm 38 (see FIG. 6) catches proximal surface 170-2 of window blocking plate 170 of sampling slide indexer 154 (see FIG. 17), which in turn pulls cannula mount end wall 132 of cannula slide 58 in distal direction D1 away from intermediate slide wall 120 of sampling slide 56, and cannula 22 is moved by cannula mount end wall 132 in the distal direction D1 to close side sample port 20-3 of stylet 20. The movement of cannula mount end wall 132 of cannula slide 58 in distal direction D1 away from intermediate slide wall 120 of sampling slide 56 extends cannula retract springs 180-1, 180-2 to the charged (extended) state. As such, the force exerted by biasing springs 39-1, 39-2 and any mechanical advantage associated therewith, if any, must be greater than the force exerted by cannula retract springs 180-1, 180-2 and any mechanical advantage associated therewith, if any, so as to return charge handle 16 to the home position while pulling cannula slide 58 to its latched position.


Also, the distal movement of cannula mount end wall 132 of cannula slide 58 away from intermediate slide wall 120 of sampling slide 56 in turn causes latch arm 134 of cannula slide 58 to disengage from latch arm deflection member 128 of sampling slide 56 to thus pivot upwardly, which in turn, referring also to FIG. 18, allows cannula slide indexer 152 to pivot clockwise by the force exerted by torsion spring 162 about longitudinal axis 23, which in turn moves actuator arm 160 downwardly in direction D4 to move window blocking plate 170 of sampling slide indexer 154 downwardly in direction D4, thus opening indexing window 132-1 of cannula slide 58, thus facilitating the release of charge handle 16 from cannula slide 58.


As charge handle 16 approaches the home position, catch 146 of latch arm 134 of cannula slide 58 releasably engages latch strike 70 of carriage latch cover member 62 to retain cannula retract springs 180 in the charged (extended) state. Also, catch 130 of latch arm 126 of sampling slide 56 remains engaged with latch strike 72 of carriage latch cover member 62. With catch 146 of latch arm 134 engaged with latch strike 70 of carriage latch cover member 62 and with latch arm 126 of sampling slide 56 engaged with latch strike 72 of carriage latch cover member 62, sampling slide 56 and cannula slide 58 are spaced at a maximum separation distance from one another, and each of sampling slide 56 and cannula slide 58 are latched to maintain the maximum separation distance, until catch 146 of latch arm 134 of cannula slide 58 is released by actuation of cannula retract button 40-2.


Referring to FIG. 25 in conjunction with FIG. 5, with each of catch 130 of sampling slide 56 and catch 146 of cannula slide 58 latched in latch strike 70 and latch strike 72, respectively, of carriage latch cover member 62 of prime pierce carriage 52 of carriage assembly 50, a third retraction (proximal) stroke of charge handle 16 in proximal direction D2 moves carriage assembly 50 as a whole in the proximal direction D2 to charge (compress) prime pierce spring 184. In particular, at the onset of the third proximal stroke of charging handle 16, cannula slide indexer 152 and sampling slide indexer 154 of indexing mechanism 150 are positioned as shown in FIG. 18, such that charge handle latch arm 38 of charge handle 16 (see FIG. 6) is free to pass through indexing window 132-1 of cannula slide 58, and charge handle end wall 36 of charge handle 16 engages cannula mount end wall 132 of cannula slide 58, and in turn moves carriage assembly 50 in its entirety in proximal direction D2. Stated differently, the third retraction (proximal) stroke of charge handle 16 toward to the retracted position primes biopsy needle 14 for firing by simultaneously retracting both sampling slide 56 carrying stylet 20 and cannula slide 58 carrying cannula 22, in unison, in the proximal direction D2 to charge (compress) prime pierce spring 184.


When charge handle 16 is in the retracted position at the end of the third proximal stroke, (referring also to FIGS. 7B and 10) catch 78 of carriage latch arm 74 engages carriage latch strike 44 of actuator mechanism 18 to retain prime pierce spring 184 in the compressed state.


Referring to FIG. 26, after release of charge handle 16, biasing springs 39-1, 39-2 discharge to effect a third return (distal) stroke of charge handle 16 to return charge handle 16 to the home position. Biopsy device 10 is now fully primed, with all of vacuum spring 106, 116, cannula retract springs 180-1, 180-2, sampling spring 182, and prime pierce spring 184 being in a charged state, and biopsy device is ready for operation in performing a vacuum-assisted biopsy procedure with a piercing shot function. It is to be understood that in the event that the physician performing the biopsy procedure does not choose to perform a piercing shot function, then the third retraction/return (proximal/distal) strokes of charge handle 16 can be omitted.


In the piercing shot mode of the state of biopsy device 10 shown in FIG. 26, wherein prime pierce spring 184 is charged during the third retraction (proximal) stroke, referring to FIGS. 1, 7B and 10, an actuation of pierce button 40-1 releases carriage latch arm 74 from carriage latch strike 44, so as to release prime pierce spring 184 from the charged (compressed) state to effect a transition of biopsy device 10 from the state shown in FIG. 26 to that shown in FIG. 24. Prime pierce spring 184 in turn exerts an expansion force to rapidly move carriage assembly 50 carrying stylet 20 and cannula 22, in unison, in the distal direction D1 to pierce tissue and to position biopsy needle 14 at the biopsy site within the patient.


Next, or in the absence of the piercing shot mode, with biopsy device 10 in the state shown in FIG. 24, and further referring to FIGS. 1, 5 and 10, an actuation of cannula retract button 40-2 releases latch arm 134 of cannula slide 58 from latch strike 70 of carriage latch cover member 62, thereby releasing cannula retract springs 180 from the charged (extended) state to exert a compressive force to move cannula slide 58 and cannula 22 in the proximal direction D2 to in turn open side sample port 20-3 of stylet 20 to transition biopsy device 10 from the state shown in FIG. 24 to that shown in FIG. 22. Simultaneously with this actuation of cannula retract button 40-2, cannula retract button 40-2 further actuates button actuator 96-3 of vacuum system 54 to open control valve 96 to apply the vacuum generated by vacuum pumps 90, 92 to flexible connection conduit 98-4 coupled in fluid communication with lumen 20-2 of stylet 20, and in turn to lumen 20-2 at side sample port 20-3 of stylet 20. Tissue in the vicinity of side sample port 20-3 of stylet 20 will be drawn by the vacuum into side sample port 20-3.


Next, with biopsy device 10 in the state shown in FIG. 22, and further referring to FIGS. 1, 5 and 10, an actuation of sample acquisition button 40-3 releases catch 130 of latch arm 126 from latch strike 72 of carriage latch cover member 62, thereby releasing sampling spring 182 from the charged (compressed) state to exert an expansion force to rapidly move cannula slide 58 carrying cannula 22 in the distal direction D1 to transition biopsy device 10 from the state shown in FIG. 22 to that shown in FIG. 20, and with the aid of distal cutting edge 22-3 of cannula 22, cannula 22 severs the tissue at side sample port 20-3 of stylet 20 and covers over, i.e., closes, side sample port 20-3, thereby retaining any tissue drawn into side sample port 20-3 of stylet 20 as the tissue sample, thus completing the tissue sample collection.


Following tissue sample collection, biopsy needle 14 is removed from the patient, and the first retraction (proximal) stroke is repeated so as to retract cannula 22 to open side sample port 20-3 of stylet 20. Since vacuum springs 106, 116 and sampling spring 182 are charged during the first retraction stroke of charge handle 16, then if no further tissue samples are desired, the vacuum may be purged by actuating cannula retract button 40-2, and sampling spring 182 may be discharged by actuating sample acquisition button 40-3. However, if a further tissue sample is desired, then the second retraction and return strokes are repeated to charge cannula retract springs 180-1, 180-2. Biopsy device 10 is now ready for a manual insertion into the patient, i.e., no piercing shot. However, if the piercing shot mode is desired, then the third retraction stroke of charge handle 16 is repeated to charge prime pierce spring 184 and prime biopsy needle 14 to the fully retracted position for the simultaneous firing of stylet 20 and cannula 22 into the tissue of the patient.


Thus, with respect to the various aspects of biopsy device 10 there is disclosed:


1.1. A biopsy device having a housing, a biopsy needle comprising a stylet and a cannula, a carriage assembly comprising a carriage slide, a cannula slide and a sampling slide, the carriage slide having a stylet mount end wall and the cannula slide having a cannula mount end wall, and a charge handle slidably mounted to the housing, the charge handle having a home position and a retracted position, the biopsy device further comprising a vacuum system positioned in the housing and carried by the carriage assembly, the vacuum system being charged to generate a vacuum when a sampling spring is compressed, the vacuum system including a first vacuum pump, a second vacuum pump, a manifold and a control valve, the first vacuum pump having a first vacuum port, the second vacuum pump having a second vacuum port, the manifold having a first vacuum draw port, a second vacuum draw port, and a first vacuum application port, the control valve having a third vacuum draw port and a second vacuum application port, the first vacuum port of the first vacuum pump being coupled in fluid communication with the first vacuum draw port of the manifold, the second vacuum port of the second vacuum pump being coupled in fluid communication with the second vacuum draw port of the manifold, the first vacuum application port of the manifold being coupled in fluid communication with the third vacuum draw port of the valve, the second vacuum draw port of the control valve being coupled in fluid communication with a first lumen of the stylet, the manifold having a first one-way valve coupled in fluid communication with the first vacuum draw port and a second one-way valve coupled in fluid communication with the second vacuum draw port, each of the first one-way valve and the second one-way valve configured to release positive pressure to the atmosphere and to close upon establishment of vacuum; the control valve being operated by actuation of a cannula retract button of an actuator mechanism to apply the vacuum to a side sample port of the stylet simultaneously with movement of the cannula in a proximal direction by a force generated by a cannula retract spring to open the side sample port of the stylet.


1.2. The biopsy device of paragraph 1.1, wherein: the first vacuum pump includes: a first cylinder having a first end and a second end, the first end having the first vacuum port and the second end defines a first opening; a first piston received in the first cylinder through the first opening; a first plunger attached to the first piston, the first plunger configured to extend from the second end of the first cylinder, the first plunger having a free end having a first head; and a first vacuum spring interposed between the second end of the cylinder and the first head of the first plunger, the first vacuum spring configured to store mechanical energy when in a compressed state and configured to bias the first piston in the distal direction to establish a vacuum at the first vacuum port; and the second vacuum pump includes: a second cylinder having a first end and a second end, the first end having the second vacuum port and the second end defines a second opening; a second piston received in the second cylinder through the second opening; a second plunger attached to the second piston, the second plunger configured to extend from the second end of the second cylinder, the second plunger having a free end having a second head; and a second vacuum spring interposed between the second end of the second cylinder and the second head of the second plunger, the second vacuum spring configured to store mechanical energy when in a compressed state and configured to bias the second piston in the distal direction to establish a vacuum at the second vacuum port.


1.3. The biopsy device of paragraph 1.2, wherein the first head of the first vacuum pump and the second head of the second vacuum pump are positioned for engagement with the cannula mount end wall of the cannula slide, and wherein each of the first vacuum spring of the first vacuum pump and the second vacuum spring of the second vacuum pump is compressed during a movement of the cannula mount end wall in the proximal direction that occurs prior to the cannula retract spring being charged to the extended state.


1.4. The biopsy device of paragraph 1.3, wherein compression of the first vacuum spring of the first vacuum pump and the second vacuum spring of the second vacuum pump occurs simultaneously with the compression of a sampling spring.


1.5. The biopsy device of any one of paragraphs 1.2 to 1.4, wherein the stylet mount end wall includes a first pump mounting hole and a second pump mounting hole, the first vacuum pump received in the first pump mounting hole with a first proximal cylinder portion having the first vacuum port configured to extend in the proximal direction from the stylet mount end wall and a first distal cylinder portion having the first opening configured to extend in the distal direction from the stylet mount end wall, the first head of the first plunger positioned to engage the cannula mount end wall so as to compress the first vacuum spring when the cannula mount end wall is moved in the proximal direction during a first retraction of the charge handle; and the second vacuum pump received in the second pump mounting hole with a second proximal cylinder portion having the second vacuum port configured to extend in the proximal direction from the stylet mount end wall and a second distal cylinder portion having the second opening configured to extend in the distal direction from the stylet mount end wall, the second head of the second plunger positioned to engage the cannula mount end wall so as to compress the second vacuum spring, simultaneously with compression of the first vacuum spring, when the cannula mount end wall is moved in the proximal direction during the first retraction of the charge handle.


1.6. The biopsy device of any preceding paragraph, wherein the housing comprises an actuator mechanism; the carriage assembly is movable relative to the housing, the carriage assembly including the stylet mount wall that mounts a stylet having a sample port, the cannula slide that mounts a cutting cannula, the sampling slide movably interposed between the stylet mount wall and the cannula slide, and a carriage latch cover member, the cannula slide being longitudinally spaced from and movable relative to the stylet mount wall, the cannula slide having a first latch member, the sampling slide having a second latch member, and the carriage latch cover member having a third latch member; a sampling spring interposed between the stylet mount wall and the sampling slide; a cannula retract spring interposed between, and connected to each of, the sampling slide and the cannula slide; a prime pierce spring interposed between the carriage assembly and a portion of the housing; the biopsy device configured such that: a first retraction of the charge handle moves the cannula slide and the sampling slide in unison in a proximal direction to charge the sampling spring, to latch the second latch member of the sampling slide with the carriage latch cover member to retain the sampling spring in a charged state, and to charge the vacuum system to generate the vacuum; a first return of the charge handle returns the charge handle to the home position; a second retraction of the charge handle moves the charge handle to the retracted position; a second return of the charge handle to the home position moves the cannula slide in a distal direction away from the sampling slide to charge the cannula retract spring and to latch the first latch member of the cannula slide with the carriage latch cover member to retain the cannula retract spring in a charged state; and a third retraction of the charge handle moves the carriage assembly as a whole in the proximal direction to charge the prime pierce spring and to latch the third latch member of the carriage latch cover member with the actuator mechanism to retain the prime pierce spring in a charged state.


1.7. The biopsy device of paragraph 1.6, the actuator mechanism having a cannula retract button, a sample acquisition button, and a pierce button, the biopsy device further configured such that: the pierce button is actuated to unlatch the third latch member of the carriage latch cover member from the actuator mechanism to release the prime pierce spring from the charged state to propel the carriage assembly in the distal direction to facilitate a piercing of tissue with the stylet and the cannula; the cannula retract button is actuated to unlatch the first latch member of the cannula slide from the carriage latch cover member to release the cannula retract spring from the charged state and move the cannula in the proximal direction to open a side sample port of the stylet, and to simultaneously apply the vacuum to the side sample port to draw tissue into the side sample port; and the sample acquisition button is actuated to unlatch the second latch member of the sampling slide from the carriage latch cover member to release the sampling spring from the charged state to propel the cannula in the distal direction to close the side sample port to sever the tissue drawn by vacuum into the side sample port.


1.8. The biopsy device according to any one of paragraphs 1.1 to 1.6, wherein the stylet is positioned to extend on a longitudinal axis, the stylet having a first side wall configured to define a first lumen and a side sample port that extends through the first side wall to the first lumen; the cannula is coaxial with the stylet, the cannula having a second side wall configured to define a second lumen, the cannula having a distal cutting edge, the housing has a proximal end wall, an intermediate wall, and a distal end portion spaced along the longitudinal axis, the distal end portion having a needle opening, the housing configured to define a housing chamber between the proximal end wall and the distal end portion, the intermediate wall being interposed between the proximal end wall and the distal end portion, the stylet and the cannula being received through the needle opening, and wherein a proximal direction is from the distal end portion toward to the proximal end wall and a distal direction is from the proximal end wall toward the distal end portion; an actuator mechanism has a pierce button, a cannula retract button, a sample acquisition button, and having a carriage latch strike; the carriage assembly is positioned in the housing chamber, the carriage assembly configured to move longitudinally as a whole relative to the housing, the carriage assembly including the carriage slide, a carriage latch cover member, the cannula slide, and the sampling slide, each of the cannula slide and the sampling slide being configured to be movable relative to the carriage slide, the cannula slide having a first latch arm that extends in the proximal direction from the cannula mount end wall, the sampling slide being movably interposed between the stylet mount end wall of the carriage slide and the cannula mount end wall of the cannula slide, the sampling slide having a second latch arm that extends in the distal direction; the carriage latch cover member having a first latch strike, a second latch strike, and a carriage latch arm, the first latch strike configured to releasably engage the first latch arm, the second latch strike configured to releasably engage the second latch arm, and the carriage latch arm configured to releasably engage the carriage latch strike of the actuator mechanism; a sampling spring interposed between the stylet mount end wall and the sampling slide, the sampling spring configured to store mechanical energy when in a compressed state and configured to bias the sampling slide in the distal direction, the sampling spring being held in the compressed state when the second latch arm is engaged with the second latch strike; a cannula retract spring interposed between, and connected to each of, the sampling slide and the cannula slide, the cannula retract spring configured to store mechanical energy in an extended state to bias the cannula slide in the proximal direction, the cannula retract spring being releasably held in the extended state when the first latch arm is engaged with the first latch strike and the second latch arm is engaged with the second latch strike; and a prime pierce spring interposed between the intermediate wall of the housing and the stylet mount end wall, the prime pierce spring configured to store mechanical energy when in a compressed state and configured to bias the carriage assembly as a whole in the distal direction, the prime pierce spring being held in the compressed state when the carriage latch arm is engaged with the carriage latch strike of the actuator mechanism.


1.9. The biopsy device of paragraph 1.8, the charge handle configured for sequential actuations to sequentially facilitate: a movement of the sampling slide and the cannula slide collectively as a unit in the proximal direction relative to the carriage slide to charge the sampling spring, a movement of the cannula slide individually in the distal direction away from the sampling slide to charge the cannula retract spring, and a movement of the carriage assembly as a whole in the proximal direction relative to the housing to charge the prime pierce spring.


1.10. The biopsy device of any preceding paragraph, further comprising:


an indexing mechanism movably coupled to the cannula mount end wall of the cannula slide, the cannula mount end wall having an indexing window, the indexing mechanism configured to selectively cover a portion of the indexing window; and


the charge handle having a charge handle latch arm configured to pass through the indexing window when the charge handle is moved to the retracted position, and when the indexing mechanism is positioned to cover the portion of the indexing window, a subsequent movement of the charge handle in the distal direction toward the home position causes the charge handle latch arm to engage the indexing mechanism to move the cannula slide in the distal direction away from the sampling slide to charge the cannula retract spring.


1.11. The biopsy device of any preceding paragraph, wherein the cannula retract spring is a pair of laterally spaced springs.


1.12. The biopsy device of any preceding paragraph, further comprising a biasing spring coupled to the housing and to the charge handle, the biasing spring configured to bias the charge handle in the distal direction to the home position.


1.13. The biopsy device of paragraph 1.12, wherein a force exerted by the biasing spring is greater than a force exerted by the cannula retract spring.


1.14. The biopsy device of paragraph 1.12 or paragraph 1.13, wherein the biasing spring is a pair of laterally spaced springs.


1.15. The biopsy device of any one of paragraphs 1.1 to 1.9, comprising: an indexing mechanism movably coupled to the cannula mount end wall of the cannula slide, the charge handle and the indexing mechanism in combination configured to selectively facilitate movement of the sampling slide and the cannula slide collectively as a unit in the proximal direction relative to the carriage slide to charge the sampling spring, to facilitate movement of the cannula slide individually in a distal direction relative to carriage slide to charge the cannula retract spring, and to facilitate movement of the carriage assembly as a whole in the proximal direction relative to the housing to charge the prime pierce spring.


1.16. The biopsy device of any one of paragraphs 1.1 to 1.9, comprising: the cannula mount end wall having an indexing window; the charge handle having a charge handle latch arm configured to pass through the indexing window; and an indexing mechanism having a cannula slide indexer and a sampling slide indexer, the cannula slide indexer being rotatably coupled to the cannula mount end wall of the cannula slide, the sampling slide indexer being slidably coupled to the cannula mount end wall of the cannula slide and configured to move in a first direction toward the longitudinal axis, the cannula slide indexer being operably engaged with the sampling slide indexer, sampling slide indexer being biased by a bias spring in the first direction, the sampling slide indexer having a window blocking plate configured to cover a portion of the indexing window when the sampling slide indexer is moved in the first direction; the cannula slide indexer being configured to be operably engaged by the first latch arm of the cannula slide to rotate the cannula slide indexer into contact with the sampling slide indexer to move the sampling slide indexer in a second direction opposite to the first direction such that the window blocking plate of the sampling slide indexer does not cover the portion of the indexing window, the sampling slide indexer being configured to be operably engaged by the second latch arm of the second latch arm of the sampling slide to move the sampling slide indexer in the second direction opposite to the first direction such that the window blocking plate of the sampling slide indexer does not cover the portion of the indexing window, wherein when the window blocking plate of the sampling slide indexer is positioned to cover the portion of the indexing window, the charge handle configured to be moved in a proximal stroke such that the charge handle latch arm passes through the indexing window and passes the window blocking plate of the sampling slide indexer, the charge handle configured such that in a return distal stroke of the charge handle in the distal direction toward the home position causes the charge handle latch arm to engage the window blocking plate to move the cannula slide in the distal direction away from the sampling slide to charge the cannula retract spring.


1.17. The biopsy device of paragraph 1.16, the sampling slide further including a slider wall and a latch arm deflection member, the second latch arm configured to extend in a distal direction from the slider wall, the second latch arm configured to releasably engage the second latch strike of the carriage latch cover member, the latch arm deflection member configured to engage the first latch arm of the cannula slide and deflect the first latch arm to engage with the cannula slide indexer of the indexing mechanism, the cannula slide indexer being rotated to allow movement of the sampling slide indexer in the first direction.


1.18. The biopsy device of any one of paragraphs 1.1 to 1.9, further comprising: an indexing mechanism movably coupled to the cannula mount end wall of the cannula slide, the cannula mount end wall having an indexing window, the indexing mechanism configured to selectively cover a portion of the indexing window; the charge handle having a charge handle latch arm that extends in the proximal direction; and a biasing spring coupled to the housing and to the charge handle, the biasing spring configured to bias the charge handle in the distal direction to the home position, the charge handle configured for sequential actuations, wherein: a first retraction of the charge handle moves the sampling slide and the cannula mount end wall that carries the cannula, in unison, by virtue of the first latch arm being engaged with the sampling slide, in the proximal direction to compress the sampling spring and to engage the second latch arm with the second latch strike to retain the sampling spring in the compressed state, the cannula being retracted to expose the side sample port of the stylet, the charge handle configured to return to the home position by force exerted by the biasing mechanism; a second retraction of the charge handle passes the charge handle latch arm through the indexing window, and during the return of the charge handle to the home position by force exerted by the biasing mechanism: the charge handle latch arm engages the indexing mechanism and moves the cannula slide in the distal direction away from the sampling slide which in turn extends the cannula retract spring to the extended state, the first latch arm releasably engages the first latch strike to retain the cannula retract spring in the extended state, and the indexing mechanism is sequenced to fully open the indexing window of the cannula slide to disengage the indexing mechanism from the charge handle latch arm, the cannula being positioned to close the side sample port of the stylet; and a third retraction of the charge handle moves the carriage assembly as a whole in the proximal direction to compress the prime pierce spring, the carriage latch arm configured to engage the carriage latch strike of the actuator mechanism to retain the prime pierce spring in the compressed state.


1.19. The biopsy device of paragraph 1.18, configured wherein: an actuation of the pierce button releases the carriage latch arm from the carriage latch strike, the prime pierce spring being released from the compressed state to exert a force to move the carriage assembly, including the stylet and the cannula in unison, in the distal direction; an actuation of the cannula retract button releases the first latch arm from the first latch strike, the cannula retract spring being released from the extended state to exert a force to move the cannula in the proximal direction and open the side sample port of the stylet; and an actuation of the sample acquisition button releases the second latch arm from the second latch strike, the sampling spring being released from the compressed state to exert a force to move the cannula in the distal direction to close the side sample port.


1.20. The biopsy device of any of the previous paragraphs, wherein the stylet has an open first end and a closed second end, the closed second end defining a distal piercing tip.


1.21. The biopsy device of any of the previous paragraphs, wherein the carriage slide further includes a carriage base, the stylet mount end wall and the carriage base being formed as a unitary carriage structure, the carriage base configured to define a U-shaped wall having a U-shaped cross-section that extends in the distal direction from the stylet mount end wall to define an open distal end and an open top, the carriage latch cover member configured to attach to the carriage base to cover the open top, the open distal end configured to slidably receive and longitudinally guide the sampling slide and the cannula slide.


1.22. A biopsy device, comprising: a housing having a longitudinal axis, the housing configured to define a housing chamber; an actuator mechanism having a cannula retract button, a sample acquisition button, and a carriage latch strike; a carriage assembly positioned in the housing chamber, the carriage assembly including a carriage slide having a carriage base and a stylet mount wall, the carriage assembly further including a sampling slide, a cannula slide and a carriage latch cover member, the cannula slide being longitudinally spaced from and movable relative to the stylet mount wall, the cannula slide having a first latch arm, the carriage latch cover member being fixedly attached to the carriage base, the carriage latch cover member having a first latch strike and a second latch strike, the first latch arm of the cannula slide configured to releasably engage the first latch strike of the carriage latch cover member; a stylet fixedly connected to stylet mount wall, the stylet configured to extend along the longitudinal axis, the stylet having a side sample port; a vacuum source carried by the carriage assembly, the vacuum source configured to selectively apply a vacuum to the side sample port of the stylet; a cannula fixedly connected to the cannula slide, the cannula being coaxial with the stylet, the cannula having a distal cutting edge; a sampling slide movably interposed between the stylet mount wall and the cannula slide, the sampling slide having a second latch arm and a latch arm deflection member, the second latch arm configured to releasably engage the second latch strike of the carriage latch cover member, the latch arm deflection member configured to engage the first latch arm of the cannula slide and deflect the first latch arm toward the carriage base; a sampling spring interposed between the stylet mount wall and the sampling slide, the sampling spring being held in the compressed state when the second latch arm is engaged with the second latch strike; a cannula retract spring interposed between, and connected to each of, the sampling slide and the cannula slide, the cannula retract spring being releasably held in an extended state to store mechanical energy when the first latch arm is engaged with the first latch strike and the second latch arm is engaged with the second latch strike; a cocking mechanism having a charge handle, a biasing spring, and an indexing mechanism, the charge handle slidably mounted to the housing and biased by the biasing spring in the distal direction to a home position, the charge handle configured to move between the home position and a retracted position, the indexing mechanism being movably coupled to the cannula slide, wherein: a first retraction of the charge handle moves the sampling slide and the cannula slide in unison in the proximal direction to compress the sampling spring, to engage the second latch arm with the second latch strike to retain the sampling spring in the compressed state, and to charge the vacuum source, the charge handle configured to return to the home position by force exerted by the biasing spring and to sequence the indexing mechanism to a next selection position; and a second retraction of the charge handle moves the charge handle to the retracted position, and during a return of the charge handle to the home position by force exerted by the biasing spring, the charge handle engages the indexing mechanism movably coupled to the cannula slide and the cannula slide is moved in the distal direction which in turn extends the cannula retract spring to the extended state and the first latch arm releasably engages the first latch strike to retain the cannula retract spring in the extended state, the cannula being positioned to close the side sample port of the stylet; and the actuator mechanism configured such that: an actuation of the cannula retract button releases the first latch arm from the first latch strike to in turn release the cannula retract spring to exert a retraction force to move the cannula in the proximal direction to open the side sample port of the stylet and to simultaneously apply the vacuum to the side sample port; and an actuation of the sample acquisition button releases the second latch arm from the second latch strike to release the sampling spring to exert a force to move the cannula in the distal direction to close the side sample port.


1.23. The biopsy device of paragraph 1.22, the carriage assembly configured to move as a whole longitudinally relative to the housing, and further comprising: the actuator mechanism having a pierce button and a carriage latch strike; the carriage latch cover member having a carriage latch arm, the carriage latch arm configured to releasably engage the carriage latch strike; an intermediate wall interposed in the housing between the proximal end wall and the distal end portion; a prime pierce spring interposed between the intermediate wall and the stylet mount wall, the prime pierce spring configured to store mechanical energy when in a compressed state and configured to bias the carriage assembly as a whole in the distal direction, the prime pierce spring being held in the compressed state when the carriage latch arm is engaged with the carriage latch strike of the actuator mechanism, wherein: a third retraction of the charge handle prior to operation of the actuator mechanism moves the carriage assembly as a whole in the proximal direction to compress the prime pierce spring, the carriage latch arm configured to engage the carriage latch strike of the actuator mechanism to retain the prime pierce spring in the compressed state; and, prior to actuation of the cannula retract button and the sample acquisition button, an actuation of the pierce button releases the carriage latch arm from the carriage latch strike, the prime pierce spring being released from the compressed state to exert a force to move the carriage assembly, the stylet, and the cannula in unison in the distal direction.


1.24. A method of operating a biopsy device, comprising: providing a housing having an actuator mechanism; providing a carriage assembly movable relative to the housing, the carriage assembly including a stylet mount wall that mounts a stylet, a cannula slide that mounts a cutting cannula, a sampling slide movably interposed between the stylet mount wall and the cannula slide, and a carriage latch cover member, the cannula slide being longitudinally spaced from and movable relative to the stylet mount wall; providing a charge handle to sequentially move at least one of the cannula slide, the sampling slide, and the carriage assembly as a whole, the charge handle having a home position and a retracted position; providing a sampling spring interposed between the stylet mount wall and the sampling slide; providing a cannula retract spring interposed between, and connected to each of, the sampling slide and the cannula slide; providing a prime pierce spring interposed between the carriage assembly and a portion of the housing; providing a vacuum system to selectively supply a vacuum to a sample port of the stylet; retracting the charge handle a first time to move the cannula slide and the sampling slide in unison in a proximal direction to charge a sampling spring, to latch the sampling slide with the carriage latch cover member to retain the sampling spring in a charged state, and to charge the vacuum system with a vacuum; returning the charge handle a first time to the home position; retracting the charge handle a second time to the retracted position; returning the charge handle a second time to the home position to move the cannula slide in a distal direction relative to the sampling slide to charge the cannula retract spring and to latch the cannula slide with the carriage latch cover member to retain the cannula retract spring in a charged state; and retracting the charge handle a third time to move the carriage assembly as a whole in the proximal direction to charge the prime pierce spring and to latch the carriage latch cover member with the actuator mechanism to retain the prime pierce spring in a charged state.


1.25. The method of paragraph 24, the actuator mechanism having a cannula retract button, a sample acquisition button, and a pierce button, the method further comprising: actuating the pierce button to unlatch the carriage latch cover member from the actuator mechanism to release the prime pierce spring from the charged state to propel the carriage assembly in the distal direction to facilitate a piercing of tissue with the stylet and the cannula; actuating the cannula retract button to unlatch the cannula slide from the carriage latch cover member to release the cannula retract spring from the charged state and move the cannula in the proximal direction to open a side sample port of the stylet and to simultaneously apply the vacuum to the side sample port to draw tissue into the side sample port; and actuating the sample acquisition button to unlatch the sampling slide from the carriage latch cover member to release the sampling spring from the charged state to propel the cannula in the distal direction to close the side sample port to sever the tissue drawn by vacuum into the side sample port.


While this invention has been described with respect to at least one embodiment, those skilled in the art will recognize that the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.

Claims
  • 1. A biopsy device, comprising: a housing having an actuator mechanism;a carriage assembly movable relative to the housing, the carriage assembly including a stylet mount wall that mounts a stylet having a sample port, a cannula slide that mounts a cutting cannula, a sampling slide movably interposed between the stylet mount wall and the cannula slide, and a carriage latch cover member, the cannula slide being longitudinally spaced from and movable relative to the stylet mount wall, the cannula slide having a first latch member, the sampling slide having a second latch member, and the carriage latch cover member having a third latch member;a charge handle slidably mounted to the housing, the charge handle having a home position and a retracted position;a sampling spring interposed between the stylet mount wall and the sampling slide;a cannula retract spring interposed between, and connected to each of, the sampling slide and the cannula slide;a prime pierce spring interposed between the carriage assembly and a portion of the housing; anda vacuum system configured to selectively supply a vacuum to the sample port of the stylet;the biopsy device configured such that: a first retraction of the charge handle moves the cannula slide and the sampling slide in unison in a proximal direction to charge the sampling spring, to latch the second latch member of the sampling slide with the carriage latch cover member to retain the sampling spring in a charged state, and to charge the vacuum system to generate the vacuum;a first return of the charge handle returns the charge handle to the home position;a second retraction of the charge handle moves the charge handle to the retracted position;a second return of the charge handle to the home position moves the cannula slide in a distal direction away from the sampling slide to charge the cannula retract spring and to latch the first latch member of the cannula slide with the carriage latch cover member to retain the cannula retract spring in a charged state; anda third retraction of the charge handle moves the carriage assembly as a whole in the proximal direction to charge the prime pierce spring and to latch the third latch member of the carriage latch cover member with the actuator mechanism to retain the prime pierce spring in a charged state.
  • 2. The biopsy device of claim 1, the actuator mechanism having a cannula retract button, a sample acquisition button, and a pierce button, the biopsy device further configured such that: the pierce button is actuated to unlatch the third latch member of the carriage latch cover member from the actuator mechanism to release the prime pierce spring from the charged state to propel the carriage assembly in the distal direction to facilitate simultaneous distal movement of the stylet and the cannula;the cannula retract button is actuated to unlatch the first latch member of the cannula slide from the carriage latch cover member to release the cannula retract spring from the charged state and move the cannula in the proximal direction to open the sample port of the stylet, and to simultaneously apply the vacuum to the sample port; andthe sample acquisition button is actuated to unlatch the second latch member of the sampling slide from the carriage latch cover member to release the sampling spring from the charged state to propel the cannula in the distal direction to close the sample port.
  • 3. A biopsy device, comprising: a stylet positioned to extend on a longitudinal axis, the stylet having a first side wall configured to define a first lumen and a side sample port that extends through the first side wall to the first lumen;a cannula coaxial with the stylet, the cannula having a second side wall configured to define a second lumen, the cannula having a distal cutting edge;a housing having a proximal end wall, an intermediate wall, and a distal end portion spaced along the longitudinal axis, the distal end portion having a needle opening, the housing configured to define a housing chamber between the proximal end wall and the distal end portion, the intermediate wall being interposed between the proximal end wall and the distal end portion, the stylet and the cannula being received through the needle opening, and wherein a proximal direction is from the distal end portion toward the proximal end wall and a distal direction is from the proximal end wall toward the distal end portion;a charge handle slidably mounted to the housing, the charge handle configured to move between a home position and a retracted position;an actuator mechanism having a pierce button, a cannula retract button, a sample acquisition button, and a carriage latch strike;a carriage assembly positioned in the housing chamber, the carriage assembly configured to move longitudinally as a whole relative to the housing, the carriage assembly including a carriage slide, a carriage latch cover member, a cannula slide, and a sampling slide, each of the cannula slide and the sampling slide being configured to be movable relative to the carriage slide, the carriage slide having a stylet mount end wall configured to mount the stylet, the cannula slide having a cannula mount end wall configured to mount the cannula and having a first latch arm that extends in the proximal direction from the cannula mount end wall, the sampling slide being movably interposed between the stylet mount end wall of the carriage slide and the cannula mount end wall of the cannula slide, the sampling slide having a second latch arm that extends in the distal direction;the carriage latch cover member having a first latch strike, a second latch strike, and a carriage latch arm, the first latch strike configured to releasably engage the first latch arm, the second latch strike configured to releasably engage the second latch arm, and the carriage latch arm configured to releasably engage the carriage latch strike of the actuator mechanism; a sampling spring interposed between the stylet mount end wall and the sampling slide, the sampling spring configured to store mechanical energy when in a compressed state and configured to bias the sampling slide in the distal direction, the sampling spring being held in the compressed state when the second latch arm is engaged with the second latch strike;a vacuum system positioned in the housing and carried by the carriage assembly, the vacuum system being charged to generate a vacuum when the sampling spring is compressed;a cannula retract spring interposed between, and connected to each of, the sampling slide and the cannula slide, the cannula retract spring configured to store mechanical energy in an extended state to bias the cannula slide in the proximal direction, the cannula retract spring being releasably held in the extended state when the first latch arm is engaged with the first latch strike and the second latch arm is engaged with the second latch strike; anda prime pierce spring interposed between the intermediate wall of the housing and the stylet mount end wall, the prime pierce spring configured to store mechanical energy when in a compressed state and configured to bias the carriage assembly as a whole in the distal direction, the prime pierce spring being held in the compressed state when the carriage latch arm is engaged with the carriage latch strike of the actuator mechanism.
  • 4. The biopsy device of claim 3, the charge handle configured for sequential actuations to sequentially facilitate: a movement of the sampling slide and the cannula slide collectively as a unit in the proximal direction relative to the carriage slide to charge the sampling spring,a movement of the cannula slide individually in the distal direction away from the sampling slide to charge the cannula retract spring, anda movement of the carriage assembly as a whole in the proximal direction relative to the housing to charge the prime pierce spring.
  • 5. The biopsy device of claim 4, further comprising: an indexing mechanism movably coupled to the cannula mount end wall of the cannula slide, the cannula mount end wall having an indexing window, the indexing mechanism configured to selectively cover a portion of the indexing window; andthe charge handle having a charge handle latch arm configured to pass through the indexing window when the charge handle is moved to the retracted position, and when the indexing mechanism is positioned to cover the portion of the indexing window, a subsequent movement of the charge handle in the distal direction toward the home position causes the charge handle latch arm to engage the indexing mechanism to move the cannula slide in the distal direction away from the sampling slide to charge the cannula retract spring.
  • 6. The biopsy device of claim 5, wherein the cannula retract spring is a pair of laterally spaced springs.
  • 7. The biopsy device of claim 4, further comprising a biasing spring coupled to the housing and to the charge handle, the biasing spring configured to bias the charge handle in the distal direction to the home position.
  • 8. The biopsy device of claim 7, wherein a force exerted by the biasing spring is greater than a force exerted by the cannula retract spring.
  • 9. The biopsy device of claim 7, wherein the biasing spring is a pair of laterally spaced springs.
  • 10. The biopsy device of claim 3, comprising: an indexing mechanism movably coupled to the cannula mount end wall of the cannula slide,the charge handle and the indexing mechanism in combination configured to selectively facilitate movement of the sampling slide and the cannula slide collectively as a unit in the proximal direction relative to the carriage slide to charge the sampling spring, to facilitate movement of the cannula slide individually in the distal direction relative to the carriage slide to charge the cannula retract spring, and to facilitate movement of the carriage assembly as a whole in the proximal direction relative to the housing to charge the prime pierce spring.
  • 11. The biopsy device of claim 3, comprising: the cannula mount end wall having an indexing window;the charge handle having a charge handle latch arm configured to pass through the indexing window;an indexing mechanism having a cannula slide indexer and a sampling slide indexer, the cannula slide indexer being rotatably coupled to the cannula mount end wall of the cannula slide, the sampling slide indexer being slidably coupled to the cannula mount end wall of the cannula slide and configured to move in a first direction toward the longitudinal axis, the cannula slide indexer being operably engaged with the sampling slide indexer, the sampling slide indexer being biased by a bias spring in the first direction, the sampling slide indexer having a window blocking plate configured to cover a portion of the indexing window when the sampling slide indexer is moved in the first direction;the cannula slide indexer being configured to be operably engaged by the first latch arm of the cannula slide to rotate the cannula slide indexer into contact with the sampling slide indexer to move the sampling slide indexer in a second direction opposite to the first direction such that the window blocking plate of the sampling slide indexer does not cover the portion of the indexing window; andthe sampling slide indexer being configured to be operably engaged by the second latch arm of the sampling slide to move the sampling slide indexer in the second direction opposite to the first direction such that the window blocking plate of the sampling slide indexer does not cover the portion of the indexing window,wherein when the window blocking plate of the sampling slide indexer is positioned to cover the portion of the indexing window, the charge handle is configured to be moved in a proximal stroke such that the charge handle latch arm passes through the indexing window and passes the window blocking plate of the sampling slide indexer, the charge handle configured such that a return distal stroke of the charge handle in the distal direction toward the home position causes the charge handle latch arm to engage the window blocking plate to move the cannula slide in the distal direction away from the sampling slide to charge the cannula retract spring.
  • 12. The biopsy device of claim 11, the sampling slide further including a slider wall and a latch arm deflection member, the second latch arm configured to extend in the distal direction from the slider wall, the second latch arm configured to releasably engage the second latch strike of the carriage latch cover member, the latch arm deflection member configured to engage the first latch arm of the cannula slide and deflect the first latch arm to engage with the cannula slide indexer of the indexing mechanism, the cannula slide indexer being rotated to allow movement of the sampling slide indexer in the first direction.
  • 13. The biopsy device of claim 3, further comprising: an indexing mechanism movably coupled to the cannula mount end wall of the cannula slide, the cannula mount end wall having an indexing window, the indexing mechanism configured to selectively cover a portion of the indexing window;the charge handle having a charge handle latch arm that extends in the proximal direction; anda biasing spring coupled to the housing and to the charge handle, the biasing spring configured to bias the charge handle in the distal direction to the home position,the charge handle configured for sequential actuations, wherein:a first retraction of the charge handle moves the sampling slide and the cannula mount end wall that mounts the cannula, in unison, by virtue of the first latch arm being engaged with the sampling slide, in the proximal direction to compress the sampling spring and to engage the second latch arm with the second latch strike to retain the sampling spring in the compressed state, the cannula being retracted to expose the side sample port of the stylet, the charge handle configured to return to the home position by force exerted by the biasing spring;a second retraction of the charge handle passes the charge handle latch arm through the indexing window, and during the return of the charge handle to the home position by force exerted by the biasing spring: the charge handle latch arm engages the indexing mechanism and moves the cannula slide in the distal direction away from the sampling slide which in turn extends the cannula retract spring to the extended state,the first latch arm releasably engages the first latch strike to retain the cannula retract spring in the extended state, andthe indexing mechanism is sequenced to fully open the indexing window of the cannula slide to disengage the indexing mechanism from the charge handle latch arm,the cannula being positioned to close the side sample port of the stylet; anda third retraction of the charge handle moves the carriage assembly as a whole in the proximal direction to compress the prime pierce spring, the carriage latch arm configured to engage the carriage latch strike of the actuator mechanism to retain the prime pierce spring in the compressed state.
  • 14. The biopsy device of claim 13, configured such that: an actuation of the pierce button releases the carriage latch arm from the carriage latch strike, the prime pierce spring being released from the compressed state to exert a force to move the carriage assembly, including the stylet and the cannula in unison, in the distal direction;an actuation of the cannula retract button releases the first latch arm from the first latch strike, the cannula retract spring being released from the extended state to exert a force to move the cannula in the proximal direction and open the side sample port of the stylet; andan actuation of the sample acquisition button releases the second latch arm from the second latch strike, the sampling spring being released from the compressed state to exert a force to move the cannula in the distal direction to close the side sample port.
  • 15. The biopsy device of claim 3, the vacuum system including a first vacuum pump, a second vacuum pump, a manifold and a control valve, the first vacuum pump having a first vacuum port,the second vacuum pump having a second vacuum port,the manifold having a first vacuum draw port, a second vacuum draw port, and a first vacuum application port,the control valve having a third vacuum draw port and a second vacuum application port,the first vacuum port of the first vacuum pump being coupled in fluid communication with the first vacuum draw port of the manifold, the second vacuum port of the second vacuum pump being coupled in fluid communication with the second vacuum draw port of the manifold, the first vacuum application port of the manifold being coupled in fluid communication with the third vacuum draw port of the control valve, the second vacuum application port of the control valve being coupled in fluid communication with the first lumen of the stylet,the manifold having a first one-way valve coupled in fluid communication with the first vacuum draw port and a second one-way valve coupled in fluid communication with the second vacuum draw port, each of the first one-way valve and the second one-way valve configured to release positive pressure to the atmosphere and to close upon establishment of vacuum, andthe control valve being operated by actuation of the cannula retract button of the actuator mechanism to apply the vacuum to the side sample port of the stylet simultaneously with movement of the cannula in the proximal direction by a force generated by the cannula retract spring to open the side sample port of the stylet.
  • 16. The biopsy device of claim 15, wherein: the first vacuum pump includes: a first cylinder having a first end and a second end, the first end having the first vacuum port and the second end defining a first opening;a first piston received in the first cylinder through the first opening;a first plunger attached to the first piston, the first plunger configured to extend from the second end of the first cylinder, the first plunger having a free end having a first head; anda first vacuum spring interposed between the second end of the first cylinder and the first head of the first plunger, the first vacuum spring configured to store mechanical energy when in a compressed state and configured to bias the first piston in the distal direction to establish a vacuum at the first vacuum port; andthe second vacuum pump includes: a second cylinder having a first end and a second end, the first end having the second vacuum port and the second end defining a second opening;a second piston received in the second cylinder through the second opening;a second plunger attached to the second piston, the second plunger configured to extend from the second end of the second cylinder, the second plunger having a free end having a second head; anda second vacuum spring interposed between the second end of the second cylinder and the second head of the second plunger, the second vacuum spring configured to store mechanical energy when in a compressed state and configured to bias the second piston in the distal direction to establish a vacuum at the second vacuum port.
  • 17. The biopsy device of claim 16, wherein the first head of the first vacuum pump and the second head of the second vacuum pump are positioned for engagement with the cannula mount end wall of the cannula slide, and wherein each of the first vacuum spring of the first vacuum pump and the second vacuum spring of the second vacuum pump is compressed during a movement of the cannula mount end wall in the proximal direction that occurs prior to the cannula retract spring being charged to the extended state.
  • 18. The biopsy device of claim 17, wherein compression of the first vacuum spring of the first vacuum pump and the second vacuum spring of the second vacuum pump occurs simultaneously with the compression of the sampling spring.
  • 19. The biopsy device of claim 16, wherein the stylet mount end wall includes a first pump mounting hole and a second pump mounting hole, the first vacuum pump being received in the first pump mounting hole with a first proximal cylinder portion having the first vacuum port configured to extend in the proximal direction from the stylet mount end wall and a first distal cylinder portion having the first opening configured to extend in the distal direction from the stylet mount end wall, the first head of the first plunger positioned to engage the cannula mount end wall so as to compress the first vacuum spring when the cannula mount end wall is moved in the proximal direction during a first retraction of the charge handle, andthe second vacuum pump being received in the second pump mounting hole with a second proximal cylinder portion having the second vacuum port configured to extend in the proximal direction from the stylet mount end wall and a second distal cylinder portion having the second opening configured to extend in the distal direction from the stylet mount end wall, the second head of the second plunger positioned to engage the cannula mount end wall so as to compress the second vacuum spring, simultaneously with compression of the first vacuum spring, when the cannula mount end wall is moved in the proximal direction during the first retraction of the charge handle.
  • 20. The biopsy device of claim 3, wherein the stylet has an open first end and a closed second end, the closed second end defining a distal piercing tip.
  • 21. The biopsy device of claim 3, wherein the carriage slide further includes a carriage base, the stylet mount end wall and the carriage base being formed as a unitary carriage structure, the carriage base configured to define a U-shaped wall having a U-shaped cross-section that extends in the distal direction from the stylet mount end wall to define an open distal end and an open top, the carriage latch cover member configured to attach to the carriage base to cover the open top, the open distal end configured to slidably receive and longitudinally guide the sampling slide and the cannula slide.
  • 22. A biopsy device, comprising: a housing having a longitudinal axis, the housing configured to define a housing chamber;an actuator mechanism having a cannula retract button, a sample acquisition button, and a carriage latch strike;a carriage assembly positioned in the housing chamber, the carriage assembly including a carriage slide having a carriage base and a stylet mount wall, the carriage assembly further including a sampling slide, a cannula slide and a carriage latch cover member, the cannula slide being longitudinally spaced from and movable relative to the stylet mount wall, the cannula slide having a first latch arm, the carriage latch cover member being fixedly attached to the carriage base, the carriage latch cover member having a first latch strike and a second latch strike, the first latch arm of the cannula slide configured to releasably engage the first latch strike of the carriage latch cover member;a stylet fixedly connected to the stylet mount wall, the stylet configured to extend along the longitudinal axis, the stylet having a side sample port;a vacuum source carried by the carriage assembly, the vacuum source configured to selectively apply a vacuum to the side sample port of the stylet;a cannula fixedly connected to the cannula slide, the cannula being coaxial with the stylet, the cannula having a distal cutting edge;the sampling slide movably interposed between the stylet mount wall and the cannula slide, the sampling slide having a second latch arm and a latch arm deflection member, the second latch arm configured to releasably engage the second latch strike of the carriage latch cover member, the latch arm deflection member configured to engage the first latch arm of the cannula slide and deflect the first latch arm toward the carriage base;a sampling spring interposed between the stylet mount wall and the sampling slide, the sampling spring being held in a compressed state when the second latch arm is engaged with the second latch strike;a cannula retract spring interposed between, and connected to each of, the sampling slide and the cannula slide, the cannula retract spring being releasably held in an extended state to store mechanical energy when the first latch arm is engaged with the first latch strike and the second latch arm is engaged with the second latch strike;a cocking mechanism having a charge handle, a biasing spring, and an indexing mechanism, the charge handle slidably mounted to the housing and biased by the biasing spring in a distal direction to a home position, the charge handle configured to move between the home position and a retracted position, the indexing mechanism being movably coupled to the cannula slide, wherein:a first retraction of the charge handle moves the sampling slide and the cannula slide in unison in a proximal direction to compress the sampling spring, to engage the second latch arm with the second latch strike to retain the sampling spring in the compressed state, and to charge the vacuum source, the charge handle configured to return to the home position by force exerted by the biasing spring and to sequence the indexing mechanism to a next selection position; anda second retraction of the charge handle moves the charge handle to the retracted position, and during a return of the charge handle to the home position by the force exerted by the biasing spring, the charge handle engages the indexing mechanism movably coupled to the cannula slide, and the cannula slide is moved in the distal direction, which in turn extends the cannula retract spring to the extended state, and the first latch arm releasably engages the first latch strike to retain the cannula retract spring in the extended state, the cannula being positioned to close the side sample port of the stylet; andthe actuator mechanism is configured such that:an actuation of the cannula retract button releases the first latch arm from the first latch strike to in turn release the cannula retract spring to exert a retraction force to move the cannula in the proximal direction to open the side sample port of the stylet and to simultaneously apply the vacuum to the side sample port; andan actuation of the sample acquisition button releases the second latch arm from the second latch strike to release the sampling spring to exert a force to move the cannula in the distal direction to close the side sample port.
  • 23. The biopsy device of claim 22, the carriage assembly configured to move as a whole longitudinally relative to the housing, and further comprising: the actuator mechanism having a pierce button;the carriage latch cover member having a carriage latch arm, the carriage latch arm configured to releasably engage the carriage latch strike;an intermediate wall interposed in the housing between a proximal end wall and a distal end portion; anda prime pierce spring interposed between the intermediate wall and the stylet mount wall, the prime pierce spring configured to store mechanical energy when in a compressed state and configured to bias the carriage assembly as a whole in the distal direction, the prime pierce spring being held in the compressed state when the carriage latch arm is engaged with the carriage latch strike of the actuator mechanism, wherein:a third retraction of the charge handle prior to operation of the actuator mechanism moves the carriage assembly as a whole in the proximal direction to compress the prime pierce spring, the carriage latch arm configured to engage the carriage latch strike of the actuator mechanism to retain the prime pierce spring in the compressed state; and,prior to actuation of the cannula retract button and the sample acquisition button, an actuation of the pierce button releases the carriage latch arm from the carriage latch strike, the prime pierce spring being released from the compressed state to exert a force to move the carriage assembly, the stylet, and the cannula in unison in the distal direction.
  • 24. A method of operating a biopsy device, comprising: providing a housing having an actuator mechanism;providing a carriage assembly movable relative to the housing, the carriage assembly including a stylet mount wall that mounts a stylet, a cannula slide that mounts a cutting cannula, a sampling slide movably interposed between the stylet mount wall and the cannula slide, and a carriage latch cover member, the cannula slide being longitudinally spaced from and movable relative to the stylet mount wall;providing a charge handle to sequentially move at least one of the cannula slide, the sampling slide, and the carriage assembly as a whole, the charge handle having a home position and a retracted position;providing a sampling spring interposed between the stylet mount wall and the sampling slide;providing a cannula retract spring interposed between, and connected to each of, the sampling slide and the cannula slide;providing a prime pierce spring interposed between the carriage assembly and a portion of the housing;providing a vacuum system to selectively supply a vacuum to a sample port of the stylet;retracting the charge handle a first time to move the cannula slide and the sampling slide in unison in a proximal direction to charge the sampling spring, to latch the sampling slide with the carriage latch cover member to retain the sampling spring in a charged state, and to charge the vacuum system to generate the vacuum;returning the charge handle a first time to the home position;retracting the charge handle a second time to the retracted position;returning the charge handle a second time to the home position to move the cannula slide in a distal direction relative to the sampling slide to charge the cannula retract spring and to latch the cannula slide with the carriage latch cover member to retain the cannula retract spring in a charged state; andretracting the charge handle a third time to move the carriage assembly as a whole in the proximal direction to charge the prime pierce spring and to latch the carriage latch cover member with the actuator mechanism to retain the prime pierce spring in a charged state.
  • 25. The method of claim 24, the actuator mechanism having a cannula retract button, a sample acquisition button, and a pierce button, the method further comprising: actuating the pierce button to unlatch the carriage latch cover member from the actuator mechanism to release the prime pierce spring from the charged state to propel the carriage assembly in the distal direction to facilitate simultaneous distal movement of the stylet and the cannula;actuating the cannula retract button to unlatch the cannula slide from the carriage latch cover member to release the cannula retract spring from the charged state and move the cannula in the proximal direction to open the sample port of the stylet and to simultaneously apply the vacuum to the sample port; andactuating the sample acquisition button to unlatch the sampling slide from the carriage latch cover member to release the sampling spring from the charged state to propel the cannula in the distal direction to close the sample port.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/565,967 filed Oct. 12, 2017, that issued as U.S. Pat. No. 10,463,350 on Nov. 5, 2019, which is a U.S. national phase of International Application No. PCT/US2015/028902, filed May 1, 2015.

US Referenced Citations (595)
Number Name Date Kind
737293 Summerfeldt Aug 1903 A
1585934 Muir May 1926 A
1663761 Johnson Mar 1928 A
2953934 Sundt Sep 1960 A
3019733 Braid Feb 1962 A
3224434 Molomut et al. Dec 1965 A
3289669 Dwyer et al. Dec 1966 A
3477423 Griffith Nov 1969 A
3512519 Hall May 1970 A
3561429 Jewett et al. Feb 1971 A
3565074 Foti Feb 1971 A
3606878 Kellogg Sep 1971 A
3727602 Hyden et al. Apr 1973 A
3732858 Banko May 1973 A
3785380 Brumfield Jan 1974 A
3800783 Jamshidi Apr 1974 A
3844272 Banko Oct 1974 A
3882849 Jamshidi May 1975 A
3889682 Denis et al. Jun 1975 A
3916948 Benjamin Nov 1975 A
3996935 Banko Dec 1976 A
4275730 Hussein Jun 1981 A
4282884 Boebel Aug 1981 A
4306570 Matthews Dec 1981 A
4354092 Manabe et al. Oct 1982 A
4393879 Milgrom Jul 1983 A
4445509 Auth May 1984 A
4490137 Moukheibir Dec 1984 A
4549554 Markham Oct 1985 A
4577629 Martinez Mar 1986 A
4589414 Yoshida et al. May 1986 A
4603694 Wheeler Aug 1986 A
4605011 Naslund Aug 1986 A
4616215 Maddalena Oct 1986 A
4617430 Bryant Oct 1986 A
4620539 Andrews et al. Nov 1986 A
4643197 Greene et al. Feb 1987 A
4645153 Granzow et al. Feb 1987 A
4678459 Onik et al. Jul 1987 A
4696298 Higgins et al. Sep 1987 A
4702260 Wang Oct 1987 A
4706687 Rogers Nov 1987 A
4776346 Beraha et al. Oct 1988 A
4792327 Swartz Dec 1988 A
4832044 Garg May 1989 A
4844064 Thimsen et al. Jul 1989 A
4844087 Garg Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4881551 Taylor Nov 1989 A
4893635 de Groot et al. Jan 1990 A
4907598 Bauer Mar 1990 A
4907599 Taylor Mar 1990 A
4924878 Nottke May 1990 A
RE33258 Onik et al. Jul 1990 E
4940061 Terwilliger et al. Jul 1990 A
4952817 Bolan et al. Aug 1990 A
4958625 Bates et al. Sep 1990 A
4967762 DeVries Nov 1990 A
4986278 Ravid et al. Jan 1991 A
4986279 O'Neill Jan 1991 A
4986807 Farr Jan 1991 A
4989614 Dejter, Jr. et al. Feb 1991 A
5025797 Baran Jun 1991 A
5048538 Terwilliger et al. Sep 1991 A
5057822 Hoffman Oct 1991 A
5078603 Cohen Jan 1992 A
5121751 Panalletta Jun 1992 A
5125413 Baran Jun 1992 A
5138245 Mattinger et al. Aug 1992 A
5146921 Terwilliger et al. Sep 1992 A
5156160 Bennett Oct 1992 A
5158528 Walker et al. Oct 1992 A
5172702 Leigh et al. Dec 1992 A
5176628 Charles et al. Jan 1993 A
D333183 Cerola Feb 1993 S
5183052 Terwilliger Feb 1993 A
5197484 Kornberg et al. Mar 1993 A
5211627 William May 1993 A
5223012 Best et al. Jun 1993 A
D337821 Tan Jul 1993 S
5225763 Krohn et al. Jul 1993 A
5234000 Hakky et al. Aug 1993 A
5236334 Bennett Aug 1993 A
5242404 Conley et al. Sep 1993 A
5249583 Mallaby Oct 1993 A
5254117 Rigby et al. Oct 1993 A
5282476 Terwilliger Feb 1994 A
5282477 Bauer Feb 1994 A
5290253 Kira Mar 1994 A
5305762 Acorn et al. Apr 1994 A
5324306 Makower et al. Jun 1994 A
5334183 Wuchinich Aug 1994 A
5335671 Clement Aug 1994 A
5335672 Bennett Aug 1994 A
5368029 Holcombe et al. Nov 1994 A
5368045 Clement et al. Nov 1994 A
5383874 Jackson et al. Jan 1995 A
5397462 Higashijima et al. Mar 1995 A
5400798 Baran Mar 1995 A
5439474 Li Aug 1995 A
5458112 Weaver Oct 1995 A
5469860 De Santis Nov 1995 A
5471994 Guirguis Dec 1995 A
5479486 Saji Dec 1995 A
5485917 Early Jan 1996 A
5492130 Chiou Feb 1996 A
5511556 DeSantis Apr 1996 A
5526822 Burbank et al. Jun 1996 A
5535755 Heske Jul 1996 A
5546957 Heske Aug 1996 A
5554151 Hinchliffe Sep 1996 A
5560373 De Santis Oct 1996 A
5564436 Hakky et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5575293 Miller et al. Nov 1996 A
5591170 Spievack et al. Jan 1997 A
5601583 Donahue et al. Feb 1997 A
5601585 Banik et al. Feb 1997 A
5602449 Krause et al. Feb 1997 A
5612738 Kim Mar 1997 A
5617874 Baran Apr 1997 A
5649547 Ritchart et al. Jul 1997 A
5655542 Weilandt Aug 1997 A
5655657 Roshdy Aug 1997 A
5665101 Becker et al. Sep 1997 A
5669394 Bergey et al. Sep 1997 A
5699909 Foster Dec 1997 A
5700265 Romano Dec 1997 A
5709697 Ratcliff et al. Jan 1998 A
5720760 Becker et al. Feb 1998 A
5735264 Siczek et al. Apr 1998 A
5752923 Terwilliger May 1998 A
5755714 Murphy-Chutorian May 1998 A
5766135 Terwilliger Jun 1998 A
5769086 Ritchart et al. Jun 1998 A
5769795 Terwilliger Jun 1998 A
5775333 Burbank et al. Jul 1998 A
5779649 Herbert Jul 1998 A
5788651 Weilandt Aug 1998 A
5792167 Kablik et al. Aug 1998 A
5807282 Fowler Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817034 Milliman et al. Oct 1998 A
5823970 Terwilliger Oct 1998 A
5827305 Gordon Oct 1998 A
5830219 Bird et al. Nov 1998 A
D403405 Terwilliger Dec 1998 S
5857982 Milliman et al. Jan 1999 A
5871699 Ruggeri Feb 1999 A
5879365 Whitfield et al. Mar 1999 A
5908233 Heskett et al. Jun 1999 A
5913857 Ritchart et al. Jun 1999 A
5916198 Dillow Jun 1999 A
5916229 Evans Jun 1999 A
5928164 Burbank et al. Jul 1999 A
5944673 Gregoire et al. Aug 1999 A
5951490 Fowler Sep 1999 A
5951575 Bolduc et al. Sep 1999 A
5964716 Gregoire et al. Oct 1999 A
5971939 DeSantis et al. Oct 1999 A
5976164 Bencini et al. Nov 1999 A
5980469 Burbank et al. Nov 1999 A
5980545 Pacala et al. Nov 1999 A
6007495 Matula Dec 1999 A
6007497 Huitema Dec 1999 A
6007556 Kablik et al. Dec 1999 A
6017316 Ritchart et al. Jan 2000 A
6018227 Kumar et al. Jan 2000 A
6019733 Farascioni Feb 2000 A
6022324 Skinner Feb 2000 A
6022325 Siczek et al. Feb 2000 A
6027458 Janssens Feb 2000 A
6032673 Savage et al. Mar 2000 A
6036657 Milliman et al. Mar 2000 A
6050955 Bryan et al. Apr 2000 A
6055870 Jaeger May 2000 A
6071247 Kennedy Jun 2000 A
6077230 Gregoire et al. Jun 2000 A
6083176 Terwilliger Jul 2000 A
6083237 Huitema et al. Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6106484 Terwilliger Aug 2000 A
6110129 Terwilliger Aug 2000 A
6120462 Hibner et al. Sep 2000 A
6123957 Jernberg Sep 2000 A
6126617 Weilandt et al. Oct 2000 A
6142955 Farascioni et al. Nov 2000 A
6162187 Buzzard et al. Dec 2000 A
6165136 Nishtala Dec 2000 A
6193673 Viola et al. Feb 2001 B1
6196978 Weilandt et al. Mar 2001 B1
6213957 Milliman et al. Apr 2001 B1
6220248 Voegele et al. Apr 2001 B1
6231522 Voegele et al. May 2001 B1
6241687 Voegele et al. Jun 2001 B1
6267759 Quick Jul 2001 B1
6273861 Bates et al. Aug 2001 B1
6273862 Privitera et al. Aug 2001 B1
6280398 Ritchart et al. Aug 2001 B1
6283925 Terwilliger Sep 2001 B1
6322523 Weilandt et al. Nov 2001 B2
6328701 Terwilliger Dec 2001 B1
6331166 Burbank et al. Dec 2001 B1
6358217 Bourassa Mar 2002 B1
6402701 Kaplan et al. Jun 2002 B1
6419641 Mark et al. Jul 2002 B1
6428486 Ritchart et al. Aug 2002 B2
6428487 Burdorff et al. Aug 2002 B1
6432064 Hibner et al. Aug 2002 B1
6432065 Burdorff et al. Aug 2002 B1
6434507 Clayton et al. Aug 2002 B1
6436054 Viola et al. Aug 2002 B1
6461302 Thompson Oct 2002 B1
6471659 Eggers et al. Oct 2002 B2
6482158 Mault Nov 2002 B2
6485436 Truckai et al. Nov 2002 B1
6488636 Bryan et al. Dec 2002 B2
6494844 Van Bladel et al. Dec 2002 B1
6527731 Weiss et al. Mar 2003 B2
6527736 Attinger et al. Mar 2003 B1
6540694 Van Bladel et al. Apr 2003 B1
6540761 Houser Apr 2003 B2
6544194 Kortenbach et al. Apr 2003 B1
6551255 Van Bladel et al. Apr 2003 B2
6554779 Viola et al. Apr 2003 B2
6585664 Burdorff et al. Jul 2003 B2
6585694 Smith et al. Jul 2003 B1
6586585 Bastian Jul 2003 B1
6592530 Farhadi Jul 2003 B1
D478987 Groenke et al. Aug 2003 S
6620111 Stephens et al. Sep 2003 B2
6626848 Neuenfeldt Sep 2003 B2
6626849 Huitema et al. Sep 2003 B2
6632182 Treat Oct 2003 B1
6638235 Miller et al. Oct 2003 B2
6656133 Voegele et al. Dec 2003 B2
6659105 Burbank et al. Dec 2003 B2
6659338 Dittmann et al. Dec 2003 B1
6683439 Takano et al. Jan 2004 B2
6689071 Burbank et al. Feb 2004 B2
6689072 Kaplan et al. Feb 2004 B2
6695786 Wang et al. Feb 2004 B2
6695791 Gonzalez Feb 2004 B2
6702832 Ross et al. Mar 2004 B2
6712773 Viola Mar 2004 B1
6712774 Voegele et al. Mar 2004 B2
6719691 Kritzman et al. Apr 2004 B2
6752768 Burdorff et al. Jun 2004 B2
6753671 Harvey Jun 2004 B1
6755802 Bell Jun 2004 B2
6758824 Miller et al. Jul 2004 B1
6758848 Burbank et al. Jul 2004 B2
6764495 Lee et al. Jul 2004 B2
6808505 Kadan Oct 2004 B2
6832990 Kortenbach et al. Dec 2004 B2
6840950 Stanford et al. Jan 2005 B2
6849080 Lee et al. Feb 2005 B2
6850159 Mudge Feb 2005 B1
6860860 Viola Mar 2005 B2
6875183 Cervi Apr 2005 B2
6887210 Quay May 2005 B2
6908440 Fisher Jun 2005 B2
D508458 Solland et al. Aug 2005 S
6926676 Turturro et al. Aug 2005 B2
6969358 Baltschun et al. Nov 2005 B2
6984213 Horner et al. Jan 2006 B2
7004174 Eggers et al. Feb 2006 B2
7010332 Irvin et al. Mar 2006 B1
7025732 Thompson et al. Apr 2006 B2
7066893 Hibner et al. Jun 2006 B2
D525583 Vu Jul 2006 S
7108660 Stephens et al. Sep 2006 B2
7131951 Angel Nov 2006 B2
7153274 Stephens et al. Dec 2006 B2
7156814 Williamson, IV et al. Jan 2007 B1
7156815 Leigh et al. Jan 2007 B2
7169114 Krause Jan 2007 B2
7182754 Brigham et al. Feb 2007 B2
7189206 Quick et al. Mar 2007 B2
7189207 Viola Mar 2007 B2
7219867 Kalis et al. May 2007 B2
7226424 Ritchart et al. Jun 2007 B2
7229417 Foerster et al. Jun 2007 B2
7244236 Merkle Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7276032 Hibner Oct 2007 B2
7311673 Mueller, Jr. et al. Dec 2007 B2
7328794 Lubs et al. Feb 2008 B2
7347828 Francese et al. Mar 2008 B2
7347829 Mark et al. Mar 2008 B2
7374544 Freeman et al. May 2008 B2
7390306 Mark Jun 2008 B2
7397654 Mori Jul 2008 B2
7402140 Spero et al. Jul 2008 B2
7405536 Watts Jul 2008 B2
7407054 Seiler et al. Aug 2008 B2
7419472 Hibner et al. Sep 2008 B2
7432813 Postma Oct 2008 B2
7442171 Stephens et al. Oct 2008 B2
7445604 Cash Nov 2008 B2
7452367 Rassman et al. Nov 2008 B2
7458940 Miller Dec 2008 B2
7464040 Joao Dec 2008 B2
7473232 Teague Jan 2009 B2
7481775 Weikel, Jr. et al. Jan 2009 B2
7490048 Joao Feb 2009 B2
7491177 Hibner Feb 2009 B2
7494473 Eggers et al. Feb 2009 B2
7497833 Miller Mar 2009 B2
7510534 Burdorff et al. Mar 2009 B2
7510563 Cesarini et al. Mar 2009 B2
7513877 Viola Apr 2009 B2
7517321 McCullough et al. Apr 2009 B2
7517322 Weikel, Jr. et al. Apr 2009 B2
7549978 Carlson et al. Jun 2009 B2
7556622 Mark et al. Jul 2009 B2
7557536 Lobert et al. Jul 2009 B2
7573212 Avis Aug 2009 B2
7575557 Morton et al. Aug 2009 B2
7588176 Timm et al. Sep 2009 B2
7591790 Pflueger Sep 2009 B2
7608048 Goldenberg Oct 2009 B2
7611475 Spero et al. Nov 2009 B2
7645240 Thompson et al. Jan 2010 B2
7648466 Stephens et al. Jan 2010 B2
7651505 Lubock et al. Jan 2010 B2
7658718 Miller et al. Feb 2010 B2
7662109 Hibner Feb 2010 B2
7666200 Heisler Feb 2010 B2
7670299 Beckman et al. Mar 2010 B2
7693567 Tsonton et al. Apr 2010 B2
7708721 Khaw May 2010 B2
7717861 Weikel et al. May 2010 B2
7727164 Cicenas et al. Jun 2010 B2
7740594 Hibner Jun 2010 B2
7740596 Hibner Jun 2010 B2
7740597 Cicenas et al. Jun 2010 B2
7758515 Hibner Jul 2010 B2
7762961 Heske et al. Jul 2010 B2
7785535 Chen et al. Aug 2010 B2
7794411 Ritchart et al. Sep 2010 B2
7799116 Schwindt Sep 2010 B2
7806834 Beckman et al. Oct 2010 B2
7819819 Quick et al. Oct 2010 B2
7828746 Teague Nov 2010 B2
7828747 Heske et al. Nov 2010 B2
7828748 Hibner Nov 2010 B2
7837630 Nicoson et al. Nov 2010 B2
7837632 Stephens et al. Nov 2010 B2
7841991 Douglas et al. Nov 2010 B2
7846109 Parihar et al. Dec 2010 B2
7847515 Schroeck et al. Dec 2010 B2
7854706 Hibner Dec 2010 B2
7854707 Hibner et al. Dec 2010 B2
7860556 Saadat Dec 2010 B2
7862517 Tsonton et al. Jan 2011 B2
7862518 Parihar Jan 2011 B2
7867173 Hibner et al. Jan 2011 B2
7871384 Thompson et al. Jan 2011 B2
7883476 Miller et al. Feb 2011 B2
7883494 Martin Feb 2011 B2
7906076 Fischer Mar 2011 B2
7914462 Hutchins et al. Mar 2011 B2
7914464 Burdorff et al. Mar 2011 B2
7959580 Mccullough et al. Jun 2011 B2
7963928 Krause Jun 2011 B2
7974681 Wallace et al. Jul 2011 B2
7987766 Price Aug 2011 B1
7988642 Hardin et al. Aug 2011 B2
8002713 Heske et al. Aug 2011 B2
8012102 McCullough et al. Sep 2011 B2
8013572 Rodgers Sep 2011 B2
8016772 Heske et al. Sep 2011 B2
8016844 Privitera et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8034003 Pesce et al. Oct 2011 B2
8042689 Fröjd et al. Oct 2011 B2
8048003 Nicoson et al. Nov 2011 B2
8052614 Heske et al. Nov 2011 B2
8052615 Reuber et al. Nov 2011 B2
8057402 Hibner et al. Nov 2011 B2
8073008 Mehta et al. Dec 2011 B2
8075495 Andreyko et al. Dec 2011 B2
8075496 Deck et al. Dec 2011 B2
8075568 Selis Dec 2011 B2
8083671 Boulais et al. Dec 2011 B2
8083687 Parihar Dec 2011 B2
8109885 Heske et al. Feb 2012 B2
8109886 Miller et al. Feb 2012 B2
8118755 Hibner et al. Feb 2012 B2
8128577 Viola Mar 2012 B2
8129955 White et al. Mar 2012 B2
8152738 Li et al. Apr 2012 B2
8157744 Jorgensen et al. Apr 2012 B2
8162850 Parihar et al. Apr 2012 B2
8162851 Heske et al. Apr 2012 B2
D659828 Horning et al. May 2012 S
8167818 Miller May 2012 B2
8172771 Miller et al. May 2012 B2
8172773 Heske et al. May 2012 B2
8177728 Hibner et al. May 2012 B2
8177729 Hibner et al. May 2012 B2
8183825 Sa May 2012 B2
8187204 Miller et al. May 2012 B2
8187294 Miller et al. May 2012 B2
8190238 Moll et al. May 2012 B2
8192370 Miller Jun 2012 B2
8202229 Miller et al. Jun 2012 B2
8206316 Hibner et al. Jun 2012 B2
8206409 Privitera et al. Jun 2012 B2
8241331 Amin Aug 2012 B2
8251916 Speeg et al. Aug 2012 B2
8251917 Almazan Aug 2012 B2
8261847 Ford et al. Sep 2012 B2
8262585 Thompson et al. Sep 2012 B2
8262586 Anderson et al. Sep 2012 B2
8267868 Taylor et al. Sep 2012 B2
8277393 Miller et al. Oct 2012 B2
8282573 Shabaz et al. Oct 2012 B2
8282574 Coonahan et al. Oct 2012 B2
8283890 Videbaek Oct 2012 B2
8287465 Hardin et al. Oct 2012 B2
8287466 Weikel, Jr. et al. Oct 2012 B2
8313444 Thompson et al. Nov 2012 B2
8317725 Quick et al. Nov 2012 B2
8343069 Uchiyama et al. Jan 2013 B2
8357103 Mark et al. Jan 2013 B2
8366635 Parihar et al. Feb 2013 B2
8366636 Videbaek Feb 2013 B2
8430824 Videbaek et al. Apr 2013 B2
8430825 Mark Apr 2013 B2
8430827 Nicoson et al. Apr 2013 B2
8480595 Speeg et al. Jul 2013 B2
8485987 Videbaek et al. Jul 2013 B2
8485989 Videbaek Jul 2013 B2
8491496 Hibner Jul 2013 B2
8506504 Field et al. Aug 2013 B2
8529468 Hoffa et al. Sep 2013 B2
8529593 Berberich Sep 2013 B2
8540646 Mendez-Coll Sep 2013 B2
8574167 Smith et al. Nov 2013 B2
8591435 Ritchart et al. Nov 2013 B2
8594339 Dufresne et al. Nov 2013 B2
8597205 Seiger et al. Dec 2013 B2
8597206 Videback Dec 2013 B2
8600299 Randall et al. Dec 2013 B2
8672860 Moore et al. Mar 2014 B2
8690793 Ranpura et al. Apr 2014 B2
8696650 Quick et al. Apr 2014 B2
8702621 Mccullough et al. Apr 2014 B2
8702622 McCullough et al. Apr 2014 B2
8702623 Parihar et al. Apr 2014 B2
8708928 Videbaek Apr 2014 B2
8708929 Videbaek Apr 2014 B2
8708930 Videbaek Apr 2014 B2
8721563 Taylor et al. May 2014 B2
8728003 Taylor et al. May 2014 B2
8728004 Heske et al. May 2014 B2
8764664 Callahan et al. Jul 2014 B2
8771200 Thompson et al. Jul 2014 B2
8795195 Daw et al. Aug 2014 B2
8808197 Videbaek et al. Aug 2014 B2
8858463 Seiger et al. Oct 2014 B2
8864680 VidebæK et al. Oct 2014 B2
8926527 Jørgensen et al. Jan 2015 B2
8932233 Haberstich et al. Jan 2015 B2
8951208 Almazan Feb 2015 B2
8951209 Heske et al. Feb 2015 B2
8956306 Hibner Feb 2015 B2
8961430 Coonahan et al. Feb 2015 B2
8992440 Reuber et al. Mar 2015 B2
9023292 Rostaing et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9072502 Heske et al. Jul 2015 B2
9095326 Ritchie et al. Aug 2015 B2
9161743 Mccullough et al. Oct 2015 B2
9162884 Hoon et al. Oct 2015 B2
9173641 Chudzik et al. Nov 2015 B2
9220573 Kendrick et al. Dec 2015 B2
9282949 Videbaek Mar 2016 B2
9332972 Boutaghou et al. May 2016 B2
9345457 Speeg et al. May 2016 B2
9345458 Videbaek et al. May 2016 B2
9421002 Heske et al. Aug 2016 B2
9439631 Heske et al. Sep 2016 B2
9439632 Almazan Sep 2016 B2
9445790 Zinn et al. Sep 2016 B2
9451968 Miller et al. Sep 2016 B2
9456809 Jorgensen et al. Oct 2016 B2
9566045 Videbaek et al. Feb 2017 B2
9638770 Dietz et al. May 2017 B2
9655599 Chudzik et al. May 2017 B2
20010007925 Ritchart et al. Jul 2001 A1
20010012919 Terwilliger Aug 2001 A1
20010034530 Malackowski et al. Oct 2001 A1
20010044595 Reydel et al. Nov 2001 A1
20010047183 Privitera et al. Nov 2001 A1
20020000403 Tanaka et al. Jan 2002 A1
20020067151 Tanishita Jun 2002 A1
20020068878 Jasonni et al. Jun 2002 A1
20020107043 Adamson et al. Aug 2002 A1
20020120212 Ritchart et al. Aug 2002 A1
20030093103 Malackowski et al. May 2003 A1
20030163142 Paltieli et al. Aug 2003 A1
20040030367 Yamaki et al. Feb 2004 A1
20040092992 Adams et al. May 2004 A1
20040158172 Hancock Aug 2004 A1
20040162505 Kaplan et al. Aug 2004 A1
20040220495 Cahir et al. Nov 2004 A1
20040230188 Cioanta et al. Nov 2004 A1
20050004492 Burbank et al. Jan 2005 A1
20050004559 Quick et al. Jan 2005 A1
20050010131 Burbank et al. Jan 2005 A1
20050020909 Moctezuma de la Barrera et al. Jan 2005 A1
20050049521 Miller et al. Mar 2005 A1
20050101879 Shidham et al. May 2005 A1
20050113715 Schwindt et al. May 2005 A1
20050113716 Mueller, Jr. et al. May 2005 A1
20050124914 Dicarlo et al. Jun 2005 A1
20050177117 Crocker et al. Aug 2005 A1
20050193451 Quistgaard et al. Sep 2005 A1
20050209530 Pflueger Sep 2005 A1
20050275378 Canino et al. Dec 2005 A1
20050288605 Pellegrino et al. Dec 2005 A1
20060030784 Miller et al. Feb 2006 A1
20060074344 Hibner Apr 2006 A1
20060074345 Hibner Apr 2006 A1
20060116603 Shibazaki et al. Jun 2006 A1
20060122535 Daum Jun 2006 A1
20060178666 Cosman et al. Aug 2006 A1
20060184063 Miller Aug 2006 A1
20060241515 Jones et al. Oct 2006 A1
20070016101 Feldman et al. Jan 2007 A1
20070055173 DeLonzor et al. Mar 2007 A1
20070090788 Hansford et al. Apr 2007 A1
20070106176 Mark et al. May 2007 A1
20070161925 Quick et al. Jul 2007 A1
20070167943 Janssen et al. Jul 2007 A1
20070208272 Voegele Sep 2007 A1
20070213590 Squicciarini Sep 2007 A1
20070213632 Okazaki et al. Sep 2007 A1
20070270710 Frass et al. Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20070293788 Entrekin et al. Dec 2007 A1
20080004545 Garrison Jan 2008 A1
20080007217 Riley Jan 2008 A1
20080030170 Dacquay et al. Feb 2008 A1
20080064925 Gill et al. Mar 2008 A1
20080103411 Van Bladel et al. May 2008 A1
20080125634 Ryan et al. May 2008 A1
20080146965 Privitera et al. Jun 2008 A1
20080161720 Nicoson et al. Jul 2008 A1
20080208194 Bickenbach Aug 2008 A1
20080221443 Ritchie et al. Sep 2008 A1
20080221444 Ritchie et al. Sep 2008 A1
20080221478 Ritchie et al. Sep 2008 A1
20080221479 Ritchie et al. Sep 2008 A1
20080228104 Uber et al. Sep 2008 A1
20090030442 Potter et al. Jan 2009 A1
20090062624 Neville Mar 2009 A1
20090082695 Whitehead Mar 2009 A1
20090082696 Nicoson Mar 2009 A1
20090087249 Flagle et al. Apr 2009 A1
20090146609 Santos Jun 2009 A1
20090204022 Schwindt Aug 2009 A1
20090281453 Tsonton et al. Nov 2009 A1
20100030020 Sanders et al. Feb 2010 A1
20100063416 Cicenas et al. Mar 2010 A1
20100152610 Parihar et al. Jun 2010 A1
20110105946 Sorensen et al. May 2011 A1
20110152715 Delap et al. Jun 2011 A1
20110160611 Ritchart et al. Jun 2011 A1
20110224577 Park Sep 2011 A1
20120080332 Shelton, IV et al. Apr 2012 A1
20120191009 Hoon et al. Jul 2012 A1
20120253225 Boutaghou et al. Oct 2012 A1
20120265096 Mendez-Coll Oct 2012 A1
20130023789 Anderson et al. Jan 2013 A1
20130165815 Zinn et al. Jun 2013 A1
20130289441 Videbaek et al. Oct 2013 A1
20140213932 Knoll Jul 2014 A1
20140358032 Videbaek et al. Dec 2014 A1
20140371585 Thompson et al. Dec 2014 A1
20150018712 Seiger et al. Jan 2015 A1
20150148704 Swick May 2015 A1
20150190124 Mccullough et al. Jul 2015 A1
20150223787 Coonahan et al. Aug 2015 A1
20150238174 Reuber et al. Aug 2015 A1
20160256138 Videbaek et al. Sep 2016 A1
20160317133 Orts et al. Nov 2016 A1
20160367229 Jorgensen et al. Dec 2016 A1
20160367230 Almazan Dec 2016 A1
20160374650 Heske et al. Dec 2016 A1
20170042517 Heske et al. Feb 2017 A1
20170181732 Videbaek et al. Jun 2017 A1
Foreign Referenced Citations (63)
Number Date Country
101011268 Aug 2007 CN
101032420 Sep 2007 CN
3924291 Jan 1991 DE
4041614 Oct 1992 DE
3924291 Jul 2000 DE
10034297 Apr 2001 DE
10026303 Feb 2002 DE
20204363 May 2002 DE
20209525 Nov 2002 DE
10235480 Feb 2004 DE
0433717 Jun 1991 EP
0890339 Jan 1999 EP
0995400 Apr 2000 EP
1074271 Feb 2001 EP
1520518 Apr 2005 EP
1579809 Sep 2005 EP
1604615 Dec 2005 EP
1642535 Apr 2006 EP
1665989 Jun 2006 EP
1829487 Sep 2007 EP
2095772 Sep 2009 EP
2106750 Oct 2009 EP
1569561 Oct 2010 EP
1345429 Dec 1963 FR
2739293 Apr 1997 FR
2018601 Oct 1979 GB
1-126957 Sep 1987 JP
H07289555 Nov 1995 JP
H10508504 Aug 1998 JP
2005530554 Oct 2005 JP
2006509545 Mar 2006 JP
2006528907 Dec 2006 JP
2007502159 Feb 2007 JP
9508945 Apr 1995 WO
9628097 Sep 1996 WO
9734531 Sep 1997 WO
9825522 Jun 1998 WO
9831285 Jul 1998 WO
9835615 Aug 1998 WO
9846290 Oct 1998 WO
9933501 Jul 1999 WO
0004832 Feb 2000 WO
0030546 Jun 2000 WO
0059378 Oct 2000 WO
0172230 Oct 2001 WO
0222023 Mar 2002 WO
0232318 Apr 2002 WO
02069808 Sep 2002 WO
2005013830 Feb 2005 WO
2006015302 Feb 2006 WO
2007047128 Apr 2007 WO
2007095330 Aug 2007 WO
2007112751 Oct 2007 WO
2008021687 Feb 2008 WO
2008040812 Apr 2008 WO
2008131362 Oct 2008 WO
2010107424 Sep 2010 WO
2010120294 Oct 2010 WO
2011019343 Feb 2011 WO
2013158072 Oct 2013 WO
2013068017 Mar 2014 WO
2014153410 Sep 2014 WO
2015069223 May 2015 WO
Non-Patent Literature Citations (1)
Entry
Maxim; Maxim8606; USB/AC Adapter, Li+ Linear Battery Charger with Integrated 50m Omega Battery Switch in TDFN; http://datasheets.maxim-ic.com/en/ds/MAX8606.pdf; Dec. 2008; pp. 1-14; Rev 1.
Related Publications (1)
Number Date Country
20200015796 A1 Jan 2020 US
Continuations (1)
Number Date Country
Parent 15565967 US
Child 16584275 US