Biopsy marker with in situ-generated imaging properties

Information

  • Patent Grant
  • 9042965
  • Patent Number
    9,042,965
  • Date Filed
    Wednesday, March 6, 2013
    11 years ago
  • Date Issued
    Tuesday, May 26, 2015
    8 years ago
Abstract
An intracorporeal marker, for marking a site within living tissue of a host, includes an outer body portion of biodegradable material. An inner body portion is located in the outer body portion. The inner body portion includes biological material that becomes calcified in the living tissue of the host over time. An agent interacts with the biological material to promote calcification of the biological material of the inner body portion in the living tissue of the host.
Description
TECHNICAL FIELD

The invention relates generally to a biopsy tissue markers. More specifically, the invention further relates to a biocompatible tissue site marker that is visible under various modes of imaging.


BACKGROUND

Advances in modern medical imaging technologies such as X-ray, ultrasound, or magnetic resonance imaging make it possible to identify and to biopsy tumors while they are still small. When dealing with a small tumor, especially after a portion of the tumor has been removed for biopsy, it is sometimes difficult to relocate the tumor at a later time for treatment. This is particularly true in the case of tumors in the breast, where the ability to visualize a small growth may depend upon the manner in which the breast is positioned or compressed during the procedure. In addition, prior to surgically removing a tumor, it is often advantageous to try to shrink the tumor by chemotherapy or irradiation. This is especially true in the case of breast cancer, where conservation of breast tissue is a concern. Shrinkage of the tumor can sometimes make it difficult for the surgeon to locate the tumor.


A solution to this problem is to place a marker within the target tissues at the time of biopsy which can be visualized under a variety of imaging modalities to facilitate finding the tumor at a later time. When a suspicious mass is detected, a sample is taken by biopsy, often, but not necessarily, using a specialized instrument such as a biopsy needle. The needle is inserted in the breast while the position of the needle is monitored using fluoroscopy, ultrasonic imaging, X-rays, MRI or other suitable imaging modalities.


In a new procedure, called stereotactic needle biopsy, the breast is compressed between the plates of a mammography apparatus and two separate X-rays are taken from different points of reference. The exact position of the mass or lesion is calculated within the breast. The coordinates of the lesion are then programmed into a mechanical stereotactic apparatus which guides the biopsy needle to the lesion.


Irrespective of the biopsy technique, the surgical site may need to be examined or accessed for surgical treatment of a cancerous lesion. Treatment requires the surgeon or radiologist locate the lesion precisely and this may need to be done repeatedly over a period of time. Since treatment may alter the host tissue, the function of a marker even more important.


U.S. Pat. No. 6,725,083 for “Tissue site markers for in vivo imaging” describes biopsy site markers and methods that permit conventional imaging techniques to be used, such as ultrasonic imaging. The biopsy site markers have high ultrasound reflectivity due to high contrast of acoustic impedance resulting from gas-filled internal pores. The markers may have a non-uniform surface. The patent discloses the use of materials such as metal, ceramic materials, metal oxides, polymer, and composites and mixtures thereof.


U.S. Pat. No. 6,350,244 for “Bioabsorable markers for use in biopsy procedure” discloses a breast tissue marker that allows the marker to be left in place avoiding the need for surgical removal. One type of marker takes the form of hollow spheres made of polylactite acid filled with iodine or other radiopaque material to make them visible under X-rays and/or ultrasound. The radiopaque materials are also bioabsorbable. Another type of marker disclosed is a solid marker of pre-mixed radiopaque material and a bioabsorbable material. The solid markers may also include dyes and radioactive materials.


U.S. Pat. No. 6,347,241 for “Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it” shows a biopsy site marker of small bodies or pellets of gelatin which enclose substantially a radioopaque object. The pellets are deposited at the biopsy site by an applicator device inserted in the biopsy site. Several gelatin pellets are deposited through the tube. The radio opaque core in the gelatin bodies are of a non-biological material and structure which are readily identified during X-ray observations.


U.S. Pat. No. 6,161,034 for “Methods and chemical preparations for time-limited marking of biopsy sites” describes markers that remain present to permit detection and location of the biopsy site. The markers are later absorbed by the host. The patent discloses gelatin, collagen, balloons and detectability provided by AgCl; Agl; BaCO3; BaSO4; K; CaCO3; ZnO; Al2O3; and combinations of these.


US Patent Publication No. 2006/0079805 for “Site marker visible under multiple modalities” describes site markers that include balls or particles which are bonded together to form a marker body. The balls or particles are made from biocompatible materials such as titanium, stainless steel or platinum. The balls or particles are described as being bonded together by sintering or by adhesive such as epoxy. An alternative embodiment has at least one continuous strand of wire of biocompatible material such as titanium, stainless steel, platinum, or other suitable material, compressed to form a mass that resembles a ball of yarn. Another alternative is a resonating capsule, or a rod with drilled holes.


US Patent Publication No. 2006/0036165 for “Tissue site markers for in vivo imaging” shows ultrasound-detectable markers whose shapes are distinct in an image from biological shapes. Various shapes are disclosed including cylinders, coils, and other more complex shapes.


US Patent Publication No. 2005/0234336 for “Apparatus and method for marking tissue” describes permanent biopsy markers that support visualization under multiple modalities such as MRI, X-ray and ultrasound. The marker has a body made of a resilient, preferably non-absorbable polymer material that is radiopaque and echogenic. The material expands in situ. The materials for the marker include polyacrylates, ethylene-vinyl acetates (and other acyl-substituted cellulose acetates), polyurethanes, polystyrenes, polyvinyl oxides, polyvinyl fluorides, poly(vinyl imidazoles), chlorosulphonated polyolefins, polyethylene oxides, polyvinyl alcohols (PVA), polytetrafluoroethylenes and nylons, with the preferred material being polyvinyl alcohol (PVA) and alkylated or acylated derivatives thereof.


U.S. Pat. No. 5,676,146 shows an implant used to repair skeletal defects and irregularities. The implant is of radiolucent material and with a resorbable radiopaque marker, such as nondemineralized or partially demineralized bone particles. A radiopaque component, which is resorbable in its entirety, is included. Examples of materials include demineralized bone sheet, particles, etc., collagen and collagen derivatives, plastic such as polyethylene cetabular cups.


Collagen has been proposed as a material for implants and various methods of preparation and types of materials are known. Examples are disclosed in U.S. Pat. Nos. 5,800,541; 5,162,430; 5,328,955; and 5,475,052


It is believed that most known tissue markers have a disadvantage in that they are not visible under all available imaging modalities. The features of a marker that make it stand out under X-rays do not necessarily make them stand out under MRI or ultrasound imaging. One prior art mechanism for addressing the need for multiple-imaging-mode markers is to employ a combination of metal structure and biodegradable foam to provide ultrasonic imaging visibility, MRI visibility and x-ray visibility. In this case, the metal structure provides x-ray visibility and biodegradable foam provides visibility in ultrasonic imaging.


There is a need for site markers made from biocompatible materials that are visible under various modes of imaging to reduce the number of procedures that patients must undergo in detection and treatment of cancer or any disease requiring the user of tissue markers. It will be a valuable contribution to the art for a marker with a simple design and superior biocompatibility can be provided.


SUMMARY OF THE INVENTION

A biopsy marker, preferably a breast biopsy marker, has radio-opaque properties that are derived in situ, preferably based on a natural a biological response, such as calcification or accumulation or tissue-concentration of a chemical agent that acts as an imaging contrast. In an embodiment, a biodegradable foam such as collagen foam or gelatin foam is embedded with a biological tissue that is susceptible to the calcification. The biopsy marker is implanted to mark the biopsy site. The foam material provides ultrasonic visibility to access the implantation site. The biological tissue undergoes calcification in 30 days to 5 years depending on the chemistry of biological tissue used. The calcification generated in the biological tissue provides visibility in magnetic resonance imaging (MRI) and X-ray imaging. As a result, the marker may be located using radiation-based imaging or ultrasonic imaging.


Many types of implantable tissues can be used to prepare a biopsy marker described in this invention. The implantable tissues used include but not limited to: bovine pericardium tissue, porcine dermal tissue, bovine or porcine arterial tissue, porcine aortic wall tissue and the like. A tissue that is rich in elastin such as porcine aortic wall tissue is even more preferred. It is believed that elastin rich tissue is highly susceptible to calcification. Biomaterials that are derived from elastin protein may also be used. The biological tissue is preferred to be crosslinked or stabilized using glutaraldehyde. The tissue crosslinked using 0.2 to 2% glutaraldehyde is even more preferred. In addition, biological ingredients that promote calcification may also be added in the tissue. These additives include bioactive and non-bioactive substances like bone growth factor, phospholipids, polyethylene glycol and the like.


In another embodiment, an elastic protein-based biomaterial is processed to cause the material to have a 60 to 90% porosity. The material is further processed to cause crosslinking using glutaraldehyde, 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) or other suitable crosslinker. The elastin foam is then implanted as a biopsy marker where it undergoes rapid calcification. The calcification is then detected using standard X-ray or MRI imaging techniques.


According to an embodiment, an intracorporeal marker marks a site within living tissue of a host. The marker has a body having a first portion of porous biodegradable material having gas-filled voids and at least one second portion including biological material that tends to become calcified in a human host over time. Preferably, the biological material includes a material with elastin as a substantial component. More preferably, the biological tissue includes porcine aortic wall tissue. Even more preferably, the biological tissue includes a material with elastin that has been cross-linked. In any of these embodiments, an agent may be incorporated in the biological material that promotes bone growth. The calcification may be enhanced by use of a bone growth factor, phospholipids, or polyethylene glycol.


In another embodiment, the first portion defines a cylindrical shape and the second portion is encased within it. The biological material may be entirely encased with the body. Preferably, the body (first portion) has gas-filled pores. In an embodiment the first portion includes collagen and/or gelatin.


According to an embodiment, an intracorporeal marker marks a site within living tissue of a host. The marker has a body having a first portion of porous biodegradable material having gas-filled voids and at least one second portion including biological material that tends to become imageable in a human host over time due to a physiological mechanism of the host. Preferably, the biological material includes a material with elastin as a substantial component. More preferably, the biological tissue includes porcine aortic wall tissue. Even more preferably, the biological tissue includes a material with elastin that has been cross-linked. In any of these embodiments, an agent may be incorporated in the biological material that promotes bone growth. The calcification may be enhanced by use of a bone growth factor, phospholipids, or polyethylene glycol.


In another embodiment, the first portion defines a cylindrical shape and the second portion is encased within it. The biological material may be entirely encased with the body. Preferably, the body (first portion) has gas-filled pores. In an embodiment the first portion includes collagen and/or gelatin. In another embodiment, the biological material is capable of interacting with an antibody carrying a chemical substance that can be detected by an imaging modality.


According to another embodiment, a method of in vivo identification of a position in soft tissue, includes: inserting a marker having a first portion that can be imaged with ultrasound and a second portion that promotes calcification; imaging under ultrasound at a first time and imaging under radiation at a second time following the first. The second time preferably follows the first by an interval during which calcification of the second portion occurs. The method may include waiting for the second portion to calcify. The method may include the step of making the marker which may further include using an agent in the marker that promotes bone growth.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain the features of the invention.



FIG. 1 is a cross-sectional view of a tissue marker of biodegradable foam with biological tissue inside.



FIG. 2 shows the tissue marker of FIG. 1 from the side.



FIG. 3 ghost oblique view of the tissue marker of FIGS. 1 and 2.



FIG. 4 shows a method of making the tissue marker of FIGS. 1-3 and subsequently using the marker.





DETAILED DESCRIPTION OF THE INVENTION

A biopsy marker, preferably a breast biopsy marker, has radio-opaque properties that are derived in situ, preferably based on a natural a biological response, such as calcification or accumulation or tissue-concentration of a chemical agent that acts as an imaging contrast. In an embodiment, a biodegradable foam such as collagen foam or gelatin foam is embedded with a biological tissue that is susceptible to the calcification. The biopsy marker is implanted to mark the biopsy site. The foam material provides ultrasonic visibility to access the implantation site. The biological tissue undergoes calcification in 30 days to 5 years depending on the chemistry of biological tissue used. The calcification generated in the biological tissue provides visibility in magnetic resonance imaging (MRI) and X-ray imaging. As a result, the marker may be located using radiation-based imaging or ultrasonic imaging.


Many types of implantable tissues can be used to prepare a biopsy marker described in this invention. The implantable tissues used include but not limited to: bovine pericardium tissue, porcine dermal tissue, bovine or porcine arterial tissue, porcine aortic wall tissue and the like. A tissue that is rich in elastin such as porcine aortic wall tissue is even more preferred. It is believed that elastin rich tissue is highly susceptible to calcification. Biomaterials that are derived from elastin protein may also be used. The biological tissue is preferred to be crosslinked or stabilized using glutaraldehyde. The tissue crosslinked using 0.2 to 2% glutaraldehyde is even more preferred. In addition, biological ingredients that promote calcification may also be added in the tissue. These additives include bioactive and non-bioactive substances like bone growth factor, phospholipids, polyethylene glycol and the like.


In another embodiment, an elastic protein-based biomaterial is processed to cause the material to have a 60 to 90% porosity. The material is further processed to cause crosslinking using glutaraldehyde, 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) or other suitable crosslinker. The elastin foam is then implanted as a biopsy marker where it undergoes rapid calcification. The calcification is then detected using standard X-ray or MRI imaging techniques.


The shape of the marker can depend on the clinical application. In general cylindrical, spherical, disk like shapes are preferred. Irregular shapes may also be used.


Referring now to FIGS. 1-3, a tissue marker 100 has an external layer of biodegradable foam 110 with a core of biological tissue 150. The biodegradable foam has biocompatible gas within its voids. The biocompatible gas provides a low density structure within the marker body which provides high contrast when viewed using ultrasonic imaging equipment. This makes the marker visible under ultrasonic imaging modalities. The biological tissue 150 within is a material chosen for its tendency to calcify when placed in a human host. When the marker is placed within the body of a host, the biodegradable foam is broken down while the biological material 150 calcifies and eventually becomes visible under radiation imaging modalities.


The period during which ultrasound can be used may last between weeks and many months, for example six months. In many therapeutic situations, this is more than sufficient time. The time during which the calcified remainder can be imaged may last for many years or it may be permanent. The calcification may take a year or two to occur. Again, in many therapeutic situations, the radiation-imaging provided in the later stages is all that is required. Therefore the loss of the ability to image under ultrasound is inconsequential.


The benefits of the above device should be apparent. The calcified biological tissue is highly compatible with the host. Some of the bulk of the marker which may be desirable for ultrasound imaging can be lost which may be desirable as well. In a preferred embodiment, which is by no means limiting of the invention, the marker may be generally cylindrical with a diameter of about 4 mm and a length of about 6 mm. The core of biological tissue may be about 1 mm in diameter and about 3 mm long.


One example of a method for making and using the marker is illustrated in FIG. 4. In step S1, a collagen solution is poured into a mold to partly fill the mold. Just enough solution to create a spacer for the biological tissue is all that is required. Then, in step S2, the collagen solution frozen in the mold. The biological material is inserted in the mold and collagen solution is poured into the space around it in step S4. Then the whole mold is frozen and the frozen collagen solution lyophilized in step S5 to remove the ice while leaving the collagen matrix behind.


To use the marker, in step S6, the marker is implanted in a host. This step may be done as part of a biopsy procedure, for example. Then, in step S7, the marker is imaged. Step S7 may occur repeatedly over a range of time, perhaps a year, after implantation. In step S8, perhaps over a year after implantation, the marker is imaged using radiation imaging modalities. Steps S7 and S8 may overlap and are not necessarily chronologically-sequential in all instances. Other steps are not necessarily sequential either. For example, steps S3 and S4 could be done simultaneously—the flow chart presents merely one example of the manufacturing and use processes.


Instead of using collagen foam to form voids, it is possible to form voids in a biodegradable material using other means. For example, voids could be molded in or machined into a piece of material Implantation of a biological material can be done in a similar way, but forming a hole in a pre-made body of biodegradable material, inserting the biological material into the hole and subsequently sealing the hole.


Also, instead of molding the foam, it is possible to form the marker by dipping the biological material body 150 into a collagen or other suitable solution and freezing it in repeated steps until a coating of suitable thickness is obtained before lyophilizing the resulting structure.


As discussed above, the biological tissue 150 may include bovine pericardium tissue, porcine dermal tissue, bovine or porcine arterial tissue, porcine aortic wall tissue and the like. As mentioned, a tissue that is rich in elastin such as porcine aortic wall tissue is even more preferred. It is believed that elastin rich tissue is highly susceptible to calcification. Biomaterials that derived from elastin protein may also be used. The biological tissue is preferred to be crosslinked or stabilized using glutaraldehyde. The tissue crosslinked using 0.2 to 2% glutaraldehyde is even more preferred. In addition, biological ingredients that promote calcification may also be added in the tissue. These additives include bioactive and non-bioactive substances like bone growth factor, phospholipids, polyethylene glycol and the like.


While the above marker example of a cylindrical body is a preferred configuration, other shapes and combinations can be used. For example, more than one body of biological tissue could be integrated in the porous biodegradable body. Also, the biological tissue need not be entirely encased within the body of the biodegradable portion. For example, an alternative method of manufacture may be to co-extrude under pressure such that the casing solution and the biological material are plastic but freeze quickly after exiting the extruder. The sublimation of the solute can then be done to the co-extruded billet before or after dividing it into pieces of appropriate length.


Markers having the above-described structures, or any similar structure, may be used according to the following method which may include steps 1 and 2, steps 1 through 3, or steps 1 through 4, according to different embodiments.


Step 1. Insert a marker at a location. The location can be marked at a time and location of biopsy or otherwise positioned in a tissue mass.


Step 2. Identify a location of the marker using a first imaging modality. The modality may be ultrasound-based imaging. This step may include passing a corresponding form of energy through a soft tissue mass of a living host.


Step 3. Wait a period of time for calcification to occur.


Step 4. Identify a location of the marker using a second imaging modality that is different from the first imaging modality in step 2. The second imaging modality may be X-ray-based imaging or MRI. This step may also include passing a corresponding form of energy through a soft tissue mass of a living host.


Note that in the above method, not all steps are essential or necessarily separate. For example, the waiting step may be inherent in step 2 or step 4.


This specification should not be interpreted as implying that any particular element, step or function is an essential element of any of the claims. The scope of the patented subject matter is defined only by the claims and their equivalents.


The calcification process is not the only kind of biological activity that could be exploited by a marker to cause the marker, or a portion thereof, to become imageable. A marker may incorporate any substance capable of concentrating an imageable substance. For example, the marker could incorporate a substance for which antibodies can be produced. In one exemplary approach, a marker may contain a biological tissue such as bovine pericardium tissue. A bovine tissue specific antibody could be made, labeled with a imaging tag and used. Such antibodies may be grown, radioactively labeled, and injected in the host. The marker would then cause the antibody to concentrate in and about the included substance. This in turn would cause the concentration of the radioactive label to be high in the vicinity of the marker. The process is due to the combined action the antibody and the host. The result may cause the marker to be imageable using a radiation detector.


Using isotopes with a conspicuously-high cross-section for externally applied radiation could also be used to make a marker imageable by the same type of process. That is, the marker may incorporate a substance for which an antibody can be grown. The antibody could be grown using the selected isotope. Due to the combined action the antibody and the host, the antibody concentrates at the marker site. Then, the externally applied radiation may be used to image the concentrated isotope. Antibodies could also serve as carriers of certain molecules or radicals that can be imaged using lower energy radiation due either to their absorption or stimulated-emission signatures. Other labeling methods such as fluorescent labeling useful in fluorescent imaging, paramagnetic labeling useful in MRI imaging and the like may also be used.


While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.

Claims
  • 1. An intracorporeal marker for marking a site within living tissue of a host, the intracorporeal marker comprising: an outer body portion of biodegradable material;an inner body portion located in the outer body portion, the inner body portion configured to include elastin that becomes calcified in the living tissue of the host over time; andan agent configured to interact with the elastin to promote calcification of the elastin of the inner body portion in the living tissue of the host, wherein the agent is selected from a group consisting of bone growth factor, phospholipids, and polyethylene glycol.
  • 2. The marker of claim 1, wherein the biological material inner body portion includes porcine aortic wall tissue.
  • 3. The marker of claim 1, wherein the elastin has been cross-linked.
  • 4. The marker of claim 1, wherein the inner body portion is entirely encased within the outer body portion, and the outer body portion is porous.
  • 5. The marker of claim 1, wherein the outer body portion includes collagen.
  • 6. The marker of claim 1, wherein the outer body portion is a porous gelatin.
  • 7. An intracorporeal marker for marking a site within living tissue of a host, the intracorporeal marker comprising: an outer body portion of biodegradable material configured to be ultrasound detectable;an inner body portion located in the outer body portion, the inner body portion including elastin configured to calcify in the living tissue of the host over a period of time to enhance X-ray or MRI detectability of the inner body portion; andan agent configured to interact with the elastin to promote calcification of the elastin of the inner body portion in the living tissue of the host, wherein the agent is selected from a group consisting of bone growth factor, phospholipids, and polyethylene glycol.
  • 8. The marker of claim 6, wherein the outer body portion is configured to be detectable by ultrasound over a first time period and the inner body portion is configured to undergo calcification to be detectable by X-ray or MRI prior to the expiration of the first time period.
  • 9. The marker of claim 7, wherein the inner body portion is entirely encased within the outer body portion, and the outer body portion is porous.
  • 10. The marker of claim 7, wherein the with elastin has been cross-linked.
  • 11. The marker of claim 7, wherein the inner body portion includes porcine aortic wall tissue.
  • 12. The marker of claim 7, wherein the outer body portion includes porous collagen.
  • 13. The marker of claim 7, wherein the outer body portion is a porous gelatin.
  • 14. An intracorporeal marker for marking a site within living tissue of a human host, the intracorporeal marker comprising: an outer body portion of biodegradable material;an inner body portion located within the outer body portion, the inner body portion including elastin configured to calcify in the living tissue of the human host over time; andan additive that interacts with the elastin to promote calcification of the elastin in the living tissue of the human host, wherein the additive is selected from a group consisting of bone growth factor, phospholipids, and polyethylene glycol.
  • 15. The marker of claim 14, wherein the inner body portion is entirely encased within the outer body portion, and the outer body portion is porous.
  • 16. The marker of claim 14, wherein the biodegradable material of the outer body portion of is one of collagen foam or gelatin foam, and the elastin is embedded in the outer body portion.
PRIORITY DATA AND INCORPORATION BY REFERENCE

This application is a continuation of U.S. patent application Ser. No. 12/519,656 filed Jun. 17, 2009, which is a U.S. national phase of International Application No. PCT/US2007/087768, filed Dec. 17, 2007, which claims priority to U.S. Provisional Patent Application No. 60/870,502, filed Dec. 18, 2006, which are incorporated by reference in their entirety.

US Referenced Citations (578)
Number Name Date Kind
2481408 Fuller et al. Sep 1949 A
2899362 Sieger, Jr. et al. Aug 1959 A
2907327 White Oct 1959 A
3005457 Millman Oct 1961 A
3128744 Jefferts et al. Apr 1964 A
3341417 Sinaiko Sep 1967 A
3402712 Eisenhand Sep 1968 A
3516412 Ackerman Jun 1970 A
3593343 Viggers Jul 1971 A
3757781 Smart Sep 1973 A
3818894 Wichterle et al. Jun 1974 A
3820545 Jefferts Jun 1974 A
3823212 Chvapil Jul 1974 A
3921632 Bardani Nov 1975 A
4005699 Bucalo Feb 1977 A
4007732 Kvavle et al. Feb 1977 A
4041931 Elliott et al. Aug 1977 A
4103690 Harris Aug 1978 A
4105030 Kercso Aug 1978 A
4127774 Gillen Nov 1978 A
4172449 LeRoy et al. Oct 1979 A
4197846 Bucalo Apr 1980 A
4217889 Radovan et al. Aug 1980 A
4276885 Tickner et al. Jul 1981 A
4294241 Miyata Oct 1981 A
4298998 Naficy Nov 1981 A
4331654 Morris May 1982 A
4347234 Wahlig et al. Aug 1982 A
4390018 Zukowski Jun 1983 A
4400170 McNaughton et al. Aug 1983 A
4401124 Guess et al. Aug 1983 A
4405314 Cope Sep 1983 A
4428082 Naficy Jan 1984 A
4438253 Casey et al. Mar 1984 A
4442843 Rasor et al. Apr 1984 A
4470160 Cavon Sep 1984 A
4487209 Mehl Dec 1984 A
4545367 Tucci Oct 1985 A
4549560 Andis Oct 1985 A
4582061 Fry Apr 1986 A
4582640 Smestad et al. Apr 1986 A
4588395 Lemelson May 1986 A
4597753 Turley Jul 1986 A
4647480 Ahmed Mar 1987 A
4655226 Lee Apr 1987 A
4661103 Harman Apr 1987 A
4682606 DeCaprio Jul 1987 A
4693237 Hoffman et al. Sep 1987 A
4740208 Cavon Apr 1988 A
4762128 Rosenbluth Aug 1988 A
4813062 Gilpatrick Mar 1989 A
4820267 Harman Apr 1989 A
4832680 Haber et al. May 1989 A
4832686 Anderson May 1989 A
4847049 Yamamoto Jul 1989 A
4863470 Carter Sep 1989 A
4870966 Dellon et al. Oct 1989 A
4874376 Hawkins, Jr. Oct 1989 A
4889707 Day et al. Dec 1989 A
4909250 Smith Mar 1990 A
4938763 Dunn et al. Jul 1990 A
4950234 Fujioka et al. Aug 1990 A
4950665 Floyd Aug 1990 A
4963150 Brauman Oct 1990 A
4970298 Silver et al. Nov 1990 A
4989608 Ratner Feb 1991 A
4994013 Suthanthiran et al. Feb 1991 A
4994028 Leonard et al. Feb 1991 A
5012818 Joishy May 1991 A
5018530 Rank et al. May 1991 A
5035891 Runkel et al. Jul 1991 A
5059197 Urie et al. Oct 1991 A
5081997 Bosley, Jr. et al. Jan 1992 A
5120802 Mares et al. Jun 1992 A
5125413 Baran Jun 1992 A
5137928 Erbel et al. Aug 1992 A
5141748 Rizzo Aug 1992 A
5147307 Gluck Sep 1992 A
5147631 Glajch et al. Sep 1992 A
5162430 Rhee et al. Nov 1992 A
5163896 Suthanthiran et al. Nov 1992 A
5195540 Shiber Mar 1993 A
5197482 Rank et al. Mar 1993 A
5197846 Uno et al. Mar 1993 A
5199441 Hogle Apr 1993 A
5219339 Saito Jun 1993 A
5221269 Miller et al. Jun 1993 A
5231615 Endoh Jul 1993 A
5234426 Rank et al. Aug 1993 A
5236410 Granov et al. Aug 1993 A
5242759 Hall Sep 1993 A
5250026 Ehrlich et al. Oct 1993 A
5271961 Mathiowitz et al. Dec 1993 A
5273532 Niezink et al. Dec 1993 A
5280788 Janes et al. Jan 1994 A
5281197 Arias et al. Jan 1994 A
5281408 Unger Jan 1994 A
5282781 Liprie Feb 1994 A
5284479 de Jong Feb 1994 A
5289831 Bosley Mar 1994 A
5312435 Nash et al. May 1994 A
5320100 Herweck et al. Jun 1994 A
5320613 Houge et al. Jun 1994 A
5328955 Rhee et al. Jul 1994 A
5334381 Unger Aug 1994 A
5344640 Deutsch et al. Sep 1994 A
5353804 Kornberg et al. Oct 1994 A
5354623 Hall Oct 1994 A
5358514 Schulman et al. Oct 1994 A
5366756 Chesterfield et al. Nov 1994 A
5368030 Zinreich et al. Nov 1994 A
5388588 Nabai et al. Feb 1995 A
5394875 Lewis et al. Mar 1995 A
5395319 Hirsch et al. Mar 1995 A
5409004 Sloan Apr 1995 A
5417708 Hall et al. May 1995 A
5422730 Barlow et al. Jun 1995 A
5425366 Reinhardt et al. Jun 1995 A
5431639 Shaw Jul 1995 A
5433204 Olson Jul 1995 A
5449560 Antheunis et al. Sep 1995 A
5451406 Lawin et al. Sep 1995 A
5458643 Oka et al. Oct 1995 A
5460182 Goodman et al. Oct 1995 A
5469847 Zinreich et al. Nov 1995 A
5475052 Rhee et al. Dec 1995 A
5490521 Davis et al. Feb 1996 A
5494030 Swartz et al. Feb 1996 A
5499989 LaBash Mar 1996 A
5507807 Shippert Apr 1996 A
5508021 Grinstaff et al. Apr 1996 A
5514085 Yoon May 1996 A
5522896 Prescott Jun 1996 A
5538726 Order Jul 1996 A
5542915 Edwards et al. Aug 1996 A
5545180 Le et al. Aug 1996 A
5549560 Van de Wijdeven Aug 1996 A
RE35391 Brauman Dec 1996 E
5580568 Greff et al. Dec 1996 A
5585112 Unger et al. Dec 1996 A
5611352 Kobren et al. Mar 1997 A
5626611 Liu et al. May 1997 A
5628781 Williams et al. May 1997 A
5629008 Lee May 1997 A
5636255 Ellis Jun 1997 A
5643246 Leeb et al. Jul 1997 A
5646146 Faarup et al. Jul 1997 A
5657366 Nakayama Aug 1997 A
5665092 Mangiardi et al. Sep 1997 A
5667767 Greff et al. Sep 1997 A
5669882 Pyles Sep 1997 A
5673841 Schulze et al. Oct 1997 A
5676146 Scarborough Oct 1997 A
5676925 Klaveness et al. Oct 1997 A
5688490 Tournier et al. Nov 1997 A
5690120 Jacobsen et al. Nov 1997 A
5695480 Evans et al. Dec 1997 A
5702128 Maxim et al. Dec 1997 A
5702716 Dunn et al. Dec 1997 A
5716981 Hunter et al. Feb 1998 A
5747060 Sackler et al. May 1998 A
5752974 Rhee et al. May 1998 A
5762903 Park et al. Jun 1998 A
5769086 Ritchart et al. Jun 1998 A
5776496 Violante et al. Jul 1998 A
5779647 Chau et al. Jul 1998 A
5782764 Werne Jul 1998 A
5782771 Hussman Jul 1998 A
5782775 Milliman et al. Jul 1998 A
5795308 Russin Aug 1998 A
5799099 Wang et al. Aug 1998 A
5800362 Kobren et al. Sep 1998 A
5800389 Burney et al. Sep 1998 A
5800445 Ratcliff et al. Sep 1998 A
5800541 Rhee et al. Sep 1998 A
5817022 Vesely Oct 1998 A
5820918 Ronan et al. Oct 1998 A
5821184 Haines et al. Oct 1998 A
5823198 Jones et al. Oct 1998 A
5824042 Lombardi et al. Oct 1998 A
5824081 Knapp et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5842477 Naughton et al. Dec 1998 A
5842999 Pruitt et al. Dec 1998 A
5845646 Lemelson Dec 1998 A
5846220 Elsberry Dec 1998 A
5851508 Greff et al. Dec 1998 A
5853366 Dowlatshahi Dec 1998 A
5865806 Howell Feb 1999 A
5869080 McGregor et al. Feb 1999 A
5871501 Leschinsky et al. Feb 1999 A
5876340 Tu et al. Mar 1999 A
5879357 Heaton et al. Mar 1999 A
5891558 Bell et al. Apr 1999 A
5897507 Kortenbach et al. Apr 1999 A
5902310 Foerster et al. May 1999 A
5911705 Howell Jun 1999 A
5916164 Fitzpatrick et al. Jun 1999 A
5921933 Sarkis et al. Jul 1999 A
5922024 Janzen et al. Jul 1999 A
5928626 Klaveness et al. Jul 1999 A
5928773 Andersen Jul 1999 A
5941439 Kammerer et al. Aug 1999 A
5941890 Voegele et al. Aug 1999 A
5942209 Leavitt et al. Aug 1999 A
5948425 Janzen et al. Sep 1999 A
5954670 Baker Sep 1999 A
5972817 Haines et al. Oct 1999 A
5976146 Ogawa et al. Nov 1999 A
5980564 Stinson Nov 1999 A
5989265 Bouquet De La Joliniere et al. Nov 1999 A
6015541 Greff et al. Jan 2000 A
6030333 Sioshansi et al. Feb 2000 A
6053925 Barnhart Apr 2000 A
6056700 Burney et al. May 2000 A
6066122 Fisher May 2000 A
6066325 Wallace et al. May 2000 A
6071301 Cragg et al. Jun 2000 A
6071310 Picha et al. Jun 2000 A
6071496 Stein et al. Jun 2000 A
6090996 Li Jul 2000 A
6096065 Crowley Aug 2000 A
6096070 Ragheb et al. Aug 2000 A
6106473 Violante et al. Aug 2000 A
6117108 Woehr et al. Sep 2000 A
6120536 Ding et al. Sep 2000 A
6135993 Hussman Oct 2000 A
6142955 Farascioni et al. Nov 2000 A
6159240 Sparer et al. Dec 2000 A
6159445 Klaveness et al. Dec 2000 A
6161034 Burbank et al. Dec 2000 A
6162192 Cragg et al. Dec 2000 A
6166079 Follen et al. Dec 2000 A
6173715 Sinanan et al. Jan 2001 B1
6174330 Stinson Jan 2001 B1
6177062 Stein et al. Jan 2001 B1
6181960 Jensen et al. Jan 2001 B1
6183497 Sing et al. Feb 2001 B1
6190350 Davis et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6200258 Slater et al. Mar 2001 B1
6203524 Burney et al. Mar 2001 B1
6203568 Lombardi et al. Mar 2001 B1
6213957 Milliman et al. Apr 2001 B1
6214045 Corbitt, Jr. et al. Apr 2001 B1
6214315 Greff et al. Apr 2001 B1
6220248 Voegele et al. Apr 2001 B1
6224630 Bao et al. May 2001 B1
6228049 Schroeder et al. May 2001 B1
6228055 Foerster et al. May 2001 B1
6231615 Preissman May 2001 B1
6234177 Barsch May 2001 B1
6241687 Voegele et al. Jun 2001 B1
6241734 Scribner et al. Jun 2001 B1
6251135 Stinson et al. Jun 2001 B1
6251418 Ahern et al. Jun 2001 B1
6261243 Burney et al. Jul 2001 B1
6261302 Voegele et al. Jul 2001 B1
6264917 Klaveness et al. Jul 2001 B1
6270464 Fulton, III et al. Aug 2001 B1
6270472 Antaki et al. Aug 2001 B1
6287278 Woehr et al. Sep 2001 B1
6287332 Bolz et al. Sep 2001 B1
6289229 Crowley Sep 2001 B1
6306154 Hudson et al. Oct 2001 B1
6312429 Burbank et al. Nov 2001 B1
6316522 Loomis et al. Nov 2001 B1
6325789 Janzen et al. Dec 2001 B1
6335029 Kamath et al. Jan 2002 B1
6336904 Nikolchev Jan 2002 B1
6340367 Stinson et al. Jan 2002 B1
6343227 Crowley Jan 2002 B1
6347240 Foley et al. Feb 2002 B1
6347241 Burbank et al. Feb 2002 B2
6350244 Fisher Feb 2002 B1
6350274 Li Feb 2002 B1
6354989 Nudeshima Mar 2002 B1
6356112 Tran et al. Mar 2002 B1
6356782 Sirimanne et al. Mar 2002 B1
6358217 Bourassa Mar 2002 B1
6363940 Krag Apr 2002 B1
6371904 Sirimanne et al. Apr 2002 B1
6394965 Klein May 2002 B1
6403758 Loomis Jun 2002 B1
6405733 Fogarty et al. Jun 2002 B1
6409742 Fulton, III et al. Jun 2002 B1
6419621 Sioshansi et al. Jul 2002 B1
6424857 Henrichs et al. Jul 2002 B1
6425903 Voegele Jul 2002 B1
6427081 Burbank et al. Jul 2002 B1
6436030 Rehil Aug 2002 B2
6447524 Knodel et al. Sep 2002 B1
6447527 Thompson et al. Sep 2002 B1
6450937 Mercereau et al. Sep 2002 B1
6450938 Miller Sep 2002 B1
6471700 Burbank et al. Oct 2002 B1
6478790 Bardani Nov 2002 B2
6506156 Jones et al. Jan 2003 B1
6511468 Cragg et al. Jan 2003 B1
6537193 Lennox Mar 2003 B1
6540981 Klaveness et al. Apr 2003 B2
6544185 Montegrande Apr 2003 B2
6544231 Palmer et al. Apr 2003 B1
6551253 Worm et al. Apr 2003 B2
6554760 Lamoureux et al. Apr 2003 B2
6562317 Greff et al. May 2003 B2
6564806 Fogarty et al. May 2003 B1
6565551 Jones et al. May 2003 B1
6567689 Burbank et al. May 2003 B2
6575888 Zamora et al. Jun 2003 B2
6575991 Chesbrough et al. Jun 2003 B1
6585773 Xie Jul 2003 B1
6605047 Zarins et al. Aug 2003 B2
6610026 Cragg et al. Aug 2003 B2
6613002 Clark et al. Sep 2003 B1
6616630 Woehr et al. Sep 2003 B1
6626850 Chau et al. Sep 2003 B1
6626899 Houser et al. Sep 2003 B2
6628982 Thomas et al. Sep 2003 B1
6629947 Sahatjian et al. Oct 2003 B1
6636758 Sanchez et al. Oct 2003 B2
6638234 Burbank et al. Oct 2003 B2
6638308 Corbitt, Jr. et al. Oct 2003 B2
6652442 Gatto Nov 2003 B2
6656192 Espositio et al. Dec 2003 B2
6659933 Asano Dec 2003 B2
6662041 Burbank et al. Dec 2003 B2
6699205 Fulton, III et al. Mar 2004 B2
6712774 Voegele et al. Mar 2004 B2
6712836 Berg et al. Mar 2004 B1
6716444 Castro et al. Apr 2004 B1
6725083 Burbank et al. Apr 2004 B1
6730042 Fulton et al. May 2004 B2
6730044 Stephens et al. May 2004 B2
6746661 Kaplan Jun 2004 B2
6746773 Llanos et al. Jun 2004 B2
6752154 Fogarty et al. Jun 2004 B2
6766186 Hoyns et al. Jul 2004 B1
6774278 Ragheb et al. Aug 2004 B1
6780179 Lee et al. Aug 2004 B2
6824507 Miller Nov 2004 B2
6824527 Gollobin Nov 2004 B2
6846320 Ashby et al. Jan 2005 B2
6862470 Burbank et al. Mar 2005 B2
6863685 Davila et al. Mar 2005 B2
6881226 Corbitt, Jr. et al. Apr 2005 B2
6899731 Li et al. May 2005 B2
6918927 Bates et al. Jul 2005 B2
6936014 Vetter et al. Aug 2005 B2
6939318 Stenzel Sep 2005 B2
6945973 Bray Sep 2005 B2
6951564 Espositio et al. Oct 2005 B2
6958044 Burbank et al. Oct 2005 B2
6992233 Drake et al. Jan 2006 B2
6993375 Burbank et al. Jan 2006 B2
6994712 Fisher et al. Feb 2006 B1
6996433 Burbank et al. Feb 2006 B2
7001341 Gellman et al. Feb 2006 B2
7008382 Adams et al. Mar 2006 B2
7014610 Koulik Mar 2006 B2
7025765 Balbierz et al. Apr 2006 B2
7041047 Gellman et al. May 2006 B2
7044957 Foerster et al. May 2006 B2
7047063 Burbank et al. May 2006 B2
7083576 Zarins et al. Aug 2006 B2
7125397 Woehr et al. Oct 2006 B2
7135978 Gisselberg et al. Nov 2006 B2
7160258 Imran et al. Jan 2007 B2
7172549 Slater et al. Feb 2007 B2
7189206 Quick et al. Mar 2007 B2
7214211 Woehr et al. May 2007 B2
7229417 Foerster et al. Jun 2007 B2
7236816 Kumar et al. Jun 2007 B2
7264613 Woehr et al. Sep 2007 B2
7280865 Adler Oct 2007 B2
7294118 Saulenas et al. Nov 2007 B2
7297725 Winterton et al. Nov 2007 B2
7329402 Unger et al. Feb 2008 B2
7329414 Fisher et al. Feb 2008 B2
7407054 Seiler et al. Aug 2008 B2
7416533 Gellman et al. Aug 2008 B2
7424320 Chesbrough et al. Sep 2008 B2
7449000 Adams et al. Nov 2008 B2
7527610 Erickson May 2009 B2
7534452 Chernomorsky et al. May 2009 B2
7569065 Chesbrough et al. Aug 2009 B2
7577473 Davis et al. Aug 2009 B2
7637948 Corbitt, Jr. Dec 2009 B2
7651505 Lubock et al. Jan 2010 B2
7668582 Sirimanne et al. Feb 2010 B2
7670350 Selis Mar 2010 B2
7783336 Macfarlane et al. Aug 2010 B2
7819819 Quick et al. Oct 2010 B2
7844319 Susil et al. Nov 2010 B2
7877133 Burbank et al. Jan 2011 B2
7914553 Ferree Mar 2011 B2
7945307 Lubock et al. May 2011 B2
7983734 Jones et al. Jul 2011 B2
8011508 Seiler et al. Sep 2011 B2
8052658 Field Nov 2011 B2
8064987 Carr, Jr. Nov 2011 B2
8128641 Wardle Mar 2012 B2
8306602 Sirimanne et al. Nov 2012 B2
8320993 Sirimanne et al. Nov 2012 B2
8320994 Sirimanne et al. Nov 2012 B2
8320995 Schwamb, Jr. Nov 2012 B2
8334424 Szypka Dec 2012 B2
8361082 Jones et al. Jan 2013 B2
8437834 Carr, Jr. May 2013 B2
8454629 Selis Jun 2013 B2
8486028 Field Jul 2013 B2
8579931 Chesbrough et al. Nov 2013 B2
8626269 Jones et al. Jan 2014 B2
8626270 Burbank et al. Jan 2014 B2
20010006616 Leavitt et al. Jul 2001 A1
20020004060 Heublein et al. Jan 2002 A1
20020016625 Falotico et al. Feb 2002 A1
20020022883 Burg Feb 2002 A1
20020026201 Foerster et al. Feb 2002 A1
20020035324 Sirimanne et al. Mar 2002 A1
20020044969 Harden et al. Apr 2002 A1
20020045842 Van Bladel et al. Apr 2002 A1
20020052572 Franco et al. May 2002 A1
20020055731 Atala et al. May 2002 A1
20020058868 Hoshino et al. May 2002 A1
20020058882 Fulton, III et al. May 2002 A1
20020077687 Ahn Jun 2002 A1
20020082517 Klein Jun 2002 A1
20020082519 Miller et al. Jun 2002 A1
20020082682 Barclay et al. Jun 2002 A1
20020082683 Stinson et al. Jun 2002 A1
20020095204 Thompson et al. Jul 2002 A1
20020095205 Edwin et al. Jul 2002 A1
20020107437 Sirimanne et al. Aug 2002 A1
20020133148 Daniel et al. Sep 2002 A1
20020143359 Fulton, III et al. Oct 2002 A1
20020165608 Llanos et al. Nov 2002 A1
20020177776 Crawford Kellar et al. Nov 2002 A1
20020188195 Mills Dec 2002 A1
20020193815 Foerster et al. Dec 2002 A1
20020193867 Gladdish, Jr. et al. Dec 2002 A1
20030032969 Gannoe et al. Feb 2003 A1
20030036803 McGhan Feb 2003 A1
20030051735 Pavcnik et al. Mar 2003 A1
20030116806 Kato Jun 2003 A1
20030165478 Sokoll Sep 2003 A1
20030191355 Ferguson Oct 2003 A1
20030199887 Ferrera et al. Oct 2003 A1
20030225420 Wardle Dec 2003 A1
20030233101 Lubock et al. Dec 2003 A1
20030236573 Evans et al. Dec 2003 A1
20040001841 Nagavarapu et al. Jan 2004 A1
20040002650 Mandrusov et al. Jan 2004 A1
20040016195 Archuleta Jan 2004 A1
20040024304 Foerster et al. Feb 2004 A1
20040059341 Gellman et al. Mar 2004 A1
20040068312 Sigg et al. Apr 2004 A1
20040073107 Sioshansi et al. Apr 2004 A1
20040073284 Bates et al. Apr 2004 A1
20040097981 Selis May 2004 A1
20040101479 Burbank et al. May 2004 A1
20040101548 Pendharkar May 2004 A1
20040106891 Langan et al. Jun 2004 A1
20040116802 Jessop et al. Jun 2004 A1
20040124105 Seiler et al. Jul 2004 A1
20040127765 Seiler et al. Jul 2004 A1
20040133124 Bates et al. Jul 2004 A1
20040153074 Bojarski et al. Aug 2004 A1
20040162574 Viola Aug 2004 A1
20040167619 Case et al. Aug 2004 A1
20040204660 Fulton et al. Oct 2004 A1
20040210208 Paul et al. Oct 2004 A1
20040213756 Michal et al. Oct 2004 A1
20040236212 Jones et al. Nov 2004 A1
20040236213 Jones et al. Nov 2004 A1
20040253185 Herweck et al. Dec 2004 A1
20040265371 Looney et al. Dec 2004 A1
20050020916 MacFarlane et al. Jan 2005 A1
20050033157 Klein et al. Feb 2005 A1
20050033195 Fulton et al. Feb 2005 A1
20050036946 Pathak et al. Feb 2005 A1
20050045192 Fulton et al. Mar 2005 A1
20050059887 Mostafavi et al. Mar 2005 A1
20050059888 Sirimanne et al. Mar 2005 A1
20050065354 Roberts Mar 2005 A1
20050065453 Shabaz et al. Mar 2005 A1
20050080337 Sirimanne et al. Apr 2005 A1
20050080339 Sirimanne et al. Apr 2005 A1
20050085724 Sirimanne et al. Apr 2005 A1
20050100580 Osborne et al. May 2005 A1
20050112151 Horng May 2005 A1
20050113659 Pothier et al. May 2005 A1
20050119562 Jones et al. Jun 2005 A1
20050142161 Freeman et al. Jun 2005 A1
20050143650 Winkel Jun 2005 A1
20050165305 Foerster et al. Jul 2005 A1
20050175657 Hunter et al. Aug 2005 A1
20050181007 Hunter et al. Aug 2005 A1
20050208122 Allen et al. Sep 2005 A1
20050216018 Sennett Sep 2005 A1
20050234336 Beckman et al. Oct 2005 A1
20050268922 Conrad et al. Dec 2005 A1
20050273002 Goosen et al. Dec 2005 A1
20050277871 Selis Dec 2005 A1
20060004440 Stinson Jan 2006 A1
20060009800 Christianson et al. Jan 2006 A1
20060025677 Verard et al. Feb 2006 A1
20060025795 Chesbrough et al. Feb 2006 A1
20060036158 Field et al. Feb 2006 A1
20060036159 Sirimanne et al. Feb 2006 A1
20060036165 Burbank et al. Feb 2006 A1
20060074443 Foerster et al. Apr 2006 A1
20060079770 Sirimanne et al. Apr 2006 A1
20060079805 Miller et al. Apr 2006 A1
20060079829 Fulton et al. Apr 2006 A1
20060079888 Mulier et al. Apr 2006 A1
20060116573 Field et al. Jun 2006 A1
20060122503 Burbank et al. Jun 2006 A1
20060155190 Burbank et al. Jul 2006 A1
20060173280 Goosen et al. Aug 2006 A1
20060173296 Miller et al. Aug 2006 A1
20060177379 Asgari Aug 2006 A1
20060217635 McCombs et al. Sep 2006 A1
20060235298 Kotmel et al. Oct 2006 A1
20060241385 Dietz Oct 2006 A1
20060241411 Field et al. Oct 2006 A1
20060292690 Liu et al. Dec 2006 A1
20070021642 Lamoureux et al. Jan 2007 A1
20070038145 Field Feb 2007 A1
20070057794 Gisselberg et al. Mar 2007 A1
20070083132 Sharrow Apr 2007 A1
20070087026 Field Apr 2007 A1
20070106152 Kantrowitz et al. May 2007 A1
20070135711 Chernomorsky et al. Jun 2007 A1
20070142725 Hardin et al. Jun 2007 A1
20070167736 Dietz et al. Jul 2007 A1
20070167749 Yarnall et al. Jul 2007 A1
20070239118 Ono et al. Oct 2007 A1
20070276492 Andrews et al. Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20080033280 Lubock et al. Feb 2008 A1
20080039819 Jones et al. Feb 2008 A1
20080091120 Fisher Apr 2008 A1
20080097199 Mullen Apr 2008 A1
20080121242 Revie et al. May 2008 A1
20080188768 Zarins et al. Aug 2008 A1
20080249436 Darr Oct 2008 A1
20080269638 Cooke et al. Oct 2008 A1
20080294039 Jones et al. Nov 2008 A1
20090000629 Hornscheidt et al. Jan 2009 A1
20090024225 Stubbs Jan 2009 A1
20090030309 Jones et al. Jan 2009 A1
20090069713 Adams et al. Mar 2009 A1
20090076484 Fukaya Mar 2009 A1
20090093714 Chesbrough et al. Apr 2009 A1
20090131825 Burbank et al. May 2009 A1
20090171198 Jones et al. Jul 2009 A1
20090216118 Jones et al. Aug 2009 A1
20100030072 Casanova et al. Feb 2010 A1
20100042041 Tune et al. Feb 2010 A1
20100298696 Field et al. Nov 2010 A1
20110184280 Jones et al. Jul 2011 A1
20110184449 Lubock et al. Jul 2011 A1
20120078092 Jones et al. Mar 2012 A1
20120116215 Jones et al. May 2012 A1
20120179251 Corbitt, Jr. Jul 2012 A1
20120215230 Lubock et al. Aug 2012 A1
20130144157 Jones et al. Jun 2013 A1
20130190616 Casanova et al. Jul 2013 A1
20130253315 Burbank et al. Sep 2013 A1
20130281847 Jones et al. Oct 2013 A1
20130310686 Jones et al. Nov 2013 A1
20140058258 Chesbrough et al. Feb 2014 A1
20140094698 Burbank et al. Apr 2014 A1
20140114186 Burbank et al. Apr 2014 A1
20140142696 Corbitt, Jr. May 2014 A1
20140243675 Burbank et al. Aug 2014 A1
Foreign Referenced Citations (50)
Number Date Country
1029528 May 1958 DE
0146699 Jul 1985 EP
0255123 Feb 1988 EP
0292936 Nov 1988 EP
0458745 Nov 1991 EP
0475077 Mar 1992 EP
0552924 Jul 1993 EP
0769281 Apr 1997 EP
1114618 Jul 2001 EP
1163888 Dec 2001 EP
1281416 Jun 2002 EP
1364628 Nov 2003 EP
1493451 Jan 2005 EP
1767167 Mar 2007 EP
2646674 Nov 1990 FR
2853521 Oct 2004 FR
708148 Apr 1954 GB
2131757 May 1990 JP
2006516468 Jul 2006 JP
2007537017 Dec 2007 JP
8906978 Aug 1989 WO
9112823 Sep 1991 WO
9314712 Aug 1993 WO
9317671 Sep 1993 WO
9317718 Sep 1993 WO
9416647 Aug 1994 WO
9507057 Mar 1995 WO
9806346 Feb 1998 WO
9908607 Feb 1999 WO
9935966 Jul 1999 WO
9951143 Oct 1999 WO
0023124 Apr 2000 WO
0024332 May 2000 WO
0028554 May 2000 WO
0054689 Sep 2000 WO
0108578 Feb 2001 WO
0170114 Sep 2001 WO
0207786 Jan 2002 WO
03000308 Jan 2003 WO
2004045444 Jun 2004 WO
2005013832 Feb 2005 WO
2005089664 Sep 2005 WO
2005112787 Dec 2005 WO
2006012630 Feb 2006 WO
2006056739 Jun 2006 WO
2006097331 Sep 2006 WO
2006105353 Oct 2006 WO
2007067255 Jun 2007 WO
2007069105 Jun 2007 WO
2008077081 Jun 2008 WO
Non-Patent Literature Citations (25)
Entry
Press release for Biopsys Ethicon Endo-Surgery (Europe) GmbH; The Mammotome Vacuum Biopsy System. From: http://www.medicine-news.com/articles/devices/mammotome.html. 3 pages, 1998.
Johnson & Johnson: Breast Biopsy (minimally invasive): Surgical Technique: Steps in the MAMOTOME Surgical Procedure. From http://www.jnjgateway.com. 3 pages, 2000.
Johnson & Johnson: New Minimally Invasive Breast Biopsy Device Receives Marketing Clearance in Canada; Aug. 6, 1999. From http://www.jnjgateway.com. 4 pages.
Johnson & Johnson: Mammotome Hand Held Receives FDA Marketing Clearance for Minimally Invasive Breast Biopises; Sep. 1, 1999. From From http://www.jnjgateway.com. 5 pages.
Johnson & Johnson: The Mammotome Breast Biopsy System. From: http://www.breastcareinfo.com/aboutm.htm. 6 pages.
Cook Incorporated: Emoblization and Occlusion. From: www.cookgroup.com 6 pages, 1996.
Liberman, Laura, et al. Percutaneous Removal of Malignant Mammographic Lesions at Stereotactic Vacuum-assisted Biopsy. From: The Departments of Radiology, Pathology, and Surgery. Memorial Sloan-Kettering Cancer Center. From the 1997 RSNA scientific assembly. vol. 206, No. 3. pp. 711-715.
Armstong, J.S., et al., “Differential marking of Excision Planes in Screened Breast lesions by Organically Coloured Gelatins”, Journal of Clinical Pathology, Jul. 1990, No. 43 (7) pp. 604-607, XP000971447 abstract; tables 1,2.
Fucci, V., et al., “Large Bowel Transit Times Using Radioopaque Markers in Normal Cats”, J. of Am. Animal Hospital Assn., Nov.-Dec. 1995 31 (6) 473-477.
Schindlbeck, N. E., et al., “Measurement of Colon Transit Time”, J. of Gastroenterology, No. 28, pp. 399-404, 1990.
Shiga, et al., Preparation of Poly(D, L-lactide) and Copoly(lactide-glycolide) Microspheres of Uniform Size, J. Pharm. Pharmacol. 1996 48:891-895.
Eiselt, P. et al, “Development of Technologies Aiding Large—Tissue Engineering”, Biotechnol. Prog., vol. 14, No. 1, pp. 134-140, 1998.
Fajardo, Laurie, et al., “Placement of Endovascular Embolization Microcoils to Localize the Site of Breast Lesions Removed at Stereotactic Core Biopsy”, Radiology, Jan. 1998, pp. 275-278, vol. 206—No. 1.
H. J. Gent, M.D., et al., Stereotaxic Needle Localization and Cytological Diagnosis of Occult Breast Lesions, Annals of Surgery, Nov. 1986, pp. 580-584, vol. 204—No. 5.
Meuris, Bart, “Calcification of Aortic Wall Tissue in Prosthetic Heart Valves: Initiation, Influencing Factors and Strategies Towards Prevention”, Thesis, 2007, pp. 21-36, Leuven University Press; Leuven, Belgium.
Jong-Won Rhie, et al. “Implantation of Cultured Preadipocyte Using Chitosan/Alginate Sponge”, Key Engineering Materials, Jul. 1, 2007, pp. 346-352, XP008159356, ISSN: 0252-1059, DOI: 10.4028/www.scientific.net/KEM.342-343.349, Department of Plastic Surgery, College of Medicine, The Catholic University of Korea, Seoul Korea.
Collagen—Definitions from Dictionary. com.
Fibrous—Definitions from Dictionary.com.
International Search Report for PCT/US2009/000945 mailed Jul. 16, 2009.
Written Opinion of the International Searching Authority for PCT/US2009/000945 mailed Jul. 16, 2009.
International Search Report for PCT/US2007/016902 mailed Feb. 28, 2008.
International Search Report for PCT/US2007/016902 mailed Feb. 4, 2009.
Written Opinion of the International Searching Authority for PCT/US2007/016902 mailed Feb. 4, 2009.
International Search Report for PCT/US2007016918 mailed Nov. 26, 2007.
Written Opinion of the International Searching Authority for PCT/US2007016918 mailed Feb. 4, 2009.
Related Publications (1)
Number Date Country
20130184562 A1 Jul 2013 US
Provisional Applications (1)
Number Date Country
60870502 Dec 2006 US
Continuations (1)
Number Date Country
Parent 12519656 US
Child 13787331 US