Biopsy device

Information

  • Patent Grant
  • 11779316
  • Patent Number
    11,779,316
  • Date Filed
    Friday, March 15, 2019
    5 years ago
  • Date Issued
    Tuesday, October 10, 2023
    a year ago
Abstract
A biopsy device includes a cutting cannula and an inner member. The inner member has a rotatable toothed rack, a sharpened distal tip, and a sample notch. The inner member is configured to be received in the cutting cannula. The rotatable toothed rack has a proximal portion and a rotation zone in the proximal portion. The rotation zone of the rotatable toothed rack has circumferential toothing configured as a series of longitudinally spaced cut-outs that run around an entire circumference of the rotatable toothed rack to facilitate both a longitudinal movement and a rotational movement of the rotatable toothed rack and inner member. A drive is configured to engage the circumferential toothing to move the rotatable toothed rack within the cutting cannula in at least one of the longitudinal movement and the rotational movement.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to a biopsy device for obtaining tissue samples from human or animal tissue. The invention is particularly, but not exclusively, aimed at percutaneous biopsy, in which it is desirable to gain access to suspect tissue mass in a minimally invasive manner. The invention relates to a biopsy device that is optimized for the sampling of tissues that are resilient and difficult to cut using conventional approaches. Furthermore, a biopsy device is disclosed that is optimized to deliver the highest possible tissue yield.


2. Description of the Related Art

For diagnostic purposes it may be desirable to obtain a tissue sample of a human or animal body for cytological or histological in vitro examination. The tissue sample can be examined for specific qualities based on which a diagnosis can be made and therapy can be administered. For the harvesting of tissue samples, several approaches exist. The conventional open biopsy is increasingly being replaced by less-invasive biopsy methods, and especially the field of breast biopsy has seen rapid development of novel biopsy device types that reduce the invasiveness of the tissue sampling procedure.


In the percutaneous technique, a needle is used to gain access to the suspect tissue mass in a less invasive fashion. This needle may be hollow, permitting the aspiration of single cells and tissue fragments into a lumen by application of a vacuum (aspiration biopsy). Alternatively, larger tissue cores may be harvested by means of a needle containing an inner movable trocar with a notch formed to receive tissue cores, and an outer, slidable cutting cannula with a sharpened distal end used to sever these cores from the surrounding tissue (core needle biopsy). By advancing the inner trocar into a suspect lesion and subsequently advance the outer slidable cannula to cover the notch completely, a tissue sample may be severed and held in the notch. The needle may then be retracted from the body of the patient, and the tissue sample may be collected and stored for further analysis.


Several parameters define whether a tissue sample is useful for analysis, and one of the more important is the sample size. Core needles, while representing a less-invasive approach to tissue sampling, are often incapable of delivering samples of an adequate size for reliable diagnosis. Using vacuum to engage and draw tissue towards the sample notch can significantly increase tissue sample sizes for a given biopsy needle diameter thereby improving diagnostic accuracy. Another well-known technique to increase sample size is to harvest multiple samples in order to obtain sufficient tissue for a reliable diagnosis. Instead of multiple insertions biopsy systems have been developed that enable the extraction of multiple samples with a single biopsy device insertion, the so called SIMS biopsy devices: “Single Insertion—Multiple Samples”. These devices are typically vacuum assisted and may include a tissue-collecting portion that can be moved from an advanced position at the sampling site to a retracted position where the tissue sample may be collected. Exemplary SIMS biopsy devices are disclosed in prior art documents WO 2006/005342, WO 2006/005343, WO 2006/005344 and WO 2006/005345 employing a spring-loaded linear cutting cannula.


SUMMARY OF THE INVENTION

In a first aspect the present disclosure relates to a biopsy device for harvesting at least one tissue sample from a suspect tissue mass in a body of a living being, comprising a cutting cannula that is hollow, an inner member comprising a sharpened distal tip configured to be introduced into the body and a sample notch for receiving the at least one severed tissue sample, the inner member receivable in the cutting cannula, and a cutting mechanism configured for causing the cutting cannula to be longitudinally displaced in a distal direction from a first position at the proximal end of the sample notch exposing the sample notch, to a second position at the distal end of the sample notch, so as to sever said tissue sample from remaining body tissue at the harvesting site.


In one embodiment of the invention the inner member is a rigid and/or rotatable toothed rack that is longitudinally displaceable in the cutting cannula between a first advanced position in which the sample notch of the toothed rack projects from the distal end portion of the cutting cannula, and a second retracted position in which the sample notch is in a proximal position with respect to the distal end portion of the cutting cannula in which the at least one tissue sample can be transferred from said sample notch. The cutting cannula and/or the toothed rack with the sample notch are preferably independently movable in response to directions from a user of the biopsy device. A transport mechanism, e.g. in the form of an actuator system, may be provided to move the toothed rack. The transport mechanism may comprise a toothed wheel configured for engagement with the toothed rack.


In a further embodiment of the invention the inner member forms a hollow needle wherein the biopsy device is configured to longitudinally displace a severed tissue sample inside the hollow needle in a proximal direction from the sample notch to a collection position where the tissue sample can be collected, e.g. transferred into a tissue collection tank. The longitudinal displacement may be provided by means of a vacuum delivered through the hollow needle.


The biopsy device according to the invention is preferably adapted for being handheld by the user during harvesting of a tissue sample.


A further embodiment of the invention relates to a disposable unit for a biopsy device for harvesting at least one tissue sample from a suspect tissue mass in a body of a living being comprising a cutting cannula that is hollow, an inner member comprising a sharpened distal tip configured to be introduced into the body and a sample notch for receiving the at least one severed tissue sample, the inner member receivable in the cutting cannula, and a cutting mechanism configured for causing the cutting cannula to be longitudinally displaced in a distal direction from a first position at the proximal end of the sample notch exposing the sample notch, to a second position at the distal end of the sample notch, so as to sever said tissue sample from remaining body tissue at the harvesting site. The disposable unit may further comprise an interface for connecting the disposable unit to a handle unit.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in further detail with reference to the drawings in which:



FIG. 1 is an exemplary embodiment of a biopsy device according to the invention.



FIG. 2 is an exploded view of the components in FIG. 1.



FIG. 3 is a detailed view of a rigid toothed rack with a sharpened tip and sample notch at the distal end and a rotation zone in the proximal end.



FIG. 4a shows a cutting cannula in an advanced position covering a sample notch.



FIG. 4b shows a cutting cannula in a retracted position exposing a sample notch.



FIG. 5 shows a damper spring for use in connection with overshoot of a spring-loaded cutting cannula.



FIG. 6 shows a counter-rotation cutting interface between a sample notch and a cutting cannula.



FIG. 7 is a cross-sectional view of a cutting cannula featuring a longitudinal air channel having a lateral vent hole.



FIG. 8a shows a tissue collection tank.



FIG. 8b is a cut through illustration of the tissue collection tank in FIG. 8a.



FIG. 9 illustrates the cutting interface between a cutting cannula and a protrusion at the inner member forming a cutting board for the cutting cannula. A cut-out in the drawing shows the longitudinal air channel and a plurality of vent holes in the cutting cannula.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the invention and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION OF THE INVENTION

The drawings illustrate exemplary biopsy devices which are provided with a needle portion comprising a cutting cannula 1, 1′ and a sample notch 3 with a sharpened distal tip 4 for piercing tissue. The cutting cannula 1 is provided with a slanted cutting profiled as illustrated e.g. in FIGS. 2 and 6, whereas the cutting cannula 1′ is provided with a straight cutting profile 24 as illustrated e.g. in FIGS. 5, 7 and 9. The sample notch 3 is part of a rigid toothed rack 2, and is movable between a first advanced and a second retracted position when actuated by a suitable source of mechanical motion. The source of mechanical motion may be a motor that may be powered by a battery and operatively connected to the rigid toothed rack 2 by means of one or more gear wheels 11.


The operative connection between the rigid toothed rack 2 and the gear wheels 11 is configured to permit full 360 degree rotation of the toothed rack 2, including the sample notch 3, about its longitudinal axis. Such rotation may for instance be permitted by providing a proximal rotation zone 12 with a series of cut-outs that run around the entire circumference of the toothed rack. A rotation control gear 9, that is in operative connection with the rigid toothed rack, is engaged by a rotation driver gear 10 to support the rotation of the rigid toothed rack 2 about its longitudinal axis. Another set of gearwheels may be in operative engagement with the cutting cannula 1 to provide full 360-degree rotation of the cutting cannula 1 either independently or in step with the rotation of the rigid toothed rack 2.


The cutting cannula 1, 1′ may be retracted when actuated by a suitable source of mechanical motion. In the first embodiment, the source of mechanical motion may be a second motor that is powered by a battery and operatively connected to the cutting cannula 1, 1′ by means of a series of gears driving an actuator rod. Retraction of the cutting cannula 1, 1′ exposes the sample notch 3, 3′, and permits tissue to prolapse into the lateral opening of the sample notch 3, 3′.


During or after retraction of the cutting cannula 1, 1′, a vacuum may be switched on to support the prolapsing of tissue into the sample notch 3, 3′. Vacuum is communicated from a vacuum pump and a hose through a vacuum gasket 7 that is in operative connection with the cutting cannula 1, 1′ and into the inner lumen of cutting cannula 1, 1′. The rigid toothed rack 2 is provided with at least one vacuum cut-out 16 that run along the length of the rigid toothed rack 2, and end in sample notch 3, and the vacuum from the vacuum pump is communicated through these vacuum cut-outs 16 to the sample notch 3 as soon as the pump is turned on.


A vacuum accumulator/reservoir may be configured to build and store a vacuum, is also in fluid communication with the sample notch 3, 3′, and may provide a transient boost to the vacuum strength immediately prior to firing of the cutting cannula 1, 1′ to increase sample size.


Retraction of the cutting cannula 1, 1′ cocks a spring-loaded firing mechanism that is capable of powering the cutting cannula forward (i.e. in a distal direction) at high speed. As the cutting cannula 1, 1′ moves forward at high speed, the sharpened distal end of the cannula 1, 1′ makes contact with the tissue that has prolapsed into the sample notch 3, 3′ and severs it from the surrounding connecting tissue.


As illustrated in FIG. 5 the cutting cannula 1′ may be permitted to continue its travel by a damper spring 13 that is placed in a damper spring housing 14 and is in operative connection with a rear flange 15 of the cutting cannula 1′. The inertia of the cutting cannula 1′ will allow it to proceed 1-2 mm beyond the permissible traveling distance of the spring-loaded firing mechanism, and will ensure that the sharpened distal end of the cutting cannula 1′ has achieved a suitable overlap with the distal section of the sample notch 3′. Following the overthrow, the damper spring 13 ensures that the cutting cannula 1′ is returned to its neutral position in preparation for the next tissue sample.


As illustrated in FIG. 6 the user of the biopsy device has the option of rotating the toothed rack 2 with the sample notch 3 relative to the stationary cutting cannula 1 to sever any connective tissue that has not been completely severed by the cutting cannula 1. Connective tissue that has not been completely severed may restrict retraction of the tissue sample and cause pain to the patient. The rotation causes connective tissue that has not been completely severed to saw against the sharpened distal end of cutting cannula 1 for as long as needed to complete the severing. Rotation may be step-wise and may interchange between a clockwise and a counter-clockwise direction and take place over a rotation angle of e.g. +1-20 degrees relative to a neutral position. Furthermore the cutting cannula 1 may be retracted and advanced in steps of 1-2 mm during rotation to further support the severing of tissue. When unrestricted movement of the sample notch 3 has been restored, the toothed rack 2 may continue its motion from the first advanced to the second retracted position to transport the tissue sample in sample notch 3 out of the body of the patient.


The tissue sample may be collected in a tissue collection tank 8 comprising a vacuum spout 21 through which a vacuum from a vacuum pump or vacuum accumulator may be communicated into a collection tank chamber 22. From the collection tank chamber, the vacuum may be communicated through a tissue collection spout 23 for enhanced collection of the tissue sample. As illustrated in FIG. 8b the collection spout 23 forms a collection tube 23′ inside the collection tank 22 extending with a certain length from the bottom of the tank 22. Following collection of the tissue sample from the sample notch 3, said sample notch 3 may be returned to the sampling site for collection of the next tissue sample.


As illustrated in FIGS. 7 and 9 the cutting cannula may have an inner tube 17 and an outer tube 18 forming between them a longitudinal air channel 19 that is at a proximal end in fluid communication with a first vacuum pump through a two-way valve that may be switched between a vacuum position and a position that permits entry of atmospheric air into the air channel. At the distal end the air channel 19 is in fluid communication with the lateral opening of the sample notch 3 through at least one vent hole 20 that is formed in the inner tube 17.


As illustrated in FIG. 9 a plurality of the vent holes 20 may be distributed circumferentially around the inside of the inner tube 17. As illustrated in FIG. 9 a protrusion 25 formed as a collar may be provided adjacent to the sharpened distal end 4′. The interface 26 between the protrusion 25 and the cutting cannula 1′ forms a cutting board to ensure that connective tissue is cut properly during severing.


A frequently encountered complication in the harvesting of tissue samples is the presence of fibrous or connective tissue. Such tissue is characterized by being highly resilient and difficult to cut. The typical manifestation of malfunctions related to connective tissue is that the biopsy device gets stuck in the body of the patient and has to be removed by force or surgical intervention. This may be stressful to both physician and patient and may additionally be very painful for the patient. Inadequately severed connective tissue is a known problem for all kinds of biopsy devices and the problem is highly undesirable.


The use of a linear cutter requires a very precise interplay between the sharpened distal end of the cutting cannula and the distal section of the sample notch if appropriate severing of connective tissue is to occur. For this reason it is important that the position of the sample notch is very precisely controlled relative to the position of the cutting cannula. SIMS devices featuring a linear, spring-loaded cutting cannula typically employ a sample notch that is attached to a flexible bendable elongate member (e.g. a non-rigid toothed rack), and this toothed rack may not always produce the desired control of position of the sample notch due to the flexibility, design and material chosen. Some prior art devices employ toothed racks made of thermoplastic elastomers with significant longitudinal elasticity. By having the sample notch in a rigid toothed rack, which is longitudinally inelastic, a better control of position is provided. Thereby an appropriate overlap of the sharpened end of the cutting cannula with the distal section of the sample notch can be provided. Failure to establish a precise position of the sample notch may result in the incomplete closing of the sample notch opening. A rigid toothed rack provides the necessary lateral inelasticity and stability to ensure that the sharpened distal end of the cutting cannula completely closes the opening of the sample notch. Employing a rigid toothed rack therefore provides an improved control of the longitudinal and lateral position of the distal sharpened end of the cutting cannula relative to the distal section of a sample notch.


In one embodiment the proximal end of the rigid toothed rack is configured to operatively connect with a retraction gear wheel, and is furthermore configured to permit 360 degree rotation of the toothed rack about its longitudinal axis without requiring that the operative connection with the retraction gearwheel is interrupted. This may be provided by means of a rotation mechanism.


In a further embodiment of the invention the rigid toothed rack comprises a rotation zone in the proximal end with circumferential teeth, e.g. in the form of a series of cut-outs that run around the entire circumference of the toothed rack, thereby permitting rotation of the rigid toothed rack. The rigid toothed rack may be rotatable within the cutting cannula and/or the rigid toothed rack and the cutting cannula are rotatable simultaneously relative to the biopsy device. The permitted rotation may be 360 degrees. The biopsy device may further comprise a rotation control gear attached to the rigid toothed rack. A rotation driver gear may be provided and configured to engage with the rotation control gear for rotation of the rigid toothed rack. The cutting cannula may also be configured to rotate, such as 360 degrees, about its longitudinal axis.


In a further embodiment of the invention the rigid toothed rack is configured such that longitudinal displacement of the rigid toothed rack to the second retracted position can only be provided in a predefined rotational orientation of the rigid toothed rack. Thus, the rigid toothed rack may be rotatable within the cutting cannula only in the first advanced position, and/or the rigid toothed rack and the cutting cannula are rotatable simultaneously relative to the biopsy device only in the first advanced position.


Whether the rigid toothed rack and/or the cutting cannula is rotated simultaneously or independently may at least partly be controlled by means of an interlock mechanism configured for fixing the rigid toothed rack and the cutting cannula relative to each other. E.g. the interlock mechanism may have two states, one state that allows free movement of the cutting cannula and the toothed rack relative to each other and one state that fixes the two to each other.


This may help to ensure that the sample notch is always oriented correctly with respect to a tissue collection tank when a tissue sample is transferred to the tank. This may be provided if the toothing of the toothed rack is only located at one side of the rigid toothed rack. If there is a proximal rotation zone of the toothed rack as mentioned above, the toothing that extends in the distal direction beyond the rotation zone is only located at one side of said rigid toothed rack. A control system may help to ensure that the rigid toothed rack has the correct rotational orientation before retracting to the retracted position.


Rotation of the rigid toothed rack relative to the cutting cannula (or vice versa) may be advantageous during severing of a tissue sample and may thereby be an improvement of the cutting mechanism. Rotation of the toothed rack, and thereby the sample notch, relative to the cutting cannula with the sharpened distal end, may result in a “sawing” motion that may complete the severing of incompletely severed connective tissue. Counter-rotation of the cutting cannula and the rigid toothed rack may further be provided during cutting which allows for enhanced cutting of e.g. connective tissue.


Thus, in one embodiment of the invention the rigid toothed rack is rotatable within the cutting cannula during severing of the at least one tissue sample. The cutting mechanism may be configured to rotate the rigid toothed rack within the cutting cannula during severing of the at least one tissue sample. The rotation may be either stepwise or continuous. The rigid toothed rack and/or the cutting cannula may be rotatable in clockwise and/or in counter-clockwise directions. During severing the rotation angle of the rigid toothed rack relative to the cutting cannula may oscillate between −5 and +5 degrees during severing, more preferably between −10 and +10 degrees, more preferably between −15 and +15 degrees, more preferably between −20 and +20 degrees, more preferably between −25 and +25 degrees, more preferably between −30 and +30 degrees, i.e. like a sawing motion oscillating between clock-wise and counter clock-wise directions.


When taking a biopsy it is often necessary to rotate the entire biopsy device inside the patient in order to position the sample notch against the suspect tissue mass. This may lead to awkward handling situations during harvesting of tissue samples. A further advantage of rotational capability is therefore that the rigid toothed rack and the cutting cannula can be rotated simultaneously, preferably controlled by the user, about their longitudinal axis relative to the biopsy device in order to orientate the sample notch towards the suspect tissue mass, e.g. prior to activation of the firing mechanism. Thus, the biopsy device can be held in a steady position while the rigid toothed rack and the cutting cannula are rotated into the correct angular orientation relative to the suspect tissue mass.


Another way to enhance the correct severing of tissue is if the cutting mechanism is configured to interchangeably retract and advance the cutting cannula in small longitudinal steps during severing of a tissue sample. The size of the steps may between 0 and 3 mm, or between 0 and 1 mm, or between 1 and 2 mm or between 2 and 3 mm. This corresponds to a sawing motion in the longitudinal direction.


The cutting mechanism may also be improved if it is configured to provide a predefined overlap and/or overshoot during severing of a tissue sample such that the distal end of the cutting cannula passes beyond the distal end of the sample notch temporarily before returning to said second position. The length of said overshoot may be between 0.5 and 5 mm, or between 0.5 and 1 mm, or between 1 and 2 mm, or between 2 and 3 mm, or between 3 and 4 mm, or between 4 and 5 mm. This overshoot of the cutting cannula may help to apply further stress to incompletely severed tissue. The overshoot may be provided by means of an elastic element provided in connection with the cutting cannula. One solution could be in the form of at least one damper spring mounted in a damper spring housing. The damping may also be provided by using a damping element formed in rubber. The elastic element may be configured to work along with a firing mechanism of the cutting cannula effected during severing of a tissue sample. If the firing mechanism is stopped by the elastic element the inertia of the cutting cannula and the elasticity of the elastic element will allow the sharpened end of the cutting cannula to proceed a certain length beyond the traveling distance of the spring-loaded firing mechanism, and thereby ensure that the sharpened distal end of the cutting cannula achieves a suitable overlap with the distal section of the sample notch. Subsequent to this overshoot, the elastic element ensures that the cutting cannula can be returned to its neutral position in preparation for the next tissue sample.


As an alternative, or supplement to, an overlap or overshoot between the distal sharpened end of the cutting cannula and the distal section of the sample notch, the inner member may further comprise a circumferential protrusion and/or collar located between the sharpened distal end and the sample notch, said circumferential protrusion formed to match the distal end of the cutting cannula. The circumferential protrusion may thus be configured to form a cutting surface for the cutting cannula during severing of a tissue sample. The cutting board (protrusion) may be disposed about the outer periphery of the sample notch and serve the purpose of ensuring that the tissue sample is completely and cleanly severed by the cutting cannula. The cutting mechanism may be configured such that the cutting cannula and the circumferential protrusion encounter during severing of a tissue sample. The protrusion is then preferentially formed in a material that is softer than the cutting cannula in order not to blunt the cutting cannula and preserve the sharpness of the cutting cannula. The cutting mechanism may alternatively be configured such that the cutting cannula and the circumferential protrusion does not encounter during severing of a tissue sample. Thus, the circumferential protrusion may be brought into close proximity without encountering during severing of a tissue sample. I.e. direct physical contact between the protrusion and the sharpened distal end of the cutting cannula is avoided but established at the material surface in close proximity to said sharpened distal end. With such a protrusion the transport of the tissue sample must be provided through the inside of the inner member, typically by means of vacuum, if SIMS functionality is desired.


In a further embodiment of the invention the cutting cannula comprises at least one longitudinal vacuum channel (aka longitudinal air channel or passage) formed inside the external shell/wall of the cutting cannula. The longitudinal vacuum channel may be circumferential. This air channel may be provided by forming the cutting cannula as an inner and an outer tube forming between them an air passage that runs longitudinally along the length of the inner and outer tube. Fluid communication from this air channel and into the inner lumen of the cutting cannula may be provided by one or more lateral vent holes extending from the inside of the cutting cannula to the longitudinal air channel A plurality of said lateral vent holes may be distributed circumferentially in the cutting cannula. The longitudinal vacuum channel may then, in its distal end, be in fluid communication with the sample notch when the rigid toothed rack is in its first advanced position. Thereby the cutting cannula may be configured such that a vacuum or air flow can be provided and/or established inside the cutting cannula, e.g. an airflow from the air channel and into the inner lumen of the cutting cannula. Fluid communication from this air channel and to the external of the cutting cannula may be provided by at least one vacuum spout and may be controlled by at least one vacuum valve. A vacuum pump may then be connected to the air channel via this vacuum valve, in which case a vacuum may be communicated through the air channel and the air vent holes and into the inner lumen of the cutting cannula. Thus, air may be sucked out of the inner lumen of the cutting cannula. Such evacuation may be useful for reducing or eliminating problems with air that has been accidentally introduced in the biopsy cavity and disturbs image quality in an ultrasound-guided biopsy procedure. Unwanted air may be introduced in the biopsy cavity when the rigid toothed rack is being advanced from the second retracted position and to the first advanced position. This advancement of the rigid toothed rack inside the cutting cannula may function as a piston that compresses the air inside the cutting cannula and this air is consequently blown into the biopsy cavity disturbing the ultrasound picture. If air is evacuated from the cutting cannula through the longitudinal vacuum channel inside the sidewall of the cutting cannula during advancement of the rigid toothed rack this problem can be addressed and solved.


A further embodiment of the invention comprises a tissue collection tank for collecting the at least one tissue sample transferred from the sample notch. The tank may comprise a tissue-collecting spout that may be configured to slide into the sample notch chamber and scoop the tissue sample into a sample tank. To enhance the collection of the tissue sample the tissue collection tank may be configured to be vacuumized, e.g. by connection to a vacuum pump via a vacuum port at the tank. The collecting spout may be elongated to form a pipe (aka collection pipe) to enhance the vacuum assisted collection of a tissue sample into the tank. At the outside the collection spout/pipe forms a small spout but at the inside of the tissue collection tank the collection pipe extends and/or protrudes into the tissue collection tank, i.e. the collection pipe may protrude from the bottom or side of the inside of the tissue collection tank. Thus, the collection pipe has a certain length inside the tissue collection tank. This length of the collection pipe may be at least 2 mm, or at least 4 mm, or at least 6 mm, or at least 8 mm, or at least 10 mm, or at least 12 mm, or at least 14 mm, or at least 16 mm, or at least 18 mm, or at least 20 mm, or at least 22 mm, or at least 24 mm, or at least 26 mm, or at least 28 mm, or at least 30 mm, or at least 32 mm, or at least 34 mm, or at least 36 mm, or at least 38 mm, or at least 40 mm.


Some biopsy devices are constantly connected to external vacuum pumps via external vacuum hoses. These pumps can deliver a powerful and constant vacuum to the biopsy device but the necessary vacuum hoses reduce the manageability of the biopsy device for the user. A solution to that problem has until now been to provide one or more local battery driven small vacuum pumps integrated in the biopsy device. However, such small vacuum pumps can only provide a limited airflow which sometimes is not sufficient to maintain a constant vacuum level. A solution to that problem can be a vacuum reservoir integrated in the biopsy device that can deliver a boost to the (negative) airflow for one or more short periods of time, this additional airflow provided by the vacuum reservoir can thereby maintain a certain vacuum level. The biopsy device can thereby be provided with one or more small vacuum pumps supplied by the vacuum reservoir when necessary. A further embodiment of the invention therefore comprises a vacuum reservoir (aka vacuum accumulator) configured for accumulating a volume of vacuum that can be delivered as a transient boost in the airflow so as to maintain a level of vacuum present in the system. Such a vacuum reservoir can for instance be powered by a battery. The vacuum reservoir may be in fluid communication with the sample notch and configured to provide an increased suction to maintain the vacuum level in the sample notch during severing of a tissue sample, e.g. immediately before release of the cutting cannula in order to increase the amount of tissue that prolapses into the sample chamber and thereby maximize the size of the severed tissue sample. The vacuum reservoir may also be in fluid communication with the inside of the hollow inner member and configured to provide a transient boost of airflow when a tissue sample is being sucked through the inner member. Furthermore, the vacuum reservoir may be in fluid communication with the tissue collection tank and configured to provide a vacuum to or an increased suction in the tissue collection tank to main a vacuum level when a tissue sample is transferred from the sample notch and into the tissue collection tank. The vacuum reservoir may have a volume of 5-100 mL, or 5-10 mL, or 10-20 mL, or 20-30 mL, or 30-40 mL, or 50-100 mL.


Retraction of the cutting cannula to expose the sample notch may for instance be actuated by a motor that is powered by a battery and connected to one or more gearwheels, but other power sources and means of mechanical actuation are also envisioned. This retraction of the cutting cannula may facilitate the cocking of a firing mechanism that may for instance be spring-loaded. Other firing mechanisms, including electric, pneumatic and chemical, may also be provided. The cutting movement of the cutting cannula during the actual severing of tissue may be powered by the energy that is stored in a firing mechanism and happens as a high-speed linear passage across the laterally facing opening of the sample notch. During this passage, the sharpened distal end of the cutting cannula makes contact with the tissue that has prolapsed into the sample notch chamber and severs it from the surrounding tissue, thus creating a tissue sample in the sample notch. The firing mechanism may be replaced with a linear actuator that allows the controlled advancement of the cutting cannula during severing. In this case advancement of the cutting cannula is more controlled and it may be desirable to rotate the cutting cannula during advancement to adequately sever the tissue as described previously.


To provide for SIMS functionality retraction of the sample notch may be provided by means of a motor that is operatively connected to the rigid toothed rack by means of one or more gearwheels. When activated, this motor causes the rigid toothed rack and the sample notch to travel from the first advanced position to the second retracted position, where the sample may be retrieved, e.g. by means of a tissue collection tank, but other means of retrieval—including manual retrieval—may also be envisioned. After completion of sample retrieval, the sample notch may be returned to the sampling site by reversing the direction of rotation of the motor.


The firing mechanism may be configured for causing the cutting cannula and the inner member to be longitudinally displaced in a distal direction, so as to penetrate body tissue at or near the suspect tissue mass prior to the cutting operation when harvesting a sample.


In one embodiment of the invention the inner member comprises a vacuum port in fluid communication with the sample notch. The inner member may thus be configured such that the sample notch can be vacuumized. A vacuum pump may be provided for generating a suction effect in the sample notch to increase the size of the tissue sample that prolapses into the sample notch, the vacuum pump being in fluid communication with the sample notch through a longitudinally extending passage in the inner member.


A further embodiment of the invention comprises a handle unit with a power source and at least one motor for driving the cutting mechanism and the displacement of the inner member and wherein at least the cutting cannula and the inner member are comprised in a disposable unit, which is releasably secured to the handle unit.


To ensure that the cutting cannula and the sample notch achieve an overlap that is sufficient to cleanly sever the tissue to be sampled, the cutting cannula is preferably characterized by very tight length tolerances. Such tolerances may be achieved by the use of materials with low creep that are processed using high-precision milling or molding, and possibly result in total length variations of no more than +/−0.5 mm depending on the overall total length of the cutting cannula. A preferred material for the cutting cannula is stainless steel which is made into tubes. These tubes are typically made by rolling and welding sheet metal to form a tubular structure which is then drawn through a tool with a diamond insert to achieve the desired diameter. Multiple drawings may be employed to achieve high precision. By utilizing stainless steel low creep for the cutting cannula, none or minimal elongation and achievable manufacturing tolerances are possible. Other materials, including titanium, are also envisioned for the making of the cutting cannula.


To further support appropriate overlap between cutting cannula and sample notch, also the rigid toothed rack may be characterized by very tight length tolerances. Such tolerances may in some embodiments be achieved by the use of materials with low creep that are processed using high-precision milling or molding, and possibly result in total length variations of no more than +/−0.5 mm depending on the overall total length of the rigid toothed rack. A preferred material for the rigid toothed rack is stainless steel. The rigid tooted rack would typically be made by milling a turned stainless steel metal rod in order to achieve the desired geometry. Other materials suited for the rigid tooted rack are titanium or similar metals with a high modulus of elasticity. Alternative materials include thermoplastic elastomers with suitable fillers for increased modulus of elasticity. Suitable types for a rigid toothed rack would be LCP (Liquid Crystal Polymer), PEEK (Polyetheretherketone) in any grade. Thermoplastic elastomers have the benefit of being relatively easy to process and manufacture, but they are less rigid and will also tend to creep and shrink more than metal.


While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.

Claims
  • 1. A biopsy device for harvesting at least one tissue sample from a suspect tissue mass in a body of a living being, comprising: a cutting cannula that is hollow;a rotatable inner member rotatable about a longitudinal axis and having a toothed rack, a sharpened distal tip, and a sample notch configured to receive tissue at a site in the body, the inner member configured to be received in the cutting cannula, the toothed rack having a proximal portion defining a rotation zone and a distal portion defining a non-rotation zone, the rotation zone of the toothed rack having circumferential toothing configured as a series of discrete, longitudinally spaced cut-outs that run around an entire circumference of the toothed rack, the circumferential toothing facilitating both a longitudinal movement and a rotational movement of the toothed rack and inner member, and the distal portion having non-circumferential toothing facilitating the longitudinal motion; anda drive configured to engage the toothed rack to move the toothed rack within the cutting cannula in the longitudinal movement and the rotational movement, wherein the drive comprises: a longitudinal drive gear engaged with the toothed rack and configured to move the toothed rack in the longitudinal movement and configured to traverse both the circumferential toothing and the non-circumferential toothing; anda rotational drive gear operatively coupled to the rotatable inner member to move the toothed rack in the rotational movement, wherein the longitudinal drive gear is engaged with the circumferential toothing within the proximal portion during rotational movement, wherein a radial position of the sample notch is controlled via the rotational movement and the longitudinal position of the sample notch is controlled via the longitudinal movement.
  • 2. The biopsy device of claim 1, wherein the toothed rack of the rotatable inner member is a rigid toothed rack, and wherein the rotatable inner member is longitudinally displaceable in the cutting cannula between an advanced position in which the sample notch of the rigid toothed rack projects from a distal end portion of the cutting cannula, and a retracted position in which the sample notch is in a proximal position with respect to the distal end portion of the cutting cannula to facilitate a transfer of a tissue sample from the sample notch.
  • 3. The biopsy device of claim 1, wherein the drive comprises a gear wheel engageable with the toothed rack to longitudinally displace the rotatable inner member in the cutting cannula between an advanced position in which the sample notch projects from a distal end portion of the cutting cannula, and a retracted position in which the sample notch is in a proximal position with respect to the distal end portion of the cutting cannula, and the drive configured to rotate the toothed rack of the rotatable inner member within the cutting cannula only when the rotatable inner member is in the advanced position.
  • 4. The biopsy device of claim 3, wherein the drive comprises: a rotation control gear attached to the toothed rack; anda rotation driver gear configured to engage the rotation control gear for rotation of the toothed rack when the rotatable inner member is in the advanced position.
  • 5. The biopsy device of claim 4, comprising an interlock mechanism configured to fix the toothed rack and the cutting cannula relative to each other.
  • 6. The biopsy device of claim 5, wherein the toothed rack and the cutting cannula are rotatable simultaneously only when the rotatable inner member is in the advanced position.
  • 7. The biopsy device of claim 1, the drive configured to rotate the toothed rack in a stepwise movement.
  • 8. The biopsy device of claim 7, wherein the rotation of the toothed rack oscillates between a clockwise direction and a counter-clockwise direction.
  • 9. The biopsy device of claim 8, wherein the rotation angle of the toothed rack relative to the cutting cannula oscillates between −30 and +30 degrees.
  • 10. The biopsy device of claim 1, comprising a cutting mechanism configured to cause the cutting cannula to be longitudinally displaced in a distal direction from a first position at the proximal end of the sample notch wherein the sample notch is exposed, to a second position at the distal end of the sample notch, wherein the cutting mechanism is configured to interchangeably retract and advance the cutting cannula in longitudinal steps during severing of the tissue sample.
  • 11. The biopsy device of claim 10, wherein the size of the longitudinal steps is between 1 and 3 mm.
  • 12. The biopsy device of claim 1, wherein the rotatable inner member is longitudinally movable in the cutting cannula between an advanced position and a retracted position, and the toothed rack is configured such that longitudinal movement of the rotatable inner member to the retracted position can only be provided in a predefined rotational orientation of the toothed rack.
  • 13. The biopsy device of claim 1, the toothed rack having a distal portion that is distal to the proximal portion, the distal portion having second circumferential toothing only located at one side of the toothed rack.
  • 14. The biopsy device of claim 1, the toothed rack having second circumferential toothing that extends in a distal direction beyond the rotation zone of the toothed rack and that is only located at one side of the toothed rack.
  • 15. The biopsy device of claim 1, wherein the cutting cannula has an external shell and at least one longitudinal vacuum channel formed inside the external shell.
  • 16. The biopsy device of claim 1, wherein the cutting cannula has an external shell and a longitudinal vacuum channel that is circumferential inside the external shell.
  • 17. The biopsy device of claim 1, comprising a plurality of the lateral vent holes distributed circumferentially in the cutting cannula.
  • 18. The biopsy device of claim 1, comprising a tissue collection tank configured to collect a tissue sample from the sample notch.
  • 19. The biopsy device of claim 18, wherein the tissue collection tank includes a vacuum port for provision of a vacuum inside the tissue collection tank, and a collection pipe configured to transfer the tissue sample from the sample notch and into the tissue collection tank.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/772,994, filed Sep. 4, 2015, which is a U.S. national phase of International Application No. PCT/US2014/031224, filed Mar. 19, 2014, which claims priority to U.S. provisional patent application Ser. No. 61/803,626 entitled “Improved biopsy device” filed Mar. 20, 2013, which is incorporated herein by reference.

US Referenced Citations (595)
Number Name Date Kind
737293 Summerfeldt Aug 1903 A
1087845 Stevens Feb 1914 A
1585934 Muir May 1926 A
1663761 Johnson Mar 1928 A
2953934 Sundt Sep 1960 A
3019733 Braid Feb 1962 A
3224434 Molomut et al. Dec 1965 A
3289669 Dwyer et al. Dec 1966 A
3477423 Griffith Nov 1969 A
3512519 Hall May 1970 A
3561429 Jewett et al. Feb 1971 A
3565074 Foti Feb 1971 A
3606878 Kellogg Sep 1971 A
3727602 Hyden et al. Apr 1973 A
3732858 Banko May 1973 A
3785380 Brumfield Jan 1974 A
3800783 Jamshidi Apr 1974 A
3844272 Banko Oct 1974 A
3882849 Jamshidi May 1975 A
3889682 Denis et al. Jun 1975 A
3916948 Benjamin Nov 1975 A
4275730 Hussein Jun 1981 A
4282884 Boebel Aug 1981 A
4306570 Matthews Dec 1981 A
4354092 Manabe et al. Oct 1982 A
4393879 Milgrom Jul 1983 A
4445509 Auth May 1984 A
4490137 Moukheibir Dec 1984 A
4549554 Markham Oct 1985 A
4577629 Martinez Mar 1986 A
4589414 Yoshida et al. May 1986 A
4603694 Wheeler Aug 1986 A
4605011 Naslund Aug 1986 A
4616215 Maddalena Oct 1986 A
4617430 Bryant Oct 1986 A
4620539 Andrews et al. Nov 1986 A
4643197 Greene et al. Feb 1987 A
4645153 Granzow et al. Feb 1987 A
4678459 Onik et al. Jul 1987 A
4696298 Higgins et al. Sep 1987 A
4702260 Wang Oct 1987 A
4706687 Rogers Nov 1987 A
4735215 Goto Apr 1988 A
4776346 Beraha et al. Oct 1988 A
4792327 Swartz Dec 1988 A
4832044 Garg May 1989 A
4844064 Thimsen et al. Jul 1989 A
4844087 Garg Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4893635 de Groot et al. Jan 1990 A
4907598 Bauer Mar 1990 A
RE33258 Onik et al. Jul 1990 E
4940061 Terwilliger et al. Jul 1990 A
4952817 Bolan et al. Aug 1990 A
4958625 Bates et al. Sep 1990 A
4967762 DeVries Nov 1990 A
4986278 Ravid et al. Jan 1991 A
4986279 O'Neill Jan 1991 A
4986807 Farr Jan 1991 A
4989614 Dejter, Jr. et al. Feb 1991 A
5025797 Baran Jun 1991 A
5048538 Terwilliger et al. Sep 1991 A
5057822 Hoffman Oct 1991 A
5078603 Cohen Jan 1992 A
5125413 Baran Jun 1992 A
5138245 Mattinger et al. Aug 1992 A
5146921 Terwilliger et al. Sep 1992 A
5156160 Bennett Oct 1992 A
5158528 Walker et al. Oct 1992 A
5172702 Leigh et al. Dec 1992 A
5176628 Charles et al. Jan 1993 A
5180352 Terwilliger Feb 1993 A
5197484 Kornberg et al. Mar 1993 A
5211627 William May 1993 A
5223012 Best et al. Jun 1993 A
5225763 Krohn et al. Jul 1993 A
5234000 Hakky et al. Aug 1993 A
5236334 Bennett Aug 1993 A
5242404 Conley et al. Sep 1993 A
5249583 Mallaby Oct 1993 A
5254117 Rigby et al. Oct 1993 A
5282476 Terwilliger Feb 1994 A
5282477 Bauer Feb 1994 A
5290253 Kira Mar 1994 A
5305762 Acorn et al. Apr 1994 A
5324306 Makower et al. Jun 1994 A
5334183 Wuchinich Aug 1994 A
5335671 Clement Aug 1994 A
5368029 Holcombe et al. Nov 1994 A
5368045 Clement et al. Nov 1994 A
5383874 Jackson et al. Jan 1995 A
5397462 Higashijima et al. Mar 1995 A
5400798 Baran Mar 1995 A
5439474 Li Aug 1995 A
5458112 Weaver Oct 1995 A
5469860 De Santis Nov 1995 A
5471994 Guirguis Dec 1995 A
5479486 Saji Dec 1995 A
5485917 Early Jan 1996 A
5492130 Chiou Feb 1996 A
5511556 DeSantis Apr 1996 A
5526822 Burbank et al. Jun 1996 A
5535755 Heske Jul 1996 A
5546957 Heske Aug 1996 A
5554151 Hinchliffe Sep 1996 A
5560373 De Santis Oct 1996 A
5564436 Hakky et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5575293 Miller et al. Nov 1996 A
5591170 Spievack et al. Jan 1997 A
5601583 Donahue et al. Feb 1997 A
5601585 Banik et al. Feb 1997 A
5602449 Krause et al. Feb 1997 A
5612738 Kim Mar 1997 A
5617874 Baran Apr 1997 A
5649547 Ritchart et al. Jul 1997 A
5655542 Weilandt Aug 1997 A
5655657 Roshdy Aug 1997 A
5665101 Becker et al. Sep 1997 A
5669394 Bergey et al. Sep 1997 A
5699909 Foster Dec 1997 A
5700265 Romano Dec 1997 A
5709697 Ratcliff et al. Jan 1998 A
5720760 Becker et al. Feb 1998 A
5735264 Siczek et al. Apr 1998 A
5752923 Terwilliger May 1998 A
5755714 Murphy-Chutorian May 1998 A
5766135 Terwilliger Jun 1998 A
5769086 Ritchart et al. Jun 1998 A
5769795 Terwilliger Jun 1998 A
5775333 Burbank et al. Jul 1998 A
5779649 Herbert Jul 1998 A
5788651 Weilandt Aug 1998 A
5792167 Kablik et al. Aug 1998 A
5807282 Fowler Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817034 Milliman et al. Oct 1998 A
5823970 Terwilliger Oct 1998 A
5827305 Gordon Oct 1998 A
5830219 Bird et al. Nov 1998 A
D403405 Terwilliger Dec 1998 S
5857982 Milliman et al. Jan 1999 A
5871699 Ruggeri Feb 1999 A
5879365 Whitfield et al. Mar 1999 A
5908233 Heskett et al. Jun 1999 A
5913857 Ritchart et al. Jun 1999 A
5916198 Dillow Jun 1999 A
5916229 Evans Jun 1999 A
5928164 Burbank et al. Jul 1999 A
5944673 Gregoire et al. Aug 1999 A
5951490 Fowler Sep 1999 A
5951575 Bolduc et al. Sep 1999 A
5964716 Gregoire et al. Oct 1999 A
5971939 DeSantis et al. Oct 1999 A
5976164 Bencini et al. Nov 1999 A
5980469 Burbank et al. Nov 1999 A
5980545 Pacala et al. Nov 1999 A
6007495 Matula Dec 1999 A
6007497 Huitema Dec 1999 A
6007556 Kablik et al. Dec 1999 A
6017316 Ritchart et al. Jan 2000 A
6018227 Kumar et al. Jan 2000 A
6019733 Farascioni Feb 2000 A
6022324 Skinner Feb 2000 A
6022325 Siczek et al. Feb 2000 A
6027458 Janssens Feb 2000 A
6032673 Savage et al. Mar 2000 A
6036657 Milliman et al. Mar 2000 A
6050955 Bryan et al. Apr 2000 A
6055870 Jaeger May 2000 A
6071247 Kennedy Jun 2000 A
6077230 Gregoire et al. Jun 2000 A
6083176 Terwilliger Jul 2000 A
6083237 Huitema et al. Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6106484 Terwilliger Aug 2000 A
6110129 Terwilliger Aug 2000 A
6120462 Hibner et al. Sep 2000 A
6123957 Jernberg Sep 2000 A
6126617 Weilandt et al. Oct 2000 A
6142955 Farascioni et al. Nov 2000 A
6162187 Buzzard et al. Dec 2000 A
6165136 Nishtala Dec 2000 A
6193673 Viola et al. Feb 2001 B1
6196978 Weilandt et al. Mar 2001 B1
6213957 Milliman et al. Apr 2001 B1
6220248 Voegele et al. Apr 2001 B1
6231522 Voegele et al. May 2001 B1
6241687 Voegele et al. Jun 2001 B1
6267759 Quick Jul 2001 B1
6273861 Bates et al. Aug 2001 B1
6273862 Privitera et al. Aug 2001 B1
6280398 Ritchart et al. Aug 2001 B1
6283925 Terwilliger Sep 2001 B1
6322523 Weilandt et al. Nov 2001 B2
6328701 Terwilliger Dec 2001 B1
6331166 Burbank et al. Dec 2001 B1
6358217 Bourassa Mar 2002 B1
6361504 Shin Mar 2002 B1
6402701 Kaplan et al. Jun 2002 B1
6419641 Mark et al. Jul 2002 B1
6428486 Ritchart et al. Aug 2002 B2
6428487 Burdorff et al. Aug 2002 B1
6432064 Hibner et al. Aug 2002 B1
6432065 Burdorff et al. Aug 2002 B1
6434507 Clayton et al. Aug 2002 B1
6436054 Viola et al. Aug 2002 B1
6461302 Thompson Oct 2002 B1
6471659 Eggers et al. Oct 2002 B2
6482158 Mault Nov 2002 B2
6485436 Truckai et al. Nov 2002 B1
6488636 Bryan et al. Dec 2002 B2
6494844 Van Bladel et al. Dec 2002 B1
6527736 Attinger et al. Mar 2003 B1
6540694 Van Bladel et al. Apr 2003 B1
6540761 Houser Apr 2003 B2
6544194 Kortenbach et al. Apr 2003 B1
6551255 Van Bladel et al. Apr 2003 B2
6554779 Viola et al. Apr 2003 B2
6585664 Burdorff et al. Jul 2003 B2
6585694 Smith Jul 2003 B1
6586585 Bastian Jul 2003 B1
6592530 Farhadi Jul 2003 B1
6626849 Huitema et al. Sep 2003 B2
6632182 Treat Oct 2003 B1
6638235 Miller et al. Oct 2003 B2
6656133 Voegele et al. Dec 2003 B2
6659105 Burbank et al. Dec 2003 B2
6659338 Dittmann et al. Dec 2003 B1
6683439 Takano et al. Jan 2004 B2
6689072 Kaplan et al. Feb 2004 B2
6695786 Wang et al. Feb 2004 B2
6702832 Ross et al. Mar 2004 B2
6712773 Viola Mar 2004 B1
6712774 Voegele et al. Mar 2004 B2
6752768 Burdorff et al. Jun 2004 B2
6753671 Harvey Jun 2004 B1
6755802 Bell Jun 2004 B2
6758824 Miller et al. Jul 2004 B1
6764495 Lee et al. Jul 2004 B2
6832990 Kortenbach et al. Dec 2004 B2
6849080 Lee et al. Feb 2005 B2
6850159 Mudge Feb 2005 B1
6860860 Viola Mar 2005 B2
6875183 Cervi Apr 2005 B2
6887210 Quay May 2005 B2
6908440 Fisher Jun 2005 B2
D508458 Solland et al. Aug 2005 S
6926676 Turturro et al. Aug 2005 B2
6984213 Horner et al. Jan 2006 B2
7004174 Eggers et al. Feb 2006 B2
7010332 Irvin et al. Mar 2006 B1
7025732 Thompson et al. Apr 2006 B2
D525583 Vu Jul 2006 S
7108660 Stephens et al. Sep 2006 B2
7153274 Stephens et al. Dec 2006 B2
7156814 Williamson, IV et al. Jan 2007 B1
7182754 Brigham et al. Feb 2007 B2
7189206 Quick et al. Mar 2007 B2
7189207 Viola Mar 2007 B2
7219867 Kalis et al. May 2007 B2
7226424 Ritchart et al. Jun 2007 B2
7252641 Thompson et al. Aug 2007 B2
7276032 Hibner Oct 2007 B2
7328794 Lubs et al. Feb 2008 B2
7347828 Francese et al. Mar 2008 B2
7347829 Mark et al. Mar 2008 B2
7374544 Freeman et al. May 2008 B2
7390306 Mark Jun 2008 B2
7397654 Mori Jul 2008 B2
7402140 Spero et al. Jul 2008 B2
7405536 Watts Jul 2008 B2
7407054 Seiler et al. Aug 2008 B2
7419472 Hibner et al. Sep 2008 B2
7432813 Postma Oct 2008 B2
7452367 Rassman et al. Nov 2008 B2
7458940 Miller Dec 2008 B2
7464040 Joao Dec 2008 B2
7473232 Teague Jan 2009 B2
7481775 Weikel, Jr. et al. Jan 2009 B2
7490048 Joao Feb 2009 B2
7491177 Hibner Feb 2009 B2
7494473 Eggers et al. Feb 2009 B2
7497833 Miller Mar 2009 B2
7510534 Burdorff et al. Mar 2009 B2
7513877 Viola Apr 2009 B2
7517321 McCullough et al. Apr 2009 B2
7517322 Weikel, Jr. et al. Apr 2009 B2
7549978 Carlson et al. Jun 2009 B2
7575557 Morton et al. Aug 2009 B2
7648466 Stephens et al. Jan 2010 B2
7670299 Beckman et al. Mar 2010 B2
7717861 Weikel et al. May 2010 B2
7727164 Cicenas et al. Jun 2010 B2
7740594 Hibner Jun 2010 B2
7740596 Hibner Jun 2010 B2
7740597 Cicenas et al. Jun 2010 B2
7758515 Hibner Jul 2010 B2
7762961 Heske et al. Jul 2010 B2
7806834 Beckman et al. Oct 2010 B2
7828746 Teague Nov 2010 B2
7828747 Heske et al. Nov 2010 B2
7841991 Douglas et al. Nov 2010 B2
7846109 Parihar et al. Dec 2010 B2
7854706 Hibner Dec 2010 B2
7862517 Tsonton et al. Jan 2011 B2
7862518 Parihar Jan 2011 B2
7871384 Thompson et al. Jan 2011 B2
7883476 Miller et al. Feb 2011 B2
7883494 Martin Feb 2011 B2
7906076 Fischer Mar 2011 B2
7914462 Hutchins et al. Mar 2011 B2
7959580 Mccullough et al. Jun 2011 B2
7974681 Wallace et al. Jul 2011 B2
8002713 Heske et al. Aug 2011 B2
8012102 McCullough et al. Sep 2011 B2
8016772 Heske et al. Sep 2011 B2
8016844 Privitera et al. Sep 2011 B2
8052614 Heske et al. Nov 2011 B2
8052615 Reuber et al. Nov 2011 B2
8057402 Hibner et al. Nov 2011 B2
8073008 Mehta et al. Dec 2011 B2
8075495 Andreyko et al. Dec 2011 B2
8083671 Boulais et al. Dec 2011 B2
8083687 Parihar Dec 2011 B2
8109885 Heske et al. Feb 2012 B2
8118755 Hibner et al. Feb 2012 B2
8152738 Li et al. Apr 2012 B2
8157744 Jorgensen et al. Apr 2012 B2
8162851 Heske et al. Apr 2012 B2
8172771 Miller et al. May 2012 B2
8172773 Heske et al. May 2012 B2
8187204 Miller et al. May 2012 B2
8190238 Moll et al. May 2012 B2
8206409 Privitera et al. Jun 2012 B2
8251916 Speeg et al. Aug 2012 B2
8251917 Almazan Aug 2012 B2
8262585 Thompson et al. Sep 2012 B2
8262586 Anderson et al. Sep 2012 B2
8267868 Taylor et al. Sep 2012 B2
8277393 Miller et al. Oct 2012 B2
8282574 Coonahan et al. Oct 2012 B2
8283890 Videbaek Oct 2012 B2
8287465 Hardin et al. Oct 2012 B2
8313444 Thompson et al. Nov 2012 B2
8343069 Uchiyama et al. Jan 2013 B2
8366636 Videbaek Feb 2013 B2
8430824 Videbaek et al. Apr 2013 B2
8430825 Mark Apr 2013 B2
8430827 Nicoson et al. Apr 2013 B2
8485987 Videbaek et al. Jul 2013 B2
8485989 Videbaek Jul 2013 B2
8597205 Seiger et al. Dec 2013 B2
8597206 Videbaek Dec 2013 B2
8690793 Ranpura et al. Apr 2014 B2
8702621 Mccullough et al. Apr 2014 B2
8702622 McCullough et al. Apr 2014 B2
8708928 Videbaek Apr 2014 B2
8708929 Videbaek Apr 2014 B2
8708930 Videbaek Apr 2014 B2
8721563 Taylor et al. May 2014 B2
8728003 Taylor et al. May 2014 B2
8728004 Heske et al. May 2014 B2
8771200 Thompson Jul 2014 B2
8808197 Videbaek Aug 2014 B2
8858463 Seiger et al. Oct 2014 B2
8864680 Videbaek et al. Oct 2014 B2
8926527 Jørgensen et al. Jan 2015 B2
8951208 Almazan Feb 2015 B2
8951209 Heske et al. Feb 2015 B2
8956306 Hibner Feb 2015 B2
8961430 Coonahan et al. Feb 2015 B2
8992440 Reuber et al. Mar 2015 B2
9072502 Heske et al. Jul 2015 B2
9161743 Mccullough et al. Oct 2015 B2
9173641 Chudzik et al. Nov 2015 B2
9282949 Videbaek Mar 2016 B2
9345458 Videbaek et al. May 2016 B2
9421002 Heske et al. Aug 2016 B2
9439631 Heske et al. Sep 2016 B2
9439632 Almazan Sep 2016 B2
9456809 Jorgensen et al. Oct 2016 B2
10058308 Mccullough et al. Aug 2018 B2
10149664 Anderson et al. Dec 2018 B2
20010007925 Ritchart et al. Jul 2001 A1
20010011156 Viola et al. Aug 2001 A1
20010012919 Terwilliger Aug 2001 A1
20010014779 Burbank et al. Aug 2001 A1
20010034530 Malackowski et al. Oct 2001 A1
20010044595 Reydel et al. Nov 2001 A1
20010047183 Privitera et al. Nov 2001 A1
20020000403 Tanaka et al. Jan 2002 A1
20020029007 Bryan et al. Mar 2002 A1
20020055689 Kaplan May 2002 A1
20020067151 Tanishita Jun 2002 A1
20020068878 Jasonni et al. Jun 2002 A1
20020082518 Weiss et al. Jun 2002 A1
20020107043 Adamson et al. Aug 2002 A1
20020115942 Stanford et al. Aug 2002 A1
20020120212 Ritchart et al. Aug 2002 A1
20020143269 Neuenfeldt Oct 2002 A1
20020156395 Stephens et al. Oct 2002 A1
20030023188 Kritzman et al. Jan 2003 A1
20030023239 Burbank et al. Jan 2003 A1
20030073929 Baltschun et al. Apr 2003 A1
20030093103 Malackowski et al. May 2003 A1
20030130593 Gonzalez Jul 2003 A1
20030130677 Whitman et al. Jul 2003 A1
20030163142 Paltieli et al. Aug 2003 A1
20030229293 Hibner et al. Dec 2003 A1
20030233101 Lubock et al. Dec 2003 A1
20040015079 Berger et al. Jan 2004 A1
20040019297 Angel Jan 2004 A1
20040030367 Yamaki et al. Feb 2004 A1
20040034280 Privitera et al. Feb 2004 A1
20040049128 Miller et al. Mar 2004 A1
20040054299 Burdorff et al. Mar 2004 A1
20040082915 Kadan Apr 2004 A1
20040092980 Cesarini et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040162505 Kaplan et al. Aug 2004 A1
20040167428 Quick et al. Aug 2004 A1
20040186393 Leigh et al. Sep 2004 A1
20040210161 Burdorff et al. Oct 2004 A1
20040215103 Mueller, Jr. et al. Oct 2004 A1
20040220495 Cahir et al. Nov 2004 A1
20040230135 Merkle Nov 2004 A1
20040230188 Cioanta et al. Nov 2004 A1
20040249278 Krause Dec 2004 A1
20040267157 Miller et al. Dec 2004 A1
20050004492 Burbank et al. Jan 2005 A1
20050004559 Quick et al. Jan 2005 A1
20050010131 Burbank et al. Jan 2005 A1
20050020909 Moctezuma de la Barrera et al. Jan 2005 A1
20050027210 Miller Feb 2005 A1
20050049489 Foerster et al. Mar 2005 A1
20050049521 Miller et al. Mar 2005 A1
20050054947 Goldenberg Mar 2005 A1
20050065453 Shabaz et al. Mar 2005 A1
20050085838 Thompson et al. Apr 2005 A1
20050088120 Avis Apr 2005 A1
20050101879 Shidham et al. May 2005 A1
20050113715 Schwindt et al. May 2005 A1
20050113716 Mueller, Jr. et al. May 2005 A1
20050124914 Dicarlo Jun 2005 A1
20050124915 Eggers et al. Jun 2005 A1
20050177117 Crocker et al. Aug 2005 A1
20050193451 Quistgaard et al. Sep 2005 A1
20050209530 Pflueger Sep 2005 A1
20050215921 Hibner et al. Sep 2005 A1
20050275378 Canino et al. Dec 2005 A1
20050277829 Tsonton et al. Dec 2005 A1
20050277871 Seiis Dec 2005 A1
20050288605 Pellegrino et al. Dec 2005 A1
20060030784 Miller et al. Feb 2006 A1
20060074344 Hibner Apr 2006 A1
20060074345 Hibner Apr 2006 A1
20060074350 Cash Apr 2006 A1
20060113958 Lobert et al. Jun 2006 A1
20060116603 Shibazaki et al. Jun 2006 A1
20060122535 Daum Jun 2006 A1
20060129063 Thompson et al. Jun 2006 A1
20060149162 Daw et al. Jul 2006 A1
20060173377 McCullough Aug 2006 A1
20060178666 Cosman et al. Aug 2006 A1
20060184063 Miller Aug 2006 A1
20060241515 Jones et al. Oct 2006 A1
20060258956 Haberstich et al. Nov 2006 A1
20060260994 Mark et al. Nov 2006 A1
20070016101 Feldman Jan 2007 A1
20070032741 Hibner et al. Feb 2007 A1
20070032743 Hibner Feb 2007 A1
20070055173 DeLonzor et al. Mar 2007 A1
20070073326 Miller et al. Mar 2007 A1
20070090788 Hansford et al. Apr 2007 A1
20070106176 Mark et al. May 2007 A1
20070118048 Stephens et al. May 2007 A1
20070118049 Viola May 2007 A1
20070123797 Krause May 2007 A1
20070161925 Quick et al. Jul 2007 A1
20070167736 Dietz et al. Jul 2007 A1
20070167782 Callahan et al. Jul 2007 A1
20070167828 Saadat Jul 2007 A1
20070167943 Janssen et al. Jul 2007 A1
20070179401 Hibner Aug 2007 A1
20070208271 Voegele Sep 2007 A1
20070213590 Squicciarini Sep 2007 A1
20070213630 Beckman et al. Sep 2007 A1
20070213632 Okazaki et al. Sep 2007 A1
20070219572 Deck et al. Sep 2007 A1
20070236180 Rodgers Oct 2007 A1
20070239067 Hibner et al. Oct 2007 A1
20070255173 Hibner Nov 2007 A1
20070270710 Frass et al. Nov 2007 A1
20070276288 Khaw Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20070292858 Chen et al. Dec 2007 A1
20070293788 Entrekin et al. Dec 2007 A1
20070293830 Martin Dec 2007 A1
20080004545 Garrison Jan 2008 A1
20080007217 Riley Jan 2008 A1
20080021487 Heisler Jan 2008 A1
20080021488 Berberich Jan 2008 A1
20080030170 Dacquay et al. Feb 2008 A1
20080064925 Gill et al. Mar 2008 A1
20080064984 Pflueger Mar 2008 A1
20080079391 Schroeck et al. Apr 2008 A1
20080103411 Van Bladel et al. May 2008 A1
20080110261 Randall et al. May 2008 A1
20080125634 Ryan et al. May 2008 A1
20080135443 Frojd et al. Jun 2008 A1
20080146962 Ritchie et al. Jun 2008 A1
20080146965 Privitera et al. Jun 2008 A1
20080154151 Ritchart et al. Jun 2008 A1
20080161682 Kendrick et al. Jul 2008 A1
20080161718 Schwindt Jul 2008 A1
20080161719 Miller et al. Jul 2008 A1
20080161720 Nicoson et al. Jul 2008 A1
20080195066 Speeg et al. Aug 2008 A1
20080200833 Hardin et al. Aug 2008 A1
20080200836 Speeg et al. Aug 2008 A1
20080208194 Bickenbach Aug 2008 A1
20080214955 Speeg et al. Sep 2008 A1
20080215056 Miller et al. Sep 2008 A1
20080221443 Ritchie et al. Sep 2008 A1
20080221444 Ritchie et al. Sep 2008 A1
20080221478 Ritchie et al. Sep 2008 A1
20080221479 Ritchie et al. Sep 2008 A1
20080221480 Hibner et al. Sep 2008 A1
20080228104 Uber et al. Sep 2008 A1
20080232604 Dufresne et al. Sep 2008 A1
20080234715 Pesce et al. Sep 2008 A1
20080281225 Spero et al. Nov 2008 A1
20080306406 Thompson Dec 2008 A1
20080308607 Timm et al. Dec 2008 A1
20090015208 White et al. Jan 2009 A1
20090030405 Quick et al. Jan 2009 A1
20090048532 Stephens et al. Feb 2009 A1
20090048533 Miller Feb 2009 A1
20090062624 Neville Mar 2009 A1
20090082695 Whitehead Mar 2009 A1
20090087249 Flagle et al. Apr 2009 A1
20090088666 Miller et al. Apr 2009 A1
20090112118 Quick, Jr. et al. Apr 2009 A1
20090125062 Amin May 2009 A1
20090137927 Miller May 2009 A1
20090146609 Santos Jun 2009 A1
20090171242 Hibner Jul 2009 A1
20090171243 Hibner et al. Jul 2009 A1
20090200042 Emerson Aug 2009 A1
20090204022 Schwindt Aug 2009 A1
20090281453 Tsonton et al. Nov 2009 A1
20100030020 Sanders et al. Feb 2010 A1
20100063416 Cicenas et al. Mar 2010 A1
20100152610 Parihar et al. Jun 2010 A1
20100152611 Parihar et al. Jun 2010 A1
20100160820 Weikel, Jr. et al. Jun 2010 A1
20100160823 Parihar et al. Jun 2010 A1
20100160824 Parihar et al. Jun 2010 A1
20100185179 Chan Jul 2010 A1
20100222700 Hibner Sep 2010 A1
20100292607 Moore et al. Nov 2010 A1
20100312140 Smith et al. Dec 2010 A1
20100317995 Hibner et al. Dec 2010 A1
20100317997 Hibner et al. Dec 2010 A1
20100317998 Hibner et al. Dec 2010 A1
20100324449 Rostaing et al. Dec 2010 A1
20110004119 Hoffa et al. Jan 2011 A1
20110084109 Ford et al. Apr 2011 A1
20110105946 Sorensen et al. May 2011 A1
20110152715 Delap et al. Jun 2011 A1
20110160611 Ritchart et al. Jun 2011 A1
20110224577 Park Sep 2011 A1
20120080332 Shelton, IV et al. Apr 2012 A1
20120191009 Hoon et al. Jul 2012 A1
20120215130 Field et al. Aug 2012 A1
20130289441 Videbaek et al. Oct 2013 A1
20140171825 Eller Jun 2014 A1
20140358032 Videbaek et al. Dec 2014 A1
20140371585 Thompson et al. Dec 2014 A1
20150018712 Seiger et al. Jan 2015 A1
20150073301 Videbaek et al. Mar 2015 A1
20150223787 Coonahan et al. Aug 2015 A1
20150238174 Reuber et al. Aug 2015 A1
20160022251 Chudzik et al. Jan 2016 A1
20160256138 Videbaek et al. Sep 2016 A1
20160317133 Orts et al. Nov 2016 A1
20160367229 Jorgensen et al. Dec 2016 A1
20160367230 Almazan Dec 2016 A1
20160374650 Heske et al. Dec 2016 A1
20170042517 Heske et al. Feb 2017 A1
20170181732 Videbaek et al. Jun 2017 A1
20170245840 Chudzik et al. Aug 2017 A1
20170258458 Seiger et al. Sep 2017 A1
20180125467 Reuber et al. May 2018 A1
Foreign Referenced Citations (61)
Number Date Country
101011268 Aug 2007 CN
101032420 Sep 2007 CN
3924291 Jan 1991 DE
4041614 Oct 1992 DE
3924291 Jul 2000 DE
10034297 Apr 2001 DE
10026303 Feb 2002 DE
20204363 May 2002 DE
20209525 Nov 2002 DE
10235480 Feb 2004 DE
0433717 Jun 1991 EP
0890339 Jan 1999 EP
3970658 Jan 2000 EP
0995400 Apr 2000 EP
1074271 Feb 2001 EP
1520518 Apr 2005 EP
1579809 Sep 2005 EP
1604615 Dec 2005 EP
1665989 Jun 2006 EP
1829487 Sep 2007 EP
2095772 Sep 2009 EP
2106750 Oct 2009 EP
1569561 Oct 2010 EP
1345429 Dec 1963 FR
2739293 Apr 1997 FR
2018601 Oct 1979 GB
1-126957 Sep 1987 JP
H10508504 Aug 1998 JP
2005530554 Oct 2005 JP
2006509545 Mar 2006 JP
2006528907 Dec 2006 JP
2007502159 Feb 2007 JP
9207500 May 1992 WO
9508945 Apr 1995 WO
9628097 Sep 1996 WO
9734531 Sep 1997 WO
9825522 Jun 1998 WO
9831285 Jul 1998 WO
9835615 Aug 1998 WO
9846290 Oct 1998 WO
9933501 Jul 1999 WO
9004832 Feb 2000 WO
0030546 Jun 2000 WO
0059378 Oct 2000 WO
0172230 Oct 2001 WO
0222023 Mar 2002 WO
0232318 Apr 2002 WO
02069808 Sep 2002 WO
2005013830 Feb 2005 WO
2006015302 Feb 2006 WO
2007047128 Apr 2007 WO
2007095330 Aug 2007 WO
2007112751 Oct 2007 WO
2008021687 Feb 2008 WO
2008040812 Apr 2008 WO
2008131362 Oct 2008 WO
2010107424 Sep 2010 WO
2010120294 Oct 2010 WO
2011019343 Feb 2011 WO
2013158072 Oct 2013 WO
2014153410 Sep 2014 WO
Non-Patent Literature Citations (1)
Entry
Maxim; Maxim8606; USB/AC Adapter, Li+ Linear Battery Charger with Integrated 50m Omega Battery Switch in TDFN; http://datasheets.maxim-ic.com/en/ds/MAX8606.pdf; Dec. 2008; pp. 1-14; Rev 1.
Related Publications (1)
Number Date Country
20190209144 A1 Jul 2019 US
Provisional Applications (1)
Number Date Country
61803626 Mar 2013 US
Continuations (1)
Number Date Country
Parent 14772994 US
Child 16354637 US