1. Field of the Invention
The present invention relates to a disposable bioreactor heating and cooling system and methods of controlling temperature in a disposable bioreactor bag.
2. Description of the Related Art
Bioreactors (also referred to as fermenters) include containers used for fermentation, enzymatic reactions, cell culture, tissue engineering, and food production, as well as in the manufacture of biologicals, chemicals, biopharmaceuticals, microorganisms, plant metabolites, and the like. Bioreactors vary in size from benchtop fermenters to stand-alone units of various sizes. Small-scale bioreactors have also been developed which comprise pre-sterilized, disposable flexible bags configured to hold cell culture media.
As cell fermentation processes are highly sensitive to temperature variations, bioreactor systems require temperature-control mechanisms to maintain uniformity and stability of temperature throughout the bioreactor medium. Control mechanisms exist which comprise a heating blanket configured to surround a bioreactor bag. Such a heating blanket may comprise, for example, a silicon rubber blanket with wires running through it. These resistive heat blankets, however, are capable of heating the bioreactor medium but cannot cool the medium.
One method of providing both heating and cooling capability in a disposable bioreactor system is to provide a double-walled rigid vessel to support the bioreactor bag. The double walls of the vessel are filled with a fluid, such as water, which is circulated around the bag and pumped through an external heating or cooling device. Double-walled rigid vessels such as these, however, can be extremely expensive.
The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Embodiments” one will understand how the features of this invention provide advantages over other bioreactor systems.
In a first aspect of the invention, a bioreactor bag is provided for affecting the temperature of media held therein. The bag comprises a flexible inner wall defining an inner volume for holding the media and a flexible outer wall surrounding at least a portion of the inner wall. The inner wall and the outer wall together define an outer volume for holding a temperature control fluid therein, the outer volume being separate from the inner volume. In an embodiment of the first aspect, the bag also includes an entrance port configured to receive the temperature control fluid into the outer volume and an exit port configured to exhaust the fluid from the outer volume. In an embodiment of the first aspect, the fluid is a liquid. In another embodiment, the fluid is a gas. In a further embodiment, the inner volume of the bioreactor bag has a capacity of between about 100 milliliters and about 5000 liters. In another embodiment, the outer volume of the bioreactor has a capacity between about 1 percent and about 50 percent of the inner volume capacity. In another embodiment, the inner wall and the outer wall comprise plastic. In a further embodiment, the outer volume entirely encircles the inner volume when the inner volume is at least partially filled with media and the outer volume is at least partially filled with fluid. In a still further embodiment, the outer volume extends below the inner volume when the inner volume is at least partially filled with media and the outer volume is at least partially filled with fluid. In another embodiment, the system further comprises a temperature control module configured to affect the temperature of the fluid in the outer volume. In such an embodiment, the temperature control module can comprise a heat exchanger disposed outside the outer volume. Additionally or alternatively, the temperature control module can comprise a temperature adjusting element disposed in contact with the outer volume. The temperature adjusting element can extend into the outer volume. The temperature adjusting element can be a resistive heating element, a cold finger, or a hot finger.
In a second aspect of the invention, a bioreactor system is provided for affecting the temperature of media. The system includes a flexible jacket bag configured to hold a temperature control fluid and configured to at least partially surround a bioreactor bag when the bioreactor bag is at least partially filled with media. The jacket bag has an inlet port and an outlet port, the inlet port being configured to receive the temperature control fluid into the jacket bag from a temperature control mechanism, the outlet port configured to exhaust the fluid from the jacket bag. In an embodiment of the second aspect, an interior wall of the jacket bag is configured to contact an outer wall of the bioreactor bag when the jacket bag is at least partially filled with the temperature control media. In another embodiment, the system further includes the bioreactor bag. In another embodiment, the system further includes the temperature control mechanism.
In a third aspect, a bioreactor bag is provided which comprises first flexible means for holding media in a sterile environment and second flexible means for holding a temperature control fluid separate from but adjacent to the media. The second flexible means at least partially surrounds the first flexible means and comprises means for receiving and exhausting the temperature control fluid.
In a fourth aspect, a method of regulating the temperature of media during processing is provided. The method comprises providing a bioreactor bag comprising a flexible inner wall defining an inner volume for holding the media and a flexible outer wall surrounding at least a portion of the inner wall, the inner wall and the outer wall together defining an outer volume for holding a temperature control fluid therein, the outer volume being separate from the inner volume. The method also comprises filling the outer volume at least partially with the temperature control fluid. In an embodiment of the fourth aspect, the method further comprises adjusting the temperature of the temperature control fluid.
In a fifth aspect, a method of regulating temperature in a flexible bioreactor bag is provided. The bioreactor bag has a first flexible surface configured to hold media and a second flexible surface surrounding at least a portion of the first surface, the first surface and the second surface defining a cavity therebetween. The method comprises providing fluid into the cavity formed between the first surface of the bioreactor bag and the second surface of the bioreactor bag through an entrance port, exhausting fluid from the cavity through an exit port, and affecting the temperature of media held by the first flexible surface by the temperature of the fluid provided to the cavity. In an embodiment of the fifth aspect, the method further comprises controlling the temperature of the fluid provided to the flexible bioreactor bag. In such an embodiment, the method can also comprise sensing the temperature of media held by the first flexible surface and controlling the temperature of the fluid provided to the flexible bioreactor bag based on the sensed temperature.
The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout.
Various embodiments of the invention provide for systems and methods of regulating temperature in a disposable multi-wall flexible or semi-flexible bioreactor container or bag. Such “bags” are sometimes referred to herein as a “single use bioreactor” or “bioreactor bag.” Embodiments of the invention include a flexible bioreactor bag having an inner wall that defines an inner volume for holding the cell culture media, and an outer wall that surrounds at least a portion of the inner wall. Together, the inner wall and the outer wall form a temperature control jacket configured to hold a temperature control fluid. The built-in temperature control jacket provides a convenient and inexpensive way of regulating the temperature of the cell culture media held in the inner volume.
Referring to
The interior wall 104 and the exterior wall 106 together define an outer or jacket volume 107, which, as illustrated in
Referring again to
With continued reference to
The ceiling 108 may have an opening 115 configured to closely receive and seal with an agitation assembly 120. In some embodiments, the agitation assembly 120 includes portion of an agitation system or an agitation drive unit, coupled with an agitator 122. The agitator 122 may extend from into the interior volume 105, and may be configured to stir or agitate the cell medium during the fermentation process.
The exterior wall 106 may include openings or ports 111 configured to allow fluid to pass from the jacket volume 107 to the temperature control mechanism 110, and from the temperature control mechanism 110 back to the jacket volume 107. Any fluid capable of heating or cooling the interior volume may be used, including, but not limited to, air and water. The assembly 10 may further include ports 113 passing through both the exterior wall 106 and the interior wall 104. In the embodiment illustrated in
Embodiments of the invention can also be used with different agitation systems, such as those illustrated in
The temperature control mechanism 110 may, for example, be a heat exchanger or any other suitable means for adjusting temperature of the fluid circulating through the jacket volume 107. The temperature control mechanism 110 may additionally comprise a pump mechanism (not shown) configured to continuously or intermittently re-circulate fluid through the jacket volume 107.
In an embodiment illustrated in
The embodiment in
In yet another embodiment, as illustrated in
With continued reference to
One advantage of a jacket bag is that the size and thickness of the jacket bag can be selected to allow placement and use of a bioreactor bag of a given capacity in a rigid bioreactor vessel of a greater capacity. Furthermore, a jacket bag may be completely filled or only partially filled as required by the sizes and capacities of the provided bioreactor bag and bioreactor vessel. Because the jacket bag is flexible, embodiments of the invention also desirably allow placement and use of a bioreactor bag having a given cross-sectional shape, such as a lenticular shape, in a vessel having a cylindrical shape. Embodiments of the invention thus allow for greater flexibility of operation and development using fewer rigid bioreactor vessels. Furthermore, these and other embodiments also desirably allow for precise adjustment of temperature in a bioreactor bag, whether heating or cooling is required.
Embodiments of the invention also comprise methods of regulating temperature in a bioreactor bag. With reference now to
Various modifications to these examples may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other examples without departing from the spirit or scope of the novel aspects described herein. For example, aspects described in connection with particular embodiments can be combined with aspects of other embodiments. Thus, the scope of the disclosure is not intended to be limited to the examples shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/54026 | 2/14/2008 | WO | 00 | 7/30/2009 |
Number | Date | Country | |
---|---|---|---|
60890158 | Feb 2007 | US |