The present invention relates to a biosensor test strip. It is more particularly related to a biosensor test strip made in the process without the use of an etchant and a method of producing the same.
With the progress of medical treatments, chronic diseases, instead of infectious diseases, gradually become one of the main causes of human deaths. Accordingly, the concept of self-health management turns to be increasingly popular. The relevant health tests conducted in the hospital, however, consume a lot of time and cost. Nowadays, each house is usually equipped with the devices for detecting, testing or collecting the physiological data, such as blood glucose, cholesterol, uric acid, etc. Such devices can perform a fast and easy measurement through biosensor test strips with the reading machines so as to bring people toward a better health management.
The most important component on a biosensor test strip is the electrodes used to perform the test. Through the lithography and etching technology, working electrodes and reference electrodes on the test strip can be formed. The reasons for taking the etching technique in use are because it is with a high production efficiency and the metal being etched off can be recycled for a further use, etc. However, the etching technique is also with the problems of high costs, chemical pollutions and residual etching liquid or etchant. Another fabrication method is described in U.S. Pat. No. 6,662,439, “Laser defined features for patterned laminates and electrodes”, which employs the laser ablation technology to accurately ablate the electrodes on a metallic film. Even though this method can avoid the problem of the residual etching liquid, it still has a low production efficiency and the metal being ablated is not recyclable.
As a result, in the fabrication of the electrodes on the test strip, how to avoid the problems of chemical pollution as well as the residual etching solution and to improve the production efficiency and the recycling rate of the metal has become an important subject in the relevant industrial.
The present invention is mainly directed to solve the problems of the chemical pollution as well as the residual etching liquid in the production of the biosensor test trip, the low production efficiency and the low recycling rate of metal.
In order to achieve the above-identified objects, the present invention provides a method for producing a biosensor test strip without the use of any etching liquid, which comprises the steps of:
S1: forming a patterned stripping layer on a substrate, wherein the patterned stripping layer comprises a masking region and a hollow region adjacent to the masking region to expose the substrate, and the hollow region defines a wiring pattern;
S2: sputtering a metallic film onto the masking region of the patterned stripping layer and the substrate below the hollow region;
S3: removing the masking region together with the metallic film thereon through a non-etching liquid miscible with the patterned stripping layer, but leaving the metallic film on the substrate so as to form a detection line corresponding to the wiring pattern of the hollow region, wherein the detection line comprises a working end and a measuring end away from the working end;
S4: forming a pad layer on the detection line and the substrate, wherein the pad layer comprises an opening to expose the working end; and
S5: forming a reacting enzyme in the opening.
In order to achieve the above-identified objects, the present invention further provides a biosensor test strip produced by the steps as listed above.
In summary, the present invention employs the non-etchant liquid to remove the pattered stripping layer, thereby avoiding the chemical contamination caused by the etchant as well as solving the problem of the residual etchant on the biosensor test strip. Through the method provided by the present invention, it can also increase the production efficiency. In addition, the removed metallic film can be reused from the non-etching liquid to reduce the costs.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way:
The detailed description and technical contents of the present invention will be described with reference to the accompany drawings as follows:
As shown in
Step S1: Forming a patterned stripping layer 20 on a substrate 10 as shown in
Step S1A: Coating a strippable adhesive on a screen (not shown in the drawings), and the strippable adhesive penetrates the screen onto the substrate 10.
Step S1B: Curing the strippable adhesive to form the patterned stripping layer 20 on the substrate 10. In one preferred embodiment, the thickness of the patterned stripping layer 20 is between 1 μm to 100 μm, and the patterned stripping layer 20 is comprised of the masking region 21 defined by the screen and the hollow region 22 adjacent to the masking region 21 to expose the substrate 10. And the hollow region 22 defines the wiring pattern. And the curing method for the strippable adhesive can be infrared light curing, ultraviolet light curing, etc., but not limited only thereto.
Step S2: Sputtering a metallic film 30 on the masking region 21 and the hollow region 22 of the patterned stripping layer 20 as shown in
Step S3: Washing off the patterned stripping layer 20 by a non-etchant liquid which is miscible with the patterned stripping layer 20. As a result, referring to
Step S3A: Removing the residual non-etchant liquid on the substrate 10 and the detection line 31 by an air knife so as to keep the substrate 10 and the detection line 31 dry to facilitate the subsequent processes.
Step S4: Forming a pad layer 40 on the detection line 31 as well as the substrate 10 as shown in
Step S5: Forming a reacting enzyme 50 in the opening 41, located on top of the working end 32.
Step S6: Forming an upper cover 60 on the pad layer 40. The upper cover 60 comprises an air hole 61 communicating with the opening 41 in order to discharge the air or gas located in the opening 41 and to allow the entry of a tested object. The present inventive biosensor test strip is formed in this step.
Turning to
In view of the foregoing, the present invention has the characteristics as follows:
1. Through the non-etchant liquid to wash off the patterned stripping layer, it is possible to avoid the chemical contamination caused by the etchant and the problem of the residual etching liquid on the biosensor test strips. And the liquid cleaning method of the present invention has a higher production efficiency. Further, the removed metallic film can be reused from the non-etchant liquid so as to reduce the costs.
2. Through the air hole provided, the air or gas in the opening can be discharged to facilitate the entry of a tested object.
Number | Date | Country | Kind |
---|---|---|---|
106104391 | Feb 2017 | TW | national |