The present invention relates to biopsy devices, and, more particularly, to a handheld biopsy device having integrated vacuum assist to aid in tissue sample acquisition.
A biopsy device has a sample retrieval mechanism configured to sever and remove a tissue sample from a patient. The sample retrieval mechanism may be in the form of a biopsy probe assembly that is configured with a biopsy needle having a sample retrieval opening. Some practitioners that perform biopsy procedures prefer a self-contained handheld biopsy device over that of a large console system. There are essentially two types of self-contained handheld biopsy devices: the partially disposable biopsy device and the fully disposable biopsy device.
A typical partially disposable biopsy device has a reusable handheld driver to which a disposable probe is releasably attached. The reusable handheld driver is typically battery powered, and includes electrical motor drives and an on-board vacuum pump to aid in sample acquisition and/or retrieval. Often, such biopsy devices are configured for single insertion multiple sample (SIMS) procedures. The disposable probe is used on a single patient, and then discarded, while the handheld driver is retained for reuse.
A typical fully disposable biopsy device has one or more mechanical drives, such as spring/latch arrangements, which permit the biopsy device to be manually cocked and fired for tissue sample acquisition. Such simple biopsy devices often are configured to acquire a single sample per insertion. Also, many of the fully disposable biopsy devices do not have vacuum to assist in sample acquisition. While some attempts have been made to include a vacuum assist feature in a fully disposable biopsy device, the vacuum produced typically is not sufficient to approach the performance of that of a partially disposable biopsy device as described above. Also, in a typical fully disposable biopsy device having vacuum assist, such vacuum is generated simultaneously with movement of the cutting cannula to sever the tissue sample, and thus the vacuum may be of limited value in acquiring the tissue sample.
What is needed in the art is a biopsy device that may be fully disposable, and which may generate a reserve of vacuum prior to a retraction of the cutting cannula to expose the sample retrieval opening of the biopsy needle, thus facilitating efficient vacuum application to aid in sample acquisition, and which is configured to be easy to use.
The present invention provides a biopsy device and a method of operating the biopsy device.
As used herein, the terms “first”, “second”, “third”, etc., that precede an element name, e.g., first latch member, second latch member, etc., are for identification purposes to distinguish between different elements having similar characteristic, and are not intended to necessarily imply order, unless otherwise specified, nor are such terms intended to preclude the inclusion of additional similar elements.
The invention in one form is directed to a biopsy device having a housing, a biopsy needle including a stylet and a cannula, a carriage assembly including a carriage slide, a cannula slide and a sampling slide. The carriage slide has a stylet mount end wall and the cannula slide has a cannula mount end wall. A charge handle is slidably mounted to the housing. The charge handle has a home position and a retracted position. The biopsy device further includes a vacuum system positioned in the housing and carried by the carriage assembly. The vacuum system is charged to generate a vacuum when a sampling spring is compressed. The vacuum system includes a first vacuum pump, a second vacuum pump, a manifold and a control valve. The first vacuum pump has a first vacuum port. The second vacuum pump has a second vacuum port. The manifold has a first vacuum draw port, a second vacuum draw port, and a first vacuum application port. The control valve has a third vacuum draw port and a second vacuum application port. The first vacuum port of the first vacuum pump is coupled in fluid communication with the first vacuum draw port of the manifold. The second vacuum port of the second vacuum pump is coupled in fluid communication with the second vacuum draw port of the manifold. The first vacuum application port of the manifold is coupled in fluid communication with the third vacuum draw port of the valve. The second vacuum draw port of the control valve is coupled in fluid communication with a first lumen of the stylet. The manifold has a first one-way valve coupled in fluid communication with the first vacuum draw port and a second one-way valve coupled in fluid communication with the second vacuum draw port. Each of the first one-way valve and the second one-way valve is configured to release positive pressure to the atmosphere and to close upon establishment of vacuum. The control valve is operated by actuation of a cannula retract button of an actuator mechanism to apply the vacuum to a side sample port of the stylet simultaneously with movement of the cannula in a proximal direction by a force generated by a cannula retract spring to open the side sample port of the stylet.
The invention in another form is directed to a biopsy device that includes a housing having an actuator mechanism. A carriage assembly is movable relative to the housing. The carriage assembly includes a stylet mount wall that mounts a stylet having a sample port, a cannula slide that mounts a cutting cannula, a sampling slide movably interposed between the stylet mount wall and the cannula slide, and a carriage latch cover member. The cannula slide is longitudinally spaced from and movable relative to the stylet mount wall. The cannula slide has a first latch member, the sampling slide has a second latch member, and the carriage latch cover member has a third latch member. A charge handle is slidably mounted to the housing. The charge handle has a home position and a retracted position. A sampling spring is interposed between the stylet mount wall and the sampling slide. A cannula retract spring is interposed between, and connected to each of, the sampling slide and the cannula slide. A prime pierce spring is interposed between the carriage assembly and a portion of the housing. A vacuum system is configured to selectively supply a vacuum to the sample port of the stylet. The biopsy device is configured such that a first retraction of the charge handle moves the cannula slide and the sampling slide in unison in a proximal direction to charge the sampling spring, to latch the second latch member of the sampling slide with the carriage latch cover member to retain the sampling spring in a charged state, and to charge the vacuum system to generate the vacuum. A first return of the charge handle returns the charge handle to the home position. A second retraction of the charge handle moves the charge handle to the retracted position. A second return of the charge handle to the home position moves the cannula slide in a distal direction away from the sampling slide to charge the cannula retract spring and to latch the first latch member of the cannula slide with the carriage latch cover member to retain the cannula retract spring in a charged state. A third retraction of the charge handle moves the carriage assembly as a whole in the proximal direction to charge the prime pierce spring and to latch the third latch member of the carriage latch cover member with the actuator mechanism to retain the prime pierce spring in a charged state.
The invention in another form is directed to a biopsy device that includes a stylet positioned to extend on a longitudinal axis. The stylet has a first side wall configured to define a first lumen and a side sample port that extends through the first side wall to the first lumen. A cannula is coaxial with the stylet. The cannula has a second side wall configured to define a second lumen and a distal cutting edge. A housing has a proximal end wall, an intermediate wall, and a distal end portion spaced along the longitudinal axis. The distal end portion has a needle opening. The housing is configured to define a housing chamber between the proximal end wall and the distal end portion. The intermediate wall is interposed between the proximal end wall and the distal end portion. The stylet and the cannula are received through the needle opening. A proximal direction is from the distal end portion toward to the proximal end wall and a distal direction is from the proximal end wall toward the distal end portion. A charge handle is slidably mounted to the housing. The charge handle is configured to move between a home position and a retracted position. An actuator mechanism has a pierce button, a cannula retract button, and a sample acquisition button, and has a carriage latch strike. A carriage assembly is positioned in the housing chamber. The carriage assembly is configured to move longitudinally as a whole relative to the housing. The carriage assembly includes a carriage slide, a carriage latch cover member, a cannula slide, and a sampling slide. Each of the cannula slide and the sampling slide is configured to be movable relative to the carriage slide. The carriage slide has a stylet mount end wall configured to mount the stylet. The cannula slide has a cannula mount end wall configured to mount the cannula and has a first latch arm that extends in the proximal direction from the cannula mount end wall. The sampling slide is movably interposed between the stylet mount end wall of the carriage slide and the cannula mount end wall of the cannula slide. The sampling slide has a second latch arm that extends in the distal direction. The carriage latch cover member has a first latch strike, a second latch strike, and a carriage latch arm. The first latch strike is configured to releasably engage the first latch arm. The second latch strike is configured to releasably engage the second latch arm. The carriage latch arm is configured to releasably engage the carriage latch strike of the actuator mechanism. A sampling spring is interposed between the stylet mount end wall and the sampling slide. The sampling spring is configured to store mechanical energy when in a compressed state and configured to bias the sampling slide in the distal direction. The sampling spring is held in the compressed state when the second latch arm is engaged with the second latch strike. A vacuum system is positioned in the housing and carried by the carriage assembly. The vacuum system is charged to generate a vacuum when the sampling spring is compressed. A cannula retract spring is interposed between, and is connected to each of, the sampling slide and the cannula slide. The cannula retract spring is configured to store mechanical energy in an extended state to bias the cannula slide in the proximal direction. The cannula retract spring is releasably held in the extended state when the first latch arm is engaged with the first latch strike and the second latch arm is engaged with the second latch strike. A prime pierce spring is interposed between the intermediate wall of the housing and the stylet mount end wall. The prime pierce spring is configured to store mechanical energy when in a compressed state and is configured to bias the carriage assembly as a whole in the distal direction. The prime pierce spring is held in the compressed state when the carriage latch arm is engaged with the carriage latch strike of the actuator mechanism.
The biopsy device also may include an indexing mechanism that is movably coupled to the cannula mount end wall of the cannula slide. The cannula mount end wall has an indexing window. The indexing mechanism is configured to selectively cover a portion of the indexing window. The charge handle has a charge handle latch arm configured to pass through the indexing window when the charge handle is moved to the retracted position, and when the indexing mechanism is positioned to cover a portion of the indexing window, a subsequent movement of the charge handle in the distal direction toward the home position causes the charge handle latch arm to engage the indexing mechanism to move the cannula slide in the distal direction away from the sampling slide to charge the cannula retract spring.
The invention in another form is directed to a biopsy device that includes a housing having a longitudinal axis. The housing is configured to define a housing chamber. An actuator mechanism has a cannula retract button, a sample acquisition button, and a carriage latch strike. A carriage assembly is positioned in the housing chamber. The carriage assembly includes a carriage slide having a carriage base and a stylet mount wall. The carriage assembly further includes a sampling slide, a cannula slide and a carriage latch cover member. The cannula slide is longitudinally spaced from and movable relative to the stylet mount wall. The cannula slide has a first latch arm. The carriage latch cover member has a first latch strike and a second latch strike. The first latch arm is configured to releasably engage the first latch strike. A stylet is fixedly connected to stylet mount wall. The stylet is configured to extend along the longitudinal axis, and has a side sample port. A vacuum source is carried by the carriage assembly. The vacuum source is configured to selectively apply a vacuum to the side sample port of the stylet. A cannula is fixedly connected to the cannula slide. The cannula is coaxial with the stylet. The cannula has a distal cutting edge. The sampling slide is movably interposed between the stylet mount wall and the cannula slide. The sampling slide has a second latch arm and a latch arm deflection member. The second latch arm is configured to releasably engage the second latch strike of the carriage latch cover member. The latch arm deflection member is configured to engage the first latch arm of the cannula slide and deflect the first latch arm toward the carriage base. A sampling spring is interposed between the stylet mount wall and the sampling slide. The sampling spring is held in the compressed state when the second latch arm is engaged with the second latch strike. A cannula retract spring is interposed between, and is connected to each of, the sampling slide and the cannula slide. The cannula retract spring is releasably held in an extended state to store mechanical energy when the first latch arm is engaged with the first latch strike and the second latch arm is engaged with the second latch strike. A cocking mechanism has a charge handle, a biasing spring, and an indexing mechanism. The charge handle is slidably mounted to the housing and biased by the biasing spring in the distal direction to a home position. The charge handle is configured to move between the home position and a retracted position. The charge handle and the indexing mechanism in combination are configured to selectively move each of the sampling slide and the cannula slide based on sequential actuations of the charge handle, wherein: a first retraction of the charge handle moves the sampling slide and the cannula slide in unison in the proximal direction to compress the sampling spring, to engage the second latch arm with the second latch strike to retain the sampling spring in the compressed state, and to charge the vacuum source, the charge handle configured to return to the home position by force exerted by the biasing spring and to sequence the indexing mechanism to a next selection position; and a second retraction of the charge handle moves the charge handle to the retracted position, and during a return of the charge handle to the home position by force exerted by the biasing spring, the charge handle engages the cannula slide and the cannula slide is moved in the distal direction which in turn extends the cannula retract spring to the extended state and the first latch arm releasably engages the first latch strike to retain the cannula retract spring in the extended state, the cannula being positioned to close the side sample port of the stylet. The actuator mechanism is configured such that an actuation of the cannula retract button releases the first latch arm from the first latch strike to in turn release the cannula retract spring to exert a retraction force to move the cannula in the proximal direction to open the side sample port of the stylet and to simultaneously apply the vacuum to the side sample port; and an actuation of the sample acquisition button releases the second latch arm from the second latch strike to release the sampling spring to exert a force to move the cannula in the distal direction to close the side sample port.
The invention in another form is directed to a method of operating a biopsy device which includes providing a housing having an actuator mechanism; providing a carriage assembly movable relative to the housing, the carriage assembly including a stylet mount wall that mounts a stylet, a cannula slide that mounts a cutting cannula, a sampling slide movably interposed between the stylet mount wall and the cannula slide, and a carriage latch cover member, the cannula slide being longitudinally spaced from and movable relative to the stylet mount wall; providing a charge handle to sequentially move at least one of the cannula slide, the sampling slide, and the carriage assembly as a whole, the charge handle having a home position and a retracted position; providing a sampling spring interposed between the stylet mount wall and the sampling slide; providing a cannula retract spring interposed between, and connected to each of, the sampling slide and the cannula slide; providing a prime pierce spring interposed between the carriage assembly and a portion of the housing; providing a vacuum system to selectively supply a vacuum to a sample port of the stylet; retracting the charge handle a first time to move the cannula slide and the sampling slide in unison in a proximal direction to charge a sampling spring, to latch the sampling slide with the carriage latch cover member to retain the sampling spring in a charged state, and to charge the vacuum system with a vacuum; returning the charge handle a first time to the home position; retracting the charge handle a second time to the retracted position; returning the charge handle a second time to the home position to move the cannula slide in a distal direction relative to the sampling slide to charge the cannula retract spring and to latch the cannula slide with the carriage latch cover member to retain the cannula retract spring in a charged state; and retracting the charge handle a third time to move the carriage assembly as a whole in the proximal direction to charge the prime pierce spring and to latch the carriage latch cover member with the actuator mechanism to retain the prime pierce spring in a charged state.
An advantage of the present invention is that the biopsy device is fully disposable.
Another advantage of the present invention is that the biopsy device is fully mechanical with no electrical component, thus requiring no electrical power source.
According to at least one aspect of the invention, another advantage is that the biopsy device generates a reserve of vacuum prior to a retraction of the cutting cannula to expose the sample port of the biopsy needle, thus facilitating efficient vacuum application to aid in sample acquisition.
Another advantage of the present invention is that the biopsy device is configured to be easy to use.
The above listed advantages may be realized individually, or collectively, depending on the aspects of the present invention that are utilized in a particular implementation.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates an embodiment of the invention and such exemplification is not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
Referring to
As shown in
In describing the invention, common directional terms such as upper, lower, up, down, top, bottom, right, left, vertical, horizontal, etc., may be used with respect to the orientation of biopsy device 10 shown in
In the orientation shown in
Upper case portion 24 and lower case portion 25 of housing 12 collectively define a proximal end wall 26 and a distal end portion 28 spaced from proximal end wall 26 along a longitudinal axis 23. The distal direction D1 is in a direction from proximal end wall 26 toward distal end portion 28, e.g., in a direction of the extent of biopsy needle 14 away from housing 12 and away from the user. The proximal direction D2 (opposite distal direction D1) is in a direction from distal end portion 28 toward proximal end wall 26, e.g., toward the user.
Housing 12 is configured to define a housing chamber 30 between proximal end wall 26 and distal end portion 28. In the present embodiment, lower case portion 25 of housing 12 further includes an intermediate wall 32 that is interposed between proximal end wall 26 and distal end portion 28. Referring to
Charge handle 16 and actuator mechanism 18 provide the user with fully accessible control features used to operate biopsy device 10 in an intuitive manner to obtain a tissue sample from suspect tissue of a patient via biopsy needle 14.
Charge handle 16 is used to ready biopsy device 10 for performing a biopsy procedure by facilitating the generation of vacuum and preparing biopsy needle 14 for severing and collecting the tissue sample.
As shown in
Charge handle latch arm 38 has a free end 38-1 having a laterally protruding catch 38-2. Charge handle latch arm 38 is configured to be longitudinally rigid, and laterally resilient in a direction substantially perpendicular to the longitudinal extent of charge handle latch arm 38. As used herein, the term “substantially perpendicular” is a direction having a range of deviation from perpendicular of plus or minus five degrees.
Referring to
Referring again to
Referring also to
Also, as shown in
Referring again to
As shown in
Referring now also to
Carriage slide 60 of prime pierce carriage 52 of carriage assembly 50 has a carriage base 64 and a stylet mount end wall 66. In the present embodiment, carriage base 64 and stylet mount end wall 66 are formed as a unitary carriage structure.
Carriage base 64 of carriage slide 60 is configured to define a U-shaped wall 64-1 having a U-shaped exterior surface 64-2 and a U-shaped interior surface 64-3, thus having a U-shaped cross-section that extends in the distal direction D1 from stylet mount end wall 66 to define a U-shaped distal edge 64-4, a pair of laterally spaced upper mounting edges 64-5, 64-6, and a pair of laterally spaced recessed slot edges 64-7, 64-8. Extending upwardly and proximally from U-shaped interior surface 64-3 is a longitudinally oriented prime pierce spring mount post 64-9.
U-shaped exterior surface 64-2 corresponds to the interior shape of housing chamber 30, and is in sliding contact with housing chamber 30, with housing chamber 30 serving as a longitudinal guide for carriage assembly 50. U-shaped distal edge 64-4 defines an open distal end 60-1 of carriage slide 60. The pair of laterally spaced upper mounting edges 64-5, 64-6 in conjunction with the pair of laterally spaced recessed slot edges 64-7, 64-8 further define an open top 60-2 of carriage slide 60.
Stylet mount end wall 66 has a stylet hole 66-1, a first pump mounting opening 66-2 and a second pump mounting opening 66-3, and a prime pierce spring opening 66-4. Prime pierce spring opening 66-4 is axially aligned with prime pierce spring mount post 64-9 of carriage base 64 of carriage slide 60. Stylet hole 66-1 is configured to fixedly mount stylet 20, e.g., by a press fit and/or adhesive coupling. First pump mounting opening 66-2 and second pump mounting opening 66-3 are configured to mount a pair of syringe-type vacuum pumps of vacuum system 54, as will be more fully described below.
As best shown in
A proximal portion 20-6 of stylet 20 extends in a proximal direction D2 away from stylet mount end wall 66 and a distal portion 20-7 of stylet 20 extends in the distal direction D1 away from stylet mount end wall 66. The distal portion 20-7 of stylet 20 extends in the distal direction D1 beyond the distal extent of carriage base 64 and carriage latch cover member 62, and is received through needle opening 12-1 of housing 12 (see also
Carriage latch cover member 62 is configured to attach, e.g., a snap fit and/or adhesive, to the pair of laterally spaced upper mounting edges 64-5, 64-6 of carriage base 64. Carriage latch cover member 62 includes laterally spaced recessed slot edges 62-1, 62-2 that are respectively vertically opposed to the laterally spaced recessed slot edges 64-7, 64-8 of carriage base 64. Carriage latch cover member 62 covers the open top 60-2 of carriage slide 60, and extends over carriage base 64 of carriage slide 60 to define an interior region in which cannula slide 58 may move longitudinally relative to stylet mount end wall 66. In particular, the U-shaped interior surface 64-3 of U-shaped wall 64-1 of carriage slide 60 in conjunction with open distal end 60-1 of carriage slide 60 are configured to slidably receive and longitudinally guide sampling slide 56 and cannula slide 58.
Carriage latch cover member 62 is configured to facilitate a selective longitudinal coupling and uncoupling of carriage slide 60 with each of sampling slide 56 and cannula slide 58. Carriage latch cover member 62 has a latch strike 70, a latch strike 72, a carriage latch arm 74, and a deflector arm 76. Carriage latch cover member 62 further includes conduit mounts 62-3, 62-4.
In the present embodiment, each of latch strike 70 and latch strike 72 is configured as a latching notch. More particularly, each of latch strike 70 and latch strike 72 of carriage latch cover member 62 is configured as a rectangular opening having proximal and distal end walls oriented to be substantially perpendicular to longitudinal axis 23.
Carriage latch arm 74 is configured as a cantilever arm with a free end having an upwardly extending catch 78. Catch 78 is configured as ramp having an upwardly facing ramp surface 78-1 that diverges in the distal direction D1 to define a distal end face 78-2. Carriage latch arm 74 is configured to be longitudinally rigid, and vertically resilient in directions D3, D4 (e.g., up, down) substantially perpendicular to the longitudinal extent of carriage latch arm 74. Directions D3 and D4 are opposite directions.
When carriage assembly 50 is fully retracted in proximal direction D1 by operation of charge handle 16, as will be more fully described below, carriage latch arm 74 of carriage latch cover member 62 releasably engages the proximal end face 44-2 of carriage latch strike 44 of actuator mechanism 18 (see
Referring also to
Referring again to
Referring to
Referring particularly to
Vacuum pump 92 also is a syringe-type vacuum pump, and is configured identical to vacuum pump 90. Vacuum pump 92 includes an elongate cylinder 110 having a first end 110-1 and a second end 110-2. Extending from first end 110-1 is a tip portion 110-3 that defines a second vacuum port 110-4. Second end 110-2 defines a second opening 110-5. A second piston 112 is slidably received in elongate cylinder 110 through second opening 110-5. A second plunger 114 is attached to, or formed integrally with, second piston 112. Second plunger 114 configured to extend from second end 110-2 of elongate cylinder 110. Second plunger 114 has a free end 114-1 having a head 114-2. A second vacuum spring 116 is interposed between second end 110-2 of elongate cylinder 110 and head 114-2 of second plunger 114. Second vacuum spring 116 is configured to store mechanical energy when in a compressed state and, in the orientation shown, is configured to bias second piston 112 in the distal direction D1 to establish a vacuum at second vacuum port 110-4.
Manifold 94 has a first vacuum draw port 94-1, a second vacuum draw port 94-2, and a first vacuum application port 94-3. Manifold 94 has a first one-way valve 94-4 that is coupled in fluid communication with first vacuum draw port 94-1 and a second one-way valve 94-5 that is coupled in fluid communication with second vacuum draw port 94-2. Each of first one-way valve 94-4 and second one-way valve 94-5 is configured to release positive pressure to the atmosphere to facilitate a purge of positive pressure from vacuum pumps 90, 92 during the charging of sampling spring 182, and to close upon establishment of a vacuum by vacuum pumps 90, 92. In the present embodiment, each of first one-way valve 94-4 and second one-way valve 94-5 is a duckbill valve.
Control valve 96 has a third vacuum draw port 96-1, a second vacuum application port 96-2, and a button actuator 96-3. Button actuator 96-3 selectively controls fluid communication between third vacuum draw port 96-1 and second vacuum application port 96-2. Referring also to
First vacuum port 100-4 of vacuum pump 90 is coupled in fluid communication with first vacuum draw port 94-1 of manifold 94 via flexible connection conduit 98-1. Second vacuum port 110-4 of vacuum pump 92 is coupled in fluid communication with second vacuum draw port 94-2 of manifold 94 via flexible connection conduit 98-2. Flexible connection conduits 98-1 and 98-2 may be in the form of a rubber tubular sleeve, and in the present embodiment, are integral with manifold 94. First vacuum application port 94-3 of manifold 94 is coupled in fluid communication with third vacuum draw port 96-1 of control valve 96 via flexible connection conduit 98-3. Second vacuum application port 96-2 of control valve 96 is coupled in fluid communication with lumen 20-2 at open first end 20-4 of stylet 20 via flexible connection conduit 98-4. Flexible connection conduits 98-3 and 98-4 may be in the form of rubber tubes, and are secured to carriage latch cover member 62 via conduit mounts 62-3, 62-4.
Referring again to
Referring to
The charging of first vacuum spring 106 and second vacuum spring 116 is accompanied by an evacuation, i.e., purging, of air under positive pressure from elongate cylinders 100, 110 of vacuum pumps 90, 92 via one-way valves 94-4, 94-5 as respective piston/plunger combinations 102/104 and 112/114 are moved in the proximal direction D2. Upon a subsequent movement of cannula slide 58 in the distal direction D1, first vacuum spring 106 and second vacuum spring 116 begin to decompress, and thus bias and tend to move piston/plunger combinations 102/104 and 112/114 of vacuum pumps 90, 92 in the distal direction D1. This movement of piston/plunger combinations 102/104 and 112/114 of vacuum pumps 90, 92 in the distal direction D1 establishes a vacuum at first vacuum port 100-4 of vacuum pump 90 and second vacuum port 110-4 of vacuum pump 92, thereby closing via one-way valves 94-4, 94-5 of manifold 94.
Referring to
Referring particularly to
Needle hole 120-1 is configured to slidably receive stylet 20 of biopsy needle 14, with needle hole 120-1 being sized and shaped to serve as a bearing guide surface against stylet 20. The inside diameter of needle hole 120-1 is slightly larger than the outside diameter of stylet 20 in a tolerance range of 0.01 millimeters (mm) to 1.0 mm.
First pump opening 120-2 is configured to slidably receive vacuum pump 90 in a loose fit, and in particular, first pump opening 120-2 is configured to freely pass elongate cylinder 100, first plunger 104, and first vacuum spring 106 of vacuum pump 90. Second pump opening 120-3 is configured to slidably receive vacuum pump 92 in a loose fit, and in particular, second pump opening 120-3 is configured to freely pass elongate cylinder 110, first plunger 114, and first vacuum spring 116.
The pair of opposed side walls 122, 124 are connected to, or formed integral with, an outer perimeter of intermediate slide wall 120. Side wall 122 extends in both the distal direction D1 and the proximal direction D2 from intermediate slide wall 120, and has a curved cross-section that defines a curved exterior surface 122-1. Likewise, side wall 124 extends in both the distal direction D1 and the proximal direction D2 from intermediate slide wall 120, and has a curved cross-section that defines a curved exterior surface 124-1. The shape of side walls 122, 124, in combination, correspond to the shape of U-shaped interior surface 64-3 of U-shaped wall 64-1 of carriage slide 60 (see also
Referring again to
Referring again to
Catch 130 of latch arm 126 is configured to releasably engage latch strike 72 of carriage latch cover member 62 (see also
As shown in
Referring
As best shown in
Referring to
Extending in proximal direction D2 from cannula mount end wall 132 is a longitudinally extending cannula mount tube 136 having a flared proximal end 136-1, an annular bearing surface 136-2, and a tubular aperture 136-3. Cannula 22 is fixedly mounted in cannula mount tube 136 of cannula mount end wall 132, e.g., by press fit and/or adhesive.
As shown in the breakaway portion of
Cannula mount end wall 132 further includes a pair of opposed side walls 138, 140, having a curved cross-section, and each having a respective curved exterior surface 138-1, 140-1 that corresponds to the shape of U-shaped interior surface 64-3 of U-shaped wall 64-1 of carriage slide 60 (see also
Referring again to
Indexing window 132-1 is sized to freely receive charge handle latch arm 38 (see
As shown in
Catch 146 of latch arm 134 of cannula slide 58 is configured to selectively and releasably engage latch strike 70 of carriage latch cover member 62, and when so engaged, couples cannula slide 58 to carriage slide 60 to prohibit proximal movement of cannula slide 58 with respect to carriage slide 60 of carriage assembly 50, until latch arm 134 is released from latch strike 70 by actuation of cannula retract button 40-2 (see
Referring to
Referring to
Axel 156 of cannula slide indexer 152 has a longitudinal extent 156-1 and a cylindrical opening 156-2 configured to be received over bearing surface 136-2 of cannula mount tube 136. The inside diameter of cylindrical opening 156-2 is slightly larger than the outside diameter of bearing surface 136-2 in a tolerance range of 0.01 millimeters (mm) to 1.0 mm so as to permit a pivoting (rotational) motion of cannula slide indexer 152 about cannula mount tube 136, and in turn, to permit pivoting motion about longitudinal axis 23. Axel 156 is retained on bearing surface 136-2 of cannula mount tube 136 by flared proximal end 136-1.
Lever arm 158 is radially offset from cylindrical opening 156-2 and in turn is radially offset from longitudinal axis 23 by a radial distance R1. Referring also to
Actuator arm 160 is radially offset from cylindrical opening 156-2 and in turn is radially offset from longitudinal axis 23 by a radial distance R2. Actuator arm 160 has a tangential extent 160-1. Tangential extent 160-1 of actuator arm 160 is oriented to tangentially extend in a cantilever manner in a direction D6 from axel 156 along a tangent of an imaginary circle corresponding to radial distance R2. Since cannula slide indexer 152 pivots about longitudinal axis 23, direction D6 is relative and the actual direction is dependent upon the angular rotational position of cannula slide indexer 152. However, direction D6 is in a fixed relationship to direction D5, which are in substantially opposite directions, wherein the term “substantially opposite” means a range of linear (180 degrees) plus or minus 15 degrees. In the present embodiment, the angular range a of the fixed relationship of direction D5 relative to direction D6 with respect to longitudinal axis 23 may be in a range of 165 degrees to 180 degrees (linear). Actuator arm 160 is configured to be rigid, and may be defined as a triangular plate 160-2 having tangential extent 160-1, and having a free end 160-3 and a planar engagement surface 160-4.
Torsion spring 162 is radially offset from cylindrical opening 156-2 and in turn is radially offset from longitudinal axis 23 by a radial distance R3. Torsion spring 162 has an outward extent 162-1. Outward extent 162-1 of actuator arm 160 is oriented to extend in a cantilever manner from axel 156. In the orientation of components shown in
Referring to
Referring also to
Window blocking plate 170 may be formed integral with left slide 166. Window blocking plate 170 is configured as a vertically extending plate positioned and oriented to selectively intersect, and partially cover, indexing window 132-1 of cannula mount end wall 132 of cannula slide 58. Window blocking plate 170 includes a side surface 170-1 and a proximal surface 170-2.
First cam arm 172 is configured to vertically extend from base 164. First cam arm 172 is laterally interposed between, and spaced from, window blocking plate 170 and second cam arm 174. First cam arm 172 is positioned and oriented to be selectively engaged by engagement surface 160-4 of actuator arm 160 of cannula slide indexer 152. In particular, first cam arm 172 has a free end 172-1 having a radial engagement surface 172-2 that may be engaged by the planar engagement surface 160-4 of actuator arm 160 of cannula slide indexer 152.
Second cam arm 174 may be formed integral with right slide 168. Second cam arm 174 is configured to vertically extend from base 164. Second cam arm 174 is positioned and oriented to be selectively engaged by bi-direction ramp 126-1 of latch arm 126 of sampling slide 56. In particular, second cam arm 174 has a free end 174-1 having an engagement surface 174-2 that may be engaged by bi-direction ramp 126-1 of latch arm 126 of sampling slide 56.
Cantilever spring 176 is configured as a curved cantilever that extends below a lower portion of base 164, and in turn is located below, base 164, in direction D4. In the orientation of components shown in
Referring again to
Referring to
As shown in
In turn, as shown in
When cannula slide 58 is moved in distal direction D1 away from sampling slide 56, latch arm 134 disengages from latch arm deflection member 128 and, due to its resiliency, latch arm 134 returns to its non-deflected position, i.e., latch arm 134 moves back to its original non-flexed position. In turn, as shown in
As shown in
Referring also to
Referring again to
Referring to
When prime pierce spring 184 is released from the charged (compressed) state, which enters a “pierce” condition, prime pierce spring 184 exerts an expansion force to fire, i.e., to rapidly move, carriage assembly 50 carrying biopsy needle 14, as a whole, in the distal direction D1. In other words, the firing of carriage assembly 50 carrying biopsy needle 14 simultaneously moves stylet 20 and cannula 22 in distal direction D1 such that biopsy needle 14 punctures the tissue of a patient at the desired location.
Referring again to
Referring also to
Referring to
Thus, the first retraction (proximal) stroke of the charge handle 16 toward to the retracted position moves the sampling slide 56 and the cannula mount end wall 132 of cannula slide 58 that carries the cannula 22 in unison, by virtue of the latch arm 134 being engaged with the intermediate slide wall 120 of sampling slide 56, in the proximal direction D2 to charge (compress) sampling spring 182. Simultaneously, the proximal movement of cannula mount end wall 132 of cannula slide 58 moves the respective piston/plunger combinations 102/104 and 112/114 of vacuum pumps 90, 92 in the proximal direction D2 to charge (compress) first vacuum spring 106 of vacuum pump 90 and second vacuum spring 116 of vacuum pump 92.
When charge handle 16 is in the retracted position at the end of the first proximal stroke, catch 130 of latch arm 126 of sampling slide 56 pivots upwardly to engage latch strike 72 of carriage latch cover member 62 to retain sampling spring 182 in the charged (compressed) state. However, even though the upward pivoting latch arm 126 releases sampling slide indexer 154 for movement upward in direction D3, since charge handle latch arm 38 of charge handle 16 is inserted into indexing window 132-1 of cannula slide 58, charge handle latch arm 38 prevents sampling slide indexer 154 from extending vertically over a portion of indexing window 132-1.
At this time as well, vacuum springs 106, 116 are retained in their charged state only by the internally generated vacuum in vacuum pumps 90, 92. As the vacuum is released, e.g., by operation of button 40-2 of actuator mechanism 18, then vacuum springs 106, 116 will tend to return to their non-charged state.
The movement of cannula mount end wall 132 of cannula slide 58 during the first proximal stroke causes cannula 22 to be retracted to open side sample port 20-3 of stylet 20. Referring to
Referring to
Referring to
Also, the distal movement of cannula mount end wall 132 of cannula slide 58 away from intermediate slide wall 120 of sampling slide 56 in turn causes latch arm 134 of cannula slide 58 to disengage from latch arm deflection member 128 of sampling slide 56 to thus pivot upwardly, which in turn, referring also to
As charge handle 16 approaches the home position, catch 146 of latch arm 134 of cannula slide 58 releasably engages latch strike 70 of carriage latch cover member 62 to retain cannula retract springs 180 in the charged (extended) state. Also, catch 130 of latch arm 126 of sampling slide 56 remains engaged with latch strike 72 of carriage latch cover member 62. With catch 146 of latch arm 134 engaged with latch strike 70 of carriage latch cover member 62 and with latch arm 126 of sampling slide 56 engaged with latch strike 72 of carriage latch cover member 62, sampling slide 56 and cannula slide 58 are spaced at a maximum separation distance from one another, and each of sampling slide 56 and cannula slide 58 are latched to maintain the maximum separation distance, until catch 146 of latch arm 134 of cannula slide 58 is released by actuation of cannula retract button 40-2.
Referring to
When charge handle 16 is in the retracted position at the end of the third proximal stroke, (referring also to
Referring to
In the piercing shot mode of the state of biopsy device 10 shown in
Next, or in the absence of the piercing shot mode, with biopsy device 10 in the state shown in
Next, with biopsy device 10 in the state shown in
Following tissue sample collection, biopsy needle 14 is removed from the patient, and the first retraction (proximal) stroke is repeated so as to retract cannula 22 to open side sample port 20-3 of stylet 20. Since vacuum springs 106, 116 and sampling spring 182 are charged during the first retraction stroke of charge handle 16, then if no further tissue samples are desired, the vacuum may be purged by actuating cannula retract button 40-2, and sampling spring 182 may be discharged by actuating sample acquisition button 40-3. However, if a further tissue sample is desired, then the second retraction and return strokes are repeated to charge cannula retract springs 180-1, 180-2. Biopsy device 10 is now ready for a manual insertion into the patient, i.e., no piercing shot. However, if the piercing shot mode is desired, then the third retraction stroke of charge handle 16 is repeated to charge prime pierce spring 184 and prime biopsy needle 14 to the fully retracted position for the simultaneous firing of stylet 20 and cannula 22 into the tissue of the patient.
Thus, with respect to the various aspects of biopsy device 10 there is disclosed:
1.1. A biopsy device having a housing, a biopsy needle comprising a stylet and a cannula, a carriage assembly comprising a carriage slide, a cannula slide and a sampling slide, the carriage slide having a stylet mount end wall and the cannula slide having a cannula mount end wall, and a charge handle slidably mounted to the housing, the charge handle having a home position and a retracted position, the biopsy device further comprising a vacuum system positioned in the housing and carried by the carriage assembly, the vacuum system being charged to generate a vacuum when a sampling spring is compressed, the vacuum system including a first vacuum pump, a second vacuum pump, a manifold and a control valve, the first vacuum pump having a first vacuum port, the second vacuum pump having a second vacuum port, the manifold having a first vacuum draw port, a second vacuum draw port, and a first vacuum application port, the control valve having a third vacuum draw port and a second vacuum application port, the first vacuum port of the first vacuum pump being coupled in fluid communication with the first vacuum draw port of the manifold, the second vacuum port of the second vacuum pump being coupled in fluid communication with the second vacuum draw port of the manifold, the first vacuum application port of the manifold being coupled in fluid communication with the third vacuum draw port of the valve, the second vacuum draw port of the control valve being coupled in fluid communication with a first lumen of the stylet, the manifold having a first one-way valve coupled in fluid communication with the first vacuum draw port and a second one-way valve coupled in fluid communication with the second vacuum draw port, each of the first one-way valve and the second one-way valve configured to release positive pressure to the atmosphere and to close upon establishment of vacuum; the control valve being operated by actuation of a cannula retract button of an actuator mechanism to apply the vacuum to a side sample port of the stylet simultaneously with movement of the cannula in a proximal direction by a force generated by a cannula retract spring to open the side sample port of the stylet.
1.2. The biopsy device of paragraph 1.1, wherein: the first vacuum pump includes: a first cylinder having a first end and a second end, the first end having the first vacuum port and the second end defines a first opening; a first piston received in the first cylinder through the first opening; a first plunger attached to the first piston, the first plunger configured to extend from the second end of the first cylinder, the first plunger having a free end having a first head; and a first vacuum spring interposed between the second end of the cylinder and the first head of the first plunger, the first vacuum spring configured to store mechanical energy when in a compressed state and configured to bias the first piston in the distal direction to establish a vacuum at the first vacuum port; and the second vacuum pump includes: a second cylinder having a first end and a second end, the first end having the second vacuum port and the second end defines a second opening; a second piston received in the second cylinder through the second opening; a second plunger attached to the second piston, the second plunger configured to extend from the second end of the second cylinder, the second plunger having a free end having a second head; and a second vacuum spring interposed between the second end of the second cylinder and the second head of the second plunger, the second vacuum spring configured to store mechanical energy when in a compressed state and configured to bias the second piston in the distal direction to establish a vacuum at the second vacuum port.
1.3. The biopsy device of paragraph 1.2, wherein the first head of the first vacuum pump and the second head of the second vacuum pump are positioned for engagement with the cannula mount end wall of the cannula slide, and wherein each of the first vacuum spring of the first vacuum pump and the second vacuum spring of the second vacuum pump is compressed during a movement of the cannula mount end wall in the proximal direction that occurs prior to the cannula retract spring being charged to the extended state.
1.4. The biopsy device of paragraph 1.3, wherein compression of the first vacuum spring of the first vacuum pump and the second vacuum spring of the second vacuum pump occurs simultaneously with the compression of a sampling spring.
1.5. The biopsy device of any one of paragraphs 1.2 to 1.4, wherein the stylet mount end wall includes a first pump mounting hole and a second pump mounting hole, the first vacuum pump received in the first pump mounting hole with a first proximal cylinder portion having the first vacuum port configured to extend in the proximal direction from the stylet mount end wall and a first distal cylinder portion having the first opening configured to extend in the distal direction from the stylet mount end wall, the first head of the first plunger positioned to engage the cannula mount end wall so as to compress the first vacuum spring when the cannula mount end wall is moved in the proximal direction during a first retraction of the charge handle; and the second vacuum pump received in the second pump mounting hole with a second proximal cylinder portion having the second vacuum port configured to extend in the proximal direction from the stylet mount end wall and a second distal cylinder portion having the second opening configured to extend in the distal direction from the stylet mount end wall, the second head of the second plunger positioned to engage the cannula mount end wall so as to compress the second vacuum spring, simultaneously with compression of the first vacuum spring, when the cannula mount end wall is moved in the proximal direction during the first retraction of the charge handle.
1.6. The biopsy device of any preceding paragraph, wherein the housing comprises an actuator mechanism; the carriage assembly is movable relative to the housing, the carriage assembly including the stylet mount wall that mounts a stylet having a sample port, the cannula slide that mounts a cutting cannula, the sampling slide movably interposed between the stylet mount wall and the cannula slide, and a carriage latch cover member, the cannula slide being longitudinally spaced from and movable relative to the stylet mount wall, the cannula slide having a first latch member, the sampling slide having a second latch member, and the carriage latch cover member having a third latch member; a sampling spring interposed between the stylet mount wall and the sampling slide; a cannula retract spring interposed between, and connected to each of, the sampling slide and the cannula slide; a prime pierce spring interposed between the carriage assembly and a portion of the housing; the biopsy device configured such that: a first retraction of the charge handle moves the cannula slide and the sampling slide in unison in a proximal direction to charge the sampling spring, to latch the second latch member of the sampling slide with the carriage latch cover member to retain the sampling spring in a charged state, and to charge the vacuum system to generate the vacuum; a first return of the charge handle returns the charge handle to the home position; a second retraction of the charge handle moves the charge handle to the retracted position; a second return of the charge handle to the home position moves the cannula slide in a distal direction away from the sampling slide to charge the cannula retract spring and to latch the first latch member of the cannula slide with the carriage latch cover member to retain the cannula retract spring in a charged state; and a third retraction of the charge handle moves the carriage assembly as a whole in the proximal direction to charge the prime pierce spring and to latch the third latch member of the carriage latch cover member with the actuator mechanism to retain the prime pierce spring in a charged state.
1.7. The biopsy device of paragraph 1.6, the actuator mechanism having a cannula retract button, a sample acquisition button, and a pierce button, the biopsy device further configured such that: the pierce button is actuated to unlatch the third latch member of the carriage latch cover member from the actuator mechanism to release the prime pierce spring from the charged state to propel the carriage assembly in the distal direction to facilitate a piercing of tissue with the stylet and the cannula; the cannula retract button is actuated to unlatch the first latch member of the cannula slide from the carriage latch cover member to release the cannula retract spring from the charged state and move the cannula in the proximal direction to open a side sample port of the stylet, and to simultaneously apply the vacuum to the side sample port to draw tissue into the side sample port; and the sample acquisition button is actuated to unlatch the second latch member of the sampling slide from the carriage latch cover member to release the sampling spring from the charged state to propel the cannula in the distal direction to close the side sample port to sever the tissue drawn by vacuum into the side sample port.
1.8. The biopsy device according to any one of paragraphs 1.1 to 1.6, wherein the stylet is positioned to extend on a longitudinal axis, the stylet having a first side wall configured to define a first lumen and a side sample port that extends through the first side wall to the first lumen; the cannula is coaxial with the stylet, the cannula having a second side wall configured to define a second lumen, the cannula having a distal cutting edge, the housing has a proximal end wall, an intermediate wall, and a distal end portion spaced along the longitudinal axis, the distal end portion having a needle opening, the housing configured to define a housing chamber between the proximal end wall and the distal end portion, the intermediate wall being interposed between the proximal end wall and the distal end portion, the stylet and the cannula being received through the needle opening, and wherein a proximal direction is from the distal end portion toward to the proximal end wall and a distal direction is from the proximal end wall toward the distal end portion; an actuator mechanism has a pierce button, a cannula retract button, a sample acquisition button, and having a carriage latch strike; the carriage assembly is positioned in the housing chamber, the carriage assembly configured to move longitudinally as a whole relative to the housing, the carriage assembly including the carriage slide, a carriage latch cover member, the cannula slide, and the sampling slide, each of the cannula slide and the sampling slide being configured to be movable relative to the carriage slide, the cannula slide having a first latch arm that extends in the proximal direction from the cannula mount end wall, the sampling slide being movably interposed between the stylet mount end wall of the carriage slide and the cannula mount end wall of the cannula slide, the sampling slide having a second latch arm that extends in the distal direction; the carriage latch cover member having a first latch strike, a second latch strike, and a carriage latch arm, the first latch strike configured to releasably engage the first latch arm, the second latch strike configured to releasably engage the second latch arm, and the carriage latch arm configured to releasably engage the carriage latch strike of the actuator mechanism; a sampling spring interposed between the stylet mount end wall and the sampling slide, the sampling spring configured to store mechanical energy when in a compressed state and configured to bias the sampling slide in the distal direction, the sampling spring being held in the compressed state when the second latch arm is engaged with the second latch strike; a cannula retract spring interposed between, and connected to each of, the sampling slide and the cannula slide, the cannula retract spring configured to store mechanical energy in an extended state to bias the cannula slide in the proximal direction, the cannula retract spring being releasably held in the extended state when the first latch arm is engaged with the first latch strike and the second latch arm is engaged with the second latch strike; and a prime pierce spring interposed between the intermediate wall of the housing and the stylet mount end wall, the prime pierce spring configured to store mechanical energy when in a compressed state and configured to bias the carriage assembly as a whole in the distal direction, the prime pierce spring being held in the compressed state when the carriage latch arm is engaged with the carriage latch strike of the actuator mechanism.
1.9. The biopsy device of paragraph 1.8, the charge handle configured for sequential actuations to sequentially facilitate: a movement of the sampling slide and the cannula slide collectively as a unit in the proximal direction relative to the carriage slide to charge the sampling spring, a movement of the cannula slide individually in the distal direction away from the sampling slide to charge the cannula retract spring, and a movement of the carriage assembly as a whole in the proximal direction relative to the housing to charge the prime pierce spring.
1.10. The biopsy device of any preceding paragraph, further comprising:
an indexing mechanism movably coupled to the cannula mount end wall of the cannula slide, the cannula mount end wall having an indexing window, the indexing mechanism configured to selectively cover a portion of the indexing window; and
the charge handle having a charge handle latch arm configured to pass through the indexing window when the charge handle is moved to the retracted position, and when the indexing mechanism is positioned to cover the portion of the indexing window, a subsequent movement of the charge handle in the distal direction toward the home position causes the charge handle latch arm to engage the indexing mechanism to move the cannula slide in the distal direction away from the sampling slide to charge the cannula retract spring.
1.11. The biopsy device of any preceding paragraph, wherein the cannula retract spring is a pair of laterally spaced springs.
1.12. The biopsy device of any preceding paragraph, further comprising a biasing spring coupled to the housing and to the charge handle, the biasing spring configured to bias the charge handle in the distal direction to the home position.
1.13. The biopsy device of paragraph 1.12, wherein a force exerted by the biasing spring is greater than a force exerted by the cannula retract spring.
1.14. The biopsy device of paragraph 1.12 or paragraph 1.13, wherein the biasing spring is a pair of laterally spaced springs.
1.15. The biopsy device of any one of paragraphs 1.1 to 1.9, comprising: an indexing mechanism movably coupled to the cannula mount end wall of the cannula slide, the charge handle and the indexing mechanism in combination configured to selectively facilitate movement of the sampling slide and the cannula slide collectively as a unit in the proximal direction relative to the carriage slide to charge the sampling spring, to facilitate movement of the cannula slide individually in a distal direction relative to carriage slide to charge the cannula retract spring, and to facilitate movement of the carriage assembly as a whole in the proximal direction relative to the housing to charge the prime pierce spring.
1.16. The biopsy device of any one of paragraphs 1.1 to 1.9, comprising: the cannula mount end wall having an indexing window; the charge handle having a charge handle latch arm configured to pass through the indexing window; and an indexing mechanism having a cannula slide indexer and a sampling slide indexer, the cannula slide indexer being rotatably coupled to the cannula mount end wall of the cannula slide, the sampling slide indexer being slidably coupled to the cannula mount end wall of the cannula slide and configured to move in a first direction toward the longitudinal axis, the cannula slide indexer being operably engaged with the sampling slide indexer, sampling slide indexer being biased by a bias spring in the first direction, the sampling slide indexer having a window blocking plate configured to cover a portion of the indexing window when the sampling slide indexer is moved in the first direction; the cannula slide indexer being configured to be operably engaged by the first latch arm of the cannula slide to rotate the cannula slide indexer into contact with the sampling slide indexer to move the sampling slide indexer in a second direction opposite to the first direction such that the window blocking plate of the sampling slide indexer does not cover the portion of the indexing window, the sampling slide indexer being configured to be operably engaged by the second latch arm of the second latch arm of the sampling slide to move the sampling slide indexer in the second direction opposite to the first direction such that the window blocking plate of the sampling slide indexer does not cover the portion of the indexing window, wherein when the window blocking plate of the sampling slide indexer is positioned to cover the portion of the indexing window, the charge handle configured to be moved in a proximal stroke such that the charge handle latch arm passes through the indexing window and passes the window blocking plate of the sampling slide indexer, the charge handle configured such that in a return distal stroke of the charge handle in the distal direction toward the home position causes the charge handle latch arm to engage the window blocking plate to move the cannula slide in the distal direction away from the sampling slide to charge the cannula retract spring.
1.17. The biopsy device of paragraph 1.16, the sampling slide further including a slider wall and a latch arm deflection member, the second latch arm configured to extend in a distal direction from the slider wall, the second latch arm configured to releasably engage the second latch strike of the carriage latch cover member, the latch arm deflection member configured to engage the first latch arm of the cannula slide and deflect the first latch arm to engage with the cannula slide indexer of the indexing mechanism, the cannula slide indexer being rotated to allow movement of the sampling slide indexer in the first direction.
1.18. The biopsy device of any one of paragraphs 1.1 to 1.9, further comprising: an indexing mechanism movably coupled to the cannula mount end wall of the cannula slide, the cannula mount end wall having an indexing window, the indexing mechanism configured to selectively cover a portion of the indexing window; the charge handle having a charge handle latch arm that extends in the proximal direction; and a biasing spring coupled to the housing and to the charge handle, the biasing spring configured to bias the charge handle in the distal direction to the home position, the charge handle configured for sequential actuations, wherein: a first retraction of the charge handle moves the sampling slide and the cannula mount end wall that carries the cannula, in unison, by virtue of the first latch arm being engaged with the sampling slide, in the proximal direction to compress the sampling spring and to engage the second latch arm with the second latch strike to retain the sampling spring in the compressed state, the cannula being retracted to expose the side sample port of the stylet, the charge handle configured to return to the home position by force exerted by the biasing mechanism; a second retraction of the charge handle passes the charge handle latch arm through the indexing window, and during the return of the charge handle to the home position by force exerted by the biasing mechanism: the charge handle latch arm engages the indexing mechanism and moves the cannula slide in the distal direction away from the sampling slide which in turn extends the cannula retract spring to the extended state, the first latch arm releasably engages the first latch strike to retain the cannula retract spring in the extended state, and the indexing mechanism is sequenced to fully open the indexing window of the cannula slide to disengage the indexing mechanism from the charge handle latch arm, the cannula being positioned to close the side sample port of the stylet; and a third retraction of the charge handle moves the carriage assembly as a whole in the proximal direction to compress the prime pierce spring, the carriage latch arm configured to engage the carriage latch strike of the actuator mechanism to retain the prime pierce spring in the compressed state.
1.19. The biopsy device of paragraph 1.18, configured wherein: an actuation of the pierce button releases the carriage latch arm from the carriage latch strike, the prime pierce spring being released from the compressed state to exert a force to move the carriage assembly, including the stylet and the cannula in unison, in the distal direction; an actuation of the cannula retract button releases the first latch arm from the first latch strike, the cannula retract spring being released from the extended state to exert a force to move the cannula in the proximal direction and open the side sample port of the stylet; and an actuation of the sample acquisition button releases the second latch arm from the second latch strike, the sampling spring being released from the compressed state to exert a force to move the cannula in the distal direction to close the side sample port.
1.20. The biopsy device of any of the previous paragraphs, wherein the stylet has an open first end and a closed second end, the closed second end defining a distal piercing tip.
1.21. The biopsy device of any of the previous paragraphs, wherein the carriage slide further includes a carriage base, the stylet mount end wall and the carriage base being formed as a unitary carriage structure, the carriage base configured to define a U-shaped wall having a U-shaped cross-section that extends in the distal direction from the stylet mount end wall to define an open distal end and an open top, the carriage latch cover member configured to attach to the carriage base to cover the open top, the open distal end configured to slidably receive and longitudinally guide the sampling slide and the cannula slide.
1.22. A biopsy device, comprising: a housing having a longitudinal axis, the housing configured to define a housing chamber; an actuator mechanism having a cannula retract button, a sample acquisition button, and a carriage latch strike; a carriage assembly positioned in the housing chamber, the carriage assembly including a carriage slide having a carriage base and a stylet mount wall, the carriage assembly further including a sampling slide, a cannula slide and a carriage latch cover member, the cannula slide being longitudinally spaced from and movable relative to the stylet mount wall, the cannula slide having a first latch arm, the carriage latch cover member being fixedly attached to the carriage base, the carriage latch cover member having a first latch strike and a second latch strike, the first latch arm of the cannula slide configured to releasably engage the first latch strike of the carriage latch cover member; a stylet fixedly connected to stylet mount wall, the stylet configured to extend along the longitudinal axis, the stylet having a side sample port; a vacuum source carried by the carriage assembly, the vacuum source configured to selectively apply a vacuum to the side sample port of the stylet; a cannula fixedly connected to the cannula slide, the cannula being coaxial with the stylet, the cannula having a distal cutting edge; a sampling slide movably interposed between the stylet mount wall and the cannula slide, the sampling slide having a second latch arm and a latch arm deflection member, the second latch arm configured to releasably engage the second latch strike of the carriage latch cover member, the latch arm deflection member configured to engage the first latch arm of the cannula slide and deflect the first latch arm toward the carriage base; a sampling spring interposed between the stylet mount wall and the sampling slide, the sampling spring being held in the compressed state when the second latch arm is engaged with the second latch strike; a cannula retract spring interposed between, and connected to each of, the sampling slide and the cannula slide, the cannula retract spring being releasably held in an extended state to store mechanical energy when the first latch arm is engaged with the first latch strike and the second latch arm is engaged with the second latch strike; a cocking mechanism having a charge handle, a biasing spring, and an indexing mechanism, the charge handle slidably mounted to the housing and biased by the biasing spring in the distal direction to a home position, the charge handle configured to move between the home position and a retracted position, the indexing mechanism being movably coupled to the cannula slide, wherein: a first retraction of the charge handle moves the sampling slide and the cannula slide in unison in the proximal direction to compress the sampling spring, to engage the second latch arm with the second latch strike to retain the sampling spring in the compressed state, and to charge the vacuum source, the charge handle configured to return to the home position by force exerted by the biasing spring and to sequence the indexing mechanism to a next selection position; and a second retraction of the charge handle moves the charge handle to the retracted position, and during a return of the charge handle to the home position by force exerted by the biasing spring, the charge handle engages the indexing mechanism movably coupled to the cannula slide and the cannula slide is moved in the distal direction which in turn extends the cannula retract spring to the extended state and the first latch arm releasably engages the first latch strike to retain the cannula retract spring in the extended state, the cannula being positioned to close the side sample port of the stylet; and the actuator mechanism configured such that: an actuation of the cannula retract button releases the first latch arm from the first latch strike to in turn release the cannula retract spring to exert a retraction force to move the cannula in the proximal direction to open the side sample port of the stylet and to simultaneously apply the vacuum to the side sample port; and an actuation of the sample acquisition button releases the second latch arm from the second latch strike to release the sampling spring to exert a force to move the cannula in the distal direction to close the side sample port.
1.23. The biopsy device of paragraph 1.22, the carriage assembly configured to move as a whole longitudinally relative to the housing, and further comprising: the actuator mechanism having a pierce button and a carriage latch strike; the carriage latch cover member having a carriage latch arm, the carriage latch arm configured to releasably engage the carriage latch strike; an intermediate wall interposed in the housing between the proximal end wall and the distal end portion; a prime pierce spring interposed between the intermediate wall and the stylet mount wall, the prime pierce spring configured to store mechanical energy when in a compressed state and configured to bias the carriage assembly as a whole in the distal direction, the prime pierce spring being held in the compressed state when the carriage latch arm is engaged with the carriage latch strike of the actuator mechanism, wherein: a third retraction of the charge handle prior to operation of the actuator mechanism moves the carriage assembly as a whole in the proximal direction to compress the prime pierce spring, the carriage latch arm configured to engage the carriage latch strike of the actuator mechanism to retain the prime pierce spring in the compressed state; and, prior to actuation of the cannula retract button and the sample acquisition button, an actuation of the pierce button releases the carriage latch arm from the carriage latch strike, the prime pierce spring being released from the compressed state to exert a force to move the carriage assembly, the stylet, and the cannula in unison in the distal direction.
1.24. A method of operating a biopsy device, comprising: providing a housing having an actuator mechanism; providing a carriage assembly movable relative to the housing, the carriage assembly including a stylet mount wall that mounts a stylet, a cannula slide that mounts a cutting cannula, a sampling slide movably interposed between the stylet mount wall and the cannula slide, and a carriage latch cover member, the cannula slide being longitudinally spaced from and movable relative to the stylet mount wall; providing a charge handle to sequentially move at least one of the cannula slide, the sampling slide, and the carriage assembly as a whole, the charge handle having a home position and a retracted position; providing a sampling spring interposed between the stylet mount wall and the sampling slide; providing a cannula retract spring interposed between, and connected to each of, the sampling slide and the cannula slide; providing a prime pierce spring interposed between the carriage assembly and a portion of the housing; providing a vacuum system to selectively supply a vacuum to a sample port of the stylet; retracting the charge handle a first time to move the cannula slide and the sampling slide in unison in a proximal direction to charge a sampling spring, to latch the sampling slide with the carriage latch cover member to retain the sampling spring in a charged state, and to charge the vacuum system with a vacuum; returning the charge handle a first time to the home position; retracting the charge handle a second time to the retracted position; returning the charge handle a second time to the home position to move the cannula slide in a distal direction relative to the sampling slide to charge the cannula retract spring and to latch the cannula slide with the carriage latch cover member to retain the cannula retract spring in a charged state; and retracting the charge handle a third time to move the carriage assembly as a whole in the proximal direction to charge the prime pierce spring and to latch the carriage latch cover member with the actuator mechanism to retain the prime pierce spring in a charged state.
1.25. The method of paragraph 24, the actuator mechanism having a cannula retract button, a sample acquisition button, and a pierce button, the method further comprising: actuating the pierce button to unlatch the carriage latch cover member from the actuator mechanism to release the prime pierce spring from the charged state to propel the carriage assembly in the distal direction to facilitate a piercing of tissue with the stylet and the cannula; actuating the cannula retract button to unlatch the cannula slide from the carriage latch cover member to release the cannula retract spring from the charged state and move the cannula in the proximal direction to open a side sample port of the stylet and to simultaneously apply the vacuum to the side sample port to draw tissue into the side sample port; and actuating the sample acquisition button to unlatch the sampling slide from the carriage latch cover member to release the sampling spring from the charged state to propel the cannula in the distal direction to close the side sample port to sever the tissue drawn by vacuum into the side sample port.
While this invention has been described with respect to at least one embodiment, those skilled in the art will recognize that the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 15/565,967 filed Oct. 12, 2017, that issued as U.S. Pat. No. 10,463,350 on Nov. 5, 2019, which is a U.S. national phase of International Application No. PCT/US2015/028902, filed May 1, 2015.
Number | Name | Date | Kind |
---|---|---|---|
737293 | Summerfeldt | Aug 1903 | A |
1585934 | Muir | May 1926 | A |
1663761 | Johnson | Mar 1928 | A |
2953934 | Sundt | Sep 1960 | A |
3019733 | Braid | Feb 1962 | A |
3224434 | Molomut et al. | Dec 1965 | A |
3289669 | Dwyer et al. | Dec 1966 | A |
3477423 | Griffith | Nov 1969 | A |
3512519 | Hall | May 1970 | A |
3561429 | Jewett et al. | Feb 1971 | A |
3565074 | Foti | Feb 1971 | A |
3606878 | Kellogg | Sep 1971 | A |
3727602 | Hyden et al. | Apr 1973 | A |
3732858 | Banko | May 1973 | A |
3785380 | Brumfield | Jan 1974 | A |
3800783 | Jamshidi | Apr 1974 | A |
3844272 | Banko | Oct 1974 | A |
3882849 | Jamshidi | May 1975 | A |
3889682 | Denis et al. | Jun 1975 | A |
3916948 | Benjamin | Nov 1975 | A |
3996935 | Banko | Dec 1976 | A |
4275730 | Hussein | Jun 1981 | A |
4282884 | Boebel | Aug 1981 | A |
4306570 | Matthews | Dec 1981 | A |
4354092 | Manabe et al. | Oct 1982 | A |
4393879 | Milgrom | Jul 1983 | A |
4445509 | Auth | May 1984 | A |
4490137 | Moukheibir | Dec 1984 | A |
4549554 | Markham | Oct 1985 | A |
4577629 | Martinez | Mar 1986 | A |
4589414 | Yoshida et al. | May 1986 | A |
4603694 | Wheeler | Aug 1986 | A |
4605011 | Naslund | Aug 1986 | A |
4616215 | Maddalena | Oct 1986 | A |
4617430 | Bryant | Oct 1986 | A |
4620539 | Andrews et al. | Nov 1986 | A |
4643197 | Greene et al. | Feb 1987 | A |
4645153 | Granzow et al. | Feb 1987 | A |
4678459 | Onik et al. | Jul 1987 | A |
4696298 | Higgins et al. | Sep 1987 | A |
4702260 | Wang | Oct 1987 | A |
4706687 | Rogers | Nov 1987 | A |
4776346 | Beraha et al. | Oct 1988 | A |
4792327 | Swartz | Dec 1988 | A |
4832044 | Garg | May 1989 | A |
4844064 | Thimsen et al. | Jul 1989 | A |
4844087 | Garg | Jul 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4881551 | Taylor | Nov 1989 | A |
4893635 | de Groot et al. | Jan 1990 | A |
4907598 | Bauer | Mar 1990 | A |
4907599 | Taylor | Mar 1990 | A |
4924878 | Nottke | May 1990 | A |
RE33258 | Onik et al. | Jul 1990 | E |
4940061 | Terwilliger et al. | Jul 1990 | A |
4952817 | Bolan et al. | Aug 1990 | A |
4958625 | Bates et al. | Sep 1990 | A |
4967762 | DeVries | Nov 1990 | A |
4986278 | Ravid et al. | Jan 1991 | A |
4986279 | O'Neill | Jan 1991 | A |
4986807 | Farr | Jan 1991 | A |
4989614 | Dejter, Jr. et al. | Feb 1991 | A |
5025797 | Baran | Jun 1991 | A |
5048538 | Terwilliger et al. | Sep 1991 | A |
5057822 | Hoffman | Oct 1991 | A |
5078603 | Cohen | Jan 1992 | A |
5121751 | Panalletta | Jun 1992 | A |
5125413 | Baran | Jun 1992 | A |
5138245 | Mattinger et al. | Aug 1992 | A |
5146921 | Terwilliger et al. | Sep 1992 | A |
5156160 | Bennett | Oct 1992 | A |
5158528 | Walker et al. | Oct 1992 | A |
5172702 | Leigh et al. | Dec 1992 | A |
5176628 | Charles et al. | Jan 1993 | A |
D333183 | Cerola | Feb 1993 | S |
5183052 | Terwilliger | Feb 1993 | A |
5197484 | Kornberg et al. | Mar 1993 | A |
5211627 | William | May 1993 | A |
5223012 | Best et al. | Jun 1993 | A |
D337821 | Tan | Jul 1993 | S |
5225763 | Krohn et al. | Jul 1993 | A |
5234000 | Hakky et al. | Aug 1993 | A |
5236334 | Bennett | Aug 1993 | A |
5242404 | Conley et al. | Sep 1993 | A |
5249583 | Mallaby | Oct 1993 | A |
5254117 | Rigby et al. | Oct 1993 | A |
5282476 | Terwilliger | Feb 1994 | A |
5282477 | Bauer | Feb 1994 | A |
5290253 | Kira | Mar 1994 | A |
5305762 | Acorn et al. | Apr 1994 | A |
5324306 | Makower et al. | Jun 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5335671 | Clement | Aug 1994 | A |
5335672 | Bennett | Aug 1994 | A |
5368029 | Holcombe et al. | Nov 1994 | A |
5368045 | Clement et al. | Nov 1994 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5397462 | Higashijima et al. | Mar 1995 | A |
5400798 | Baran | Mar 1995 | A |
5439474 | Li | Aug 1995 | A |
5458112 | Weaver | Oct 1995 | A |
5469860 | De Santis | Nov 1995 | A |
5471994 | Guirguis | Dec 1995 | A |
5479486 | Saji | Dec 1995 | A |
5485917 | Early | Jan 1996 | A |
5492130 | Chiou | Feb 1996 | A |
5511556 | DeSantis | Apr 1996 | A |
5526822 | Burbank et al. | Jun 1996 | A |
5535755 | Heske | Jul 1996 | A |
5546957 | Heske | Aug 1996 | A |
5554151 | Hinchliffe | Sep 1996 | A |
5560373 | De Santis | Oct 1996 | A |
5564436 | Hakky et al. | Oct 1996 | A |
5569284 | Young et al. | Oct 1996 | A |
5575293 | Miller et al. | Nov 1996 | A |
5591170 | Spievack et al. | Jan 1997 | A |
5601583 | Donahue et al. | Feb 1997 | A |
5601585 | Banik et al. | Feb 1997 | A |
5602449 | Krause et al. | Feb 1997 | A |
5612738 | Kim | Mar 1997 | A |
5617874 | Baran | Apr 1997 | A |
5649547 | Ritchart et al. | Jul 1997 | A |
5655542 | Weilandt | Aug 1997 | A |
5655657 | Roshdy | Aug 1997 | A |
5665101 | Becker et al. | Sep 1997 | A |
5669394 | Bergey et al. | Sep 1997 | A |
5699909 | Foster | Dec 1997 | A |
5700265 | Romano | Dec 1997 | A |
5709697 | Ratcliff et al. | Jan 1998 | A |
5720760 | Becker et al. | Feb 1998 | A |
5735264 | Siczek et al. | Apr 1998 | A |
5752923 | Terwilliger | May 1998 | A |
5755714 | Murphy-Chutorian | May 1998 | A |
5766135 | Terwilliger | Jun 1998 | A |
5769086 | Ritchart et al. | Jun 1998 | A |
5769795 | Terwilliger | Jun 1998 | A |
5775333 | Burbank et al. | Jul 1998 | A |
5779649 | Herbert | Jul 1998 | A |
5788651 | Weilandt | Aug 1998 | A |
5792167 | Kablik et al. | Aug 1998 | A |
5807282 | Fowler | Sep 1998 | A |
5817033 | DeSantis et al. | Oct 1998 | A |
5817034 | Milliman et al. | Oct 1998 | A |
5823970 | Terwilliger | Oct 1998 | A |
5827305 | Gordon | Oct 1998 | A |
5830219 | Bird et al. | Nov 1998 | A |
D403405 | Terwilliger | Dec 1998 | S |
5857982 | Milliman et al. | Jan 1999 | A |
5871699 | Ruggeri | Feb 1999 | A |
5879365 | Whitfield et al. | Mar 1999 | A |
5908233 | Heskett et al. | Jun 1999 | A |
5913857 | Ritchart et al. | Jun 1999 | A |
5916198 | Dillow | Jun 1999 | A |
5916229 | Evans | Jun 1999 | A |
5928164 | Burbank et al. | Jul 1999 | A |
5944673 | Gregoire et al. | Aug 1999 | A |
5951490 | Fowler | Sep 1999 | A |
5951575 | Bolduc et al. | Sep 1999 | A |
5964716 | Gregoire et al. | Oct 1999 | A |
5971939 | DeSantis et al. | Oct 1999 | A |
5976164 | Bencini et al. | Nov 1999 | A |
5980469 | Burbank et al. | Nov 1999 | A |
5980545 | Pacala et al. | Nov 1999 | A |
6007495 | Matula | Dec 1999 | A |
6007497 | Huitema | Dec 1999 | A |
6007556 | Kablik et al. | Dec 1999 | A |
6017316 | Ritchart et al. | Jan 2000 | A |
6018227 | Kumar et al. | Jan 2000 | A |
6019733 | Farascioni | Feb 2000 | A |
6022324 | Skinner | Feb 2000 | A |
6022325 | Siczek et al. | Feb 2000 | A |
6027458 | Janssens | Feb 2000 | A |
6032673 | Savage et al. | Mar 2000 | A |
6036657 | Milliman et al. | Mar 2000 | A |
6050955 | Bryan et al. | Apr 2000 | A |
6055870 | Jaeger | May 2000 | A |
6071247 | Kennedy | Jun 2000 | A |
6077230 | Gregoire et al. | Jun 2000 | A |
6083176 | Terwilliger | Jul 2000 | A |
6083237 | Huitema et al. | Jul 2000 | A |
6086544 | Hibner et al. | Jul 2000 | A |
6106484 | Terwilliger | Aug 2000 | A |
6110129 | Terwilliger | Aug 2000 | A |
6120462 | Hibner et al. | Sep 2000 | A |
6123957 | Jernberg | Sep 2000 | A |
6126617 | Weilandt et al. | Oct 2000 | A |
6142955 | Farascioni et al. | Nov 2000 | A |
6162187 | Buzzard et al. | Dec 2000 | A |
6165136 | Nishtala | Dec 2000 | A |
6193673 | Viola et al. | Feb 2001 | B1 |
6196978 | Weilandt et al. | Mar 2001 | B1 |
6213957 | Milliman et al. | Apr 2001 | B1 |
6220248 | Voegele et al. | Apr 2001 | B1 |
6231522 | Voegele et al. | May 2001 | B1 |
6241687 | Voegele et al. | Jun 2001 | B1 |
6267759 | Quick | Jul 2001 | B1 |
6273861 | Bates et al. | Aug 2001 | B1 |
6273862 | Privitera et al. | Aug 2001 | B1 |
6280398 | Ritchart et al. | Aug 2001 | B1 |
6283925 | Terwilliger | Sep 2001 | B1 |
6322523 | Weilandt et al. | Nov 2001 | B2 |
6328701 | Terwilliger | Dec 2001 | B1 |
6331166 | Burbank et al. | Dec 2001 | B1 |
6358217 | Bourassa | Mar 2002 | B1 |
6402701 | Kaplan et al. | Jun 2002 | B1 |
6419641 | Mark et al. | Jul 2002 | B1 |
6428486 | Ritchart et al. | Aug 2002 | B2 |
6428487 | Burdorff et al. | Aug 2002 | B1 |
6432064 | Hibner et al. | Aug 2002 | B1 |
6432065 | Burdorff et al. | Aug 2002 | B1 |
6434507 | Clayton et al. | Aug 2002 | B1 |
6436054 | Viola et al. | Aug 2002 | B1 |
6461302 | Thompson | Oct 2002 | B1 |
6471659 | Eggers et al. | Oct 2002 | B2 |
6482158 | Mault | Nov 2002 | B2 |
6485436 | Truckai et al. | Nov 2002 | B1 |
6488636 | Bryan et al. | Dec 2002 | B2 |
6494844 | Van Bladel et al. | Dec 2002 | B1 |
6527731 | Weiss et al. | Mar 2003 | B2 |
6527736 | Attinger et al. | Mar 2003 | B1 |
6540694 | Van Bladel et al. | Apr 2003 | B1 |
6540761 | Houser | Apr 2003 | B2 |
6544194 | Kortenbach et al. | Apr 2003 | B1 |
6551255 | Van Bladel et al. | Apr 2003 | B2 |
6554779 | Viola et al. | Apr 2003 | B2 |
6585664 | Burdorff et al. | Jul 2003 | B2 |
6585694 | Smith et al. | Jul 2003 | B1 |
6586585 | Bastian | Jul 2003 | B1 |
6592530 | Farhadi | Jul 2003 | B1 |
D478987 | Groenke et al. | Aug 2003 | S |
6620111 | Stephens et al. | Sep 2003 | B2 |
6626848 | Neuenfeldt | Sep 2003 | B2 |
6626849 | Huitema et al. | Sep 2003 | B2 |
6632182 | Treat | Oct 2003 | B1 |
6638235 | Miller et al. | Oct 2003 | B2 |
6656133 | Voegele et al. | Dec 2003 | B2 |
6659105 | Burbank et al. | Dec 2003 | B2 |
6659338 | Dittmann et al. | Dec 2003 | B1 |
6683439 | Takano et al. | Jan 2004 | B2 |
6689071 | Burbank et al. | Feb 2004 | B2 |
6689072 | Kaplan et al. | Feb 2004 | B2 |
6695786 | Wang et al. | Feb 2004 | B2 |
6695791 | Gonzalez | Feb 2004 | B2 |
6702832 | Ross et al. | Mar 2004 | B2 |
6712773 | Viola | Mar 2004 | B1 |
6712774 | Voegele et al. | Mar 2004 | B2 |
6719691 | Kritzman et al. | Apr 2004 | B2 |
6752768 | Burdorff et al. | Jun 2004 | B2 |
6753671 | Harvey | Jun 2004 | B1 |
6755802 | Bell | Jun 2004 | B2 |
6758824 | Miller et al. | Jul 2004 | B1 |
6758848 | Burbank et al. | Jul 2004 | B2 |
6764495 | Lee et al. | Jul 2004 | B2 |
6808505 | Kadan | Oct 2004 | B2 |
6832990 | Kortenbach et al. | Dec 2004 | B2 |
6840950 | Stanford et al. | Jan 2005 | B2 |
6849080 | Lee et al. | Feb 2005 | B2 |
6850159 | Mudge | Feb 2005 | B1 |
6860860 | Viola | Mar 2005 | B2 |
6875183 | Cervi | Apr 2005 | B2 |
6887210 | Quay | May 2005 | B2 |
6908440 | Fisher | Jun 2005 | B2 |
D508458 | Solland et al. | Aug 2005 | S |
6926676 | Turturro et al. | Aug 2005 | B2 |
6969358 | Baltschun et al. | Nov 2005 | B2 |
6984213 | Horner et al. | Jan 2006 | B2 |
7004174 | Eggers et al. | Feb 2006 | B2 |
7010332 | Irvin et al. | Mar 2006 | B1 |
7025732 | Thompson et al. | Apr 2006 | B2 |
7066893 | Hibner et al. | Jun 2006 | B2 |
D525583 | Vu | Jul 2006 | S |
7108660 | Stephens et al. | Sep 2006 | B2 |
7131951 | Angel | Nov 2006 | B2 |
7153274 | Stephens et al. | Dec 2006 | B2 |
7156814 | Williamson, IV et al. | Jan 2007 | B1 |
7156815 | Leigh et al. | Jan 2007 | B2 |
7169114 | Krause | Jan 2007 | B2 |
7182754 | Brigham et al. | Feb 2007 | B2 |
7189206 | Quick et al. | Mar 2007 | B2 |
7189207 | Viola | Mar 2007 | B2 |
7219867 | Kalis et al. | May 2007 | B2 |
7226424 | Ritchart et al. | Jun 2007 | B2 |
7229417 | Foerster et al. | Jun 2007 | B2 |
7244236 | Merkle | Jul 2007 | B2 |
7252641 | Thompson et al. | Aug 2007 | B2 |
7276032 | Hibner | Oct 2007 | B2 |
7311673 | Mueller, Jr. et al. | Dec 2007 | B2 |
7328794 | Lubs et al. | Feb 2008 | B2 |
7347828 | Francese et al. | Mar 2008 | B2 |
7347829 | Mark et al. | Mar 2008 | B2 |
7374544 | Freeman et al. | May 2008 | B2 |
7390306 | Mark | Jun 2008 | B2 |
7397654 | Mori | Jul 2008 | B2 |
7402140 | Spero et al. | Jul 2008 | B2 |
7405536 | Watts | Jul 2008 | B2 |
7407054 | Seiler et al. | Aug 2008 | B2 |
7419472 | Hibner et al. | Sep 2008 | B2 |
7432813 | Postma | Oct 2008 | B2 |
7442171 | Stephens et al. | Oct 2008 | B2 |
7445604 | Cash | Nov 2008 | B2 |
7452367 | Rassman et al. | Nov 2008 | B2 |
7458940 | Miller | Dec 2008 | B2 |
7464040 | Joao | Dec 2008 | B2 |
7473232 | Teague | Jan 2009 | B2 |
7481775 | Weikel, Jr. et al. | Jan 2009 | B2 |
7490048 | Joao | Feb 2009 | B2 |
7491177 | Hibner | Feb 2009 | B2 |
7494473 | Eggers et al. | Feb 2009 | B2 |
7497833 | Miller | Mar 2009 | B2 |
7510534 | Burdorff et al. | Mar 2009 | B2 |
7510563 | Cesarini et al. | Mar 2009 | B2 |
7513877 | Viola | Apr 2009 | B2 |
7517321 | McCullough et al. | Apr 2009 | B2 |
7517322 | Weikel, Jr. et al. | Apr 2009 | B2 |
7549978 | Carlson et al. | Jun 2009 | B2 |
7556622 | Mark et al. | Jul 2009 | B2 |
7557536 | Lobert et al. | Jul 2009 | B2 |
7573212 | Avis | Aug 2009 | B2 |
7575557 | Morton et al. | Aug 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7591790 | Pflueger | Sep 2009 | B2 |
7608048 | Goldenberg | Oct 2009 | B2 |
7611475 | Spero et al. | Nov 2009 | B2 |
7645240 | Thompson et al. | Jan 2010 | B2 |
7648466 | Stephens et al. | Jan 2010 | B2 |
7651505 | Lubock et al. | Jan 2010 | B2 |
7658718 | Miller et al. | Feb 2010 | B2 |
7662109 | Hibner | Feb 2010 | B2 |
7666200 | Heisler | Feb 2010 | B2 |
7670299 | Beckman et al. | Mar 2010 | B2 |
7693567 | Tsonton et al. | Apr 2010 | B2 |
7708721 | Khaw | May 2010 | B2 |
7717861 | Weikel et al. | May 2010 | B2 |
7727164 | Cicenas et al. | Jun 2010 | B2 |
7740594 | Hibner | Jun 2010 | B2 |
7740596 | Hibner | Jun 2010 | B2 |
7740597 | Cicenas et al. | Jun 2010 | B2 |
7758515 | Hibner | Jul 2010 | B2 |
7762961 | Heske et al. | Jul 2010 | B2 |
7785535 | Chen et al. | Aug 2010 | B2 |
7794411 | Ritchart et al. | Sep 2010 | B2 |
7799116 | Schwindt | Sep 2010 | B2 |
7806834 | Beckman et al. | Oct 2010 | B2 |
7819819 | Quick et al. | Oct 2010 | B2 |
7828746 | Teague | Nov 2010 | B2 |
7828747 | Heske et al. | Nov 2010 | B2 |
7828748 | Hibner | Nov 2010 | B2 |
7837630 | Nicoson et al. | Nov 2010 | B2 |
7837632 | Stephens et al. | Nov 2010 | B2 |
7841991 | Douglas et al. | Nov 2010 | B2 |
7846109 | Parihar et al. | Dec 2010 | B2 |
7847515 | Schroeck et al. | Dec 2010 | B2 |
7854706 | Hibner | Dec 2010 | B2 |
7854707 | Hibner et al. | Dec 2010 | B2 |
7860556 | Saadat | Dec 2010 | B2 |
7862517 | Tsonton et al. | Jan 2011 | B2 |
7862518 | Parihar | Jan 2011 | B2 |
7867173 | Hibner et al. | Jan 2011 | B2 |
7871384 | Thompson et al. | Jan 2011 | B2 |
7883476 | Miller et al. | Feb 2011 | B2 |
7883494 | Martin | Feb 2011 | B2 |
7906076 | Fischer | Mar 2011 | B2 |
7914462 | Hutchins et al. | Mar 2011 | B2 |
7914464 | Burdorff et al. | Mar 2011 | B2 |
7959580 | Mccullough et al. | Jun 2011 | B2 |
7963928 | Krause | Jun 2011 | B2 |
7974681 | Wallace et al. | Jul 2011 | B2 |
7987766 | Price | Aug 2011 | B1 |
7988642 | Hardin et al. | Aug 2011 | B2 |
8002713 | Heske et al. | Aug 2011 | B2 |
8012102 | McCullough et al. | Sep 2011 | B2 |
8013572 | Rodgers | Sep 2011 | B2 |
8016772 | Heske et al. | Sep 2011 | B2 |
8016844 | Privitera et al. | Sep 2011 | B2 |
8016855 | Whitman et al. | Sep 2011 | B2 |
8034003 | Pesce et al. | Oct 2011 | B2 |
8042689 | Fröjd et al. | Oct 2011 | B2 |
8048003 | Nicoson et al. | Nov 2011 | B2 |
8052614 | Heske et al. | Nov 2011 | B2 |
8052615 | Reuber et al. | Nov 2011 | B2 |
8057402 | Hibner et al. | Nov 2011 | B2 |
8073008 | Mehta et al. | Dec 2011 | B2 |
8075495 | Andreyko et al. | Dec 2011 | B2 |
8075496 | Deck et al. | Dec 2011 | B2 |
8075568 | Selis | Dec 2011 | B2 |
8083671 | Boulais et al. | Dec 2011 | B2 |
8083687 | Parihar | Dec 2011 | B2 |
8109885 | Heske et al. | Feb 2012 | B2 |
8109886 | Miller et al. | Feb 2012 | B2 |
8118755 | Hibner et al. | Feb 2012 | B2 |
8128577 | Viola | Mar 2012 | B2 |
8129955 | White et al. | Mar 2012 | B2 |
8152738 | Li et al. | Apr 2012 | B2 |
8157744 | Jorgensen et al. | Apr 2012 | B2 |
8162850 | Parihar et al. | Apr 2012 | B2 |
8162851 | Heske et al. | Apr 2012 | B2 |
D659828 | Horning et al. | May 2012 | S |
8167818 | Miller | May 2012 | B2 |
8172771 | Miller et al. | May 2012 | B2 |
8172773 | Heske et al. | May 2012 | B2 |
8177728 | Hibner et al. | May 2012 | B2 |
8177729 | Hibner et al. | May 2012 | B2 |
8183825 | Sa | May 2012 | B2 |
8187204 | Miller et al. | May 2012 | B2 |
8187294 | Miller et al. | May 2012 | B2 |
8190238 | Moll et al. | May 2012 | B2 |
8192370 | Miller | Jun 2012 | B2 |
8202229 | Miller et al. | Jun 2012 | B2 |
8206316 | Hibner et al. | Jun 2012 | B2 |
8206409 | Privitera et al. | Jun 2012 | B2 |
8241331 | Amin | Aug 2012 | B2 |
8251916 | Speeg et al. | Aug 2012 | B2 |
8251917 | Almazan | Aug 2012 | B2 |
8261847 | Ford et al. | Sep 2012 | B2 |
8262585 | Thompson et al. | Sep 2012 | B2 |
8262586 | Anderson et al. | Sep 2012 | B2 |
8267868 | Taylor et al. | Sep 2012 | B2 |
8277393 | Miller et al. | Oct 2012 | B2 |
8282573 | Shabaz et al. | Oct 2012 | B2 |
8282574 | Coonahan et al. | Oct 2012 | B2 |
8283890 | Videbaek | Oct 2012 | B2 |
8287465 | Hardin et al. | Oct 2012 | B2 |
8287466 | Weikel, Jr. et al. | Oct 2012 | B2 |
8313444 | Thompson et al. | Nov 2012 | B2 |
8317725 | Quick et al. | Nov 2012 | B2 |
8343069 | Uchiyama et al. | Jan 2013 | B2 |
8357103 | Mark et al. | Jan 2013 | B2 |
8366635 | Parihar et al. | Feb 2013 | B2 |
8366636 | Videbaek | Feb 2013 | B2 |
8430824 | Videbaek et al. | Apr 2013 | B2 |
8430825 | Mark | Apr 2013 | B2 |
8430827 | Nicoson et al. | Apr 2013 | B2 |
8480595 | Speeg et al. | Jul 2013 | B2 |
8485987 | Videbaek et al. | Jul 2013 | B2 |
8485989 | Videbaek | Jul 2013 | B2 |
8491496 | Hibner | Jul 2013 | B2 |
8506504 | Field et al. | Aug 2013 | B2 |
8529468 | Hoffa et al. | Sep 2013 | B2 |
8529593 | Berberich | Sep 2013 | B2 |
8540646 | Mendez-Coll | Sep 2013 | B2 |
8574167 | Smith et al. | Nov 2013 | B2 |
8591435 | Ritchart et al. | Nov 2013 | B2 |
8594339 | Dufresne et al. | Nov 2013 | B2 |
8597205 | Seiger et al. | Dec 2013 | B2 |
8597206 | Videback | Dec 2013 | B2 |
8600299 | Randall et al. | Dec 2013 | B2 |
8672860 | Moore et al. | Mar 2014 | B2 |
8690793 | Ranpura et al. | Apr 2014 | B2 |
8696650 | Quick et al. | Apr 2014 | B2 |
8702621 | Mccullough et al. | Apr 2014 | B2 |
8702622 | McCullough et al. | Apr 2014 | B2 |
8702623 | Parihar et al. | Apr 2014 | B2 |
8708928 | Videbaek | Apr 2014 | B2 |
8708929 | Videbaek | Apr 2014 | B2 |
8708930 | Videbaek | Apr 2014 | B2 |
8721563 | Taylor et al. | May 2014 | B2 |
8728003 | Taylor et al. | May 2014 | B2 |
8728004 | Heske et al. | May 2014 | B2 |
8764664 | Callahan et al. | Jul 2014 | B2 |
8771200 | Thompson et al. | Jul 2014 | B2 |
8795195 | Daw et al. | Aug 2014 | B2 |
8808197 | Videbaek et al. | Aug 2014 | B2 |
8858463 | Seiger et al. | Oct 2014 | B2 |
8864680 | VidebæK et al. | Oct 2014 | B2 |
8926527 | Jørgensen et al. | Jan 2015 | B2 |
8932233 | Haberstich et al. | Jan 2015 | B2 |
8951208 | Almazan | Feb 2015 | B2 |
8951209 | Heske et al. | Feb 2015 | B2 |
8956306 | Hibner | Feb 2015 | B2 |
8961430 | Coonahan et al. | Feb 2015 | B2 |
8992440 | Reuber et al. | Mar 2015 | B2 |
9023292 | Rostaing et al. | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9072502 | Heske et al. | Jul 2015 | B2 |
9095326 | Ritchie et al. | Aug 2015 | B2 |
9161743 | Mccullough et al. | Oct 2015 | B2 |
9162884 | Hoon et al. | Oct 2015 | B2 |
9173641 | Chudzik et al. | Nov 2015 | B2 |
9220573 | Kendrick et al. | Dec 2015 | B2 |
9282949 | Videbaek | Mar 2016 | B2 |
9332972 | Boutaghou et al. | May 2016 | B2 |
9345457 | Speeg et al. | May 2016 | B2 |
9345458 | Videbaek et al. | May 2016 | B2 |
9421002 | Heske et al. | Aug 2016 | B2 |
9439631 | Heske et al. | Sep 2016 | B2 |
9439632 | Almazan | Sep 2016 | B2 |
9445790 | Zinn et al. | Sep 2016 | B2 |
9451968 | Miller et al. | Sep 2016 | B2 |
9456809 | Jorgensen et al. | Oct 2016 | B2 |
9566045 | Videbaek et al. | Feb 2017 | B2 |
9638770 | Dietz et al. | May 2017 | B2 |
9655599 | Chudzik et al. | May 2017 | B2 |
20010007925 | Ritchart et al. | Jul 2001 | A1 |
20010012919 | Terwilliger | Aug 2001 | A1 |
20010034530 | Malackowski et al. | Oct 2001 | A1 |
20010044595 | Reydel et al. | Nov 2001 | A1 |
20010047183 | Privitera et al. | Nov 2001 | A1 |
20020000403 | Tanaka et al. | Jan 2002 | A1 |
20020067151 | Tanishita | Jun 2002 | A1 |
20020068878 | Jasonni et al. | Jun 2002 | A1 |
20020107043 | Adamson et al. | Aug 2002 | A1 |
20020120212 | Ritchart et al. | Aug 2002 | A1 |
20030093103 | Malackowski et al. | May 2003 | A1 |
20030163142 | Paltieli et al. | Aug 2003 | A1 |
20040030367 | Yamaki et al. | Feb 2004 | A1 |
20040092992 | Adams et al. | May 2004 | A1 |
20040158172 | Hancock | Aug 2004 | A1 |
20040162505 | Kaplan et al. | Aug 2004 | A1 |
20040220495 | Cahir et al. | Nov 2004 | A1 |
20040230188 | Cioanta et al. | Nov 2004 | A1 |
20050004492 | Burbank et al. | Jan 2005 | A1 |
20050004559 | Quick et al. | Jan 2005 | A1 |
20050010131 | Burbank et al. | Jan 2005 | A1 |
20050020909 | Moctezuma de la Barrera et al. | Jan 2005 | A1 |
20050049521 | Miller et al. | Mar 2005 | A1 |
20050101879 | Shidham et al. | May 2005 | A1 |
20050113715 | Schwindt et al. | May 2005 | A1 |
20050113716 | Mueller, Jr. et al. | May 2005 | A1 |
20050124914 | Dicarlo et al. | Jun 2005 | A1 |
20050177117 | Crocker et al. | Aug 2005 | A1 |
20050193451 | Quistgaard et al. | Sep 2005 | A1 |
20050209530 | Pflueger | Sep 2005 | A1 |
20050275378 | Canino et al. | Dec 2005 | A1 |
20050288605 | Pellegrino et al. | Dec 2005 | A1 |
20060030784 | Miller et al. | Feb 2006 | A1 |
20060074344 | Hibner | Apr 2006 | A1 |
20060074345 | Hibner | Apr 2006 | A1 |
20060116603 | Shibazaki et al. | Jun 2006 | A1 |
20060122535 | Daum | Jun 2006 | A1 |
20060178666 | Cosman et al. | Aug 2006 | A1 |
20060184063 | Miller | Aug 2006 | A1 |
20060241515 | Jones et al. | Oct 2006 | A1 |
20070016101 | Feldman et al. | Jan 2007 | A1 |
20070055173 | DeLonzor et al. | Mar 2007 | A1 |
20070090788 | Hansford et al. | Apr 2007 | A1 |
20070106176 | Mark et al. | May 2007 | A1 |
20070161925 | Quick et al. | Jul 2007 | A1 |
20070167943 | Janssen et al. | Jul 2007 | A1 |
20070208272 | Voegele | Sep 2007 | A1 |
20070213590 | Squicciarini | Sep 2007 | A1 |
20070213632 | Okazaki et al. | Sep 2007 | A1 |
20070270710 | Frass et al. | Nov 2007 | A1 |
20070287933 | Phan et al. | Dec 2007 | A1 |
20070293788 | Entrekin et al. | Dec 2007 | A1 |
20080004545 | Garrison | Jan 2008 | A1 |
20080007217 | Riley | Jan 2008 | A1 |
20080030170 | Dacquay et al. | Feb 2008 | A1 |
20080064925 | Gill et al. | Mar 2008 | A1 |
20080103411 | Van Bladel et al. | May 2008 | A1 |
20080125634 | Ryan et al. | May 2008 | A1 |
20080146965 | Privitera et al. | Jun 2008 | A1 |
20080161720 | Nicoson et al. | Jul 2008 | A1 |
20080208194 | Bickenbach | Aug 2008 | A1 |
20080221443 | Ritchie et al. | Sep 2008 | A1 |
20080221444 | Ritchie et al. | Sep 2008 | A1 |
20080221478 | Ritchie et al. | Sep 2008 | A1 |
20080221479 | Ritchie et al. | Sep 2008 | A1 |
20080228104 | Uber et al. | Sep 2008 | A1 |
20090030442 | Potter et al. | Jan 2009 | A1 |
20090062624 | Neville | Mar 2009 | A1 |
20090082695 | Whitehead | Mar 2009 | A1 |
20090082696 | Nicoson | Mar 2009 | A1 |
20090087249 | Flagle et al. | Apr 2009 | A1 |
20090146609 | Santos | Jun 2009 | A1 |
20090204022 | Schwindt | Aug 2009 | A1 |
20090281453 | Tsonton et al. | Nov 2009 | A1 |
20100030020 | Sanders et al. | Feb 2010 | A1 |
20100063416 | Cicenas et al. | Mar 2010 | A1 |
20100152610 | Parihar et al. | Jun 2010 | A1 |
20110105946 | Sorensen et al. | May 2011 | A1 |
20110152715 | Delap et al. | Jun 2011 | A1 |
20110160611 | Ritchart et al. | Jun 2011 | A1 |
20110224577 | Park | Sep 2011 | A1 |
20120080332 | Shelton, IV et al. | Apr 2012 | A1 |
20120191009 | Hoon et al. | Jul 2012 | A1 |
20120253225 | Boutaghou et al. | Oct 2012 | A1 |
20120265096 | Mendez-Coll | Oct 2012 | A1 |
20130023789 | Anderson et al. | Jan 2013 | A1 |
20130165815 | Zinn et al. | Jun 2013 | A1 |
20130289441 | Videbaek et al. | Oct 2013 | A1 |
20140213932 | Knoll | Jul 2014 | A1 |
20140358032 | Videbaek et al. | Dec 2014 | A1 |
20140371585 | Thompson et al. | Dec 2014 | A1 |
20150018712 | Seiger et al. | Jan 2015 | A1 |
20150148704 | Swick | May 2015 | A1 |
20150190124 | Mccullough et al. | Jul 2015 | A1 |
20150223787 | Coonahan et al. | Aug 2015 | A1 |
20150238174 | Reuber et al. | Aug 2015 | A1 |
20160256138 | Videbaek et al. | Sep 2016 | A1 |
20160317133 | Orts et al. | Nov 2016 | A1 |
20160367229 | Jorgensen et al. | Dec 2016 | A1 |
20160367230 | Almazan | Dec 2016 | A1 |
20160374650 | Heske et al. | Dec 2016 | A1 |
20170042517 | Heske et al. | Feb 2017 | A1 |
20170181732 | Videbaek et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
101011268 | Aug 2007 | CN |
101032420 | Sep 2007 | CN |
3924291 | Jan 1991 | DE |
4041614 | Oct 1992 | DE |
3924291 | Jul 2000 | DE |
10034297 | Apr 2001 | DE |
10026303 | Feb 2002 | DE |
20204363 | May 2002 | DE |
20209525 | Nov 2002 | DE |
10235480 | Feb 2004 | DE |
0433717 | Jun 1991 | EP |
0890339 | Jan 1999 | EP |
0995400 | Apr 2000 | EP |
1074271 | Feb 2001 | EP |
1520518 | Apr 2005 | EP |
1579809 | Sep 2005 | EP |
1604615 | Dec 2005 | EP |
1642535 | Apr 2006 | EP |
1665989 | Jun 2006 | EP |
1829487 | Sep 2007 | EP |
2095772 | Sep 2009 | EP |
2106750 | Oct 2009 | EP |
1569561 | Oct 2010 | EP |
1345429 | Dec 1963 | FR |
2739293 | Apr 1997 | FR |
2018601 | Oct 1979 | GB |
1-126957 | Sep 1987 | JP |
H07289555 | Nov 1995 | JP |
H10508504 | Aug 1998 | JP |
2005530554 | Oct 2005 | JP |
2006509545 | Mar 2006 | JP |
2006528907 | Dec 2006 | JP |
2007502159 | Feb 2007 | JP |
9508945 | Apr 1995 | WO |
9628097 | Sep 1996 | WO |
9734531 | Sep 1997 | WO |
9825522 | Jun 1998 | WO |
9831285 | Jul 1998 | WO |
9835615 | Aug 1998 | WO |
9846290 | Oct 1998 | WO |
9933501 | Jul 1999 | WO |
0004832 | Feb 2000 | WO |
0030546 | Jun 2000 | WO |
0059378 | Oct 2000 | WO |
0172230 | Oct 2001 | WO |
0222023 | Mar 2002 | WO |
0232318 | Apr 2002 | WO |
02069808 | Sep 2002 | WO |
2005013830 | Feb 2005 | WO |
2006015302 | Feb 2006 | WO |
2007047128 | Apr 2007 | WO |
2007095330 | Aug 2007 | WO |
2007112751 | Oct 2007 | WO |
2008021687 | Feb 2008 | WO |
2008040812 | Apr 2008 | WO |
2008131362 | Oct 2008 | WO |
2010107424 | Sep 2010 | WO |
2010120294 | Oct 2010 | WO |
2011019343 | Feb 2011 | WO |
2013158072 | Oct 2013 | WO |
2013068017 | Mar 2014 | WO |
2014153410 | Sep 2014 | WO |
2015069223 | May 2015 | WO |
Entry |
---|
Maxim; Maxim8606; USB/AC Adapter, Li+ Linear Battery Charger with Integrated 50m Omega Battery Switch in TDFN; http://datasheets.maxim-ic.com/en/ds/MAX8606.pdf; Dec. 2008; pp. 1-14; Rev 1. |
Number | Date | Country | |
---|---|---|---|
20200015796 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15565967 | US | |
Child | 16584275 | US |