This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2016-204795 filed on Oct. 19, 2016, the entire contents of which are incorporated herein by reference.
The present invention relates to a biosafety cabinet and a clean air device in the industrial fields of regenerative medicine, medical care, pharmaceuticals and the like.
Conventionally, a biosafety cabinet has been used as a measure to counter biohazards, while a clean air device such as a clean bench and a clean booth has been used to secure a locally clean space. The clean air device has an isolation capability of protecting a specimen from external bacteria, by performing work in a partitioned space which is provided with an air barrier and includes an opening in a part thereof.
Meanwhile, regenerative medicine is drawing attention in recent years, and therefore there is a growing demand that a series of movements of a cell culture container such as cell culture, medium change, cell observation and packing is realized in clean air whose cleanliness level is so high as to correspond to Grade A to eliminate contamination risk.
As the background art in this technical field, there is JP 2006-043521A (Patent Literature 1). An object of Patent Literature 1 is to provide a biosafety cabinet as a measure to counter biohazards with a simplified connecting structure through which an infectious material under experiment can be transferred, without being taken out of a work space of the biosafety cabinet, to another biosafety cabinet, and to provide a biosafety cabinet in which a connecting part structure of a connected type of biosafety cabinet is simplified, and bacteria/viruses is prevented by pressure control. To this end, multiple connected biosafety cabinets are disclosed in which circulation passages of the connected biosafety cabinets are connected together to be the same space, and a connecting part passing space is configured in the shared circulation passage in the form of connecting the work spaces of the multiple biosafety cabinets (see Abstract).
PATENT LITERATURE 1: JP 2006-043521A
According to Patent Literature 1, the work spaces of the two biosafety cabinets are connected together; a connecting part passing space is formed in that connecting part; and the connecting part passing space is formed in a shared negatively-pressurized contamination plenum. This reduces the possibility that bacteria/viruses may leak from the connecting part passing space to the outside of the biosafety cabinets.
Patent Literature 1, however, pays no attention to diselectrifying (or eliminating static) in the biosafety cabinet, or in the connecting part between the connected biosafety cabinets. For example, in the regenerative medicine field, cell manipulation such as cell culture and culture need to be performed. In a case where the cell manipulation is performed in a biosafety cabinet and the culture is performed in a clean booth, it is considered that the biosafety cabinet and the clean booth are connected together to deliver a cell culture container therebetween for the purpose of eliminating contamination risk. In this case, an operator enters the clean booth in which various equipment is handled, while manual operation using electrically-insulated objects such as a Petri dish, a bottle, a pipette, and other plastic tools is involved in the biosafety cabinet, and therefore static electricity may be caused. Thus, there is likelihood that: an object electrostatically charged during the operation is attracted to the hands; and waste matters having been once inputted in a waste can placed inside the biosafety cabinet float due to electrostatically charge. In addition, if electrostatically-charged dust attached to the equipment enters the biosafety cabinet, such dust causes specimen contamination.
In view of the above-mentioned situation, an object of the present invention is to reduce the contamination risk due to static electricity and secure workability in a biosafety cabinet, or in a clean air device in which the biosafety cabinet and a clean booth are connected together.
An outline of an exemplary invention, among the inventions disclosed in the present application, will be briefly described as follows.
It is a biosafety cabinet including: a work space formed on an inner surface side of a front shutter; a circulation passage formed from a lower surface side, a lateral surface side and a rear surface side of the work space, and an outer part of the biosafety cabinet to discharge air having flown into the work space; and an air supplier disposed on an upper surface of the work space for supplying air to the work space, characterized in that an ionizer is provided right above an airflow branch point where the air supplied to the work space branches toward a front surface and a rear surface of the biosafety cabinet.
The present invention makes it possible to reduce contamination risk due to static electricity and secure workability in a biosafety cabinet, or in a clean air device in which the biosafety cabinet and a clean booth are connected.
The other problems, features and effects will be clarified by the following descriptions of embodiments.
Hereinafter, descriptions will be provided for embodiments of the present invention referring to the drawings.
It should be noted that the embodiments will be described by being divided into multiple sections or embodiments, as needed for convenience. However, those are not irrelevant to one another unless otherwise indicated, but have relationships such as modifications, details, supplementary explanations in which one is a part or the whole of the other.
Further, in the following embodiments, when the number and the like of elements (including a quantity, numerical value, amount, range, and the like) are mentioned, those are not limited to the specific number unless otherwise specifically indicated or unless obviously limited to the specific number from a principle viewpoint, but may be equal to, greater than, or less than the specific number.
Furthermore, in the following embodiments, it is a matter of course that components (including elemental steps or the like) are not necessarily essential unless otherwise specifically indicated or unless obviously considered essential from a principle viewpoint.
Likewise, in the following embodiments, when a shape, positional relation and the like of the components and the like are mentioned, those include what are substantially close to or similar to the shape and the like unless otherwise specifically indicated or unless obviously considered otherwise from a principle viewpoint. This also applies to the numerical values and ranges as well.
In all drawings for describing the embodiments, the same reference signs are given to members having the same functions, so that duplicated descriptions are omitted.
This embodiment describes an example which reduces contamination risk due to electrification and secure workability by disposing only one ionizer in a biosafety cabinet efficiently to effectively exert an effect of diselectrifying.
In
Here, the embodiment is characterized in that an ionizer 60 is disposed right above an airflow branch point 18 where the biosafety cabinet blow-out airflow 16 in the work space 12 separates toward the front and the rear near a working table 19.
Thereby, ions generated from an electrode probe of the ionizer spreads to the work space 12 while flowing together with the biosafety cabinet blow-out airflow 16, and separates toward the front and the rear at the airflow branch point 18 to flow to equipment and specimens on the working table 19, so that it is possible to efficiently perform diselectricitying of the entire working table 19.
Because the airflow branch point 18 is a point where the biosafety cabinet blow-out airflow 16 separates toward the front and the rear near the working table 19, the airflow branch point 18 becomes stagnant there. However, by disposing the ionizer 60 right above the airflow branch point, an airflow from the surroundings whirls right below the ionizer 60 so that the velocity of wind right below the ionizer 60 becomes higher than the surroundings. Thereby, the stagnancy of the airflow is cleared, and also there is an effect that the dust involved in the operation in the work space 12 can be efficiently emitted.
This embodiment describes an example which effectively performs diselectrifying of an input port of the waste can in a case where the waste can is placed on the working table in the biosafety cabinet.
In
The waste can 50 is provided for temporarily accommodating waste matters generated by work in the work space 12, and is a SUS can or a bag made from polyethylene or the like. In a case where the waste matters are frequently generated, an exhaust port is often left open and is not closed by a lid. A bag made from polyethylene or the like which had been accommodated a pipette or the like used in the work, or waste cloth or the like which had been used for cleaning is disposed therein. However, due to friction electrification involved in the work, or peeling electrification caused when opening a bag accommodating equipment, the waste matters inputted in the waste can sometimes come to float out of the waste can, and the waste matters are sometimes attracted to a hand when disposing in the waste can. By locating the waste can 50 at the above-mentioned place, the diselectrifying effect of the ionizer can be brought about also at the input port of the waste can 50, so that the causes of contamination like the above-mentioned phenomena can be prevented.
This embodiment describes an example which enhances the diselectrifying effect in the pass box in the clean air device in which the biosafety cabinet and the clean booths are connected with each other.
As shown in
This embodiment describes an example which further enhances the diselectrifying effect in the pass box in the clean air device in which the biosafety cabinet and the clean booths are connected with each other.
By these features, even if the equipment or specimen is electrostatically charged when being introduced from the clean booth 20, the diselectrifying is carried out only by putting it on the bottom of the pass box 40 under the favor of the diselectrifying effect of the ionizer 60 disposed in the biosafety cabinet 10, and the dust peeled by the diselectrifying can be emitted from the pass box connecting part inner surface slits 45 through the circulation passage 13. Further, since the biosafety cabinet blow-out airflow 16 passes through the pass box 40, and is emitted from the pass box connecting part inner surface slits 45, there is also an effect of maintaining the cleanliness of the entire pass box 40.
Note that although the examples of the biosafety cabinet and the clean air device are described in the above embodiments, it is possible to consider the embodiments as an example of a clean room by arranging those in the clean room.
Although the above descriptions have been made for the embodiments, it is clear to those skilled in the art that the present invention is not limited thereto, and can be variously modified and changed within the scope of the spirit of the present invention and the appended claims.
10 biosafety cabinet
11 front shutter
12 work space
13 circulation passage
14 biosafety cabinet rear surface slit
15 biosafety cabinet exhaust airflow
16 biosafety cabinet blow-out airflow
17 front grill
18 airflow branch point
19 working table
20 clean booth
21 blow-out punching plate
30 FFU
40 pass box
41 pass box door
42 pass box connecting part outer surface
43 pass box connecting part inner surface
44 pass box connecting part curtain
45 pass box connecting part inner surface slit
50 waste can
60 ionizer
Number | Date | Country | Kind |
---|---|---|---|
2016-204795 | Oct 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/016183 | 4/24/2017 | WO | 00 |