Biostimulator circuit with flying cell

Information

  • Patent Grant
  • 10744332
  • Patent Number
    10,744,332
  • Date Filed
    Friday, September 22, 2017
    7 years ago
  • Date Issued
    Tuesday, August 18, 2020
    4 years ago
Abstract
A leadless cardiac pacemaker is provided which can include any number of features. In one embodiment, the pacemaker can include a tip electrode, pacing electronics disposed on a p-type substrate in an electronics housing, the pacing electronics being electrically connected to the tip electrode, an energy source disposed in a cell housing, the energy source comprising a negative terminal electrically connected to the cell housing and a positive terminal electrically connected to the pacing electronics, wherein the pacing electronics are configured to drive the tip electrode negative with respect to the cell housing during a stimulation pulse. The pacemaker advantageously allows p-type pacing electronics to drive a tip electrode negative with respect to the can electrode when the can electrode is directly connected to a negative terminal of the cell. Methods of use are also provided.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD

This disclosure relates generally to implantable pacemakers or biostimulators. More specifically, this disclosure relates to improved implantable leadless pacemakers having a reduced weight and volume.


BACKGROUND

Cardiac pacing electrically stimulates the heart when the heart's natural pacemaker and/or conduction system fails to provide synchronized atrial and ventricular contractions at appropriate rates and intervals for a patient's needs. Such bradycardia pacing provides relief from symptoms and even life support for hundreds of thousands of patients. Cardiac pacing may also give electrical overdrive stimulation intended to suppress or convert tachyarrhythmias, again supplying relief from symptoms and preventing or terminating arrhythmias that could lead to sudden cardiac death.


Pacemakers require at least two electrodes to deliver electrical therapy to the heart and to sense the intracardiac electrogram. Traditionally, pacemaker systems are comprised of an implantable pulse generator and lead system. The pulse generators are implanted under the skin and connected to a lead system that is implanted inside the heart with at least one electrode touching the endocardium. The lead system can also be implanted on the epicardial surface of the heart.


Pacemaker lead systems are typically built using a unipolar design, with an electrode at the tip of the lead wire, or bipolar design, with an additional electrode ring often 10 mm proximal to the tip electrode. Additionally, the implanted pulse generator can is often used as a pace/sense electrode. In a conventional pacemaker system, pacing occurs either between the electrode tip and ring, or between the tip and can. Likewise, sensing occurs either between the electrode tip and ring or between the tip and the can.


SUMMARY OF THE DISCLOSURE

A leadless cardiac pacemaker, comprising an electronics housing, pacing electronics disposed in the electronics housing, a tip electrode electrically coupled to the pacing electronics, a cell housing, and an energy source disposed in the cell housing, the energy source having a positive terminal electrically coupled to the pacing electronics, and a negative terminal electrically coupled to the cell housing, the pacing electronics being configured to drive the tip electrode negative with respect to the cell housing during a stimulation pulse.


In some embodiments, electrically coupling the negative terminal to the cell housing configures the cell housing to act as a can electrode.


In one embodiment, the pacing and sensing electronics comprise at least one p-type substrate.


In additional embodiments, the energy source comprises at least one lithium carbon mono-fluoride cell.


In some embodiments, the pacemaker does not include an additional housing or ring electrode disposed around the cell housing.


In one embodiment, the pacemaker is configured to provide stimulation pulses from the cell housing to the tip electrode through cardiac tissue.


In some embodiments, the pacing electronics permit the cell housing which is coupled to the negative terminal of the energy source to serve as a positive can electrode during the stimulation pulse.


In another embodiment, the pacing electronics include at least one switch that prevent the passage of current in the presence of defibrillation or electrosurgery voltages on a high terminal of the at least one switch.


A method of driving a leadless pacemaker is also provided, comprising the steps of coupling a negative terminal of a cell to a cell housing of the leadless pacemaker, coupling a positive terminal of the cell to p-type substrate pacing electronics of the leadless pacemaker, driving, with the pacing electronics, a tip electrode of the leadless pacemaker negative with respect to the cell housing during a stimulation pulse.


In one embodiment, the method further comprises the step of stimulating cardiac tissue with the stimulation pulse.


In some embodiments, the driving step comprises driving the tip electrode as a negative electrode and driving the cell housing as a positive electrode during the stimulation pulse.


A leadless cardiac pacemaker is also provided, comprising a tip electrode, pacing electronics disposed on a p-type substrate in an electronics housing, the pacing electronics being electrically connected to the tip electrode, and an energy source disposed in a cell housing, the energy source comprising a negative terminal electrically connected to the cell housing and a positive terminal electrically connected to the pacing electronics, the pacing electronics being configured to drive the tip electrode as a negative electrode and the cell housing as a positive electrode during a stimulation pulse.


In some embodiments, the energy source comprises at least one lithium carbon mono-fluoride cell.


In another embodiment, the pacemaker further comprises a fixation feature configured to affix the pacemaker to cardiac tissue.


In one embodiment, there is no separate housing disposed around the cell housing.


In another embodiment, the cell housing is configured to act as a can electrode.


In yet another embodiment, there is no separate ring or can electrode disposed around the cell housing.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 shows an external view of a biostimulator or leadless pacemaker.



FIGS. 2A-2B provide schematic diagrams of pacing electronics according to one embodiment.



FIGS. 3 and 4 provide detailed diagrams of the implementation of switches in the pacing electronics of FIGS. 2A-2B.





DETAILED DESCRIPTION

Leadless pacemaker designs described in the present disclosure provide improvements over conventional pacemakers with leads and also over prior leadless pacemaker designs. The leadless pacemaker designs described herein advantageously minimize biostimulator volume while increasing efficiency and cell life. Six design techniques described herein contribute to reducing biostimulator volume.


First, the housing of the device's energy source can be used as part of the housing of the stimulator. This provides more compact construction than that of conventional pacemakers, which generally include a first metal housing containing the energy source, entirely enclosed within a second metal housing containing the energy source housing, along with circuitry.


Second, an energy source with high energy per unit volume and low internal resistance can be used within the leadless pacemaker. Both features decrease the amount of reactants necessary for a specified device lifetime.


Additionally, the device's analog and digital functions can be implemented with a single integrated circuit. This reduces board area, encapsulation volume, and interconnection area, thereby allowing all the internal circuitry of the pacemaker to be contained within a smaller housing and reducing overall biostimulator volume.


Fourth, the pacemaker can have a generally cylindrical form with diameter not to exceed 7 mm, and preferably having a diameter that does not exceed 6 mm. In some embodiments, pacemakers utilizing the design of this disclosure can have dimensions of approximately 6 mm in diameter and approximately 3.5 cm in length, for a total volume of approximately 1 cc and a mass of approximately 2 gm. This enables percutaneous delivery of the biostimulator through the vasculature. To provide high energy per unit volume and low internal resistance with this form, chemical cell manufacturers propose lithium carbon mono-fluoride (“CFx”) cells with “bobbin” construction, symmetric around the cell's long axis, with the lithium anode arranged along the cell housing's inside wall. Thus, in some embodiments the cell housing forms the cell's negative terminal (“negative can”).


Another improvement includes providing efficient stimulation via a first small-surface-area electrode (“tip”), and a second large-surface-area electrode (“ring” or “can”). The small tip provides a high electric field gradient to induce stimulation. The large ring or can provides a low spreading resistance to minimize electrical losses. To prevent corrosion, arrhythmia induction, and elevated pacing thresholds, stimulators generally provide a pulse with the tip negative with respect to the can (“positive can”).


Finally, another improved disclosed herein includes implementing mixed analog and digital functions on a single integrated circuit with minimal substrate area. In some embodiments, the integrated circuits used in the leadless pacemakers described herein can include only p-type processes where no point on the chip can have a voltage below the substrate voltage (“negative ground”).



FIG. 1 shows an external view of a leadless pacemaker or biostimulator 100. The pacemaker 100 can comprise energy source or cell 101, pacing electronics 102, tip electrode 103, insulator 104, and fixation feature 105. Electronics 102 can include a single p-type substrate ASIC. The pacemaker 100 can comprise an outer housing 107, which in this embodiment is a combination of cell housing 106 (surrounding cell 101) and circuit housing 108 (surrounding electronics 102). The cell housing 106 can act as an electrode (e.g. a ring electrode). In some embodiments, the housings can comprise a conductive material such as titanium, 316L stainless steel, or other similar materials. The fixation feature 105 can comprise a fixation helix or other screw-like feature configured to affix the pacemaker to cardiac tissue.


In the embodiment of FIG. 1, the negative terminal of the energy source 101 can be connected to the cell housing 106, and the positive terminal of the cell can be connected to electronics 102 within circuit housing 108. By connecting the negative terminal of the energy source to the cell housing, the cell housing can then be used as a ring or can electrode for the pacemaker. Since the cell housing 106 is connected to the negative terminal of the energy source 101 so as to act as a can electrode, the combination can be referred to collectively within this disclosure as the “negative can”, “can electrode”, or “ring electrode”. Utilizing the cell housing as the negative can allows the pacemaker 100 to be designed without requiring an additional pacemaker housing and/or ring electrode around the energy source and cell housing, which can significantly reduce the size and cost of the pacemaker.


Insulator 104 can be configured to electrically isolate tip electrode 103 from the rest of the device, including from the electronics and the negative can. The insulator 104 can include a ceramic to metal feedthrough or a glass to metal feedthrough to connect the tip electrode to electronics 102, as known in the art. The tip electrode 103 can be, for example, a raised or “button” shaped electrode disposed on a distal tip of the housing. The tip electrode can be other shapes, including square, rectangular, circular, flat, pointed, or otherwise shaped as known in the art. In additional embodiments, the electrode can be integrated into the fixation feature 105.


When the pacemaker of FIG. 1 is activated, stimulation current can flow from the cell housing 106, at positive polarity during the stimulation pulse, to tip electrode 103, at negative polarity during the stimulation pulse. Consequently the cell housing 106 also serves as the positive ring electrode during stimulation. Insulator 104 separates the cell housing (acting as a ring or can electrode) from the tip electrode 103, both physically and electrically during use. In order for the pacemaker 100 of FIG. 1 to function properly when implanted in a heart of a patient, the tip electrode 103 must be driven negative with respect to the ring or can electrode (e.g., cell housing 106) even though the cell's negative terminal is connected directly to the ring or can electrode.


Traditionally, n-type substrate technology was available to pacemaker and pacemaker designers, who could connect the positive terminal of the cell to the n-type substrate and to the ring electrode, allowing the negative terminal of the cell to create a negative voltage that would be commuted to the tip electrode. However, it is presently difficult to find n-type substrates for use in these applications, so the present invention advantageously allows the tip electrode to be driven negative with respect to the ring electrode while using a p-type substrate.



FIGS. 2A-2B are simplified schematic diagrams of pacing and sensing circuitry 200, according to one embodiment. The pacing and sensing circuitry 200 can be all or a portion of the circuitry found in electronics 102 of FIG. 1. Reference to can electrode 106 and tip electrode 103 can also be referring to the electrodes of FIG. 1.


In the illustrated embodiment, the pacing and sensing circuitry 200 can be a single p-type substrate ASIC. This circuitry allows the tip electrode of a pacemaker to be driven negative with respect to the can electrode when constrained to using a p-type substrate and a lithium CFx cell. FIG. 2A shows switches 201-206 in a first state, occurring between stimulation pulses, with switches 201-204 closed and switches 205-206 opened. FIG. 2B shows switches 201-206 in a second state, occurring while delivering a stimulation pulse, with switches 201-204 opened and switches 205-206 closed.


In the first state, energy source 101 (which can be the energy source 101 from FIG. 1) charges cell tank capacitor 207 and pacing tank capacitor 208, through switches 201-203.


In the second state, the energy source 101 is switched out of the circuit and pacing tank capacitor 208 discharges through switches 205-206 through body load 210 and output coupling capacitor 209, forcing the tip electrode 103 to go negative with respect to the can electrode 106. When the biostimulator 100 described above operates in the second state, stimulation current flows from the can electrode (positive electrode, also shown as cell housing 106 in FIG. 1) to the electrode tip (negative electrode, shown as tip electrode 103 in FIG. 1).


Returning to the first state, output coupling capacitor 209 discharges through switches 202 and 204, and body load 201. This ensures charge balance through the electrodes. Resistor 211 represents the on-resistance of switch 204, selected to limit this charge-balancing current. The resistance of resistor 211 can be chosen based on several factors, including the stimulation frequency, load impedance, and effective output capacitance.


Integrated circuit ground 212 consequently is the most negative voltage in the system. During the stimulation pulse (e.g., when the circuit is in the second state), the negative terminal of energy source 101 “flies up” from ground to the stimulating voltage on the positive terminal of pacing tank capacitor, and the positive terminal of energy source 101 “flies up” even higher but is disconnected. Cell tank capacitor 207 maintains a supply voltage for other circuits (not shown). After completion of the stimulation pulse, the cell “flies down” so that its negative terminal is reconnected to ground and its positive terminal is reconnected to the positive terminal of cell tank capacitor 207. This “flying cell” configuration permits the cell negative terminal—the negative cell housing or can electrode—to serve as the positive ring or can for stimulation.


Protection device or devices 214 limit voltage between the can electrode 106 (which is the negative terminal of energy source 101) and the tip electrode 103, to protect the circuit 200 during defibrillation or electrosurgery. The circuit 200 may include a sensing amplifier as the protection device 214 to detect intrinsic or evoked activity in the stimulated organ. The amplifier can detect potentials between tip 103 and can 106 (housing of energy source 101), and all circuitry in the amplifier can operate above ground potential 212.


A capacitive or inductive voltage converter (not shown) may optionally replace switch 203 to provide efficient charging of pacing capacitor 208 at voltages different from that of energy source 101, as is known in the art.



FIG. 3 shows a simplified schematic diagram 300 corresponding to each of switches 204 and 205 from FIGS. 2A-2B, which require a novel implementation because of potential presence of defibrillation or electrosurgery voltages on the tip electrode (such as tip electrode 103 described above). Each switch has a high terminal 304, low terminal 305, control terminal 303, and driver voltage 309. The switch is designed to pass no current in the presence of defibrillation or electrosurgery voltages on the high terminal 304 as limited by protection devices in the circuit (such as protection device 214 above).


When control terminal 303 is low, resistor 306 holds switch 301 off and control terminal 303 holds switch 302 off, even with full protected voltage on 304. Because switches 301 and 302 are connected in opposite configurations, their body diodes do not conduct. When control terminal 303 is driven to the driver voltage 309 (for example, the voltage at the positive terminal of cell tank capacitor 207 from FIGS. 2A-2B), switch 302 turns on, and switches 308 and 307 turn switch 301 on.



FIG. 4 shows a simplified schematic diagram 400 of switch 206 from FIGS. 2A-2B, which requires novel implementation because of potential presence of defibrillation or electrosurgery voltages on the can electrode (such as housing 106 described above). The switch has a high terminal 404, low terminal 405, control terminal 403, and driver voltage 409. The switch is designed to pass no current in the presence of defibrillation or electrosurgery voltages on the high terminal 404 as limited by protection device 214. When control terminal 403 is low (at the voltage of 405), level shifter 406 output is at the voltage of 405, which holds switches 401 and 402 off, even with full protected voltage on 404. Because switches 401 and 402 are connected in opposite configurations, their body diodes do not conduct. When control terminal 403 is driven to the driver voltage 409 (in this case the voltage at the positive terminal of energy source 101, which during stimulation is higher than the can electrode voltage), then switches 401 and 402 turn on.


Switches 201 and 203 of FIGS. 2A-2B may each be implemented with a P-channel MOSFET, and switch 202 may be implemented with an N-channel MOSFET, all in a conventional manner.


As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.

Claims
  • 1. A method of operating a leadless pacemaker having pacing electronics, a tip electrode electrically coupled to the pacing electronics, a can electrode comprising at least a portion of a cell housing, and an energy source disposed in the cell housing and having a negative terminal electrically connected to the cell housing, the method comprising: during a first state, closing a first set of switches of the pacing electronics to electrically connect the pacing electronics to the energy source and to electrically connect a first capacitor and a second capacitor to the energy source; andduring a second state: opening the first set of switches to electrically disconnect the pacing electronics from the energy source such that the pacing electronics are powered by the first capacitor, andclosing a second set of switches such that the second capacitor is discharged into the cell housing, thereby driving the tip electrode negative with respect to the can electrode.
  • 2. The method of claim 1, further comprising, during the second state, discharging a third capacitor through the first set of switches of the pacing electronics to cause a charge balance between the tip electrode and the can electrode of the leadless pacemaker.
  • 3. The method of claim 1, further comprising using a protection device to limit a voltage difference between the can electrode and the tip electrode during the second state.
  • 4. The method of claim 3, wherein the using the protection device comprises using a sensing amplifier to detect intrinsic or evoked activity.
  • 5. The method of claim 3, wherein the using the protection device comprises using a sensing amplifier to detect a potential between the tip and can electrodes, and wherein the method further comprises operating all circuitry in the sensing amplifier above an integrated circuit ground potential.
  • 6. The method of claim 1, wherein at least one switch of the second set of switches comprises a high terminal, a low terminal, a control terminal, and a driver voltage, and wherein during the second state, the at least one switch passes no current in a presence of defibrillation electrosurgery voltages on the high terminal.
  • 7. The method of claim 6, wherein the at least one switch of the second set of switches comprises a first switch and a second switch connected in opposite configurations such that respective body diodes of the first and second switches do not conduct current, and wherein the method further comprises, when the control terminal is low, holding the first switch off using a resistor and holding the second switch off using the control terminal.
  • 8. The method of claim 7, wherein the at least one switch of the second set of switches further comprises a third switch and a fourth switch, the method further comprising turning the second switch on by driving the control terminal to the driver voltage, and using the third and the fourth switches to turn the first switch on.
  • 9. The method of claim 6, wherein the at least one switch of the second set of switches comprises a level shifter and a first switch and a second switch connected in opposite configurations such that respective body diodes do not conduct current, and wherein the method further comprises, when the control terminal is at a voltage of the low terminal, holding the first and second switches off using the level shifter.
  • 10. The method of claim 9, further comprising turning the first switch and the second switch on by driving the control terminal to a same voltage as the driver voltage.
  • 11. A method of operating a leadless cardiac pacemaker having pacing electronics, a tip electrode electrically coupled to the pacing electronics, a cell housing, an energy source disposed in the cell housing having a negative terminal electrically connected to the cell housing, the method comprising: during a first state: powering the pacing electronics using the energy source; andcharging at least a first capacitor and a second capacitor using the energy source; andduring a second state used to deliver a stimulation pulse: disconnecting the first capacitor from the energy source and the tip electrode;electrically connecting the first capacitor to the pacing electronics and powering the pacing electronics using the first capacitor; anddischarging the second capacitor into the cell housing, resulting in the cell housing serving as a positive terminal with respect to a negative terminal formed at the tip electrode during delivery of the stimulation pulse.
  • 12. The method of claim 11, further comprising stimulating cardiac tissue with the stimulation pulse.
  • 13. The method of claim 12, further comprising using at least one switch to prevent passage of electricity between the pacing electronics and the cell housing during the second state.
  • 14. The method of claim 12, wherein the energy source comprises a lithium carbon mono-fluoride cell.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 13/956,946, filed Aug. 1, 2013, published as U.S. Pub. No. 2014/0039570 and issued as U.S. Pat. No. 9,802,054 on Oct. 31, 2017, which claims the benefit of U.S. Provisional Patent Application No. 61/678,505, filed on Aug. 1, 2012, titled “Biostimulator Circuit with Flying Cell”, the contents of which are incorporated by reference herein.

US Referenced Citations (569)
Number Name Date Kind
3199508 Roth Aug 1965 A
3212496 Preston Oct 1965 A
3218638 Honig Nov 1965 A
3241656 Zacouto Mar 1966 A
3478746 Greatbatch Nov 1969 A
3603881 Thornton Sep 1971 A
3727616 Lenzkes Apr 1973 A
3757778 Graham Sep 1973 A
3823708 Lawhorn Jul 1974 A
3830228 Foner Aug 1974 A
3835864 Rasor et al. Sep 1974 A
3836798 Greatbatch Sep 1974 A
3870051 Brindley Mar 1975 A
3872251 Auerbach et al. Mar 1975 A
3905364 Cudahy et al. Sep 1975 A
3940692 Neilson Feb 1976 A
3943926 Barragan Mar 1976 A
3946744 Auerbach Mar 1976 A
3952750 Mirowski et al. Apr 1976 A
4027663 Fischler et al. Jun 1977 A
4072154 Anderson et al. Feb 1978 A
4083366 Gombrich et al. Apr 1978 A
4102344 Conway et al. Jul 1978 A
4146029 Ellinwood, Jr. Mar 1979 A
4151513 Menken et al. Apr 1979 A
4151540 Sander et al. Apr 1979 A
4152540 Duncan et al. May 1979 A
4173221 McLaughlin et al. Nov 1979 A
4187854 Hepp et al. Feb 1980 A
4210149 Heilman et al. Jul 1980 A
RE30366 Rasor et al. Aug 1980 E
4223678 Langer et al. Sep 1980 A
4250888 Grosskopf Feb 1981 A
4256115 Bilitch Mar 1981 A
4296756 Dunning et al. Oct 1981 A
4310000 Lindemans Jan 1982 A
4318412 Stanly et al. Mar 1982 A
4336810 Anderson et al. Jun 1982 A
4350169 Dutcher et al. Sep 1982 A
4374382 Markowitz Feb 1983 A
4406288 Horwinski et al. Sep 1983 A
4411271 Markowitz Oct 1983 A
4418695 Buffet Dec 1983 A
4424551 Stevenson et al. Jan 1984 A
4428378 Anderson et al. Jan 1984 A
4440173 Hudziak et al. Apr 1984 A
4442840 Wojciechowicz, Jr. Apr 1984 A
4453162 Money et al. Jun 1984 A
4458692 Simson Jul 1984 A
4481950 Duggan Nov 1984 A
4513743 van Arragon et al. Apr 1985 A
4516579 Irnich May 1985 A
4522208 Buffet Jun 1985 A
4524774 Hildebrandt Jun 1985 A
4531527 Reinhold, Jr. et al. Jul 1985 A
4543955 Schroeppel Oct 1985 A
4550370 Baker Oct 1985 A
4552127 Schiff Nov 1985 A
4552154 Hartlaub Nov 1985 A
4562846 Cox et al. Jan 1986 A
4586508 Batina et al. May 1986 A
4606352 Geddes et al. Aug 1986 A
4607639 Tanagho et al. Aug 1986 A
4612934 Borkan Sep 1986 A
4625730 Fountain et al. Dec 1986 A
4679144 Cox et al. Jul 1987 A
4681111 Silvian Jul 1987 A
4681117 Brodman et al. Jul 1987 A
4702253 Nappholz et al. Oct 1987 A
4719920 Alt et al. Jan 1988 A
4722342 Amundson Feb 1988 A
4750495 Moore et al. Jun 1988 A
4763340 Yoneda et al. Aug 1988 A
4763655 Wirtzfeld et al. Aug 1988 A
4787389 Tarjan Nov 1988 A
4791931 Slate Dec 1988 A
4793353 Borkan Dec 1988 A
4794532 Leckband et al. Dec 1988 A
4802481 Schroeppel Feb 1989 A
4809697 Causey, III et al. Mar 1989 A
4827940 Mayer et al. May 1989 A
4830006 Haluska et al. May 1989 A
4844076 Lesho et al. Jul 1989 A
4846195 Alt Jul 1989 A
4858610 Callaghan et al. Aug 1989 A
4860750 Frey et al. Aug 1989 A
4875483 Vollmann et al. Oct 1989 A
4880004 Baker, Jr. et al. Nov 1989 A
4883064 Olson et al. Nov 1989 A
4886064 Strandberg Dec 1989 A
4896068 Nilsson Jan 1990 A
4903701 Moore et al. Feb 1990 A
4905708 Davies Mar 1990 A
4926863 Alt May 1990 A
4974589 Sholder Dec 1990 A
4987897 Funke Jan 1991 A
4995390 Cook et al. Feb 1991 A
5010887 Thornander Apr 1991 A
5012806 De Bellis May 1991 A
5014701 Pless et al. May 1991 A
5040533 Fearnot Aug 1991 A
5040534 Mann et al. Aug 1991 A
5040536 Riff Aug 1991 A
5042497 Shapland Aug 1991 A
5052399 Olive et al. Oct 1991 A
5058581 Silvian Oct 1991 A
5065759 Begemann Nov 1991 A
5076270 Stutz, Jr. Dec 1991 A
5076272 Ferek-Petric Dec 1991 A
5085224 Galen et al. Feb 1992 A
5086772 Larnard et al. Feb 1992 A
5088488 Markowitz et al. Feb 1992 A
5095903 DeBellis Mar 1992 A
5109845 Yuuchi et al. May 1992 A
5111816 Pless et al. May 1992 A
5113859 Funke May 1992 A
5113869 Nappholz et al. May 1992 A
5133350 Duffin Jul 1992 A
5135004 Adams et al. Aug 1992 A
5170784 Ramon et al. Dec 1992 A
5170802 Mehra Dec 1992 A
5179947 Meyerson et al. Jan 1993 A
5184616 Weiss Feb 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5193550 Duffin Mar 1993 A
5217010 Tsitlik et al. Jun 1993 A
5243977 Trabucco et al. Sep 1993 A
5247945 Heinze et al. Sep 1993 A
5259394 Bens Nov 1993 A
5267150 Wilkinson Nov 1993 A
5282841 Szyszkowski Feb 1994 A
5284136 Hauck et al. Feb 1994 A
5291902 Carman Mar 1994 A
5300093 Koestner et al. Apr 1994 A
5304206 Baker, Jr. et al. Apr 1994 A
5304209 Adams et al. Apr 1994 A
5313953 Yomtov et al. May 1994 A
5318596 Barreras et al. Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5333095 Stevenson et al. Jul 1994 A
5336244 Weijand Aug 1994 A
5342401 Spano et al. Aug 1994 A
5354317 Alt Oct 1994 A
5358514 Schulman et al. Oct 1994 A
5373852 Harrison et al. Dec 1994 A
5383912 Cox et al. Jan 1995 A
5383915 Adams Jan 1995 A
5404877 Nolan et al. Apr 1995 A
5405367 Schulman et al. Apr 1995 A
5406444 Selfried et al. Apr 1995 A
5411532 Mortazavi May 1995 A
5411535 Fujii May 1995 A
5411537 Munshi et al. May 1995 A
5417222 Dempsey et al. May 1995 A
5419337 Dempsey et al. May 1995 A
5431171 Harrison et al. Jul 1995 A
5446447 Carney et al. Aug 1995 A
5456261 Luczyk Oct 1995 A
5466246 Silvian Nov 1995 A
5469857 Laurent et al. Nov 1995 A
5480415 Cox et al. Jan 1996 A
5481262 Urbas et al. Jan 1996 A
5522876 Rusink Jun 1996 A
5531779 Dahl et al. Jul 1996 A
5531781 Alferness et al. Jul 1996 A
5531783 Giele et al. Jul 1996 A
5539775 Tuttle et al. Jul 1996 A
5549654 Powell Aug 1996 A
5549659 Johansen et al. Aug 1996 A
5551427 Altman Sep 1996 A
5556421 Prutchi et al. Sep 1996 A
5562717 Tippey et al. Oct 1996 A
5571143 Hoegnelid et al. Nov 1996 A
5571148 Loeb et al. Nov 1996 A
5579775 Dempsey et al. Dec 1996 A
5586556 Spivey et al. Dec 1996 A
5591217 Barreras Jan 1997 A
5598848 Swanson et al. Feb 1997 A
5642014 Hillenius Jun 1997 A
5649952 Lam Jul 1997 A
5650759 Hittman et al. Jul 1997 A
5654984 Hershbarger et al. Aug 1997 A
5662689 Elsberry et al. Sep 1997 A
5669391 Williams Sep 1997 A
5674259 Gray Oct 1997 A
5676153 Smith et al. Oct 1997 A
5693076 Kaemmerer Dec 1997 A
5694940 Unger et al. Dec 1997 A
5694952 Lidman et al. Dec 1997 A
5697958 Paul et al. Dec 1997 A
5702427 Ecker et al. Dec 1997 A
5725559 Alt et al. Mar 1998 A
5728154 Crossett et al. Mar 1998 A
5730143 Schwarzberg Mar 1998 A
5735880 Prutchi et al. Apr 1998 A
5738102 Lemelson Apr 1998 A
5740811 Hedberg et al. Apr 1998 A
5741314 Daly et al. Apr 1998 A
5766231 Erickson et al. Jun 1998 A
5792205 Alt et al. Aug 1998 A
5810735 Halperin et al. Sep 1998 A
5814076 Brownlee Sep 1998 A
5814087 Renirie Sep 1998 A
5814089 Stokes et al. Sep 1998 A
5824016 Ekwall Oct 1998 A
5871451 Unger et al. Feb 1999 A
5876353 Riff Mar 1999 A
5876425 Gord et al. Mar 1999 A
5891178 Mann et al. Apr 1999 A
5899928 Sholder et al. May 1999 A
5935079 Swanson et al. Aug 1999 A
5954761 Machek et al. Sep 1999 A
5957861 Combs et al. Sep 1999 A
5984861 Crowley Nov 1999 A
5987352 Klein et al. Nov 1999 A
5995876 Kruse et al. Nov 1999 A
5999857 Weijand et al. Dec 1999 A
6002969 Machek et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6061596 Richmond et al. May 2000 A
6076016 Feierbach Jun 2000 A
6080187 Alt et al. Jun 2000 A
6093146 Filangeri Jul 2000 A
6096065 Crowley Aug 2000 A
6102874 Stone et al. Aug 2000 A
6112116 Fischell et al. Aug 2000 A
6115628 Stadler et al. Sep 2000 A
6115630 Stadler et al. Sep 2000 A
6115636 Ryan Sep 2000 A
6119031 Crowley Sep 2000 A
6125290 Miesel Sep 2000 A
6125291 Miesel et al. Sep 2000 A
6128526 Stadler et al. Oct 2000 A
6129751 Lucchesi et al. Oct 2000 A
6132390 Cookston et al. Oct 2000 A
6132456 Sommer et al. Oct 2000 A
6134459 Roberts et al. Oct 2000 A
6134470 Hartlaub Oct 2000 A
6139510 Palermo Oct 2000 A
6141584 Rockwell et al. Oct 2000 A
6141588 Cox et al. Oct 2000 A
6141592 Pauly Oct 2000 A
6144866 Miesel et al. Nov 2000 A
6148230 KenKnight Nov 2000 A
6152882 Prutchi Nov 2000 A
6163723 Roberts et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6178349 Kieval Jan 2001 B1
6178356 Chastain et al. Jan 2001 B1
6185443 Crowley Feb 2001 B1
6185452 Schulman et al. Feb 2001 B1
6185464 Bonner et al. Feb 2001 B1
6188932 Lindegren Feb 2001 B1
6190324 Kieval et al. Feb 2001 B1
6198952 Miesel Mar 2001 B1
6201993 Kruse et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6208900 Ecker et al. Mar 2001 B1
6223081 Kerver Apr 2001 B1
6230059 Duffin May 2001 B1
6236882 Lee et al. May 2001 B1
6240321 Janke et al. May 2001 B1
6243608 Pauly et al. Jun 2001 B1
6248080 Miesel et al. Jun 2001 B1
6263245 Snell Jul 2001 B1
6265100 Saaski et al. Jul 2001 B1
6266554 Hsu et al. Jul 2001 B1
6266564 Hill et al. Jul 2001 B1
6272379 Fischell et al. Aug 2001 B1
6280409 Stone et al. Aug 2001 B1
6289229 Crowley Sep 2001 B1
6306088 Krausman et al. Oct 2001 B1
6310960 Saaski et al. Oct 2001 B1
6315721 Schulman et al. Nov 2001 B2
6324418 Crowley et al. Nov 2001 B1
6324421 Stadler et al. Nov 2001 B1
RE37463 Altman Dec 2001 E
6343227 Crowley Jan 2002 B1
6343233 Werner et al. Jan 2002 B1
6347245 Lee et al. Feb 2002 B1
6358202 Arent Mar 2002 B1
6361522 Scheiner et al. Mar 2002 B1
6363282 Nichols et al. Mar 2002 B1
6364831 Crowley Apr 2002 B1
6370434 Zhang et al. Apr 2002 B1
6381492 Rockwell et al. Apr 2002 B1
6381493 Stadler et al. Apr 2002 B1
6381494 Gilkerson et al. Apr 2002 B1
6383209 Crowley May 2002 B1
6385593 Linberg May 2002 B2
6386882 Linberg May 2002 B1
6397100 Stadler et al. May 2002 B2
6402689 Scarantino et al. Jun 2002 B1
6405073 Crowley et al. Jun 2002 B1
6405083 Rockwell et al. Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6409675 Turcott Jun 2002 B1
6412490 Lee Jul 2002 B1
6418346 Nelson et al. Jul 2002 B1
6423056 Ishikawa et al. Jul 2002 B1
6424866 Mika et al. Jul 2002 B2
6428484 Battmer et al. Aug 2002 B1
6434429 Kraus et al. Aug 2002 B1
6438410 Hsu et al. Aug 2002 B2
6438417 Rockwell et al. Aug 2002 B1
6442433 Linberg Aug 2002 B1
6444970 Barbato Sep 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6458145 Ravenscroft et al. Oct 2002 B1
6459928 Mika et al. Oct 2002 B2
6459937 Morgan et al. Oct 2002 B1
6466820 Juran et al. Oct 2002 B1
6468263 Fischell et al. Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin et al. Oct 2002 B1
6472991 Schulman et al. Oct 2002 B1
6477424 Thompson et al. Nov 2002 B1
6480733 Turoott Nov 2002 B1
6482154 Haubrich et al. Nov 2002 B1
6484055 Marciavecchio Nov 2002 B1
6484057 Ideker et al. Nov 2002 B2
6490487 Kraus et al. Dec 2002 B1
6496715 Lee et al. Dec 2002 B1
6498951 Larson et al. Dec 2002 B1
6500168 Jellie Dec 2002 B1
6501983 Natarajan et al. Dec 2002 B1
6512949 Combs et al. Jan 2003 B1
6512959 Gomperz et al. Jan 2003 B1
6522926 Kieval et al. Feb 2003 B1
6522928 Whitehurst et al. Feb 2003 B2
6539257 KenKnight Mar 2003 B1
6542781 Koblish et al. Apr 2003 B1
6556860 Groenewegen Apr 2003 B1
6558321 Burd et al. May 2003 B1
6564807 Schulman et al. May 2003 B1
6567680 Swetlik et al. May 2003 B2
6571120 Hutten May 2003 B2
6574509 Kraus et al. Jun 2003 B1
6574511 Lee Jun 2003 B2
6580946 Struble Jun 2003 B2
6580948 Haupert et al. Jun 2003 B2
6584351 Ekwall Jun 2003 B1
6584352 Combs et al. Jun 2003 B2
6589187 Dimberger et al. Jul 2003 B1
6592518 Denker et al. Jul 2003 B2
6594523 Levine Jul 2003 B1
6597948 Rockwell et al. Jul 2003 B1
6597952 Mika et al. Jul 2003 B1
6609023 Fischell et al. Aug 2003 B1
6611710 Gomperz et al. Aug 2003 B2
6615075 Mlynash et al. Sep 2003 B2
6622043 Kraus et al. Sep 2003 B1
6647292 Bardy et al. Nov 2003 B1
6648823 Thompson Nov 2003 B2
6649078 Yu Nov 2003 B2
6654638 Sweeney Nov 2003 B1
6658285 Potse et al. Dec 2003 B2
6658297 Loeb Dec 2003 B2
6658301 Loeb et al. Dec 2003 B2
6659959 Brockway et al. Dec 2003 B2
6669631 Norris et al. Dec 2003 B2
6681135 Davis et al. Jan 2004 B1
6684100 Sweeney et al. Jan 2004 B1
6687540 Marcovecchio Feb 2004 B2
6687546 Lebel et al. Feb 2004 B2
6689117 Sweeney et al. Feb 2004 B2
6690959 Thompson Feb 2004 B2
6694191 Starkweather et al. Feb 2004 B2
6695885 Schulman et al. Feb 2004 B2
6697672 Andersson Feb 2004 B2
6697677 Dahl et al. Feb 2004 B2
6699200 Cao et al. Mar 2004 B2
6702857 Brauker et al. Mar 2004 B2
6704602 Berg et al. Mar 2004 B2
6711440 Deal et al. Mar 2004 B2
6716238 Elliott Apr 2004 B2
6721597 Bardy et al. Apr 2004 B1
6728572 Hsu et al. Apr 2004 B2
6728574 Ujhelyi et al. Apr 2004 B2
6728576 Thompson et al. Apr 2004 B2
6731976 Penn et al. May 2004 B2
6731979 MacDonald May 2004 B2
6733485 Whitehurst et al. May 2004 B1
6735474 Loeb et al. May 2004 B1
6735475 Whitehurst et al. May 2004 B1
6738670 Almendinger et al. May 2004 B1
6741877 Shults et al. May 2004 B1
6741886 Yonce May 2004 B2
6746404 Schwartz Jun 2004 B2
6754538 Linberg Jun 2004 B2
6760620 Sippens Groenewegen Jul 2004 B2
6764446 Wolinsky et al. Jul 2004 B2
6768923 Ding et al. Jul 2004 B2
6783499 Schwartz Aug 2004 B2
6785576 Verness Aug 2004 B2
6786860 Maltan et al. Sep 2004 B2
6792314 Byers et al. Sep 2004 B2
6799069 Weiner et al. Sep 2004 B2
6804559 Kraus et al. Oct 2004 B1
6804561 Stover Oct 2004 B2
6809507 Morgan et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6821154 Canfield et al. Nov 2004 B1
6823217 Rutten et al. Nov 2004 B2
6824512 Warkentin et al. Nov 2004 B2
6829508 Schulman et al. Dec 2004 B2
6839596 Nelson et al. Jan 2005 B2
6848052 Hamid et al. Jan 2005 B2
6850801 Kieval et al. Feb 2005 B2
6856835 Bardy et al. Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6862480 Cohen et al. Mar 2005 B2
6865420 Kroll Mar 2005 B1
6869404 Schulhauser et al. Mar 2005 B2
6871099 Whitehurst et al. Mar 2005 B1
6878112 Linberg et al. Apr 2005 B2
6879695 Maltan et al. Apr 2005 B2
6879855 Schulman et al. Apr 2005 B2
6882875 Crowley Apr 2005 B1
6889081 Hsu May 2005 B2
6893395 Kraus et al. May 2005 B1
6895279 Loeb et al. May 2005 B2
6895281 Amundson et al. May 2005 B1
6896651 Gross et al. May 2005 B2
6897788 Khair et al. May 2005 B2
6901294 Whitehurst et al. May 2005 B1
6901296 Whitehurst et al. May 2005 B1
6907285 Denker et al. Jun 2005 B2
6907293 Grill et al. Jun 2005 B2
6912420 Scheiner et al. Jun 2005 B2
6917833 Denker et al. Jul 2005 B2
6925328 Foster et al. Aug 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6999821 Jenney et al. Feb 2006 B2
7001372 Richter Feb 2006 B2
7023359 Goetz et al. Apr 2006 B2
7027876 Casavant et al. Apr 2006 B2
7146222 Boling Dec 2006 B2
7146225 Guenst et al. Dec 2006 B2
7164950 Kroll et al. Jan 2007 B2
7177698 Klosterman et al. Feb 2007 B2
7181505 Haller et al. Feb 2007 B2
7187971 Sommer et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7212870 Helland May 2007 B1
7277754 McCabe et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7363090 Halperin et al. Apr 2008 B2
7558631 Cowan et al. Jul 2009 B2
7565195 Kroll et al. Jul 2009 B1
7616991 Mann et al. Nov 2009 B2
7630767 Poore et al. Dec 2009 B1
7634313 Kroll et al. Dec 2009 B1
7684864 Olson et al. Mar 2010 B2
7848823 Drasler et al. Dec 2010 B2
7937148 Jacobson May 2011 B2
7945333 Jacobson May 2011 B2
8010209 Jacobson Aug 2011 B2
8295939 Jacobson Oct 2012 B2
8352025 Jacobson Jan 2013 B2
8457742 Jacobson Jun 2013 B2
8527068 Ostroff Sep 2013 B2
8543205 Ostroff Sep 2013 B2
8788035 Jacobson Jul 2014 B2
8798745 Jacobson Aug 2014 B2
20010031999 Carter et al. Oct 2001 A1
20020032467 Shemer et al. Mar 2002 A1
20020077686 Westlund et al. Jun 2002 A1
20020116028 Greatbatch et al. Aug 2002 A1
20020147488 Doan et al. Oct 2002 A1
20030141995 Lin Jul 2003 A1
20030158584 Cates et al. Aug 2003 A1
20030163184 Scheiner et al. Aug 2003 A1
20030199941 Nielsen et al. Oct 2003 A1
20040011366 Schulman et al. Jan 2004 A1
20040059392 Parramon et al. Mar 2004 A1
20040116939 Goode Jun 2004 A1
20040133242 Chapman et al. Jul 2004 A1
20040143262 Visram et al. Jul 2004 A1
20040147973 Hauser Jul 2004 A1
20040167587 Thompson Aug 2004 A1
20040172116 Seifert et al. Sep 2004 A1
20040193223 Kramer et al. Sep 2004 A1
20040249417 Ransbury et al. Dec 2004 A1
20040260349 Stroebel Dec 2004 A1
20050038474 Wool Feb 2005 A1
20050038491 Haack Feb 2005 A1
20050043765 Williams et al. Feb 2005 A1
20050075677 Ganion Apr 2005 A1
20050075682 Schulman et al. Apr 2005 A1
20050082942 Shirley Apr 2005 A1
20050096702 Denker et al. May 2005 A1
20050131478 Kim et al. Jun 2005 A1
20050136385 Mann et al. Jun 2005 A1
20050149138 Min et al. Jul 2005 A1
20050165465 Pianca et al. Jul 2005 A1
20050267555 Marnfeldt et al. Dec 2005 A1
20050288722 Eigler et al. Dec 2005 A1
20060064149 Belacazar et al. Mar 2006 A1
20060085039 Hastings et al. Apr 2006 A1
20060085041 Hastings et al. Apr 2006 A1
20060085042 Hastings et al. Apr 2006 A1
20060105613 Carroll May 2006 A1
20060108335 Zhao et al. May 2006 A1
20060121475 Davids et al. Jun 2006 A1
20060135999 Bodner et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060161222 Haubrich et al. Jul 2006 A1
20060241705 Neumann et al. Oct 2006 A1
20060247750 Seifert et al. Nov 2006 A1
20060282150 Olson et al. Dec 2006 A1
20070016263 Armstrong et al. Jan 2007 A1
20070043414 Fifer et al. Feb 2007 A1
20070055184 Echt et al. Mar 2007 A1
20070088396 Jacobson Apr 2007 A1
20070088397 Jacobson Apr 2007 A1
20070088405 Jacobson Apr 2007 A1
20070123923 Lindstrom et al. May 2007 A1
20070135883 Drasler Jun 2007 A1
20070142709 Martone et al. Jun 2007 A1
20070179552 Dennis et al. Aug 2007 A1
20070270675 Kane et al. Nov 2007 A1
20070276004 Hirsch et al. Nov 2007 A1
20070276444 Gelbart et al. Nov 2007 A1
20070293904 Gelbart et al. Dec 2007 A1
20080004535 Smits Jan 2008 A1
20080021532 Kveen et al. Jan 2008 A1
20080039738 Dinsmoor et al. Feb 2008 A1
20080086168 Cahill Apr 2008 A1
20080091255 Caparso et al. Apr 2008 A1
20080119911 Rosero May 2008 A1
20080243218 Bottomley et al. Oct 2008 A1
20080269591 Halperin et al. Oct 2008 A1
20090018599 Hastings et al. Jan 2009 A1
20090082827 Kveen et al. Mar 2009 A1
20090082828 Ostroff Mar 2009 A1
20090149902 Kumar et al. Jun 2009 A1
20090171408 Solem Jul 2009 A1
20100069983 Peacock et al. Mar 2010 A1
20100211149 Morgan et al. Aug 2010 A1
20100249828 Mavani et al. Sep 2010 A1
20100292541 Hashiba et al. Nov 2010 A1
20100305653 Lund et al. Dec 2010 A1
20100305656 Imran et al. Dec 2010 A1
20100312332 Forster et al. Dec 2010 A1
20110004117 Neville et al. Jan 2011 A1
20110071586 Jacobson Mar 2011 A1
20110077708 Ostroff Mar 2011 A1
20110208260 Jacobson Aug 2011 A1
20110282423 Jacobson Nov 2011 A1
20120095539 Khairkhahan et al. Apr 2012 A1
20120109236 Jacobson et al. May 2012 A1
20120116483 Yonezawa May 2012 A1
20120116489 Khairkhahan et al. May 2012 A1
20120158111 Khairkhahan et al. Jun 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120197373 Khairkhahan et al. Aug 2012 A1
20120245665 Friedman et al. Sep 2012 A1
20130041422 Jacobson Feb 2013 A1
20130103109 Jacobson Apr 2013 A1
20130123875 Varady et al. May 2013 A1
20130231710 Jacobson Sep 2013 A1
20130261497 Pertijs et al. Oct 2013 A1
20130274847 Ostroff Oct 2013 A1
20130324825 Ostroff et al. Dec 2013 A1
20140039570 Carroll et al. Feb 2014 A1
Foreign Referenced Citations (16)
Number Date Country
0 801 958 Oct 1997 EP
1741465 Jan 2007 EP
H04-506167 Oct 1992 JP
05-245215 Sep 1993 JP
06507096 Mar 2006 JP
06516449 Jul 2006 JP
2006-526483 Nov 2006 JP
9312714 Jul 1993 WO
0234333 May 2002 WO
04012811 Feb 2004 WO
2006065394 Jun 2006 WO
2007047681 Apr 2007 WO
2007059386 May 2007 WO
WO 2008058265 May 2008 WO
WO2010088116 Aug 2010 WO
2014022661 Feb 2014 WO
Non-Patent Literature Citations (33)
Entry
International Search Report dated Nov. 22, 2013; Related Serial No. PCT/U52013/053217. WO.
International Searching Authority, “Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration,” International Application No. PCT/US12/63552, dated Feb. 22, 2018, 11 pages.
Notice of Allowance dated Jul. 19, 2017; Related U.S. Appl. No. 13/956,946.
Non-Final Office Action dated Apr. 7, 2017; Related U.S. Appl. No. 13/956,946.
Amendment filed Apr. 7, 2017; Related U.S. Appl. No. 13/956,946.
Advisory Action dated Nov. 3, 2016; Related U.S. Appl. No. 13/956,946.
Amendment filed Sep. 1, 2016; Related U.S. Appl. No. 13/956,946.
Final Office Action dated Aug. 10, 2016; Related U.S. Appl. No. 13/956,946.
Amendment filed Apr. 20, 2016; Related U.S. Appl. No. 13/956,946.
Non-Final Office Action dated Jan. 21, 2016; Related U.S. Appl. No. 13/956,946.
Advisory Action dated Sep. 25, 2016; Related U.S. Appl. No. 13/956,946.
Amendment filed Sep. 25, 2015; Related U.S. Appl. No. 13/956,946.
Amendment filed Jul. 14, 2015, Related U.S. App. No. 13/956,946.
Final Office Action dated May 27, 2015, Related U.S. Appl. No. 13/956,946.
Amendment filed Jan. 23, 2015; Related U.S. Appl. No. 13/956,946.
Amendment filed Dec. 23, 2014; U.S. Appl. No. 13/956,946.
Non-Final Office Action dated Aug. 29, 2014; U.S. Appl. No. 13/956,946.
U.S. Appl. No. 10/891,747 entitled “System and method for synchronizing supplemental pacing pulses generated by a satellite pacing device with primary pulses delivered by a separate pacing device,” filed Jul. 14, 2004 (abandoned prior to pub.: CIP of the app. is U.S. Pat. No. 7,630,767).
Beeby et al.; Micromachined silicon generator for harvesting power from vibrations; (Proceedings) PowerMEMS 2004; Kyoto, Japan; pp. 104-107; Nov. 28-30, 2004.
Bordacher et al.; Impact and prevention of far-field sensing in fallback mode switches; PACE; vol. 26 (pt. II); pp. 206-209; Jan. 2003.
Brandt et al.; Far-field QRS complex sensing: prevalence and timing with bipolar atrial leads; PACE; vol. 23; pp. 315-320; Mar. 2000.
Brown, Eric S.; The atomic battery; Technology Review: Published by MIT; 4 pgs.; Jun. 16, 2005.
Irnich et al.; Do we need pacemakers resistant to magnetic resonance imaging; Europace; vol. 7; pp. 353-365; Feb. 2005.
Irnich; Electronic security systems and active implantable medical devices; Journal of PACE; vol. 25; No. 8; pp. 1235-1258; Aug. 2002.
Luechinger et al.; Force and torque effects of a 1.5-tesla MRI scanner of cardiac pacemakers and ICDs; Journal of PACE; vol. 24; No. 2; pp. 199-205; Feb. 2001.
Luechinger et al.; In vivo heating of pacemaker leads daring magnetic resonance imaging; European Heart Journal; vol. 26: pp. 376-383; Feb. 2005.
Lüchinger ; Satiety aspects of cardiac pacemakers in magnetic resonance imaging; Dissertation submitted to the Swiss Federal Institute of Technology Zurich; 137 pages; (year at publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date) 2002.
Nyeniauis et al.; MRI and Implanted Medical Device: Basic Interactions with an emphasis on heating: vol. 5; No. 3; pp. 467-480; Sep. 2005.
Shellock et al.; Cardiac pacemaker: In vitro assessment at 1.5 T; Am Heart J; vol. 151; No. 2; pp. 436-443; Feb. 2006.
Pertijs et al.; U.S. Appl. No. 13/901,414 entitled “Temperature Sensor for a Leadless Cardiac pacemaker,” filed May 23, 2013.
Ostroff et al.; U.S. Appl. No. 13/910,896 entitled “Leadless Pacemaker with Multiple Electrodes,” filed Jun. 5, 2013.
Ostroff, Alan; U.S. Appl. No. 13/915,560 entitled “MRI Compatible Leadless Cardiac Pacemaker,” filed Jun. 11, 2013.
Ostroff, Alan; U.S. Appl. No. 13/967,180 entitled “Leadless Cardiac Pacemaker with Secondary Fixation Capability” filed Aug. 14, 2013.
Related Publications (1)
Number Date Country
20180008833 A1 Jan 2018 US
Provisional Applications (1)
Number Date Country
61678505 Aug 2012 US
Divisions (1)
Number Date Country
Parent 13956946 Aug 2013 US
Child 15712497 US