1. Field of the Invention
The present invention relates generally to medical devices and methods. More particularly, the present invention relates to a device and method for closing a wound resulting from tissue biopsy.
Excisional biopsy typically removes an elliptical section of tissue, usually containing the full dermis and in some cases the subcutaneous fatty layer as well. Such biopsies typically leave an elliptical opening in the skin that requires closing. Such elliptical biopsy openings have been conventionally closed by suturing which places the skin on each side of the closure in tension. The edges of the skin must stretch in order for the previously separated incision edges to meet in the center. Typically, multiple, interrupted sutures or a running suture may be employed, both of which take significant physician time and often result in an unsightly scar. Additionally, such suturing techniques leave pathways through the skin through which pathogens can enter and cause infection.
For these reasons, it would be desirable to provide improved devices and methods for closing wounds resulting from tissue biopsy where the closure requires less time, provides a better aesthetic result, and lessens the risk of infection. At least some of these objectives will be met by the inventions described hereinbelow.
2. Description of the Background Art
Biopsy incision closure devices comprising an elliptical or oval base material which can be closed using an external clip or device are described in copending, commonly owned PCT Application PCT/US2010/00430, the full disclosure of which is incorporated herein by reference. Other relevant references include U.S. Pat. Nos. 3,933,158; 4,038,989; and 4,114,624; and US Published Application Numbers 2006/0200198; 2007/0088339; 2007/026078; 2008/0081951; 2008/0114396; and 2008/0287864.
The present invention provides a biopsy incision closure device including a base having an opening and a tissue-adhering surface, and a frame incorporated in the base, where the frame has a first leg disposed along one side of the opening and a second leg disposed along an opposed side of the opening. The frame has a first configuration wherein the legs hold the opening in an elliptical shape through which the biopsy can be performed and a second configuration wherein the legs close the opening along generally straight lines. By “elliptical” it is meant that the opening is wider in the middle and generally tapered at each end. Thus, while the shape will often be that of a true ellipse, other tapered or fusiform geometries are also intended to be within the scope of the present invention.
In the exemplary embodiments, the frame is made of a material which is more rigid than the material of the base so that the frame distributes the closure forces more evenly along the opposed edges of a biopsy or other tissue cavity as the base is closed by the frame. Such even distribution of force can reduce or eliminate the point-load forces that are created by the use of discreet or running sutures, thus promoting faster and more uniform healing with minimal scarring.
The base will typically comprise a soft elastic or elastomeric material, such as silicone rubber, a polyurethane, and the like. In other embodiments, however, the base could comprise a woven fabric, optionally at least partially woven from elastic fibers or threads, or could be a laminated structure comprising two or more layers. In all instances, however, it is necessary that the base be able to elongate in at least the axial direction since the base will be axially elongated as the frame closes, as described in greater detail below. Often, the base will be isotropically elastic in all directions, but in other embodiments, the base may be anisotropically elastic so that the material of the base preferentially stretches in the axial direction and resists stretching in the lateral direction. As will be described below, the ability to resist stretching in the lateral direction is advantageous since it improves the traction applied to the tissue as the tissue is closed by the assembly of the frame and base.
At least a portion of a surface of the base which contacts the skin will be adapted to attach to the tissue surface to be closed, typically being covered with an adhesive to allow the base to be removably attached to the skin or other tissue surface. Suitable adhesives include acrylate-based adhesives, silicone rubber-based adhesives, and the like. In some instances, however, it may be desirable to alternatively or additionally attach the base to the skin or tissue surface using sutures, staples, fasteners, and the like, although such alternative or additional attachment will usually not be needed.
The frame will comprise a resilient material that is resistant to axial elongation (stretching) so that the legs of the frame can define the elliptical opening, maintain the peripheral dimension of the frame is opening, and move the edges of the elliptical opening in the base as the individual legs of the frame are moved toward one another. The frame may comprise a variety of hard, flexible plastics or metals, with an exemplary frame being formed from polyurethane. In an exemplary embodiment, the closure devices of the present invention may be formed by molding an elastomeric base material over a flexible plastic or metal frame. For example, metal wire or stamped metal frames could find use in addition to molded hard plastics.
The frame may be “self-opening” or “self-closing.” Self-closing devices are closed when no biasing forces are applied to the frame. Since the legs are in the closed configuration, the physician typicallyopens the by axially compressing the ends of the frame to cause the legs to bow apart from each other. The frame and the base may then be attached to the skin or other tissue surface while the frame is held open by an amount judged by the doctor to be sufficient to perform the subsequent biopsy. While the legs will be biased to closing, usually the closure force is not sufficient to close the tissue after biopsy, and a further latching or other closure device will be needed to close the tissue opening, as described below.
More commonly, the frame is “self-opening” and in its elliptically open configuration when no biasing forces are applied to the frame. Such self-opening devices may be secured to the target skin or tissue surface without the need to axially compress the frame as needed with the previous embodiment. A latching or other closure mechanism will be used to close the frame as well as the elliptical opening in the base after the biopsy, as described in more detail below.
In certain embodiments, the biopsy incision closure devices of the present invention may further include a latching mechanism which can hold the legs in a closed or partially closed configuration, where the latching mechanism may be built into the frame or less commonly into the base itself. Often the latching mechanism will be adjustable so that the legs may be closed together at various spacings as desired by the physician. For example, the latching mechanism may comprise a ratchet member which extends between the first and second legs. In most instances, the latching member will be hinged to or otherwise connected with the frame of the closure device. In other embodiments, however, the ratchet mechanism or member could be separate from the frame and base of the closure device and inserted only after the biopsy has been completed.
Usually the legs of the frame will be joined together at their axial ends by hinges or hinge-like mechanisms. The hinges may take a variety of forms, and in the exemplary devices which are illustrated below, the hinges are either a keyhole or a living hinge. Other conventional hinges may be employed such as a ball and socket, a barrel and pin, a coil spring, or simple separate ball ends on the legs of the frame member, where the ball ends are embedded in the base or in another elastomeric block.
In a particularly useful embodiment, the hinge may comprise a leaf spring structure which applies an outward force to the tissue as the frame is closed. The outward force, in turn, can flatten the tissue at each end of the incision when the frame is closed, thus resisting tissue puckering and allowing the closure device to have a shorter length-to-width aspect ratio. Heretofore, biopsies have typically been performed with a relatively large length-to-width ratio in order to minimize deformation and scarring of the tissue at each end of the incision after the incision is closed. Providing a closure mechanism which can flatten the tissue at each end of the incision can reduce the need for excessively long incisions.
As mentioned above, the base needs to be able to stretch in the axial direction since the legs of the frame will elongate as the frame is closed. There is no corresponding need, however, for the base td stretch in a lateral dimension, and in fact it's preferable that stretching of the base material be limited in the lateral direction to improve the traction on the underlying tissue as the base and frame are closed. One way of achieving such selective stretchability is to employ an anisotropic material as the base or a portion of the base, where the material has a higher elasticity in an axial direction than in a lateral direction. Such anisotropic materials may comprise woven fabrics where the threads or fibers in one direction are elastic while in the other direction are inelastic. Alternatively, fabrics made entirely of an elastic material can be reinforced (by inelastic fibers, wire, threads, or other elements) in only a single (lateral) direction in order to achieve the desired anisotropticity.
In the exemplary embodiments below, however, the anisotropic stretching of the base is achieved by providing reinforcement members projecting laterally outwardly from the legs of the frame. Such reinforcement members are embedded in the base material and inhibit stretching in the lateral direction while allowing the stretching in the axial direction.
The reinforcement members may provide structural benefits as well. The members may minimize unwanted tissue inversion effects which could result from torque applied to the legs of the frame by the closing mechanism. Since the latch mounts above the skin, a moment arm is created wherever the latch(es) attaches to the device which can twist the mounting point and the frame resulting in inverted incision edges. The “spider leg” geometry of the reinforcement members can act as a struts or ribs to counteract this torque because they convert torque forces into normal forces (perpendicular to the skin plane) under each reinforcement member. Since the reinforcement member extends relatively far from the incision, twisting of the frame and subsequent wound inversion is inhibited.
In an additional aspect, the present invention can provide biopsy closure devices which can evert the edges of the tissue as they are brought together in order to improve healing. In such embodiments, an eversion lip will be provided along the edges of the first and second legs of the frame so that the lips engage the tissue and extend inwardly from the elliptical periphery of the frame when present on the tissue. The eversion lip is attached to the frame with a living hinge or otherwise so that it will evert upwardly as the frame is closed, thus lifting the tissue to provide the desired tissue edge eversion. Such tissue eversion promoting may also be achieved by deflecting the frame legs so that they are “normally” in a lifted state, so that when the base is adhered to the skin (it must be pressed down a bit to fully contact the skin), the upwardly deflected inner portions of the base will lift the skin slightly to promote eversion upon closure. This approach may be in addition to or an alternative to the hinged approach described above.
The present invention further provides methods for biopsying tissue. A base having an opening is adhered to a tissue surface, where the base includes a resilient frame which surrounds the opening. The tissue is excised through the opening, leaving a cavity having opposed, laterally spaced-apart edges in the tissue. The frame is then closed to apply a generally uniform distribution of lateral closing forces along opposite of the opening to evenly close the edges of tissue along the cavity. Usually, the opening in the base will be elliptical, as defined above, and the frame will be closed using a latching mechanism of the type described above. Optionally, prior to adhering the base to the tissue surface, the frame may be open by axially compressing the ends of the frame. The base may preferentially stretch in an axial direction to accommodate elongation of the cavity as the opposite sides are closed in a lateral direction, and typically the base is inhibited from stretching in the lateral direction by reinforcing elements on the frame or otherwise disposed in the base itself.
In the specific embodiments, the frame is closed by advancing a ratchet from one side of the frame to a laterally opposite side of the frame. As the frame closes, the hinge or other mechanism at either both axial ends may apply an outward force to flatten the tissue in order to reduce tissue deformation during healing. The frame may also comprise a lip configured to raise an inner periphery of the base opening to evert the tissue adhered to the base as the frame is closed.
Referring to
The frame defines an opening 20 in the base which is available for performing the biopsy after the device 10 has been adhered to a target tissue surface, typically using an adhesive layer 16 on a bottom surface of the base and frame, as best seen in
A second biopsy incision closure device 24 is illustrated in
A further difference in the device 24 is that it includes a plurality of reinforcement members 44 (
An alternative latching mechanism 50 is shown on a frame 52 in
An alternative frame structure 70 is shown in
Referring now to
Referring now to
In yet another aspect of the present invention, it will often be desirable to precisely form a biopsy along an incision line which is based slightly inwardly from the periphery of the opening defined by the frame. To do so, a template 140 may be inserted into opening 142 of any one of the biopsy closure devices, shown generically as closure device 144. By then drawing a line around the inner periphery of the template 140, removing the template, and cutting along the drawn line, a precisely defined tissue cavity will be formed. The closure device will then close the incision with small marginally or peripheral edges of the tissue being brought together to optimally compress and close the wound.
Referring now to
Referring now to
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.
This application is a continuation of Ser. No. 13/096,602, filed Apr. 28, 2011, which claims the benefit of the following provisional applications: Provisional Application No. 61/343,916, filed on May 3, 2010; Provisional Application No. 61/397,604, filed on Jun. 14, 2010; and Provisional Application No. 61/462,329, filed on Feb. 1, 2011, the full disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2012755 | Muth | Aug 1935 | A |
2747248 | Mercer | May 1956 | A |
3487836 | Niebel et al. | Jan 1970 | A |
3516409 | Howell | Jun 1970 | A |
3863640 | Haverstock | Feb 1975 | A |
3926193 | Hasson | Dec 1975 | A |
3933158 | Haverstock | Jan 1976 | A |
3971384 | Hasson | Jul 1976 | A |
4038989 | Romero-sierra et al. | Aug 1977 | A |
4114624 | Haverstock | Sep 1978 | A |
4526173 | Sheehan | Jul 1985 | A |
4535772 | Sheehan | Aug 1985 | A |
4605005 | Sheehan | Aug 1986 | A |
4676245 | Fukuda | Jun 1987 | A |
4881546 | Kaessmann | Nov 1989 | A |
4905694 | Will | Mar 1990 | A |
4976726 | Haverstock | Dec 1990 | A |
5377695 | An Haack | Jan 1995 | A |
5514155 | Daneshvar | May 1996 | A |
5665108 | Galindo | Sep 1997 | A |
6126615 | Allen et al. | Oct 2000 | A |
6176868 | Detour | Jan 2001 | B1 |
7455681 | Wilke et al. | Nov 2008 | B2 |
7645285 | Cosgrove et al. | Jan 2010 | B2 |
20050020956 | Lebner | Jan 2005 | A1 |
20050234485 | Seegert et al. | Oct 2005 | A1 |
20060200198 | Riskin et al. | Sep 2006 | A1 |
20070026078 | Almarsson et al. | Feb 2007 | A1 |
20070088339 | Luchetti | Apr 2007 | A1 |
20070141130 | Villanueva et al. | Jun 2007 | A1 |
20070260278 | Wheeler et al. | Nov 2007 | A1 |
20080033334 | Gurtner et al. | Feb 2008 | A1 |
20080081951 | Frasier et al. | Apr 2008 | A1 |
20080114396 | Cory et al. | May 2008 | A1 |
20080287864 | Rosenberg | Nov 2008 | A1 |
20090036922 | Riskin et al. | Feb 2009 | A1 |
20090099496 | Heegaard et al. | Apr 2009 | A1 |
20090299255 | Kazala et al. | Dec 2009 | A1 |
20090299257 | Long et al. | Dec 2009 | A1 |
20090299303 | Seegert | Dec 2009 | A1 |
20100121286 | Locke et al. | May 2010 | A1 |
20100280545 | Fridman | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
WO 2011043786 | Apr 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20120046691 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61343916 | May 2010 | US | |
61397604 | Jun 2010 | US | |
61462329 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13096602 | Apr 2011 | US |
Child | 13286378 | US |