This invention relates to a bioreactor (also called a fermenter), of special application in biochemical processes wherein microbial or cellular systems are used for the production of biological products. It also refers to a production process of adherent cell cultures, especially for the formation of tissues and cultivated flesh that uses said bioreactor.
Bioreactors have multiple applications, such as the food and fermentation industries, waste treatment, and many biomedical facilities.
A fermenter is a tank inside of which organic reactions take place, providing an environment suitable for various micro-organisms under the required conditions. It must permit the control of the temperature by heat or cold, to control the pH, and the ranges of aeration, nutrient content, etc.
The common bioreactors are generally containers or systems that maintain a biologically active atmosphere. In some cases, a bioreactor is a container wherein chemical process takes place that involves organisms or biochemically active substances derived from such organisms. This process can be aerobic or anaerobic. These bioreactors are commonly cylindrical, ranging in size from a few millilitres to cubic meters, and are usually made of stainless steel.
A bioreactor can also be a device or system used to grow cells or tissues in cell culture operations. These devices are under development for use in tissue engineering.
In general terms, a bioreactor seeks to maintain certain favourable environmental conditions (pH, temperature, oxygen concentration, etc.) for the organism or chemical substance that is being cultivated.
The large-scale industrial fermenters are made of stainless steel. A fermenter of this type is a cylinder closed top and bottom, wherein a number of tubes and valves have been adapted.
Other materials are also used, and there is a tendency towards single-use plastics; however, the high costs of consumables are only justified if the resulting product is of high market value (for example: antibodies, vaccines, therapeutic proteins, etc. obtained through the culture of mammalian and insect cells).
A good fermenter design must meet two fundamental requirements: maintaining a homogeneous medium without dead zones and, at the same time, transferring oxygen to the environment using the minimum energy possible.
The design of a fermenter should consider the following aspects:
The types of fermenters available on the market present a series of components and common characteristics:
The use of bioreactors is widespread for the cultivation of micro-organisms (bacteria, fungi, cells, etc.), both at a laboratory scale as well as at an industrial scale. Its design is usually for a tank agitated by means of mechanical devices, either by rotating blades or by a bubbling column. And the micro-organism cultures are made in suspension. The cell suspensions consist of free cells and cell aggregates that are distributed in an environment in movement.
This becomes a problem when the cells that are to be grown are cells referred to as “adherents”. These cells, since they are the muscle cells or epithelial cells, need a surface to be able to grow and proliferate, such that the solutions provided by the bioreactors that maintain the cells in suspension are not appropriate for them. It is only possible to grow micro-organisms in the bioreactors when they are able to proliferate in suspension
To be able to grow these adherent cells, various proposals have been proposed and marketed:
The most significant advance to growing adherent cells has been the proposal to use microspheres suspended in the solution of the traditional fermenters/bioreactors, in such a way as to achieve increased specific surface area that these cells can find within the suspension and where they can anchor themselves to grow and proliferate.
Another example is the iCELLis® bioreactor, a fixed bed system for the growth of adherent cells.
The object of this invention is, therefore, to provide a bioreactor that permits growing adherent cells in a simple and effective way, so that it is productive on a large scale, in particular for the production of tissues and cultivated flesh.
The invention provides a bioreactor, which comprises a container with a cover, and that further comprises an internal bracket from which protrudes at least one tray that supports a three-dimensional polymer-based element mounted on it, so that when the bioreactor is filled with a culture medium the at least one tray and the three-dimensional polymer-based element are surrounded by the culture medium.
The invention also provides a production process of adherent cell cultures that uses said bioreactor, and that comprises the following steps:
The configuration of the bioreactor permits that the proliferated adherent cells achieve their growth functions of extracellular matrix and tissue formation in a manner that is more similar to the in vivo processes and that the corresponding process is more productive. In this way, the formed tissues have a high protein value.
Other advantageous embodiments of the invention are outlined in the dependent claims.
An illustrative embodiment is presented below, which is not limitative in any sense, of the purpose of this invention, with reference to the accompanying drawings wherein:
In
These “scaffolds” may be hydrogel type three-dimensional polymer-based structures 6, on which the cells can be sown by inoculation with a needle from outside the bioreactor 1 and left in cultivation until the desired proliferation is achieved.
When the bioreactor 1 is filled with a culture medium, the trays 5 and the three-dimensional polymer-based elements 6 are surrounded by the culture medium.
The bracket 4 can be found suspended from the cover 3 of the bioreactor 1, such that when the bioreactor 1 is closed, the trays 5 and the three-dimensional polymer-based elements 6 are submerged in the culture medium. In one embodiment, the bracket 4 can protrude perpendicularly from the cover 3.
The bracket 4 may also be supported from the base of the bioreactor 1, independent of the cover 3.
The trays 5 may be drilled through with a series of holes, to permit a better flow of fluid throughout the whole bioreactor 1.
In
The bracket 4 may include various profiles or support rods on which the trays 5 and rings 7 are supported. It is possible to include some electrical contacts 8 on these profiles that can be fed with alternating or direct current. This alternating or direct current, which may be in the order of micro-amperes, facilitates and increases cell proliferation.
This increased cellular proliferation is due to the fact that, on polarised surfaces and environments, the proteins are more concentrated by electrostatic attraction and the cells have more nutrients available for their metabolic activities. The tests carried out have permitted increases in such proliferation of 7 times with respect to the system without the stimulus of direct current.
The bioreactor 1 can also include an air bubble generator 9 underneath each tray 5. The capacity to modify the size and frequency of the bubbling air by the introduction of bubble generators 9 (“spargers”) below each tray 5, exerts a mechanical stimulus on the “scaffolds” with the pressure of these tiny bubbles. This modification is oriented to simulate the contraction/extension movements of the muscular cells to promote the similarities with in vivo proliferation.
The production process for the cell cultures that uses a bioreactor 1, comprises the following steps:
This process can further comprise a stage of cell proliferation stimulation consisting in feeding alternating or direct current to the electrical contacts 8 on the bracket 4 of the bioreactor 1.
Also, this process can further comprise a stage of cell proliferation stimulation consisting in the production of air bubbles underneath each tray 5 by means of the air bubble generators 9.
The invention is of particular application to the cultivation of animal muscle cells for the production of cultivated flesh but is not limited only to this application nor this type of adherent cells.
Although some embodiments of the invention have been described and represented, it is clear that modifications may be introduced to them within the scope of the same, and that this should not be considered limited to these embodiments, but only to the content of the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/ES2019/070006 | 1/4/2019 | WO | 00 |