BIOSYNTHESIS OF CHEMICALLY DIVERSIFIED NON-NATURAL TERPENE PRODUCTS

Information

  • Patent Application
  • 20230159961
  • Publication Number
    20230159961
  • Date Filed
    November 05, 2020
    4 years ago
  • Date Published
    May 25, 2023
    a year ago
Abstract
The disclosure relates to compounds of the formulae (I)-(IV) and their use as substrates for making terpenoids. New substrates for terpene biosynthesis and methods for making new types of terpenes are described herein. Diterpenes occupy a unique molecular space with critical pharmaceutical applications over a diverse spectrum including anti-microbial, anti-cancer, immunomodulatory and psychoactive properties.
Description
BACKGROUND

Plant diterpenes occupy a unique molecular space with critical pharmaceutical applications over a diverse spectrum including anti-cancer, anti-microbial and immunomodulatory properties. In addition, plant-derived terpenoids have a wide range of commercial and industrial uses. Examples of uses for terpenoids include specialty fuels, agrochemicals, fragrances, nutraceuticals and pharmaceuticals. However, currently available methods for synthesis, extraction, and purification of terpenoids from the native plant sources have limited economic sustainability. Moreover, currently available methods for do not provide the substrates and methods for biosynthesis of non-natural terpenoids.


The enzymes of terpene synthesis pathways are evolutionarily optimized to deliver bioactive molecules, novel molecular scaffolds and chemistry. Yet, cost-effective synthesis and access to analogs of plant diterpenoids and their derivatives is technologically limited on the levels of isolation, purification, detection and synthesis.


SUMMARY

While the terpene biosynthetic enzymes catalyze some of nature's most complex chemistries, the natural entry into terpenoid pathways is limited to a single precursor, geranylgeranyl diphosphate (GGPP). And although GGPP is a compound having all-trans double bonds, it has been recently shown that the cis-prenyl is also relevant in other plant species. See, e.g., https://doi.org/10.1111/tpj.14957. However, as described herein a variety of non-natural substrates can be used by terpene biosynthetic enzymes to produce structurally diverse unnatural diterpene analogs and unnatural terpene key intermediates for further functionalization. Products formed using the non-natural substrates and methods described herein are bioactive and compared to related natural compounds they have modulated specificity against their molecular targets.


For example, methods are described herein that include contacting an unnatural substrate with one or more enzymes that can synthesize a terpene to generate a primary terpene product.





DESCRIPTION OF THE FIGURES


FIG. 1A-1C illustrate a process for evaluating unnatural substrates as candidates to produce novel diterpene-inspired drug candidates. FIG. 1A illustrates building and screening unnatural substrates for cyclization into unnatural decalin-core and irregular scaffolds. FIG. 1B illustrates combinatorial biosynthesis of unnatural decalin-core scaffolds. FIG. 1C illustrates bioprocessing of unnatural forskolin and jolkinol c compounds. The decalin-core representative, forskolin, and an irregular jolkinol C structure are shown. Enzyme families are delineated by dashed lines.



FIG. 2 illustrates the modular biosynthesis of diterpenes from the substrate geranylgeranyl diphosphate (GGPP).



FIG. 3 schematically illustrates development of unnatural terpene scaffolds where the diversity of diterpenes that can be formed from geranylgeranyl diphosphate (GGPP) using a variety of different enzymes (represented as building blocks) and unnatural substrates. Such unnatural substrates can be converted into novel diterpenes through combinatorial biochemistry.



FIG. 4 is a schematic diagram of the strategy and process for making a library of unnatural substrates for terpenoid synthesis.



FIG. 5A-5D illustrate in vitro conversion of unGGPP by a casbene synthase to a macrocyclic product with a fragmentation pattern and an increase in m/z that was predicted by the inventors. FIG. 5A illustrates the retention time of the product formed by casbene synthase with geranylgeranyl diphosphate (GGPP) as substrate, as detected by gas chromatography. FIG. 5B illustrates the retention time of the product formed by casbene synthase with an unnatural methyl derivative of geranylgeranyl diphosphate (unGGPP) as substrate, as detected by gas chromatography. FIG. 5C illustrates the mass (m/z) of fragments of the product formed by casbene synthase with geranylgeranyl diphosphate (GGPP) as substrate, as detected by GC-MS. FIG. 5D illustrates the mass (m/z) of fragments of the product formed by casbene synthase with unnatural methyl derivative of geranylgeranyl diphosphate (unGGPP) as substrate, as detected by GC-MS.



FIG. 6A-6B illustrate which enzymes can produce a product after enzymatic action on unnatural variants of GGPP (unGGPP). FIG. 6A shows structures of unnatural variants of GGPP (unGGPP) and lists their names. Three classes of chemistries are represented by different hatching overlays for the different unGGPP substrates. FIG. 6B shows which of fifteen heterologously expressed diTPS produce novel unnatural product analogs (indicated by cross-hatched circle), where the type of cross-hatching overlay corresponds to the substrate types listed in FIG. 6B. GC-MS analyses from in vitro assays were used to analyze which of the fifteen diTPS enzymes generate novel unnatural product analogs generated. Top nine rows were labdane-type class II diTPS assayed with Salvia sclarea sclareol synthase, SsSCS. Lower six rows were class I irregular diTPS that were analyzed directly (without SsSCS).



FIG. 7 illustrates typical cyclo-isomerization of diphosphate intermediates by class I diTPS. Ar, Ajuga reptans; Ll, Leonotis leonorus; Ms, Mentha spicata; Nm, Nepeta mussini; Om, Origanum majorana; Pa, Perovskia atriplicifolia; Pv, Prunella vulgare; So, Salvia officinalis.



FIG. 8 illustrates the biosynthetic pathway to Jolkinol C within Euphorbia. GGPP was cyclized to the irregular diterpene scaffold Casbene, which was subsequently oxidized and further re-arranged by P450s and an ADH1.



FIG. 9A-9C illustrate the substrate promiscuity of P450s of the CYP76 family. FIG. 9A shows that P450 enzymes from Salvia and Rosemary oxidize the non-native heteroatom-containing manoyl oxide as detected by GC/MS analysis of 13R-manoyl oxide and miltiradiene derived diterpenoids. FIG. 9B shows diterpene structures. FIG. 9C illustrates that CYP76AH15 from Coleus quantitatively converts the non-native miltiradiene to ferruginol. Ro, Rosmarinus officinalis; Sf, Salvia fruticosa; Cf, Coleus forskohlii.



FIG. 10 illustrates detection of new methyl-diterpene product, with a structure similar to sclareol, when the Coleus forskohlii CfTPS2 and Salvia sclarea SsSCS enzymes are coupled together in an in vitro assay where the starting substrate is the unnatural methyl-GGDP (C21) substrate.





DETAILED DESCRIPTION

New substrates for terpene biosynthesis and methods for making new types of terpenes are described herein. Diterpenes occupy a unique molecular space with critical pharmaceutical applications over a diverse spectrum including anti-microbial, anti-cancer, immunomodulatory and psychoactive properties. Many diterpenoids are currently recognized as “drugs” (351 of over 12,500 are listed in the Dictionary of Natural Products, Taylor and Francis Group, DNP 28.1). A key challenge, however, is optimization of these compounds, and derivatization is usually not synthetically tractable.


While terpene synthase enzymes catalyze some of nature's most complex chemistries, the natural entry into the pathways is limited to a single precursor, geranylgeranyl diphosphate (GGPP), a precursor to almost all of natural diterpenes. Small molecule libraries for novel and promising leads for further manipulation are in demand as in vitro tools to investigate disease mechanisms, as in vivo probes, and to serve as starting points for the development of effective drugs. New compound libraries with high sp3-character, rather than the sp2-character typically observed in existing libraries, are generally missed by current technologies for library production (Karaki et al. Chem Med Chem (2019)). A unique three-dimensional space, or molecular complexity is correlated with success in the transition from discovery, to clinical testing, to approved drugs (Lovering, Medchemcomm 4: 515-519 (2013); Lovering et al. J. Med. Chem. 52, 6752-6756 (2009)). Complexity is measured by two descriptors, the fraction of tetrahedral sp3 carbons (Fsp3) where Fsp3 equals the number of sp3 hybridized carbons by total carbon count, and the chiral carbon count.


As described herein the terpene synthesis pathway is unexpectedly modular and the enzymes involved in terpene synthesis are surprisingly promiscuous. Unique, novel substrates for terpenes are described herein that are useful for making diverse types of new terpenoids.


Terpenes

Terpenes are the oldest and structurally most complex family of specialized metabolites on the planet. The class of diterpenes with their characteristic C20 scaffold is structurally diverse with over 12,500 compounds reported with a significant spectrum of pharmaceutical applications (Banerjee & Hamberger, P450s controlling metabolic bifurcations in plant terpene specialized metabolism. Phytochem. Rev. (2017)). Their molecular weight, extraordinary high fraction of spa centers (Fsp3 often >0.8), number of stereogenic centers, and regiospecific and stereospecific heteroatom functionalization (exceeding 95% with 2+ oxygens) makes them superior candidates for the discovery and development of novel therapeutics. The structural complexity of a representative diterpenoid is illustrated by the diterpene scaffold of stevioside shown below, which has an Fsp3 of 0.9.




embedded image


The enzymes of terpene synthesis pathways are evolutionarily optimized to deliver bioactive molecules, novel molecular scaffolds, and novel chemistries, with pharmaceutical targets and modes of action identified only for a few, due to their limited availability (e.g., Picato®, Taxol®, forskolin, and salvinorin).




embedded image


Cost-effective synthesis and access to analogs of plant diterpenoids and their derivatives is technologically limited by the levels of isolation, purification, detection and synthesis. Isolation and purification for screening of their pharmaceutical properties and clinical development are severely impeded by a lack of sustainable supply through their natural sources where diterpenoids accumulate in complex mixtures of closely related, but unwanted compounds. Formal chemical synthesis is economically challenging, as targets are still deconstructed one at a time, and even the most elegant biomimetic routes can be mind-bending in their complexity (Jorgensen et al. Science 341: 878-882 (2013); Appendino et al. Angew. Chemie Int. Ed. 53, 927-929 (2014)).


Synthetic Biology can alleviate the bottleneck of access. However, despite earlier successes by others (C15 anti-malaria drug artemisinin, Paddon et al. Nature 496: 528— 32 (2013)) and by the inventors (C20 drugs forskolin and phorbol-ester lead molecule jolkinol C, Luo et al. Proc. Natl. Acad. Sci. 113(34): E5082-9 (2016); Pateraki et al. Elife 6, (2017)), these approaches were limited to single targets and are incompatible with the need to generate diversified libraries that can be structurally manipulated by terpene synthases and other enzymes.


Jolkinol C represents the scaffold of the class of lathyrane-type phorbol esters with a macrocyclic, irregular structure. Compounds of this class exhibit potent antineoplastic activities against multidrug-resistant carcinoma lines. The NF-KB transcription factor provides a model system to study the posttranslational activation of a phorbol-ester-inducible transcription factor. The induction of NF-KB proceeds directly from protein kinase C upon binding of phorbol esters. The labdane-type diterpene forskolin is an important tool to raise cellular levels of cyclic AMP, a second messenger necessary for responses to hormones and cell communication. The mechanism proceeds via direct activation of all membrane bound isoforms of the adenylate cyclase. Acyl-analogs of forskolin were shown to strongly modulate the potency. The inventors have found that individual enzymes of both pathways, when probed with a small number of substrates, showed multifunctionality and promising promiscuity. In view of the utility of compounds similar to jolkinol C and forskolin the inventors have defined jolkinol C and forskolin functionalization pathways and identified diterpene scaffolds derived from GGPP, for biosynthesis using unnatural substrate scaffolds.


Described herein is a chemical strategy to bioprocess libraries of plant-inspired small molecules of the diterpene class. Novel synthetic substrate analogs are provided (i) to interrogate the intricate mechanism and substrate tolerance of terpene cyclization leading to unnatural decalin-core and irregular terpenes, (ii) to generate a panel of unnatural terpene key intermediates for functionalization through two pharmaceutically relevant pathways, and (iii) to characterize the function of such compounds with bioassays.


Despite their structural complexity, the biosynthesis routes of diterpenes are modular. This is illustrated in FIG. 2. For example, as shown in FIG. 2, pairs of enzymes or single enzymes (diterpene synthases, diTPS), cyclize the diterpene scaffold, followed by cytochromes P450 (P450s) that functionalize the scaffold in regiospecific and stereospecific fashion, thereby creating molecular handles for further modification such as acylation or further cyclization (acyl transferases, ACTs; aldehyde dehydrogenases, ADHs). The typical natural substrate all-trans (E,E,E)-geranylgeranyl diphosphate (GGPP) for diterpenes is a shared acyclic, achiral C20-building block. Such hierarchical organization and shared entry are not found in other pathways, including those leading to alkaloids or polyketides.


Terpene Substrates

Enzymatic bioprocessing of novel pharmaceutical candidates is increasingly important for securing access to relevant chemistries, scalability of production, and long-term reduction in cost for synthesis of scaffolds. Genetic information was used to reconstruct the pathways to the pharmacologically active cyclic AMP booster forskolin, and jolkinol C (shown in FIG. 8), precursors of phorbol esters drugs with unique anti-cancer, anti-HIV and analgesic activities (Luo et al. Proc. Natl. Acad. Sci. 113(34): E5082-9 (2016); Pateraki et al. Elife 6, (2017); Pateraki et al. Plant Physiol. 164, 1222-36 (2014)).


A degree of substrate promiscuity was unexpectedly observed on all three hierarchical levels of the biosynthetic route, indicating that the enzymes involved in such biosynthesis have an ability to act on substrates that they do not normally encounter and that the enzymes can convert a broader range of intermediates to diverse end products.


Taking advantage of natural substrate promiscuity, precursor-directed biosynthesis was used to generate variants of the drugs in the family of non-ribosomal peptides, polyketides and non-natural indole alkaloids. Modification of natural products can provide analogs with improved or novel medicinal properties. To that end, the disclosure relates to substrates of the formula (I) or (II):




embedded image


wherein: m is an integer from 0 to 3 (e.g., 1 or 2), with the understanding that if m is 2 or 3, each repeating subunit can be the same or different;


n is an integer from 0 to 1;


the dashed lines custom-character represent a double bond when R3′ and R4′ are absent or when R5′ and R6′ are absent ,


A and A′ are each independently cycloalkyl, aryl or heterocyclyl, each of which can be optionally substituted;


X1 is a heteroatom, —X3-alkyl, -alkyl-X3— or alkyl, wherein X3 is a heteroatom or alkyl or X1 is:




embedded image


R1 and R2 form a double bond or an epoxide;


each R′, R1′, R2, R2′, and R3—R6 is, independently, H, alkyl, halo, aryl, and alkylaryl;


R3′ and R4′ are absent or R3′ and R4′, together with the carbon atoms to which they are attached, form an epoxide, a cycloalkyl group, an aryl group or a heterocyclyl group;


R5′ and R6′ are absent or R5′ and R6′, together with the carbon atoms to which they are attached, form an epoxide, a cycloalkyl group, an aryl group or a heterocyclyl group;


X2 is a bond, alkenyl or acyl; and


X4 is a absent, a heteroatom or alkyl;


with the proviso that the compound of the formula (I) is not a compound of the formula:




embedded image


Examples of compounds of the formula (I) include compounds of the formula:




embedded image


Examples of the formula (II) include compounds of the formula:




embedded image


Examples of compounds of the formula (I) include compounds wherein if X1 is a heteroatom, the heteroatom is oxygen. Other examples of compounds of the formula (I) include compounds wherein X3 is oxygen or C1-C5-alkyl, such as —CH2— and C2-C3-alkyl. Still other examples of compounds of the formula (I) include compounds wherein R3-R6 are each H or C1-C5-alkyl, such as methyl and C2-C3-alkyl. Still other examples of compounds of the formula (I) include compounds wherein R3 and R5 are each H or C1-C5-alkyl, such as methyl and C2-C3-alkyl; and R4 and R6 are each H. Yet other examples of compounds of the formula (I) include compounds wherein m is 1 or 2. In other examples, m is 0. Other examples of compound of the formula (I) include compounds wherein X2 is an alkenyl group of the formula:




embedded image


or an acyl group of the formula:




embedded image


Examples of compounds of the formula (I) include compounds of the formulae:




embedded image


The compounds of the formula (I) or (II) can be enzymatically transformed into terpenoids having compound cores of the formula:




embedded image


which correspond to the cores of stevioside, Taxol®, Forskolin, Picato®, and Salvinorin, Casbene, CPP respectively; or the core shared by CPP, LPP, PgPP, and KPP, namely:




embedded image


and derivatives thereof, wherein derivatives can comprise additional double bonds, alkyl groups, hydroxy groups, acyl groups, and the like, dispersed about the cores.


As used herein, the term “heteroatom” refers to heteroatom such as, but not limited to, NR7, O, and SO, wherein R7 is H, alkyl or arylalkyl, and x is 0, 1 or 2.


The term “alkyl” as used herein refers to substituted or unsubstituted straight chain, branched and cyclic, saturated mono- or bi-valent groups having from 1 to 20 carbon atoms, 10 to 20 carbon atoms, 12 to 18 carbon atoms, 6 to about 10 carbon atoms, 1 to 10 carbons atoms, 1 to 8 carbon atoms, 2 to 8 carbon atoms, 3 to 8 carbon atoms, 4 to 8 carbon atoms, 5 to 8 carbon atoms, 1 to 6 carbon atoms, 2 to 6 carbon atoms, 3 to 6 carbon atoms, or 1 to 3 carbon atoms. Examples of straight chain mono-valent (C1-C20-alkyl groups include those with from 1 to 8 carbon atoms such as methyl (i.e., CH3), ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl groups. Examples of branched mono-valent (C1-C20-alkyl groups include isopropyl, iso-butyl, sec-butyl, t-butyl, neopentyl, and isopentyl. Examples of straight chain bi-valent (C1-C20)alkyl groups include those with from 1 to 6 carbon atoms such as —CH2—, —CH2CH2—, —CH2CH2CH2—, —CH2CH2CH2CH2—, and —CH2CH2CH2CH2CH2—. Examples of branched bi-valent alkyl groups include —CH(CH3)CH2— and —CH2CH(CH3)CH2—. Examples of cyclic alkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, bicyclo[1.1.1]pentyl, bicyclo[2.1.1]hexyl, and bicyclo[2.2.1]heptyl. Cycloalkyl groups further include polycyclic cycloalkyl groups such as, but not limited to, norbornyl, adamantyl, bornyl, camphenyl, isocamphenyl, and carenyl groups, and fused rings such as, but not limited to, decalinyl, and the like. In some embodiments, alkyl includes a combination of substituted and unsubstituted alkyl. As an example, alkyl, and also (C1)alkyl, includes methyl and substituted methyl. As a particular example, (C1)alkyl includes benzyl. As a further example, alkyl can include methyl and substituted (C2-C8)alkyl. Alkyl can also include substituted methyl and unsubstituted (C2-C8)alkyl. In some embodiments, alkyl can be methyl and C2-C8 linear alkyl. In some embodiments, alkyl can be methyl and C2-C8 branched alkyl. The term methyl is understood to be —CH3, which is not substituted. The term methylene is understood to be —CH2-, which is not substituted. For comparison, the term (C1)alkyl is understood to be a substituted or an unsubstituted —CH3 or a substituted or an unsubstituted —CH2—. Representative substituted alkyl groups can be substituted one or more times with any of the groups listed herein, for example, cycloalkyl, heterocyclyl, aryl, amino, haloalkyl, hydroxy, cyano, carboxy, nitro, thio, alkoxy, and halogen groups. As further example, representative substituted alkyl groups can be substituted one or more fluoro, chloro, bromo, iodo, amino, amido, alkyl, alkoxy, alkylamido, alkenyl, alkynyl, alkoxycarbonyl, acyl, formyl, arylcarbonyl, aryloxycarbonyl, aryloxy, carboxy, haloalkyl, hydroxy, cyano, nitroso, nitro, azido, trifluoromethyl, trifluoromethoxy, thio, alkylthio, arylthiol, alkylsulfonyl, alkylsulfinyl, dialkylaminosulfonyl, sulfonic acid, carboxylic acid, dialkylamino and dialkylamido. In some embodiments, representative substituted alkyl groups can be substituted from a set of groups including amino, hydroxy, cyano, carboxy, nitro, thio and alkoxy, but not including halogen groups.


The terms “halo,” “halogen,” or “halide” group, as used herein, by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom.


The term “acyl” as used herein refers to a group containing a carbonyl moiety wherein the group is bonded via the carbonyl carbon atom. The carbonyl carbon atom is also bonded to another carbon atom, which can be part of a substituted or unsubstituted alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclyl, group or the like.


The term “alkenyl” as used herein refers to substituted or unsubstituted straight chain, branched and cyclic, saturated mono- or bi-valent groups having at least one carbon-carbon double bond and from 2 to 20 carbon atoms, 10 to 20 carbon atoms, 12 to 18 carbon atoms, 6 to about 10 carbon atoms, 2 to 10 carbons atoms, 2 to 8 carbon atoms, 3 to 8 carbon atoms, 4 to 8 carbon atoms, 5 to 8 carbon atoms, 2 to 6 carbon atoms, 3 to 6 carbon atoms, 4 to 6 carbon atoms, 2 to 4 carbon atoms, or 2 to 3 carbon atoms. The double bonds can be trans or cis orientation. The double bonds can be terminal or internal. The alkenyl group can be attached via the portion of the alkenyl group containing the double bond, e.g., vinyl, propen-1-yl and buten-1-yl, or the alkenyl group can be attached via a portion of the alkenyl group that does not contain the double bond, e.g., penten-4-yl. Examples of mono-valent (C2-C20)-alkenyl groups include those with from 1 to 8 carbon atoms such as vinyl, propenyl, propen-1-yl, propen-2-yl, butenyl, buten-1-yl, buten-2-yl, sec-buten-1-yl, sec-buten-3-yl, pentenyl, hexenyl, heptenyl and octenyl groups. Examples of branched mono-valent (C2-C20)-alkenyl groups include isopropenyl, iso-butenyl, sec-butenyl, t-butenyl, neopentenyl, and isopentenyl. Examples of straight chain bi-valent (C2-C2o)alkenyl groups include those with from 2 to 6 carbon atoms such as —CHCH—, —CHCHCH2—, —CHCHCH2CH2—, and —CHCHCH2CH2CH2—. Examples of branched bi-valent alkyl groups include —C(CH3)CH— and —CHC(CH3)CH2—. Examples of cyclic alkenyl groups include cyclopentenyl, cyclohexenyl and cyclooctenyl. It is envisaged that alkenyl can also include masked alkenyl groups, precursors of alkenyl groups or other related groups. As such, where alkenyl groups are described it, compounds are also envisaged where a carbon-carbon double bond of an alkenyl is replaced by an epoxide or aziridine ring. Substituted alkenyl also includes alkenyl groups which are substantially tautomeric with a non-alkenyl group. For example, substituted alkenyl can be 2-aminoalkenyl, 2-alkylaminoalkenyl, 2-hydroxyalkenyl, 2-hydroxyvinyl, 2-hydroxypropenyl, but substituted alkenyl is also understood to include the group of substituted alkenyl groups other than alkenyl which are tautomeric with non-alkenyl containing groups. In some embodiments, alkenyl can be understood to include a combination of substituted and unsubstituted alkenyl. For example, alkenyl can be vinyl and substituted vinyl. For example, alkenyl can be vinyl and substituted (C3-C8)alkenyl. Alkenyl can also include substituted vinyl and unsubstituted (C3-C8)alkenyl. Representative substituted alkenyl groups can be substituted one or more times with any of the groups listed herein, for example, monoalkylamino, dialkylamino, cyano, acetyl, amido, carboxy, nitro, alkylthio, alkoxy, and halogen groups. As further example, representative substituted alkenyl groups can be substituted one or more fluoro, chloro, bromo, iodo, amino, amido, alkyl, alkoxy, alkylamido, alkenyl, alkynyl, alkoxycarbonyl, acyl, formyl, arylcarbonyl, aryloxycarbonyl, aryloxy, carboxy, haloalkyl, hydroxy, cyano, nitroso, nitro, azido, trifluoromethyl, trifluoromethoxy, thio, alkylthio, arylthiol, alkylsulfonyl, alkylsulfinyl, dialkylaminosulfonyl, sulfonic acid, carboxylic acid, dialkylamino and dialkylamido. In some embodiments, representative substituted alkenyl groups can be substituted from a set of groups including monoalkylamino, dialkylamino, cyano, acetyl, amido, carboxy, nitro, alkylthio and alkoxy, but not including halogen groups. Thus, in some embodiments, alkenyl can be substituted with a non-halogen group. In some embodiments, representative substituted alkenyl groups can be substituted with a fluoro group, substituted with a bromo group, substituted with a halogen other than bromo, or substituted with a halogen other than fluoro. For example, alkenyl can be 1-fluorovinyl, 2-fluorovinyl, 1,2-difluorovinyl, 1,2,2-trifluorovinyl, 2,2-difluorovinyl, trifluoropropen-2-yl, 3,3,3-trifluoropropenyl, 1-fluoropropenyl, 1-chlorovinyl, 2-chlorovinyl, 1,2-dichlorovinyl, 1,2,2-trichlorovinyl or 2,2-dichlorovinyl. In some embodiments, representative substituted alkenyl groups can be substituted with one, two, three or more fluoro groups or they can be substituted with one, two, three or more non-fluoro groups.


The term “alkynyl” as used herein, refers to substituted or unsubstituted straight and branched chain alkyl groups, except that at least one triple bond exists between two carbon atoms. Thus, alkynyl groups have from 2 to 50 carbon atoms, 2 to 20 carbon atoms, 10 to 20 carbon atoms, 12 to 18 carbon atoms, 6 to about 10 carbon atoms, 2 to 10 carbons atoms, 2 to 8 carbon atoms, 3 to 8 carbon atoms, 4 to 8 carbon atoms, 5 to 8 carbon atoms, 2 to 6 carbon atoms, 3 to 6 carbon atoms, 4 to 6 carbon atoms, 2 to 4 carbon atoms, or 2 to 3 carbon atoms. Examples include, but are not limited to ethynyl, propynyl, propyn-1-yl, propyn-2-yl, butynyl, butyn-1-yl, butyn-2-yl, butyn-3-yl, butyn-4-yl, pentynyl, pentyn-1-yl, hexynyl, Examples include, but are not limited to —C≡CH, —C≡C(CH3), —C≡C(CH2CH3), —CH2C≡CH, —CH2C≡C(CH3), and —CH2C≡C(CH2CH3) among others.


The term “aryl” as used herein refers to substituted or unsubstituted univalent groups that are derived by removing a hydrogen atom from an arene, which is a cyclic aromatic hydrocarbon, having from 6 to 20 carbon atoms, 10 to 20 carbon atoms, 12 to 20 carbon atoms, 6 to about 10 carbon atoms or 6 to 8 carbon atoms. Examples of (C6-C20)aryl groups include phenyl, napthalenyl, azulenyl, biphenylyl, indacenyl, fluorenyl, phenanthrenyl, triphenylenyl, pyrenyl, naphthacenyl, chrysenyl, anthracenyl groups. Examples include substituted phenyl, substituted napthalenyl, substituted azulenyl, substituted biphenylyl, substituted indacenyl, substituted fluorenyl, substituted phenanthrenyl, substituted triphenylenyl, substituted pyrenyl, substituted naphthacenyl, substituted chrysenyl, and substituted anthracenyl groups. Examples also include unsubstituted phenyl, unsubstituted napthalenyl, unsubstituted azulenyl, unsubstituted biphenylyl, unsubstituted indacenyl, unsubstituted fluorenyl, unsubstituted phenanthrenyl, unsubstituted triphenylenyl, unsubstituted pyrenyl, unsubstituted naphthacenyl, unsubstituted chrysenyl, and unsubstituted anthracenyl groups. Aryl includes phenyl groups and also non-phenyl aryl groups. From these examples, it is clear that the term (C6-C20)aryl encompasses mono- and polycyclic (C6-C20)aryl groups, including fused and non-fused polycyclic (C6-C20)aryl groups. The term “heterocyclyl” as used herein refers to substituted aromatic, unsubstituted aromatic, substituted non-aromatic, and unsubstituted non-aromatic rings containing 3 or more atoms in the ring, of which, one or more is a heteroatom such as, but not limited to, N, O, and S. Thus, a heterocyclyl can be a cycloheteroalkyl, or a heteroaryl, or if polycyclic, any combination thereof. In some embodiments, heterocyclyl groups include 3 to about 20 ring members, whereas other such groups have 3 to about 15 ring members. In some embodiments, heterocyclyl groups include heterocyclyl groups that include 3 to 8 carbon atoms (C3-C8), 3 to 6 carbon atoms (C3-C6) or 6 to 8 carbon atoms (C6-C8). A heterocyclyl group designated as a C2-heterocyclyl can be a 5-membered ring with two carbon atoms and three heteroatoms, a 6-membered ring with two carbon atoms and four heteroatoms and so forth. Likewise, a C4-heterocyclyl can be a 5-membered ring with one heteroatom, a 6-membered ring with two heteroatoms, and so forth. The number of carbon atoms plus the number of heteroatoms equals the total number of ring atoms. A heterocyclyl ring can also include one or more double bonds. A heteroaryl ring is an embodiment of a heterocyclyl group. The phrase “heterocyclyl group” includes fused ring species including those that include fused aromatic and non-aromatic groups. Representative heterocyclyl groups include, but are not limited to piperidynyl, piperazinyl, morpholinyl, furanyl, pyrrolidinyl, pyridinyl, pyrazinyl, pyrimidinyl, triazinyl, thiophenyl, tetrahydrofuranyl, pyrrolyl, oxazolyl, imidazolyl, triazyolyl, tetrazolyl, benzoxazolinyl, and benzimidazolinyl groups. For example, heterocyclyl groups include, without limitation:




embedded image


wherein X5 represents H, (C1-C20)alkyl, (C6-C20)aryl or an amine protecting group (e.g., a t-butyloxycarbonyl group) and wherein the heterocyclyl group can be substituted or unsubstituted. A nitrogen-containing heterocyclyl group is a heterocyclyl group containing a nitrogen atom as an atom in the ring. In some embodiments, the heterocyclyl is other than thiophene or substituted thiophene. In some embodiments, the heterocyclyl is other than furan or substituted furan.


The term “aralkyl” and “arylalkyl” as used herein refers to alkyl groups as defined herein in which a hydrogen or carbon bond of an alkyl group is replaced with a bond to an aryl group as defined herein. Representative aralkyl groups include benzyl, biphenylmethyl and phenylethyl groups and fused (cycloalkylaryl)alkyl groups such as 4-ethyl-indanyl. Aralkenyl groups are alkenyl groups as defined herein in which a hydrogen or carbon bond of an alkyl group is replaced with a bond to an aryl group as defined herein.


The term “substituted” as used herein refers to a group that is substituted with one or more groups including, but not limited to, the following groups: halogen (e.g., F, Cl, Br, and I), R, OR, ROH (e.g., CH2OH), OC(O)N(R)2, CN, NO, NO2, ONO2, azido, CF3, OCF3, methylenedioxy, ethylenedioxy, (C3-C20)heteroaryl, N(R)2, Si(R)3, SR, SOR, SO2R, SO2N(R)2, SO3R, P(O)(OR)2, OP(O)(OR)2, C(O)R, C(O)C(O)R, C(O)CH2C(O)R, C(S)R, C(O)OR, OC(O)R, C(O)N(R)2, C(O)N(R)OH, OC(O)N(R)2, C(S)N(R)2, (CH2)0-2N(R)C(O)R, (CH2)0-2N(R)N(R)2, N(R)N(R)C(O)R, N(R)N(R)C(O)OR, N(R)N(R)CON(R)2, N(R)SO2R, N(R)SO2N(R)2, N(R)C(O)OR, N(R)C(O)R, N(R)C(S)R, N(R)C(O)N(R)2, N(R)C(S)N(R)2, N(COR)COR, N(OR)R, C(═NH)N(R)2, C(O)N(OR)R, or C(═NOR)R wherein R can be hydrogen, (C1-C20)alkyl, (C6-C20)aryl, heterocyclyl or polyalkylene oxide groups, such as polyalkylene oxide groups of the formula —(CH2CH20)f—R—OR, —(CH2CH2CH20)g—R—OR, —(CH2CH20)f(CH2CH2CH20)g—R—OR each of which can, in turn, be substituted or unsubstituted and wherein f and g are each independently an integer from 1 to 50 (e.g., 1 to 10, 1 to 5, 1 to 3 or 2 to 5). Substituted also includes a group that is substituted with one or more groups including, but not limited to, the following groups: fluoro, chloro, bromo, iodo, amino, amido, alkyl, hydroxy, alkoxy, alkylamido, alkenyl, alkynyl, alkoxycarbonyl, acyl, formyl, arylcarbonyl, aryloxycarbonyl, aryloxy, carboxy, haloalkyl, hydroxy, cyano, nitroso, nitro, azido, trifluoromethyl, trifluoromethoxy, thio, alkylthio, arylthiol, alkylsulfonyl, alkylsulfinyl, dialkylaminosulfonyl, sulfonic acid, carboxylic acid, dialkylamino and dialkylamido. Where there are two or more adjacent substituents, the substituents can be linked to form a carbocyclic or heterocyclic ring. Such adjacent groups can have a vicinal or germinal relationship, or they can be adjacent on a ring in, e.g., an ortho-arrangement. Each instance of substituted is understood to be independent. For example, a substituted aryl can be substituted with bromo and a substituted heterocycle on the same compound can be substituted with alkyl. It is envisaged that a substituted group can be substituted with one or more non-fluoro groups. As another example, a substituted group can be substituted with one or more non-cyano groups. As another example, a substituted group can be substituted with one or more groups other than haloalkyl. As yet another example, a substituted group can be substituted with one or more groups other than tert-butyl. As yet a further example, a substituted group can be substituted with one or more groups other than trifluoromethyl. As yet even further examples, a substituted group can be substituted with one or more groups other than nitro, other than methyl, other than methoxymethyl, other than dialkylaminosulfonyl, other than bromo, other than chloro, other than amido, other than halo, other than benzodioxepinyl, other than polycyclic heterocyclyl, other than polycyclic substituted aryl, other than methoxycarbonyl, other than alkoxycarbonyl, other than thiophenyl, or other than nitrophenyl, or groups meeting a combination of such descriptions. Further, substituted is also understood to include fluoro, cyano, haloalkyl, tert-butyl, trifluoromethyl, nitro, methyl, methoxymethyl, dialkylaminosulfonyl, bromo, chloro, amido, halo, benzodioxepinyl, polycyclic heterocyclyl, polycyclic substituted aryl, methoxy carbonyl, alkoxycarbonyl, thiophenyl, and nitrophenyl groups.


Enzymes

A variety of enzymes can be used to convert the substrates into useful products. Examples of enzymes that can be used include terpene synthases. For example, the enzymes employed can be those that naturally convert geranylgeranyl diphosphate (GGPP) into biosynthesis of gibberellins, carotenoids, chlorophylls, isoprenoid quinones, and geranylgeranylated proteins. However, the enzymes are also promiscuous and can accept unnatural substrates such as the unnatural GGPP analogs or derivatives described herein. Additional enzymes can also be employed that convert the products formed from the unnatural substrates (e.g., the primary products) into other products (e.g., secondary products).


For example, the enzymes can be from organisms such as Tripterygium wilfordii (Tw), Euphorbia peplus (Ep), Coleus forskohlii (Cf), Ajuga reptans (Ar), Perovskia atriciplifolia (Pa), Nepeta mussini (Nm), Origanum majorana (Om), Hyptis suaveolens (Hs), Grindelia robusta (Gr), Leonotis leonurus (Ll), Marrubium vulgare (Mv), Vitex agnus-castus (Vac), Euphorbia peplus (Ep), Ricinus communis (Rc), Daphne genkwa (Dg), Zea mays (Zm), and other organisms.


The enzymes can in some cases, for example, be type I or type II enzymes. In general, a type II enzyme can catalyze transformation of an unnatural substrate derivative of geranylgeranyl diphosphate (GGPP) to a primary terpene product, while the type I enzymes can modify such a terpene product to generate a second terpene product.


The enzymes can be used in single step reactions, or in multi-step reactions when mixed together or when used sequentially. Multi-step reactions can occur by enzyme coupling. Enzyme coupling refers to one enzyme catalyzing a reaction to produce a product that is a substrate for a second enzyme. For example, the type II and type I enzymes can be coupled together, where a type II enzyme can accept and enzymatically convert an unnatural substrate to a first product and where a type I enzyme accepts the first product as a substrate for enzymatic conversion to generate a second product. Such enzyme coupling is demonstrated in the Examples. In some cases, an unnatural substrate can undergo efficient conversion to a first product by one enzyme without producing side products or undesirable fragments that could undermine the efficiency of a second enzyme to produce desirable yields of a second product.


Examples of enzymes that can be used include those that naturally produce ent-CPP (e.g., TwTPS3, EpTPS7, ZmAN2), shown below.




embedded image


Examples of enzymes that can be used include those that naturally produce (+)-CPP (e.g., CfTPS1, ArTPS1, PaTPS1, NmTPS1, OmTPS1, TwTPS9 and CfTPS16), shown below.




embedded image


Examples of enzymes that can be used include those that naturally produce (13E)-labda-7,13-dien-15-yl diphosphate (i.e., (7,13)-LPP) (e.g., HsTPS1, GrTPS), shown below.




embedded image


Examples of enzymes that can be used include those that naturally produce peregrinol diphosphate (PGPP) (e.g., LlTPS1, MvCPS1, VacTPS1), shown below.




embedded image


Examples of enzymes that can be used include those that naturally produce (−)-kolavenyl diphosphate (KPP) (e.g., TwTPS10, TwTPS14, VacTPS5), shown below.




embedded image


Examples of enzymes that can be used include those that naturally produce casbene (e.g., EpCBS, RcCBS, DgTPS1), shown below.




embedded image


Approximately 30 functional diTPS of the mint family have been identified and isolated by the inventors as having both labdane-type and irregular diterpene biosynthetic activities. These enzymes represent a repository of enzymes that can be used in the methods and reaction mixtures described herein.


For example, an Ajuga reptans miltiradiene synthase (ArTPS3), a Leonotis leonurus sandaracopimaradiene synthase (L1TPS4), a Mentha spicata class I diterpene synthase (MsTPS1), an Origanum majorana trans-abienol synthase (OmTPS3), an Origanum majorana manool synthase (OmTPS4), an Origanum majorana palustradiene synthase (OmTPS5), Perovskia atriplicifolia miltiradiene synthase (PaTPS3), Prunella vulgaris miltiradiene synthase (PvTPS1), Salvia officinalis miltiradiene synthase (SoTPS1) were identified and isolated.


Eight of these enzymes, ArTPS3, L1TPS4, MsTPS1, OmTPS4, OmTPS5, PaTPS3, PvTPS1, and SoTPS1 can convert a labda-13-en-8-ol diphosphate ((+) LPP) [compound 10]) to 13R-(+)-manoyl oxide [8].




text missing or illegible when filed


The ArTPS3, L1TPS4, OmTPS4, OmTPS5, PaTPS3, PvTPS1, and SoYPS1 enzymes can also convert peregrinol diphosphate (PgPP) [5] to a combination of compounds 1, 2, and 3, as illustrated below.




embedded image


However, MsTPS1 produced only compound 3 from compound 5, while the OmTPS3 enzyme produced only 1, and 2. The OmTPS4 enzyme produced compound 4 (shown below) in addition to compounds 1, 2, and 3.




embedded image


The ArTPS3, PaTPS3, PvTPS1, and SoTPS1 enzymes can also convert (+)-copalyl diphosphate ((+)-CPP) [31]) to miltiradiene [32].




embedded image


However, LlTPS4 and MsTPS1 converted (+)-copalyl diphosphate ((+)-CPP) [31]) to sadaracopimaradiene [27], while OmTPS3 converted (+)-copalyl diphosphate ((+)-CPP) [31]) to trans-biformene [34].




embedded image


The Ajuga reptans miltiradiene synthase (ArTPS3) has the amino acid sequence shown below (SEQ ID NO:1).













1
MSLSETIKVT
PFSGQRVHSS
TESFPIQQFP
TITTKSAMAV





41
KCSSLSTATV
SFQDFVGKIR
DTINGKVDNS
PAATTIHPAD





81
IPSNLCVVDT
LQRLGVDRYF
QSEIDSVLND
TYRFWQQKGE





121
DIFTDVACRA
MAFRLLRVKG
YEVSSDELAS
YAEQEHVNLQ





161
PSDITTVIEL
YRASQTRLYE
DEGNLEKLHT
WTSNFLKQQL





201
QSETISDEKL
HKQVEYYLKN
YHGILDRAGV
RQSLDLYDIN





241
QYQNLKSTDR
FPTLSNEDLL
EFAKQDFNFC
QAQHQKELQQ





281
LQRWYADCKL
DTLTYGRDVV
RVASFLTAAI
FGEPEFSDAR





321
LAFAKHIILV
TRIDDFFDHG
GSIEESYKIL
DLVKEWEDKP





361
AEEYPSKEVE
ILFTAVYNTV
NDLAEMAYIE
QGRSIKPLLI





401
KLWVEILTSF
KKELDSWTED
TELTLEEYLA
SSWVSIGCRI





441
CSLNSLQFLG
ITLSEEMLSS
EECMELCRHV
SSVDRLLNDV





481
QTFEKERLEN
TINSVSLQLA
EAQREGRTIT
EEEAMSKIKD





521
LADYHRRQLM
QMVYKDGTIF
PRQCKDVFLR
VCRIGYYLYA





561
SGDEFTTPQQ
MMGDMKSLVY
EPLNTSSS








A nucleic acid encoding the Ajuga reptans miltiradiene synthase (ArTPS3) with SEQ ID NO:1 is shown below as SEQ ID NO:2.













1
ATGTCACTCT
CGTTCACCAT
CAAAGTCACC
CCCTTTTCGG





41
GCCAGAGAGT
TCACAGCAGC
ACAGAAAGCT
TTCCAATCCA





81
ACAATTTCCA
ACGATCACCA
CCAAATCCGC
CATGGCTGTC





121
AAATGCAGCA
GCCTCAGTAC
CGCAACAGTA
AGCTTCCAGG





161
ATTTCGTCGG
AAAAATCAGA
GATACGATCA
ACGGGAAAGT





201
TGACAATTCT
CCAGCAGCGA
CCACTATTCA
TCCTGCAGAT





241
ATACCCTCCA
ATCTCTGCGT
GGTGGATACC
CTCCAAAGAT





281
TGGGAGTTGA
CCGTTACTTC
CAATCTGAAA
TCGACAGCGT





321
TCTTAACGAC
ACATACAGGT
TCTGGCAGCA
GAAAGGAGAA





361
GATATCTTCA
CTGATGTTGC
TTGTCGTGCA
ATGGCATTTC





401
GACTTTTGCG
AGTTAAAGGA
TATGAAGTTT
CATCAGATGA





521
ACTGGCTTCG
TATGCTGAAC
AAGAGCATGT
TAACCTGCAA





561
CCAAGTGACA
TAACTACGGT
TATCGAGCTT
TACAGAGCAT





601
CACAGACAAG
ATTATATGAA
GACGAGGGCA
ATCTTGAGAA





641
GTTACATACT
TGGACTAGCA
ATTTTCTGAA
GCAACAATTG





681
CAGAGTGAAA
CTATTTCTGA
CGAGAAATTG
CACAAACAGG





721
TGGAGTATTA
CTTGAAGAAC
TACCACGGCA
TACTAGACCG





761
TGCTGGAGTT
AGACAAAGTC
TCGATTTATA
TGACATAAAC





801
CAATACCAGA
ATCTAAAATC
TACAGATAGA
TTCCCTACTT





841
TAAGTAACGA
AGATTTACTT
GAATTCGCGA
AGCAAGATTT





881
TAACTTTTGC
CAAGCTCAAC
ACCAGAAAGA
GCTTCAGCAA





921
CTGCAAAGGT
GGTATGCGGA
TTGTAAATTG
GATACATTGA





961
CTTACGGAAG
AGATGTGGTA
CGTGTTGCAA
GTTTCCTGAC





1001
AGCTGCAATT
TTTGGTGAGC
CTGAATTCTC
TGATGCTCGT





1041
CTAGCCTTCG
CCAAACACAT
CATCCTCGTG
ACACGTATTG





1081
ATGATTTCTT
CGATCATGGT
GGGTCTATAG
AAGAGTCATA





1121
CAAGATCCTG
GATTTAGTAA
AAGAATGGGA
AGATAAGCCA





1161
GCTGAGGAAT
ATCCTTCCAA
GGAAGTTGAA
ATCCTCTTTA





1201
CAGCAGTATA
TAATACAGTA
AATGACTTGG
CAGAAATGGC





1241
TTATATTGAG
CAAGGCCGTT
CCATTAAACC
TCTTCTAATT





1281
AAACTGTGGG
TTGAAATACT
GACAAGTTTC
AAGAAAGAAC





1321
TGGATTCATG
GACAGAAGAC
ACAGAACTAA
CCTTGGAGGA





1361
GTACTTGGCT
TCCTCCTGGG
TGTCGATCGG
TTGCAGAATC





1401
TGCAGTCTCA
ATTCGCTGCA
GTTCCTTGGT
ATAACATTAT





1441
CCGAAGAAAT
GCTTTCAAGC
GAAGAGTGCA
TGGAGTTGTG





1481
TAGGCATGTT
TCTTCAGTCG
ACAGGCTACT
CAATGACGTG





1521
CAAACTTTCG
AGAAGGAACG
CCTAGAAAAT
ACGATAAACA





1561
GTGTGAGCCT
ACAGCTAGCA
GAAGCTCAGA
GAGAAGGAAG





1601
AACCATTACA
GAAGAGGAGG
CTATGTCAAA
GATTAAAGAC





1641
CTGGCTGATT
ATCACAGGAG
ACAACTGATG
CAGATGGTTT





1681
ATAAGGATGG
GACCATATTT
CCGAGACAAT
GCAAAGATGT





1721
CTTTTTGAGG
GTATGCAGGA
TTGGCTACTA
CTTATACGCG





1761
AGCGGCGATG
AATTCACTAC
TCCACAACAA
ATGATGGGGG





1801
ATATGAAATC
ATTGGTTTAT
GAACCCCTAA
ACACTTCATC





1841
CTCTTGA









The Leonotis leonurus sandaracopimaradiene synthase (L1TPS4) has the amino acid sequence shown below (SEQ ID NO:3).













1
MSVAFNLIVV
RFPGHGIQSS
RETFPAKIIT
RTKSSMRFQS





41
SLNTSTDFVG
KIREMIRGKT
DNSINPLDIP
STLCVIDTLH





81
SFGIDRYFQS
EINSVLHHTY
RLWNDRNNII
FKDVICCAIA





121
FRLLRVKGYQ
VSSDELAPFA
QQQVTGLQTS
DIATILELYR





161
ASQERLHEDD
DTLDKLHDWS
SNLLKLHLLN
ENIPDHKLHK





201
RVGYFLKNYH
GMLDRVAVRR
NIDLHNINHY
QIPEVADRFP





241
TEAFLEFSRQ
DFNICQAQHQ
KELQQLHRWY
ADCRLDTLNH





281
GTDVVHFANF
LTSAIFGEPE
FSEARLAFAK
QVILITRMDD





321
FFDHDGSREE
SHKILHLVQQ
WKEKPAEEYG
SKEVEILFTA





361
VYTTVNSLAE
KACMEQGRSV
KQLLIKLWVE
LLTSFKKELD





401
SWTEKMALTL
DEYLSFSWVS
IGCRLCILNS
LQFLGIKLSE





441
EMLWSQECLD
LCRHVSSVVR
LLNDLQTFKK
ERIENTINGV





481
DVQLAARKGE
RAITEEEAMS
KIKEMADHHR
RKLMQIVYKE





521
GTIFPRECKD
VFLRVCRIGY
YLYSGDELTS
PQQMKEDMKA





561
LVHESSS










A nucleic acid encoding the Leonotis leonurus sandaracopimaradiene synthase (L1TPS4) with SEQ ID NO:3 is shown below as SEQ ID NO:4.













1
ATGTCGGTGG
CGTTCAACCT
CATAGTCGTC
CGTTTTCCGG





41
GCCATGGAAT
TCAGAGCAGT
AGAGAAACTT
TTCCAGCCAA





81
AATTATTACC
AGAACTAAAT
CAAGCATGAG
ATTCCAAAGC





121
AGCCTCAACA
CTTCAACAGA
TTTCGTGGGA
AAAATAAGAG





161
AGATGATCAG
AGGGAAAACT
GATAATTCTA
TTAATCCCCT





201
GGATATTCCC
TCCACTCTAT
GCGTAATCGA
CACCCTACAC





241
AGCTTCGGAA
TTGATCGCTA
CTTTCAATCC
GAAATCAACT





281
CTGTTCTTCA
CCACACATAC
AGATTATGGA
ACGACAGAAA





321
TAATATCATC
TTCAAAGATG
TCATTTGCTG
CGCAATTGCC





361
TTTAGACTTT
TGCGAGTGAA
AGGATATCAA
GTCTCATCAG





401
ATGAACTGGC
GCCATTTGCC
CAACAACAGG
TGACTGGACT





441
ACAAACAAGC
GACATTGCCA
CGATTCTAGA
GCTCTACAGA





481
GCATCACAGG
AGAGATTACA
CGAAGACGAC
GACACTCTTG





521
ACAAACTACA
TGATTGGAGC
AGCAACCTTC
TGAAGCTGCA





561
TCTGCTGAAT
GAGAACATTC
CTGATCATAA
ACTGCACAAA





601
CGGGTGGGGT
ATTTCTTGAA
GAACTACCAT
GGCATGCTAG





641
ATCGCGTTGC
GGTTAGACGA
AACATCGACC
TTCACAACAT





681
AAACCATTAC
CAAATCCCAG
AAGTTGCAGA
TAGGTTCCCT





721
ACTGAAGCTT
TTCTTGAATT
TTCAAGGCAA
GATTTTAATA





761
TTTGCCAAGC
TCAACACCAG
AAAGAACTTC
AGCAACTGCA





801
TAGGTGGTAT
GCAGATTGTA
GATTGGACAC
ACTGAATCAC





841
GGAACAGACG
TAGTACATTT
TGCTAATTTT
CTAACTTCAG





881
CAATTTTCGG
AGAGCCTGAA
TTCTCCGAGG
CTCGTCTAGC





921
CTTTGCTAAA
CAGGTTATCC
TAATAACACG
TATGGATGAT





961
TTCTTCGATC
ACGATGGGTC
TAGAGAAGAA
TCACACAAGA





1001
TCCTCCATCT
AGTTCAACAA
TGGAAAGAGA
AGCCCGCCGA





1041
AGAATATGGT
TCAAAGGAAG
TTGAGATCCT
CTTTACAGCA





1081
GTGTACACTA
CAGTAAATAG
CTTGGCAGAA
AAGGCTTGTA





1121
TGGAGCAAGG
CCGTAGTGTC
AAACAACTTC
TAATTAAGCT





1161
GTGGGTCGAG
CTGCTAACAA
GTTTCAAGAA
AGAATTGGAT





1201
TCATGGACGG
AGAAGATGGC
GCTAACCTTG
GATGAGTACT





1241
TGTCTTTCTC
CTGGGTGTCA
ATTGGCTGCA
GACTCTGCAT





1281
TCTCAATTCC
CTGCAATTTC
TTGGGATAAA
ATTATCTGAA





1321
GAAATGCTGT
GGAGTCAAGA
GTGTCTGGAT
TTATGCCGGC





1361
ATGTTTCATC
AGTGGTTCGC
CTGCTCAACG
ATTTACAAAC





1401
TTTCAAGAAG
GAGCGCATAG
AAAATACGAT
AAACGGTGTG





1441
GACGTTCAGC
TAGCTGCTCG
TAAAGGCGAA
AGAGCCATTA





1481
CAGAAGAGGA
GGCCATGTCC
AAGATTAAGG
AAATGGCTGA





1521
CCATCACAGG
AGAAAACTGA
TGCAAATTGT
GTATAAAGAA





1561
GGAACCATTT
TTCCAAGAGA
ATGCAAAGAT
GTGTTTTTGA





1601
GAGTGTGCAG
GATTGGCTAC
TATCTCTACT
CGGGCGATGA





1641
GTTAACTTCT
CCACAACAAA
TGAAGGAGGA
TATGAAAGCG





1681
TTGGTACATG
AATCATCCTC
TTGA







The Mentha spicata class I diterpene synthase (MsTPS1) has the amino acid sequence shown below (SEQ ID NO:5).













1
MSSIRNLSLH
IDLPKAEKKL
VEKIRERIRN
GRVEMSPSAY





41
DTAWVAMVPS
RGYSGRPGFP
ECVDWIIENQ
NPDGSWGLDS





81
DQPLLVKDSL
SSTLACLLAL
RKWKTHNQLV
QRGMEFIDSR





121
GWAATDDDNQ
ISPIGFNIAF
PAMINYAKEL
NLTLPLHPPS





161
IHSLLHIRDS
EIRKRNWEYV
AEGVVDDTSN
WKQIIGTHQR





201
NNGSLFNSPA
TTAAAVIHSH
DDKCFRYLIS
TLENSNGGWV





241
PTIYPYDIYA
PLCMIDTLER
LGIHTYFEVE
LSGIFDDIYR





281
NWQEREEEIF
CNVMCRALAF
RLLRMRGYHV
SSDELAEFVD





321
KEEFFNSVSM
QESGEGTVLE
LYRASLTKIN
EEERILDKIH





361
AWTKPFLKHQ
LLNRSIRDKR
LEKQVEYDLK
NFYGALVRFQ





401
NRRTIDSYDA
KSIQISKTAY
RCSTVYNEDF
IHLSVEDFKI





441
SRAQYLKELE
EMNKWYSDCR
LDLLTKGRNA
CRESYILTAA





481
IIVDPHESMA
RISYAQSILL
ITVFDDFFDH
YGSKEEALNI





521
IDLVKEWKPA
GSYCSKEVEI
LFTALHDTIN
EIAAKADAEQ





561
GFSSKQQLIN
MWVELLESAV
REKDSLSXNK
VSTLEEYLSF





601
APITIGCKLC
VLTSVHFLGI
KLSEEIWTSE
ELSSLCRHGN





641
WCRLLNDLK
TYEREREENT
LNSVSVQTVG
GGVSEEEAVT





681
KVEEVLEFHR
RKVMQLACRR
GGSSVPRECK
ELVWKTCTIG





721
YCLYGHDGGD
ELSSPKDILK
DINAMMFEPL
K







A nucleic acid encoding the Mentha spicata class I diterpene synthase (MsTPS1) with SEQ ID NO:5 is shown below as SEQ ID NO:6.













1
ATGAGTTCCA
TTCGAAATTT
AAGTTTGCAT
ATTGATCTGC





41
CAAAGGCCGA
GAAGAAGTTG
GTTGAGAAAA
TCAGAGAGAG





81
GATAAGAAAT
GGGAGGGTGG
AGATGTCGCC
GTCGGCTTAC





121
GACACCGCGT
GGGTGGCCAT
GGTGCCGTCT
CGAGGATATT





161
CCGGCAGGCC
GGGTTTCCCG
GAGTGCGTGG
ATTGGATAAT





201
CGAGAACCAG
AATCCGGACG
GGTCGTGGGG
TTTGGATTCG





241
GATCAACCAC
TTCTGGTCAA
AGACTCCCTC
TCGTCCACCT





281
TGGCATGCCT
ACTTGCCCTG
CGTAAATGGA
AAACACACAA





321
CCAACTAGTG
CAAAGGGGCA
TGGAGTTCAT
CGACTCCCGT





361
GGTTGGGCTG
CAACTGATGA
TGACAATCAG
ATTTCTCCTA





401
TTGGATTCAA
TATTGCCTTT
CCTGCAATGA
TTAATTACGC





441
CAAAGAGCTT
AATTTAACTC
TGCCTCTACA
TCCACCTTCG





481
ATTCATTCAT
TGTTACACAT
TAGAGATTCA
GAAATAAGAA





521
AGCGAAACTG
GGAATACGTA
GCTGAAGGAG
TAGTCGACGA





561
TACAAGCAAT
TGGAAGCAAA
TAATCGGCAC
GCATCAAAGA





601
AATAATGGAT
CCTTGTTCAA
CTCACCTGCT
ACCACTGCAG





641
CTGCTGTTAT
TCACTCTCAC
GACGATAAAT
GTTTCCGATA





681
TTTGATCTCC
ACTCTTGAGA
ATTCTAACGG
TGGATGGGTA





721
CCAACTATCT
ATCCATACGA
TATATACGCT
CCTCTCTGCA





761
TGATCGATAC
GCTAGAAAGA
TTAGGAATAC
ACACATATTT





801
TGAAGTTGAA
CTCAGCGGCA
TTTTTGATGA
CATATACAGG





841
AATTGGCAAG
AGAGAGAAGA
AGAGATCTTT
TGTAATGTTA





881
TGTGTCGAGC
TCTGGCATTT
CGGCTTCTAC
GAATGAGGGG





921
ATATCATGTT
TCATCTGATG
AACTAGCAGA
ATTTGTGGAC





961
AAGGAGGAGT
TTTTTAATAG
CGTGAGCATG
CAAGAGAGCG





1001
GCGAAGGCAC
AGTGCTTGAG
CTTTACAGAG
CTTCACTCAC





1041
AAAAATCAAC
GAAGAAGAAA
GGATTCTCGA
CAAAATTCAT





1081
GCATGGACCA
AACCATTTCT
CAAGCACCAG
CTTCTCAACC





1121
GCAGCATTCG
CGACAAACGA
TTAGAGAAGC
AGGTGGAATA





1161
CGACTTGAAG
AACTTCTACG
GCGCACTAGT
CCGATTCCAG





1201
AACAGAAGAA
CCATCGACTC
ATACGATGCT
AAATCAATCC





1241
AAATTTCGAA
AACAGCATAT
AGGTGCTCTA
CAGTTTACAA





1281
TGAAGACTTC
ATCCATTTAT
CCGTTGAGGA
CTTCAAAATC





1321
TCCCGAGCAC
AATACCTAAA
AGAACTTGAA
GAAATGAACA





1361
AGTGGTACTC
TGATTGTAGG
TTGGACCTCT
TAACTAAAGG





1401
AAGAAATGCA
TGTCGAGAAT
CTTACATTTT
AACAGCTGCA





1441
ATCATTGTCG
ATCCTCACGA
ATCCATGGCT
CGAATCTCTT





1481
ACGCTCAATC
TATTCTTCTT
ATAACTGTTT
TCGACGACTT





1521
TTTCGATCAT
TATGGGTCTA
AAGAAGAGGC
TCTCAATATT





1561
ATTGATCTAG
TCAAGGAATG
GAAGCCAGCT
GGCAGTTACT





1601
GCTCCAAAGA
AGTGGAGATT
TTGTTTACTG
CATTACACGA





1641
CACGATAAAT
GAGATTGCAG
CCAAGGCTGA
TGCAGAGCAA





1681
GGCTTTTCTT
CCAAACAACA
GCTTATCAAC
ATGTGGGTGG





1721
AGCTACTTGA
GAGCGCCGTG
AGAGAAAAGG
ACTCGCTGAG





1761
TGGNAACAAA
GTGTCGACTC
TAGAAGAGTA
CTTATCTTTC





1801
GCACCAATCA
CCATCGGCTG
CAAACTTTGC
GTCCTGACGT





1841
CTGTCCATTT
CCTCGGAATC
AAACTGTCCG
AGGAAATCTG





1881
GACTTCCGAG
GAGTTGAGCA
GTCTGTGCAG
GCACGGCAAT





1921
GTTGTCTGCA
GACTGCTCAA
CGACCTCAAG
ACTTACGAGA





1961
GAGAGCGCGA
AGAGAACACG
CTCAACAGCG
TGAGCGTGCA





2001
GACAGTGGGA
GGAGGCGTTT
CGGAGGAAGA
GGCGGTGACG





2041
AAGGTGGAGG
AGGTGTTGGA
ATTTCATAGA
AGAAAAGTGA





2081
TGCAGCTCGC
GTGTCGAAGA
GGAGGAAGCA
GTGTTCCGAG





2121
AGAATGTAAG
GAGCTGGTGT
GGAAGACGTG
CACGATAGGT





2161
TACTGCTTGT
ACGGTCACGA
CGGAGGCGAT
GAGTTATCGT





2201
CTCCGAAGGA
TATTCTAAAG
GACATTAATG
CAATGATGTT





2241
TGAGCCTCTC
AAGTGA








A Nepeta mussinii ent-kaurene synthase (NmTPS2) was identified and isolated. This NmTPS2 enzyme was identified as an ent-kaurene synthase, which converts ent-CPP [16] into ent-kaurene [19].




embedded image


The Nepeta mussinii ent-kaurene synthase (NmTPS2) has the amino acid sequence shown below (SEQ ID NO:7).













1
MSLPLSSCVL
FPPNDSRFPV
SRFSRASASL
EVGLQGATSA





41
KVSSQSSCFE
ETKRRITKLF
HKDELSVSTY
DTAWVAMVPS





81
PTSSEEPCFP
GCLTWLLENQ
CRDGSWARPH
HHSLLKKDVL





121
SSTLACILAL
KKWGVGEEQI
NKGLHFIELN
CASATEKCQI





161
TPVGFDIIFP
AMLDYARDFS
LNLRLEPTTF
NDLMDKRDLE





201
LKRCYQNYTP
EREAYLAYIV
EGMGRLQDWE
LVMKYQRKNG





241
SLFNCPSTTA
AAFIALRDSA
CLNYLNLSLK
KFGNAVPAVY





281
PLDIYSQLCT
VDNLERLGIN
QYFIAEIQSV
LDETYRCWIQ





321
GNEDIFLDTS
TCALAFRILR
MNGYDVTSDS
LTKILEECFS





361
SSFRGNMTDI
NTTLDLYRAS
ELMLYPDEKD
LEKHNLRLKL





401
LLKQKLSTVL
IQSFQLGRNI
NEEVKQTLEH
PFYASLDRIA





441
KRKNIEHYNF
DNTRILKTSY
CSPNFGNKDF
FFLSIEDFNW





481
CQVIHRQELA
ELERWLIENR
LDELKFARSK
SAYCYFSAAA





521
TFFAPELSDA
RMSWAKSGVL
TTVVDDFFDV
GGSMEELKNL





561
IQLVELWDVD
ASTKCSSHNV
HIIFSALRRT
IYEIGNKGFK





601
LQGRNITNHI
IDIWLDLLNS
MMKETEWARD
NFVPTIDEYM





641
SNAYTSFALG
PIVLPTLYLV
GPKLSEEMIN
HSEYHNLFKL





681
MSTCGRLLND
IRGYERELKD
GKLNALSLYI
INNGGKVSKE





721
AGISEMKSWI
EAQRRELLRL
VLESNKSVLP
KSCKELFWHM





761
CSVVHLFYCK
DDGFTSQDLI
QVVNAVIHEP
IALKDFKVHE







A nucleic acid encoding the Nepeta mussinii ent-kaurene synthase (NmTPS2) with SEQ ID NO:7 is shown below as SEQ ID NO:8.













1
ATGTCTCTTC
CGCTCTCCTC
TTGTGTCTTA
TTTCCCCCCA





41
ATGACTCACG
TTTTCCGGTC
TCCCGCTTTT
CTCGCGCTTC





81
AGCTTCTTTG
GAAGTCGGGC
TTCAAGGAGC
TACTTCAGCA





121
AAAGTCTCCT
CACAATCATC
GTGTTTTGAG
GAGACAAAGA





161
GAAGGATAAC
AAAGTTGTTT
CATAAGGACG
AACTTTCGGT





201
TTCGACATAT
GACACAGCAT
GGGTTGCTAT
GGTCCCTTCT





241
CCAACTTCTT
CAGAGGAACC
TTGCTTCCCA
GGTTGTTTGA





281
CTTGGTTGCT
TGAAAACCAG
TGTCGAGATG
GTTCATGGGC





321
TCGTCCCCAC
CATCACTCTT
TGTTAAAAAA
AGATGTCCTT





361
TCTTCTACCT
TGGCATGCAT
TCTCGCACTT
AAAAAATGGG





401
GGGTTGGTGA
AGAACAAATC
AACAAGGGTT
TGCATTTTAT





441
AGAGCTAAAT
TGTGCTTCAG
CTACCGAGAA
GTGTCAAATT





481
ACTCCCGTGG
GGTTTGACAT
TATATTTCCT
GCCATGCTTG





521
ATTATGCAAG
AGACTTCTCT
TTGAACTTGC
GTTTAGAGCC





561
AACTACGTTT
AATGATTTGA
TGGATAAAAG
GGATTTAGAG





601
CTCAAAAGGT
GTTACCAAAA
TTACACACCG
GAGAGGGAAG





641
CATACTTGGC
ATATATAGTT
GAAGGAATGG
GAAGATTGCA





681
AGATTGGGAA
TTGGTGATGA
AATATCAAAG
AAAGAATGGA





721
TCTCTTTTCA
ATTGTCCATC
TACAACTGCA
GCAGCTTTTA





761
TTGCCCTTCG
GGATTCTGCG
TGCCTCAACT
ATCTGAATTT





801
GTCTTTGAAA
AAGTTCGGGA
ATGCAGTTCC
TGCAGTTTAT





841
CCTCTAGATA
TATATTCTCA
ACTTTGCACG
GTTGATAATC





881
TTGAAAGGCT
GGGGATCAAC
CAATATTTTA
TAGCAGAAAT





921
TCAGAGTGTG
TTGGATGAAA
CGTACAGATG
TTGGATACAG





961
GGAAACGAAG
ACATATTTTT
GGACACCTCA
ACTTGTGCTT





1001
TAGCATTCCG
AATATTGAGA
ATGAATGGCT
ATGATGTGAC





1041
TTCAGATTCA
CTTACAAAAA
TCCTAGAAGA
GTGCTTTTCA





1081
AGTTCCTTTC
GTGGAAATAT
GACAGACATT
AACACAACTC





1121
TTGACTTATA
TAGGGCATCA
GAACTTATGT
TATATCCAGA





1161
TGAAAAGGAT
CTGGAGAAAC
ATAATTTAAG
GCTTAAACTC





1201
TTACTTAAGC
AAAAACTATC
CACTGTTTTA
ATCCAATCAT





1241
TTCAACTTGG
AAGAAATATC
AATGAAGAGG
TGAAACAGAC





1281
TCTCGAGCAT
CCCTTTTATG
CAAGTTTGGA
TAGGATTGCA





1321
AAGCGGAAAA
ATATAGAGCA
TTACAACTTT
GATAACACAA





1361
GAATTCTTAA
AACTTCATAT
TGTTCGCCAA
ATTTTGGCAA





1401
CAAGGATTTC
TTTTTTCTTT
CCATAGAAGA
CTTCAATTGG





1441
TGTCAAGTCA
TACATCGACA
AGAACTCGCA
GAACTTGAAA





1481
GATGGTTAAT
TGAAAATAGA
TTGGATGAGC
TGAAGTTTGC





1521
AAGGAGTAAG
TCTGCATACT
GTTATTTTTC
TGCGGCAGCA





1561
ACTTTTTTTG
CTCCAGAATT
GTCGGATGCC
CGCATGTCAT





1601
GGGCTAAAAG
TGGTGTTCTA
ACCACAGTGG
TAGATGACTT





1641
TTTTGATGTT
GGAGGTTCTA
TGGAGGAATT
GAAGAACTTA





1681
ATTCAATTGG
TTGAACTATG
GGATGTGGAT
GCTAGCACAA





1721
AATGCTCTTC
TCATAATGTC
CATATAATAT
TTTCAGCACT





1761
TAGGCGCACC
ATCTATGAGA
TAGGGAACAA
AGGATTTAAG





1801
CTACAAGGAC
GTAACATTAC
CAATCATATA
ATTGACATTT





1841
GGCTAGATTT
ACTAAACTCT
ATGATGAAAG
AAACCGAATG





1881
GGCCAGAGAC
AACTTTGTCC
CAACAATTGA
TGAATACATG





1921
AGCAATGCAT
ATACATCGTT
TGCTCTGGGG
CCAATTGTCC





1961
TTCCAACTCT
CTATCTTGTC
GGGCCCAAGC
TCTCAGAAGA





2001
GATGATTAAC
CACTCCGAAT
ACCATAACCT
ATTCAAATTG





2041
ATGAGTACGT
GCGGACGTCT
TCTAAATGAC
ATCCGTGGTT





2081
ATGAGAGAGA
ACTGAAAGAT
GGTAAATTGA
ACGCGTTATC





2121
ATTGTACATA
ATTAATAATG
GTGGTAAAGT
AAGTAAAGAA





2161
GCTGGCATCT
CGGAGATGAA
AAGTTGGATC
GAGGCACAAC





2201
GAAGAGAGTT
ACTGAGATTA
GTTTTGGAGA
GCAACAAAAG





2241
CGTCCTTCCG
AAGTCGTGCA
AGGAATTGTT
TTGGCATATG





2281
TGCTCAGTGG
TGCATCTATT
CTACTGCAAA
GATGATGGAT





2321
TCACCTCGCA
GGATTTGATT
CAAGTTGTAA
ATGCAGTTAT





2361
TCATGAACCT
ATTGCTCTCA
AGGATTTTAA
GGTGCATGAA





2401
TAA









An Origanum majorana trans-abienol synthase (OmTPS3) was identified and isolated. When this OmTPS3 enzyme was expressed in N. benthamiana with Hyptis suaveolens labda-7,13E-dienyl diphosphate synthase (HsTPS1) a new compound, labda-7,12E,14-triene [24], was produced. The HsTPS1 enzyme produced labda-7,13(16),14-triene [22] when HsTPS1 was expressed in N. benthamiana.




embedded image


OmTPS3 also produced trans-abienol [11] from labda-13-en-8-ol diphosphate ((+)-8-LPP) [10]).




embedded image


The Origanum majorana trans-abienol synthase (OmTPS3) has the amino acid sequence shown below (SEQ ID NO:9).












MASLAETPGA
ATFSGNVVRR
RKDNFPVHGF
PTTIRSSVSV





TVKCYVSTTN
LMVKIKEKFK
GKNVNSLTVE
AADDDMPSNL





CIIDTLQRLG
IDRYFQPQVD
SVLDHAYKLW
QGKEKDTVYS





DISIHAMAFR
LLRVKGYQVS
SEELDPYIDV
ERMKKLKTVD





VPTVIELYRA
AQERMYEEEG
SLERLHVWST
NFLMHQLQAN





SIPDEKLHKL
VEYYLKNYHG
ILDRVGVRRN
LDLFDISHYP





TLRARVPNLC
TEDFLSFAKE
DFNTCQAQHQ
KEHEQLQRWF





EDCRFDTLKF
GRETAVGAAH
FLSSAILGES
ELCNVRLALA





KHMVLVVFID
DFFDHYGSRE
DSFKILHLLK
EWKEKPAGEY





GSEEVEILFT
AVYNTVNELA
EMAHVEQGRN
IKGFLIELWV





EIVSIFKIEL
DTWSNDTTLT
LDEYLSSSWV
SVGCRICILV





SMQLLGVQLT
DEMLLSDECI
NLCKHVSMVD
RLLNDVGTFE





KERKENTGNS
VSLLLAAAVK
EGRPITEEEA
IIKIKKMAEN





ERRKLMQIVY
KRESVFPRKC
KDMFLKVCRI
GCYLYASGDE





FTSPQKMKED
VKSLIYESL









A nucleic acid encoding the Origanum majorana trans-abienol synthase (OmTPS3) with SEQ ID NO:9 is shown below as SEQ ID NO:10.











ATGGCGTCGC TCGCGTTCAC ACCCGGAGCC GCCACTTTCT






CCGGCAACGT AGTTCGGAGG AGGAAAGATA ACTTTCCGGT






CCACGGATTT CCGACGACGA TCAGGTCATC GGTCTCCGTC






ACCGTCAAAT GCTACGTCAG TACAACGAAT TTGATGGTGA






AAATCAAAGA GAAGTTCAAG GGTAAAAACG TCAATTCGCT






GACAGTTGAA GCTGCTGATG ACGATATGCC CTCTAATCTG






TGCATAATTG ACACCCTCCA ACGATTGGGA ATCGACCGTT






ACTTCCAACC CCAAGTCGAC TCTGTTCTCG ACCACGCCTA






CAAACTATGG CAAGGGAAAG AGAAAGATAC GGTGTATTCG






GACATTAGTA TTCATGCGAT GGCATTTAGA CTTTTACGAG






TCAAAGGCTA TCAAGTCTCT TCGGAGGAAC TGGATCCATA






CATCGATGTG GAGCGAATGA AGAAACTGAA AACAGTTGAT






GTTCCGACGG TTATCGAACT GTACAGAGCG GCACAGGAGA






GAATGTATGA AGAAGAAGGT AGCCTTGAGA GACTCCATGT






TTGGAGCACC AACTTCCTCA TGCACCAGCT GCAGGCTAAC






TCAATTCCTG ATGAAAAGCT ACACAAACTG GTGGAATACT






ACTTGAAGAA CTACCATGGC ATACTGGATA GAGTTGGAGT






TCGACGAAAC CTCGACCTAT TCGACATAAG CCATTATCCA






ACACTCAGAG CTAGGGTTCC GAACCTATGT ACCGAAGATT






TTCTATCGTT CGCGAAGGAA GATTTCAATA CTTGCCAAGC






CCAACACCAG AAAGAACATG AGCAACTACA AAGGTGGTTC






GAAGATTGTA GGTTCGATAC GTTGAAGTTC GGAAGGGAGA






CAGCCGTAGG CGCTGCTCAT TTTCTATCTT CAGCAATACT






TGGTGAATCT GAACTATGTA ATGTTCGTCT TGCCCTTGCT






AAGCATATGG TGCTTGTGGT ATTCATCGAT GACTTCTTCG






ACCATTATGG CTCTAGAGAA GACTCCTTCA AGATCCTCCA






CCTCTTAAAA GAATGGAAAG AGAAGCCGGC CGGAGAATAC






GGTTCCGAGG AAGTCGAAAT CCTCTTCACA GCCGTATACA






ATACAGTAAA CGAGTTGGCG GAGATGGCTC ATGTCGAACA






AGGACGTAAT ATCAAAGGAT TTCTAATTGA ATTGTGGGTT






GAAATAGTGT CAATTTTCAA GATAGAACTG GATACATGGA






GCAATGACAC AACACTAACC TTGGATGAGT ACTTGTCCTC






CTCATGGGTG TCGGTCGGTT GCAGAATCTG CATCCTCGTC






TCAATGCAGC TCCTCGGTGT ACAACTAACC GACGAAATGC






TTCTGAGCGA CGAGTGCATA AACCTGTGTA AGCATGTCTC






GATGGTCGAT CGCCTCCTCA ACGACGTCGG AACATTCGAG






AAGGAACGGA AGGAGAATAC AGGAAACAGT GTGAGCCTTC






TGCTAGCAGC AGCTGTGAAA GAAGGAAGGC CTATTACCGA






AGAGGAAGCT ATTATTAAAA TTAAAAAAAT GGCGGAAAAC






GAGAGGAGGA AACTAATGCA GATTGTGTAT AAAAGAGAGA






GTGTTTTCCC CAGAAAATGC AAGGATATGT TCTTGAAGGT






GTGTAGAATT GGGTGCTATC TATACGCGAG CGGCGACGAA






TTTACGTCTC CTCAGAAAAT GAAGGAAGAT GTGAAATCCT






TAATTTATGA ATCCTTGTAG






The Origanum majorana manool synthase (OmTPS4) can also convert ent-copalyl diphosphate (ent-CPP) [16] to ent-manool [20].




embedded image


In addition, Origanum majorana manool synthase (OmTPS4) can also convert (+)-copalyl diphosphate ((+)-CPP) [31]) to manool [33].




embedded image


The Origanum majorana manool synthase (OmTPS4) can have the amino acid sequence shown below (SEQ ID NO:11).











MSLAFSHVST FFSGQRVVGS RREIIPVNGV PTTANKPSFA






VKCNLTTKDL MVKMKEKLKG QDGNLTVGVA DMPSSLCVID






TLERLGVDRY FRSEIHVILH DTYRLWQQKD KDICSNVTTH






AMAFRLLRVN GYEVSSEELA PYANLEHFSQ QKVDTAMAIE






LYRAAQERIH EDESGLDKIL AWTTTFLEQQ LLTNSILDNK






LHKLVEYYLN NYHGQTNRVG ARRHLDLYEM SHYQNLKPSH






SLCNEDLLAF AKQGFRDFQI QQQKEFEQLQ RWYEDCRLDK






LSYGRDVVKI SSFMASILMD DPELADVRLS IAKQMVLVTR






IDDFFDHGGS REDSYKIIEL VKEWKEKAEY DSEEVKILFT






AVYTTVNELA EACVQQGRNS TTVKEFLVQL WIEILSAFKV






ELDTWSDGTE VSLDEYLSWS WISNGCRVSI VTTMHLLPTK






LCSDEMLRSE ECKDLCRHVS MVGRLLNDIH SFEKEHEENT






GNSVSILVAG EDTEEEAIGK IKEIVEYERR KLMQIVYKRG






TILPRECKDI FLKACRATFY VYSSTDEFTS PRQVMEDMKT






LSS







A nucleic acid encoding Origanum majorana manool synthase (OmTPS4) with SEQ ID NO:11 is shown below as SEQ ID NO:12.











ATGTCACTCG CCTTCAGCCA TGTTAGTACC TTTTTCTCCG






GCCAAAGAGT CGTCGGAAGC AGGAGAGAGA TTATTCCAGT






TAACGGAGTT CCGACGACGG CCAATAAGCC GTCGTTCGCC






GTTAAGTGCA ACCTTACTAC AAAGGATTTG ATGGTGAAAA






TGAAGGAGAA GTTGAAGGGG CAAGACGGTA ATTTGACTGT






CGGAGTAGCC GATATGCCCT CTAGCCTGTG CGTGATCGAC






ACTCTTGAAA GGTTGGGAGT TGACCGATAC TTCCGATCTG






AAATCCACGT TATTCTACAC GACACTTACC GGTTATGGCA






ACAAAAGGAC AAAGATATAT GTTCCAACGT TACTACTCAT






GCAATGGCGT TTAGACTTCT GAGAGTGAAT GGATACGAGG






TTTCATCAGA GGAACTGGCT CCATATGCTA ACCTAGAGCA






CTTTAGCCAG CAAAAAGTTG ATACTGCAAT GGCTATAGAG






CTCTACAGAG CAGCACAGGA GAGAATACAC GAAGACGAGA






GCGGTCTCGA CAAAATACTT GCTTGGACCA CCACTTTTCT






CGAGCAACAG CTGCTCACTA ACTCCATTCT TGACAATAAA






TTGCATAAAC TGGTGGAGTA CTACTTGAAC AACTACCACG






GCCAAACGAA TAGGGTCGGA GCTAGACGAC ACCTCGACCT






ATATGAGATG AGCCATTACC AAAATCTAAA ACCTTCACAT






AGTCTATGCA ATGAAGACCT TCTAGCATTT GCAAAGCAAG






GTTTTCGAGA TTTTCAAATC CAGCAGCAGA AAGAATTCGA






GCAACTGCAA AGGTGGTATG AAGATTGCAG GTTGGACAAG






TTGAGTTATG GGAGAGATGT AGTAAAAATT TCTAGTTTCA






TGGCTTCAAT ATTGATGGAT GATCCAGAAT TAGCCGATGT






TCGTCTCTCC ATCGCCAAAC AGATGGTGCT CGTGACACGT






ATCGATGATT TCTTCGACCA CGGTGGCTCT AGAGAAGACT






CCTACAAGAT CATTGAACTA GTAAAAGAAT GGAAGGAGAA






GGCaGAATAC GATTCCGAGG AAGTAAAAAT CCTTTTTACA






GCAGTATACA CCACAGTAAA TGAGCTAGCA GAGGCTTGTG






TTCAACAAGG AAGGAATAGT ACTACTGTCA AAGAATTCCT






AGTTCAGTTG TGGATTGAAA TACTATCAGC TTTCAAGGTC






GAGCTAGATA CGTGGAGCGA TGGCACGGAA GTAAGCCTGG






ACGAGTACTT GTCGTGGTCG TGGATTTCGA ATGGCTGCAG






AGTGTCTATA GTAACGACGA TGCATTTGCT CCCTACGAAA






TTATGCAGTG ATGAAATGCT TAGGAGTGAA GAGTGCAAGG






ATTTGTGTAG GCATGTTTCT ATGGTTGGCC GCTTGCTCAA






CGACATCCAC TCTTTTGAGA AGGAGCATGA GGAGAATACG






GGAAACAGTG TGAGCATTCT AGTAGCAGGT GAGGATACCG






AAGAGGAAGC TATTGGAAAG ATCAAAGAGA TAGTTGAGTA






TGAGAGGAGA AAATTGATGC AAATTGTGTA CAAGAGAGGA






ACCATTCTCC CAAGAGAATG CAAAGACATA TTCTTGAAGG






CGTGTAGGGC TACATTTTAC GTGTACTCGA GCACGGATGA






GTTTACGTCT CCTCGACAAG TGATGGAAGA TATGAAAACC






CTAAGCTCCT AG







Origanum majorana palustradiene synthase (OmTPS5) can also convert (+)-copalyl diphosphate ((+)-CPP) [M]) to palustradiene [29].




embedded image


The Origanum majorana palustradiene synthase (OmTPS5) can have the amino acid sequence shown below (SEQ ID NO:13).











MVSACLKLKN NPFLDHRFRK SSNGFSVNFP ATMLTTVKCS






RDNSEDLIAK IKERMNEKFV TVPAREYSVI EHRNPKPAWC






GGLQSKTVIE EEVCSRLFLV EHLQDLGVDR FFQSEIQHIL






HHTFRLWQQK DEQVFKDVTC RAMAFRLLRL EGYHVSSGEL






GEYVDEEKFF RTVRLEWRST DTILELYKAS QVRLPEDDND






NSNILKNLHE WTFIFLKEQL RRKTILDKGL ERKVEFYLKN






YHGILDAVKH RRSLDHTRFW KTTAYNPAVY DEDLFRLSAQ






DFMARQAQSQ KELEMLLKWY DECRLDKMEY GRNVIHVSHF






LNANNFPDPR LSETRLSFAK TMTLVTRLDD FFDHHGSRED






SVLIIELIRQ WNEPSTITTI FPSEEVEILY SALHSTVTDI






AEKAYPIQGR CIKSLIIHLW VEILSSFMSE MDSCTAETQP






DFHEYLGFAW ISIGCRICIL IAIHFLGEKV SQQMVMGAEC






TELCRHVSTI ARLLNDLQTF KKEREERKVN SVIIQLKGDK






ISEEVAVSNI ERMVEYHRKE LLKMVVRREG SLVPKRCKDV






FWKSCNIAYY LYAFTDEFTS PQQMKEDMKL LFRDPINCVP






SIPS







A nucleic acid encoding the Origanum majorana palustradiene synthase (OmTPS5) with SEQ ID NO:13 is shown below as SEQ ID NO:14.











ATGGTATCTG CATGTCTAAA ACTCAAAAAT AATCCTTTCT






TGGACCATCG ATTCAGGAAA AGCAGCAATG GATTTTCAGT






TAATTTTCCG GCGACCATGC TCACCACTGT CAAGTGCAGC






CGCGATAATT CAGAAGACTT GATAGCAAAG ATAAAAGAAA






GGATGAATGA AAAATTTGTT ACGGTGCCGG CGAGGGAATA






TTCCGTCATT GAGCATCGGA ATCCGAAGCC GGCGTGGTGC






GGTGGTTTGC AATCCAAAAC AGTAATAGAA GAAGAAGTGT






GCAGCCGTCT GTTTCTGGTC GAACACCTTC AAGATTTAGG






AGTAGACCGC TTCTTTCAAT CAGAAATCCA ACATATTCTA






CATCACACAT TCAGATTATG GCAGCAAAAA GATGAACAAG






TTTTTAAAGA CGTGACATGT CGCGCCATGG CATTCAGACT






CCTGCGTCTC GAAGGTTATC ATGTCTCGTC AGGAGAATTG






GGGGAGTATG TTGATGAGGA AAAATTCTTT AGAACGGTAA






GGTTAGAATG GAGAAGTACG GATACAATTC TTGAGCTGTA






CAAAGCATCA CAGGTAAGAC TACCTGAAGA CGACAACGAC






AATTCCAATA TCCTCAAAAA CTTGCACGAA TGGACCTTCA






TATTTTTGAA GGAGCAGTTG CGGCGTAAAA CTATTCTTGA






TAAAGGTTTA GAGAGAAAGG TAGAATTTTA CTTGAAGAAT






TACCACGGCA TATTAGACGC GGTTAAGCAT AGACGAAGCC






TCGATCACAC ACGATTCTGG AAAACTACTG CGTATAACCC






TGCAGTGTAT GATGAGGATC TTTTCCGATT GTCGGCCCAA






GATTTCATGG CTCGCCAAGC TCAGAGCCAG AAGGAACTTG






AGATGTTGCT CAAGTGGTAC GATGAATGTA GACTGGACAA






GATGGAGTAT GGGCGAAACG TGATACACGT TTCCCATTTC






TTAAACGCAA ACAACTTCCC CGATCCTCGC CTGTCCGAAA






CTCGTCTATC CTTTGCGAAA ACCATGACTC TCGTCACGCG






TTTGGATGAT TTCTTCGATC ACCATGGCTC TAGAGAAGAT






TCGGTCCTCA TCATCGAATT AATAAGGCAG TGGAATGAGC






CTTCAACTAT TACAACAATA TTCCCCTCCG AAGAAGTGGA






GATTCTCTAC TCTGCACTCC ACTCCACCGT AACAGATATA






GCAGAGAAGG CTTATCCCAT CCAGGGTCGC TGCATCAAAT






CGCTCATAAT TCATCTGTGG GTCGAGATAC TGTCGAGCTT






CATGAGCGAA ATGGACTCGT GCACCGCGGA AACTCAGCCG






GACTTTCACG AGTACTTAGG GTTTGCATGG ATCTCGATCG






GCTGCAGAAT CTGCATTCTC ATAGCTATAC ATTTCTTGGG






GGAGAAGGTA TCTCAACAAA TGGTTATGGG TGCTGAGTGC






ACCGAGTTAT GTAGGCACGT TTCTACGATC GCACGCCTTC






TCAACGATCT CCAAACCTTT AAGAAGGAGA GAGAAGAGAG






GAAGGTAAAC AGCGTGATAA TCCAGCTCAA AGGGGATAAG






ATATCGGAGG AGGTGGCCGT GTCGAATATA GAGAGAATGG






TTGAATATCA CAGGAAAGAG CTGCTGAAGA TGGTGGTTCG






GAGAGAAGGA AGCTTGGTTC CTAAGAGGTG TAAGGACGTG






TTCTGGAAAT CCTGCAACAT TGCTTACTAT CTGTACGCTT






TTACAGATGA ATTCACTTCG CCTCAACAAA TGAAGGAAGA






TATGAAACTA CTCTTTCGTG ATCCAATCAA CTGCGTTCCT






TCAATTCCTT CATGA






The Perovskia atriplicifolia miltiradiene synthase (PaTPS3) can have the amino acid sequence shown below (SEQ ID NO:15).











MLLAFNISDV PLSQHRVILS RREHFPRHAF QEFPMIAATK






SSVNAICSLA TPTDLMGKIK EKFKAKDGDP LAAAAIQLAA






DIPSSLCIID TLQRLGVDRY FQSEIDSILE ETHKLWKVKD






RDIYSEVTTH AMAFRLLRVK GYEVSSEELA PYAEQERFDL






QTIDLATVIE LYRAAQERTC EENDNSLEKL LAWTTTFLKH






QLLTNSIPDT KLHKQVEYYL KNYHGILDRM GVRRSLDLYD






ISHYRPLRAR FPNLCNEDFL SFARQDFSMC QAQHQKELEQ






LQRWYSDCRL DALLKFGRNV VRVSSFLTSA IIGEPELSEV






RLVFAKHIIL VTLIDDLFDH GGTREESYKI LELVTEWKEK






TAAEYGSEEV EILFTAVYNT VNELVERAHV EQGRSVKEFL






IKLWVQILSI FKIELDTWSD ETALTLDEYL SSSWVSIGCR






ICILMSMQFI GIKLTDEMLL SEECTDLCRH VSMVDRLLND






VQTFEKERKE NTGNSVSLLL AANKDVTEEE AIRRAKEMAE






CNRRQLMQIV YKTGTIFPRK CKDMFLKVCR IGCYLYASGD






EFTSPQQMME DMKSLVYEPL YLPN







A nucleic acid encoding the Perovskia atriplicifolia miltiradiene synthase (PaTPS3) with SEQ ID NO:15 is shown below as SEQ ID NO:16.











ATGTTACTTG CGTTCAACAT AAGCGATGTC CCTCTCTCGC






AGCATAGAGT AATTCTGAGC AGGAGGGAAC ATTTTCCACG






TCATGCATTC CAGGAATTTC CGATGATCGC CGCTACTAAG






TCATCTGTTA ATGCCATTTG CAGCCTCGCT ACTCCAACTG






ATTTGATGGG AAAAATAAAA GAGAAGTTCA AGGCCAAGGA






CGGCGATCCT CTTGCCGCCG CGGCTATTCA ACTCGCGGCG






GATATACCCT CGAGTCTGTG TATAATCGAC ACCCTCCAGA






GGTTGGGAGT CGACCGATAC TTCCAATCCG AAATCGACTC






TATTCTAGAG GAAACACACA AGTTATGGAA AGTGAAAGAT






AGAGATATAT ACTCTGAGGT TACTACTCAT GCAATGGCGT






TTAGACTTCT GCGAGTGAAG GGATATGAAG TTTCATCAGA






GGAACTAGCT CCGTATGCTG AGCAAGAGCG CTTTGACCTG






CAAACGATTG ATCTGGCGAC GGTTATCGAG CTTTACAGAG






CAGCACAGGA GAGAACATGC GAAGAAAACG ACAACAGTCT






TGAGAAACTA CTTGCTTGGA CCACCACCTT TCTCAAGCAC






CAATTGCTCA CCAACTCCAT ACCTGACACC AAATTGCACA






AACAGGTGGA ATACTACTTG AAGAACTACC ACGGGATATT






AGATAGAATG GGAGTTAGAC GAAGCCTCGA CCTATACGAC






ATAAGCCATT ATCGACCTCT GAGAGCAAGA TTCCCTAATC






TGTGTAATGA AGATTTCCTA TCATTTGCGA GGCAAGATTT






CAGTATGTGC CAAGCCCAAC ACCAGAAGGA ACTTGAGCAA






CTGCAAAGGT GGTATTCTGA TTGTAGGTTG GACGCGTTGT






TGAAGTTTGG AAGAAATGTA GTGCGCGTTT CTAGCTTTCT






GACTTCAGCA ATTATTGGTG AACCCGAATT GTCTGAAGTT






CGACTAGTCT TTGCCAAACA TATTATTCTC GTTACACTTA






TTGATGATTT ATTCGATCAT GGTGGAACTA GAGAAGAGTC






ATACAAGATC CTTGAATTAG TAACAGAATG GAAAGAGAAG






ACCGCAGCAG AATATGGTTC CGAGGAAGTT GAAATCCTTT






TTACAGCGGT CTACAACACA GTAAATGAGT TGGTAGAGAG






GGCTCATGTC GAACAAGGGC GCAGTGTCAA AGAATTTCTT






ATTAAACTGT GGGTTCAAAT ACTATCAATT TTCAAGATAG






AATTAGATAC ATGGAGCGAT GAGACTGCGC TAACCTTGGA






TGAATACTTG TCTTCGTCGT GGGTGTCAAT TGGTTGCAGA






ATCTGCATTC TCATGTCGAT GCAATTCATC GGTATAAAAT






TAACTGATGA AATGCTTCTG AGTGAAGAGT GCACTGATTT






GTGTAGGCAT GTTTCGATGG TTGACCGGCT GCTCAACGAT






GTGCAAACCT TCGAGAAGGA ACGCAAAGAA AATACAGGAA






ACAGTGTAAG CCTTCTGCTA GCAGCTAACA AAGATGTTAC






TGAAGAGGAA GCAATTAGAA GAGCAAAAGA AATGGCGGAA






TGCAACAGGA GACAACTGAT GCAGATTGTG TATAAAACAG






GAACCATTTT CCCAAGAAAA TGCAAAGATA TGTTTCTCAA






GGTATGCAGG ATTGGCTGTT ATTTGTATGC AAGCGGCGAC






GAATTCACAT CTCCACAACA AATGATGGAA GATATGAAAT






CCTTGGTTTA TGAACCCCTC TACCTACCTA ATTAA






A Perovskia atriplicifolia miltiradiene synthase (PaTPS1) can have the amino acid sequence shown below (SEQ ID NO:17).











MSLTFNAGVV RFSSHRVRST KDCFTVYGFP MIANKAAFAV






KCSLTPTDLM GRVEEKFKGK NGNSLAASTT VESADIPSNL






CIIDTLQRLG VDRYFQTEIN AILEDTYRLW ERKDKDIYSD






ATTHAMAFRL LRVKGYEVSS EELAPYADQE CVNVQTADVA






TVIELYRAAQ VRISEEESSL KKLHAWTTTF LKYQLQSNSI






PEKKLHKLVE YYLKNYHGIL DRMGVRMDLD LFDISHYRTL






QASDRFSSLR NEDFLEFARQ DFNICQAKHQ KELQQLQRWY






ADCRLDTLKF GRDVVRVANF LTSAIFGEPE LSDARLIFAK






HIVLVTCIDE FFDHGGSKEE SYKILELVEE WKEKPTGEYG






CEEVEILFTA VYSTVNELAE MAHVEQGRSV KEFLVKLWVQ






ILSIFKIELD TWSDDTELTL DSYLNNSWVS IGCRICILMS






MQFAGVKLSD EMLLSEECVD LCRHVSMVDR LLNDVQTFEK






ERKENTGNSV SLLQAAAERE GRAITEEEAI TQIKELAEYH






RRKLMQIVYK TDTIFPRKCK DMFLKVCRIG CYLYASGDEF






TTPQQMMEDM KSLVYQPLTV DDMSAKELTS VRN







A nucleic acid encoding the Perovskia atriplicifolia miltiradiene synthase (PaTPS1) with SEQ ID NO:17 is shown below as SEQ ID NO:18.











ATGTCACTCA CTTTCAACGC TGGAGTCGTC CGTTTCTCCA






GCCACCGCGT TCGGAGCACG AAAGATTGCT TTACAGTTTA






CGGATTTCCG ATGATTGCAA ATAAGGCAGC TTTCGCAGTT






AAATGCAGCC TTACTCCAAC CGATTTGATG GGGAGAGTAG






AGGAGAAGTT CAAGGGCAAA AATGGTAATT CACTAGCAGC






CTCGACGACG GTTGAATCCG CGGATATACC CTCGAACCTG






TGTATAATCG ACACCCTCCA AAGATTGGGA GTCGACCGAT






ACTTTCAAAC TGAAATCAAT GCCATTCTAG AGGACACTTA






CAGATTATGG GAACGAAAAG ACAAAGACAT ATATTCCGAT






GCCACAACTC ACGCGATGGC GTTTAGGTTA CTACGAGTGA






AAGGATACGA AGTTTCATCA GAGGAACTGG CTCCTTACGC






TGATCAAGAG TGCGTGAACG TGCAAACGGC TGATGTGGCA






ACAGTTATCG AGCTTTACAG AGCAGCGCAG GTGAGAATAA






GCGAAGAAGA GAGCAGTCTT AAGAAGCTTC ATGCTTGGAC






CACCACCTTT CTCAAATATC AGTTGCAGAG TAACTCCATA






CCTGAAAAGA AACTGCACAA ACTGGTGGAA TATTACTTGA






AGAACTACCA TGGCATATTG GATAGAATGG GAGTTCGAAT






GGACCTCGAC TTATTCGACA TCAGCCATTA TCGAACTCTA






CAAGCTTCCG ATAGGTTCTC TAGTCTGCGT AACGAAGATT






TTCTAGAGTT TGCAAGGCAA GATTTCAATA TCTGCCAAGC






CAAGCACCAG AAAGAACTCC AACAACTGCA AAGGTGGTAT






GCAGATTGCA GGCTCGACAC CTTGAAGTTC GGGAGAGACG






TCGTACGCGT TGCTAATTTT CTGACTTCAG CAATCTTTGG






CGAACCCGAG CTATCCGATG CTCGTCTGAT CTTTGCCAAG






CATATCGTGC TCGTAACATG TATCGATGAA TTCTTCGATC






ATGGTGGGTC TAAAGAAGAG TCCTACAAGA TCCTTGAATT






AGTAGAAGAA TGGAAAGAGA AGCCAACTGG AGAATATGGG






TGTGAGGAGG TTGAGATCCT TTTCACAGCA GTGTACAGTA






CAGTGAATGA GTTGGCAGAG ATGGCTCATG TCGAACAAGG






ACGTAGTGTG AAAGAGTTTC TAGTTAAACT GTGGGTGCAG






ATACTGTCGA TTTTCAAGAT AGAACTGGAT ACATGGAGTG






ATGACACGGA ACTGACGTTG GACAGCTACT TGAACAACTC






GTGGGTGTCG ATCGGATGCA GAATCTGCAT TCTCATGTCG






ATGCAGTTCG CCGGTGTAAA ACTGTCCGAC GAAATGCTTC






TGAGTGAAGA GTGTGTTGAC TTGTGCAGGC ACGTCTCCAT






GGTCGATCGC CTCCTGAACG ATGTGCAAAC TTTCGAGAAG






GAACGCAAGG AAAATACAGG AAACAGTGTG AGCCTTCTGC






AAGCAGCAGC TGAGAGAGAA GGAAGAGCCA TTACAGAAGA






GGAAGCTATT ACACAGATCA AAGAATTGGC TGAATACCAC






AGGAGAAAAC TGATGCAGAT TGTGTACAAA ACAGACACCA






TTTTCCCAAG AAAATGCAAA GATATGTTCT TGAAGGTGTG






CAGGATTGGG TGCTATCTGT ACGCAAGTGG AGACGAATTC






ACAACTCCAC AACAAATGAT GGAAGACATG AAATCATTGG






TTTATCAACC CCTAACAGTT GATGACATGA GTGCCAAAGA






ATTGACTTCT GTGAGAAACT AG






The Salvia officinalis miltiradiene synthase (SoTPS1) can have the amino acid sequence shown below (SEQ ID NO:19).











MSLAFNAAVA TFSGHRIRSR REILPGQGFP MITNKSSFAV






KCNLTTTDLM GKITEKFKGR DSNFSAATAV QPAADIPSNL






CIIDTLQRLG VDRYFQSEID TILEDTYRLW QRKEREIFSD






ITIHAMAFRL LRVKGYVVSS EELAPYADQE RINLQRIDVA






TVIELYRAAQ ERISEDESSL EKLHAWTATY LKQQLLTNSI






PDKKLNKLVE CYLKNYHGIL DRMGVRQNLD LYDISHYQTL






KAADRFSNLR NEDFLAFARQ DFNICQEQHQ KELQQLQRWY






ADCRLDTLKY GRDVVRVANF LTSAIIGDPE LSEVRLVFAK






HIVLVTRIDD FFDHGGSREE SYKILELLKE WKEKPAAEYG






SKEVEILFTA VYNTVNELAE MAHIEQGRSV KEFLIKLWVQ






IISIFKIELD TWSDETALTL DEYLSSSWVS IGCRICILMS






MQFIGIKLSD EMLLSEECID LCRHVSMVDR LLNDVQTFEK






ERKENTGNSV SLLLAANKDD SAFTEEEAIT KAKEMAECNR






RQLMKIVYKT GTIFPRKCKD MFLKVCRIGC YLYASGDEFT






SPQQMMEDMK SLVYEPLTVD PLEAKNVSGK







A nucleic acid encoding the Salvia officinalis miltiradiene synthase (SoTPS1) with SEQ ID NO:19 is shown below as SEQ ID NO:20.











ATGTCCCTCG CCTTCAACGC AGCAGTTGCC ACTTTCTCCG






GCCACAGAAT TCGGAGCAGG AGAGAAATTC TTCCGGGGCA






AGGATTTCCG ATGATCACCA ACAAGTCGTC TTTCGCCGTG






AAATGTAACC TTACTACAAC AGATTTGATG GGCAAGATAA






CAGAGAAATT CAAGGGAAGA GACAGTAATT TTTCAGCAGC






AACGGCTGTT CAACCTGCGG CGGATATACC CTCTAACCTG






TGCATAATCG ACACCCTCCA AAGGTTGGGA GTCGACCGAT






ACTTCCAATC TGAAATCGAC ACTATTCTAG AGGACACATA






CAGGTTATGG CAAAGGAAAG AGAGAGAGAT ATTTTCGGAT






ATAACTATTC ATGCAATGGC ATTTAGACTT TTGCGAGTTA






AAGGATATGT AGTTTCATCA GAGGAACTGG CTCCGTATGC






TGACCAAGAG CGCATTAACC TGCAAAGGAT TGATGTAGCG






ACAGTTATCG AGCTTTACAG AGCAGCACAG GAGAGAATAA






GTGAAGACGA GAGCAGTCTT GAGAAACTAC ATGCTTGGAC






CGCCACCTAT CTCAAGCAGC AGCTGCTCAC TAACTCCATT






CCTGACAAGA AATTGAACAA ACTGGTGGAA TGCTACTTGA






AGAACTATCA CGGGATATTA GATAGAATGG GAGTTAGACA






AAACCTCGAC CTCTACGACA TAAGCCACTA TCAAACTCTA






AAAGCTGCAG ATAGGTTCTC TAATCTACGT AATGAAGATT






TTCTAGCATT TGCGAGGCAA GATTTTAATA TTTGCCAAGA






ACAACACCAA AAAGAACTTC AGCAACTGCA AAGGTGGTAT






GCAGATTGTA GGTTGGACAC ATTGAAGTAT GGAAGAGATG






TCGTGCGGGT TGCTAATTTT CTAACATCAG CAATTATTGG






TGATCCTGAA TTGTCTGAAG TCCGTCTAGT CTTCGCCAAA






CATATTGTGC TTGTAACACG TATTGATGAT TTTTTCGATC






ATGGTGGATC TAGAGAAGAG TCCTACAAGA TCCTTGAATT






ACTAAAAGAA TGGAAAGAGA AGCCAGCTGC AGAATATGGT






TCCAAAGAAG TTGAAATTCT TTTCACAGCA GTATACAATA






CAGTAAACGA GTTGGCAGAG ATGGCTCACA TCGAACAAGG






ACGTAGTGTT AAAGAATTTC TAATAAAGCT GTGGGTTCAA






ATCATATCGA TTTTCAAGAT AGAATTAGAT ACATGGAGCG






ATGAGACAGC GCTGACCTTG GATGAGTACT TGTCTTCGTC






GTGGGTGTCA ATTGGGTGCA GAATCTGCAT TCTCATGTCG






ATGCAATTCA TTGGTATAAA ATTATCTGAT GAAATGCTTC






TGAGTGAAGA GTGTATTGAT TTGTGTCGGC ATGTCTCCAT






GGTTGACCGG CTGCTCAACG ACGTGCAGAC TTTCGAGAAG






GAACGCAAGG AAAATACAGG AAATAGCGTG AGCCTTCTGC






TAGCAGCTAA CAAAGACGAC AGCGCCTTTA CTGAAGAGGA






AGCTATTACA AAAGCAAAAG AAATGGCGGA ATGTAACAGG






AGACAACTGA TGAAGATTGT GTATAAAACA GGAACCATTT






TCCCAAGAAA ATGCAAAGAT ATGTTTCTGA AGGTATGCAG






GATTGGCTGT TACTTGTATG CAAGCGGCGA TGAATTCACA






TCTCCACAAC AAATGATGGA AGATATGAAA TCCTTGGTCT






ATGAACCCCT AACAGTTGAT CCTCTCGAGG CCAAAAATGT






GAGTGGCAAA TGA







Ajuga reptans (+)-copalyl diphosphate synthase (ArTPS1) is a (+)-copalyl diphosphate ((+)-CPP) [31] synthase, and compound 31 is shown below.




embedded image


The Ajuga reptans (+)-copalyl diphosphate synthase (ArTPS1) can have the amino acid sequence shown below (SEQ ID NO:21).











MASLSTFHLY SSSLLHRKTL QSSPKLNLSS ECFSTRTWMN






SSKNLSLNYQ VNQKIGKLTG TRVATVDAPQ QLEHDDSTAK






GHDIVDIETQ DPIEYIRMLL NTTGDGRISV SPYDTAWIAL






IKDVEGRDFP QFPSSLEWIA NHQLADGSWG DEGFFCVYDR






LVNTIACVVA LRSWNVHHDK SQRGIQYIKE NVHQLKDGNA






EHMMCGFEVV FPALLQKAKN MGIDDLPYEA PVIQDIYHTR






EQKLKRIPLE MMHKVPTSLL FSLEGLENLD WDKLLKLQSA






DGSFLTSPSS TAFAFMQTKD EKCFQFIKNT VETFNGGAPH






TYPVDVFGRL WAVDRLQRLG ISRFFEAEIA DCLSHIHRYW






NDKGLFSGRE SDFVDIDDTS MGFRLLRMQG YDVSPNVLRN






FKNGDKFSCY GGQTIESSTP IYNLYRASQF RFPGEEILEE






ADKFAHEFLS EQLGNNQLLD KWVISDRLQE EISIGLGMPF






YATLPRVEAS YYIQHYAGAD DVWIGKTLYR MPEISNDTYL






ELARNDFKRC QAQHQFEWIY MQEWYESCNI EEFGISRKEL






LRVYFLACSS IFEVERTKER MAWAKSQIIS RMITSFFNKQ






TTSSEEKETL LTEFRNINGL HKSNNTRDGD MNIVLATLHQ






FFAGFDRYTS HQLKNAWGVW LSKLQRGAVD GGADAELITT






TINVCAGHIA LKEDILSHDE YKTLTDLTSK ICQQLSHIQN






EKVVEIDGGI TAKSRLKNEE LQRDMQSLVK LVLEKSVGLN






RNIKQTFLTV AKTYYYRAYN AEETMDAHIF KVLFEPVA







A nucleic acid encoding the Ajuga reptans (+)-copalyl diphosphate synthase (ArTPS1) with SEQ ID NO:21 is shown below as SEQ ID NO:22.











ATGGCCTCTT TGTCCACTTT CCACCTCTAC TCTTCCTCAC






TCCTTCACCG CAAAACACTG CAATCTTCAC CAAAGCTTAA






CCTGTCTTCA GAATGCTTCT CCACCAGAAC TTGGATGAAC






AGCAGCAAAA ACTTGTCGTT AAATTACCAA GTTAATCAGA






AAATAGGAAA GCTGACAGGG ACTCGAGTTG CCACTGTGGA






TGCGCCACAA CAACTTGAAC ACGATGATTC AACTGCTAAA






GGCCATGATA TAGTCGATAT TGAAACTCAG GATCCAATTG






AATATATTAG AATGCTGTTG AACACAACAG GCGATGGCAG






AATCAGCGTT TCGCCTTACG ACACAGCATG GATTGCTCTT






ATTAAGGACG TGGAAGGACG TGATTTTCCT CAATTTCCAT






CCAGCCTTGA GTGGATCGCG AACCATCAAC TCGCTGATGG






TTCATGGGGA GACGAAGGAT TTTTCTGTGT GTATGATCGG






CTCGTAAATA CTATAGCATG TGTCGTAGCA TTGAGATCAT






GGAATGTCCA TCACGACAAG AGCCAAAGAG GAATACAATA






TATCAAGGAA AATGTGCATC AACTTAAGGA TGGAAATGCT






GAGCACATGA TGTGTGGTTT CGAAGTAGTG TTTCCTGCAC






TTCTTCAAAA AGCCAAAAAT ATGGGCATTG ATGATCTTCC






ATATGAGGCT CCTGTCATCC AGGATATTTA CCATACAAGG






GAGCAGAAAT TGAAAAGGAT ACCATTGGAG ATGATGCACA






AAGTGCCTAC TTCTCTGCTG TTTAGTTTGG AAGGACTGGA






GAATTTAGAT TGGGATAAAC TCCTTAAGTT GCAGTCAGCT






GATGGCTCTT TCCTCACTTC TCCCTCCTCT ACTGCTTTCG






CATTCATGCA AACAAAAGAC GAAAAATGCT TCCAGTTCAT






CAAGAACACT GTTGAAACCT TTAATGGAGG AGCACCACAT






ACTTATCCGG TCGATGTTTT TGGAAGACTT TGGGCGGTTG






ATAGGCTGCA GCGCCTCGGA ATTTCTCGAT TCTTTGAGGC






TGAGATTGCT GATTGCTTAA GTCACATTCA TAGATATTGG






AATGATAAGG GGCTTTTCAG TGGACGTGAA TCGGACTTTG






TCGATATTGA CGACACATCC ATGGGTTTCA GACTTCTAAG






AATGCAAGGC TATGATGTTA GTCCAAATGT ACTGAGGAAT






TTCAAGAATG GTGACAAGTT TTCATGTTAC GGAGGTCAAA






CGATCGAGTC ATCAACTCCA ATATACAATC TGTACAGAGC






TTCTCAATTC CGGTTTCCAG GAGAAGAAAT TCTTGAAGAA






GCCGACAAGT TCGCCCATGA GTTCTTGTCC GAACAGCTTG






GCAACAACCA ATTGCTTGAT AAATGGGTTA TATCCGACCG






CTTGCAGGAA GAGATAAGTA TTGGATTGGG GATGCCATTT






TATGCCACCC TTCCCAGAGT TGAAGCAAGC TACTATATAC






AACATTACGC TGGTGCCGAC GACGTGTGGA TCGGCAAGAC






ACTCTACAGG ATGCCGGAAA TAAGTAATGA TACATACCTG






GAGCTAGCAA GAAATGATTT CAAGAGATGC CAAGCACAAC






ATCAGTTCGA GTGGATCTAC ATGCAAGAAT GGTATGAGAG






TTGCAACATT GAAGAATTCG GGATAAGCCG AAAGGAGCTC






CTTCGCGTTT ACTTTTTGGC TTGCTCTAGC ATCTTTGAGG






TCGAGAGGAC TAAAGAGAGA ATGGCATGGG CAAAATCTCA






AATTATTTCT AGAATGATCA CTTCTTTCTT TAATAAACAA






ACTACTTCAT CTGAGGAAAA AGAAACACTT TTAACCGAAT






TCAGAAACAT CAACGGTCTG CACAAATCAA ACAATACAAG






AGATGGAGAT ATGAACATTG TGCTTGCAAC CCTCCATCAA






TTCTTCGCTG GATTTGACAG ATATACTAGC CATCAACTGA






AAAATGCTTG GGGAGTATGG TTGAGCAAGC TGCAACGAGG






AGCAGTAGAC GGTGGAGCAG ACGCAGAGCT GATAACAACC






ACCATAAACG TATGCGCCGG TCATATAGCT CTTAAGGAAG






ACATATTGTC CCACGATGAG TACAAGACTC TCACCGACCT






CACCAGCAAG ATTTGTCAGC AGCTTTCTCA TATTCAAAAC






GAAAAGGTTG TGGAAATTGA CGGTGGGATT ACAGCAAAAT






CTAGGTTGAA GAATGAGGAA CTGCAACGTG ACATGCAATC






ATTGGTGAAA TTAGTACTTG AGAAATCAGT TGGGCTCAAC






CGGAATATAA AGCAAACATT TCTAACGGTT GCAAAAACAT






ACTACTACAG AGCCTACAAT GCTGAGGAAA CTATGGATGC






CCATATATTC AAAGTTCTTT TCGAACCAGT TGCGTGA







Ajuga reptans cleroda-4(18),13E-dienyl diphosphate synthase (ArTPS2) was identified and isolated. ArTPS2 was identified as a (5R,8R,9S,10R) neo-cleroda-4(18),13E-dienyl diphosphate [38] synthase. In addition, the combination of ArTPS2 and SsSS enzymes generated neo-cleroda-4(18),14-dien-13-ol [37]. These compounds are shown below.




embedded image


ArTPS2 is of particular interest for applications in agricultural biotechnology, for example, because it is useful for production of neo-clerodane diterpenoids. Neo-clerodane diterpenoids, particularly those with an epoxide moiety at the 4(18) position, have garnered significant attention for their ability to deter insect herbivores (Coll et al., Phytochem Rev 7(1):25 (2008); Klein Gebbinck et al. Phytochemistry 61(7):737-770 (2002); Li et al. Nat Prod Rep 33(10):1166-1226 (2016)). The 4(18)-desaturated products produced by ArTPS2 (e.g., compounds 37 and 38 with the ═CH2 4(18) desaturation projecting from the A ring) the can be used in biosynthetic or semisynthetic routes to yield potent insect antifeedants.


The Ajuga reptans cleroda-4(18),13E-dienyl diphosphate synthase (ArTPS2) can have the amino acid sequence shown below (SEQ ID NO:23).











MSFASQATSL LSSPNRLGHV PTPSSPARFA AGGAPFWKIL






FTARSNGQYK AISRARNQGN VEYIDEIQKG PQVVLEAENS






LEDDTQKDTD QIRELVENVR VKLQNIGGGG ISISAYDTAW






VALVEDINGS GQPQFPTSLD WISNHQFPDG SWGSSKFLYY






DRILCTLACI VALKTWNVHP DKYHKGLDFI RENIHKLADE






EEVHMPIGFE VAFPSIIETA KKVGIEIPED FPGKKEIYAK






RDLKLKKIPM DILHKMPTPL LFSIEGMEGL DWQKLFKFRD






DGSFLTSPSS TAYALQQTKD ELCLKYLTDL VKKDNGGVPN






AFPVDLFDRN YTVDRLRRLG ISRYFQPEIE ECMKYVYRFW






DKRGISWARN TNVQDLDDTA QGFRNLRMHG YEVTLDVFKQ






FEKCGEFFSF HGQSSDAVLG MFNLYRASQV LFPGEHMLAD






ARKYAANYLH KRRLNNRVVD KWIINKDLEG EVAYGLDVPF






YASLPRLEAR FYIEQYGGSD DVWIGKALYR MVNVSCDTYL






ELAKLDYNKC QSVHQNEWKS FQKWYKSCSL GEFGFSEGSL






LQAYYIAAST IFEPEKSGER LAWAKTAALM ETIQQLSSQQ






KREFVDEFKH KNILKNENGE RYRSSTSLVE TLISTVNQLS






SDILLEQGRD VHQELCHVWL KWLSTWEERG NLVEAEAELL






LRTLHLNSGL DESSFSHPKY QQLLEVSTKV CHLLRLFQKR






KVYDPEGCTT DIATGTTFQI EACMQELVKL VFSRSSEDLD






SLTKLRFLDV ARSFYYTAHC DPQVVESHID KVLFEKVV







A nucleic acid encoding the Ajuga reptans cleroda-4(18),13E-dienyl diphosphate synthase (ArTPS2) with SEQ ID NO:23 is shown below as SEQ ID NO:24.











ATGTCATTTG CTTCCCAAGC CACCTCCCTC CTATCATCCC






CCAACCGTCT CGGCCATGTT CCGACGCCAA GCTCGCCGGC






TCGTTTCGCT GCCGGTGGTG CCCCATTTTG GAAGATATTA






TTTACAGCTA GGTCTAATGG GCAGTATAAA GCTATTTCAA






GAGCTCGTAA CCAAGGAAAT GTAGAGTACA TTGATGAGAT






TCAGAAAGGC CCGCAAGTCG TATTGGAGGC AGAAAACAGC






TTGGAAGATG ACACACAAAA AGATACTGAT CAGATAAGGG






AACTAGTGGA AAATGTCCGA GTAAAGCTGC AGAATATCGG






TGGTGGAGGG ATAAGCATAT CGGCGTACGA CACCGCATGG






GTGGCGCTGG TGGAGGACAT CAACGGCAGT GGCCAGCCAC






AGTTTCCGAC GAGCCTCGAT TGGATATCGA ACCATCAGTT






CCCTGATGGG TCATGGGGCA GCAGCAAGTT TTTGTATTAT






GATCGGATTC TATGCACATT AGCATGTATA GTTGCATTGA






AAACCTGGAA TGTGCATCCT GATAAGTACC ACAAAGGGTT






GGATTTCATC AGAGAGAACA TTCACAAGCT TGCGGACGAA






GAAGAAGTGC ACATGCCAAT TGGGTTCGAA GTGGCATTCC






CATCAATTAT TGAAACAGCT AAAAAAGTAG GAATCGAAAT






CCCTGAGGAT TTTCCTGGCA AGAAAGAAAT TTATGCAAAA






AGAGATTTAA AGCTAAAAAA AATACCAATG GATATACTGC






ATAAAATGCC CACACCATTG CTCTTCAGCA TAGAAGGAAT






GGAAGGCCTT GACTGGCAAA AGCTATTCAA ATTCCGCGAT






GATGGCTCGT TTCTTACGTC TCCGTCCTCA ACAGCCTATG






CACTCCAGCA AACAAAGGAT GAGCTATGCC TCAAGTATCT






AACAGATCTT GTCAAGAAAG ACAACGGAGG AGTTCCGAAT






GCATTTCCAG TAGACCTGTT TGATCGTAAC TATACAGTAG






ACCGCTTGCG AAGGCTAGGA ATTTCACGGT ACTTTCAACC






TGAAATTGAA GAATGCATGA AATATGTTTA CAGATTTTGG






GATAAAAGAG GAATTAGCTG GGCAAGAAAT ACCAATGTTC






AGGACCTTGA TGACACTGCA CAGGGATTCA GGAATTTAAG






GATGCATGGT TATGAAGTCA CTCTAGATGT TTTCAAACAA






TTTGAGAAAT GTGGAGAGTT TTTCAGTTTT CATGGGCAAT






CCAGCGATGC TGTTTTAGGA ATGTTCAACT TGTACCGGGC






TTCTCAGGTT TTATTTCCGG GAGAACACAT GCTTGCAGAT






GCGAGGAAGT ATGCAGCCAA CTATTTGCAT AAACGAAGAC






TTAATAATAG GGTGGTCGAC AAATGGATTA TCAACAAAGA






CCTTGAAGGC GAGGTGGCAT ATGGGCTAGA TGTTCCGTTC






TACGCCAGCC TACCTCGACT CGAAGCAAGG TTCTACATAG






AACAATATGG GGGTAGTGAT GATGTGTGGA TTGGAAAAGC






TTTATACAGA ATGGTAAATG TAAGCTGCGA CACTTACCTT






GAGCTAGCAA AATTAGACTA CAACAAATGC CAATCCGTGC






ATCAGAATGA GTGGAAAAGC TTTCAAAAAT GGTACAAAAG






TTGCAGTCTT GGGGAGTTTG GGTTCAGTGA AGGAAGCCTA






CTCCAAGCTT ACTACATAGC AGCCTCAACT ATATTCGAGC






CAGAGAAATC AGGAGAACGC CTAGCTTGGG CTAAAACAGC






AGCTCTAATG GAGACAATTC AACAACTTTC CAGCCAGCAA






AAACGTGAAT TTGTTGATGA ATTCAAACAT AAAAACATAC






TGAAGAATGA AAATGGAGAA AGGTATAGAT CAAGTACCAG






TTTGGTAGAG ACTCTGATAA GCACTGTAAA TCAGCTCTCA






TCAGACATAC TATTGGAGCA AGGCAGAGAC GTTCATCAAG






AATTATGTCA CGTGTGGCTA AAATGGCTGA GTACATGGGA






GGAAAGAGGA AACCTGGTGG AAGCGGAAGC CGAGCTTCTT






CTGCGAACCT TACATCTCAA CAGCGGATTG GATGAATCAT






CATTTTCCCA CCCTAAATAT CAACAGCTCT TGGAGGTGTC






TACCAAAGTT TGCCACCTCC TTCGCCTATT TCAGAAACGA






AAGGTGTATG ATCCCGAAGG GTGTACAACC GACATAGCAA






CAGGAACAAC GTTCCAGATA GAAGCATGCA TGCAAGAACT






AGTGAAATTA GTGTTCAGCA GATCCTCAGA AGATTTAGAT






TCTCTTACTA AGTTGAGATT TTTGGATGTT GCTAGAAGTT






TCTATTACAC TGCCCATTGT GATCCACAGG TGGTCGAGTC






CCACATCGAT AAAGTATTGT TTGAGAAGGT AGTCTAG






The Plectranthus barbatus (+)-Copalyl diphosphate synthase (CfTPS16) was identified and isolated using the methods described herein, and this CfTPS116 protein can have the amino acid sequence shown below (SEQ ID NO:25).











MQASMSSLNL NNAPAVCSSR SQLSAKLHPP EYSTVGAWLN






RGNKNQRLGY RIRPKQLSKL TECRVASADV SQEIGKVGQS






VRTPEEVNKK IEESIKYVKE LLMTSGDGRI SVAPYDTAIV






ALIKDLEGRD APEFPSCLEW IANNQKDDGS WGDDFFCIYD






RIVNTIASVV ALKSWNVHPD KIERGVSYIK ENAHKLKGGN






LEHMTSGEEF VVPGCFDRAK ALGIEGLPYD DPIIKEIYAT






KERRLSKVPK DMIYKVPTTL LFSLEGLGME DLDWQKILKL






QSGDGSFLTS PSSTAYAFMQ TGDEKCYKFL QNAVRNCNGG






APHTYPVDVF ARLWAVDRLQ RLGISRFFQP EIKFCLDHIK






NVWTKNGVFS GRDSEFVDID DTSMGIRLLK MHGYDVDPNA






LKHFKQEDGR FSCYGGQMIE SASPIYNLYR AAQLRFPGEE






ILEEATKFAY NFLQQKLANN QIQEKWVISE HLIDEIKMGL






KMPWYATLPR VEASYYLQYY AASGDVWIGK TFYRMPEISN






DTYKELALLD FNRCQAQHQF EWIYMQEWYQ SNNIKEFGIS






KKELLLAYFL AAATIFEPER SQERIVWAKT QVVSKMITSF






LSQENALSSX QKTALFIDFG HSINGLNQIT SVEKENGLAQ






TVLATFGQLL EEFDRYTRHQ LKNAWSQWFM KLQQGDDNGG






ADAELLANTL NICAGHIAFN EDILSHNEYT SLSSLTNKIC






QRLSQIRDNK ILEIEDGSIK DKELEQEMQA LVKLVLEETG






GIDRNIKQTF LSVFKMFYYR AYHDAEAIDX HIFKVMFEPV






V







A nucleic acid encoding the Plectranthus barbatus (+)-Copalyl diphosphate synthase (CfTPS16) with SEQ ID NO:25 is shown below as SEQ ID NO:26.











ATGCAGGCTT CTATGTCATC TCTGAACTTG AACAATGCAC






CGGCCGTCTG CAGCAGCAGG TCACAGCTAT CCGCTAAACT






TCACCCGCCG GAATATTCCA CCGTGGGTGC ATGGCTGAAT






CGTGGCAACA AAAACCAGCG GTTGGGCTAC CGGATTCGTC






CAAAGCAACT ATCAAAACTA ACTGAGTGTC GAGTAGCAAG






TGCAGATGTG TCACAAGAGA TTGGAAAAGT CGGCCAATCT






GTTCGGACTC CTGAAGAGGT AAATAAAAAG ATAGAGGAAT






CCATCAAGTA CGTGAAGGAG CTGCTGATGA CGTCGGGCGA






CGGGCGAATC AGTGTGGCGC CCTACGACAC GGCCATAGTT






GCCCTTATCA AGGACTTGGA AGGGCGCGAT GCCCCGGAGT






TTCCATCTTG CTTGGAGTGG ATTGCAAACA ATCAAAAAGA






CGATGGTTCT TGGGGGGATG ACTTCTTCTG CATCTATGAT






CGGATCGTTA ATACCATAGC ATCCGTCGTC GCCTTAAAAT






CATGGAATGT GCACCCAGAC AAGATTGAGA GAGGAGTATC






CTACATCAAG GAAAACGCGC ATAAACTAAA AGGTGGGAAT






CTCGAACACA TGACATCAGG GTTCGAGTTC GTGGTTCCCG






GCTGTTTTGA CAGAGCCAAA GCCTTGGGGA TCGAAGGCCT






TCCCTATGAT GATCCCATCA TCAAGGAGAT TTATGCTACA






AAAGAAAGGA GATTGAGCAA GGTACCGAAG GACATGATCT






ACAAAGTTCC GACAACTCTA TTGTTTAGTT TAGAGGGACT






GGGCATGGAG GATTTGGACT GGCAAAAGAT ACTGAAACTG






CAGTCGGGCG ACGGCTCATT CCTCACCTCT CCGTCGTCCA






CCGCCTACGC ATTCATGCAG ACCGGAGACG AAAAATGCTA






CAAATTCCTC CAGAACGCCG TCAGAAATTG CAACGGCGGA






GCGCCGCACA CTTATCCAGT CGACGTCTTT GCACGGCTCT






GGGCGGTCGA CCGACTTCAG CGACTCGGAA TTTCTCGCTT






CTTTCAGCCC GAGATCAAGT TTTGCCTAGA CCACATCAAA






AATGTGTGGA CTAAGAACGG AGTTTTCAGT GGACGGGATT






CAGAGTTTGT GGATATCGAC GACACATCCA TGGGCATCAG






GCTTCTGAAA ATGCACGGAT ACGATGTCGA CCCAAATGCA






CTGAAACATT TCAAGCAGGA GGATGGGAGG TTTTCATGCT






ACGGTGGTCA AATGATCGAG TCTGCATCTC CGATTTACAA






TCTCTACAGG GCTGCTCAGC TTCGTTTTCC AGGAGAAGAA






ATTCTTGAAG AAGCCACTAA ATTTGCCTAC AACTTCCTGC






AACAGAAGCT GGCCAACAAT CAAATTCAAG AAAAGTGGGT






CATATCCGAG CACCTAATTG ATGAGATAAA AATGGGATTG






AAGATGCCAT GGTACGCCAC CCTACCTAGA GTTGAGGCTT






CATACTATCT CCAATATTAT GCAGCTTCTG GCGACGTATG






GATTGGCAAG ACTTTTTACA GGATGCCAGA AATAAGTAAT






GACACGTACA AAGAGCTTGC ACTATTGGAT TTCAACCGAT






GCCAAGCACA ACATCAGTTC GAATGGATTT ACATGCAAGA






GTGGTATCAA AGCAACAACA TTAAAGAATT TGGGATAAGC






AAGAAAGAGC TTCTTCTTGC TTACTTCTTG GCTGCTGCAA






CCATTTTTGA ACCCGAACGA TCGCAAGAGC GGATCGTGTG






GGCTAAAACC CAAGTTGTTT CTAAGATGAT CACATCGTTT






CTGTCTCAAG AAAACGCTTT GTCATCGGAN CAAAAGACTG






CACTTTTCAT CGATTTTGGG CATAGTATCA ATGGCCTCAA






TCAAATAACT AGTGTTGAGA AAGAGAATGG GCTTGCTCAG






ACTGTGCTGG CAACCTTCGG ACAACTACTC GAGGAATTCG






ACAGATACAC AAGGCATCAA CTGAAAAATG CTTGGAGCCA






ATGGTTCATG AAACTGCAGC AAGGAGATGA CAATGGCGGG






GCAGACGCAG AGCTCCTAGC AAACACATTG AACATCTGCG






CTGGTCATAT TGCTTTTAAC GAAGACATAT TATCTCACAA






CGAATACACC TCTCTCTCCT CCCTCACAAA CAAAATCTGT






CAGCGGCTAA GTCAAATTCG AGATAATAAG ATACTGGAAA






TTGAGGATGG GAGCATAAAA GATAAGGAAC TAGAACAGGA






AATGCAGGCG CTGGTGAAGT TAGTCCTGGA AGAAACCGGT






GGCATCGACA GGAACATCAA GCAAACATTT TTGTCAGTTT






TCAAAATGTT TTACTACAGA GCCTACCACG ATGCTGAGGC






TATCGATGNC CATATTTTCA AAGTAATGTT TGAACCAGTC






GTATGA







Hyptis suaveolens labda-7,13E-dienyl diphosphate synthase (HsTPS1) was identified and isolated, and is a (5S, 9S, 10S) labda-7,13E-dienyl diphosphate [21] synthase. When HsTPS1 was expressed in N. benthamiana, labda-7,13(16),14-triene [22] was formed. The combination of HsTPS1 with OmTPS3 produced labda-7,12E,14-triene [24].




embedded image


The Hyptis suaveolens labda-7,13E-dienyl diphosphate synthase (HsTPS1) can have the amino acid sequence shown below (SEQ ID NO:27).











MAYMISISNL NCSSLLNTNL SAKIQLHQGL KGTWLKTSKR






MCMDQQVHGK QIAKVIESRV TDKDVSTAQD FEVLKVNRVE






DLISSIKSSL KTMEDGRISV SPYSTSWIAL IPSIDGRQTP






QFPSSLEWIV KHQLSDGSWG DALFFCVYDR LVNTIACIIA






LHTWKVHADK VKKGVSFVKE NIWKLEDANE VHMTSGFEVI






FPILLRRARD MGIDGLPSDD TPVVRMISAA RDHKLKKIPR






EVMHQVTTTL LYSLEGLEDL DWSRLFKLQS ADGSFLTSPS






STAFAFMQTN NHNCLRFITS VVQTFNGGAP DNYPIDIFAR






LWAVDRLQRL GISRFFEQEI NDCLSYVYRF WNANGVFSAG






ATNFCDLDDT SMAFRLLRLH GYDVDPNVLR KFKEGDRFCC






HSGEVAMSTS PTYALYRASQ IQFPGEEILD EAFSFTRDYL






QDWLARDQVL DKWIVSKDLP DEIKVGLEVP WYASLPRVEA






AYYMQRHYGG STDAWVAKTC YRMPDVSNDD YLELARLDFK






RCQAQHQSEL SYMQRWYDSC NVEEFGISRK ELLVAYFVAA






ATIFEPERAT ERIVWAKTEI VSKMIKAFFG EDSLDQKTML






LKEFRNSINN GSHRFMKSEH RIVNILLQAL QELLHGSDDC






RIGQLKNAWY EWLMKFEGGD EASLWGEGEL LVTTLNICTA






HFLQHHDLLL NHDYITLSEL TNKICLKLSQ IQVGEMNEMR






EDMQALTKLV IGESCIVNKN IKQTFLAVAK TFYYRAYFDA






DTVDLHIFKV LFEPIV







A nucleic acid encoding the Hyptis suaveolens labda-7,13E-dienyl diphosphate synthase (HsTPS1) with SEQ ID NO:27 is shown below as SEQ ID NO:28.











ATGGCGTATA TGATATCTAT TTCAAATCTC AACTGTTCCT






CGCTACTAAA CACCAATCTT TCAGCAAAGA TTCAGCTGCA






CCAAGGTCTC AAAGGAACAT GGCTAAAAAC CAGCAAACGC






ATGTGCATGG ATCAACAGGT TCATGGCAAG CAGATAGCAA






AAGTGATCGA GAGCCGAGTT ACTGATAAGG ATGTTTCCAC






TGCTCAGGAC TTTGAAGTGT TAAAGGTCAA TAGAGTGGAG






GATCTGATAT CAAGCATTAA GAGTTCATTG AAGACAATGG






AAGATGGAAG AATAAGCGTG TCGCCCTACA GCACATCATG






GATCGCACTC ATTCCAAGTA TTGATGGGCG CCAGACGCCC






CAGTTTCCAT CTTCACTGGA GTGGATCGTG AAGCATCAGC






TATCAGATGG TTCATGGGGT GATGCCCTTT TTTTCTGCGT






TTATGATCGT CTCGTAAATA CGATTGCATG CATCATTGCC






CTGCACACCT GGAAGGTTCA TGCAGACAAG GTTAAAAAAG






GAGTAAGTTT TGTGAAGGAA AATATATGGA AACTTGAAGA






CGCCAACGAG GTCCACATGA CTAGTGGTTT CGAAGTTATA






TTTCCCATCC TTCTTCGAAG AGCACGAGAC ATGGGAATTG






ATGGTCTTCC TTCTGATGAT ACTCCAGTTG TTAGGATGAT






TTCTGCTGCT AGGGATCACA AATTGAAAAA GATTCCGAGG






GAGGTGATGC ACCAAGTGAC AACAACTCTA TTATATAGTT






TGGAAGGGTT GGAAGATTTA GACTGGTCAA GGCTTTTCAA






ACTTCAGTCA GCTGATGGTT CATTCTTAAC TTCTCCATCT






TCAACTGCCT TCGCATTCAT GCAAACTAAT AACCACAATT






GCTTGAGATT CATCACTAGC GTTGTCCAAA CATTCAATGG






AGGAGCTCCA GATAACTATC CAATCGACAT CTTTGCGAGA






CTGTGGGCAG TTGACAGGTT ACAGCGGTTA GGGATTTCTC






GTTTCTTCGA GCAGGAGATA AATGATTGCC TAAGCTATGT






ATATAGATTT TGGAATGCAA ATGGAGTTTT CAGTGCAGGA






GCCACTAATT TTTGTGATCT TGACGACACA TCCATGGCTT






TCCGGCTACT ACGTTTGCAT GGATATGATG TCGACCCAAA






TGTTCTGAGG AAATTCAAAG AGGGAGACAG ATTCTGTTGC






CACAGTGGTG AAGTGGCGAT GTCGACATCG CCAACGTACG






CTCTCTACAG AGCTTCCCAA ATTCAGTTTC CAGGAGAAGA






AATTCTGGAT GAAGCCTTCA GCTTCACTCG CGACTATCTA






CAGGACTGGT TAGCAAGAGA TCAAGTTCTT GATAAGTGGA






TTGTATCCAA GGACCTTCCA GATGAGATTA AGGTAGGACT






AGAGGTGCCA TGGTATGCCA GCCTGCCACG GGTAGAGGCT






GCTTATTACA TGCAACGACA TTACGGCGGG TCTACTGATG






CGTGGGTGGC CAAGACTTGT TACAGGATGC CTGATGTGAG






CAACGATGAT TACCTGGAGC TTGCAAGATT GGATTTCAAG






AGATGTCAAG CCCAACATCA GAGTGAATTG AGTTACATGC






AACGATGGTA TGACAGTTGC AATGTCGAAG AATTCGGAAT






AAGCAGAAAA GAGTTGCTTG TAGCTTATTT TGTGGCTGCT






GCAACTATTT TTGAACCTGA GAGAGCAACT GAGAGAATTG






TGTGGGCAAA AACTGAAATA GTTTCTAAGA TGATCAAAGC






ATTTTTTGGT GAAGACTCAT TAGACCAAAA AACTATGTTG






TTAAAAGAAT TCAGAAACAG CATCAATAAT GGCTCCCACA






GATTCATGAA GAGTGAGCAT AGAATCGTCA ACATTCTACT






ACAAGCCTTG CAGGAGCTAT TACATGGATC TGATGATTGT






CGTATTGGTC AACTCAAAAA TGCTTGGTAT GAGTGGCTGA






TGAAATTCGA GGGAGGAGAT GAAGCAAGTT TGTGGGGAGA






AGGAGAGCTT CTTGTCACCA CCTTAAACAT TTGCACAGCT






CATTTCCTTC AACACCATGA TTTACTGTTG AATCATGACT






ACATAACTCT TTCTGAGCTC ACAAACAAGA TCTGCCTCAA






GCTTTCTCAG ATTCAGGTAG GAGAAATGAA TGAAATGAGA






GAAGATATGC AGGCGTTGAC GAAATTAGTG ATTGGGGAAT






CATGCATCGT CAACAAAAAC ATTAAGCAAA CATTTCTTGC






AGTTGCAAAG ACTTTCTATT ACAGAGCCTA CTTCGATGCC






GACACCGTTG ATCTCCATAT ATTTAAAGTT CTATTTGAGC






CCATTGTCTG A







Leonotis leonurus peregrinol diphosphate synthase (L1TPS1) was identified and isolated using the methods described herein. The LlTPS1 enzyme was identified as a peregrinol diphosphate (PgPP) [5] synthase, where the peregrinol diphosphate (PgPP) [5] compound is shown below.




embedded image


The Leonotis leonurus peregrinol diphosphate synthase (L1TPS1) can have the amino acid sequence shown below (SEQ ID NO:29).











MASTASTLNL TINSTPFVST KTQAKVSLPA CLWMQDRSSS






RHVSLKHKFC RNQQLKCRAS LDVQQVRDEV FSTAQSPESV






DKKIEERKKW VKNLLSTMDD GRINWSAYDT AWISLIKEFE






GRDAPQFPST LMRIAENQLA DGSWGDPDYD CSYDRIINTL






ACWALTTVVN AHPEHNKKGI KYIKENMYKL EETPVVLMTS






AFEVVFPALL NRAKNLGIQD LPYDMPIVKE ICKIGDEKLA






RIPKKMMEKE PTSLMYAAEG VENLDWEKLL KQRTPENGSF






LSSPAATAVA FMHTKDENCL RYIMYLLDKF NGGAPNVYPI






DLWSRLWATD RIQRLGISRF FKEEIKEILS YVYSYWTDIG






VYCTRDSKYA DIDDTSMGFR LLRMHGFKMD PNVFKYFQKD






DRFVCLGGQM NDSPTATYNL YRAAQYQFPG EKILEDARKF






SQEFLQHCID TNNLLDKWVI SPRFPEELKF GMEMTWYSCL






PRIEARYYVQ HYGATEDVWL GKTFFRMEEI SNENYKELAK






LDFSKCQAQH QTEWIHMQEW YESSNAKEFG ISRKDLLFAY






FLAAASIFET ERAKERILWA KSQIICKMVK SYLENQTASL






EHKIAFLTGF GDNNNGLHTI NKGSGPVNNV MRTLQQLLGE






FDGYISSQLE NAWAAWLTKL EQGEANDGEL LATTLNICSG






RIVYNEDTLS NKEYKAFADL TNKICQNLAQ IQNKKGDEIK






DPNEGEKDKE VEQGMQALAK LVFEESGLER SIKETFLAVV






RTYHYGAYVA DEKIDVHMFK VLFEPVE







A nucleic acid encoding the Leonotis leonurus peregrinol diphosphate synthase (L1TPS1) with SEQ ID NO:29 is shown below as SEQ ID NO:30.











ATGGCCTCCA CTGCATCCAC TCTAAATTTG ACCATCAATA






GTACACCATT TGTAAGCACC AAAACGCAAG CAAAGGTTTC






CTTGCCCGCA TGTTTATGGA TGCAGGATAG AAGCAGCAGT






AGACACGTGT CGTTAAAACA CAAATTCTGT CGAAATCAAC






AACTTAAGTG TCGAGCAAGT CTGGATGTTC AGCAAGTACG






TGATGAAGTT TTTTCCACTG CTCAATCCCC TGAATCGGTG






GATAAAAAAA TAGAGGAACG TAAAAAATGG GTGAAGAATT






TGTTGAGTAC AATGGACGAT GGACGAATAA ATTGGTCAGC






CTATGACACG GCATGGATTT CACTTATTAA AGAATTTGAA






GGACGAGATG CTCCCCAGTT TCCGTCGACT CTCATGCGCA






TCGCGGAGAA CCAATTGGCC GACGGGTCAT GGGGCGATCC






AGATTACGAC TGCTCCTATG ATCGGATAAT AAACACACTA






GCGTGTGTTG TAGCCTTGAC AACATGGAAT GCTCATCCTG






AACACAATAA AAAAGGAATA AAATACATCA AGGAAAATAT






GTATAAACTA GAAGAGACGC CTGTTGTACT CATGACTAGT






GCATTTGAAG TTGTGTTTCC GGCGCTTCTT AACAGAGCTA






AAAACTTGGG CATTCAAGAT CTTCCCTATG ATATGCCCAT






CGTGAAGGAG ATTTGTAAAA TAGGGGATGA GAAGTTGGCA






AGGATACCAA AGAAAATGAT GGAGAAAGAG CCAACATCGC






TGATGTATGC CGCGGAAGGA GTCGAAAACT TGGACTGGGA






AAAGCTTCTG AAACAGCGGA CACCCGAGAA TGGCTCGTTC






CTCTCTTCCC CGGCCGCAAC TGCCGTTGCA TTTATGCACA






CAAAAGATGA AAATTGCTTA AGATACATCA TGTACCTTTT






GGACAAATTT AATGGAGGAG CACCAAATGT TTATCCGATC






GACCTCTGGT CAAGACTTTG GGCAACGGAC AGGATACAAC






GTCTGGGAAT TTCCCGCTTC TTTAAGGAAG AGATTAAGGA






AATCTTAAGT TATGTCTATA GCTATTGGAC AGACATTGGA






GTCTATTGTA CACGAGATTC CAAATATGCT GACATTGACG






ACACATCCAT GGGATTCAGG CTTCTGAGGA TGCACGGATT






TAAAATGGAC CCAAATGTAT TTAAATACTT CCAGAAAGAC






GACAGATTTG TTTGTCTAGG TGGTCAAATG AATGATTCTC






CAACTGCAAC ATACAATCTT TACAGGGCTG CTCAATACCA






ATTTCCAGGT GAAAAAATTC TAGAAGATGC TAGAAAGTTC






TCTCAAGAGT TTCTACAACA TTGTATAGAC ACCAATAACC






TTCTAGATAA ATGGGTGATA TCCCCGCGCT TTCCGGAAGA






GTTGAAATTT GGAATGGAGA TGACATGGTA TTCCTGCCTA






CCACGAATTG AGGCTAGATA CTACGTACAA CATTATGGTG






CTACAGAGGA CGTCTGGCTT GGAAAGACTT TTTTCAGGAT






GGAAGAAATC AGTAATGAGA ACTATAAGGA GCTTGCAAAA






CTTGATTTCA GTAAATGCCA AGCACAACAT CAGACAGAGT






GGATTCATAT GCAAGAGTGG TATGAAAGTA GCAATGCTAA






GGAATTTGGG ATAAGCAGAA AAGACCTACT TTTTGCTTAC






TTTTTGGCTG CAGCTTCCAT ATTTGAAACC GAAAGGGCAA






AAGAGAGAAT TCTGTGGGCA AAATCTCAAA TTATTTGCAA






GATGGTTAAG TCATATCTGG AAAACCAAAC GGCGTCGTTG






GAGCACAAAA TCGCCTTTTT AACTGGATTC GGAGATAACA






ACAATGGCCT GCACACAATT AATAAGGGGT CTGGACCTGT






TAACAATGTC ATGAGAACCC TCCAACAGCT CCTTGGAGAA






TTCGACGGAT ATATTAGTAG TCAATTGGAA AATGCTTGGG






CAGCATGGTT GACGAAACTC GAGCAAGGCG AGGCCAACGA






TGGCGAGCTC CTCGCAACCA CACTAAACAT TTGTTCTGGG






CGTATTGTGT ATAACGAGGA TACATTATCG AACAAGGAGT






ACAAGGCTTT CGCAGACCTC ACAAATAAAA TTTGTCAAAA






TCTTGCTCAA ATCCAAAATA AAAAGGGTGA CGAAATTAAG






GATCCGAATG AAGGCGAAAA GGACAAGGAA GTCGAGCAAG






GCATGCAGGC ATTGGCTAAG TTAGTTTTTG AGGAATCTGG






GCTTGAGAGG AGTATCAAAG AAACATTCTT AGCAGTGGTG






AGAACTTATC ACTATGGGGC CTATGTTGCT GATGAGAAGA






TTGATGTCCA CATGTTCAAG GTTTTGTTCG AACCAGTTGA






ATGA







Nepeta mussinii (+)-copalyl diphosphate synthase (NmTPS1) was identified and isolated. The NmTPS1 enzyme can synthesize compound 31, shown below.




embedded image


The Nepeta mussinii (+)-copalyl diphosphate synthase (NmTPS1) can have the amino acid sequence shown below (SEQ ID NO:31).











MTSISSLNLS NAAAARRRLQ LPANVHLPEF HSVCAWLNSS






SKHDPFSCRI HRKQKSKVTE CRVASVDASP VSDHKMSSPV






QTQEEANKNM EESIEYIKNL LMTSGDGRIS VSAYDTSIVA






LIKDIEGRDA PQFPSCLEWI GQNQKADGSW GDDFFCIYDR






FVNTLACIVA LKSWNLHPHK IQKGVTYIKK NVHKLKDGRP






ELMTSGFEIC VPAILQRAKD LGIQDLPYDD PMIKQITDTK






ERRLKKIPKD FIYQLPTTLL FSLEGQENLD WEKILKLQSA






DGSFLTSPSS TAAVFMHTKD EKCLKFIENA VKNCDGGVPH






TYPVDVFARL WAVDRLQRLG ISRFFQPEIK YFLDHIQSVW






TENGVFSGRD SQFCDIDDTS MGIRLLKMHG YKIDPNALEH






FKQEDGKFSC YGGQMIESAS PIYNLYRAAQ LRFPGEEILE






EAIKFSYNFL QEKLAKDEIQ EKWVISEHLI DEIKIGLKMP






WYATLPRVEA AYYLDYYAGS GDVWIGKTFY RMPEISNDTY






KEMAILDFNR CQAQHQFEWI YMQEWYESSN VKEFGISKKE






LLVAYFLAAS TIFEPERAQE RIMWAKTKIV SKMIASSLNK






QTTLSLDQKT ALFTQLEHSL NGLDSDEKDN GVAETKNLVA






TFQQLLDGFD KYTRHQLKNA WSQWLKQVQQ GEATGGADAE






LEANTLNICA GHIAFNEQVL SHNEYTTLST LTNKICHRLT






QIQDKKTLEI IDGGIRYKEL EQEMQALVKL VVEENDGGGI






DRNIKQTFLS VFKNYYYSAY HDAHTTDVHI FKVLFGPVV







A nucleic acid encoding the Nepeta mussinii (+)-copalyl diphosphate synthase (NmTPS1) with SEQ ID NO:31 is shown below as SEQ ID NO:32.











ATGACTTCAA TATCCTCTCT AAATTTGAGC AATGCAGCAG






CTGCTCGCCG CAGGTTACAA CTACCAGCAA ACGTTCACCT






GCCGGAATTT CACTCCGTCT GTGCATGGCT GAATAGCAGC






AGCAAACACG ATCCCTTTAG TTGCCGAATT CATCGAAAGC






AAAAATCGAA AGTAACCGAG TGTCGAGTAG CAAGCGTGGA






TGCATCACCA GTGAGTGATC ATAAAATGAG TTCTCCTGTT






CAAACTCAAG AAGAGGCAAA TAAAAATATG GAGGAGTCAA






TCGAGTACAT AAAGAATTTG TTGATGACAT CTGGAGACGG






GCGAATAAGC GTGTCGGCAT ACGACACGTC AATAGTCGCC






CTAATTAAGG ACATAGAAGG ACGGGACGCC CCGCAATTTC






CATCATGCCT GGAGTGGATC GGGCAAAACC AAAAGGCCGA






TGGCTCGTGG GGGGACGACT TCTTCTGTAT TTACGACCGC






TTCGTAAATA CACTAGCATG TATCGTGGCC TTGAAATCAT






GGAACCTTCA CCCTCACAAG ATTCAAAAAG GAGTGACATA






CATCAAGAAA AACGTGCATA AGCTTAAAGA TGGGAGGCCT






GAGCTGATGA CGTCAGGGTT CGAAATTTGT GTTCCCGCCA






TTCTTCAAAG AGCCAAAGAC TTGGGCATCC AAGATCTTCC






CTATGATGAT CCCATGATTA AACAGATCAC TGATACGAAA






GAGCGACGAC TCAAAAAGAT ACCGAAGGAT TTTATATACC






AATTGCCGAC GACTTTACTC TTCAGTTTGG AAGGGCAGGA






GAATTTGGAC TGGGAAAAGA TACTCAAACT GCAGTCAGCT






GACGGCTCCT TCCTTACTTC GCCGTCCTCC ACCGCCGCCG






TCTTCATGCA TACCAAAGAT GAAAAATGCT TGAAGTTCAT






AGAGAACGCC GTCAAAAATT GCGACGGCGG AGTGCCCCAT






ACCTACCCAG TAGACGTGTT TGCAAGACTT TGGGCAGTTG






ACAGACTACA ACGCCTAGGG ATTTCTCGCT TTTTTCAGCC






TGAGATTAAA TATTTCTTAG ATCACATACA AAGCGTTTGG






ACTGAGAACG GAGTTTTCAG TGGACGAGAT TCACAATTTT






GCGACATTGA TGATACGTCC ATGGGGATAA GGCTTCTGAA






AATGCATGGA TACAAAATCG ACCCAAATGC ACTTGAGCAT






TTCAAGCAGG AGGATGGTAA ATTTTCGTGC TACGGTGGTC






AAATGATCGA GTCTGCATCA CCGATATACA ATCTGTACCG






AGCTGCTCAA CTCCGATTTC CAGGAGAAGA AATTCTTGAA






GAGGCCATTA AATTTTCCTA TAACTTTTTG CAAGAAAAGC






TAGCCAAGGA TGAAATTCAA GAAAAATGGG TCATATCGGA






GCACTTAATT GATGAGATTA AGATCGGGCT AAAGATGCCA






TGGTACGCCA CTCTACCCCG AGTTGAAGCT GCATATTACC






TGGACTATTA TGCAGGATCC GGCGATGTGT GGATTGGCAA






GACTTTCTAC AGGATGCCAG AAATCAGTAA TGATACATAC






AAAGAAATGG CCATTTTGGA TTTCAACCGA TGCCAAGCAC






AACATCAGTT TGAATGGATT TACATGCAAG AGTGGTATGA






AAGTAGCAAC GTAAAGGAAT TTGGGATAAG CAAAAAAGAG






CTACTTGTTG CTTATTTCTT GGCTGCATCA ACCATATTTG






AACCGGAAAG AGCACAAGAG AGGATTATGT GGGCAAAAAC






AAAAATTGTT TCCAAAATGA TCGCATCATC TCTTAACAAA






CAAACCACTC TATCGTTAGA CCAAAAGACT GCACTTTTTA






CCCAACTCGA ACATAGTCTC AATGGCCTCG ACAGTGATGA






GAAAGATAAT GGAGTAGCTG AGACGAAAAA TCTAGTGGCA






ACCTTCCAGC AGCTGCTAGA TGGATTCGAC AAATACACTC






GCCATCAATT GAAAAATGCT TGGAGCCAGT GGTTGAAGCA






AGTGCAGCAA GGAGAGGCGA CCGGGGGCGC AGACGCGGAG






CTGGAAGCAA ACACGTTGAA CATCTGTGCC GGTCATATCG






CATTCAACGA ACAAGTATTA TCGCACAACG AATACACAAC






TCTCTCCACA CTCACAAACA AGATCTGCCA CCGGCTTACC






CAAATTCAAG ACAAAAAGAC GCTTGAGATA ATCGACGGCG






GCATAAGATA TAAGGAGCTG GAGCAGGAGA TGCAGGCGTT






GGTGAAATTA GTTGTTGAAG AAAACGACGG CGGCGGCATA






GACAGGAATA TTAAACAAAC ATTTTTATCA GTTTTCAAGA






ATTATTACTA CAGTGCCTAC CACGATGCTC ACACAACCGA






TGTTCATATT TTCAAAGTAT TATTTGGACC GGTCGTCTGA







Origanum majorana (+)-copalyl diphosphate synthase (OmTPS1) was identified and isolated as describe herein. The OmTPS1 enzyme can synthesize compound 31. OmTPS1 can also synthesize palustradiene [29] (shown below), when combined with OmTPS5.




embedded image


The Origanum majorana (+)-copalyl diphosphate synthase (OmTPS1) can have the amino acid sequence shown below (SEQ ID NO:33).











MTDVSSLRLS NAPAAGGRLP LPGKVHLPEF RTVCAWLNNG






CKYEPLTCRI SRRKISECRV ASLNSSQLIE KVGSPAQSLE






EANKKIEDSI EYIKNLLMTS GDGRISVSAY DTSLVALIKD






VKGRDAPQFP SCLEWIAQNQ MADGSWGDEF FCIYDRIVNT






LACLVALKSW NLHPDKIEKG VTYINENVHK LKDGSTEHMT






SGFEIVVPAT LERAKVLGIQ GLPYDHPFIK EIINTKERRL






SKIPKDLIYK LPTTLLFSLE GQGELDWEKI LKLQSSDGSF






LTSPSSTASV FMRTKDEKCL KFIENAVKNC GGGAPHTYPV






DVFARLWAVD RLQRLGISRF FQHEIKYFLD HINSVWTENG






VFSGRDSQFC DIDDTSMGVR LLKMHGYNVD PNALKHFKQE






DGKFSCYPGQ MIESASPIYN LYRAAQLRFP GEEILEEASR






FAFNFLQEKI ANHEIQEKWV ISEHLIDEIK LGLKMPWYAT






LPRVEAAYYL EYYAGSGDVW IGKTFYRMPE ISNDTYKEVA






ILDFNTCQAQ HQFEWIYMQE WYESSKVKDF GISKKDLLVA






YFLAASTIFE PERTQERIIW AKTLILSRMI TSFLNKQATL






SSQQKNAILT QLGESVDGLD KIYSGEKDSG LAETLLATFQ






QLLDGFDRYT RHQLRNAWGQ WLMKVQQGEA NGGADAELIA






NTLNICAGLI AFNEDVLLHS EYTTLSSLTN KICQRLSQIE






DEKTLEVIEG GIKDKELEED IQALVKLALE ENGGCGVDRR






IKQSFLSVFK TFYYRAYHDA ETTDLHIFKV LFGPVM







A nucleic acid encoding the Origanum majorana (+)-copalyl diphosphate synthase (OmTPS1) with SEQ ID NO:33 is shown below as SEQ ID NO:34.











ATGACCGATG TATCCTCTCT TCGTTTGAGC AATGCACCAG






CTGCCGGCGG CAGGTTGCCG CTGCCGGGAA AGGTTCACCT






GCCTGAATTT CGCACCGTTT GTGCATGGTT GAACAATGGC






TGCAAATACG AGCCCTTGAC TTGTCGAATT AGTCGACGGA






AGATATCTGA ATGTCGAGTA GCAAGTCTGA ATTCGTCGCA






ACTAATTGAA AAGGTCGGTT CTCCTGCTCA ATCTCTAGAA






GAGGCAAACA AAAAGATCGA GGACTCCATC GAGTACATTA






AGAATCTATT GATGACATCT GGCGACGGGC GGATAAGTGT






GTCGGCTTAC GACACGTCGC TAGTCGCCCT AATAAAGGAC






GTGAAAGGAC GAGATGCCCC TCAGTTCCCG TCGTGCCTGG






AGTGGATAGC GCAAAACCAA ATGGCCGACG GGTCGTGGGG






GGATGAGTTC TTCTGTATTT ACGACCGGAT CGTGAATACA






TTAGCATGCC TCGTTGCCTT GAAATCATGG AACCTTCACC






CCGACAAGAT CGAAAAAGGA GTGACGTACA TCAACGAAAA






TGTGCACAAA CTGAAAGACG GGAGCACCGA GCACATGACG






TCAGGGTTCG AAATCGTGGT CCCCGCCACT CTAGAAAGAG






CCAAAGTCTT GGGCATCCAA GGCCTCCCTT ATGATCATCC






CTTCATTAAG GAGATTATTA ATACTAAGGA GCGAAGATTA






AGCAAAATAC CCAAGGATTT GATATACAAA CTGCCAACGA






CGCTGCTGTT CAGTTTAGAA GGGCAGGGAG AATTAGATTG






GGAAAAGATA CTGAAACTGC AGTCAAGCGA TGGCTCCTTC






CTTACTTCGC CCTCGTCGAC CGCCTCCGTC TTCATGCGGA






CGAAAGACGA GAAATGCCTC AAGTTCATTG AGAACGCCGT






TAAGAATTGC GGCGGGGGAG CGCCGCATAC TTACCCAGTG






GATGTGTTTG CAAGACTTTG GGCAGTTGAC AGACTACAGC






GATTAGGGAT TTCTCGATTC TTCCAACACG AGATTAAATA






CTTCTTAGAT CACATTAACA GTGTATGGAC CGAGAATGGA






GTTTTCAGTG GACGAGATTC ACAATTTTGT GATATCGACG






ACACTTCTAT GGGAGTTAGG CTTCTAAAAA TGCATGGATA






CAATGTTGAT CCAAATGCGC TCAAGCATTT CAAGCAGGAG






GATGGCAAAT TCTCTTGCTA CCCTGGCCAA ATGATCGAGT






CTGCATCTCC GATATACAAT CTCTACCGAG CCGCTCAACT






CCGGTTCCCC GGAGAAGAAA TTCTCGAAGA AGCAAGTCGA






TTCGCCTTCA ACTTTCTGCA GGAAAAGATA GCCAACCATG






AAATTCAAGA AAAATGGGTC ATATCTGAGC ACTTAATTGA






TGAGATAAAG TTGGGACTGA AGATGCCATG GTACGCGACT






CTGCCCCGAG TTGAGGCCGC TTATTATCTA GAGTATTATG






CTGGCTCAGG CGACGTATGG ATTGGAAAGA CTTTCTACCG






GATGCCGGAA ATCAGTAACG ATACGTATAA AGAGGTGGCC






ATTTTGGATT TCAACACATG CCAAGCTCAA CACCAGTTTG






AATGGATTTA CATGCAAGAG TGGTACGAAA GTAGCAAGGT






TAAAGATTTC GGGATAAGCA AAAAGGACCT ACTTGTTGCT






TACTTTCTGG CGGCATCGAC TATATTTGAA CCCGAAAGAA






CACAAGAGAG GATTATTTGG GCAAAAACCC TAATTCTTTC






TAGGATGATC ACATCATTTC TCAACAAACA AGCTACACTT






TCATCCCAAC AAAAGAATGC CATCTTAACA CAACTTGGAG






AGAGTGTCGA TGGCCTCGAT AAAATATATA GTGGTGAGAA






AGATTCTGGG CTGGCTGAGA CTCTGCTGGC TACCTTCCAG






CAACTGCTCG ACGGATTCGA TAGATACACT CGCCATCAAC






TGAGAAATGC TTGGGGGCAA TGGTTGATGA AAGTGCAGCA






AGGAGAGGCC AACGGTGGCG CCGACGCTGA GCTCATAGCA






AACACACTCA ATATCTGCGC CGGCCTTATC GCCTTCAACG






AAGACGTATT GTTGCACAGC GAATACACGA CTCTCTCCTC






CCTCACCAAC AAAATATGCC AGCGCCTTAG CCAGATTGAA






GATGAAAAGA CGCTTGAAGT GATTGAAGGG GGCATAAAAG






ATAAGGAACT GGAGGAGGAT ATTCAGGCGT TGGTGAAGCT






AGCCCTCGAA GAAAACGGCG GCTGCGGCGT CGACAGAAGA






ATCAAGCAGT CATTCTTATC AGTATTCAAG ACTTTTTACT






ACAGAGCCTA CCATGATGCT GAGACCACCG ATCTTCATAT






TTTCAAAGTA CTGTTTGGGC CGGTTATGTG A






A Perovskia atriplicifolia (+)-Copalyl diphosphate synthase (PaTPS1) enzyme was identified and isolated. This Perovskia atriplicifolia (+)-Copalyl diphosphate synthase (PaTPS1) enzyme was identified to be a (+)-copalyl diphosphate ((+)-CPP) synthase that can synthesize compound 31. The Perovskia atriplicifolia (+)-Copalyl diphosphate synthase (PaTPS1) can have the amino acid sequence shown below (SEQ ID NO:35).











MTSMSSLNLS RAPATTHRLQ LQAKVHVPEF YAVCAWLNSS






SKQAPLSCQI RCKQLSRVTE CRVASLDASQ VSEKDTSHVQ






TPDEVNKKIE DYIEYVKNLL MTSGDGRISV SPYDTSIVAL






IKDSKGRNIP QFPSCLEWIA QHQMADGSWG DQFFCIYDRI






LNTLACVVAL KSWNVHGDMI EKGVTYVKEN VHKLKDGNIE






HMTSGFEIVV PALVQRAKDL GIQGLPYDDP LIKEIADTKE






RRLKKIPKDM IYQTPTTLLF SLEGQGDLEW EKILKLQSGD






GSFLTSPSST AHVFVQTKDE KCLKFIENAV KNCSGGAPHT






YPVDVFARLW AIDRLQRLGI SRFFQPEIKY FIDHINSVWT






ENGVFSGRDS EFCDIDDTSM GIRLLKMHGY KVDPNALNHF






KQQDGKFSCY GGQMIESASP IYNLYRAAQL RFPGEEILEE






ASKFAFNFLQ EKIANDQFQE KWVISDHLID EVKLGLKMPW






YATLPRVEAA YYLQYYAGSG DVWIGKVFYR MPEISNDTYK






ELAILDFNRC QAQHQFEWIY MQEWYHRSSV SEFGISKKEL






LRTYFLAAAT IFEPERTQER LVWAKTQIVS RMITSFVNNG






TTLSLDQMTA LATQIGHNFD GLDQIISAMK DHGLAGTLLT






TFQQLLDGFD RYTRHQLKNA WSQWFMKLQQ GEANGGEDAE






LLANTLNICA GFIAFNEDVL SHDEYTTLST LTNKICKRLS






QIQDKKALEV VDGSIKDKEL EQDMQALVKL VLEENGGGVD






RNIKQTFLSV FKTFYYTAYH DDETTDVHIF KVLFGPVV







A nucleic acid encoding the Perovskia atriplicifolia (+)-Copalyl diphosphate synthase (PaTPS1) enzyme with SEQ ID NO:35 is shown below as SEQ ID NO:36.











ATGACCTCTA TGTCCTCTCT AAATTTGAGC AGAGCACCAG






CTACCACCCA CCGGTTACAG CTACAGGCAA AGGTTCACGT






GCCGGAATTT TATGCCGTGT GTGCATGGCT GAATAGCAGC






AGCAAACAGG CACCCTTGAG TTGCCAAATT CGCTGCAAGC






AACTATCAAG AGTAACTGAA TGTCGGGTAG CAAGTCTGGA






TGCGTCGCAA GTGAGTGAAA AAGACACTTC TCATGTCCAA






ACTCCCGATG AGGTGAACAA AAAGATCGAG GACTATATCG






AGTACGTCAA GAATCTGTTG ATGACGTCGG GCGACGGGCG






AATAAGCGTG TCGCCCTACG ACACGTCAAT AGTCGCCCTT






ATTAAGGACT CGAAAGGGCG CAACATCCCG CAGTTTCCGT






CGTGCCTCGA GTGGATAGCG CAGCACCAAA TGGCGGATGG






CTCATGGGGG GATCAATTCT TCTGCATTTA CGACCGGATT






CTAAATACAT TAGCATGTGT CGTAGCTTTG AAATCCTGGA






ACGTTCACGG TGACATGATC GAAAAAGGAG TGACGTACGT






CAAGGAAAAT GTGCATAAGC TTAAAGATGG GAATATTGAG






CACATGACGT CGGGGTTCGA AATTGTGGTT CCCGCCCTTG






TTCAAAGAGC CAAAGACTTG GGCATCCAAG GCCTGCCCTA






TGATGATCCC CTCATCAAGG AGATTGCTGA TACAAAAGAA






AGAAGATTGA AAAAGATACC CAAGGATATG ATTTACCAAA






CGCCAACGAC ATTACTATTC AGTTTAGAAG GGCAGGGAGA






TTTGGAGTGG GAAAAGATAC TGAAACTGCA GTCAGGCGAT






GGCTCCTTCC TCACTTCGCC GTCATCCACC GCCCACGTGT






TCGTGCAGAC CAAAGATGAA AAATGCTTGA AATTCATCGA






GAACGCCGTC AAGAATTGCA GTGGAGGAGC GCCGCATACT






TATCCAGTCG ATGTCTTCGC AAGACTTTGG GCAATTGACA






GACTACAACG CCTAGGAATT TCTCGTTTCT TCCAGCCGGA






AATTAAGTAT TTCATAGACC ACATCAACAG CGTTTGGACA






GAGAACGGAG TTTTCAGTGG GCGAGATTCG GAATTTTGCG






ATATTGATGA CACGTCCATG GGCATCAGGC TTCTCAAAAT






GCACGGATAC AAAGTCGACC CAAATGCACT CAATCATTTC






AAGCAGCAAG ATGGTAAATT TTCTTGCTAC GGTGGTCAAA






TGATCGAGTC TGCATCTCCA ATATACAATC TCTACAGGGC






TGCTCAGCTA CGATTTCCAG GAGAAGAAAT TCTTGAAGAA






GCCAGTAAAT TTGCCTTTAA CTTTTTGCAA GAAAAAATAG






CCAACGATCA ATTTCAAGAA AAATGGGTGA TATCCGACCA






CTTAATCGAT GAGGTGAAGC TCGGGCTGAA GATGCCATGG






TACGCCACTC TACCCCGGGT TGAGGCTGCA TATTATCTAC






AATACTATGC TGGTTCTGGC GACGTATGGA TTGGCAAGGT






TTTCTACAGG ATGCCGGAAA TCAGCAATGA TACATACAAA






GAGCTGGCCA TATTGGATTT CAACAGATGC CAAGCACAGC






ATCAGTTCGA ATGGATTTAT ATGCAAGAGT GGTATCACAG






AAGCAGCGTT AGTGAATTCG GGATAAGCAA AAAAGAGCTG






CTTCGTACTT ACTTTCTGGC TGCAGCAACC ATATTCGAAC






CCGAGAGAAC ACAAGAGAGG CTTGTGTGGG CAAAAACCCA






AATTGTCTCT AGGATGATCA CATCATTTGT TAACAATGGA






ACTACACTAT CTTTGGACCA AATGACTGCA CTTGCAACAC






AAATCGGCCA TAATTTCGAT GGCCTCGATC AAATAATTAG






TGCTATGAAA GATCATGGAC TGGCTGGGAC TCTGCTGACA






ACCTTCCAGC AACTTCTAGA TGGATTCGAC AGATACACTC






GCCATCAACT CAAAAATGCT TGGAGCCAAT GGTTCATGAA






ACTCCAGCAA GGGGAGGCGA ACGGCGGGGA AGACGCGGAG






CTCCTAGCAA ACACGCTCAA CATCTGCGCG GGTTTCATTG






CTTTCAACGA AGACGTATTG TCGCACGATG AATACACGAC






TCTCTCCACC CTTACAAACA AAATCTGCAA GCGCCTTAGC






CAAATTCAAG ATAAAAAGGC GCTGGAAGTT GTCGACGGGA






GCATAAAGGA TAAGGAGCTC GAACAGGATA TGCAGGCGTT






GGTGAAGTTG GTCCTTGAAG AAAATGGCGG CGGCGTCGAC






AGGAACATCA AACAGACATT TTTGTCCGTT TTCAAGACTT






TTTACTACAC CGCCTACCAC GATGATGAGA CCACTGATGT






TCATATTTTC AAAGTACTGT TTGGACCGGT CGTATGA







Pogostemon cablin (10R)-labda-8,13E-dienyl diphosphate synthase (PcTPS1) was identified and isolated. This Pogostemon cablin (10R)-labda-8,13E-dienyl diphosphate synthase (PcTPS1) enzyme was identified to be a (10R)-labda-8,13E-dienyl diphosphate synthase, which can synthesize compound 25.




embedded image


The combination of PcTPS1 and SsSS, both in-vitro, and in N. benthamiana expression produced (10R)-labda-8,14-en-13-ol [26], shown below.




embedded image


This Pogostemon cablin (10R)-labda-8,13E-dienyl diphosphate synthase (PcTPS1) can have the amino acid sequence shown below (SEQ ID NO:37).











MSFASQSHVA FVLRRPSAVA PPPPTRIPTT AALSPLKPGD






FSHGRSSFMP TSIKCNAIST SRVEEYKYTD DHNQSGLLEH






DGLISDKINE LVTKIQLMLQ NMDDGEISIS PYDTAWVSLV






EDVGGNDRPQ FPTSLEWISN NQLPDGSWGD PNAFLVHDRI






LNTLACVVAL KSWKMHPHKC NRGVSFVREN IYRMDDEKEE






HMPNGFEVVF PALLQKAKTL NIDIPYEFPG IQKFYAKRDL






KFARIPMDIL HSVPTTLLFS LEGVRCGLDL DWGKLLELQA






ADGSFLYSPS STAFALEQTK DQNCLKYLSK LVRKFDGGVP






NVYPVDLFEH NWAVDRLQRL GISRYFTPEI NQCLDYSYRY






WSNSKGMYSA SNSQIQDVDD TAMGFRLLRL NGYDVSTQGF






RQFEAGGDFF CFAGQSSQAV TGMYNLYRAS QVMFPGEKLL






EDAKKFSTNF LQQKRANNQL TDKWVIAKDV PAEVGYALDI






PWYASLPRLE ARFFIQQYGG DDDVWIGKTL YRMGYVNNNT






YLELAKLDYN TCQRLHQHEW ITIQRWYEIN LKITSVGLSK






RGVLLSYYLA AANLFEPQNS THRIAWAKTS ILVSAIQLSP






LQKRDFINQF HRSTANNGYE TSNVLVKSVI KGVHELSMDA






MLTHNKDIHR QLFNAWRKWM SVWEEGGDGE AELLLSTLNT






CDGVDESTFS DPKYEHLLEI TVRVTHQLHL IQNAETKRVG






DREEIDLSMQ QLVKLVFTKS SSDLDSCIKQ RFFAIARSFY






YVAHCDPEMV DSHIAKVLFE RVM







A nucleic acid encoding the Pogostemon cablin (10R)-labda-8,13E-dienyl diphosphate synthase (PcTPS1) enzyme with SEQ ID NO:37 is shown below as SEQ ID NO:38.











ATGTCATTTG CTTCTCAATC ACATGTCGCC TTTGTACTCC






GACGGCCATC TGCCGTTGCT CCGCCACCAC CGACTAGAAT






TCCGACAACA GCCGCTCTTT CTCCTCTCAA ACCAGGTGAT






TTTTCCCATG GCAGATCATC ATTTATGCCC ACTTCCATTA






AATGTAATGC AATTTCCACA TCTCGCGTCG AAGAATACAA






GTACACGGAT GATCATAATC AGAGTGGTTT ATTGGAGCAT






GATGGTTTGA TATCAGACAA GATAAATGAA TTGGTGACCA






AGATACAATT GATGCTACAA AACATGGATG ACGGAGAGAT






AAGCATCTCC CCATATGACA CCGCATGGGT GTCGTTGGTG






GAGGATGTGG GCGGCAACGA CCGCCCACAG TTTCCTACGA






GCCTGGAGTG GATATCGAAT AACCAGCTCC CCGACGGCTC






GTGGGGCGAC CCGAATGCCT TTTTGGTGCA CGACCGTATC






CTCAACACAT TGGCATGCGT CGTTGCACTC AAATCCTGGA






AAATGCACCC CCACAAATGC AATAGAGGAG TTAGTTTCGT






GAGAGAAAAT ATATACAGAA TGGATGATGA AAAAGAGGAA






CACATGCCAA ATGGATTCGA AGTGGTATTT CCAGCACTCC






TTCAAAAAGC GAAAACCCTA AACATTGATA TCCCGTACGA






GTTTCCAGGA ATACAAAAAT TTTATGCCAA AAGAGATTTA






AAATTCGCCA GGATTCCAAT GGATATATTG CATAGCGTTC






CGACAACATT ACTGTTCAGC TTAGAAGGTG TAAGATGTGG






TCTTGATCTG GATTGGGGGA AGCTTCTAGA ATTGCAAGCT






GCTGATGGCT CATTTCTCTA CTCTCCATCC TCTACTGCCT






TTGCACTAGA ACAAACCAAG GATCAAAACT GCCTCAAATA






TCTATCTAAA CTTGTTCGAA AATTCGATGG CGGAGTACCC






AACGTGTACC CGGTGGACTT GTTCGAACAT AATTGGGCAG






TTGATCGTCT CCAAAGGCTC GGAATTTCTC GTTATTTTAC






GCCTGAAATC AACCAATGTC TTGATTATTC TTACAGATAT






TGGTCAAATA GTAAAGGGAT GTACTCGGCA AGCAATTCCC






AGATTCAGGA CGTTGATGAC ACCGCCATGG GATTCAGGCT






TTTGAGACTC AACGGCTACG ATGTCTCTAC ACAAGGGTTT






AGGCAATTCG AGGCAGGGGG GGACTTCTTC TGCTTCGCGG






GGCAGTCGAG CCAAGCTGTA ACCGGAATGT ACAACCTCTA






CAGAGCTTCC CAAGTGATGT TCCCTGGAGA GAAGCTACTG






GAAGATGCCA AGAAATTCTC CACCAACTTC TTGCAACAAA






AACGAGCCAA TAACCAGCTC ACTGACAAGT GGGTTATTGC






CAAAGATGTT CCAGCTGAGG TGGGATATGC CTTGGATATT






CCCTGGTATG CCAGTCTGCC CCGACTGGAA GCAAGATTTT






TCATACAACA ATACGGTGGA GACGACGACG TTTGGATCGG






CAAAACCTTG TATAGAATGG GATATGTGAA CAACAACACT






TATCTGGAAC TCGCAAAGCT AGACTACAAC ACCTGCCAAA






GGTTGCATCA GCATGAGTGG ATAACCATTC AACGATGGTA






CGAAATTAAT TTAAAAATTA CTAGTGTTGG GTTGAGCAAA






AGAGGGGTCC TGTTGAGTTA TTACTTAGCC GCAGCCAATC






TGTTTGAGCC TCAAAACTCA ACACACCGCA TCGCTTGGGC






CAAAACTTCG ATTTTAGTAA GCGCTATTCA ACTTTCTCCC






CTCCAAAAGC GCGACTTTAT TAACCAATTC CACCGCTCCA






CCGCAAATAA TGGGTATGAA ACAAGTAATG TGTTGGTGAA






GAGTGTAATC AAGGGTGTGC ATGAGCTCTC CATGGACGCT






ATGTTGACGC ACAATAAAGA CATACATCGC CAACTTTTTA






ATGCTTGGCG AAAGTGGATG TCAGTGTGGG AAGAGGGAGG






TGATGGAGAA GCGGAGCTGT TATTGTCGAC GCTTAACACG






TGCGACGGAG TAGATGAATC CACATTCAGC GATCCCAAAT






ACGAGCACCT CTTAGAGATC ACCGTCAGAG TCACCCACCA






GCTTCATCTC ATTCAGAATG CAGAGACGAA GCGTGTGGGT






GACCGTGAGG AAATAGATTT GAGCATGCAA CAACTTGTTA






AGTTGGTGTT CACTAAATCA TCATCGGATC TGGATTCTTG






TATCAAGCAA AGATTTTTTG CGATTGCCAG AAGTTTCTAT






TACGTGGCTC ATTGTGATCC GGAGATGGTG GACTCCCACA






TAGCCAAAGT ATTGTTTGAG AGGGTGATGT AG







Prunella vulgaris 11-hydroxy vulgarisane synthase (PvHVS) was identified and isolated. The Prunella vulgaris 11-hydroxy vulgarisane synthase (PvHVS) enzyme catalyzes the first committed step and forms the scaffold found in all Vulgarisins, a class of diterpenes with pharmaceutical applications (e.g., gout, cancer). For example, PvHVS can synthesize 11-hydroxy vulgarisane (shown below).




embedded image


An example of a formula for several Vulgarisin diterpenes is shown below.




embedded image


Vulgarisins B (1) and C (2) exhibit modest cytotoxicity activity against human lung carcinoma A549 cell line (Lou et al. Tetrahedron Letters 58: 401-404 (2017)).


The Prunella vulgaris 11-hydroxy vulgarisane synthase (PvHVS) can have the amino acid sequence shown below (SEQ ID NO:39).











MSSLSIPFSS AICTSSIPKI STGHHRRTAR MPAHDTSRLV






FRPSAVMVEG SPMTTSSNGK EVQRLITTFK PSMWKDIFST






FSFDNQVQEK YLKEIEELKK EVRSTLMSAT HRKLFDLIDN






LERMGIAYHF ETEIEDKLKQ AHASLEEEDD YDLFTTALRF






RLLRQHRYHV SCDPFAKFVD QDNKLKESLS SDVEGLLSLF






EASHLRIHNE DVLDEAIVFT THHLNRMMPQ LESPLKEEVK






HALRYPLHKC LGILSLRFHI DRYENDKSRD EVVLRLGQVN






FNYMQNIYMN ELYEITTWWN KLQMTSKVPY FRDRLVECYM






WGLAYHFEPE YAPVRVLITK YYMTATTVDD TYDNYATLEE






IELFTQAIDR WSEDEIDQLP DEYLKIVYKG LMNFTEEFRR






DAEERGKGYV IPYFIEETKR ATQGYANEQR WIMKREMPSF






EEYMVNSRVT SLMYVTYVAV VAVIESATKE TVDWALSDSD






IFVYTNDIGR LIDDLATHRR ERKDGTMLTS MDYYMKEYGG






TMEEGEAAFR KLMEEKWKLL NAAWVDTING KESKEIVVQV






LDLARICGTL YGDEEDGFTY PEKNFAPLVA ALLMNPIHI






A nucleic acid encoding the i Prunella vulgaris 11-hydroxy vulgarisane synthase (PvHVS) enzyme with SEQ ID NO:39 is shown below as SEQ ID NO:40.











ATGAGCTCTC TCTCAATTCC CTTTTCTTCC GCCATTTGCA







CTTCATCAAT CCCAAAGATC AGTACTGGGC ATCATCGCCG







CACCGCGAGG ATGCCCGCGC ACGACACATC GCGTCTCGTC







TTTCGCCCTT CAGCTGTGAT GGTGGAAGGA AGTCCGATGA







CTACTTCAAG CAACGGGAAG GAAGTCCAAC GACTTATAAC







CACTTTCAAG CCTAGCATGT GGAAAGATAT TTTTTCTACC







TTCTCTTTCG ATAATCAGGT GCAAGAAAAG TATTTGAAAG







AAATTGAGGA ATTGAAGAAA GAAGTAAGAA GCACACTAAT







GAGTGCTACG CATAGGAAAT TGTTTGACTT GATCGACAAT







CTCGAGCGTA TGGGAATCGC CTATCATTTC GAGACAGAAA







TCGAAGACAA GCTCAAACAA GCTCATGCTT CTCTAGAGGA







GGAAGATGAC TACGACTTGT TCACTACTGC ACTTCGCTTT







CGTCTGCTCA GACAACATCG CTATCATGTT TCTTGCGATC







CCTTTGCGAA ATTTGTTGAC CAAGACAACA AATTGAAAGA







GAGTCTTAGT AGCGACGTCG AGGGGCTATT AAGCTTGTTC







GAGGCATCCC ATCTTCGGAT CCACAACGAG GATGTTCTAG







ATGAAGCTAT AGTGTTCACA ACCCATCACT TGAATCGAAT







GATGCCACAA TTGGAATCGC CCCTTAAAGA AGAAGTGAAG







CATGCTCTTC GATACCCCCT TCACAAGTGT CTTGGAATCC







TTAGCCTTCG TTTTCATATC GACAGATATG AGAATGATAA







GTCGAGGGAT GAAGTTGTTC TCAGACTAGG CCAAGTTAAT







TTCAATTACA TGCAGAACAT TTACATGAAC GAGCTCTATG







AAATCACCAC GTGGTGGAAC AAGTTGCAGA TGACTTCAAA







AGTACCTTAC TTTAGAGATA GATTGGTAGA GTGCTATATG







TGGGGTTTGG CATATCATTT CGAACCAGAA TACGCTCCCG







TTCGAGTCCT CATTACCAAG TACTATATGA CCGCCACAAC







TGTCGACGAT ACCTATGATA ATTATGCTAC ACTCGAAGAA







ATCGAACTCT TCACTCAGGC CATTGACAGG TGGAGCGAGG







ATGAGATTGA TCAGCTACCT GATGAATACC TAAAAATAGT







GTACAAAGGT CTAATGAACT TCACTGAAGA GTTTAGACGT







GACGCAGAAG AGCGAGGGAA AGGCTATGTG ATTCCTTACT







TTATTGAAGA AACGAAGAGA GCAACACAGG GTTATGCAAA







CGAGCAGAGG TGGATAATGA AGAGAGAAAT GCCGAGTTTT







GAAGAGTATA TGGTGAACTC AAGGGTAACA TCACTTATGT







ATGTGACCTA CGTTGCTGTT GTGGCAGTCA TAGAATCAGC







TACCAAAGAA ACCGTAGATT GGGCGCTAAG TGACTCCGAT







ATCTTTGTCT ACACTAACGA TATCGGCCGA CTTATCGACG







ACCTTGCCAC TCATCGACGC GAGAGGAAAG ACGGGACAAT







GCTTACATCG ATGGATTATT ACATGAAGGA ATATGGCGGT







ACGATGGAAG AGGGGGAAGC TGCATTTAGG AAATTGATGG







AGGAGAAATG GAAACTTTTG AATGCAGCAT GGGTAGATAC







TATTAATGGA AAAGAGTCGA AGGAAATAGT TGTGCAAGTT







CTCGACCTCG CCAGGATATG CGGAACGCTC TATGGGGACG







AAGAAGATGG CTTCACCTAC CCAGAGAAGA ATTTTGCACC







ACTCGTTGCT GCTCTATTGA TGAATCCTAT ACATATTTGA






A Chiococca alba ent-CPP synthase (CaTPS1) was identified and isolated. This CaTPS1 enzyme was identified that converts GGPP to ent-CPP [16].




embedded image


The Chiococca alba ent-CPP synthase (CaTPS1) has the amino acid sequence shown below (SEQ ID NO:41).










1
MSSSTSAAAT LLGLSPASRR FVSFPPANGP IETITGIWSP





41
GKALHHFNFR LRCSTVSSPR TQELGQVSQN GMSGIKWHDI





81
VEEGVTEKGT LEANTSSWIK ESIEAIRWML RTMDDGDISI





121
SAYDTAWVAL VEDINGSGGP QFPSSLEWIA NNQLPDGSWG





161
DSDIFSAHDR ILNTLGCVVA LKSWNMHPEK SEKGLLYLRD





201
NIHKLEDENV EHMPIGFEVA FPSLIEIAKK LSIDIPDDSA





241
ILQEIYARRN LKLTRIPKDI MHTVPTTLLH SLEGMPELDW





281
KRLISLKCED GSFLFSPSST AFALTQTKDA DCLRYLTKTV





321
QKFNGGVPNV YPVDLFEHIW AVDRLQRLGI SRYFQSEIRE





361
CIDYVHRYWT DKGICWARNT HVYDIDDTAM GFRLLRLHGY





401
DVSADVFRYY EKDGEFVCFA GQSNQAVTGM YNLYRASQVM





441
FPGENILSDA RKFSSEFLHD KRANNELLDK WIITKDLPGE





481
VAYALDVPWY ASLPRLETRL YLEQYGGEDD VWIGKTLYRM





521
QKVNNNIYLE LGKLDYNNCQ ALHQLEWRSI QKWYNECGLG





561
EYGLSERSLL LSYYLAAASI FEPERSKERL AWAKTTMLIR





601
TIESYLSSEQ MVEDHNGAFV SEFQYYCSNL DYVNGGRHKP





641
TQRLVRTLLG TLNQISLDAV LVHGRDIHQY LRQAWEKWLI





681
ALQEGDDSDM GQEEAELLVR TLNLCAGRYA SEELLLSHPK





721
YQQLLHITTR VCNQIRHFQH KKVQDGENGR ANMGDGITSI





761
SSIESDMQEL TKLVVGNTQN DLDADTKQTF LTVAKSFYYT





801
AHCNPGTINC HIAKVLFERV L






A nucleic acid encoding the Chiococca alba ent-CPP synthase (CaTPS1) with SEQ ID NO:41 is shown below as SEQ ID NO:42.










1
ATGTCTTCTT CTACCTCAGC AGCAGCAACC CTTCTCGGAT





41
TATCGCCGGC AAGCCGCCGG TTTGTATCAT TTCCTCCGGC





81
AAATGGACCT ATAGAAACTA TTACCGGTAT TTGGTCGCCC





121
GGCAAAGCTC TTCATCACTT TAATTTCCGT CTGCGTTGTA





161
GCACGGTGTC CAGTCCTCGC ACCCAAGAAT TGGGCCAGGT





201
GTCACAAAAT GGCATGTCTG GTATAAAGTG GCATGACATA





241
GTGGAAGAAG GAGTCACAGA AAAAGGAACT CTTGAGGCGA





281
ACACATCAAG CTGGATAAAA GAAAGCATAG AAGCCATTCG





321
TTGGATGCTG CGTACCATGG ATGACGGGGA TATCAGCATA





361
TCTGCTTATG ATACTGCATG GGTTGCCCTT GTGGAAGATA





401
TCAACGGAAG TGGCGGTCCT CAATTTCCTT CAAGCCTCGA





441
GTGGATTGCC AACAATCAGC TTCCTGATGG TTCATGGGGC





481
GACAGCGACA TCTTTTCAGC TCACGATCGG ATTCTCAACA





521
CTTTGGGATG CGTTGTTGCA TTAAAATCTT GGAACATGCA





561
CCCTGAAAAG AGTGAAAAAG GATTATTATA TTTAAGGGAT





601
AACATTCACA AGCTTGAGGA TGAAAATGTC GAGCACATGC





641
CTATCGGTTT TGAAGTGGCA TTTCCTTCAC TAATTGAGAT





681
AGCCAAAAAG TTGAGCATTG ATATTCCGGA TGATTCTGCA





721
ATCTTGCAGG AGATATATGC CAGAAGAAAT CTAAAGCTAA





761
CAAGGATACC GAAGGACATT ATGCACACAG TGCCCACAAC





801
ATTGCTCCAC AGCTTGGAAG GCATGCCAGA ACTAGACTGG





841
AAAAGGCTAA TATCTCTAAA GTGTGAGGAT GGTTCCTTTC





881
TGTTTTCTCC ATCCTCCACT GCTTTTGCCC TCACGCAAAC





921
TAAAGATGCT GATTGCCTCA GATATTTAAC TAAAACCGTA





961
CAAAAATTCA ATGGAGGAGT TCCCAATGTT TACCCCGTGG





1001
ACTTATTCGA ACACATCTGG GCTGTTGATC GACTTCAAAG





1041
ACTAGGAATT TCTCGATACT TCCAGTCAGA AATCCGCGAG





1081
TGCATCGATT ATGTTCACCG ATATTGGACG GATAAAGGTA





1121
TCTGTTGGGC TAGAAATACC CACGTTTATG ACATTGATGA





1161
TACAGCTATG GGTTTTAGAC TTCTAAGGTT GCATGGCTAC





1201
GATGTTTCTG CAGATGTTTT CAGATACTAT GAGAAGGATG





1241
GCGAATTCGT TTGCTTTGCC GGACAGTCAA ACCAGGCGGT





1281
GACCGGAATG TATAACCTGT ATAGAGCTTC TCAAGTGATG





1321
TTTCCAGGGG AGAATATACT TTCGGATGCT AGGAAATTCT





1361
CGTCCGAATT CTTGCATGAT AAGCGAGCCA ACAATGAGCT





1401
CCTAGATAAA TGGATCATAA CCAAAGATTT GCCTGGGGAG





1441
GTAGCATATG CTTTAGATGT TCCATGGTAT GCCAGTTTAC





1481
CTCGTTTAGA AACCAGATTG TATTTGGAAC AATATGGCGG





1521
CGAAGATGAT GTCTGGATTG GCAAGACATT GTACAGGATG





1561
CAAAAAGTTA ACAACAACAT CTATCTTGAA CTTGGCAAAT





1601
TAGATTACAA CAACTGTCAG GCATTGCATC AGCTTGAGTG





1641
GAGAAGCATC CAAAAATGGT ACAATGAATG CGGTCTTGGA





1681
GAGTACGGAT TAAGCGAGAG AAGCCTCCTT CTTTCGTATT





1721
ATTTGGCCGC AGCCAGTATA TTTGAACCGG AGAGGTCAAA





1761
GGAACGGCTT GCCTGGGCCA AAACTACTAT GCTAATCCGC





1801
ACAATTGAAT CTTATTTGAG TAGTGAACAA ATGGTTGAGG





1841
ATCACAATGG AGCCTTTGTT AGCGAGTTCC AATACTATTG





1881
CAGTAACCTT GACTACGTAA ATGGTGGAAG GCATAAGCCA





1921
ACACAAAGGC TAGTGAGGAC TCTACTCGGA ACTTTAAATC





1961
AGATTTCTTT GGACGCAGTG TTAGTCCACG GCAGAGATAT





2001
CCATCAATAT TTGCGTCAAG CCTGGGAAAA GTGGTTGATA





2041
GCTTTGCAAG AGGGAGATGA TAGTGACATG GGTCAAGAGG





2081
AAGCAGAACT TTTAGTGCGC ACACTAAACC TATGCGCCGG





2121
TCGCTACGCA TCGGAGGAGC TATTGTTGTC CCATCCCAAG





2161
TATCAACAAC TTTTGCACAT CACTACTAGA GTCTGTAACC





2201
AAATTCGTCA TTTCCAACAC AAAAAGGTGC AAGATGGGGA





2241
AAATGGAAGA GCAAACATGG GTGATGGCAT CACAAGCATC





2281
AGCTCAATAG AGTCGGACAT GCAAGAACTA ACGAAATTAG





2321
TTGTCGGCAA TACCCAAAAC GATCTAGATG CTGATACGAA





2361
GCAAACATTT CTCACGGTGG CAAAAAGCTT CTACTACACC





2401
GCCCACTGCA ATCCCGGAAC AATCAATTGC CATATTGCTA





2441
AAGTATTATT TGAGAGAGTA CTTTGA






A Chiococca alba (5R,8S,9S,10S)-labda-13-en-8-ol diphosphate (ent-8-LPP) synthase (CaTPS2) was identified and isolated. This CaTPS2 enzyme was identified as an 5R,8S,9S,10S)-labda-13-en-8-ol diphosphate (ent-8-LPP) synthase, which converts GGPP to 5R,8S,9S,10S)-labda-13-en-8-ol diphosphate (ent-8-LPP, [7]).




embedded image


The Chiococca alba (5R,8S,9S,10S)-labda-13-en-8-ol diphosphate (ent-8-LPP) synthase (CaTPS2) has the amino acid sequence shown below (SEQ ID NO:43).










1
MPVIKSHEFI EEVGPEKGTL KLSRSSRINE LVESIQTMLQ





41
SMDDGEISMS AYDTAWVALV EDINGSSYPQ FPMSLEWIAN





81
NQLPDGSWGD GSIFSVHDRI ISTLGCVLAL KSWNMHPDKS





121
EKGLLFIRDN IHKVGDESAE HMPIGFEVVF PSLIERAKNL





161
DIDIPDISAI LQEIYARRNL KLARIPKDIL YTVPTTLLHS





201
LEGMPELDWQ KLLPLKCEDG SFLFSPSCTA FALMQTKDGD





241
CLRYLTNTIE KFNGGVPGVY PVDLFEHIWA VDRLQRLGIS





281
RYFQTEIEEC MSYVYRYWTD KGICWARNSK VEDIDDTAMG





321
FRLLRLHGYM VSADVFAQFE KGGEFVCFAG QSNQALTGMF





361
NLYRASQVMF PGEKILADAK KFSSNFLHEK RANNELLDKW





401
IITKDLPGEV TYALDVPWYA SLPRVETRLY LEQYGGEDDV





441
WIAKTLYRMR KVNNKIYLEL GILDYNNCQA LHQLEWRSIQ





481
KWYKDSGLEE YGLSERNLLL AYYLATACIF EPERLVERLS





521
WAKTTALIYT TKSYFRTECN SGEQRKAFLH EFQQYCNDLD





561
YVSGARHKPT IRLIEALLGT LEQVSLDAIL DHGRYIHQDL





601
RNAWEKWLIA LQEGVDMDQE EAELTVLTLH LCAGSYTSEE





641
LLLSHPKYQQ LLNITSRVCH QIRQFQREKA QDTDNGRENL





681
VAITSIKAIE SDMQELAKLV LTKSTGDLAA KIKQTFLIVA





721
KSFYYTAHCL PGIISTHIAK VLFEKVF






A nucleic acid encoding the Chiococca alba (5R,8S,9S,10S)-labda-13-en-8-ol diphosphate (ent-8-LPP) synthase (CaTPS2) with SEQ ID NO:43 is shown below as SEQ ID NO:44.










1
ATGCCAGTAA TAAAGTCGCA TGAGTTTATT GAAGAGGTCG





41
GCCCGGAAAA AGGAACTCTG AAGCTGAGCA GATCAAGTAG





81
GATAAACGAA CTTGTAGAAT CAATTCAAAC GATGCTTCAA





121
TCGATGGATG ATGGGGAAAT AAGCATGTCT GCTTATGACA





161
CCGCGTGGGT TGCCCTTGTG GAAGATATTA ATGGAAGCAG





201
CTACCCTCAA TTCCCTATGA GCCTCGAGTG GATTGCCAAC





241
AATCAGCTTC CTGATGGTTC ATGGGGTGAC GGCAGTATCT





281
TTTCGGTTCA TGATCGGATA ATCAGCACAT TAGGATGTGT





321
TCTTGCATTA AAATCATGGA ACATGCACCC GGACAAAAGC





361
GAAAAAGGAC TGTTATTTAT AAGGGACAAT ATTCACAAGG





401
TTGGAGATGA GAGCGCTGAG CACATGCCTA TTGGTTTTGA





441
GGTGGTATTT CCTTCGCTTA TTGAGAGAGC CAAAAACTTG





481
GACATTGATA TTCCAGATAT TTCTGCTATC TTGCAAGAGA





521
TTTATGCACG AAGAAATCTA AAGCTCGCAA GGATTCCAAA





561
GGATATACTG TATACCGTGC CCACGACATT ACTTCATAGC





601
TTAGAAGGAA TGCCAGAACT GGACTGGCAA AAGCTACTGC





641
CATTAAAATG TGAGGATGGT TCATTTCTAT TTTCTCCATC





681
GTGCACTGCT TTTGCCCTCA TGCAGACTAA GGATGGTGAT





721
TGCCTCAGAT ATCTAACTAA TACCATAGAA AAATTCAATG





761
GGGGAGTTCC CGGTGTATAC CCTGTGGACT TGTTCGAACA





801
CATTTGGGCT GTTGATCGCT TGCAAAGACT AGGAATTTCC





841
CGGTATTTTC AGACAGAAAT TGAAGAATGT ATGAGTTATG





881
TTTACCGATA TTGGACGGAT AAAGGTATCT GTTGGGCTAG





921
AAACTCCAAA GTTGAAGACA TCGATGACAC AGCCATGGGT





961
TTTAGACTTC TAAGGTTGCA TGGTTACATG GTTTCTGCAG





1001
ATGTGTTTGC ACAGTTTGAG AAAGGGGGTG AATTCGTTTG





1041
CTTTGCTGGA CAGTCGAACC AGGCGCTGAC TGGAATGTTT





1081
AACCTGTATA GAGCTTCTCA AGTAATGTTT CCAGGGGAGA





1121
AGATACTTGC TGATGCCAAG AAATTCTCAT CGAACTTCTT





1161
ACATGAAAAG CGTGCAAACA ACGAGCTTCT AGATAAATGG





1201
ATCATAACTA AAGATTTGCC TGGAGAGGTG ACGTATGCGC





1241
TAGATGTTCC ATGGTACGCC AGTTTACCTC GTGTAGAAAC





1281
GAGATTATAT CTGGAACAAT ATGGAGGAGA GGATGATGTC





1321
TGGATTGCCA AGACATTGTA CAGGATGAGA AAAGTTAACA





1361
ACAAAATTTA CCTTGAACTT GGCATATTAG ATTACAATAA





1401
CTGTCAAGCA TTGCATCAGC TGGAGTGGAG AAGCATCCAA





1441
AAATGGTATA AGGATTCTGG CCTTGAAGAG TACGGGTTGA





1481
GCGAGAGGAA CCTTCTCCTG GCATATTATC TGGCCACAGC





1521
TTGTATATTT GAACCCGAAA GGTTGGTGGA GCGCCTTTCC





1561
TGGGCGAAAA CAACCGCCTT AATCTACACA ACAAAATCTT





1601
ATTTCAGAAC TGAATGCAAC TCTGGGGAAC AGAGAAAAGC





1641
TTTTCTTCAT GAGTTCCAAC AGTACTGCAA TGACCTGGAC





1681
TACGTTAGTG GCGCAAGGCA CAAGCCAACA ATAAGATTGA





1721
TCGAAGCTCT ACTTGGAACC CTAGAGCAGG TCTCTTTGGA





1761
TGCAATATTA GATCATGGCC GATATATCCA TCAAGATTTG





1801
CGTAATGCTT GGGAGAAATG GTTGATAGCT TTGCAAGAGG





1841
GAGTTGACAT GGACCAAGAA GAAGCAGAAC TTACAGTGCT





1881
CACACTACAC CTGTGTGCCG GCAGCTACAC ATCGGAGGAG





1921
TTACTGTTAT CTCATCCCAA GTATCAACAA CTTTTAAATA





1961
TCACTAGTAG AGTCTGCCAC CAAATTCGTC AATTCCAGCG





2001
CGAAAAGGCA CAGGATACGG ATAATGGAAG AGAAAACTTG





2041
GTTGCCATCA CAAGCATCAA GGCGATAGAA TCAGACATGC





2081
AAGAACTTGC GAAATTAGTT CTGACCAAAT CCACTGGCGA





2121
TTTAGCTGCT AAAATCAAGC AAACATTTCT TATAGTGGCA





2161
AAGAGCTTCT ACTACACCGC ACATTGCCTT CCTGGAATTA





2201
TCAGTACCCA CATTGCCAAA GTACTATTTG AGAAAGTTTT





2241
CTGA






A Chiococca alba CaTPS3 and CaTPS4 were identified and isolated. CaTPS3 and CaTPS4 were identified as an ent-kaurene synthase, converting ent-CPP [16] into ent-kaurene [19].




embedded image


The Chiococca alba ent-kaurene synthase (CaTPS3) has the amino acid sequence shown below (SEQ ID NO:45).










1
MMMMMVVMNT APAHSYHPFP FAGPKSSATL FSNYYCSSRK





41
KSSPPRISAS VSLLTGVEST TAINSSDPEI KERIRKLFHD





81
VDISLSSYDT AWVAMVPAPH SSQSPLFPQC INWLLDNQLP





121
DGSWSLPPPH HHPLLLKDAL SSTLACVLAL RRWGIGQEQV





161
DKGIRFVELN FASASDQNQH LPVGFDIIFP GMLEYARDLN





201
LNLQLESATV NALLLKRDQE LTRFFKSYSD ESKAYLAYVS





241
EGIVKLQNWD TVMKFQRKNG SLFNSPSATA AAVMHVHNPG





281
CLDYLHSVLE KHGNAVPTVY PLDIYPRLCL VDNLERLGIC





321
GHFRKEILSV LDDTYRCWMQ GDEEIFAEKS TCAIAFTLLR





361
KHGYNISADP LTPFLKEECF SNSLGGCLKD TSAVLELYRA





401
LEMIISQNES ALVKKSLWSR SFLKEHISGG CDLKGFSNQI





441
SILVDDILNF PSHATLQRVA NRRSIEQYNL DSTKILKTSY





481
CSSNFSNKDL LILAVKDFNH CQLIHREELK ELERWVTDNR





521
LDKLKFARQK SAYCYFSAAA TIFSPELSDA RMSWAKNGVL





561
ATLVDDFFDV GGSLEELKKL IELVEKWDIN VSDGCCSEPV





601
QILFSALHST IQEIGDKAFK WQARSVTNHI FKIWLDLLNS





641
MLREAEWARN ATVPTVEEYM TNGYVSFALG PIILPALYLV





681
GPKLSEEVVK DSEFHSLFKL VSTCGRLLND VHSFERESKS





721
GQLNALSLRL IHGGVGITEA AAVAEMKSSI ENLRRELLRL





761
VLRKEGSVVP RACKDLFWNM SKVLHQFYNK DDGFTSEEMI





801
QLVKSIIYEP IAVNEFLNSC HT







A nucleic acid encoding the Chiococca alba ent-kaurene synthase (CaTPS3) with SEQ ID NO:45 is shown below as SEQ ID NO:46.










1
ATGATGATGA TGATGGTGGT GATGAACACA GCTCCCGCCC





41
ACTCTTACCA TCCTTTCCCC TTTGCCGGCC CAAAATCCTC





81
AGCCACACTT TTTTCCAATT ATTATTGTTC CAGTAGGAAG





121
AAATCATCGC CACCTCGCAT CTCTGCCTCA GTTTCTTTGC





241
TAACTGGAGT TGAAAGCACA ACTGCAATTA ATTCTTCAGA





281
CCCGGAGATC AAAGAAAGAA TAAGGAAACT ATTTCATGAT





321
GTTGATATCT CGCTTTCTTC ATATGACACT GCATGGGTGG





361
CAATGGTCCC TGCTCCACAT TCTTCCCAGT CTCCCCTTTT





401
TCCCCAGTGC ATTAATTGGT TATTGGACAA TCAGCTTCCT





441
GATGGCTCAT GGAGTCTTCC TCCTCCTCAT CATCATCCTC





481
TATTACTTAA AGATGCATTA TCCTCTACCC TTGCATGTGT





521
TCTTGCGCTC AGGAGATGGG GAATTGGTCA AGAACAAGTT





561
GACAAGGGTA TTCGTTTTGT TGAGTTAAAT TTTGCTTCAG





601
CATCTGACCA GAACCAGCAT TTGCCAGTTG GATTTGACAT





641
TATATTCCCT GGCATGCTCG AATATGCTAG AGATTTAAAT





681
TTAAATCTTC AACTAGAATC TGCAACAGTA AATGCCTTAC





721
TTCTTAAAAG AGATCAGGAG CTTACAAGAT TCTTTAAAAG





761
CTACTCAGAC GAGAGTAAAG CATACCTTGC ATATGTATCA





801
GAAGGTATAG TAAAGTTACA GAACTGGGAT ACAGTTATGA





841
AGTTCCAAAG AAAGAACGGG TCACTATTCA ATTCACCTTC





881
AGCTACAGCA GCTGCTGTTA TGCATGTCCA CAATCCTGGT





921
TGCCTCGATT ACCTTCACTC AGTGTTGGAG AAGCATGGAA





961
ATGCTGTTCC AACAGTTTAC CCTTTGGATA TATATCCACG





1001
CCTCTGCTTG GTTGACAACC TTGAGAGACT GGGTATTTGT





1041
GGTCATTTTA GGAAGGAAAT TCTGAGTGTA TTGGATGATA





1081
CATACAGATG CTGGATGCAG GGGGATGAAG AGATATTTGC





1121
AGAAAAATCA ACTTGTGCCA TAGCATTTAC ATTATTGCGA





1161
AAGCATGGGT ACAACATCTC TGCAGATCCA TTGACCCCAT





1201
TCTTAAAGGA AGAGTGTTTT TCCAATTCTT TGGGTGGATG





1241
TTTGAAAGAT ACTAGTGCTG TACTTGAATT ATACCGGGCA





1281
TTAGAGATGA TTATTAGCCA GAATGAATCA GCTCTGGTGA





1321
AAAAAAGCTT GTGGTCCAGA AGCTTCCTGA AAGAGCATAT





1361
TTCTGGTGGT TGTGATTTAA AGGGATTCAG CAATCAAATT





1401
TCCATACTGG TGGATGATAT CCTCAACTTT CCATCGCATG





1481
CTACTTTGCA ACGGGTTGCT AACAGGAGAA GCATAGAGCA





1521
ATACAACTTA GACAGTACAA AAATTTTAAA AACTTCATAT





1561
TGCTCGTCGA ATTTTAGCAA CAAAGATTTA TTGATCCTGG





1601
CAGTCAAAGA TTTTAATCAT TGCCAACTCA TACACCGTGA





1641
AGAACTGAAA GAACTAGAAA GGTGGGTCAC AGACAATAGA





1681
TTGGACAAGT TAAAGTTTGC TAGGCAGAAG TCTGCATACT





1721
GTTACTTTTC TGCTGCAGCA ACCATATTCT CACCTGAACT





1761
TTCTGATGCC CGCATGTCAT GGGCCAAGAA TGGTGTACTT





1801
GCTACTTTGG TTGATGACTT CTTTGACGTG GGAGGTTCTC





1841
TAGAGGAATT AAAGAAACTG ATTGAGTTGG TTGAAAAGTG





1881
GGATATAAAT GTCAGTGATG GTTGTTGCTC TGAACCAGTG





1921
CAAATCCTCT TCTCAGCACT ACATAGTACA ATCCAGGAGA





1961
TTGGAGATAA AGCATTCAAA TGGCAAGCAC GCAGTGTAAC





2001
AAACCACATA TTTAAGATAT GGTTAGATTT GCTTAATTCT





2041
ATGTTGAGGG AAGCTGAGTG GGCTAGAAAT GCAACAGTGC





2081
CTACAGTTGA AGAATATATG ACAAATGGTT ATGTATCATT





2121
TGCTTTGGGG CCAATTATCC TCCCTGCTCT TTATCTTGTT





2161
GGACCTAAGC TGTCAGAGGA AGTAGTTAAG GATTCTGAAT





2201
TCCACTCCCT TTTTAAGCTA GTGAGTACCT GTGGGCGGCT





2241
TCTGAATGAT GTCCACAGCT TCGAGAGGGA ATCAAAGTCC





2281
GGCCAACTAA ATGCTCTGTC TCTGCGCCTG ATTCATGGTG





2321
GTGTTGGCAT TACTGAAGCA GCTGCTGTTG CAGAGATGAA





2361
GAGTTCAATT GAGAATCTAA GGAGAGAACT GCTGAGACTA





2401
GTCTTGCGCA AAGAGGGTAG TGTAGTTCCA AGAGCTTGCA





2441
AGGATTTGTT TTGGAATATG AGTAAAGTGC TACATCAATT





2481
TTACAACAAA GATGATGGAT TTACTTCAGA GGAGATGATT





2521
CAGCTTGTGA AGTCGATCAT TTATGAGCCA ATTGCGGTCA





2561
ATGAATTTTT GAATAGTTGC CATACATGA






The Chiococca alba ent-kaurene synthase (CaTPS4) has the amino acid sequence shown below (SEQ ID NO:47).










1
MMIMVMNTAP VHAYHALPIP TQKSSTTLFP NYNCSSRKKS





41
SPPRISAASV SLQTGVERTT AIHSSDLEIK ERIRKLFHDV





81
DISLSSYDTA WVAMVPAPHS SQSPLFPQCI NWLLDNQLPD





121
GSWSLPPHHH HHHPLLLKDA LSSTLACVLA LRRWGIGQEQ





161
VDKGIRFVEL NFASASDQNQ HLPVGFDIIF PGMLEYARDL





201
NLNLQLESAT VDALLLKRDQ ELIRFFKSYS DESKAYLAYV





241
SEGIIKLQNW DTVMKFQRKN GSLFNSPSAT AAAVMHVHNP





281
GCLDYLHSVL EKHGNAVPTV YPLDIYPRLC LVDNLERLGI





321
CGHFRKEILS VLDDTYRCWM QGDEEIFAEK STCAIAFTLL





361
RKHGYNISAD PLTPFLKEEC FSNSLGGCLK DTSAVLELYR





401
ALEMIISQNE SALVKKSLWS RSFLKEHISG GCDLKGFSNQ





441
ISKQVDDILN FPSHATLQRV ANRRSIEQYN LDSTKILKTS





481
YCSSNFSNKD LLILAVKDFN HCQLIHREEL KELERWVADN





521
RLDKLKFARQ KSAYCYFSAA ATIFSPELSD ARISWARNGV





561
LTTLVDDFFD VGGSLEELKK LIELVEKWDI NVSDGCCSEP





601
VQILFSALHS TIQEIGDKAF KWQARSVTNH IIKIWLDLLN





641
SMLREAEWAR NATVPTVEEY MTNGYVSFAL GPIILPALYL





681
VGPKLSEELV KDSEFHSLFK LVSTCGRLLN DVHSFERESK





721
AGQLNALSLR LIHGGVGITE AAAVAEMKSS IEKQRRELLR





761
LVLRKEGSVV PRACKDLFWN MSRVLHQFYV KDDGFTSEEM





801
IELVKSIIYE PIAVNEF







A nucleic acid encoding the Chiococca alba ent-kaurene synthase (CaTPS4) with SEQ ID NO:47 is shown below as SEQ ID NO:48.










1
ATGATGATAA TGGTGATGAA CACAGCTCCC GTCCACGCTT





41
ACCACGCTTT ACCCATTCCC ACCCAAAAAT CCTCAACCAC





81
ACTTTTTCCC AATTATAACT GTTCCAGTAG GAAGAAATCA





121
TCGCCACCTC GCATCTCTGC CGCCTCAGTT TCTTTGCAAA





161
CTGGAGTTGA AAGAACGACG GCAATTCATT CTTCAGACCT





201
AGAGATCAAA GAAAGAATAA GGAAACTATT TCATGATGTT





241
GATATCTCGC TTTCTTCATA TGACACTGCA TGGGTGGCAA





281
TGGTCCCTGC TCCACATTCT TCCCAGTCTC CCCTTTTTCC





321
CCAGTGCATT AATTGGTTAT TGGACAATCA GCTTCCTGAT





361
GGCTCATGGA GTCTTCCTCC TCATCATCAT CATCATCATC





401
CCCTATTACT TAAAGATGCA TTATCCTCTA CGCTTGCATG





441
TGTTCTTGCG CTCAGGAGAT GGGGAATTGG TCAAGAACAA





481
GTTGACAAGG GTATTCGTTT TGTTGAGTTA AATTTTGCTT





521
CTGCATCTGA CCAGAACCAG CATTTGCCAG TTGGATTTGA





561
CATTATATTC CCTGGCATGC TCGAATATGC TAGAGATTTA





601
AATTTAAATC TTCAACTAGA ATCCGCAACT GTAGATGCCT





641
TACTTCTCAA AAGAGATCAG GAGCTTATAA GATTCTTTAA





681
AAGCTACTCA GACGAGAGTA AAGCATACCT TGCATATGTA





721
TCAGAAGGTA TCATAAAGTT ACAGAACTGG GATACAGTTA





761
TGAAGTTCCA AAGAAAGAAC GGGTCACTGT TCAATTCACC





801
TTCAGCTACA GCAGCTGCTG TTATGCATGT CCACAATCCT





841
GGCTGCCTCG ATTACCTTCA CTCAGTGTTG GAGAAGCATG





881
GCAATGCTGT TCCAACAGTT TACCCTTTGG ATATATATCC





921
ACGCCTCTGC TTGGTTGACA ACCTTGAGAG ACTGGGTATT





961
TGTGGTCATT TTAGGAAGGA AATTCTGAGT GTATTGGATG





1001
ATACATACAG ATGCTGGATG CAGGGGGATG AAGAGATATT





1041
TGCAGAAAAA TCAACTTGTG CCATAGCATT TACATTATTG





1081
CGAAAGCATG GGTACAACAT CTCTGCAGAT CCATTGACCC





1121
CATTCTTAAA GGAAGAGTGT TTTTCCAATT CTTTGGGTGG





1161
ATGTTTGAAA GATACTAGTG CTGTACTTGA ATTATACCGG





1201
GCATTAGAGA TGATTATTAG CCAGAATGAA TCAGCTCTGG





1241
TGAAAAAAAG CTTGTGGTCC AGAAGCTTCC TGAAAGAGCA





1281
TATTTCTGGT GGTTGTGATT TAAAGGGATT CAGCAATCAA





1321
ATTTCCAAAC AGGTGGATGA TATCCTCAAC TTTCCATCGC





1361
ATGCTACTTT GCAACGGGTT GCTAACAGGA GAAGCATAGA





1401
GCAATACAAC TTAGACAGTA CAAAAATTTT AAAAACTTCA





1441
TATTGCTCGT CGAATTTTAG TAACAAAGAT TTATTGATCC





1481
TGGCAGTCAA AGATTTTAAT CATTGCCAAC TCATACACCG





1521
TGAAGAACTG AAAGAACTAG AAAGGTGGGT CGCAGACAAT





1561
AGATTGGACA AGTTAAAGTT TGCTAGGCAG AAGTCTGCAT





1601
ACTGTTACTT TTCTGCTGCA GCAACCATAT TCTCACCTGA





1641
ACTTTCTGAT GCCCGCATCT CATGGGCCAA AAATGGTGTA





1681
CTTACTACTT TGGTTGATGA CTTCTTTGAC GTGGGAGGTT





1721
CTCTAGAGGA ATTAAAGAAA CTGATTGAGT TGGTTGAAAA





1761
GTGGGATATA AATGTCAGTG ATGGTTGTTG CTCTGAACCA





1801
GTGCAAATCC TCTTCTCAGC ACTACATAGT ACAATCCAGG





1841
AGATTGGAGA TAAAGCATTC AAATGGCAAG CACGCAGTGT





1881
AACAAACCAC ATAATTAAGA TATGGTTAGA TTTGCTTAAT





1921
TCTATGTTGA GGGAAGCTGA GTGGGCTAGA AATGCAACAG





1961
TGCCTACAGT TGAAGAATAT ATGACAAATG GTTATGTATC





2001
ATTTGCCTTG GGGCCAATTA TCCTCCCTGC TCTTTATCTT





2041
GTTGGACCTA AGCTGTCAGA GGAATTAGTT AAGGATTCTG





2081
AATTCCACTC CCTTTTTAAG CTAGTGAGTA CCTGTGGGCG





2121
GCTTCTGAAT GATGTCCACA GCTTCGAGAG GGAATCAAAG





2161
GCCGGCCAAC TAAATGCTCT TTCTCTGCGC CTGATTCATG





2201
GTGGAGTTGG CATTACTGAA GCAGCTGCTG TTGCAGAGAT





2241
GAAGAGTTCA ATTGAGAAGC AAAGGAGAGA ACTGCTGAGA





2281
CTAGTCTTGC GCAAAGAGGG TAGTGTAGTT CCAAGAGCTT





2321
GCAAGGATTT GTTTTGGAAT ATGAGTAGGG TGCTACATCA





2361
ATTTTACGTC AAAGATGATG GATTTACTTC AGAGGAGATG





2401
ATTGAGCTTG TGAAGTCGAT CATTTATGAG CCAATTGCGG





2441
TCAATGAATT TTGA






A Chiococca alba 13(R)-epi-dolabradiene synthase (CaTPS5) was identified and isolated. This CaTPS5 enzyme was identified as an 13(R)-epi-dolabradiene synthase, which converts ent-CPP [16] to 13(R)-epi-dolabradiene.




text missing or illegible when filed


The Chiococca alba 13(R)-epi-dolabradiene synthase (CaTPS5) has the amino acid sequence shown below (SEQ ID NO:49).










1
MIHTLPHGGQ AHFISHKTQP YYSSRPRFSS AASLDTRVRR





41
TSPSNSSVLD FNETKERITK LFHNVDYSIS SYDTAWVAMV





81
PDPHSSQAPL FPECINWLLD NQFHDGSWSL PHHNSLLLKD





121
VLSSTLACVL ALKRWGIGGR QIDKGVRFIE MNFGSASDNC





161
QHTPIGFDII FPGMLENARD LDLNLRLEPR IVTDMQRKRD





201
MQLTRLHESD LKGDQAYLAY VSEGMQKLQN WDLAMKFQRK





241
NGSLFNSPSA TAAAVMHVQN PASLNYLHSV VDKFGHAVPA





281
VYPLDLYARL CLVDNLERLG ICRHFTNEIE IVMEDTYRCW





321
LQDDEDIFAE ISTCALAFRL LRKHGYVVSP DPLTKIIEEE





401
DVSNSSGNGY WNDIHAVMEV HRASEVVIHE NESDLKNQNT





441
ISKHLLRHHL FNGSDVKPFP NPIYKQVDYA LKFPTPLILQ





481
RVENKTLIQN YDVDSTRLLK TSYRSSNFCN EDLLRLAVKD





521
FNDCQLLHRK ELKELERWSA DNRLHELKFA RQKAIYCSFS





561
AAATIFIPEW YEARMSLAKN SVLATVVDDF FDVGGSMEEL





601
KKLIEFVEKW DIDITKESCS EPLKIIFSAL HSTISEIGEQ





641
AVKWQGRNVT SHIIEIWLDL LNSMLRESEW TTDVHMPTLD





681
EYMEAAYVSF AMGPIIIPAL YFVGPKLSDE IVRDPEIRSL





721
HKLVSICGRL LNDMQGFERE KKAGKPNAVS IRISQNGDGI





761
TESAAFEEVK MELEDARREL LRLVVQKDGS VVPRACKDAF





801
WSVSRMLHHF YFNNDGYTSE VEMVELVNSI IHEPLK






A nucleic acid encoding the Chiococca alba 13(R)-epi-dolabradiene synthase (CaTPS5) with SEQ ID NO:49 is shown below as SEQ ID NO:50.










1
ATGATTCATA CTCTCCCTCA TGGCGGCCAG GCTCACTTCA





41
TTTCCCACAA AACACAGCCT TATTATTCCA GTAGACCTCG





81
CTTTTCTTCA GCAGCTTCTT TGGACACACG AGTCCGGAGA





121
ACATCGCCCT CTAATTCCTC TGTCCTAGAC TTCAACGAGA





161
CCAAAGAAAG AATCACAAAA TTATTTCATA ATGTTGATTA





201
TTCAATTTCT TCATATGATA CAGCATGGGT TGCTATGGTC





241
CCGGACCCAC ATTCTTCTCA GGCTCCCCTT TTCCCAGAGT





281
GCATAAATTG GTTGCTAGAT AATCAATTTC ATGATGGCTC





321
CTGGAGTCTT CCTCATCACA ATTCTCTATT GCTTAAGGAT





361
GTTTTATCCT CTACGCTTGC GTGTGTTCTT GCTCTTAAGA





401
GATGGGGAAT AGGAGGAAGG CAGATTGACA AAGGTGTTCG





441
CTTTATTGAG ATGAATTTTG GCTCAGCATC TGACAATTGC





481
CAGCATACTC CAATAGGATT TGACATAATA TTTCCAGGAA





521
TGCTTGAAAA TGCCAGAGAT TTGGATCTAA ATCTTAGACT





561
AGAACCCAGA ATTGTAACTG ACATGCAACG TAAAAGAGAC





601
ATGCAGCTTA CAAGACTCCA TGAAAGCGAT CTAAAGGGGG





641
ACCAAGCATA CTTGGCATAT GTATCCGAAG GGATGCAAAA





681
GTTACAGAAT TGGGATTTGG CGATGAAGTT TCAAAGGAAG





721
AATGGATCGC TCTTCAACTC ACCATCAGCT ACAGCAGCCG





801
CTGTTATGCA TGTCCAAAAT CCTGCTTCCC TCAATTATCT





841
TCATTCAGTC GTCGACAAAT TCGGCCATGC AGTTCCGGCT





881
GTTTACCCTT TGGATCTCTA TGCGCGCCTT TGCTTGGTTG





921
ACAATCTTGA GAGGCTGGGT ATCTGTCGAC ATTTTACTAA





961
TGAAATTGAA ATTGTAATGG AGGACACGTA CAGGTGCTGG





1001
CTGCAGGATG ATGAAGATAT ATTTGCCGAA ATATCAACTT





1041
GTGCCTTAGC TTTTCGGTTA TTGAGAAAAC ATGGCTATGT





1081
TGTCTCCCCA GATCCACTGA CAAAAATCAT AGAAGAAGAA





1121
GATGTTTCCA ATTCTTCTGG TAATGGATAT TGGAATGATA





1161
TACATGCTGT AATGGAAGTG CATCGGGCAT CAGAGGTGGT





1201
TATACATGAA AATGAATCAG ATTTAAAGAA TCAAAATACC





1241
ATATCAAAAC ACCTTCTCAG ACACCATCTT TTCAATGGTT





1281
CTGATGTGAA GCCCTTTCCT AATCCAATAT ACAAGCAGGT





1321
GGACTATGCT CTCAAGTTTC CAACCCCCTT AATTCTACAA





1361
CGTGTTGAAA ACAAGACCCT CATACAGAAC TACGACGTAG





1401
ACAGTACAAG ACTTCTTAAA ACTTCATATC GATCATCAAA





1441
TTTCTGCAAT GAAGATTTAC TGAGGTTAGC AGTGAAAGAT





1481
TTTAATGACT GTCAACTCCT GCACCGGAAA GAACTAAAAG





1521
AACTAGAAAG ATGGTCCGCA GATAACAGAC TGCACGAACT





1601
AAAATTTGCT CGGCAGAAAG CTATATACTG CTCCTTTTCT





1641
GCTGCAGCAA CGATTTTCAT ACCTGAATGG TACGAAGCCC





1681
GCATGTCATT GGCCAAAAAT AGTGTACTTG CTACTGTGGT





1721
TGATGACTTC TTTGATGTGG GTGGTTCGAT GGAGGAATTA





1761
AAGAAGCTAA TTGAATTTGT TGAAAAGTGG GATATTGACA





1801
TCACCAAGGA ATCCTGCTCT GAGCCACTCA AAATCATATT





1841
TTCAGCACTG CACAGTACAA TCTCTGAGAT TGGAGAGCAA





1881
GCAGTTAAAT GGCAAGGACG CAATGTAACA AGCCACATAA





1921
TTGAGATCTG GTTGGATTTG CTCAATTCGA TGTTGAGGGA





1961
GTCTGAATGG ACTACAGATG TGCACATGCC AACATTGGAT





2001
GAATATATGG AAGCTGCTTA TGTATCATTC GCCATGGGGC





2041
CAATTATCAT CCCTGCTCTG TATTTTGTTG GGCCTAAGCT





2081
ATCTGATGAA ATTGTTCGGG ATCCTGAAAT ACGATCCCTC





2121
CATAAGCTTG TGAGCATTTG TGGGCGGCTT CTAAATGATA





2161
TGCAAGGGTT CGAGAGGGAA AAGAAGGCTG GTAAACCAAA





2201
TGCCGTGTCT ATACGCATTA GTCAAAATGG TGATGGCATT





2241
ACCGAATCAG CAGCTTTCGA AGAAGTGAAG ATGGAATTAG





2281
AGGATGCAAG GAGAGAATTG CTAAGATTAG TTGTGCAAAA





2321
AGATGGTAGT GTAGTTCCAA GAGCTTGCAA GGATGCGTTT





2361
TGGAGCGTAA GCAGAATGTT GCATCATTTC TACTTCAATA





2401
ATGATGGATA CACGTCAGAG GTGGAGATGG TTGAGCTCGT





2441
GAATTCAATT ATTCATGAAC CACTAAAATA A






A Salvia hispanica (−)-kolavenyl diphosphate synthase (ShTPS1) was identified and isolated. This ShTPS1 enzyme was identified as an (−)-kolavenyl 35 diphosphate synthase, which converts GGPP to (−)-kolavenyl diphosphate [36].




embedded image


The Salvia hispanica (−)-kolavenyl diphosphate synthase (ShTPS1) has, for example, an amino acid sequence shown below (SEQ ID NO:51).










1
MSIQANMSFA TSLHRSTTPG VGLPLKPCIS PSPSLSFSPN





41
FGTFNNTSLR LKPEAGSKSY EGIRRSHQLA ASTILEGQTP





81
ITPEVESEKT RLIERIRSML QDMDNDGQIS VSPYDTAWVA





121
LVEDIGGSGG PQFPTSLEWI SNHQYDDGSW GDRKFVLYDR





161
ILNTLACVVA LTNWKMHPNK CEKGLRFIHE NIKKLADEDE





201
ELMPVGFEIA LPSVIDLAKR LGIEIPENSA SIKRIYELRD





241
SKLKKIPMDL VHKRPTSLLF SLEGMEGLNW DKLMNFLAEG





281
SFLSSPSSTA YALQHTKNEL CLEYLLKAVK RFNGGVPNAY





321
PVDMFEHLWS VDRLQRLGIS RYFQAEIEEN MAYAYRYWTN





361
KGITWARNMV VQDSDDSAQG FRLLRLYGYD IPIDVFKHFE





401
QGGQFCSIPG QMTHAITGMY NLYRASELLF PGEHILSDAR





441
KYTGNFLHQR RITNTWDKVV IITKDLHGEV AYALDVPFYA





481
SLPRLEARFF IEQYGGDEDV WIGKTLYRMF KVNSDTYLEM





521
AKLDYKQCQS VHQLEWNSMQ RLYRDCNLGE FGLSERSLLL





561
AYYIAASTTF EPEKSSERLA WAITTILVEI IASQKLSDEQ





601
KREFVDEFVK GSIVNNQNGG RHKPGNRLVE VLINNITLMA





641
EGRGTYQQLS NAWKKWLKTW EEGGDLGEAE ARLLLHTIHL





681
SSGLDDSSFS HPKYQQLLEA TSKVCHQLRV FQSVKVYDDQ





721
ESTSQLVTRT TFQIEAGMQE LVKLVFTKTL EDLPSTTKQS





761
FFSVARSFYY TACIHADTID SHINKVLFEK IV






A nucleic acid encoding the Salvia hispanica (−)-kolavenyl diphosphate synthase (ShTPS1) with SEQ ID NO:51 is shown below as SEQ ID NO:52.










1
ATGAGTATTC AAGCAAACAT GTCATTTGCC ACCTCCCTCC





41
ACCGATCAAC CACCCCCGGA GTTGGCCTTC CGCTAAAACC





81
ATGTATCTCT CCCTCTCCCT CTCTTTCCTT TTCCCCAAAC





121
TTTGGCACTT TTAACAACAC AAGTTTGAGA CTCAAACCAG





161
AGGCTGGGAG CAAAAGTTAT GAGGGGATTC GAAGAAGTCA





201
TCAATTAGCA GCATCAACAA TTTTGGAGGG TCAAACTCCG





241
ATTACTCCGG AGGTTGAATC GGAGAAAACA CGCCTGATTG





281
AAAGGATTCG TTCGATGTTA CAAGACATGG ACAACGATGG





321
CCAGATAAGT GTGTCACCAT ACGACACAGC ATGGGTGGCG





361
CTCGTGGAAG ATATTGGTGG CAGCGGAGGG CCACAGTTTC





401
CAACGAGCCT AGAGTGGATT TCTAACCACC AGTACGACGA





441
TGGATCGTGG GGGGATCGCA AATTTGTTCT CTATGACCGG





481
ATACTCAATA CATTAGCATG TGTTGTCGCA CTCACGAATT





521
GGAAAATGCA TCCTAACAAA TGCGAAAAAG GGTTGAGGTT





561
TATTCATGAG AATATTAAGA AACTCGCGGA TGAAGATGAA





601
GAGCTCATGC CCGTAGGATT CGAAATCGCA CTGCCATCAG





641
TCATTGATTT AGCTAAAAGA CTGGGTATAG AAATCCCAGA





681
AAATTCTGCA AGCATAAAAA GAATTTATGA ATTGAGAGAT





721
TCAAAACTTA AAAAAATACC AATGGATTTA GTGCACAAAA





761
GGCCCACATC ACTACTCTTC AGCTTGGAAG GCATGGAAGG





801
CCTTAACTGG GACAAACTAA TGAATTTTCT AGCCGAGGGT





841
TCGTTTCTTT CATCGCCATC GTCCACTGCC TACGCTCTCC





881
AACACACCAA GAATGAGTTA TGCCTAGAGT ATTTACTCAA





921
GGCAGTCAAG AGATTCAATG GTGGAGTTCC AAATGCATAC





961
CCTGTCGACA TGTTTGAGCA TCTGTGGTCC GTGGATCGCT





1001
TACAGAGATT AGGAATTTCT CGGTATTTTC AAGCTGAAAT





1041
TGAAGAAAAC ATGGCCTATG CTTACAGATA CTGGACAAAT





1081
AAAGGAATCA CCTGGGCAAG AAATATGGTT GTCCAAGACA





1121
GTGACGACAG CGCACAGGGA TTCAGGCTCT TAAGGTTGTA





1161
CGGATACGAT ATTCCTATAG ATGTTTTCAA ACATTTCGAG





1201
CAAGGTGGAC AATTCTGCAG CATACCAGGA CAGATGACAC





1241
ACGCTATTAC AGGAATGTAC AACTTGTATA GAGCTTCTGA





1281
ACTTCTGTTC CCTGGAGAAC ACATACTTTC TGATGCTAGA





1321
AAATACACAG GTAACTTCTT GCATCAAAGA AGAATTACTA





1361
ACACGGTAGT AGACAAGTGG ATCATTACCA AAGACCTTCA





1401
CGGCGAGGTG GCTTATGCAT TGGATGTGCC ATTCTACGCC





1441
AGTCTGCCAC GACTGGAAGC ACGATTCTTC ATAGAACAAT





1481
ATGGGGGTGA TGAAGATGTT TGGATTGGGA AAACATTGTA





1521
CAGGATGTTT AAAGTAAACT CCGACACATA CCTTGAGATG





1561
GCAAAATTAG ATTACAAACA ATGCCAGTCT GTGCATCAGT





1601
TAGAGTGGAA TAGCATGCAA AGATTGTATA GAGATTGCAA





1641
TCTAGGAGAG TTTGGGTTGA GCGAAAGAAG CCTTCTCCTA





1681
GCTTACTACA TAGCAGCCTC AACTACATTT GAGCCGGAAA





1721
AATCAAGTGA AAGACTGGCT TGGGCTATAA CAACAATTTT





1761
AGTCGAAATA ATCGCATCCC AAAAACTCTC TGATGAGCAA





1801
AAGAGAGAGT TTGTTGATGA ATTTGTAAAA GGAAGCATCG





1841
TCAATAACCA AAATGGAGGA AGACATAAAC CGGGAAACAG





1881
ATTGGTTGAA GTTTTGATCA ACAATATAAC ACTGATGGCA





1921
GAAGGCAGAG GCACATATCA GCAGTTGTCT AATGCGTGGA





1961
AAAAATGGCT AAAGACATGG GAAGAGGGAG GTGACCTGGG





2001
GGAAGCAGAA GCACGGCTTC TCCTGCACAC GATACATTTG





2041
AGCTCCGGAT TGGATGATTC ATCATTTTCC CATCCAAAAT





2081
ATCAGCAGCT CTTGGAGGCA ACCAGCAAAG TCTGCCACCA





2121
ACTTCGCGTA TTCCAGAGTG TAAAGGTGTA TGATGACCAA





2161
GAGTCTACAA GCCAACTGGT AACTAGGACA ACTTTCCAAA





2201
TAGAAGCAGG CATGCAAGAA CTAGTGAAAT TAGTTTTCAC





2241
AAAAACCTTG GAAGATTTGC CTTCTACTAC CAAGCAAAGC





2281
TTTTTTAGTG TTGCTAGAAG TTTCTATTAC ACTGCCTGTA





2321
TTCATGCAGA CACTATAGAC TCCCACATAA ACAAAGTATT





2361
GTTTGAAAAA ATTGTCTAG






A Teucrium canadense cleroda-4(18),13E-dienyl diphosphate synthase (TcTPS1) was identified and isolated. This TcTPS1 enzyme was identified as a cleroda-4(18),13E-dienyl diphosphate synthase, which converts GGPP to cleroda-4(18),13E-dienyl diphosphate [38]. In addition, the combination of TcTPS1 and SsSS enzymes generated neo-cleroda-4(18),14-dien-13-ol [37]. These compounds are shown below.




embedded image


5 The Teucrium canadense cleroda-4(18),13E-dienyl diphosphate synthase (TcTPS1) amino acid sequence is shown below as SEQ ID NO:53.










1
MSFASQATSL LLSSHNATAL PPLSAARLPP LTAGAAPFGR





41
ISFTTTSLRQ YKLVSRAQSQ EVDEIEKVTQ WLEAEKDID





81
QEAKVRELVE NVRVKLQNIG EGGISISPYD TAWVALVEDV





121
GGSGRPQFPE SLDWISNHQF PDGSWGSHKF LYYDRVLCTL





161
ACIVALKTWN LHPHKFDKGL KFVRENIGKL ADEEDVHMPI





201
GFEVAFPSLI ETAKRKGIDI PEDFPGKKEI YAKRDLKLKK





241
IPMDILHKIP TPLLFSIEGI EGLDWQKLFK FRDHGSFLTS





281
PSSTAHALQQ TKDELCLKYL TNLVKKNNGG VPNAFPVDLF





321
DRNYTVDRLR RLGILRYFQP EIEECMKYVY RFWDKRGISW





361
ARNTHVQDLD DTVQGFRNLR MHGYDVTLDV FKQFERCGEF





401
FSFHGQSSDA VLGMFNLYRA SQVLFPGEDM LADARKYAAN





441
YLHKRRVSNR VVDKWIINKD LPGEVAYGLD VPFYASLPRL





481
EARFYVEQYG GNDDVWIGKA LYRMLNVSCD TYLELAKLDY





521
NICQAVHQKE WKSFQKWHRD GEFGLDEKSL LLAYYIAAST





561
VFEPEKSLER LAWAKTAVLM EAILSQQLPS TKKHELVDEF





601
KHASILNNQN GGSYKTRTPL VETLVNAISE LSTTILLEQD





641
RDIHLQLSNA WLKWLSRWEA RGNLVEAEAE LLLQTLHLSN





681
GLEESSFSHP KYQQLLQVTS KVCHLLRLFQ KRKVHDPEGC





721
TTDIATGTTF QIEACMQQVV KLVFTKSSHD LDSWKQRFL





761
DVARSFYYTA HCDPQVIQSH INKVLFEKW






A nucleic acid encoding the Teucrium canadense Cleroda-4(18),13E-dienyl diphosphate synthase (TcTPS1) has with SEQ ID NO:53 is shown below as SEQ ID NO:54.










1
ATGTCATTTG CTTCCCAAGC CACCTCCCTC CTCCTTTCTT





41
CCCACAACGC CACCGCTCTT CCGCCTCTCT CTGCCGCCCG





81
CCTTCCGCCT CTCACTGCCG GTGCTGCTCC ATTCGGAAGA





121
ATATCATTTA CTACTACCTC TCTTCGGCAG TATAAACTGG





161
TGTCAAGAGC TCAAAGCCAA GAGGTGGATG AGATTGAAAA





201
AGTGACACAA GTGGTATTGG AGGCAGAAAA AGACATCGAT





241
CAAGAGGCGA AGGTAAGGGA GCTGGTGGAA AATGTCCGAG





281
TGAAGCTGCA AAATATCGGG GAAGGAGGGA TAAGCATATC





321
GCCGTACGAC ACCGCATGGG TGGCGCTGGT GGAGGATGTC





361
GGCGGCAGCG GCAGACCGCA GTTCCCGGAG AGCCTGGATT





401
GGATATCAAA CCACCAGTTC CCGGACGGGT CGTGGGGCAG





441
CCACAAATTC TTGTACTATG ACCGGGTTTT GTGCACGTTA





481
GCATGTATAG TTGCATTGAA AACTTGGAAT CTGCATCCTC





521
ACAAATTCGA CAAAGGGTTG AAATTCGTCA GAGAGAACAT





561
TGGAAAGCTC GCGGATGAAG AAGACGTGCA CATGCCGATT





601
GGGTTCGAAG TGGCATTCCC ATCACTTATA GAGACTGCAA





641
AGAGAAAAGG AATTGACATC CCGGAAGATT TCCCTGGCAA





681
GAAAGAAATC TATGCAAAAA GAGACCTAAA GCTGAAAAAG





721
ATACCTATGG ATATACTGCA CAAAATCCCC ACACCATTAC





761
TGTTCAGCAT AGAAGGGATA GAAGGCCTTG ATTGGCAGAA





801
GCTATTCAAA TTCCGCGATC ACGGCTCCTT CCTCACGTCC





841
CCGTCCTCAA CGGCCCACGC TCTCCAGCAA ACAAAGGACG





881
AGTTATGCCT CAAATATCTG ACCAATCTTG TCAAAAAGAA





921
CAATGGGGGA GTTCCAAATG CATTTCCGGT GGACCTATTT





961
GATCGTAACT ATACAGTAGA TCGCCTGAGG AGGCTGGGAA





1001
TTTTGCGCTA TTTTCAACCT GAAATCGAGG AATGCATGAA





1041
ATATGTATAC AGATTCTGGG ATAAAAGAGG AATCAGCTGG





1081
GCAAGAAATA CCCATGTTCA GGACCTTGAT GATACCGTAC





1121
AGGGATTCAG GAACTTAAGG ATGCATGGTT ATGATGTCAC





1161
CTTAGATGTT TTCAAACAGT TCGAGAGATG TGGAGAATTC





1201
TTTAGCTTCC ACGGGCAATC AAGTGATGCT GTCTTAGGAA





1241
TGTTCAACTT GTACCGAGCT TCTCAGGTTC TGTTTCCAGG





1281
AGAAGACATG CTTGCAGATG CAAGGAAGTA CGCGGCCAAC





1321
TATTTGCATA AAAGAAGAGT TAGTAATAGG GTCGTGGACA





1401
AATGGATTAT TAACAAAGAT CTTCCAGGCG AGGTGGCGTA





1441
TGGGCTAGAT GTTCCGTTCT ACGCCAGTCT ACCTCGACTG





1481
GAAGCAAGAT TCTACGTCGA ACAATATGGG GGTAACGATG





1521
ATGTCTGGAT TGGAAAAGCT TTATATAGAA TGTTGAATGT





1601
GAGCTGTGAT ACTTACCTTG AGCTAGCAAA ATTAGACTAC





1641
AATATTTGCC AGGCTGTGCA TCAGAAAGAG TGGAAAAGCT





1681
TTCAAAAATG GCACAGGGAT GGGGAGTTTG GATTGGATGA





1721
AAAAAGCTTA CTTTTAGCTT ACTACATAGC AGCCTCGACT





1761
GTTTTCGAGC CTGAAAAATC TCTAGAGCGA CTGGCTTGGG





1801
CTAAAACCGC AGTTCTAATG GAGGCAATTT TGTCCCAACA





1841
ACTTCCTAGC ACAAAAAAAC ATGAGCTTGT TGACGAATTT





1881
AAACATGCAA GCATCCTCAA CAACCAAAAT GGAGGAAGCT





1921
ATAAAACAAG AACTCCTTTG GTAGAGACTC TAGTAAACGC





1961
CATAAGTGAG CTCTCAACTA CCATACTATT GGAGCAAGAC





2001
AGAGACATTC ATCTGCAATT ATCTAATGCG TGGCTGAAGT





2041
GGCTAAGTAG ATGGGAGGCA AGAGGCAACC TAGTGGAAGC





2081
AGAAGCAGAG CTTCTTCTGC AAACCTTACA TCTGAGCAAT





2121
GGATTAGAAG AATCATCATT TTCTCATCCA AAATATCAAC





2161
AACTCTTACA GGTTACCAGC AAAGTCTGTC ACCTACTTCG





2201
GCTATTCCAG AAACGAAAGG TGCATGATCC GGAAGGGTGT





2241
ACAACAGACA TTGCAACAGG GACAACTTTC CAAATAGAAG





2281
CATGCATGCA ACAAGTAGTG AAATTAGTGT TCACCAAATC





2321
CTCACATGAT TTAGATTCTG TTGTTAAGCA GAGATTTTTG





2361
GATGTTGCCA GAAGTTTCTA TTACACAGCC CACTGTGATC





2401
CACAAGTGAT CCAGTCCCAC ATTAATAAAG TGTTGTTTGA





2441
AAAAGTAGTC TAG







Salvia officinalis (SoTPS2), Scutellaria baicalensis SbTPS1, and SbTPS2 enzymes were identified and isolated. These SoTPS2, SbTPS1, SbTPS2, CfTPS18a and CfTPS18b enzymes were all identified as ent-CPP synthases, which convert GGPP to ent-CPP.




embedded image


The Salvia officinalis (SoTPS2) enzyme can have the amino acid sequence shown below (SEQ ID NO:55).










1
MSFASTTSLL RPSVTGFGVS PRVTSTSILS RSYGQILKGK





41
TKYITDNRRN RQLAVKFEGQ IALDLEDGVA KQTNQEAESE





81
KIRQLKGKIR WILQNMEDGE MSVSPYDTAW VALVEDISGG





121
GGPQFPTSLE WISKNQLADG SWGDPNYFLL YDRILNTLAC





161
VVALTTWNMH PHKCDQGLRF IRDNIEKLED EDEELILVGF





201
EIALPSLIDY AQNLGIQIQY DSPFIKKICA KRDLKLRKIP





241
MDLMHRKPTS LLYSLEGMEG LEWEKLMNLR SEGSFLSSPS





281
STAYALQHTK DELCLDYLVK AVNKFNGGVP NVYPVDMYEH





321
LWCVDRLQRL GISRYFQLEI QQCLDYVYRY WTNEGISWAR





361
YTNIRDSDDT AMGFRLLRLY GYDVSIDAFK PFEESGEFYS





401
MAGQMNHAVT GMYNLYRASQ LMFPQEHILS DARNFSAKFL





441
HQKRRTNALV DKWIITKDLP GEVGYALDVP FYASLPRLEA





481
RFFLEQYGGD DDVWIGKTLY RMPYVNSNTY LELAKVDYKN





521
CQSVHQLEWK SMQKWYRECN IGEFGLSERS LLLAYYIAAS





561
TTFEPEKSGE RLAWATTAIL IETIASQQLS DEQKREFVDE





601
FENSIIIKNQ NGGRYKARNR LVKVLINTVT LVAEGRGINQ





641
QLFNAWQKWL KTWEEGGDMG EAEAQLLLRT LHLSSGFDQS





681
SFSHPKYEQL LEATSKVCHQ LRLFQNRKVD DGQGCISRLV





721
IGTTSQIEAG MQEVVKLVFT KTSQDLTSAT KQSFFNIARS





761
FYYTAYFHAD TIDSHIYKVL FQTIV







A nucleic acid encoding the Salvia officinalis (SoTPS2) has with SEQ ID NO:55 is shown below as SEQ ID NO:56.










1
ATGTCATTTG CTTCCACCAC CTCCCTCCTC CGACCAAGCG





41
TCACTGGGTT CGGTGTTTCT CCAAGGGTTA CTTCCACCTC





81
CATTCTTAGC CGAAGTTATG GTCAAATATT AAAAGGAAAA





121
ACAAAATACA TAACTGATAA CCGTAGAAAT CGACAATTGG





161
CGGTAAAATT TGAGGGCCAA ATTGCTTTGG ATTTGGAGGA





201
TGGCGTAGCA AAGCAGACGA ATCAAGAGGC GGAATCTGAG





241
AAGATAAGGC AACTGAAGGG AAAGATCCGA TGGATTCTGC





281
AAAACATGGA GGACGGCGAG ATGAGCGTGT CGCCGTACGA





321
CACCGCATGG GTGGCGCTGG TGGAAGATAT CAGCGGCGGC





361
GGCGGGCCGC AGTTCCCGAC GAGCCTCGAG TGGATTTCCA





401
AGAATCAGTT GGCGGATGGG TCATGGGGGG ATCCTAATTA





441
TTTCCTTCTC TACGACAGAA TACTCAATAC TTTAGCATGT





481
GTAGTCGCAC TCACGACTTG GAATATGCAT CCTCACAAAT





521
GCGATCAAGG GTTGAGGTTT ATAAGAGACA ACATTGAGAA





561
ACTTGAGGAT GAAGATGAGG AGCTAATTCT CGTAGGATTC





601
GAGATCGCAC TGCCTTCACT CATTGATTAT GCTCAAAACC





641
TTGGGATACA AATCCAATAT GATTCTCCAT TCATTAAAAA





681
AATTTGTGCA AAGAGAGATC TAAAACTCAG AAAAATACCA





721
ATGGATTTAA TGCACAGAAA GCCAACATCA TTGCTCTACA





761
GCTTGGAAGG CATGGAAGGC CTTGAGTGGG AAAAGCTAAT





801
GAATTTGCGA TCGGAGGGTT CGTTTCTGTC ATCGCCGTCG





841
TCCACGGCCT ACGCTCTCCA ACACACCAAG GATGAGTTAT





881
GCCTTGACTA TCTGGTCAAG GCGGTCAACA AATTCAATGG





921
TGGAGTTCCC AACGTGTACC CTGTCGACAT GTATGAGCAT





961
CTATGGTGCG TAGACCGCTT GCAGAGGTTG GGAATTTCTC





1001
GCTATTTTCA ACTTGAAATT CAACAATGCC TCGACTATGT





1041
TTACAGATAC TGGACAAATG AAGGAATTTC GTGGGCAAGA





1081
TATACTAATA TCCGGGATAG TGACGACACC GCAATGGGAT





1121
TCAGGCTTCT AAGGTTGTAC GGCTATGATG TCTCTATAGA





1161
TGCTTTTAAA CCATTCGAGG AAAGCGGAGA ATTCTATAGC





1201
ATGGCAGGGC AGATGAACCA CGCTGTTACA GGAATGTACA





1241
ACTTGTACAG AGCTTCTCAA CTTATGTTCC CTCAAGAACA





1281
CATACTTTCC GATGCCAGAA ACTTCTCTGC CAAATTCTTG





1321
CATCAAAAGA GGCGTACTAA TGCACTAGTA GACAAGTGGA





1361
TCATTACCAA AGACCTTCCC GGCGAGGTTG GATATGCATT





1401
GGATGTGCCG TTCTACGCCA GTCTGCCTCG ACTGGAAGCA





1441
CGATTCTTCT TAGAACAATA TGGGGGTGAT GATGATGTTT





1481
GGATTGGAAA AACTTTGTAC AGGATGCCAT ATGTGAACTC





1521
CAACACATAC CTTGAGCTTG CAAAAGTAGA CTACAAAAAC





1561
TGCCAGTCCG TGCATCAGTT GGAGTGGAAG AGCATGCAAA





1601
AATGGTACAG AGAATGCAAT ATAGGTGAGT TTGGGTTGAG





1641
CGAAAGAAGC CTTCTCCTAG CTTACTACAT AGCAGCCTCA





1681
ACTACATTCG AGCCAGAAAA ATCAGGTGAG CGGCTCGCTT





1721
GGGCTACAAC AGCAATTTTA ATCGAGACAA TCGCGTCCCA





1761
ACAACTCTCC GATGAACAAA AGAGAGAGTT CGTTGATGAA





1801
TTTGAAAACA GCATCATTAT CAAGAATCAA AATGGAGGGA





1841
GATATAAAGC AAGAAACAGA TTGGTCAAGG TTTTGATCAA





1881
CACTGTAACA CTGGTAGCAG AAGGCAGAGG CATAAATCAG





1921
CAGTTGTTTA ATGCGTGGCA AAAATGGCTA AAGACATGGG





1961
AAGAAGGAGG TGACATGGGG GAAGCAGAAG CCCAGCTTCT





2001
TCTGCGCACG CTACATTTGA GCTCCGGATT CGATCAATCA





2041
TCATTTTCCC ATCCAAAATA TGAGCAGCTC TTGGAGGCGA





2081
CCAGCAAAGT TTGCCACCAA CTTCGCCTAT TCCAGAATCG





2121
AAAGGTGGAT GATGGCCAAG GGTGTATAAG TCGATTGGTA





2161
ATTGGGACAA CTTCCCAAAT AGAAGCAGGC ATGCAAGAAG





2201
TAGTGAAATT AGTTTTCACC AAAACCTCAC AAGACTTGAC





2241
TTCTGCTACC AAGCAAAGCT TTTTCAATAT TGCTAGAAGT





2281
TTCTATTATA CTGCCTACTT TCATGCAGAC ACTATAGACT





2321
CCCACATATA CAAAGTATTG TTTCAAACAA TAGTATAG






A Scutellaria baicalensis SbTPS1 amino acid sequence shown below (SEQ ID NO:57).










1
MPFLLPSSAT SSPAFYTPAA PLAGHHVFPS FKPLIISRSS





41
LQCNAISRPR TQEYIDVIQN GLPVIKWHEA VEEDETDKDS





81
LNKEATSDKI RELVNLIRSM LQSMGDGEIS SSPYDAAWVA





121
LVPDVGGSGG PQFPSSLEWI SKNQLPDGSW GDTCTFSIYD





161
RIINTLACVV ALKSWNIHPH KTYQGISFIK ANMDKLEDEN





201
EEHMPIGFEV ALPSLIEIAK RLDIDISSDS RGLQEIYTRR





241
EVKLKRIPKE IMHQVPTTLL HSLEGMAELT WHKLLKLQCQ





281
DGSFLFSPSS TAFALHQTKD HNCLHYLTKY VHKFHGGVPN





321
VYPVDLFEHL WAVDRIQRLG ISRHFKPQVD ECIAYVYRYW





361
TDKGICWARN SVVQDLDDTA MGFRLLRLHG YDVSADVFKH





401
FENGGEFFCF KGQSTQAVTG MYNLYRASQL MFPGESILED





441
AKTFSSKFLQ RKRANNELLD KWIITKDLPG EVGYALDVPW





481
YASLPRVETR FYLEQYGGED DVWIGKTLYR MPYVNNNKYL





521
ELAKLDYSNC QSLHQQEWKN IQKWYESCNL GEFGLSERRV





561
LLAYYVAAAC IYEPEKSNQR LAWAKTVILM ETITSYFEHQ





601
QLSAEQRRAF VNEFEHGSIL KYANGGRYKR RSVLGTLLKT





641
LNQLSLDILL THGRNVHQPF KNAWHKWLKT WEEGGDIEEG





681
EAEVLVRTLN LSGEGRHDSY VLEQSLLSQP IYEQLLKATM





721
SVCKKLRLFQ HRKDENGCMT KMRGITTLEI ESEMQELVKL





761
VFTKSSDDLD CEIKQNFFTI ARSFYYVAYC NQGTINFHIA





801
KVLFERVL






A nucleic acid encoding the Scutellaria baicalensis SbTPS1 with SEQ ID NO:57 is shown below as SEQ ID NO:58.










1
ATGCCTTTCC TCCTCCCTTC CTCCGCCACC AGCTCCCCCG





41
CGTTCTATAC TCCGGCCGCG CCTCTCGCCG GTCATCATGT





81
TTTTCCATCT TTCAAGCCAC TCATTATTTC CCGTTCTTCA





121
CTCCAATGCA ATGCAATCTC TCGACCTCGT ACCCAAGAAT





161
ACATAGATGT GATTCAGAAT GGATTGCCAG TAATAAAGTG





201
GCACGAAGCT GTGGAAGAAG ATGAGACAGA TAAAGATTCT





241
CTTAATAAGG AGGCCACGTC AGACAAGATA AGAGAGTTGG





281
TAAATCTGAT CCGTTCGATG CTCCAATCAA TGGGCGACGG





521
AGAGATAAGC TCGTCGCCGT ACGACGCCGC ATGGGTGGCG





561
CTGGTGCCGG ACGTCGGCGG CTCCGGCGGG CCCCAGTTCC





601
CCTCCAGCCT CGAATGGATA TCCAAAAACC AACTCCCCGA





641
CGGCTCCTGG GGCGACACGT GTACCTTTTC CATTTATGAT





681
CGAATCATCA ACACACTGGC TTGCGTTGTT GCTTTGAAAT





721
CTTGGAACAT ACATCCCCAC AAAACTTATC AAGGGATTTC





761
ATTCATAAAG GCAAATATGG ACAAACTTGA AGACGAGAAC





801
GAGGAGCACA TGCCGATCGG ATTTGAAGTG GCACTCCCGT





841
CGCTAATCGA GATAGCGAAA AGGCTCGATA TCGATATTTC





881
CAGCGATTCG AGAGGGCTGC AAGAGATATA CACGAGGAGG





921
GAGGTAAAGC TGAAAAGGAT ACCGAAAGAG ATAATGCACC





961
AAGTGCCCAC AACACTGCTT CATAGCTTGG AGGGTATGGC





1041
CGAGCTGACG TGGCACAAGC TTTTGAAATT ACAGTGCCAA





1081
GATGGCTCCT TTCTTTTCTC TCCATCTTCA ACTGCCTTTG





1121
CTCTTCACCA AACTAAGGAC CATAATTGTC TCCATTATTT





1161
GACCAAATAT GTTCACAAAT TTCATGGTGG AGTGCCAAAT





1201
GTGTATCCGG TGGACTTGTT CGAGCATCTA TGGGCAGTTG





1241
ATCGGATCCA ACGGCTGGGG ATTTCCCGGC ATTTCAAGCC





1281
CCAAGTTGAT GAATGTATTG CCTATGTTTA TAGATATTGG





1321
ACAGATAAAG GAATATGCTG GGCAAGAAAT TCAGTAGTTC





1361
AAGATCTTGA TGACACAGCC ATGGGATTCA GGCTTCTTAG





1401
GTTGCATGGC TACGATGTTT CAGCAGATGT TTTCAAACAT





1441
TTTGAAAATG GTGGAGAGTT CTTCTGCTTC AAAGGGCAAA





1481
GCACGCAGGC AGTGACTGGA ATGTACAATC TGTACAGAGC





1521
TTCTCAGTTG ATGTTTCCTG GAGAAAGCAT ACTGGAAGAT





1601
GCTAAGACCT TCTCATCTAA GTTTTTGCAA CGAAAACGAG





1641
CCAATAACGA GTTGTTAGAT AAGTGGATTA TTACCAAGGA





1681
TCTTCCTGGA GAGGTGGGAT ATGCTCTAGA TGTACCATGG





1721
TATGCTAGCT TACCTAGAGT TGAAACTAGA TTCTACTTGG





1801
AACAATATGG TGGTGAAGAT GATGTTTGGA TTGGCAAAAC





1841
TTTATACAGG ATGCCATATG TTAACAATAA TAAATATCTA





1881
GAACTGGCAA AATTAGACTA TAGTAACTGC CAGTCATTAC





1921
ATCAACAAGA GTGGAAAAAC ATTCAAAAAT GGTATGAGAG





1961
TTGCAATCTG GGAGAATTTG GTTTGAGTGA AAGAAGGGTT





2001
CTACTAGCCT ACTACGTAGC TGCTGCGTGT ATATATGAGC





2041
CCGAAAAGTC AAACCAGCGC TTGGCTTGGG CCAAAACCGT





2081
AATTTTAATG GAGACTATTA CTTCCTATTT TGAGCACCAA





2121
CAACTCTCCG CAGAACAGAG ACGCGCCTTT GTTAATGAAT





2161
TTGAACATGG GAGTATCCTC AAATATGCAA ATGGAGGAAG





2201
ATACAAAAGG AGGAGTGTTT TGGGGACTTT GCTCAAAACA





2241
CTAAATCAGC TTTCATTGGA TATATTATTG ACACACGGTC





2281
GAAACGTCCA TCAGCCTTTC AAAAATGCGT GGCACAAGTG





2321
GCTAAAAACG TGGGAAGAAG GAGGTGACAT TGAAGAAGGC





2361
GAAGCAGAGG TATTGGTCCG AACCCTAAAC CTAAGCGGCG





2401
AAGGGAGGCA CGACTCCTAT GTATTGGAGC AATCATTATT





2441
GTCACAACCT ATATATGAAC AACTTTTGAA AGCCACCATG





2481
AGTGTTTGCA AGAAGCTTCG ATTGTTCCAA CATCGAAAGG





2521
ATGAGAATGG ATGTATGACG AAGATGAGAG GCATTACAAC





2561
GTTAGAGATA GAATCGGAGA TGCAAGAATT AGTGAAATTA





2601
GTATTTACTA AATCCTCAGA TGATTTAGAT TGTGAAATTA





2641
AACAAAACTT TTTTACAATT GCTAGGAGTT TCTATTATGT





2681
GGCTTATTGT AACCAAGGAA CTATCAACTT TCACATTGCT





2721
AAGGTGCTCT TTGAAAGAGT TCTTTAG






A Scutellaria baicalensis SbTPS2 amino acid sequence is shown below (SEQ ID NO:59)

    • 1 MASLSTLSLN FSPAIHRKIQ QSSAKLQFQG HCFTISSCMN










41
NSKRLSLNHQ SNHKRTSNVS ELQVATLDAP QIREKEDYST





81
AQGYEKVDEV EDPIEYIRML LNTTGDGRIS VSPYDTAWIA





121
LIKDVEGRDA PQFPSSLEWI ANNQLSDGSW GDEKFFCVYD





161
RLVNTLACVV ALRSWNIDAE KSEKGIRYIK ENVDKLKDGN





201
PEHMTCGFEV VFPSLLQRAQ SMGIHDLPYD APVIQDIYNT





241
RESKLKRIPM EVMHKVPTSL LFSLEGLENL EWDKLLKLQS





281
SDGSFLTSPS STAYAFMHTK DPKCFEFIKN TVETFNGGAP





321
HTYPVDVFGR LWAIDRLQRL GISRFFESEI ADCLDHIYKY





361
WTDKGVFSGR ESDFVDVDDT SMGVRLLRMH GYQVDPNVLR





401
NFKQGDKFSC YGGQMIESSS PIYNLYRASQ LRFPGEDILE





441
DANKFAYEFL QEQLSNNQLL DKWVISKHLP DEIKLGLQMP





481
WYATLPRVEA KYYLQYYAGA DDVWIGKTLY RMPEISNDTY





521
LELARMDFKR CQAQHQFEWI SMQEWYESCN IEEFGISRKE





561
LLQAYFLAGS SVFELERTTE RIGWAKSQII SRMIASFFNN





601
ETTTADEKDA LLTRFRNING PNKTKSGQRE SEAVNMLVAT





641
LQQYLAGFDR YTRHQLKDAW SVWFRKVQEE EAIYGAEAEL





681
LTTTLNICAG HIAFDENIMA NKDYTTLSSL TSKICQKLSE





721
IRNEKVEEME SGIKAKSSIK DKEVEHDMQS LVKLVLERCE





761
GINNRKLKQT FLSVAKTYYY RAYNADETMD IHMFKVLFEP





801
VM







A nucleic acid encoding the Scutellaria baicalensis SbTPS2 with SEQ ID NO:59 is shown below as SEQ ID NO:60.










1
ATGGCCTCTC TATCAACTCT GAGCCTCAAC TTTTCCCCAG





41
CAATTCACCG CAAAATACAG CAATCATCTG CAAAACTTCA





81
GTTCCAGGGA CATTGTTTCA CCATAAGTTC ATGCATGAAC





121
AACAGTAAAA GACTGTCTTT GAACCACCAA TCTAATCACA





161
AAAGAACGTC AAACGTATCT GAGCTGCAAG TTGCCACTTT





201
GGATGCGCCC CAAATACGTG AAAAAGAAGA CTACTCCACT





241
GCTCAAGGCT ATGAGAAGGT GGATGAAGTA GAGGATCCTA





281
TCGAATATAT TAGAATGCTG TTGAACACAA CAGGTGATGG





321
GCGAATAAGT GTGTCGCCAT ACGACACAGC CTGGATCGCT





361
CTTATTAAAG ACGTGGAAGG ACGTGATGCT CCCCAGTTCC





401
CATCTAGTCT CGAATGGATT GCCAATAATC AACTGAGTGA





441
TGGGTCGTGG GGCGATGAGA AGTTTTTCTG TGTGTATGAT





481
CGCCTTGTTA ATACACTTGC ATGTGTCGTG GCATTGAGAT





521
CATGGAATAT TGATGCTGAA AAGAGCGAGA AAGGAATAAG





561
ATACATAAAA GAAAACGTGG ATAAACTGAA AGATGGGAAT





601
CCAGAGCACA TGACCTGTGG TTTTGAGGTG GTGTTTCCTT





641
CCCTTCTTCA GAGAGCCCAA AGTATGGGAA TTCATGATCT





681
TCCCTATGAT GCTCCTGTCA TCCAAGACAT TTACAATACC





721
AGGGAGAGTA AATTGAAAAG GATTCCAATG GAGGTTATGC





761
ACAAGGTGCC AACATCTCTA TTGTTCAGCT TGGAAGGATT





801
GGAGAATTTG GAGTGGGATA AGCTCCTCAA ACTTCAGTCT





841
TCTGATGGTT CATTCCTCAC TTCTCCATCC TCAACTGCCT





881
ATGCTTTCAT GCACACTAAG GACCCTAAAT GCTTCGAATT





921
CATCAAAAAC ACCGTCGAAA CATTTAATGG AGGAGCACCT





961
CATACTTATC CGGTGGATGT TTTTGGAAGA CTGTGGGCCA





1001
TTGACAGGCT GCAGCGCCTC GGAATCTCTC GCTTCTTTGA





1041
GTCCGAGATT GCTGATTGCT TAGATCACAT CTATAAATAT





1081
TGGACAGACA AAGGAGTGTT CAGTGGAAGA GAATCAGATT





1121
TTGTGGATGT GGATGACACA TCCATGGGTG TTAGGCTTCT





1161
AAGGATGCAC GGATATCAAG TTGATCCAAA TGTATTGAGG





1201
AACTTCAAGC AGGGTGACAA ATTTTCATGC TATGGTGGTC





1241
AAATGATAGA GTCATCATCT CCGATATACA ATCTCTATAG





1281
GGCTTCTCAA CTCCGATTTC CAGGAGAAGA CATTCTTGAA





1321
GATGCCAACA AATTCGCATA CGAGTTCTTG CAAGAACAGC





1361
TATCCAACAA TCAACTTTTG GACAAATGGG TTATATCCAA





1401
GCACTTGCCT GATGAGATAA AGCTTGGATT GCAGATGCCA





1441
TGGTATGCCA CCCTACCCCG AGTGGAGGCT AAATACTACC





1481
TACAGTATTA TGCTGGTGCT GATGATGTCT GGATCGGCAA





1521
GACTCTCTAC AGAATGCCAG AAATCAGTAA TGATACATAT





1561
CTGGAGTTAG CAAGAATGGA TTTCAAGAGA TGCCAAGCAC





1601
AGCATCAATT TGAGTGGATT TCCATGCAAG AATGGTATGA





1641
AAGTTGCAAC ATTGAAGAAT TTGGGATAAG CAGAAAAGAG





1681
CTTCTTCAGG CTTACTTTTT GGCCTGCTCA AGTGTATTTG





1721
AACTCGAGAG GACAACAGAG AGAATAGGAT GGGCCAAATC





1761
CCAAATTATT TCAAGGATGA TAGCTTCTTT CTTCAACAAT





1801
GAAACTACAA CAGCCGATGA AAAAGATGCA CTTTTAACCA





1841
GATTCAGAAA CATCAATGGC CCAAACAAAA CAAAAAGTGG





1881
TCAGAGAGAG AGTGAAGCTG TGAACATGTT GGTAGCAACG





1921
CTCCAACAAT ACCTGGCAGG ATTTGATAGA TATACCAGAC





1961
ATCAATTGAA AGATGCTTGG AGTGTGTGGT TCAGAAAAGT





2001
GCAAGAAGAA GAGGCCATCT ACGGGGCAGA AGCGGAGCTT





2041
CTAACAACCA CCTTAAACAT CTGTGCTGGT CATATTGCTT





2081
TCGACGAAAA CATAATGGCC AACAAAGATT ACACCACTCT





2121
TTCCAGCCTT ACAAGCAAAA TTTGCCAGAA GCTTTCTGAA





2161
ATTCGAAATG AAAAGGTTGA GGAAATGGAG AGTGGAATTA





2201
AAGCAAAATC AAGCATCAAA GACAAGGAAG TGGAACATGA





2241
TATGCAGTCA CTGGTGAAAT TAGTCCTGGA GAGATGTGAA





2281
GGCATAAACA ACAGAAAACT GAAGCAAACA TTTCTATCGG





2321
TTGCAAAAAC ATATTACTAC AGAGCCTATA ATGCTGATGA





2361
AACCATGGAC ATCCATATGT TCAAAGTACT TTTCGAACCA





2401
GTCATGTGA






An example of a Salvia sclarea sclareol synthase amino acid sequence is shown below (SEQ ID NO:61; NCBI accession no. AET21246.1).










1
MSLAFNVGVT PFSGQRVGSR KEKFPVQGFP VTTPNRSRLI





41
VNCSLTTIDF MAKMKENFKR EDDKFPTTTT LRSEDIPSNL





81
CIIDTLQRLG VDQFFQYEIN TILDNTFRLW QEKHKVIYGN





121
VTTHAMAFRL LRVKGYEVSS EELAPYGNQE AVSQQTNDLP





161
MIIELYRAAN ERIYEEERSL EKILAWTTIF LNKQVQDNSI





201
PDKKLHKLVE FYLRNYKGIT IRLGARRNLE LYDMTYYQAL





241
KSTNRFSNLC NEDFLVFAKQ DFDIHEAQNQ KGLQQLQRWY





281
ADCRLDTLNF GRDVVIIANY LASLIIGDHA FDYVRLAFAK





321
TSVLVTIMDD FFDCHGSSQE CDKIIELVKE WKENPDAEYG





361
SEELEILFMA LYNTVNELAE RARVEQGRSV KEFLVKLWVE





401
ILSAFKIELD TWSNGTQQSF DEYISSSWLS NGSRLTGLLT





441
MQFVGVKLSD EMLMSEECTD LARHVCMVGR LLNDVCSSER





481
EREENIAGKS YSILLATEKD GRKVSEDEAI AEINEMVEYH





521
WRKVLQIVYK KESILPRRCK DVFLEMAKGT FYAYGINDEL





561
TSPQQSKEDM KSFVF







A nucleic acid encoding the Salvia sclarea sclareol synthase with SEQ ID NO:61 is shown below as SEQ ID NO:62.










1
ATGTCGCTCG CCTTCAACGT CGGAGTTACG CCTTTCTCCG





41
GCCAAAGAGT TGGGAGCAGG AAAGAAAAAT TTCCAGTCCA





81
AGGATTTCCT GTGACCACCC CCAATAGGTC ACGTCTCATC





121
GTTAACTGCA GCCTTACTAC AATAGATTTC ATGGCGAAAA





161
TGAAAGAGAA TTTCAAGAGG GAAGACGATA AATTTCCAAC





201
GACAACGACT CTTCGATCCG AAGATATACC CTCTAATTTG





241
TGTATAATCG ACACCCTTCA AAGGTTGGGG GTCGATCAAT





281
TCTTCCAATA TGAAATCAAC ACTATTCTAG ATAACACATT





321
CAGGTTGTGG CAAGAAAAAC ACAAAGTTAT ATATGGCAAT





361
GTTACTACTC ATGCAATGGC ATTTAGGCTT TTGCGAGTGA





401
AAGGATACGA AGTTTCATCA GAGGAGTTGG CTCCATATGG





441
TAACCAAGAG GCTGTTAGCC AGCAAACAAA TGACCTGCCG





481
ATGATTATTG AGCTTTATAG AGCAGCAAAT GAGAGAATAT





521
ATGAAGAAGA GAGGAGTCTT GAAAAAATTC TTGCTTGGAC





561
TACCATCTTT CTCAATAAGC AAGTGCAAGA TAACTCAATT





601
CCCGACAAAA AACTGCACAA ACTGGTGGAA TTCTACTTGA





641
GGAATTACAA AGGCATAACC ATAAGATTGG GAGCTAGACG





681
AAACCTCGAG CTATATGACA TGACCTACTA TCAAGCTCTG





721
AAATCTACAA ACAGGTTCTC TAATTTATGC AACGAAGATT





761
TTCTAGTTTT CGCAAAGCAA GATTTCGATA TACATGAAGC





801
CCAGAACCAG AAAGGACTTC AACAACTGCA AAGGTGGTAT





841
GCAGATTGTA GGTTGGACAC CTTAAACTTT GGAAGAGATG





881
TAGTTATTAT TGCTAATTAT TTGGCTTCAT TAATTATTGG





921
TGATCATGCG TTTGACTATG TTCGTCTCGC ATTTGCCAAA





961
ACATCTGTGC TTGTAACAAT TATGGATGAT TTTTTCGACT





1001
GTCATGGCTC TAGTCAAGAG TGTGACAAGA TCATTGAATT





1041
AGTAAAAGAA TGGAAGGAGA ATCCGGATGC AGAGTACGGA





1081
TCTGAGGAGC TTGAGATCCT TTTTATGGCG TTGTACAATA





1121
CAGTAAATGA GTTGGCGGAG AGGGCTCGTG TTGAACAGGG





1161
GCGTAGTGTC AAAGAGTTTC TAGTCAAACT GTGGGTTGAA





1201
ATACTCTCAG CTTTCAAGAT AGAATTAGAT ACATGGAGCA





1241
ATGGCACGCA GCAAAGCTTC GATGAATACA TTTCTTCGTC





1281
GTGGTTGTCG AACGGTTCCC GGCTGACAGG TCTCCTGACG





1321
ATGCAATTCG TCGGAGTAAA ATTGTCCGAT GAAATGCTTA





1361
TGAGTGAAGA GTGCACTGAT TTGGCTAGGC ATGTCTGTAT





1401
GGTCGGCCGG CTGCTCAACG ACGTGTGCAG TTCTGAGAGG





1441
GAGCGCGAGG AAAATATTGC AGGAAAAAGT TATAGCATTC





1481
TACTAGCAAC TGAGAAAGAT GGAAGAAAAG TTAGTGAAGA





1521
TGAAGCCATT GCAGAGATCA ATGAAATGGT TGAATATCAC





1561
TGGAGAAAAG TGTTGCAGAT TGTGTATAAA AAAGAAAGCA





1601
TTTTGCCAAG AAGATGCAAA GATGTATTTT TGGAGATGGC





1641
TAAGGGTACG TTTTATGCTT ATGGGATCAA CGATGAATTG





1681
ACTTCTCCTC AGCAATCCAA GGAAGATATG AAATCCTTTG





1721
TCTTTTGA






An example of a Marrubium vulgare (Mv) CPS1 amino acid sequence is shown below (SEQ ID NO:63).










1
MASTPTLNLS ITTPFVRTKI PAKISLPACS WLDRSSSRHV





41
ELNHKFCRKL ELKVAMCRAS LDVQQVRDEV YSNAQPHELV





81
DKKIEERVKY VKNLLSTMDD GRINWSAYDT AWISLIKDFE





121
GRDCPQFPST LERIAENQLP DGSWGDKDFD CSYDRIINTL





161
ACVVALTTWN VHPEINQKGI RYLKENMRKL EETPTVLMTC





201
AFEVVFPALL KKARNLGIHD LPYDMPIVKE ICKIGDEKLA





241
RIPKKMMEKE TTSLMYAAEG VENLDWERLL KLRTPENGSF





281
LSSPAATVVA FMHTKDEDCL RYIKYLLNKF NGGAPNVYPV





321
DLWSRLWATD RLQRLGISRY FESEIKDLLS YVHSYWTDIG





361
VYCTRDSKYA DIDDTSMGFR LLRVQGYNMD ANVFKYFQKD





401
DKFVCLGGQM NGSATATYNL YRAAQYQFPG EQILEDARKF





441
SQQFLQESID TNNLLDKWVI SPHIPEEMRF GMEMTWYSCL





481
PRIEASYYLQ HYGATEDVWL GKTFFRMEEI SNENYRELAI





521
LDFSKCQAQH QTEWIHMQEW YESNNVKEFG ISRKDLLFAY





561
FLAAASIFET ERAKERILWA RSKIICKMVK SFLEKETGSL





601
EHKIAFLTGS GDKGNGPVNN AMATLHQLLG EFDGYISIQL





641
ENAWAAWLTK LEQGEANDGE LLATTINICG GRVNQDTLSH





681
NEYKALSDLT NKICHNLAQI QNDKGDEIKD SKRSERDKEV





721
EQDMQALAKL VFEESDLERS IKQTFLAVVR TYYYGAYIAA





761
EKIDVHMFKV LFKPVG






An example of a Marrubium vulgare (Mv) TPS5 (syn. MvELS) amino acid sequence is shown below (SEQ ID NO:64).










1
MSITFNLKIA PFSGPGIQRS KETFPATEIQ ITASTKSTMT





41
TKCSFNASTD FMGKLREKVG GKADKPPVVI HPVDISSNLC





81
MIDTLQSLGV DRYFQSEINT LLEHTYRLWK EKKKNIIFKD





121
VSCCAIAFRL LREKGYQVSS DKLAPFADYR IRDVATILEL





161
YRASQARLYE DEHTLEKLHD WSSNLLKQHL LNGSIPDHKL





201
HKQVEYFLKN YHGILDRVAV RRSLDLYNIN HHHRIPDVAD





241
GFPKEDFLEY SMQDFNICQA QQQEELHQLQ RWYADCRLDT





281
LNYGRDVVRI ANFLTSAIFG EPEFSDARLA FAKHIILVTR





321
IDDFFDHGGS REESYKILDL VQEWKEKPAE EYGSKEVEIL





361
FTAVYNTVND LAEKAHIEQG RCVKPLLIKL WVEILTSFKK





401
ELDSWTEETA LTLDEYLSSS WVSIGCRICI LNSLQYLGIK





441
LSEEMLSSQE CTDLCRHVSS VDRLLNDVQT FKKERLENTI





481
NSVGLQLAAH KGERAMTEED AMSKIKEMAD YHRRKLMQIV





521
YKEGTVFPRE CKDVFLRVCR IGYYLYSSGD EFTSPQQMKE





561
DMKSLVYQPV KIHPLEAINV






An example of a Kitasatospora griseola TPS2 (KgTPS2) amino acid sequence is shown below (SEQ ID NO:65).










1
MPDAIEFEHE GRRNPNSAEA ESAYSSIIAA LDLQESDYAV





41
ISGHSRIVGA AALVYPDADA ETLLAASLWT ACLIVNDDRW





81
DYVQEDGGRL APGEWFDGVT EVVDTWRTAG PRLPDPFFEL





121
VRTTMSRLDA ALGAEAADEI GHEIKRAITA MKWEGVWNEY





161
TKKTSLATYL SFRRGYCTMD VQVVLDKWIN GGRSFAALRD





201
DPVRRAIDDV VVRFGCLSND YYSWGREKKA VDKSNAVRIL





241
MDHAGYDEST ALAHVRDDCV QAITDLDCIE ESIKRSGHLG





281
SHAQELLDYL ACHRPLIYAA ATWPTETNRY R






An example of an Origanum majorana TPS1 (0mTPS1) amino acid sequence is shown below (SEQ ID NO:66).










1
MTDVSSLRLS NAPAAGGRLP LPGKVHLPEF RTVCAWLNNG





41
CKYEPLTCRI SRRKISECRV ASLNSSQLIE KVGSPAQSLE





81
EANKKIEDSI EYIKNLLMTS GDGRISVSAY DTSLVALIKD





121
VKGRDAPQFP SCLEWIAQNQ MADGSWGDEF FCIYDRIVNT





161
LACLVALKSW NLHPDKIEKG VTYINENVHK LKDGSTEHMT





201
SGFEIVVPAT LERAKVLGIQ GLPYDHPFIK EIINTKERRL





241
SKIPKDLIYK LPTTLLFSLE GQGELDWEKI LKLQSSDGSF





281
LTSPSSTASV FMRTKDEKCL KFIENAVKNC GGGAPHTYPV





321
DVFARLWAVD RLQRLGISRF FQHEIKYFLD HINSVWTENG





361
VFSGRDSQFC DIDDTSMGVR LLKMHGYNVD PNALKHFKQE





401
DGKFSCYPGQ MIESASPIYN LYRAAQLRFP GEEILEEASR





441
FAFNFLQEKI ANHEIQEKWV ISEHLIDEIK LGLKMPWYAT





481
LPRVEAAYYL EYYAGSGDVW IGKTFYRMPE ISNDTYKEVA





521
ILDFNTCQAQ HQFEWIYMQE WYESSKVKDF GISKKDLLVA





561
YFLAASTIFE PERTQERIIW AKTLILSRMI TSFLNKQATL





601
SSQQKNAILT QLGESVDGLD KIYSGEKDSG LAETLLATFQ





641
QLLDGFDRYT RHQLRNAWGQ WLMKVQQGEA NGGADAELIA





681
NTLNICAGLI AFNEDVLLHS EYTTLSSLTN KICQRLSQIE





721
DEKTLEVIEG GIKDKELEED IQALVKLALE ENGGCGVDRR





741
IKQSFLSVFK TFYYRAYHDA ETTDLHIFKV LFGPVM






An example of an Origanum majorana TPS4 (OmTPS4) amino acid sequence is shown below (SEQ ID NO:67).










1
MSLAFSHVST FFSGQRVVGS RREIIPVNGV PTTANKPSFA





41
VKCNLTTKDL MVKMKEKLKG QDGNLTVGVA DMPSSLCVID





81
TLERLGVDRY FRSEIHVILH DTYRLWQQKD KDICSNVTTH





121
AMAFRLLRVN GYEVSSEELA PYANLEHFSQ QKVDTAMAIE





161
LYRAAQERIH EDESGLDKIL AWTTTFLEQQ LLTNSILDNK





201
LHKLVEYYLN NYHGQTNRVG ARRHLDLYEM SHYQNLKPSH





241
SLCNEDLLAF AKQGFRDFQI QQQKEFEQLQ RWYEDCRLDK





281
LSYGRDVVKI SSFMASILMD DPELADVRLS IAKQMVLVTR





321
IDDFFDHGGS REDSYKIIEL VKEWKEKAEY DSEEVKILFT





361
AVYTTVNELA EACVQQGRNS TTVKEFLVQL WIEILSAFKV





401
ELDTWSDGTE VSLDEYLSWS WISNGCRVSI VTTMHLLPTK





441
LCSDEMLRSE ECKDLCRHVS MVGRLLNDIH SFEKEHEENT





481
GNSVSILVAG EDTEEEAIGK IKEIVEYERR KLMQIVYKRG





521
TILPRECKDI FLKACRATFY VYSSTDEFTS PRQVMEDMKT





561
LSS






The inventors have described a CYP71D381 from C. forskohlii, which resulted in oxidized derivatives at alternative positions outside the known forskolin chemistry (Pateraki et al. Elife 6 (2017)). The sequence for the CYP71D381 from Plectranthus barbatus is shown below (SEQ ID NO:68).










1
MEFDFPSALI FPAVSLLLLL WLTKTRKPKS DLDRIPGPRR





41
LPLIGNLHHL ISLTPPPRLF REMAAKYGPL MRLQLGGVPF





81
LIVSSVDVAK HVVKTNDVPF ANRPPMHAAR AITYNYTDIG





121
FAPYGEYWRN LRKICTLELL SARRVRSFRH IREEENAGVA





161
KWIASKEGSP ANLSERVYLS SFDITSRASI GKATEEKQTL





201
TSSIKDAMKL GGFNVADLYP SSKLLLLITG LNFRIQRVFR





241
KTDRILDDLL SQHRSTSATT ERPEDLVDVL LKYQKEETEV





281
HLNNDKIKAV IMDMFLAGGE TSATAVDWAM AEMIRNPTTL





321
KKAQEEVRRV FDGKGYVDEE EFHELKYLKL VIKEMLRMHP





361
PLPFLVPRMN SERCEINGYE IPANTRLLIN AWAIGRDPKY





401
WNDAEKFIPE RFENSSIDFK GNNLEYIPFG AGRRMCPGMT





441
FGLASVEFTL AMLLYHFDWK MPQGIKLDMT ESFGASLKRK





481
HDLLMIPTLK RPLRLAP






Mining of nearly 50 transcriptomes of related members of the mint family (Lamiaceae; Johnson et al., J. Biol. Chem. 294: 1349-1362 (2019)) indicates that the mint family provides rich repository of members of the CYP71D and CYP76AH enzymes (over 200 candidates, functional characterization, preliminary results by the inventors). Any of these enzymes can be used for additional/alternative oxidation chemistries to produce useful products.


The cyclization of diterpenes is among the most complex reactions found in nature. Typically, more than half of the carbons of GGPP undergo changes in connection, hybridization (sp-status), and stereochemistry during the carbocationic cascade. Stabilized in the active site of diterpene synthases, those carbocation intermediates undergo electron delocalization, hydride and alkyl-shifts, and can be quenched by access to water. For example, predicted cyclization reactions for conversion of GGPP to hydroxy-vulgarisane are shown below.




text missing or illegible when filed


The inventors have recently discovered the PvHVS enzyme (SEQ ID NO:40), which can generate the irregular diterpene founding the class of bioactive vulgarisane compounds in Prunella vulgaris (see Pelot et al. Plant Physiol. 178: 54 LP-71 (2018)).


Mutated variants of diTPS can be deployed for diversification of the enzymes to increase the range of products produced, for example, by controlling the stereochemistry of the product outcome. Previously, generation of individual compounds from GGPP remained limited to the natural C20 chemical space of diterpenes (Schulte et al. Biochemistry 57: 3473-3479 (2018)). Terpene cyclization has been investigated through crystallography, structural modelling and mutagenesis studies including unreactive fluorinated, azaisoprenyl or thioloisoprenyl diphosphate analogs, by quantum-chemical calculations of intermediates, and by isotopically labelled natural precursors. With exceptions, the majority of approaches are static (non-dynamic) and have not yet been applied to terpenoid synthases, where reports are limited to single-enzyme-analog tests. Crystal structures for plant diTPS are similarly restricted to three enzymes only, the grand fir bifunctional class II/I abietadiene synthase, the class II Arabidopsis thaliana ent-CPS30, and the class I Taxus taxadiene synthase. Cyclization of rationally designed substrates with both altered spatial and electronic properties will provide a unique and dynamic facet by evaluation of the previously unrecognized substrate tolerance: steric constraints, stabilization of transition states and kinetics of the enzymes. With that, the proposed technology complements current tools exploring the mechanism of the cationic cascade of terpene cyclization. Structure-guided mutational studies for identified optimal modules, combined with the substrate tolerance described herein can broaden the accessible range of enzymes and products produced.


Enzymes that exhibit the following characteristics are generally preferred for use in methods of producing desirable products: (i) terpenoid synthases with high natural substrate tolerance, (ii) those generating a set of intermediates with maximized chemical diversity, and (iii) enzymes that provide intermediates in the pathways to forskolin and jolkinol C (P450s, ADHs, ACTs). In some cases, the enzymes can be active as recombinant enzymes in E. coli and/or the enzymes have demonstrated functionally in yeast.


As one example of an enzyme that can accept multiple unnatural substrates is CfTps2, which the inventors have demonstrated has such useful activity. The CfTps2 enzyme can provide the first step in synthesis of the cardiac stimulant and cognition enhancer forskolin which is derived from Coleus forskohiii. The CfTps2 enzyme can also serve as the first step in production of sclareol, which is an industrial precursor for ambroxoid fragrance substances. The ability to modify, in a targeted manner, these biological active or industrially significant natural products would facilitate the design, testing, and production of novel materials and biologically active agents.


Enzymes described herein can therefore have one or more deletions, insertions, replacements, or substitutions in a part of the enzyme. The enzyme(s) described herein can have, for example, at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 93%, or at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99% sequence identity to a sequence described herein.


In some cases, enzymes can have conservative changes such as one or more deletions, insertions, replacements, or substitutions that have no significant effect on the activities of the enzymes. Examples of conservative substitutions are provided below in Table IA.









TABLE 1A







Conservative Substitutions










Type of
Substitutable



Amino Acid
Amino Acids







Hydrophilic
Ala, Pro, Gly, Glu, Asp,




Gln, Asn, Ser, Thr



Sulfhydryl
Cys



Aliphatic
Val, Ile, Leu, Met



Basic
Lys, Arg, His



Aromatic
Phe, Tyr, Trp










The enzymes can also include a tag, for example, as a label or to facilitate purification of the enzyme. Examples of such tags include histidine tags, streptavidin tags, biotin tags, antibody fragments, and the like.


Hosts

Terpenes, including diterpenes and terpenoids, can be made in a variety of host organisms in vivo. In some cases, the enzymes described herein can be made in host cells, and those enzymes can be extracted from the host cells for use in vitro. As used herein, a “host” means a cell, tissue or organism capable of replication. The host can have an expression cassette or expression vector that can include a nucleic acid segment encoding an enzyme that is involved in the biosynthesis of terpenes.


The term “host cell”, as used herein, refers to any prokaryotic or eukaryotic cell that can be transformed with an expression cassettes or vector carrying the nucleic acid segment encoding an enzyme that is involved in the biosynthesis of one or more terpenes or terpenoids. The host cells can, for example, be a plant, bacterial, insect, or yeast cell. Expression cassettes encoding biosynthetic enzymes can be incorporated or transferred into a host cell to facilitate manufacture of the enzymes described herein or the terpene, diterpene, or terpenoid products of those enzymes. The host cells can be present in an organism. For example, the host cells can be present in a host such as a microorganism, fungus, or plant.


Expression of Enzymes

Also described herein are expression systems that include at least one expression cassette (e.g., expression vectors or transgenes) that encode one or more of the enzyme(s) described herein. For example, the expression systems can also include one or more expression cassettes any of the monoterpene synthase, diterpene synthase, sesquiterpene synthase, sesterterpene synthase, triterpene synthase, tetraterpene synthase, polyterpene synthase, transcription factor, cytochrome P450, cytochrome P450 reductase, 1-deoxy-D-xylulose 5-phosphate synthase (DXS), 1-deoxy-D-xylulose 5-phosphate-reducto-isomerase, cytidine 5′-diphosphate-methylerythritol (CDP-ME) synthetase (IspD), 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF), HMG-CoA synthase, HMG-CoA reductase (HMGR), mevalonic acid kinase (MVK), phosphomevalonate kinase (PMK), mevalonate-5-diphosphate decarboxylase (MPD), isopentenyl diphosphate isomerase, abietadiene synthase (ABS), farnesylpyrophosphate synthase (FPPS), or squalene synthase (SQS), LDSP-protein fusions, or enzymes that facilitate production of terpenoids, terpene precursors, terpene building blocks, or products derived from terpenoids.


Nucleic acids encoding the enzymes can have sequence modifications. For example, nucleic acid sequences described herein can be modified to more optimally express the enzymes. Hence, the nucleic acid segment encoding the enzymes can be optimized to improve expression in different host cells. Most amino acids can be encoded by more than one codon, but when an amino acid is encoded by more than one codon, the codons are referred to as degenerate codons. A listing of degenerate codons is provided in Table 1B below.









TABLE 1B







Degenerate Amino Acid Codons










Amino




Acid
Three Nucleotide Codon







Ala/A
GCT, GCC, GCA, GCG







Arg/R
CGT, CGC, CGA, CGG, AGA, AGG







Asn/N
AAT, AAC







Asp/D
GAT, GAC







Cys/C
TGT, TGC







Gln/Q
CAA, CAG







Glu/E
GAA, GAG







Gly/G
GGT, GGC, GGA, GGG







His/H
CAT, CAC







Ile/I
ATT, ATC, ATA







Leu/L
TTA, TTG, CTT, CTC, CTA, CTG







Lys/K
AAA, AAG







Met/M
ATG







Phe/F
TTT, TTC







Pro/P
CCT, CCC, CCA, CCG







Ser/S
TCT, TCC, TCA, TCG, AGT, AGC







Thr/T
ACT, ACC, ACA, ACG







Trp/W
TGG







Tyr/Y
TAT, TAC







Val/V
GTT, GTC, GTA, GTG







START
ATG







STOP
TAG, TGA, TAA











Different organisms may translate different codons more or less efficiently (e.g., because they have different ratios of tRNAs) than other organisms. Hence, when some amino acids can be encoded by several codons, a nucleic acid segment can be designed to optimize the efficiency of expression of an enzyme by using codons that are preferred by an organism of interest. For example, the nucleotide coding regions of the enzymes described herein can be codon optimized for expression in various microorganisms, fungi, or plant species.


An optimized nucleic acid can have less than 100%, less than 99%, less than 98%, less than 97%, less than 95%, or less than 94%, or less than 93%, or less than 92%, or less than 91%, or less than 90%, or less than 89%, or less than 88%, or less than 85%, or less than 83%, or less than 80%, or less than 75% nucleic acid sequence identity to a corresponding non-optimized (e.g., a non-optimized parental or wild type enzyme nucleic acid) sequence. Nucleic acid segment(s) encoding one or more enzyme(s) can therefore have one or more nucleotide deletions, insertions, replacements, or substitutions.


The nucleic acid segments encoding one or more enzyme can be operably linked to a promoter, which provides for expression of mRNA from the nucleic acid segments. The promoter is typically a promoter functional in a microorganism, fungus or plant. A nucleic acid segment encoding one or more enzyme is operably linked to the promoter, for example, when it is located downstream from the promoter. The combination of a coding region for an enzyme operably linked to a promoter forms an expression cassette, which can include other elements and regulatory sequences as well.


Promoter regions are typically found in the flanking DNA upstream from the coding sequence in both the prokaryotic and eukaryotic cells. A promoter sequence provides for regulation of transcription of the downstream gene sequence and typically includes from about 50 to about 2,000 nucleotide base pairs. Promoter sequences can also contain regulatory sequences such as enhancer sequences that can influence the level of gene expression. Some isolated promoter sequences can provide for gene expression of heterologous DNAs, that is a DNA different from the native or homologous DNA.


Promoter sequences are also known to be strong or weak, or inducible. A strong promoter provides for a high level of gene expression, whereas a weak promoter provides for a very low level of gene expression. An inducible promoter is a promoter that provides for the turning on and off of gene expression in response to an exogenously added agent, or to an environmental or developmental stimulus. For example, a bacterial promoter such as the Ptac promoter can be induced to varying levels of gene expression depending on the level of isopropyl-beta-D-thiogalactoside added to the transformed cells. Promoters can also provide for tissue specific or developmental regulation. An isolated promoter sequence that is a strong promoter for heterologous DNAs is often advantageous because it provides for a sufficient level of gene expression for easy detection and selection of transformed cells and provides for a high level of gene expression when desired.


Examples of prokaryotic promoters that can be used include, but are not limited to, SP6, T7, T5, tac, bla, trp, gal, lac, or maltose promoters. Examples of eukaryotic promoters that can be used include, but are not limited to, constitutive promoters, e.g., viral promoters such as CMV, SV40 and RSV promoters, as well as regulatable promoters, e.g., an inducible or repressible promoter such as the tet promoter, the hsp70 promoter and a synthetic promoter regulated by CRE.


Examples of plant promoters include the CaMV 35S promoter (Odell et al., Nature. 313:810-812 (1985)), or others such as CaMV 19S (Lawton et al., Plant Molecular Biology. 9:315-324 (1987)), nos (Ebert et al., Proc. Natl. Acad. Sci. USA. 84:5745-5749 (1987)), Adhl (Walker et al., Proc. Natl. Acad. Sci. USA. 84:6624-6628 (1987)), sucrose synthase (Yang et al., Proc. Natl. Acad. Sci. USA. 87:4144-4148 (1990)), α-tubulin, ubiquitin, actin (Wang et al., Mol. Cell. Biol. 12:3399 (1992)), cab (Sullivan et al., Mol. Gen. Genet. 215:431 (1989)), PEPCase (Hudspeth et al., Plant Molecular Biology. 12:579-589 (1989)) or those associated with the R gene complex (Chandler et al., The Plant Cell. 1:1175-1183 (1989)). Further suitable promoters include a CYP71D16 trichome-specific promoter and the CBTS (cembratrienol synthase) promotor, cauliflower mosaic virus promoter, the Z10 promoter from a gene encoding a 10 kD zein protein, a Z27 promoter from a gene encoding a 27 kD zein protein, the plastid rRNA-operon (rrn) promoter, inducible promoters, such as the light inducible promoter derived from the pea rbcS gene (Coruzzi et al., EMBO J. 3:1671 (1971)), RUBISCO-SSU light inducible promoter (SSU) from tobacco and the actin promoter from rice (McElroy et al., The Plant Cell. 2:163-171 (1990)). Other promoters that are useful can also be employed.


Examples of leaf-specific promoters include the promoter from the Populus ribulose-1,5-bisphosphate carboxylase small subunit gene (Wang et al. Plant Molec Biol Reporter 31 (1): 120-127 (2013)), the promoter from the Brachypodium distachyon sedoheptulose-1,7-bisphosphatase (SBPase-p) gene (Alotaibi et al. Plants 7(2): 27 (2018)), the fructose-1,6-bisphosphate aldolase (FBPA-p) gene from Brachypodium distachyon (Alotaibi et al. Plants 7(2): 27 (2018)), and the photosystem-II promoter (CAB2-p) of the rice (Oryza sativa L.) light-harvest chlorophyll a/b binding protein (CAB) (Song et al. J Am Soc Hort Sci 132(4): 551-556 (2007)). Additional promoters that can be used include those available in expression databases, see for example, website bar.utoronto.ca/eplant/ which includes poplar or heterologous promoters from Arabidopsis (for example from AT2G26020/PDF1.2b or AT5G44420 / LCR77).


Alternatively, novel tissue specific promoter sequences may be employed. cDNA clones from a particular tissue can be isolated and those clones which are expressed specifically in that tissue can be identified, for example, using Northern blotting. Preferably, the gene isolated is not present in a high copy number but is relatively abundant in specific tissues. The promoter and control elements of corresponding genomic clones can then be localized using techniques well known to those of skill in the art.


Plant plastid originated promoters can also be used, for example, to improve expression in plastids, for example, a rice clp promoter, or tobacco rrn promoter. Chloroplast-specific promoters can also be utilized for targeting the foreign protein expression into chloroplasts. For example, the 16S ribosomal RNA promoter (Prrn) like psbA and atpA gene promoters can be used for chloroplast transformation.


A nucleic acid encoding one or more enzyme can be combined with the promoter by standard methods to yield an expression cassette, for example, as described in Sambrook et al. (MOLECULAR CLONING: A LABORATORY MANUAL. Second Edition (Cold Spring Harbor, NY: Cold Spring Harbor Press (1989); MOLECULAR CLONING: A LABORATORY MANUAL. Third Edition (Cold Spring Harbor, NY: Cold Spring Harbor Press (2000)). Briefly, a plasmid containing a promoter such as the 35S CaMV promoter or the CYP71D16 trichome-specific promoter can be constructed as described in Jefferson (Plant Molecular Biology Reporter 5:387-405 (1987)) or obtained from Clontech Lab in Palo Alto, California (e.g., pBI121 or pBI221). Typically, these plasmids are constructed to have multiple cloning sites having specificity for different restriction enzymes downstream from the promoter.


The expression cassette or vector can include nucleic acid sequence encoding a marker product. This marker product is used to determine if the gene has been delivered to the cell and once delivered is being expressed. Marker genes can include the E. coli lacZ gene which encodes β-galactosidase, and green fluorescent protein. In some embodiments the marker can be a selectable marker. When such selectable markers are successfully transferred into a host cell, the transformed host cell can survive if placed under selective pressure. There are two widely used distinct categories of selective regimes. The first category is based on a cell's metabolism and the use of a mutant cell line which lacks the ability to grow independent of a supplemented media. The second category is dominant selection which refers to a selection scheme used in any cell type and does not require the use of a mutant cell line. These schemes typically use a drug to arrest growth of a host cell. Those cells which have a novel gene would express a protein conveying drug resistance and would survive the selection. Examples of such dominant selection use the drugs neomycin (Southern P. and Berg, P., J. Molec. Appl. Genet. 1: 327 (1982)), mycophenolic acid, (Mulligan, R. C. and Berg, P. Science 209: 1422 (1980)) or hygromycin, (Sugden, B. et al., Mol. Cell. Biol. 5: 410-413 (1985)).


The expression cassettes can be within vectors such as plasmids, viral vectors, viral nucleic acids, phage nucleic acids, phages, cosmids, or artificial chromosomes.


Transfer of the expression cassettes or vectors into host cells can be by methods available in the art and readily adaptable for use in the method described herein. Expression cassettes and vectors can be incorporated into host cells, for example, calcium-mediated transformation, electroporation, microinjection, lipofection, particle bombardment, chemical transfectants, physico-mechanical methods such as electroporation, or direct diffusion of DNA.


In some cases, one or more enzyme cassettes can be introduced into a single host cell. Such transformed host cells can then be used either for producing one or more enzymes or for chemical conversion of an unnatural substrate into a useful terpene product.


After expression in a suitable host, in some cases the enzymes can be purified or semi-purified for use within in vitro enzyme catalyzed reactions to generate terpenes. For example, the host cells can be lysed, and the enzymes purified or semi-purified to the extent needed to reduce side reactions. Purification of the enzymes also removes cellular debris that can complicate purification of the terpene products of enzymatic reactions. Purification of the enzymes can include lysis of host cells, removal of cellular debris by centrifugation or precipitation, solubilization of proteins, column chromatography (e.g., size selection chromatography, ion exchange chromatography), retrieval of tagged enzymes using affinity chromatography, and combinations thereof. For example, in some cases the enzymes can be histidine-tagged and purified or semi-purified by Ni-NTA agarose or Ni-NTA columns.


Methods

Methods are described herein that are useful for synthesizing terpenoids and products made from terpenoids. The methods can involve contacting one or more of the substrates described herein with one or more enzymes capable of synthesizing at least one terpene to produce a terpenoid product. In some cases, the methods can involve incubating one or more of the substrates described herein with a population of host cells having a at least one heterologous expression cassette or expression vector that can express one or more enzymes capable of synthesizing at least one terpenoid product. The enzymes capable of synthesizing at least one terpenoid product can be referred to as a primary enzyme. The methods can also involve contacting the terpenoid product with a secondary enzyme that can modify the terpenoid product into another useful product.


For example, one method can involve contacting one or more of the substrates described herein with one or more enzymes capable of synthesizing at least one terpene to produce a terpenoid product.


For example, another method can involve (a) incubating a population of host cells or host tissue that includes one or more expression cassettes (or vectors) that have a promoter operably linked to a nucleic acid segment encoding an enzyme capable of synthesizing at least one terpene; and (b) isolating at least one terpenoid product from the population of host cells or the host tissue.


The enzymes can be any of the enzymes described herein. For example, the enzymes can be a monoterpene synthase, diterpene synthase, sesquiterpene synthase, sesterterpene synthase, triterpene synthase, tetraterpene synthase, or polyterpene synthase. Enzymes used for modifying a terpenoid product (e.g., secondary enzymes) can include one or more transcription factor, cytochrome P450, cytochrome P450 reductase, 1-deoxy-D-xylulose 5-phosphate synthase (DXS), 1-deoxy-D-xylulose 5-phosphate-reducto-isomerase, cytidine 5′-diphosphate-methylerythritol (CDP-ME) synthetase (IspD), 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF), geranylgeranyl diphosphate synthase (GGDPS), HMG-CoA synthase, HMG-CoA reductase (HMGR), mevalonic acid kinase (MVK), phosphomevalonate kinase (PMK), mevalonate-5-diphosphate decarboxylase (MPD), isopentenyl diphosphate isomerase (IDI), abietadiene synthase (ABS), farnesylpyrophosphate synthase (FPPS), ribulose bisphosphate carboxylase, squalene synthase (SQS), patchoulol synthase, or WRI1 protein; and (b) isolating lipids from the population of host cells, the host plant's cells, or the host tissue. In some cases, a combination of enzymes, transcription factors, and lipid droplet proteins can be expressed in host cells, host plant, or host tissues.


Definitions

As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Also, as used herein, “and/or” refers to, and encompasses, any and all possible combinations of one or more of the associated listed items. Unless otherwise defined, all terms, including technical and scientific terms used in the description, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains.


The term “about”, as used herein, can allow for a degree of variability in a value or range, for example, within 10%, within 5%, or within 1% of a stated value or of a stated limit of a range.


The term “enzyme” or “enzymes”, as used herein, refers to a protein catalyst capable of catalyzing a reaction. Herein, the term does not mean only an isolated enzyme, but also includes a host cell expressing that enzyme. Accordingly, the conversion of A to B by enzyme C should also be construed to encompass the conversion of A to B by a host cell expressing enzyme C. However, in some cases, purified or semi-purified enzymes are used to catalyze formation of terpenes within in vitro reactions.


The term “heterologous” when used in reference to a nucleic acid refers to a nucleic acid that has been manipulated in some way. For example, a heterologous nucleic acid includes a nucleic acid from one species introduced into another species. A heterologous nucleic acid also includes a nucleic acid native to an organism that has been altered in some way (e.g., mutated, added in multiple copies, linked to a non-native promoter or enhancer sequence, etc.). Heterologous nucleic acids can include cDNA forms of a nucleic acid; the cDNA may be expressed in either a sense (to produce mRNA) or anti-sense orientation (to produce an anti-sense RNA transcript that is complementary to the mRNA transcript). For example, heterologous nucleic acids can be distinguished from endogenous plant nucleic acids in that the heterologous nucleic acids are typically joined to nucleic acids comprising regulatory elements such as promoters that are not found naturally associated with the natural gene for the protein encoded by the heterologous gene. Heterologous nucleic acids can also be distinguished from endogenous plant nucleic acids in that the heterologous nucleic acids are in an unnatural chromosomal location or are associated with portions of the chromosome not found in nature (e.g., the heterologous nucleic acids are expressed in tissues where the gene is not normally expressed).


The terms “identical” or percent “identity”, as used herein, in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (e.g., 75% identity, 80% identity, 85% identity, 90% identity, 95% identity, 97% identity, 98% identity, 99% identity, or 100% identity in pairwise comparison). Sequence identity can be determined by comparison and/or alignment of sequences for maximum correspondence over a comparison window, or over a designated region as measured using a sequence comparison algorithm, or by manual alignment and visual inspection. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the results by 100 to yield the percentage of sequence identity. A “reference sequence” is a defined sequence used as a basis for a sequence comparison; a reference sequence may be a subset of a larger sequence.


As used herein, a “native” nucleic acid or polypeptide means a DNA, RNA, or amino acid sequence or segment thereof that has not been manipulated in vitro, i.e., has not been isolated, purified, amplified and/or modified.


The terms “in operable combination,” “in operable order,” and “operably linked” refer to the linkage of nucleic acid sequences in such a manner that a nucleic acid molecule capable of directing the transcription of a coding region (e.g., gene) and/or the synthesis of a desired protein molecule is produced. The term also refers to the linkage of amino acid sequences in such a manner so that a functional protein is produced.


As used herein the term “terpene” includes any type of terpene or terpenoid, including for example any monoterpene, diterpene, sesquiterpene, sesterterpene, triterpene, tetraterpene, polyterpene, and any mixture thereof.


As used herein, the term “wild-type” when made in reference to a gene refers to a functional gene common throughout an outbred population. As used herein, the term “wild-type” when made in reference to a gene product refers to a functional gene product common throughout an outbred population. A functional wild-type gene is that which is most frequently observed in a population and is thus arbitrarily designated the “normal” or “wild-type” form of the gene.


The following Examples illustrate some of the experimental work involved in development of the invention.


EXAMPLE 1
Method Overview

This Example summarizes methods that include synthesizing and screening an inventory of unnatural substrates producing novel decalin-core diphosphate intermediates and irregular terpene-like products. Preliminary results indicate that novel, structurally diverse unnatural diterpene substrates, mimicking the natural precursor, are accessible and can be processed to produce unnatural terpenes.


Initially, a panel of substrates with altered carbon number, inserted heteroatoms and rearranged linear and branched structures will be prepared. Class II diterpene synthases (diTPS) produce a characteristic decalin core intermediate. Screens are performed of functionally distinct class II diTPS enzymes with a panel of substrates (FIG. 1A) to identify enzymes with substrate tolerance and capacity. As illustrated in FIG. 1B, class I diTPS directly produce irregular scaffolds, such as polycyclic diterpenes. Various enzymes can be used for bioprocessing of unnatural forskolin and jolkinol c compounds. Hence, sets of diTPS enzymes selected for functional diversity will be probed for their substrate tolerance to generate unnatural diterpene scaffolds.


Many class I diTPS of the decalin-core diterpene biosynthesis accept a range of class II intermediates, producing diverse products. The inventors have selected promiscuous class I diTPS and will examine their substrate tolerance against the unnatural class II intermediates. Products formed, for example as illustrated in FIG. 1B-1C, constitute a pilot library of diverse unnatural diterpene scaffolds.


EXAMPLE 2
Methods for Development of Substrates for Making Terpenoids

Modular pairs of diterpene synthases forming decalin core scaffolds were assembled through combinatorial biochemistry into new-to-nature pathways, yielding regioselective and stereoselective access to a panel of over 50 diterpene scaffolds, including novel compounds and those previously inaccessible. P450 enzymes were found to catalyze oxygenations of multiple substrates not native to the pathways and could also be substituted by enzymes from other species. Hence, our current repertoire of diTPS gives access to an estimated 75 scaffolds, while P450s, ACTs and ADHs can further modify each scaffold leading to an at least ten-fold diversification of possible diterpene pathways (see FIG. 3).


A prototype pipeline was developed to generate chemically diversified and naturally inspired small molecules of the diterpene class at unprecedented chemical diversity (see FIG. 3). Specifically, this required (i) establishment of a routine scheme for chemical synthesis of novel unnatural substrate derivatives of GGPP; (ii) combinatorial bioprocessing through a set of enzymes selected for their promiscuity; and (iii) iterative refinement of identified combinations of enzymes with their respective substrates. This process therefore involves test-learn-design cycles.


Over a dozen unnatural GGPP substrates were developed. The test-learn-design cycle informs further structural refinement of substrates, bringing the anticipated number to approximately 100 compounds. With its inherent building block principle, this strategy will be invaluable for high-throughput development of similar substrates for other classes of terpenoids and the resulting library of substrates will serve as a screening tool for future studies against an ever-expanding number of isolated enzymes.


EXAMPLE 3
Library of Unnatural Isoprenyl-Diphosphate Derivatized Substrates

This Example describes preparation of a library of unnatural isoprenyl-diphosphate derivatized substrates and screening a panel of class II labdane-type and class I macrocyclic, irregular-type diterpene synthases to advance mechanistic and structural understanding of the cationic cyclization cascades of these enzymes and to produce a collection of novel unnatural small molecules.


The diversity of substrates is synthetically explored that can be tolerated by the inventors' expansive toolbox of class II and I diterpene synthases (diTPS). Initial findings will provide key data guiding more extensive investigation of features that influence the cationic cyclization cascade and an understanding of substrate features that are tolerated, to generate a wide diversity of previously unknown products. The goal is to prepare unnatural products using a diversity of structural motifs that would, upon cyclization generate novel structures. These cyclization precursors will then be tested/fed to both class I and class II enzymes and the products isolated and characterized.


A broad spectrum of GGPP unnatural substrates are initially be prepared, exploring both spatial and electronic considerations. Altered backbones manipulating carbon numbers, insertion of heteroatoms and shifting double bonds are of interest. These substrates will also be functionalized with halogens, oxygen, nitrogen, and sulfur. More than a dozen compounds have been synthesized. The test-learn-design cycle is used to identify subgroups of acceptable substrates for further subtle structural refinement will be applied. Substrates are prepared according to Scheme 1, shown below.




embedded image


Recognizing that Scheme 1 generally shows activation of an allylic center and formation of the pyrophosphate, those of skill in the art should recognize that compounds such as those of the Formulae (III) and (IV) described herein can be accessed via the general methodology described in Scheme 1.


The substrate with a terminal allylic alcohol, substituted as described above, is prepared using methods described by Oberhauser et al. Angew. Chemie Int. Ed. 57, 11802-11806 (2018); Hoshino et al. Chem.—A Eur. J. 18: 13108-13116 (2012); Isaka et al. Biosci. Biotechnol. Biochem. 75: 2213-2222 (2011). The substrate with a terminal allylic alcohol is then converted via a simple two-step process (Davisson et al. J. Org. Chem. 51, 4768-4779 (1986)) to generate the non-natural substrates.


EXAMPLE 4
Analysis of an Unnatural Methyl-Derivative of GGPP

A methyl-derivative of GGPP (‘unGGPP’) was synthesized as described in the previous Example. A comparison of the structures of GGPP and this methyl-derivative of GGPP (‘unGGPP’) is shown below.




embedded image


DgTPS1 (casbene synthase) was reacted with the unGGPP substrate to yield a novel product with a shifted retention time as detected by gas chromatography (see FIG. 5A-5B). The product had a mass consistent with a methyl-derivative of casbene (FIG. 5C-5D). A conserved irregular, macrocyclic structure is consistent with the fragmentation pattern of the major fragments of casbene (FIG. 5C-5D).


Systematic testing against five additional irregular-type diTPS indicated successful bioprocessing of this first substrate by three enzymes. The molecular mass and the fragmentation pattern of the products were consistent with unnatural diterpene-analogs.


A dozen modified unnatural substrates were synthesized and tested for conversion to unnatural products. The results indicated that the enzymes employed had broad substrate tolerance. With only two exceptions, chain and sidechain substituted derivatives were readily accepted and converted by select enzymes of both the class I irregular type and class II labdane-type diTPS. The conversion pattern across all enzymes indicated astounding levels of activity. A total of fifty-six products (possibly with some structural redundancy) were identified in 159 assays (FIG. 6A-6B).


EXAMPLE 5
Screen of Unnatural Substrates Against 25 Class II Diterpene Synthases

Class II diTPS forming the decalin core labdanoid-type products catalyze cyclizations initiated by cation formation at carbon C15 of the linear achiral isoprenyl diphosphate, retaining the diphosphate moiety, for example as shown below.




embedded image


Shown is a typical cyclo-isomerization of GGPP into (4,13)-CLPP and ent-(8,13)-LPP by class II diTPS, where Ar refers to Ajuga reptans, and Pc refers to Pogostemon cablin.


To assess substrate tolerance of class II diTPS, substrates are screened against a panel of twenty-five enzymes. Recombinant diTPS were expressed heterologously in E. coli, purified, and reconstituted in in vitro assays with the substrate to be tested. The products from the enzymatic action on the substrate were analyzed structural elucidation and downstream functionalization.


In particular, pET28b+plasmids containing N-terminally truncated diTPS variants (having the plastidial targeting signal removed to generate pseudomature enzymes) are transformed into E. coli BL-21DE3-C41 OverExpress cells. Cultures are grown at 37° C. and 180 rpm until the optical density at 600 nm reached 0.3 to 0.4. Cultures are cooled to 16° C., and expression is induced at an optical density at 600 nm of approximately 0.6 with 0.2 mM isopropylthiogalactoside. Cells are collected and lysed before purification of the His6-tagged enzymes with Ni-NTA columns.


A typical high-throughput in vitro diTPS assay in lml contained 5 μg substrate, 200 μg purified enzyme (class II plus class I for labdanoid-type diterpenes, or class I for irregular diterpenes), and 10mM buffer with magnesium. Reactions are carried out for 1 hour at 16° C., followed by vortexing with an equal volume of hexane to extract the products into the organic phase, prior to removal for GC/MS analysis.


Active enzyme/substrate combinations are validated by GC/MS analysis of the extract and products compared against references and authentic standards. Structural elucidation of novel products can be by NMR in some cases. The diphosphate intermediate can be converted by lysis to an alcohol for analysis, and the universally acting class I diTPS sclareol synthase from Salvia sclarea can be used for this purpose.


Reactions leading to novel compounds can be scaled up for structural elucidation. The scale-up procedure involved the same composition. However, in coupled assays of pairs of diTPS, the class II enzyme may be pre-incubated with substrate for two hours, before adding the class I diTPS. The diTPS enzymes exhibit excellent stability. Hence, the assays can be extended to overnight reactions to increase product yields, before extraction with hexane.


Results

Thirteen labdane-type diphosphate intermediates (partially redundant with intermediates made from substrate GGPP) were made by the twenty-five plant class II enzymes (see FIG. 6A-6B):


ent-8,13-copalyl diphosphate (ent-CPP)


normal-(+)-copalyl diphosphate ((+)-CPP)


syn-copalyl diphosphate (syn-CPP)


(+)-8,13-copalyl diphosphate ((8,13)-CPP)


(5S,9S,10S)-labda-7,13Edienyl diphosphate((7,13)-LPP)


ent-(10R)-labda-8,13E-dienyl diphosphate (ent-(8,13)-LPP)


normal-H-labda-13-en-8-ol diphosphate ((+)-8-LPP)


peregrinol (labda-13-en-9-ol diphosphate (PGPP)


(−)-kolavenyl diphosphate (KPP)


(5R,8S,9S,10S)-labda-13-en-8-ol diphosphate (ent-8-LPP)


ent-neo-cis-transclerodienyl diphosphate (CT-CLPP)


(5R,8R,9S,10R)-neo-cleroda-4(18),13E-dienyl diphosphate ((4,13)-CLPP)


(+)-labden-9-ol diphosphate ((+)-9-LPP).


Approximately 100 substrate analogs will be generated. Based on preliminary results (FIGS. 5 and 6), a significant number of these substrates will, upon testing provide diversified chemistries, novel structures and structural motifs not previously seen with known diTPS (products in the range of 100-200 compounds). Insights associated with the mechanistic details of how these enzymes operate in relation to the unnatural steric and electronic properties of the substrate, and structural information of which substrates are tolerated will guide the test-learn-design cycle. Specifically, after identification of well-accepted substrates, individual unnatural chemical features will be combined, and further subtle modifications will permit refining the substrates for iterative testing against a subset of diTPS identified as active and highly tolerant.


EXAMPLE 6
Screening of Unnatural Substrates Against 15 class I Irregular-Type Diterpene Synthases, Including 5 Macrocyclase- and Vulgarisane-Type Enzymes

Class I diTPS use a different chemical strategy for the initial carbocation formation. The diTPS initiate the cascade of cyclization into irregular, macrocyclic or polycyclic compounds by lysis of the isoprenoid diphosphate to yield an allylic cation at the opposite end of the substrate, carbon Ci and inorganic pyrophosphate, for example, as shown below.




embedded image


Analogously to class II diTPS, the resulting carbocation intermediate further undergoes cyclo-isomerizations including hydride shifts, alkyl migrations and double bond rearrangements before termination of the reaction by proton abstraction or addition of a water molecule. In contrast to the paired modules of class II and I diTPS involved in formation of the labdanoid-type chemistry, irregular diterpenes are formed by the class I diTPS directly (Mau et al. Proc. Natl. Acad. Sci. 91: 8497 LP-8501 (1994)).


To explore unnatural substrate tolerance of the irregular diterpene formation, the inventors are screening all substrates produced in the library against a panel of six plant diTPS, including four macrocyclase-type and two polycyclic—type enzymes, followed by analysis of the products.


The products include the entry-step into the formation of jolkinol C, casbene and the closely related neo-cembrene, next to the structurally more complex taxadiene and hydroxyvulgarisane.


EXAMPLE 7
Screen of Class I Enzymes Against Substrates

The general function of class I enzymes of labdane-type diterpene metabolism is shared with those yielding irregular polycyclic diterpenes, i.e., generation of the initial carbocation at carbon C1 by metal-dependent ionization.


Instead of accepting the acyclic GGPP, class I enzymes can use structurally diverse decalin-core diphosphate intermediates generated by class II enzymes. At this stage, additional cyclizations, double-bond-, hydride and alkyl shifts can occur, followed by either proton abstraction or quenching of the final carbocation through a water molecule. A panel of eight (seven plant and one microbial) class I labdane-type diTPS was selected for their demonstrated substrate promiscuity (Table 2).









TABLE 2







Class I labdane-type diTPS and tested substrates converted








Class I diTPS
Substrate





SsSCS
ent-, syn-, (+)-CPP, (+)-8-LPP, ent-8-LPP, KPP, 9-LPP


CfTPS3
syn-, (+)-CPP, (+)-8-LPP, ent-8-LPP, KPP, 9-LPP


EpTPS8
ent-, (+)-CPP, 9-LPP, KPP


ArTPS3
PgPP, (+)-CPP, (+)-8-LPP, ent-CPP


OmTPS4
PgPP, (+)-CPP, (+)-8-LPP, ent-CPP


MvTPS5
syn-, (+)-CPP, (+)-8-LPP, KPP, 9-LPP


EpTPS1
ent-CPP, ent-8-LPP


KgTPS2
ent-, syn-, (+)-CPP, (+)-8-LPP, ent-8-LPP, KPP, 9-LPP





Ss Salvia sclarea;


Cf Coleus forskohlii;


Ep Euphorbiapeplus;


Ar Ajuga reptans;


Om Origanum majoranum;


Mv Marrubium vulgare;


Kg Kitasatospora griseola.






All enzymes in Table 2 were functionally expressed. Microbial sequences were expressed as synthetic variants, expression optimized for E. coli. See also FIG. 7.


One example of an enzyme that can accept multiple unnatural substrates is CfTps2, which the inventors have demonstrated can provide the first step in synthesis of the cardiac stimulant and cognition enhancer forskolin. CfTps2 derived from Coleus forskohiii (also referred to as Plectranthus barbatus), an is shown below as SEQ ID NO:69.













1
MKMLMIKSQE
RVHSIVSAWA
NNSNKRQSLG
HQIRRKQRSQ





41
VTECRVASLD
ALNGIQKVGP
ATIGTPEEEN
KKIEDSIEYV





81
KELLKTMGDG
RISVSPYDTA
IVALIKDLEG
GDGPEFPSCL





121
EWIAQNQLAD
GSWGDHFFCI
YDRVVNTAAC
VVALKSWNVH





161
ADKIEKGAVY
LKENVHKLKD
GKIEHMPAGF
EFVVPATLER





201
AKALGIKGLP
YDDPFIREIY
SAKQTRLTKI
PKGMIYESPT





241
SLLYSLDGLE
GLEWDKILKL
QSADGSFITS
VSSTAFVFMH





281
TNDLKCHAFI
KNALTNCNGG
VPHTYPVDIF
ARLWAVDRLQ





321
RLGISRFFEP
EIKYLMDHIN
NVWREKGVFS
SRHSQFADID





361
DTSMGIRLLK
MHGYNVNPNA
LEHFKQKDGK
FTCYADQHIE





401
SPSPMYNLYR
AAQLRFPGEE
ILQQALQFAY
NFLHENLASN





441
HFQEKWVISD
HLIDEVRIGL
KMPWYATLPR
VEASYYLQHY





481
GGSSDVWIGK
TLYRMPEISN
DTYKILAQLD
FNKCQAQHQL





521
EWMSMKEWYQ
SNNVKEFGIS
KKELLLAYFL
AAATMFEPER





561
TQERIMWAKT
QVVSRMITSF
LNKENTMSFD
LKIALLTQPQ





601
HQINGSEMKN
GLAQTLPAAF
RQLLKEFDKY
TRHQLRNTWN





641
KWLMKLKQGD
DNGGADAELL
ANTLNICAGH
NEDILSHYEY





681
TALSSLTNKI
CQRLSQIQDK
KMLEIEEGSI
KDKEMELEIQ





721
TLVKLVLQET
SGGIDRNIKQ
TFLSVFKTFY
YRAYHDAKTI





761
DAHIFQVLFE
PW








The CfTps2 enzyme can also serve as the first step in production of sclareol, manoyl oxide and structurally related compounds which are industrial precursors for ambroxoid fragrance substances.


Similarly, the neo-cleroda-4(18),13E-dienyl diphosphate synthase, which affords entry into a class of insect-antifeedants ArTPS2 is of particular interest for applications in agricultural biotechnology. Neo-clerodane diterpenoids, particularly those with an epoxide moiety at the 4(18) position, such as clerodin, the ajugarins, and the jodrellins have garnered significant attention for their ability to deter insect herbivores. The 4(18) desaturated product of ArTPS2 could be used in biosynthetic or semisynthetic routes to these potent insect antifeedants (BRH: compound 38, below).




embedded image


The ability to modify, in a targeted manner, these biological active or industrially significant natural products would facilitate the design, testing, and production of novel materials and biologically active agents.


EXAMPLE 8
Enzymatic Pathway to Jolkinol C

Genetic information was used to reconstruct the pathways to the pharmacologically active cyclic AMP booster forskolin, and jolkinol C (FIG. 8), which are precursors of phorbol esters drugs with unique anti-cancer, anti-HIV and analgesic activities.


For example, the inventors have described a CYP726A27 from Euphorbia lathyris, which has the following sequence (SEQ ID NO:70).













1
MDLQLQIPSY
PIIFSFFIFI
FMLIKIWKKQ
TQTSIFPPGP





41
FKFPIVGNIP
QLATGGTLPH
HRLRDLAKIY
GPIMTIQLGQ





81
VKSVVISSPE
TAKEVLKTQD
IQFADRPLLL
AGEMVLYNRK





121
DILYGTYGDQ
WRQMRKICTL
ELLSAKRIQS
FKSVREKEVE





161
SFIKTLRSKS
GIPVNLTNAV
FELTNTIMMI
TTIGQKCKNQ





201
EAVMSVIDRV
SEAAAGFSVA
DVFPSLKFLH
YLSGEKTKLQ





241
KLHKETDQIL
EEIISEHKAN
AKVGAQADNL
LDVLLDLQKN





281
GNLQVPLTND
NIKAATLEMF
GAGSDTSSKT
TDWAMAOMMR





321
KPTTMKKAQE
EVRRVFGENG
KVEESRIQEL
KYLKLVVKET





361
LRLHPAVALI
PRECREKTKI
DGFDIYPKTK
ILVNPWAIGR





401
DPKVWNEPES
FNPERFQDSP
IDYKGTNFEL
IPFGAGKRIC





441
PGMTLGITNL
ELFLANLLYH
FDWKFPDGIT
SENLDMTEAI





481
GGAIKRKLDL
ELISIPYTSS








The inventors have also described a CYP71D445 from Euphorbia lathyris, which has the following sequence (SEQ ID NO:71).













1
MELEFRSPSS
PSEWAITSTI
TLLFLILLRK
ILKPKTPTPN





41
LPPGPKKLPL
IGNIHQLIGG
IPHQKMRDLS
QIHGPIMHLK





81
LGELENVIIS
SKEAAEKILK
THDVLFAQRP
QMIVAKSVTY





121
DEHDITFSPY
GDYWRQLRKI
TMIELLAAKR
VLSFRAIREE





161
ETTKLVELIR
GFQSGESINF
TRMIDSTTYG
ITSRAACGKI





201
WEGENLFISS
LEKIMFEVGS
GISFADAYPS
VKLLKVFSGI





241
RIRVDRLQKN
IDKIFESIIE
EHREERKGRK
KGEDDLDLVD





281
VLLNLQESGT
LEIPLSDVTI
KAVIMDMFVA
GVDTSAATTE





321
WLMSELIKNP
EVMKKAQAEI
REKFKGKASI
DEADLQDLHY





361
LKLVIKETFR
LHPSVPLLVP
RECRESCVIE
GYDIPVKTKI





401
MVNAWAMGRD
TKYWGEDAEK
FKPERFIDSP
IDFKGHNFEY





441
LPFGSGRRSC
PGMAFGVANV
EIAVAKLLYH
FDWRLGDGMV





481
PENLDMTEKI
GGTTRRLSEL
YIIPTPYVPQ
NSA








embedded image


As illustrated, GGPP is cyclized to the irregular diterpene scaffold Casbene, which is subsequently oxidized and further re-arranged by P450 enzymes and an ADH1. All the functionalization enzymes involved are inherently promiscuous.


EXAMPLE 9
Selective Exploration of Substrate Tolerance of Two Model Pathways Functionalizing Bioactive Labdane-Type and Irregular, Macrocyclic Diterpenes

The inventors have earlier established the metabolic pathway for oxidative functionalization of casbene to jolkinol C within Euphorbia (FIG. 8) and they have established functional yeast (S. cerevisiae) lines expressing the complete pathways from sugar to the labdane-type diterpene forskolin (40 mg/L), as illustrated below.




embedded image


Yeast lines expressing the corresponding characterized functionalization pathways only, i.e., P450s, ACTs and ADHs, can be supplemented with natural untested, and unnatural diterpenes synthetic analogs. Products and intermediates can be purified through the procedures described herein. The structurally elucidated products so generated can include rationally designed derivatives that are not accessible through formal synthesis. Analogs of forskolin are of high interest for their specificity to interact with the specific subgroups of adenylate cyclase, while jolkinol C analogs, not being an immediate pharmaceutical candidate, based on current knowledge, can serve as lead compounds for further chemical diversification.


EXAMPLE 10
Use of Natural and Unnatural Diterpene Scaffolds in Biosynthetic Routes for the Labdane-Type Forskolin and Non-Labdane Type Ingenol Therapeutics

The inventors have shown highly efficient conversion of labdane-type, synthetic diterpenes, by yeast cell lines expressing P450 enzymes (Hamberger et al. Plant Physiol. 157: 1677-1695 (2011)). See FIG. 9A-9C. The enzymes also showed conversion of non-native (yet natural) diterpenes into the corresponding oxidized forms, in the limited range where tested. Analogously, an acyl transferase was identified, which indiscriminately converted accessible alcohols into the corresponding acetyl-esters of forskolin (Pateraki et al. Elife 6 (2017).


Yeast cell lines are generated in the industrial strain CEN.PK (CEN.PK2-1C, MATa; his3D1; leu2-3_112; ura3-52; trpl-289; MAL2-8c, SUC2; Entian et al. Methods in Microbiology 36: 629-666 (2007)) that exhibited several advantages, including improved transformability and high tolerance for functionalized terpenoids. Also, the EasyClone 2.0 set of integrative vectors can be used as appropriate for over-expression of heterologous genes in industrial yeast strains. The vectors allow for selection in auxotrophic yeast strains (four different selection markers) and can carry two genes each, which allows for generation of multigene pathways. As the compounds are supplemented to the cultures, this project will not require engineering of the diterpene scaffold biosynthesis, significantly simplifying the generation of yeast strains. P450s, the corresponding cytochrome P450 reductase and enzymes encoding downstream functionalization steps can be stably, chromosomally integrated and driven by various promoters, including constitutive promoters. Isolation of products and analysis can be adapted to the physicochemical properties of the molecules. LC/MS can be used for analysis to offset problems with increasing oxygenation and the increased polarity of products.


EXAMPLE 11
Bioactivity of Unnatural Forskolin and Related Intermediate Labdane-Type Products with Adenylyl Cyclase

Forskolin derivatives are tested for their activity at a representative of each of the three families of membrane adenylyl cyclase (AC1, AC2, and AC5; Dessauer et al. Pharmacol. Rev. 69: 93 LP-139 (2017)). Activation of AC1 could be a potential cognition enhancing target while inhibition may be beneficial in Fragile X syndrome—a genetic autism syndrome. Counter-screens can be done to assess selectivity against AC2 and AC5. Activation of AC5 would be expected to mediate cardiovascular side effects and inhibition may be beneficial. Forskolin itself activates all subtypes of AC so identifying novel derivatives that show selective activation of AC1 without stimulating AC2 or AC5 would be of significant interest. A full exploration of AC drug discovery is beyond the scope of this technology development grant application, but this section will provide initial proof-of-concept results to show potential value of our synthetic biology compound library approach in rationally designing specificity into a known terpenoid AC modulator, forskolin.


AC activity can be tested, as described by Feng et al. Neurology 89: 762 LP-770 (2017) with enhancements made possible by a novel ACA3/6 HEK cell line (Doyle et al. Biochem. Pharmacol. 163: 169-177 (2019)). The inventors can perform subtype-enriched cell-based assays using HEK293 cells transfected with AC1, AC2, and AC5. Cells with vector control plasmid or with plasmids for AC1, 2, or 5 can be stimulated with various concentrations of forskolin analogs (100 nM-30 μM) in the presence of the general PDE inhibitor IBMX. cAMP production can be assessed using the LANCE Ultra cAMP kit (Perkin Elmer; Waltham, Mass.) which is based on a TR-FRET detection method as described by Feng et al. (Neurology 89: 762 LP-770 (2017), see supplement). ACD73/6 HEK-293 cells transfected as indicated above are dissociated from dishes using Versene on the day of experiment. Two thousand cells cells/well in 5 μlin white 384-well microplate (Perkin Elmer) are incubated with various concentrations of forskolin or analogs for 30 min at room temperature. DMSO (0.1%) will be included in all samples for control and forskolin analogs. A cAMP standard curve was generated in triplicate according to the manual. Finally, europium (Eu)-cAMP tracer (54) and ULight™-anti-cAMP (54) were added to each well and incubated for lh at room temperature. Plates will be read on a TR-FRET microplate reader (Synergy NEO; Biotek, Winooski, Vt.) in the MSU Assay Development and Drug Repurposing Core.


Data analysis for forskolin-analog concentration-response curves can include background subtraction of activity in mock-transfected cells to estimate AC1, 2, or 5 specific activity. The resulting curves will be analyzed by non-linear least squares regression analysis to a 4-parameter logistic equation (Rmin, Rmax, —logEC50 e.g. pEC50, and nH) using GraphPad Prism, as described by Feng et al. (Neurology 89:


762 LP-770 (2017). Where curves are well-defined, the pEC50 values for AC1, AC2, and AC5 as well as Rmax values are compared. Where curves may not provide a clear pEC50 value, major differences in Rmax can be noted. Significant selectivity can be defined as a 5-fold or greater differential potency (based on pEC50 values) or 5-fold or greater Rmax value for the chosen AC subtype. In addition to testing for AC activation, the inventors can also test for AC inhibition. Cells will be activated by a forskolin concentration that produces approximately 30% activation (ca. 1 μM) in the presence of increasing concentrations of the forskolin analogs. Any identified selective activators or any derivatives that significantly inhibit AC subtype activity can be tagged for future follow-up studies in receptor-regulated AC activity in HEK or native cells and in WT and AC-subtype KO animals (beyond the scope of the present application).


The catalytic capacities can be determined through gas chromatography and LC-MS analysis of products, i.e., substrate tolerance of entire assembled pathways, which will provide unique mechanistic insights (flux through the pathway, intermediates will indicate the order of conversion, potential steric/electronic hindrance). Hence, novel bioactive labdane and non-labdane type diterpenes can be identified. Structural elucidation of the products of biological interest can be performed using the procedures detailed herein. Analysis of their biological activity against a representative of adenylyl cyclases, either activation, or inhibition is expected to provide valuable data for structural refinement and is of pharmacological relevance.


EXAMPLE 12
{[(2E,6E,10E)-2,3,7,11,15-pentamethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate and {[(2Z,6E, 10E)-2,3,7,11,15-pentamethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate



embedded image


Ethyl (2E,6E,10E)-2,3,7,11,15-pentamethylhexadeca-2,6,10,14-tetraenoate and ethyl (2Z,6E,10E)-2,3,7,11,15-pentamethylhexadeca-2,6,10,14-tetraenoate. A 25.0 mL 14/20 round bottom flask was charged with sodium hydride (0.344 g, 8.60 mmol), tetrahydrofuran (4.00 mL) was, under an argon atmosphere at 0° C., was treated with triethyl-2-phosphonopropionate (2.05 g, 8.60 mmol) dissolved in tetrahydrofuran (1.00 mL). Once gas evolution ceased, farnesyl acetone (2.25 g, 8.60 mmol) was added, dissolved in tetrahydrofuran (1.00 mL), and the mixture heated to 45° C. for 24 hours. The mixture was cooled to 0° C., quenched with water, and partitioned into ethyl acetate. The organic layer was then washed with brine, dried over sodium sulfate, filtered, and concentrated to dryness. The crude product was dissolved in ethanol (20.0 mL) and cooled to 0° C. Sodium borohydride, to reduce any remaining ketone to ease purification, was added (0.312 g, 8.30 mmol) and the mixture was stirred for 1 hour at room temperature, cooled to 0° C. and quenched with 1.00 N hydrochloric acid. The reaction mixture was concentrated in vacuo and partitioned between ethyl acetate and water. The organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The product was purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to yield a mixture of ethyl (2E,6E,10E)-2,3,7,11,15-pentamethylhexadeca-2,6,10,14-tetraenoate and ethyl (2Z,6E,10E)-2,3,7,11,15-pentamethylhexadeca-2,6,10,14-tetraenoate (1.50 g, 50%). 1H NMR (500 MHz, CDCl3) δ 5.18-5.04 (m, 3H), 4.22-4.13 (m, 2H), 2.35 (dd, J=9.6, 6.4 Hz, 1H), 2.20-2.02 (m, 9H), 2.02-1.94 (m, 5H), 1.89-1.82 (m, 3H), 1.78 (d, J=3.3 Hz, 1H), 1.68 (s, 5H), 1.60 (d, J=6.5 Hz, 7H), 1.29 (td, J=7.2, 4.0 Hz, 3H).


(2E,6E,10E)-2,3,7,11,15-pentamethylhexadeca-2,6,10,14-tetraen-1-ol and (2Z,6E,10E)-2,3,7,11,15-pentamethylhexadeca-2,6,10,14-tetraen-1-ol. A 50.0 mL 24/40 round bottom flask was charged with a mixture of ethyl (2E,6E,10E)-2,3,7,11,15-pentamethylhexadeca-2,6,10,14-tetraenoate and ethyl (2Z,6E,10E)-2,3 ,7,11,15 -pentamethylhexadeca-2,6,10,14-tetraenoate (1.10 g, 3.17 mmol), dichloromethane (15.0 mL) and on cooling to 0° C. (argon atmosphere) was treated with a 1.00 M solution of diisobutylaluminum hydride (12.7 mL, 12.7 mmol) in heptanes. The reaction was stirred for 24 hours, the mixture allowed to warm to room temperature then quenched with ethanol (2.00 mL). A solution of sodium potassium tartrate was added (4.50 g, 15.9 mmol in 20.0 mL water) and the biphasic mixture stirred vigorously for 24 hours. The product was then extracted with dichloromethane, the organic layers combined, dried over sodium sulfate, filtered, and concentrated in vacuo to an oil used without further purification (0.722 g, 75%). 1H NMR (500 MHz, CDCl3) δ 5.18-5.06 (m, 3H), 4.15-4.05 (m, 2H), 2.20-1.91 (m, 12H), 1.76 (ddd, J=11.4, 3.0, 1.5 Hz, 4H), 1.71-1.66 (m, 6H), 1.64-1.58 (m, 8H). HRMS ESI (+) calc'd for [M+Na]=327.2664, found=327.2662.


{[(2E,6E,10E)-2,3,7,11,15-pentamethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate and {[(2Z,6E,10E)-2,3,7,11,15-pentamethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate. A 100 mL 24/40 round bottom flask was charged with a mixture of (2E,6E,10E)-2,3,7,11,15-pentamethylhexadeca-2,6,10,14-tetraen-1-ol and (2Z,6E,10E)-2,3 ,7,11,15 -pentamethylhexadeca-2,6,10,14-tetraen-1-ol (0.300 g, 1.00 mmol), diethyl ether (5.00 mL) and, under an argon atmosphere, at 0° C. phosphorus tribromide (0.0500 mL, 0.500 mmol) added as a solution in diethyl ether (1.00 mL). After 15 minutes the mixture was diluted with hexanes, washed with brine, sodium bicarbonate and brine, dried over sodium sulfate, filtered, and concentrated in vacuo to dryness as an oil. The residue was redissolved in acetonitrile (5.00 mL), under an argon atmosphere, and treated with tetrabutylammonium pyrophosphate (2.10 g, 2.30 mmol). After 2 hours the reaction mixture was concentrated in vacuo to a viscous liquid and purified on a DOWEX50 column prepared by first stirring the resin (8.70 g) in concentrated ammonium hydroxide (30.0 mL) for 20 minutes. The resin was filtered and washed four times with water (100 mL), suspended in a buffer (20.0 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate mixture) and poured into a column. The excess 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer was drained from the column and the crude product applied to the column (dissolved in 3.00 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a waxy solid (0.550 g, 100%). 31P NMR (202 MHz, Deuterium Oxide) δ −8.57, −10.48 (d, J=20.2 Hz). HRMS ESI [M—H] calcd=463.2020, observed=463.2038.


EXAMPLE 13
{[(2Z,6E,10E)-2-fluoro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate and {[(2E,6E,10E)-2-fluoro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate.



embedded image


Ethyl (2Z,6E,10E)-2-fluoro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate and ethyl (2E,6E,10E)-2-fluoro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate. A 50.0 mL 14/20 round bottom flask was charged with sodium hydride (0.705 g, 21.0 mmol), tetrahydrofuran (20.0 mL) and at 0° C. (argon atmosphere) was added triethyl-2-fluoro-phosphonoacetate (4.84 g, 20.0 mmol) dissolved in tetrahydrofuran (5.00 mL) via syringe. Once gas evolution ceased, farnesyl acetone (2.62 g, 10 0 mmol) was added as a solution in tetrahydrofuran (1.00 mL). The mixture was heated to 45° C. for 22 hours, then concentrated and partitioned between ethyl acetate and 1.00 N hydrochloric acid. The organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to yield the pure product as a mixture of cis and trans isomers ethyl (2Z,6E,10E)-2-fluoro-3,7,11,15 -tetramethylhexadeca-2,6,10,14-tetraenoate and ethyl (2E,6E,10E)-2-fluoro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate (3.43 g, 98%). 1H NMR (500 MHz, CDCl3) δ 5.18-5.04 (m, 3H), 4.38-4.21 (m, 3H), 4.11 (p, J=7.2 Hz, 1H), 2.58-2.48 (m, 1H), 2.25 (tt, J=8.8, 4.6 Hz, 1H), 2.16 (dq, J=14.1, 7.0 Hz, 2H), 2.11-2.00 (m, 7H), 1.97 (q, J=7.9 Hz, 3H), 1.86 (d, J=4.3 Hz, 2H), 1.68 (d, J=3.7 Hz, 5H), 1.60 (t, J=4.6 Hz, 7H). 19F NMR (470 MHz, CDCl3) δ −126.96 (dd, J=14.3, 4.8 Hz), −128.66-−128.97 (m).


(2Z,6E,10E)-2-fluoro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol and (2E,6E,10E)-2-fluoro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol. A 50.0 mL 24/40 round bottom flask was charged with a mixture of ethyl (2Z,6E,10E)-2-fluoro-3,7,11,15 -tetramethylhexadeca-2,6,10,14-tetraenoate and ethyl (2E,6E,10E)-2-fluoro-3,7,11,15 -tetramethylhexadeca-2,6,10,14-tetraenoate (2.31 g, 6.50 mmol), dichloromethane (20.0 mL) and under an argon atmosphere at 0° C. was added diisobutylaluminum hydride (27.0 mL, 27.0 mmol, 1.00 M in heptanes). The reaction was stirred for 18 hours, warming to room temperature, then quenched with ethanol (5.00 mL) and a solution of sodium potassium tartrate was added (7.00 g, 24.8 mmol in 50.0 mL water). The biphasic mixture was stirred vigorously for 24 hours. The mixture was partitioned in a separatory funnel and the aqueous layer washed with dichloromethane. The organic layers were combined, dried over sodium sulfate, filtered, and concentrated in vacuo to an oil. The crude material was purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to yield the products (2Z,6E,10E)-2-fluoro-3,7,11,15 -tetramethylhexadeca-2,6,10,14-tetraen-1-ol and (2E,6E,10E)-2-fluoro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol as a mixture of cis and trans isomers (0.859 g, 43%). 1H NMR (500 MHz, CDCl3) δ 5.11 (dt, J=14.5, 7.5 Hz, 3H), 4.22 (dd, J=22.4, 16.6 Hz, 2H), 4.11 (p, J=7.2 Hz, 1H), 2.05 (tdd, J=33.1, 30.9, 10.8, 4.5 Hz, 12H), 1.69 (q, J=3.6, 3.1 Hz, 7H), 1.60 (t, J=3.2 Hz, 8H). 19F NMR (470 MHz, CDCl3) δ −119.15 -−120.01 (m), −121.10-−121.57 (m). HRMS ESI (+) calc'd for [M+Na]=331.2412, found=331.2442.


{[(2Z,6E,10E)-2-fluoro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate and {[(2E,6E,10E)-2-fluoro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate. A 25.0 mL 14/20 round bottom flask was charged with a mixture of (2Z,6E,10E)-2-fluoro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol and (2E,6E,10E)-2-fluoro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol (0.200 g, 0.640 mmol), diethyl ether (5.00 mL) and at 0° C., under an argon atmosphere, was added phosphorus tribromide (0.270 g, 1.00 mmol) dissolved in diethyl ether (1.00 mL). After 15 minutes, the reaction was partitioned between hexanes and brine. The organic layer was washed with sodium bicarbonate, brine, dried over sodium sulfate, filtered, and concentrated in vacuo to an oil. This crude mixture of isomers was dissolved in acetonitrile (2.00 mL), under an argon atmosphere, and treated with tetrabutylammonium pyrophosphate (0.904 g, 1.00 mmol). The reaction mixture was stirred for 2 hours, concentrated in vacuo to a viscous liquid and purified over DOWEX50 (9.40 g) resin. The resin was prepared by first stirring the DOWEX50 in concentrated ammonium hydroxide (30.0 mL) for 20 minutes. The resin was then filtered and washed four times with water (100 mL), then suspended in a buffer (20.0 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate) and poured into a column. The excess 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer was drained from the column and the crude product material applied to the top of the column (dissolved in 3.00 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a waxy solid (0.250 g, 84%). 31P NMR (202 MHz, Deuterium Oxide) δ −9.34, −11.34. 19F NMR (470 MHz, D2O) δ −117.52 (d, J=133.4 Hz), −118.74 (d, J=144.3 Hz). HRMS ESI [M−H] calcd=467.1769, observed=467.1786.


EXAMPLE 14
{[(2E,6E,10E)-2-ethyl-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate and {[(2Z,6E,10E)-2-ethyl-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate.



embedded image


Ethyl (2E,6E,10E)-2-ethyl-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate and ethyl (2Z,6E,10E)-2-ethyl-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate. A 25.0 mL 14/20 round bottom flask was charged with sodium hydride (0.839 g, 34.9 mmol), tetrahydrofuran (20.0 mL) was, under argon atmosphere at 0° C., charged with triethyl phosphonobutyrate (4.89 g, 19.4 mmol) dissolved in tetrahydrofuran (2.00 mL). Once gas evolution ceased farnesyl acetone (1.05 g, 4.00 mmol) was added as a solution in tetrahydrofuran (2.00 mL). The reaction mixture was heated to 45° C. for 170 hours, cooled to 0° C., quenched with water and partitioned between ethyl acetate and water. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated in vacuo to provide a mixture of ethyl (2E,6E,10E)-2-ethyl-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate and ethyl (2Z,6E,10E)-2-ethyl-3,7,11,15 -tetramethylhexadeca-2,6,10,14-tetraenoate, in a 1 to 1 mixture, and unreacted farnesyl acetone. The crude mixture was dissolved in ethanol (20.0 mL), cooled to 0° C. and unreacted farnesyl acetone was reduced with sodium borohydride (0.230 g, 6.20 mmol) to ease purification. The reaction mixture was stirred for 1 hour, allowed to warm to room temperature, cooled to 0° C. and quenched with 1.00 N hydrochloric acid. The reaction mixture was concentrated in vacuo, partitioned between ethyl acetate and water, the organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The mixture was purified by silica gel chromatography (0-10% ethyl acetate in hexanes) to yield a mixture of cis and trans isomers, ethyl (2E,6E,10E)-2-ethyl-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate and ethyl (2Z,6E,10E)-2-ethyl-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate (0.770 g, 31%). 1H NMR (500 MHz, CDCl3) δ 5.12 (dt, J=13.8, 6.0 Hz, 3H), 4.24-4.07 (m, 2H), 2.35-2.21 (m, 3H), 2.19-1.88 (m, 12H), 1.78 (s, 1H), 1.68 (s, 5H), 1.60 (d, J=5.0 Hz, 8H), 1.29 (td, J=7.1, 5.4 Hz, 3H), 1.04-0.80 (m, 3H).


(2E,6E,10E)-2-ethyl-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol and (2Z,6E,10E)-2-ethyl-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol. A 50.0 mL 24/40 round bottom flask was charged with a mixture ethyl (2E,6E,10E)-2-ethyl-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate and ethyl (2Z,6E,10E)-2-ethyl-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate (0.720 g, 2.00 mmol), dichloromethane (20.0 mL) and at 0° C., under an argon atmosphere, treated with diisobutylaluminum hydride (10.0 mL, 10.0 mmol, 1.00 M in heptanes). The mixture was stirred for 18 hours, warming to room temperature. The mixture was again cooled to 0° C., quenched with ethanol (2.00 mL), and a solution of sodium potassium tartrate added (7.10 g, 24.8 mmol in 50.0 mL water) and the biphasic mixture vigorously stirred for 24 hours. The reaction mixture was partitioned, and the aqueous layer washed with dichloromethane. The organic layers were combined, dried over sodium sulfate, filtered, and concentrated in vacuo to an oil. The crude material was purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to yield an oil (mixture of cis and trans isomers, 0.622 g, 98%). 1H NMR (500 MHz, CDCl3) δ 5.12 (dttd, J=12.5, 5.5, 2.8, 1.4 Hz, 3H), 4.17-4.06 (m, 2H), 2.22-2.12 (m, 3H), 2.08 (tq, J=10.7, 6.2, 5.1 Hz, 8H), 2.02-1.94 (m, 3H), 1.77 (s, 1H), 1.73-1.67 (m, 6H), 1.65-1.57 (m, 8H), 1.01 (qd, J=7.9, 5.5 Hz, 3H), 0.94-0.80 (m, 2H). HRMS ESI (+) calc'd for [M+Na]=341.2820, found=341.2816.


{[(2E,6E,10E)-2-ethyl-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate and {[(2Z,6E,10E)-2-ethyl-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate. A 25.0 mL 14/20 round bottom flask was charged with a mixture of (2E,6E,10E)-2-ethyl-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol and (2Z,6E,10E)-2-ethyl-3,7,11,15 -tetramethylhexadeca-2,6,10,14-tetraen-1-ol (0.311 g, 1.00 mmol) and anhydrous diethyl ether (5.00 mL). The reaction vessel was sealed, flushed with argon, cooled to 0° C. and phosphorus tribromide (0.405 g, 1.50 mmol) was added dissolved in diethyl ether (1.00 mL). After 15 minutes, the reaction was partitioned between hexanes and brine. The organic layer was then washed with sodium bicarbonate, brine, dried over sodium sulfate, and concentrated in vacuo to dryness as an oil. To this material was added acetonitrile (2.00 mL) and tetrabutylammonium pyrophosphate (0.585 g, 0.645 mmol). The reaction vessel was sealed and stirred, under an argon atmosphere, for 2 hours, then concentrated to a viscous liquid and purified over DOWEX50 resin column. The column was prepared by stirring DOWEX50 resin (8.50 g) in concentrated ammonium hydroxide (30.0 mL) for 20 minutes. The resin was filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20.0 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate) and poured into a column The excess 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer was drained from the column and the crude material was applied to the column (dissolved in 3.00 mL of the 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a waxy solid (0.230 g, 48%). 31P NMR (202 MHz, Methanol-d4) δ −5.96, −9.82 (d, J=19.2 Hz). HRMS ESI [M−H] calcd.=477.2177, observed=477.2190.


EXAMPLE 15
{[(5E,9E)-6,10,14-trimethyl-2-oxopentadeca-5,9,13-trien-1-yl phosphonato]oxy}phosphonate.



embedded image


{[(5E,9E)-6,10,14-trimethyl-2-oxopentadeca-5,9,13-trien-1-yl phosphonato]oxy} phosphonate. Using a reported procedure (Hu, T.; Corey, E. J.; Org. Lett., 2002, 4, 2441) a 25.0 mL 14/20 round bottom flask was charged with farnesyl acetone (0.524 g, 2.00 mmol), dichloromethane (32.0 mL), and cooled to 0° C. (argon atmosphere). Diisopropylethylamine (1.55 g, 12.0 mmol) was added, followed by trimethylsilyl triflate (1.77 g, 6.00 mmol) and the mixture stirred at 0° C. for 1.5 hours and then quenched by the addition of sodium bicarbonate. The mixture was extracted with hexanes, the organic layers combined, dried over sodium sulfate, filtered, and concentrated to yield an oil (0.720 g). The crude material was dissolved in tetrahydrofuran (40.0 mL) and solid sodium bicarbonate (0.189 g, 2.25 mmol) was added. The mixture was cooled to −78° C. and, under an argon atmosphere, n-bromosuccinimide (0.371 g, 2.10 mmol) added. The reaction mixture was stirred for 2 hours at −78° C., warmed to room temperature, filtered, and concentrated to yield the crude as a 1:4 mixture of starting material and bromide product (0.572 g, 55%). The crude product was dissolved in acetonitrile (3.00 mL) and tetrabutylammonium pyrophosphate (1.23 g, 1.30 mmol) added. The reaction was stirred at room temperature, under an argon atmosphere for 2 hours, concentrated and purified over DOWEX50 resin according to the following method. DOWEX50 resin (11.8 g) was stirred in concentrated ammonium hydroxide (40.0 mL) for 20 minutes. The resin was filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20.0 mL of 1:49 2-propanol: 25.0 millimolar aqueous ammonium bicarbonate) and poured into a column. The excess 1:49 2-propanol: 25.0 millimolar aqueous ammonium bicarbonate buffer was drained from the column and the crude material was applied to the column (dissolved in 3.00 mL of the 1:49 2-propanol: 25.0 millimolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL of the 1:49 2-propanol: 25.0 millimolar aqueous ammonium bicarbonate buffer and lyophilized to a waxy solid (0.692 g, 68%). 31P NMR (202 MHz, Deuterium Oxide) δ −5.91, −10.60. HRMS ESI [M−H] calcd=437.1500, observed=437.1511.


EXAMPLE 16
{[2-({[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}methyl)prop-2-en-1-yl phosphonato]oxy}phosphonate



embedded image


2-({ [(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}methyl)prop en-1-ol. A 25.0 mL 14/20 round bottom flask was charged with trans, trans-farnesol (0.889 g, 4.00 mmol), diethyl ether (8.00 mL) and at 0° C. was, under an argon atmosphere, added phosphorus tribromide (1.35 g, 5.00 mmol) dissolved in diethyl ether (1.00 mL). After 1 hour the reaction mixture was diluted with hexanes, washed with brine, sodium bicarbonate, and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to yield trans, trans-farnesyl bromide. A separate 25.0 mL 14/20 round bottom flask was charged with sodium hydride (0.336 g, 10.0 mmol), tetrahydrofuran (8.00 mL) and at to 0° C., under an argon atmosphere, 2-methylidenepropane-1,3-diol (0.704 g, 8.00 mmol) was added in a dropwise fashion. Once gas evolution had ceased, the trans, trans-farnesyl bromide was added (dissolved in 3.00 mL tetrahydrofuran). The reaction was heated to 45° C. for 19 hours, quenched with saturated aqueous ammonium chloride (10.0 mL) and partitioned with ethyl acetate. The crude material was purified by silica gel chromatography (10-100% ethyl acetate in hexanes) to yield the pure product as an oil (0.900 g, 77%). 1H NMR (500 MHz, CDCl3) δ 5.82 (dddd, J=12.6, 7.7, 4.6, 1.4 Hz, 1H), 5.72 (dtd, J=11.1, 6.1, 1.3 Hz, 1H), 5.35 (ddt, J=6.9, 5.5, 1.3 Hz, 1H), 5.14-5.05 (m, 2H), 4.20 (d, J=6.3 Hz, 2H), 4.06-4.03 (m, 2H), 4.01 (d, J=6.9 Hz, 2H), 2.10 (dd, J=14.5, 6.9 Hz, 3H), 2.07-2.01 (m, 5H), 1.97 (dd, J=9.1, 6.2 Hz, 3H), 1.67 (s, 6H), 1.59 (s, 6H). HRMS ESI (+) calc'd for [M+Na]=315.2300, found=315.2314.


{[2-({[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}methyl)prop-2-en-1-yl phosphonato]oxy}phosphonate. A 25.0 mL 14/20 round bottom flask was charged with 2-({[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}methyl)prop-2-en-1-ol (0.200 g, 0.680 mmol), ether (3.00 mL) and treated, under an argon atmosphere at 0° C., with phosphorus tribromide (0.270, 1.00 mmol) dissolved in diethyl ether (1.00 mL). The reaction mixture was stirred for 30 minutes at 0° C. The organic layer was dried over sodium sulfate, filtered, and concentrated to yield crude (6E,10E)-12-{[2-(bromomethyl)prop-2-en-1-yl]oxy}-2,6,10-trimethyldodeca-2,6,10-triene (0.182 g, 72%). The crude material was dissolved in acetonitrile (2.00 mL), tetrabutylammonium pyrophosphate (0.634 g, 0.7 mmol) was added, the reaction mixture was stirred under argon for 3 hours, at which time it was concentrated and purified over DOWEX50 resin according to the following method. DOWEX50 resin (11.8 g) was stirred in concentrated ammonium hydroxide (40.0 mL) for 20 minutes. The resin was filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20.0 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate) and poured into a column. The excess 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer was drained from the column and the crude material was applied to the column (dissolved in 3.0 mL of the 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL of the 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a waxy solid (0.259 g, 90%). 31P NMR (202 MHz, Deuterium Oxide) δ −5.98 (t, J=21.2 Hz), −9.92 (d, J=20.2 Hz). HRMS ESI [M−H] calc'd=451.1656, observed=451.1666.


EXAMPLE 17
{[(2E)-4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}but-2-en-1-yl phosphonato]oxy}phosphonate



embedded image


(2E)-4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}but-2-en-1-ol. A 25.0 mL 14/20 round bottom flask was charged with trans, trans-farnesol (0.222 g, 1.00 mmol), diethyl ether (5.00 mL) and at 0° C., under an argon atmosphere, phosphorus tribromide (0.475 mL, 5.00 mmol) dissolved in diethyl ether (1.00 mL) was added. The mixture was stirred for 30 minutes, diluted with hexanes, washed with brine, sodium bicarbonate, and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to yield trans, trans-farnesyl bromide. A separate 25.0 mL 14/20 round bottom flask was charged with sodium hydride (0.134 g, 4.00 mmol), tetrahydrofuran (6.00 mL) and, under an argon atmosphere at 0° C., but-2-ene-1,4-diol (purchased commercially) was added (0.178 g, 2.00 mmol) in a dropwise fashion. Once gas evolution had ceased, the trans, trans-farnesyl bromide previously prepared was added as a solution in tetrahydrofuran (3.00 mL). The reaction was heated to 45° C. for 19 hours, quenched with saturated ammonium chloride (10.0 mL) and partitioned with ethyl acetate. The crude material was purified by silica gel chromatography (10-100% ethyl acetate in hexanes) to yield the pure product as a clear oil (0.252 g, 86%). 1H NMR (500 MHz, CDCl3) δ 5.89-5.58 (m, 3H), 5.38-5.30 (m, 1H), 5.13-5.04 (m, 2H), 4.70-4.62 (m, 2H), 4.25 (dd, J=6.8, 1.4 Hz, 1H), 4.20 (d, J=6.4 Hz, 2H), 4.04 (d, J=6.2 Hz, 2H), 4.00 (d, J=7.0 Hz, 2H), 2.17-1.90 (m, 8H), 1.67 (s, 6H), 1.59 (s, 6H). HRMS ESI (+) calc'd for [M+Na]=315.2300, found=315.2300.


{[(2E)-4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}but-2-en-1-yl phosphonato]oxy}phosphonate. A 25.0 mL 14/20 round bottom flask was charged with (2E)-4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}but-2-en-1-ol (0.314 g, 1.10 mmol), diethyl ether (3.00 mL) and at 0° C., under an argon atmosphere, was added phosphorus tribromide (0.324 g, 1.20 mmol). The mixture was stirred for 20 minutes, diluted with hexanes, washed with brine, sodium bicarbonate, and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to yield crude (6E,10E)-12-{[(2E)-4-bromobut-2-en-1-yl]oxy}-2,6,10-trimethyldodeca-2,6,10-triene (0.262 g, 62%). The crude material was dissolved in acetonitrile (2.00 mL), stirred and treated with tetrabutylammonium pyrophosphate (0.604 g, 0.660 mmol). The reaction mixture was stirred, under an argon atmosphere, for 2 hours, at which time it was concentrated in vacuo and purified over DOWEX50 resin column. The column was prepared by stirring DOWEX50 resin (8.50 g) in concentrated ammonium hydroxide (25.0 mL) for 20 minutes. The resin was filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20.0 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate) and poured into a column. The excess 1:49 2-propanol: 25.0 aqueous mmolar ammonium bicarbonate buffer was drained from the column and the crude material was applied to the column (dissolved in 3.00 mL of 1:49 2-propanol: 25 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a waxy solid (0.196 g, 44%). 31P NMR (202 MHz, Deuterium Oxide) δ −5.70-−6.25 (m), −9.92 (dd, J=66.8, 21.3 Hz). HRMS ESI [M−H] calcd=451.1656, observed=451.1662.


EXAMPLE 18
{[(2E)-3-methyl-4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}but-2-en-1-yl phosphonato]oxy}phosphonate



embedded image


tert-butyl({[2E)-3-methyl-4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}but-2-en-1-yl]oxy})diphenylsilane. A 25.0 mL 14/20 round bottom flask was charged with a stir bar, trans, trans-farnesol (0.444 g, 2.00 mmol), diethyl ether (10.0 mL) and phosphorus tribromide (0.812 g, 3.00 mmol dissolved in 1.00 mL diethyl ether) at 0° C. under an argon atmosphere. After 30 minutes the mixture was diluted with hexanes, washed with brine, sodium bicarbonate, and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to yield trans, trans-farnesyl bromide. A separate 25.0 mL 14/20 round bottom flask was charged with sodium hydride (0.087 g, 2.60 mmol), tetrahydrofuran (5.00 mL), and under argon at 0° C. (2E)-4-[(tert-butyldiphenylsilyl)oxy]-2-methylbut-2-en-1-ol (0.749 g, 2.20 mmol, prepared according to the method described in Oberhauser, C.; Harms, V.; Seidel, K.; Schrçder, B.; Ekramzadeh, K.; Beutel, S,; Winkler, S.; Lauterbach, L.; Dickschat, J. S.; and Kirschning, A.; Angew. Chemie. Int. Ed., 2018, 57, 11802.) was added. Once gas evolution ceased, the trans, trans-farnesyl bromide previously prepared was added as a solution dissolved in tetrahydrofuran (2.00 mL). The reaction was heated to 45° C. for 21 hours, quenched with saturated ammonium chloride (10.0 mL) and partitioned with ethyl acetate. The crude material was purified by silica gel chromatography (hexanes) to yield the pure product as an oil (0.390 g, 37%). 1H NMR (500 MHz, CDCl3) δ 7.75-7.67 (m, 4H), 7.47-7.36 (m, 6H), 5.66 (ddt, J=7.5, 4.9, 1.4 Hz, 1H), 5.37 (dddd, J=8.1, 5.5, 2.6, 1.3 Hz, 1H), 5.16-5.07 (m, 2H), 4.28 (dq, J=6.0, 0.9 Hz, 2H), 3.93 (d, J=6.6 Hz, 2H), 3.84 (d, J=1.2 Hz, 2H), 2.17-2.03 (m, 7H), 1.99 (dd, J=9.2, 5.9 Hz, 3H), 1.69 (q, J=1.3 Hz, 3H), 1.67 (d, J=1.4 Hz, 3H), 1.61 (dd, J=2.2, 1.2 Hz, 6H), 1.50 (t, J=1.1 Hz, 3H), 1.06 (d, J=2.8 Hz, 9H).


(2E)-3-methyl-4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}but-2-en-1-ol. A 50.0 mL 24/40 round bottom flask was charged with tert-butyl({[(2E)-3-methyl-4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}but-2-en-1-yl]oxy})diphenylsilane (1.01 g, 1.90 mmol) and a stir bar. Under an argon atmosphere, tetrabutylammonium fluoride was added (15.0 mL, 15.0 mmol). The reaction mixture was heated to 45° C. for 16 hours, diluted with ethyl acetate, washed with 1.00 N HCl (20.0 mL), brine, and concentrated to an oil. The crude material was purified by silica gel chromatography (0-100% ethyl acetate in hexanes) to yield the product as an oil (0.263 g, 45%,). 1H NMR (500 MHz, CDCl3) δ 5.67 (tq, J=6.8, 1.3 Hz, 1H), 5.37 (tq, J=6.8, 1.3 Hz, 1H), 5.11 (ddddd, J=11.4, 7.0, 5.6, 2.8, 1.4 Hz, 2H), 4.22 (d, J=6.7 Hz, 2H), 3.97 (d, J=6.8 Hz, 2H), 3.87 (d, J=1.3 Hz, 2H), 2.16-2.03 (m, 7H), 1.98 (dd, J=9.1, 6.1 Hz, 2H), 1.72 (d, J=1.4 Hz, 3H), 1.69 (q, J=1.3 Hz, 3H), 1.67 (d, J=1.3 Hz, 3H), 1.61 (s, 6H). HRMS ESI (+) calc'd for [M+Na]=329.2457, found=329.2475.


{[(2E)-3-methyl-4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien yl]oxy}but-2-en-1-yl phosphonato]oxy}phosphonate. A 25.0 mL 14/20 round bottom flask was charged with (2E)-3-methyl-4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}but-2-en-1-ol (0.263 g, 0.850 mmol), diethyl ether (4.00 mL) and at 0° C., under an argon atmosphere, phosphorus tribromide (0.270 g, 1.00 mmol) was added. The mixture stirred for 30 minutes, diluted with hexanes, washed with brine, sodium bicarbonate, and brine. The organic layer was dried over sodium sulfate, filtered and concentrated in vacuo to yield the crude (6E,10E)-12-{[(2E)-4-bromo-2-methylbut-2-en-1-yl]oxy}-2,6,10-trimethyldodeca-2,6,10-triene (0.0720 g). The crude material was then dissolved in acetonitrile (1.00 mL), stirred and tetrabutylammonium pyrophosphate (0.497 g, 0.540 mmol) added and stirred under an argon atmosphere for 3 hours. The mixture was then concentrated in vacuo and purified over DOWEX50 resin column. The resin (6.80 g) was prepared by stirring in concentrated ammonium hydroxide (25.0 mL) for 20 minutes, then filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20.0 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate) and poured into a column. The excess 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer was drained from the column and the crude material was applied to the column (dissolved in 3.00 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a waxy solid (0.156 g, 40%). 31P NMR (202 MHz, Deuterium Oxide) δ −6.01 (d, J=21.2 Hz), −9.88 (t, J=25.2 Hz). HRMS ESI [M−H] calcd=465.1813, observed=465.1814.


EXAMPLE 19
{[(2E,6E,10E)-3,7,11-trimethyl-12-[(3-methylbut-2-en-1-yl)oxy]dodeca-2,6,10-trien-1-yl phosphonato]oxy}phosphonate



embedded image


(2E,6E,10E)-12-[(tert-butyldiphenylsilyl)oxy]-2,6,10-trimethyldodeca-2,6,10-trien-1-ol. A 100 mL 24/40 round bottom flask was charged with trans,trans-farnesol (4.50 g, 20.2 mmol), imidazole (2.99 g, 44.4 mmol) and dimethylformamide (25.0 mL). The reaction mixture was stirred, under an argon atmosphere, and tert-butyldiphenylsilyl chloride added (5.70 mL, 22.0 mmol) dropwise. The mixture was stirred for 19 hours at room temperature, then partitioned between 1.00 N HCl (30.0 mL) and ethyl acetate. The organic layer was washed with sodium bicarbonate, twice with brine, dried over sodium sulfate, filtered, and concentrated in vacuo to provide crude tert-butyldiphenyl {[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}silane (8.71 g, 95%).


In a separate 100 mL 24/40 round bottom flask was added selenium(IV) dioxide (0.103 g, 0.94 mmol), salicylic acid (0.259 g, 1.88 mmol) and dichloromethane (40.0 mL). The mixture was stirred at room temperature and tent-butylhydroperoxide added (9.00 mL, 65.8 mmol, 70% solution in water), followed by tert-butyldiphenyl {[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}silane (8.71 g, 18.8 mmol, dissolved in 5.00 mL dichloromethane). The mixture was stirred at room temperature for 50 hours, washed with saturated sodium thiosulfate and concentrated in vacuo. The material was then dissolved in ethanol, cooled to 0° C., and treated with sodium borohydride (0.720 g, 19.0 mmol). After gas evolution ceased the reaction was warmed to room temperature and stirred for 30 minutes. The reaction was quenched with 1.00 N HCl (10.0 mL), partitioned between ethyl acetate and sodium bicarbonate, washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo to yield the crude product as a red oil. The crude material was purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to yield the product as a clear oil (1.2 g, 13% yield). 1H NMR (500 MHz,CDCl3) δ 7.74-7.66 (m, 4H), 7.46-7.34 (m, 6H), 5.40 (dddt, J=6.3, 5.0, 2.6, 1.3 Hz, 2H), 5.14 (tq, J=6.9, 1.4 Hz, 1H), 4.29-4.19 (m, 2H), 4.02 (d, J=19.9 Hz, 2H), 2.20-1.95 (m, 8H), 1.69 (dd, J=14.6, 1.4 Hz, 3H), 1.62 (s, 3H), 1.45 (d, J=1.2 Hz, 3H), 1.05 (s, 9H).


(2E,6E,10E)-3,7,11-trimethyl-12-[(3-methylbut-2-en-1-yl)oxy]dodeca-2,6,10-trien-1-ol. A 25.0 mL 14/20 round bottom flask was charged with (2E,6E,10E)-12-[(tert-butyldiphenylsilyl) oxy]-2,6,10-trimethyldodeca-2,6,10-trien-1-ol (0.478 g, 1.00 mmol) and tetrahydrofuran (5.00 mL). The mixture was cooled to 0° C. and sodium hydride added (0.170 g, 7.00 mmol) under an argon atmosphere, followed by the addition of prenyl bromide (1.00 g, 6.20 mmol). The mixture was stirred at 40° C. for 22 hours and quenched with saturated ammonium chloride, partitioned into ethyl acetate and the organic layer washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by silica gel chromatography (100% hexanes) to yield the product as an oil. This material was dissolved in tetrabutylammonium fluoride (10.0 mL, 10.0 mmol) and heated to 40° C. for 19 hours under argon. The crude material was purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to yield the product (0.171 g, 58%). 1H NMR (500 MHz, CDCl3) δ 5.43-5.31 (m, 3H), 5.10 (tq, J=6.9, 1.4 Hz, 1H), 4.12 (dd, J=13.9, 7.1 Hz, 2H), 3.90-3.84 (m, 2H), 3.82 (d, J=1.1 Hz, 2H), 2.17-1.97 (m, 8H), 1.73 (d, J=1.4 Hz, 3H), 1.66 (d, J=1.4 Hz, 3H), 1.65 (d, J=1.4 Hz, 3H), 1.64 (d, J=1.4 Hz, 3H), 1.59 (d, J=1.4 Hz, 3H).


{[(2E,6E,10E)-3,7,11-trimethyl-12-[(3-methylbut-2-en-1-yl)oxy]dodeca-2,6,10-trien-1-yl phosphonato]oxy}phosphonate. A 25.0 mL 14/20 round bottom flask was charged with (2E,6E,10E)-3,7,11-trimethyl-12-[(3-methylbut-2-en-1-yl)oxy]dodeca-2,6,10-trien-1-ol (0.171 g, 0.580 mmol), diethyl ether (4.00 mL) and at 0° C. under an argon atmosphere, treated phosphorus tribromide (0.094 mL, 1.00 mmol). The reaction mixture was stirred for 30 minutes, diluted with hexanes, the organic layer was then washed with brine, sodium bicarbonate, and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to yield crude (2E,6E,10E)-12-bromo-2,6,10-trimethyl-1-[(3 -methylbut-2-en-1-yl)oxy]dodeca-2,6,10-triene (0.122 g). The crude material was then dissolved in acetonitrile (1.00 mL), stirred and treated with tetrabutylammonium pyrophosphate (0.500 g, 0.540 mmol). The reaction mixture was stirred, under an argon atmosphere, for 2 hours, then concentrated in vacuo and purified over DOWEX50 resin (6.89 g) column prepared by stirring in concentrated ammonium hydroxide (30.0 mL) for 20 minutes, then filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20.0 mL of 1:49 2-propanol: 25 mmolar aqueous ammonium bicarbonate) and poured into a column. The excess 1:49 2-propanol: 25 mmolar aqueous ammonium bicarbonate buffer was drained from the column and the crude material was applied to the column (dissolved in 3.00 mL of the 1:49 2-propanol: 25 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL of the 1:49 2-propanol: 25 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a waxy solid (0.138 g, 60%). 31P NMR (202 MHz, Deuterium Oxide) δ −6.03 (d, J=21.2 Hz), -9.99 (d, J=20.6 Hz). HRMS ESI [M−H] calcd=465.1813, observed=465.1810.


EXAMPLE 20
{[2-({[(5E)-6,10-dimethylundeca-5,9-dien-2-yl]oxy}methyl)prop-2-en-1-yl phosphonato]oxy}phosphonate



embedded image


Tert-butyl({[2-({[(5E)-6,10-dimethylundeca-5,9-dien-2-yl]oxy}methyl)prop-2-en-1-yl]oxy})diphenylsilane. A 100 mL 24/40 round bottom flask was charged with geranyl acetone (1.94 g, 10.0 mmol) and ethanol (30.0 mL). The reaction mixture was cooled to 0° C. and sodium borohydride added (0.529 g, 14.0 mmol) and stirred for 1.0 hour, quenched with 1.00 N HCl (10.0 mL) and partitioned with ethyl acetate. The organic layer was filtered through a plug of silica gel (eluted with 100% ethyl acetate) and concentrated to yield crude (5E)-6,10-dimethylundeca-5,9-dien-2-ol (1.80 g, 91%), which was used without further purification.


Using the method of Vita and coworkers (Vita, M. V.; Caramenti. P.; Waser, J. Org. Lett., 2015, 17, 5832.), a separate 250 mL 24/40 round bottom flask was charged prop-2-ene-1,3-diol (8.40 mL, 102 mmol) and tetrahydrofuran (50.0 mL) under an argon atmosphere. The flask was cooled to 0° C. and sodium hydride added (3.69 g, 110 mmol), followed by tent-butyldiphenylsilyl chloride (25.9 mL, 100 mmol). The reaction was stirred for 20 hours, partitioned into ethyl acetate, which was washed with a saturated ammonium chloride solution, concentrated in vacuo and purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to yield 2-{[(tert-butyldiphenylsilyl)oxy]methyl}prop-2-en-1-ol (8.00 g, 23%). 1H NMR (500 MHz, Chloroform-d) δ 7.71-7.68 (m, 4H), 7.48-7.38 (m, 6H), 5.72 (dtt, J=11.5, 5.7, 1.3 Hz, 1H), 5.65 (dtt, J=11.2, 6.4, 1.4 Hz, 1H), 4.31-4.25 (m, 2H), 4.02 (d, J=6.2 Hz, 2H), 1.06 (s, 9H).


2-{[(tert-butyldiphenylsilyl)oxy]methyl}prop-2-en-1-ol (1.31 g, 4.00 mmol, Heidelbrecht, R. W. Jr.; Gulledge, B.; Martin, S., Org. Lett., 2010, 12, 2492.) was dissolved in dichloromethane (15.0 mL), cooled to 0° C. and triphenylphosphine added (1.25 g, 4.80 mmol), followed by n-bromosuccinimide (0.782 g, 4.80 mmol). The mixture was stirred under an argon atmosphere for 2 hours at 0° C. and treated with hexanes (200 mL). The solid was filtered and the filtrate concentrated to yield {[2-(bromomethyl)prop-2-en-1-yl]oxy}(tert-butyl)diphenylsilane (1.10 g, 71%). The product was used without further purification. 1H NMR (500 MHz, Chloroform-d) δ 7.71-7.67 (m, 4H), 7.46-7.39 (m, 6H), 5.78-5.72 (m, 2H), 4.34-4.32 (m, 2H), 3.87-3.84 (m, 2H), 1.06 (s, 9H).


A 14/20 25.0 mL round bottom flask was charged with crude {[2-(bromomethyl)prop-2-en-1-yl]oxy }(tert-butyl)diphenylsilane (0.960 g, 2.30 mmol), crude (5E)-6,10-dimethylundeca-5,9-dien-2-ol (0.976 g, 5.00 mmol), tetrahydrofuran (5.00 mL), cooled to 0° C., and treated with sodium hydride (0.235 g, 7.00 mmol). After gas evolution was complete, the mixture was heated to 45° C. for 19 hours under an argon atmosphere. The reaction was partitioned between ethyl acetate and ammonium chloride, washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to yield an oil (0.500 g, 1.00 mmol). 1H NMR (500 MHz, Chloroform-d) δ 7.72-7.67 (m, 4H), 7.48-7.36 (m, 6H), 5.79-5.71 (m, 2H), 5.64-5.55 (m, 1H), 5.10 (ttq, J=7.2, 4.4, 1.3 Hz, 1H), 4.33 (dd, J=3.3, 2.2 Hz, 1H), 4.29-4.25 (m, 1H), 3.97-3.76 (m, 4H), 2.10-1.95 (m, 4H), 1.69 (t, J=1.3 Hz, 3H), 1.61 (t, J=1.7 Hz, 3H), 1.59-1.54 (m, 3H), 1.09-1.03 (m, 9H), 1.00 (s, 3H).


A 25.0 mL 14/20 round bottom flask was charged with tert-butyl({[2-({[(5E)-6,10-dimethylundeca-5,9-dien-2-yl]oxy}methyl)prop-2-en-1-yl]oxy})diphenylsilane (0.500 g, 1.00 mmol) and, under an argon atmosphere, tetrabutylammonium fluoride (5.00 mL, 5.00 mmol) added. The reaction mixture was stirred at 45° C. for 15 hours then partitioned between ethyl acetate and 1.00 N HCl (15.0 mL). The organic layer was washed with brine and purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to yield 2-({[(5E)-6,10-dimethylundeca-5,9-dien-2-yl]oxy}methyl)prop-2-en-1-ol (0.100 g, 38%). 1H NMR (500 MHz, Chloroform-d) δ 5.83-5.75 (m, 1H), 5.75-5.66 (m, 1H), 5.09 (dddddd, J=12.7, 7.0, 5.7, 4.3, 2.8, 1.4 Hz, 2H), 4.18 (dt, J=6.4, 1.2 Hz, 2H), 4.14-4.06 (m, 1H), 3.97 (dddd, J=12.4, 6.2, 2.3, 1.4 Hz, 1H), 3.44 (hept, J=6.4 Hz, 1H), 2.09-1.94 (m, 7H), 1.68 (dq, J=4.2, 1.3 Hz, 3H), 1.64-1.50 (m, 6H), 1.47-1.36 (m, 1H), 1.15 (dd, J=6.2, 2.3 Hz, 3H).


{[2-({[(5E)-6,10-dimethylundeca-5,9-dien-2-yl]oxy}methyl)prop-2-en-1-yl phosphonato]oxy}phosphonate. A 25.0 mL 14/20 round bottom flask was charged with 2-({[(5E)-6,10-dimethylundeca-5,9-dien-2-yl]oxy}methyl)prop-2-en-1-ol (0.100 g, 0.380 mmol), diethyl ether (4.00 mL), cooled to 0° C., and phosphorus tribromide was added (0.270 g, 1.00 mmol). He reaction mixture was stirred for 30 minutes at 0° C., diluted with hexanes, washed with brine, sodium bicarbonate, and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to yield the crude (6E)-10-{[2-(bromomethyl)prop-2-en-1-yl]oxy}-2,6-dimethylundeca-2,6-diene (0.0400 g, 32%). The crude material was dissolved in acetonitrile (2.00 mL), stirred, and tetrabutylammonium pyrophosphate (0.604 g, 0.670 mmol) was added. The reaction mixture was stirred under an argon atmosphere for 2 hours, at which time it was concentrated in vacuo and purified over DOWEX50 resin column. The column was prepared by stirring DOWEX50 resin (7.00 g) in concentrated ammonium hydroxide (30.0 mL) for 20 minutes. The resin was filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20.0 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate) and poured into a column. The excess 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer was drained from the column and the crude material was applied to the column (dissolved in 3.00 mL of the 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL of the 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a waxy solid (0.128 g, 82%). 31P NMR (202 MHz, Deuterium Oxide) δ −6.03 (d, J=22.8 Hz), −10.05 (d, J=22.0 Hz). HRMS ESI [M−H] calcd=425.1500, observed=425.1502.


EXAMPLE 21
{[(2E,6E)-8-{[(2Z)-3,7-dimethylocta-2,6-dien-lyl]oxy}-3,7-dimethylocta-2,6-dien-1-yl phosphonato]oxy}phosphonate.



embedded image


Tert-butyl({[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy})diphenylsilane. A 250 mL 24/40 round bottom flask was charged with trans,trans-geraniol (4.62 g, 30.0 mmol), imidazole (2.72 g, 40.0 mmol) and dimethylformamide (90.0 mL). The reaction mixture was stirred under an argon atmosphere and tert-butyldiphenylsilyl chloride added (8.55 g, 31.0 mmol) in a dropwise fashion. The reaction was stirred for 19 hours at room temperature, portioned between 1.00 N HCl (30.0 mL) and ethyl acetate. The organic layer was washed with a saturated sodium bicarbonate solution, twice with brine, dried over sodium sulfate, filtered, and concentrated in vacuo to a clear oil (8.41 g, 70%). 1H NMR (500 MHz, Chloroform-d) δ 7.74-7.69 (m, 4H), 7.47-7.35 (m, 6H), 5.40 (dddt, J=7.6, 6.2, 3.3, 1.4 Hz, 2H), 4.23 (dq, J=6.3, 0.9 Hz, 2H), 4.00 (d, J=1.3 Hz, 2H), 2.21-2.10 (m, 2H), 2.03 (dd, J=9.1, 6.3 Hz, 2H), 1.68 (d, J=1.3 Hz, 3H), 1.46 (d, J=1.3 Hz, 4H), 1.05 (s, 9H).


(2E,6E)-8-[(tert-butyldiphenylsilyl)oxy]-2,6-dimethylocta-2,6-dien-1-ol. In a 100 mL 24/40 round bottom flask was added selenium(IV) dioxide (0.118 g, 1.07 mmol), salicylic acid (0.295 g, 2.14 mmol) and dichloromethane (40.0 mL). The reaction mixture was stirred at room temperature and tent-butylhydroperoxide was added (10.0 mL, 73.1 mmol, 70% solution in water), followed by tert-butyl({[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy})diphenylsilane (8.71 g, 18.8 mmol dissolved in 5.00 mL dichloromethane). The reaction mixture was stirred at room temperature for 75 hours, washed with a saturated sodium thiosulfate solution and concentrated in vacuo. This material was dissolved in ethanol, cooled to 0° C., and treated with sodium borohydride (0.832 g, 22.0 mmol). After gas evolution ceased, the reaction was warmed to room temperature and stirred for 1 hour, quenched with 1.00 N hydrochloric acid (20.0 mL), partitioned between ethyl acetate and sodium bicarbonate, the organic layer washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo to yield the crude product as an oil. The crude material was purified by silica gel chromatography (0-100% ethyl acetate in hexanes) to yield the product as an oil (1.20 g, 13% yield). 1H NMR (500 MHz, CDCl3) δ 7.74-7.66 (m, 4H), 7.47-7.34 (m, 6H), 5.40 (dddt, J=7.6, 6.3, 3.3, 1.4 Hz, 2H), 4.23 (dq, J=6.3, 0.9 Hz, 2H), 4.00 (d, J=1.1 Hz, 2H), 2.19-2.09 (m, 2H), 2.03 (dd, J=9.1, 6.3 Hz, 2H), 1.68 (d, J=1.4 Hz, 3H), 1.46 (d, J=1.3 Hz, 3H), 1.05 (s, 9H). HRMS ESI (+) calc'd for [M+Na]=329.2457, found=329.2448.


Tert-butyl({[(2E,6E)-8-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}-3,7-dimethylocta-2,6-dien-1-yl]oxy})diphenylsilane. A 25.0 mL 14/20 round bottom flask was charged with (2E,6E)-8-[(tert-butyldiphenylsilyl)oxy]-2,6-dimethylocta-2,6-dien-1-ol (0.752 g, 2.0 mmol) and tetrahydrofuran (5.00 mL). The reaction mixture was cooled to 0° C. and sodium hydride was added (0.134 g, 4.00 mmol). Under an argon atmosphere, geranyl bromide (0.650 g, 3.00 mmol, Brundel, B., J., J., M.; Steen, H.; Heeres, A.; Seerden, J. P. G., WO2013157926) was added and the mixture stirred at 40° C. for 20 hours. The reaction was quenched with ammonium chloride, partitioned with ethyl acetate, washed with brine, dried over sodium sulfate, filtered and the solvent removed in vacuo. The crude material was purified by silica gel chromatography (100% hexanes) to yield the product as an oil (0.470 g, 43%). 1H NMR (500 MHz, CDCl3) δ 7.73-7.67 (m, 4H), 7.46-7.34 (m, 6H), 5.44-5.33 (m, 3H), 5.15-5.02 (m, 1H), 4.23 (d, J=6.0 Hz, 2H), 3.95-3.90 (m, 2H), 3.87-3.80 (m, 2H), 2.16-1.99 (m, 8H), 1.72-1.65 (m, 6H), 1.59 (s, 6H), 1.45 (d, J=1.2 Hz, 3H), 1.05 (s, 9H).


(2E,6E)-8-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}-3,7-dimethylocta-2,6-dien-1-ol. Tert-butyl({[(2E,6E)-8-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}-3,7-dimethylocta-2,6-dien-1-yl]oxy})diphenylsilane was dissolved in tetrahydrofuran (2.00 mL), treated with a 1.00 M tetrabutylammonium fluoride (10.0 mL, 10.0 mmol) solution (in tetrahydrofuran) and heated to 40° C. for 19 hours under an argon atmosphere. The mixture was treated with water then extracted with ethyl acetate. The organic layers were combined, dried with sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to yield the product (0.100 g, 42% yield). 1H NMR (500 MHz, CDCl3) δ 5.46-5.30 (m, 3H), 5.10 (ddp, J=7.1, 5.8, 1.5 Hz, 1H), 4.15 (d, J=6.9 Hz, 2H), 3.93 (d, J=6.8 Hz, 2H), 3.83 (d, J=1.2 Hz, 2H), 2.24-1.97 (m, 8H), 1.69 (d, J=1.3 Hz, 6H), 1.66 (d, J=1.3 Hz, 5H), 1.62-1.59 (m, 3H). {[(2E,6E)-8-{[(2Z)-3,7-dimethylocta-2,6-dien-1yl]oxy}-3,7-dimethylocta-2,6-dien-1-yl phosphonato]oxy}phosphonate. The alcohol (2E,6E)-8-{[(2Z)-3,7-dimethylocta-2,6-dien-1-yl]oxy}-3,7-dimethylocta-2,6-dien-1-ol (0.100 g, 0.340 mmol) was dissolved in diethyl ether (2.00 mL) and at 0° C., under an argon atmosphere, was added phosphorus tribromide (0.270 mL, 1.00 mmol). The reaction mixture was stirred for 30 minutes, diluted with hexanes, washed with brine, sodium bicarbonate, and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to yield (2E,6E)-8-bromo-1-{[(2Z)-3,7-dimethylocta-2,6-dien-1-yl]oxy}-2,6-dimethylocta-2,6-diene (0.121 g, 96%). The crude material was dissolved in acetonitrile (2.00 mL) and tetrabutylammonium pyrophosphate (0.255 g, 0.280 mmol) added. The reaction mixture was stirred under an argon atmosphere for 2 hours, at which time it was concentrated in vacuo and purified over a DOWEX50 resin column. The column was prepared by treating DOWEX50 resin (7.20 g) with concentrated ammonium hydroxide (30.0 mL) for 20 minutes. The resin was filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20.0 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate) and poured into a column. The excess 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer was drained from the column and the crude material was applied to the column (dissolved in 3.00 mL of the 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL of the 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a waxy solid (0.066 g, 60% yield by mass, 95% yield by 31P NMR integration). 31P NMR (202 MHz, Deuterium Oxide) δ −6.43 (d, J=97.1 Hz), −9.83-−11.41 (m). HRMS ESI [M−H] calcd=465.1813, observed=465.1814.


EXAMPLE 22
{[(2E,6E,10E)-13-(3,3-dimethyloxiran-2-yl)-3,7,11-trimethyltrideca-2,6,10-trien-1-yl phosphonato]oxy}phosphonate



embedded image


(2E,6E,10E)-13-(3,3-dimethyloxiran-2-yl)-3,7,11-trimethyltrideca-2,6,10-trien-1-ol and (2Z,6E,10E)-13-(3,3-dimethyloxiran-2-yl)-3,7,11-trimethyltrideca-2,6,10-trien-1-ol. A 50.0 mL 24/40 round bottom flask was charged with geranyl geraniol (1.00 g, 3.50 mmol, Look, G. C., WO2015006614) as a mixture of (2E,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol and (2Z,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol), dichloromethane (10.0 mL), triethylamine (0.696 mL, 5.00 mmol), stirred and cooled to 0° C. To the mixture was added acetic anhydride (0.378 mL, 4.00 mmol) and dimethylaminopyridine (0.0240 g, 0.200 mmol). The reaction was stirred for 1 hour at 0° C. and quenched with brine, dried over sodium sulfate, and concentrated to yield the product as a mixture of (2E,6E,10E)-13-(3,3-dimethyloxiran-2-yl)-3,7,11-trimethyltrideca-2,6,10-trien-1-yl acetate and (2Z,6E,10E)-13-(3,3-dimethyloxiran-2-yl)-3,7,11-trimethyltrideca-2,6,10-trien-1-yl acetate (0.980 g, 84%). The oil was dissolved in a mixture of tetrahydrofuran (25.0 mL) and water (10.0 mL), cooled to 0° C., and n-bromosuccinimide (0.623 g, 3.50 mmol). The reaction was stirred at 0° C. for 2 hours, concentrated and extracted with hexanes. The organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo to yield the intermediate as an oil (1.21 g). This material was dissolved in methanol (15.0 mL), potassium carbonate was added (0.720 g, 5.20 mmol) and the mixture was stirred for 17 hours. The reaction mixture was partitioned with ethyl acetate, filtered through a plug of silica (100% ethyl acetate) and concentrated to yield the product 3-[(3E,7E,11E)-13-bromo-3,7,11-trimethyltrideca-3,7,11-trien-1-yl]-2,2-dimethyloxirane and 3-[(3E,7E,11Z)-13-bromo-3,7,11-trimethyltrideca-3,7,11-trien-1-yl]-2,2-dimethyloxirane (0.823 g, 96%). 1H NMR (500 MHz, Chloroform-d) δ 5.39-5.31 (m, 1H), 5.10 (dddqd, J=8.4, 6.9, 4.1, 2.7, 1.9, 1.4 Hz, 3H), 4.62-4.54 (m, 2H), 2.16-2.01 (m, 14H), 1.97 (dd, J=9.1, 6.3 Hz, 2H), 1.74-1.66 (m, 8H), 1.63-1.57 (m, 6H). HRMS ESI (+) calc'd for [M+Na]=329.2457, found=329.2455.


{[(2E,6E,10E)-13-(3,3-dimethyloxiran-2-yl)-3,7,11-trimethyltrideca-2,6,10-trien-1-yl phosphonato]oxy}phosphonate. A 25.0 mL 14/20 round bottom flask was charged with dichloromethane (10.0 mL) and n-chlorosuccinimide (0.267 g, 2.00 mmol). The mixture was stirred under argon, cooled to −30° C., and dimethyl sulfide was added (0.146 mL, 2.00 mmol). The reaction was warmed to 0° C. for 5 minutes, again cooled to −30° C. and (2E,6E,10E)-13-(3,3-dimethyloxiran-2-yl)-3,7,11-trimethyltrideca-2,6,10-trien-1-ol added (0.306 g, 1.00 mmol, dissolved in 1.0 mL dichloromethane). The mixture was stirred for 5 minutes at −30° C. then warmed to 0° C. for 2 hours. The mixture was then washed with brine and concentrated to dryness to yield the crude 3-[(3E,7E,11E)-13-chloro-3,7,11-trimethyltrideca-3,7,11-trien-1-yl]-2,2-dimethyloxirane (0.301 g, 0.920 mmol). This material was dissolved in acetonitrile (2.00 mL), stirred (argon atmosphere), then treated with tetrabutylammonium pyrophosphate (0.525 g, 0.570 mmol). The reaction mixture was stirred for 2 hours, then concentrated in vacuo and purified on a DOWEX50 resin column. The column was prepared by treating the resin (7.20 g) with concentrated ammonium hydroxide (30 mL) for 20 minutes then filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20 mL of 1:49 2-propanol: 25.0 mmolar ammonium bicarbonate) and poured into a column. The excess buffer was drained from the column and the crude product was applied to the column (dissolved in 3.00 mL of the same buffer). The material was eluted with 30 mL buffer and lyophilized to a waxy solid (0.083 g, 18%). 31P NMR (202 MHz, Deuterium Oxide) δ −6.24 (d, J=21.8 Hz), −10.09 (d, J=22.4 Hz). HRMS ESI [M−H] calc'd=465.1813, observed=465.1816.


EXAMPLE 23
{[(3-{[(2E,6E)-3,6,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}phenyl)methyl phosphonato]oxy}phosphonate



embedded image


3-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}benzaldehyde. A 25.0 mL 14/20 round bottom flask was charged with trans,trans-farnesol (0.889 g, 4.00 mmol), diethyl ether, (10.0 mL), and at 0° C. under argon was added phosphorus tribromide (1.35 g, 5.00 mmol). The reaction mixture was stirred for 30 minutes, diluted with hexanes, washed with brine, a saturated sodium bicarbonate solution, and brine. The organic layer was dried over sodium sulfate, filtered and concentrated in vacuo to yield crude trans, trans-farnesyl bromide (0.937 g, 83%). This material was diluted with tetrahydrofuran (10.0 mL) and 3-hydroxybenzaldehyde (0.463 g, 3.80 mmol) was added. The reaction mixture was cooled to 0° C. and sodium hydride added (0.151 g, 4.50 mmol). Once gas evolution ceased, the reaction mixture was heated to 45° C. for 23 hours under an argon atmosphere. The mixture was then partitioned between ethyl acetate and saturated ammonium chloride. The organic layer washed with brine, dried over sodium sulfate, filtered and concentrated in vacuo. The crude material was purified by silica gel chromatography (1:9:0.1 ethyl acetate: hexanes: triethylamine) to yield the product as an oil (0.490 g, 46%). 1H NMR (500 MHz, CDCl3) δ 9.97 (s, 1H), 7.49-7.37 (m, 3H), 7.19 (dt, J=6.7, 2.5 Hz, 1H), 5.50 (tq, J=6.6, 1.3 Hz, 1H), 5.09 (ddddt, J=11.3, 5.7, 4.3, 2.9, 1.4 Hz, 2H), 4.60 (dd, J=6.6, 1.0 Hz, 2H), 2.18-2.02 (m, 6H), 2.01-1.94 (m, 2H), 1.76 (d, J=1.3 Hz, 3H), 1.68 (q, J=1.3 Hz, 3H), 1.60 (dd, J=2.3, 1.3 Hz, 6H).


(3-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}phenyl)methanol. A 50.0 mL 14/20 round bottom flask was charged with 3-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}benzaldehyde (0.470 g 1.50 mmol), ethanol (6.00 mL), cooled to 0° C., and sodium borohydride (0.0750 g, 2.00 mmol). After 10 minutes, the reaction mixture was partitioned between ethyl acetate and ammonium chloride, the organic layer washed with brine, dried over sodium sulfate, filtered, and concentrated to an oil. The crude material was purified by silica gel chromatography (0-50% ethyl acetate in hexanes) to yield the product as an oil (0.251 g, 51%). 1H NMR (500 MHz, CDCl3) δ 7.27 (t, J=7.8 Hz, 1H), 6.98-6.90 (m, 2H), 6.86 (ddd, J=8.2, 2.7, 1.0 Hz, 1H), 5.51 (tq, J=6.6, 1.3 Hz, 1H), 5.17-5.06 (m, 2H), 4.68 (s, 2H), 4.56 (d, J=6.6 Hz, 2H), 2.21-2.03 (m, 6H), 1.98 (dd, J=9.1, 6.2 Hz, 2H), 1.75 (d, J=1.3 Hz, 3H), 1.69 (d, J=1.4 Hz, 3H), 1.62 (d, J=1.4 Hz, 6H). HRMS ESI (+) calc'd for [M+Na]=351.2300, found=351.2315.


{[(3-{[(2E,6E)-3,6,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}phenyl)methyl phosphonato]oxy}phosphonate. A 25.0 mL 14/20 round bottom flask was charged with the alcohol from the prior step, (3-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}phenyl)methanol (0.212 g, 0.640 mmol), diethyl ether (3.00 mL), cooled to 0° C., and under argon was added phosphorus tribromide (0.270 g, 1.00 mmol). The reaction was stirred at 0° C. for 1 hour, diluted with hexanes, washed with brine, sodium bicarbonate, and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to yield the crude bromide as an oil (0.135 g). This material was dissolved in acetonitrile (2.00 mL) and tetrabutylammonium pyrophosphate added (0.409 g, 0.450 mmol) and stirred under an argon atmosphere for 2 hours, at which time it was concentrated in vacuo and purified over DOWEX50 resin column. The column was prepared by stirring DOWEX50 resin (7.20 g) in concentrated ammonium hydroxide (30.0 mL) for 20 minutes. The resin was filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20.0 mL of 1:49 2-propano1:25.0 mmolar aqueous ammonium bicarbonate) and poured into a column. The excess 1:49 2-propano1:25.0 mmolar aqueous ammonium bicarbonate buffer was drained from the column and the crude material was applied to the column (dissolved in 3.00 mL of the 1:49 2-propano1:25.0 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL 1:49 2-propanol:25.0 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a waxy solid (0.163 g, 53%). 31P NMR (202 MHz, Deuterium Oxide) δ −6.45 (d, J=21.9 Hz), −10.37 (d, J=22.6 Hz). HRMS ESI [M−H] calc'd=487.1656, observed=487.1653.


EXAMPLE 24
{[(2-{[(2E,6E)-3,6,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}phenyl)methyl phosphonato]oxy}phosphonate



embedded image


(2-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}phenyl)methanol. A 25.0 mL 14/20 round bottom flask was charged with trans, trans-farnesol (0.889 g, 4.00 mmol), diethyl ether, (10.0 mL), and at 0° C., under an argon atmosphere, was added phosphorus tribromide (1.35 g, 5.00 mmol) and the mixture stirred for 1 hour. The mixture was then diluted with hexanes and the organic layer washed with brine, a saturated sodium bicarbonate solution, and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to yield crude trans, trans-farnesyl bromide (0.769 g, 2.70 mmol). This material was diluted with tetrahydrofuran (10.0 mL) and treated with 2-hydroxy-benzyl alcohol (0.369 g, 3.00 mmol). The mixture was cooled to 0° C. and sodium hydride added (0.100 g, 3.00 mmol). After gas evolution ceased the reaction mixture was heated to 45° C. for 19 hours under an argon atmosphere, partitioned between ethyl acetate and a saturated ammonium chloride solution, washed with brine and concentrated in vacuo as an oil. The crude material was purified by silica gel chromatography (1:9:0.1 ethyl acetate: hexanes: triethylamine) to yield the product as an oil (0.258 g, 29%). 1H NMR (500 MHz, CDCl3) δ 7.26 (ddd, J=7.8, 6.5, 2.0 Hz, 2H), 6.97-6.86 (m, 2H), 5.49 (tq, J=6.4, 1.3 Hz, 1H), 5.10 (dtp, J=8.4, 4.3, 1.4 Hz, 2H), 4.69 (s, 2H), 4.60 (d, J=6.5 Hz, 2H), 2.47 (s, 1H), 2.22-2.03 (m, 6H), 1.98 (dd, J=9.1, 6.0 Hz, 2H), 1.74 (d, J=1.3 Hz, 3H), 1.68 (p, J=1.6 Hz, 3H), 1.61 (dd, J=2.9, 1.4 Hz, 6H). HRMS ESI (+) calc'd for [M+Na]=351.2300, found=351.2340.


{[(2-{[(2E,6E)-3,6,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}phenyl)methyl phosphonato]oxy}phosphonate. A 25.0 mL 14/20 round bottom flask was charged with (2-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}phenyl)methanol (0.218 g, 0.660 mmol), diethyl ether (3.00 mL), cooled to 0° C., and under argon atmosphere, treated with phosphorus tribromide (0.270 g, 1.00 mmol). The mixture was stirred at 0° C. for 1 hour, diluted with hexanes, washed with brine, aqueous saturated sodium bicarbonate solution and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to yield crude 1-(bromomethyl)-2-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}benzene as an oil (0.132 g). This material was dissolved in acetonitrile (2.00 mL) and tetrabutylammonium pyrophosphate (0.292 g, 0.450 mmol) added. The reaction mixture was stirred under an argon atmosphere for 2 hours, then concentrated in vacuo and purified over a DOWEX50 resin column. The DOWEX50 column was prepared by first stirring the DOWEX50 (7.55 g) in concentrated ammonium hydroxide (30.0 mL) for 20 minutes and then filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20.0 mL of 1:49 2-propano1:25.0 mmolar aqueous ammonium bicarbonate) and poured into a column. The excess 1:49 2-propano1:25.0 mmolar aqueous ammonium bicarbonate buffer was drained from the column and the crude material was applied to the column (dissolved in 3.0 mL of the same buffer). The material was eluted with 30.0 mL 1:49 2-propano1:25.0 mmolar aqueous ammonium bicarbonate and lyophilized to a waxy solid (0.075 g, 46%). 31P NMR (202 MHz, Deuterium Oxide) δ −6.22 (d, J=21.9 Hz), −10.05 (d, J=21.9 Hz). HRMS ESI [M−H] calc'd=487.1656, observed=487.1644.


EXAMPLE 25
{[(2Z,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate and {[(2E,6E,10E) ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate



embedded image


Ethyl (2Z,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate and ethyl (2E,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate. A 100 mL 14/20 round bottom flask was charged with ethyl 2-(diethoxyphosphoryl)-2-ethoxyacetate (2.36 g, 8.80 mmol. Prepared according to the method described in Bach, K.; Hesham, R., E.-S.; Jensen, H. M.; Nielsen, H. B.; Thomson, I.; Torssell, K. B. G; Tetrahedron, 1994, 50, 7543), tetrahydrofuran (15.0 mL), cooled to 0° C., and sodium hydride (0.336 g, 10.0 mmol) added under an argon atmosphere. Farnesyl acetone (1.57 g, 6.00 mmol) dissolved in tetrahydrofuran (5.00 mL) was added in dropwise fashion. The stirring mixture was heated to 45° C. for 26 hours. The reaction was partitioned between ethyl acetate and a saturated ammonium chloride solution, the organic layer washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was dissolved in ethanol (30.0 mL), cooled to 0° C., and treated with sodium borohydride (0.226 g, 6.00 mmol). After 1 hour, the reaction was partitioned between ethyl acetate and a saturated ammonium chloride solution, washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by silica gel chromatography (0-10% ethyl acetate in hexanes) to yield the product as a clear oil (0.953 g, 41%). 1H NMR (500 MHz, CDCl3) δ 5.18-5.04 (m, 3H), 4.23 (ttd, J=7.1, 5.1, 2.6 Hz, 2H), 3.74-3.64 (m, 2H), 2.48-2.40 (m, 1H), 2.25 (ddd, J=8.7, 6.0, 1.5 Hz, 1H), 2.21-2.09 (m, 2H), 2.10-2.00 (m, 8H), 1.97 (dd, J=8.8, 5.5 Hz, 2H), 1.88-1.81 (m, 2H), 1.68 (dt, J=4.2, 1.4 Hz, 6H), 1.60 (dd, J=4.8, 2.6 Hz, 6H), 1.32 (td, J=7.1, 5.3 Hz, 3H), 1.28 (tdd, J=7.1, 2.7, 2.1 Hz, 3H).


(2Z,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol and (2E,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol. A mixture of ethyl (2Z,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate and ethyl (2E,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate was dissolved in dichloromethane (5.00 mL), cooled to 0° C., and treated, under an argon atmosphere, with diisobutylaluminum hydride (8.00 mL, 8.00 mmol, 1.00 M in heptanes). The reaction was warmed to room temperature and stirred for 22 hours. The reaction was cooled to 0° C., quenched with ethanol (2.00 mL) and stirred vigorously for 24 hours with a solution of sodium potassium tartrate (10.0 g, 35.0 mmol in 50.0 mL water). The mixture was partitioned, and the aqueous layer washed with dichloromethane. The organic layers were combined, dried over sodium sulfate, filtered and concentrated in vacuo to yield the crude product, which was purified by silica gel (1:4 ethyl acetate: hexanes) chromatography to yield (2Z,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol and (2E,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol as a mixture of isomers (0.665 g, 80%). 1H NMR (500 MHz, CDCl3) δ 5.17-5.04 (m, 3H), 4.34-4.07 (m, 2H), 3.81-3.69 (m, 2H), 2.19-2.12 (m, 1H), 2.12-2.00 (m, 9H), 1.98 (q, J=7.5, 7.0 Hz, 3H), 1.72-1.65 (m, 9H), 1.63-1.55 (m, 6H), 1.29-1.21 (m, 3H).


{[(2Z,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate and {[(2E,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate. A 25.0 mL 14/20 round bottom flask was charged with a mixture of (2Z,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol and (2E,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol (0.270 g, 0.830 mmol), dichloromethane (4.00 mL), triethylamine (0.223 mL, 1.60 mmol), cooled to 0° C., and treated with methane sulfonyl chloride (0.0770 mL, 1.00 mmol). The mixture was stirred for 1 hour then quenched with brine and partitioned. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated in vacuo to provide crude mixture of (2Z,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl methanesulfonate and of (2E,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl methanesulfonate (0.374 g). This material was dissolved in acetonitrile (2.00 mL), stirred, and tetrabutylammonium pyrophosphate was added (0.454 g, 0.500 mmol). The reaction mixture was stirred under argon for 2 hours, concentrated and purified over DOWEX50 resin column. The column was prepared with DOWEX50 resin (7.55 g) stirred in concentrated ammonium hydroxide (30.0 mL) for 20 minutes. The resin was filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20.0 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate) and poured into a column. The excess buffer 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate was drained from the column and the crude product material applied to the column (dissolved in 3.00 mL of the 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a waxy solid (0.141 g, 35%). 31P NMR (202 MHz, Deuterium Oxide) δ −6.52, −10.38 (d, J=22.0 Hz). HRMS ESI [M−H] calc'd=493.2126, observed=493.2130.


EXAMPLE 26
{[(2Z,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate and {[(2E,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate



embedded image


Ethyl (2Z,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate and ethyl (2E,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate. A 50.0 mL 14/20 round bottom flask was charged with sodium hydride (0.151 g, 4.50 mmol). Under an argon atmosphere at 0° C. was added anhydrous tetrahydrofuran (10.0 mL), followed by triethyl-2-chloro-phosphonoacetate (1.00 g, 3.86 mmol) dissolved in tetrahydrofuran (2.00 mL). Once gas evolution ceased, farnesyl acetone (1.04 g, 4.00 mmol) was added dissolved in tetrahydrofuran (1.00 mL). The mixture was heated to 45° C. for 19 hours, concentrated in vacuo and partitioned between ethyl acetate and a saturated ammonium chloride solution. The organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo to provide an oil. The crude material was purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to yield a mixture of ethyl (2Z,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate and ethyl (2E,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate (0.880 g, 62%). NMR (500 MHz, CDCl3) δ 5.19-5.05 (m, 3H), 4.33-4.09 (m, 2H), 2.59-2.51 (m, 1H), 2.49-2.43 (m, 1H), 2.40 (dt, J=8.7, 7.2 Hz, 1H), 2.32-2.24 (m, 1H), 2.22-2.12 (m, 3H), 2.12-1.94 (m, 8H), 1.69 (dt, J=2.7, 1.3 Hz, 6H), 1.66-1.60 (m, 6H), 1.34-1.23 (td, J=7.1, 4.1 Hz, 3H).


(2Z,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol and (2E,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol. A 50.0 mL 24/40 round bottom flask was charged with a mixture of ethyl (2Z,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate and ethyl (2E,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenoate (0.840 g, 2.30 mmol). The material was dissolved in dichloromethane (5.00 mL) and, under an argon atmosphere at 0° C., treated with diisobutylaluminum hydride (7.00 mL, 7.00 mmol, 1.00 M in heptanes). The mixture was warmed to room temperature and stirred for 18 hours, then quenched with ethanol (5.00 mL). A solution of sodium potassium tartrate (7.00 g, 24.8 mmol in 50.0 mL water) was added and the biphasic mixture vigorously stirred for 24 hours. The reaction mixture partitioned, and the aqueous layer twice washed with dichloromethane (20.0 mL per wash). The organic layers were combined, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to yield a mixture of (2Z,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol and (2E,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol (0.220 g, 30%). 1H NMR (500 MHz, CDCl3) δ 5.18-5.06 (m, 3H), 4.29 (d, J=14.7 Hz, 1H), 4.19-3.76 (m, 1H), 2.31-2.19 (m, 1H), 2.17-2.01 (m, 9H), 1.98 (dd, J=9.5, 6.1 Hz, 2H), 1.69 (ddd, J=5.5, 2.6, 1.3 Hz, 9H), 1.64-1.58 (m, 6H). HRMS ESI (+) calc'd for [M+Na]=347.2118, found=347.2159.


{[(2Z,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate and {[(2Z,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl phosphonato]oxy}phosphonate. A 25.0 mL 14/20 round bottom flask was charged with a mixture of (2Z,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol and (2E,6E,10E)-2-chloro-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol. (0.227 g, 0.670 mmol) and anhydrous ether (3.00 mL). At 0° C., under an argon atmosphere, phosphorus tribromide (0.270 g, 1.00 mmol) dissolved in ether (1.00 mL) was added. The mixture was stirred for 2 hours, diluted with hexanes, washed with brine, a saturated sodium bicarbonate solution and brine, then dried over sodium sulfate, filtered, and concentrated in vacuo. To this material dissolved in acetonitrile (1.50 mL) and treated with tetrabutylammonium pyrophosphate (0.504 g, 0.550 mmol). The reaction vessel was sealed and stirred under an argon atmosphere for 2 hours, then concentrated in vacuo to a viscous liquid and purified on DOWEX50 resin column. The resin column was prepared by stirring DOWEX50 resin (7.70 g) in concentrated ammonium hydroxide (30.0 mL) for 20 minutes. The resin was then filtered and washed four times with water (100 mL) and subsequently suspended in a buffer (20.0 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate), then poured into a column. The excess 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer was drained from the column and the crude product material applied to the column (dissolved in 3.00 mL of the 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL of the 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a waxy solid (0.177 g, 55%). 31P NMR (202 MHz, Deuterium Oxide) δ −6.17, −10.51. HRMS ESI [M−H] calc'd=483.1474, observed=483.1471.


EXAMPLE 27
[(4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}but-2-yn-1-yl phosphonato)oxy]phosphonate



embedded image


4-{[dimethyl(phenyl)silyl]oxy}but-2-yn-1-ol. A 250 mL 24/40 round bottom flask was charged with 2-butyne-1,4-diol (2.15 g, 25.0 mmol), tetrahydrofuran (75.0 mL), cooled to 0° C., and treated with sodium hydride (0.840 g, 25.0 mmol). Under an argon atmosphere, phenyldimethylchlorosilane (1.65 mL, 10.0 mmol) was added and the mixture stirred at room temperature for 19 hours, concentrated to a solid, partitioned between ethyl acetate and a saturated ammonium chloride solution, then washed with brine, dried over sodium sulfate, filtered and concentrated to dryness. The crude material was purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to yield the product (0.320 g, 14%). 1H NMR (500 MHz, CDCl3) δ 7.65-7.57 (m, 2H), 7.46-7.36 (m, 3H), 4.32 (t, J=1.8 Hz, 2H), 4.24 (t, J=2.0 Hz, 2H), 0.46 (s, 6H).


4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}but-2-yn-1-ol. A 50 mL 14/20 round bottom flask was charged with trans, trans-farnesol (0.889 g, 4.00 mmol), diethyl ether, (10.0 mL), and at 0° C. (argon atmosphere), treated with phosphorus tribromide (1.35 g, 5.00 mmol) and stirred for 30 minutes. The mixture was then diluted with hexanes, washed with brine, a saturated solution of sodium bicarbonate, and brine. The organic layer was then dried over sodium sulfate, filtered, and concentrated in vacuo to provide crude (6E,10E)-12-bromo-2,6,10-trimethyldodeca-2,6,10-triene (0.523 g, 1.80 mmol). The crude was diluted with tetrahydrofuran (10.0 mL) and charged with 4-{[dimethyl(phenyl)silyl]oxy}but-2-yn-1-ol (0.320 g, 1.30 mmol) and the mixture cooled to 0° C. and treated with sodium hydride (0.122 g, 5.00 mmol). After gas evolution ceased, the mixture (argon atmosphere) was heated to 45° C. for 19 hours. The reaction mixture was partitioned between ethyl acetate and a saturated ammonium chloride solution, the organic layer washed with brine, dried with sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to provide crude dimethyl(phenyl)[(4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}but-2-yn-1-yl)oxy]silane (0.394 g, 71%). A 25.0 mL 14/20 round bottom flask was charged with this material and, under an argon atmosphere, tetrabutylammonium fluoride (5.00 mL, 5.00 mmol, 1.00 M solution in tetrahydrofuran) was added and the mixture stirred at 45° C. for 20 hours. The mixture was partitioned between ethyl acetate and 1.00 N HCl (10.0 mL), the organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to yield the product (0.050 g, 18%). 1H NMR (500 MHz, CDCl3) δ 5.45-5.28 (m, 1H), 5.09 (dddt, J=8.4, 7.0, 5.6, 1.4 Hz, 2H), 4.30 (t, J=1.8 Hz, 2H), 4.19-4.11 (m, 2H), 4.06 (d, J=6.9 Hz, 2H), 2.15-2.00 (m, 6H), 2.00-1.91 (m, 2H), 1.73-1.65 (m, 6H), 1.63-1.56 (m, 6H).


[(4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}but-2-yn-1-yl phosphonato)oxy]phosphonate. A 10.0 mL 14/20 round bottom flask was charged with 4-{[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}but-2-yn-1-ol (0.050, 0.170 mmol), diethyl ether (1.00 mL), cooled to 0° C., and treated with phosphorus tribromide (0.0280 mL, 0.300 mmol). The mixture was stirred at 0° C. for 15 minutes, diluted with hexanes, washed with brine, a saturated sodium bicarbonate solution, and brine. The organic layer was dried over sodium sulfate and concentrated to provide crude (6E,10E)-12-[(4-bromobut-2-yn-1-yl)oxy]-2,6,10-trimethyldodeca-2,6,10-triene (0.0600 g, 100%). This material was dissolved in acetonitrile (2.00 mL) and, under an argon atmosphere, treated with tetrabutylammonium pyrophosphate (0.251 g, 0.270 mmol), then stirred for 2 hours. The mixture was concentrated to a viscous liquid and purified over DOWEX50 resin column, the column prepared by dissolving DOWEX50 resin (5.98 g) in concentrated ammonium hydroxide (30.0 mL) for 20 minutes, then filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20 mL of 1:49 2-propanol: 25 mmolar ammonium bicarbonate) and poured into the column. The excess buffer was drained from the column and the crude material applied to the column (dissolved in 3.00 mL of the same buffer). The material was eluted with 30.0 mL buffer and lyophilized to a waxy solid (0.076 g, 100%). 31P NMR (202 MHz, Deuterium Oxide) δ −6.46 (d, J=21.5 Hz), -10.18--11.03 (m). HRMS ESI [M−H] calc'd=449.1497, observed=449.1494.


EXAMPLE 28
{[(6E,10E)-3,7,11,15-tetramethyl-2-oxohexadeca-6,10,14-trien-1-yl phosphonato]oxy}phosphonate



embedded image


(2Z,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol and (2E,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol. A 100 mL 14/20 round bottom flask was charged with ethyl 2-(diethoxyphosphoryl)-2-ethoxyacetate (2.36 g, 8.80 mmol. Prepared according to the method described in Bach, K.; Hesham, R., E.-S.; Jensen, H. M.; Nielsen, H. B.; Thomson, I.; Torssell, K. B. G., Tetrahedron, 1994, 50, 7543), tetrahydrofuran (15.0 mL) then cooled to 0° C., and treated with sodium hydride (0.336 g, 10.0 mmol) under an argon atmosphere. Farnesyl acetone (1.57 g, 6.00 mmol), dissolved in tetrahydrofuran (5.00 mL), was added in dropwise fashion. The mixture was then heated to 45° C. for 26 hours and quenched with a saturated ammonium chloride solution. The reaction was partitioned with ethyl acetate, washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was dissolved in ethanol (30.0 mL) then cooled to 0° C. and treated with sodium borohydride (0.226 g, 6.00 mmol) and the mixture stirred for 1 hour. The mixture was partitioned between ethyl acetate and saturated ammonium chloride solution, washed with brine, dried over sodium sulfate, and concentrated in vacuo to dryness. The crude material was purified by silica gel chromatography (0-10% ethyl acetate in hexanes) to yield an oil (0.953 g, 41%). The crude was dissolved in dichloromethane (5.00 mL), cooled to 0° C., under an argon atmosphere, and treated with diisobutylaluminum hydride (8.00 mL, 8.00 mmol, 1.00 M in heptanes). The reaction was warmed to room temperature, stirred for 22 hours, then cooled to 0° C. and quenched with ethanol. The mixture was then treated with a solution of sodium potassium tartrate (10.0 g, 35.0 mmol in 50.0 mL water) and vigorously stirred for 24 hours. The mixture was partitioned, and the aqueous layer washed with dichloromethane. The organic layers were combined, dried over sodium sulfate, filtered, concentrated in vacuo and purified by silica gel chromatography to yield the product (0.665 g, 80%). 1H NMR (500 MHz, CDCl3) δ 5.17-5.04 (m, 3H), 4.34-4.07 (m, 2H), 3.81-3.69 (m, 2H), 2.19-2.12 (m, 1H), 2.12-2.00 (m, 9H), 1.98 (q, J=7.5, 7.0 Hz, 3H), 1.72-1.65 (m, 9H), 1.63-1.55 (m, 6H), 1.29-1.21 (m, 3H).


{[(6E,10E)-3,7,11,15-tetramethyl-2-oxohexadeca-6,10,14-trien-1-yl phosphonato]oxy} phosphonate. A 25.0 mL 14/20 round bottom flask was charged with (2Z,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol and (2E,6E,10E)-2-ethoxy-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-ol (0.385 g, 1.15 mmol), dichloromethane (5.00 mL) and triphenylphosphine (0.314 mL, 1.20 mmol). The mixture was cooled to 0° C. and treated with carbon tetrabromide (0.379 mL, 1.20 mmol dissolved in 1.00 mL dichloromethane). The mixture was stirred for 10 minutes at 0° C. and 20 minutes at room temperature. The mixture was concentrated to ˜1.00 mL in vacuo and diluted with hexanes (15.0 mL). A solid precipitated and the mixture filtered through Celite, this process was repeated twice to yield crude (6E,10E)-1-bromo-3,7,11,15-tetramethylhexadeca-6,10,14-trien-2-one (0.397 g) as an oil. This material was dissolved in acetonitrile (2.00 mL) and treated with tetrabutylammonium pyrophosphate (0.775 g, 0.850 mmol). The reaction mixture was stirred under an argon atmosphere for 2 hours, concentrated in vacuo and purified on a DOWEX50 resin column, the column prepared by first suspending the DOWEX50 resin (11.7 g) in concentrated ammonium hydroxide (45.0 mL) for 20 minutes. The resin was filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20.0 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate) and loaded into the DOWEX50 column. The excess 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer was drained from the column and the crude material on the column (dissolved in 3.00 mL of the 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a waxy solid (0.291 g, 55%). 31P NMR (202 MHz, Deuterium Oxide) δ −6.10, −10.74. HRMS ESI [M−H] calc'd=465.1813, observed=465.1812.


EXAMPLE 29
{[(2E)-3-(4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}phenyl)-2-methylprop-2-en-1-yl phosphonato]oxy}phosphonate



embedded image


4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}benzaldehyde. A 25.0 mL 14/20 round bottom flask was charged with geranyl bromide (0.975 g, 4.50 mmol, Brundel, B., J., J., M.; Steen, H.; Heeres, A.; Seerden, J. P. G., WO2013157926), acetone (15.0 mL), 4-hydroxybenzaldehyde (0.732 g, 6.00 mmol) and potassium carbonate (1.10 g, 8.00 mmol). The mixture was stirred overnight, then partitioned between ethyl acetate and a saturated aqueous ammonium chloride solution. The organic layer was then washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by filtration through a triethylamine-deactivated silica (100% ethyl acetate) to yield the pure product (0.980 g, 84%). 1H NMR (500 MHz, CDCl3) δ 9.95-9.82 (m, 1H), 7.90-7.72 (m, 2H), 7.05-6.94 (my, 2H), 5.55-5.42 (m, 1H), 5.13-5.03 (m, 1H), 4.70-4.52 (m, 2H), 2.24-1.99 (m, 4H), 1.79-1.75 (m, 3H), 1.68 (d, J=1.4 Hz, 3H), 1.61 (d, J=1.3 Hz, 3H).


Ethyl (2E)-3-(4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}phenyl)-2-methylprop-2-enoate and ethyl (2Z)-3-(4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}phenyl)-2-methylprop-2-enoate. A 50.0 mL 14/20 round bottom flask was charged with 4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}benzaldehyde (0.800 g, 3.10 mmol), tetrahydrofuran (15.0 mL), cooled to 0° C., and treated with sodium hydride (0.201 g, 6.00 mmol) under an argon atmosphere. Triethyl-2-phosphonopropionate (0.952 g, 4.00 mmol), dissolved in tetrahydrofuran (2.00 mL), was added dropwise. After gas evolution ceased, the mixture was heated to 45° C. for 70 hours and quenched with methanol. The mixture was partitioned between ethyl acetate and a saturated ammonium chloride solution, the organic layer washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude material was dissolved in ethanol (20.0 mL), cooled to 0° C., and sodium borohydride added (0.082 g, 2.10 mmol). After 10 minutes, the reaction was quenched with a saturated ammonium chloride solution (30.0 mL) and partitioned with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated to dryness. The crude material was purified by silica gel chromatography (0-10% ethyl acetate in hexanes) to yield an oil (0.43 g, 41%). 1H NMR (500 MHz, CDCl3) δ 7.65 (d, J=1.8 Hz, 1H), 7.44-7.34 (m, 2H), 7.00-6.86 (m, 2H), 5.50 (tp, J=6.6, 1.4 Hz, 1H), 5.10 (ddp, J=6.8, 5.4, 1.4 Hz, 1H), 4.62-4.54 (m, 2H), 4.27 (q, J=7.1 Hz, 2H), 2.20-2.01 (m, 7H), 1.76 (t, J=1.3 Hz, 3H), 1.69 (q, J=1.3 Hz, 3H), 1.62 (d, J=1.3 Hz, 3H), 1.36 (t, J=7.1 Hz, 3H).


(2E)-3-(4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}phenyl)-2-methylprop-2-en-1-ol and (2Z)-3-(4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}phenyl)-2-methylprop-2-en-1-ol. A mixture of ethyl (2E)-3-(4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}phenyl)-2-methylprop-2-enoate and ethyl (2Z)-3-(4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}phenyl)-2-methylprop-2-enoate (0.430, 1.20 mmol) was dissolved in dichloromethane (5.00 mL), cooled to 0° C. under an argon atmosphere, and treated with diisobutylaluminum hydride (3.00 mL, 3.00 mmol, 1.00 M in heptanes). The reaction was allowed to warm to room temperature and stirred for 22 hours, cooled to 0° C., quenched with ethanol (2.00 mL) and stirred vigorously for 24 hours with a solution of sodium potassium tartrate (10.0 g, 35.0 mmol in 40.0 mL water). The mixture was partitioned, the aqueous layer washed with dichloromethane and the organic layers combined, dried over sodium sulfate, filtered, and concentrated in vacuo. The crude was purified by silica gel chromatography to yield an oil (0.240 g, 80%). 1H NMR (500 MHz, CDCl3) δ 7.25-7.19 (m, 2H), 6.93-6.85 (m, 2H), 6.49-6.41 (m, 1H), 5.50 (tq, J=6.6, 1.3 Hz, 1H), 5.10 (ddp, J=7.0, 5.8, 1.4 Hz, 1H), 4.55 (d, J=6.5 Hz, 2H), 4.17 (d, J=1.3 Hz, 2H), 2.20-2.02 (m, 4H), 1.91 (d, J=1.4 Hz, 3H), 1.74 (d, J=1.4 Hz, 3H), 1.69 (d, J=1.4 Hz, 3H), 1.61 (d, J=1.4 Hz, 3H).


{[(2E)-3-(4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}phenyl)-2-methylprop-2-en-1-yl phosphonato]oxy}phosphonate and {[(2Z)-3-(4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}phenyl)-2-methylprop-2-en-1-yl phosphonato]oxy}phosphonate. A 25.0 mL 14/20 round bottom flask was charged with a mixture of (2E)-3-(4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}phenyl)-2-methylprop-2-en-1-ol and (2Z)-3-(4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}phenyl)-2-methylprop-2-en-1-ol (0.212 g, 0.570 mmol), diluted in dichloromethane (3.00 mL), cooled to 0° C., and, under an argon atmosphere, treated with phosphorus tribromide (0.0940 mL, 1.00 mmol). The reaction was stirred at 0° C. for 1 hour then diluted with hexanes, quenched with brine, washed with sodium bicarbonate, and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to provide crude mixture of 1-[{(1E)-3-bromo-2-methylprop-1-en-1-yl]-4-[(2E)-3,7-dimethylocta-2,6-dien-1 -yl]oxy}benzene and 1-[(1Z)-3-bromo-2-methylprop-1-en-1-yl]-4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}benzene (0.216 g, 100%). This material was dissolved in acetonitrile (2.00 mL), then treated with tetrabutylammonium pyrophosphate (0.394 g, 0.430 mmol). The mixture was stirred under an argon atmosphere for 2 hours, at which time it was concentrated in vacuo and purified over DOWEX50 resin column, which was prepared according to the following method. DOWEX50 resin (6.70 g) was stirred in concentrated ammonium hydroxide (30.0 mL) for 20 minutes. The resin was filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20.0 mL of 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate) and poured into a column. The excess 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer was drained from the column and the crude material was applied to the column (dissolved in 3.00 mL of the 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a waxy solid (0.170 g, 65%). 31P NMR (202 MHz, Deuterium Oxide) δ −6.49 (d, J=21.8 Hz), −10.26 (d, J=21.4 Hz). HRMS ESI [M−H] calc'd=459.1343, observed=459.1305.


EXAMPLE 30
{[(2E,4E,6E,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-yl phosphonato]oxy}phosphonate, {[(2Z,4E,6E,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-yl phosphonato]oxy}phosphonate, {[(2E,4E,6Z,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-yl phosphonato]oxy}phosphonate, {[(2Z,4E,6Z,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-yl phosphonato]oxy}phosphonate



embedded image


Ethyl (2E,4E,6E,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaenoate, ethyl (2Z,4E,6E,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaenoate, ethyl (2E,4E,6Z,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaenoate, and ethyl (2Z,4E,6Z,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaenoate. A 100 mL 14/20 round bottom flask was charged with triethyl-4-phosphonocrotonate (3.00 g, 12.0 mmol), tetrahydrofuran (30.0 mL), cooled to 0° C., and sodium hydride (0.504 g, 15.0 mmol). After gas evolution ceased, a mixture of (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienal and (2Z,6E)-3,7,11-trimethyldodeca-2,6,10-trienal (2.04 g, 9.20 mmol, Hu, H.; Harrison, T. J.; Wilson, P. D., J. Org. Chem., 2004, 69, 3782.) was added as a solution in tetrahydrofuran (2.00 mL). After 2 hours the mixture was quenched with a saturated ammonium chloride solution and partitioned into ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, filtered, concentrated in vacuo, and purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to provide an oil (1.64 g, 56%). 1H NMR (500 MHz, Chloroform-d) δ 7.35 (dddd, J=15.2, 11.3, 6.9, 0.8 Hz, 1H), 6.85-6.76 (m, 1H), 6.21 (dt, J=14.7, 10.7 Hz, 1H), 5.96 (dd, J=11.3, 2.0 Hz, 1H), 5.82 (dd, J=15.2, 2.0 Hz, 1H), 5.18-5.04 (m, 2H), 4.20 (q, J=7.1 Hz, 2H), 2.28-2.10 (m, 4H), 2.09-2.03 (m, 2H), 2.01-1.93 (m, 2H), 1.85 (dd, J=9.4, 1.3 Hz, 3H), 1.68 (d, J=1.6 Hz, 3H), 1.60 (dd, J=4.4, 2.8 Hz, 6H), 1.30 (t, J=7.1 Hz, 3H).


(2E,4E,6E,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-ol, (2Z,4E,6E,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-ol, (2E,4E,6Z,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-ol, and (2Z,4E,6Z,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-ol. A mixture of ethyl (2E,4E,6E,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaenoate, ethyl (2Z,4E,6E,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaenoate, ethyl (2E,4E,6Z,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaenoate, and ethyl (2Z,4E,6Z,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaenoate (1.64 g, 5.1 mmol) was dissolved in dichloromethane (10.0 mL), cooled to 0° C. under an argon atmosphere, and diisobutylaluminum hydride added (15.0 mL, 15.0 mmol, 1.00 M in heptanes). The mixture was warmed to room temperature and stirred for 22 hours. The reaction was cooled to 0° C., quenched with ethanol (2.00 mL) and stirred vigorously for 24 hours with a solution of sodium potassium tartrate (10.0 g, 35.0 mmol in 40.0 mL water). The reaction mixture was partitioned, and the aqueous layer washed with dichloromethane. The organic layers were combined, dried over sodium sulfate and concentrated in vacuo to provide the crude product mixture, which was purified by silica gel chromatography (1:9 ethyl acetate: hexanes) to yield a mixture of the products (0.610 g, 44%). 1H NMR (500 MHz, CDCl3) δ 6.50-6.40 (m, 1H), 6.36-6.26 (m, 1H), 6.13 (dt, J=14.8, 10.7 Hz, 1H), 5.91-5.85 (m, 1H), 5.80 (ddd, J=15.2, 7.3, 5.0 Hz, 1H), 5.10 (dtdq, J=9.9, 7.0, 2.9, 1.4 Hz, 2H), 4.20 (dd, J=6.0, 1.4 Hz, 2H), 2.20-2.09 (m, 6H), 1.98 (dd, J=9.2, 6.1 Hz, 2H), 1.80 (dd, J=14.2, 1.3 Hz, 3H), 1.68 (t, J=1.4 Hz, 3H), 1.60 (d, J=1.3 Hz, 6H). HRMS ESI (+) calc'd for [M+Na]=297.2195, found=297.2242.


{[(2E,4E,6E,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-yl phosphonato]oxy}phosphonate, {[(2Z,4E,6E,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-yl phosphonato]oxy}phosphonate, {[(2E,4E,6Z,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-yl phosphonato]oxy}phosphonate, {[(2Z,4E,6Z,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-yl phosphonato]oxy}phosphonate. A 25.0 mL 14/20 round bottom flask was charged with a mixture of (2E,4E,6E,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-ol, (2Z,4E,6E,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-ol, (2E,4E,6Z,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-ol, and (2Z,4E,6Z,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-ol (0.164 g, 0.590 mmol) was dissolved in diethyl ether (3.00 mL) and under an argon atmosphere at 0° C., treated with triethylamine (0.208 mL, 1.50 mmol) followed by methanesulfonyl chloride (0.0770 mL, 1.00 mmol). A precipitate formed upon the addition and after 30 minutes at 0° C., the reaction was diluted with hexanes and washed with brine (three times), the organic layer dried over sodium sulfate, and concentrated in vacuo to yield the crude (2E,4E,6E,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-yl methanesulfonate, (2Z,4E,6E,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-yl methanesulfonate, (2E,4E,6Z,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-yl methanesulfonate, and (2Z,4E,6Z,10E)-7,11,15-trimethylhexadeca-2,4,6,10,14-pentaen-1-yl methanesulfonate (0.211 g, 100%). This mixture was dissolved in acetonitrile (2.00 mL) and treated with tetrabutylammonium pyrophosphate (0.332 g, 0.360 mmol). The reaction mixture was stirred under argon for 2 hours, at which time it was concentrated in vacuo and purified over DOWEX50 resin column. The column was prepared via the following method. DOWEX50 resin (6.7 g) was stirred in concentrated ammonium hydroxide (30.0 mL) for 20 minutes. The resin was filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20.0 mL of 1:49 2-propanol: 25.0 mmolar ammonium bicarbonate) and poured into a column. The excess buffer was drained from the column and the crude material was applied to the column (dissolved in 3.0 mL of the 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a solid (0.127 g, 50%). 31P NMR (202 MHz, Deuterium Oxide) δ −5.88-−6.54 (m), −21.17--21.93 (m). HRMS ESI [M−H] calc'd=433.1550, observed=433.1552.


EXAMPLE 31
({[2-({[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1 yl]oxy}methyl) cyclopropyl]methyl phosphonato}oxy)phosphonate



embedded image


[2-({[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}methyl)cyclopropyl]methanol. A 50.0 mL 14/20 round bottom flask was charged with trans, trans-farnesol (0.889 g, 4.00 mmol), diethyl ether (10.0 mL), and cooled to 0° C. (argon atmosphere). Phosphorus tribromide (1.35 g, 5.00 mmol) was added and the mixture allowed to stir for 1 hour, then diluted with hexanes, washed with brine, a saturated sodium bicarbonate solution, and then a second time with brine. The organic layer was dried over sodium sulfate and concentrated in vacuo to yield crude trans, trans-farnesyl bromide (1.06 g, 3.7 mmol). 1H NMR (500 MHz, Chloroform-d) δ 4.13-4.04 (m, 2H), 3.40 (s, 2H), 3.29-3.19 (m, 2H), 1.37-1.25 (m, 2H), 0.79 (td, J=8.2, 5.1 Hz, 1H), 0.20 (q, J=5.3 Hz, 1H). A separate flask was charged with [2-(hydroxymethyl)cyclopropyl]methanol (0.612 g, 6.0 mmol, (Ito, M.; Osaku, A.; Shiibashi, A.; Ikariya, T., Org. Lett, 2007, 9, 1821. and tetrahydrofuran (15.0 mL). The mixture was cooled to 0° C. and sodium hydride added (0.268 g, 8.0 mmol). After gas evolution ceased, a solution of crude trans, trans-farnesyl bromide dissolved in tetrahydrofuran (5.0 mL) was added and the mixture heated to 45° C. for 19 hours under an argon atmosphere. The mixture was partitioned between ethyl acetate and a saturated ammonium chloride solution and the organic layer washed with brine and concentrated to dryness to provide an oil. The crude material was purified by silica gel chromatography (1:4 ethyl acetate: hexanes) to yield the product as an oil (0.610 g, 33%). HRMS ESI [M+Na] calc'd=329.2457, observed=329.2474.


[2-([{(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}methyl)cyclopropyl]methanol (0.200 g, 0.650 mmol) was dissolved in diethyl ether (3.00 mL), cooled to 0° C. and under an argon atmosphere, charged phosphorus tribromide (0.270 g, 1.00 mmol) and stirred for 15 minutes. The reaction was diluted with hexanes, washed with brine, a saturated sodium bicarbonate solution, and brine. The organic layer was dried over sodium sulfate and concentrated in vacuo to yield crude 1-(bromomethyl)-2-({[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy}methyl) cyclopropane (0.110 g, 45%). This material was dissolved in acetonitrile (2.00 mL) and tetrabutylammonium pyrophosphate was added (0.221 g, 0.240 mmol), the reaction under an argon atmosphere for two hours. The mixture was then concentrated in vacuo and purified on a DOWEX50 resin column. The DOWEX50 resin (7.30 g) was stirred in concentrated ammonium hydroxide (30.0 mL) for 20 minutes, then filtered and washed four times with water (100 mL). The resin was suspended in a buffer (20.0 mL of 1:49 2-propano1:25.0 mmolar aqueous ammonium bicarbonate) and poured into a column. The excess 1:49 2-propano1:25.0 mmolar aqueous ammonium bicarbonate buffer was drained from the column and the crude material was applied to the column (dissolved in 3.00 mL of the 1:49 2-propanol:25.0 mmolar aqueous ammonium bicarbonate buffer). The material was eluted with 30.0 mL of the 1:49 2-propanol: 25.0 mmolar aqueous ammonium bicarbonate buffer and lyophilized to a solid (0.113 g, 38%). 31P NMR (202 MHz, Deuterium Oxide) δ −6.32 (d, J=20.7 Hz), −10.20 (d, J=20.6 Hz). HRMS ESI [M=H] calc'd=465.1813, observed=465.1808.


EXAMPLE 32
Coupling Class II and Class I Enzymes

Enzymes Coleus forskohlii CfTPS2 (SEQ ID NO:69) and Salvia sclarea SsSCS (SEQ ID NO:61) were coupled in an in vitro assay to ascertain whether the synthetic unnatural methyl-GGDP (C21) substrate can efficiently yield the corresponding C21 methyl-diterpene. The C21 substrate does not exist in nature and has the following structure.




embedded image


As illustrated in FIG. 10, a new methyl-diterpene product, with a structure similar to sclareol, is detected when the Coleus forskohlii CfTPS2 and Salvia sclarea SsSCS enzymes are used together in an assay with the unnatural methyl-GGDP (C21) substrate. The Coleus forskohlii CfTps2 enzyme catalyzed the first step to provide a substrate for the Salvia sclarea SsSCS enzyme, which then produced the final product that has a structure similar to sclareol.


Many of the foregoing Examples illustrate that single step class I enzymes or single step class II labdane-type enzymes can synthesize irregular type diterpenes and unnatural derivatives thereof. However, this Example demonstrates that modules consisting of coupled class II and class I enzymes can be used in function sequential conversion reaction to prepare new types of diterpenes.


All patents and publications referenced or mentioned herein are indicative of the levels of skill of those skilled in the art to which the invention pertains, and each such referenced patent or publication is hereby specifically incorporated by reference to the same extent as if it had been incorporated by reference in its entirety individually or set forth herein in its entirety. Applicants reserve the right to physically incorporate into this specification any and all materials and information from any such cited patents or publications.


The following statements are intended to describe and summarize various features of the invention according to the foregoing description provided in the specification and figures.


Statements:

1. A compound of the formula (I) or (II):




embedded image


wherein:

    • m is an integer from 0 to 3 (e.g., 1 or 2), with the understanding that if m is 2 or 3, each repeating subunit can be the same or different;
    • n is an integer from 0 to 1;
    • the dashed lines (custom-character) represent a double bond when R3′ and R4′ are absent or when R5′ and R6′ are absent,
    • A and A′ are each independently cycloalkyl, aryl or heterocyclyl, each of which can be optionally substituted;
    • X1 is a heteroatom, −X3-alkyl, -alkyl-X3− or alkyl, wherein X3 is a heteroatom or alkyl or X1 is:




embedded image




    • R1 and R2 form a double bond or an epoxide;

    • each R′, R1′, R2, R2′, and R3—R6 is, independently, H, alkyl, halo, aryl, and alkylaryl;

    • R3′ and R4′ are absent or R3′ and R4′, together with the carbon atoms to which they are attached, form an epoxide, a cycloalkyl group, an aryl group or a heterocyclyl group;

    • R5′ and R6′ are absent or R5′ and R6′, together with the carbon atoms to which they are attached, form an epoxide, a cycloalkyl group, an aryl group or a heterocyclyl group;

    • X2 is a bond, alkenyl or acyl; and

    • X4 is a absent, a heteroatom or alkyl;


      with the proviso that the compound of the formula (I) is not a compound of the formula:







embedded image


2. A compound of Statement 1, wherein the compound of the formula (I) is a compound of the formula:




embedded image


3. A compound of Statement 1, wherein the compound of the formula (II) is a compound of the formula:




embedded image


4. The compound of any preceding Statement, wherein if X1 is a heteroatom, the heteroatom is oxygen.


5. The compound of any preceding Statement, wherein X3 is oxygen or C1-C5 alkyl, such as —CH2— and C2-C3-alkyl.


6. The compound of any preceding Statement, wherein R3—R6 are each H or C1-C5-alkyl, such as methyl and C2-C3-alkyl.


7. The compound of any preceding Statement, wherein R3 and R5 are each H or C1-C5-alkyl, such as methyl and C2-C3-alkyl; and R4 and R6 are each H.


8. The compound of any preceding Statement, wherein m is 1 or 2.


9. The compound of any preceding Statement, wherein, m is 0.


10. The compound of any preceding Statement, wherein X2 is an alkenyl group of the formula:




embedded image


or an acyl group of the formula:




embedded image


11. The compound of any preceding Statement, wherein the compound is a compound of the formula:




embedded image


12. The compound of any preceding Statement, wherein the compounds can be enzymatically transformed into a terpenoid.


13. The compound of any preceding Statement, wherein the terpenoid comprises a compound core of the formula:




embedded image


embedded image


and derivatives thereof, wherein derivatives can comprise additional double bonds, alkyl groups, hydroxy groups, acyl groups, and the like, dispersed about the cores.


14. A method comprising contacting an unnatural substrate with one or more enzymes capable of synthesizing a terpene to generate a primary product.


15. The method of Statement 14, wherein the unnatural substrate is a compound of Statements 1-14.


16. The method of Statement 14, wherein the one or more enzymes are from species Tripterygium wilfordii (Tw), Euphorbia peplus (Ep), Coleus forskohlii (Cf), Ajuga reptans (Ar), Perovskia atriciplifolia (Pa), Nepeta mussini (Nm), Origanum majorana (Om), Hyptis suaveolens (Hs), Grindelia robusta (Gr), Leonotis leonurus (Ll), Marrubium vulgare (Mv), Vitex agnus-castus (Vac), Euphorbia peplus (Ep), Ricinus communis (Rc), Daphne genkwa (Dg), or Zea mays (Zm).


17. The method of Statement 14, wherein the enzyme is from species Salvia sclarea, Coleus forskohlii, Euphorbia peplus, Ajuga reptans, Origanum majoranum, Marrubium vulgare, or Kitasatospora griseola.


18. The method of Statement 14-17, wherein the primary product is a terpenoid.


19. The method of Statement 14-18, wherein one or more of the enzymes has at least 90% sequence identity to SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 57, 59, 61, 63, 64, 65, 66, 67, or 69.


20. The method of Statement 14-18 or 19, further comprising contacting the primary product with one or more second enzymes.


21. The method of Statement 14-20, further comprising generating a second product by one or more second enzymes, where the one or more second enzymes catalyze the formation of the second product by using the primary product as a substrate.


22. The method of Statement 20 or 21, wherein the one or more second enzymes at least one of oxidizes, reduces, acylates, and glycosylates the primary product.


23. The method of Statement 20, 21 or 22, wherein the one or more second enzymes is an enzyme listed in Table 2.


24. The method of Statement 20-22 or 23, wherein one or more of the second enzymes has at least 90% sequence identity to SEQ ID NO: 39, 68, 70, or 71.


25. The method of Statement 22-23 or 24, wherein the one or more second enzymes is Cytochrome P450 or a sclareol synthase.


26. The method of Statement 14-23 or 24, which is performed in vitro in a cell-free mixture.


27. The method of Statement 14-23 or 24, which is performed within a cell that expresses the enzyme.


28. A compound of the formula (I)-(IV):




embedded image


wherein:

    • each m is independently an integer from 0 to 3, with the understanding that if m is 2 or 3, each repeating subunit can be the same or different;
    • n is an integer from 0 to 1;
    • the dashed lines (custom-character) represent a double bond when R3′ and R4′ are absent or when R5′ and R6′ are absent,
    • A and A′ are each independently cycloalkyl, aryl or heterocyclyl, each of which can be optionally substituted;
    • X1 is a heteroatom, —X3-alkyl, -alkyl-X3— or alkyl, wherein X3 is a heteroatom or alkyl or X1 is:




embedded image




    • R1 and R2 form a double bond or an epoxide;

    • each R′, R1′, R2, R2′, and R3—R6 is, independently, H, alkyl, alkoxy, halo, aryl, and alkylaryl;

    • R3′ and R4′ are absent or R3′ and R4′, together with the carbon atoms to which they are attached, form an epoxide, a cycloalkyl group, an aryl group or a heterocyclyl group;

    • R5′ and R6′ are absent or R5′ and R6′, together with the carbon atoms to which they are attached, form an epoxide, a cycloalkyl group, an aryl group or a heterocyclyl group;

    • X2 is a bond, alkenyl, alkynyl or acyl; and

    • X4 is a absent, a heteroatom or alkyl; with the proviso that the compound of the formula (I) is not a compound of the formula:







embedded image


29. The compound of Statement 28, wherein X2 is an alkenyl group of the formula:




embedded image


wherein q is an integer from 1 to 3; or




embedded image


or an acyl group of the formula:




embedded image


30. The compound of Statement 28 or 29, wherein the compound is a compound of the formula:




embedded image


embedded image


The specific methods, devices and compositions described herein are representative of preferred embodiments and are exemplary and not intended as limitations on the scope of the invention. Other objects, aspects, and embodiments will occur to those skilled in the art upon consideration of this specification, and are encompassed within the spirit of the invention as defined by the scope of the claims. It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention.


The invention illustratively described herein suitably may be practiced in the absence of any element or elements, or limitation or limitations, which is not specifically disclosed herein as essential. The methods and processes illustratively described herein suitably may be practiced in differing orders of steps, and the methods and processes are not necessarily restricted to the orders of steps indicated herein or in the claims.


Under no circumstances may the patent be interpreted to be limited to the specific examples or embodiments or methods specifically disclosed herein. Under no circumstances may the patent be interpreted to be limited by any statement made by any Examiner or any other official or employee of the Patent and Trademark Office unless such statement is specifically and without qualification or reservation expressly adopted in a responsive writing by Applicants.


The terms and expressions that have been employed are used as terms of description and not of limitation, and there is no intent in the use of such terms and expressions to exclude any equivalent of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention as claimed. Thus, it will be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims and statements of the invention.


The invention has been described broadly and generically herein. Each of the narrower species and subgeneric groupings falling within the generic disclosure also form part of the invention. This includes the generic description of the invention with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not the excised material is specifically recited herein. In addition, where features or aspects of the invention are described in terms of Markush groups, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group.

Claims
  • 1. A compound of the formula (I)-(IV):
  • 2. The compound of claim 1, wherein the compound of the formula (I) is a compound of the formula:
  • 3. The compound of claim 2, wherein the compound of the formula (II) is a compound of the formula::
  • 4. The compound of claim 1, wherein if X1 is a heteroatom, the heteroatom is oxygen.
  • 5. The compound of claim 1, wherein X3 is oxygen or C1-C5-alkyl, such as —CH2— and C2-C3-alkyl.
  • 6. The compound of claim 1, wherein R3—R6 are each H or C1-C5-alkyl, such as methyl and C2-C3-alkyl.
  • 7. The compound of claim 1, wherein R3 and R5 are each H or C1-C5-alkyl, such as methyl and C2-C3-alkyl; and R4 and R6 are each H.
  • 8. The compound of claim 1, wherein m is 1 or 2.
  • 9. The compound of claim 1, wherein, m is 0.
  • 10. The compound of claim 1, wherein X2 is an alkenyl group of the formula:
  • 11. The compound of claim 1, wherein the compound is a compound of the formula:
  • 12. The compound of claim 1, wherein the compounds can be enzymatically transformed into a terpenoid.
  • 13. The compound of claim 1, wherein the terpenoid comprises a compound core of the formula:
  • 14. A method comprising contacting an unnatural substrate with one or more enzymes capable of synthesizing a terpene to generate a primary product.
  • 15. The method of claim 14, wherein the unnatural substrate is one or more of the compounds of formula (I)-(IV):
  • 16. The method of claim 14, wherein the one or more enzymes are from species Tripterygium wilfordii (Tw), Euphorbia peplus (Ep), Coleus forskohlii (Cf), Ajuga reptans (Ar), Perovskia atriciplifolia (Pa), Nepeta mussini (Nm), Origanum majorana (Om), Hyptis suaveolens (Hs), Grindelia robusta (Gr), Leonotis leonurus (Ll), Marrubium vulgare (Mv), Vitex agnus-castus (Vac), Euphorbia peplus (Ep), Ricinus communis (Rc), Daphne genkwa (Dg), or Zea mays (Zm).
  • 17. The method of claim 14, wherein the enzyme is from species Salvia sclarea, Coleus forskohlii, Euphorbia peplus, Ajuga reptans, Origanum majoranum, Marrubium vulgare, or Kitasatospora griseola.
  • 18. The method of claim 14, wherein the primary product is a terpenoid.
  • 19. The method of claim 14, wherein one or more of the enzymes has at least 90% sequence identity to SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 57, 59, 61, 63, 64, 65, 66, 67, or 69.
  • 20. The method of claim 14, further comprising contacting the primary product with one or more second enzymes.
  • 21. The method of claim 20, wherein the one or more second enzymes oxidizes, reduces, acylates, or glycosylates the primary product.
  • 22. The method of claim 20, wherein one or more of the second enzymes has at least 90% sequence identity to SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 57, 59, 61, 63, 64, 65, 66, 67, or 69.
  • 23. The method of claim 20, wherein one or more of the second enzymes has at least 90% sequence identity to SEQ ID NO: 39, 61, 68, 70, or 71.
  • 24. The method of claim 20, wherein the one or more second enzymes is Cytochrome P450 or a sclareol synthase.
  • 25. The method of claim 14, which is performed in vitro in a cell-free mixture.
  • 26. The method of claim 14, which is performed within a cell that expresses the enzyme.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is U.S. National Stage Filing under 35 U.S.C. 371 of International Patent Application No. PCT/US2020/059144, filed Nov. 5, 2020, and published WO 2021/092200 A1 on May 14, 2021, which claims the benefit of U.S. Provisional Patent Appl. Ser. No. 62/930,898, filed Nov. 5, 2019, which is incorporated by reference as if fully set forth herein. Incorporation by Reference of Sequence Listing Provided as a Text File A Sequence Listing is provided herewith as a text file, “2089186.txt” created on Nov. 5, 2020 and having a size of 303,104 bytes. The contents of the text file are incorporated by reference herein in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/059144 11/5/2020 WO
Provisional Applications (1)
Number Date Country
62930898 Nov 2019 US