BIOSYNTHETIC METHODS FOR THE MODIFICATION OF CANNABINOIDS

Information

  • Patent Application
  • 20220298533
  • Publication Number
    20220298533
  • Date Filed
    March 22, 2022
    2 years ago
  • Date Published
    September 22, 2022
    2 years ago
Abstract
Provided is a method of modifying a first cannabinoid into a second cannabinoid or a non-cannabinoid. The method comprises combining the first cannabinoid with an enzyme that can modify the first cannabinoid into the second cannabinoid or non-cannabinoid under conditions where the first cannabinoid is modified into the second cannabinoid or non-cannabinoid. Also provided is a non-naturally occurring enzyme that can modify a first cannabinoid into a second cannabinoid or a non-cannabinoid. A nucleic acid encoding that enzyme is additionally provided. Further provided is a non-naturally occurring nucleic acid that encodes an enzyme having the enzymatic activity of the above non-naturally occurring enzyme. An expression cassette comprising that nucleic acid is additionally provided. A cell comprising the above expression cassette is further provided. Also provided is a plant expression cassette comprising the above-identified nucleic acid.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Mar. 22, 2022, is named CBTH-12-US_SL.txt and is 339,457 bytes in size.


BACKGROUND OF THE INVENTION
(1) Field of the Invention

The present application generally relates to manipulation of cannabinoids. More specifically, the application provides methods and compositions for the enzymatic modification or degradation of cannabinoids.


(2) Description of the Related Art

Cannabinoids are a class of organic small molecules of meroterpenoid structures found in the plant genus Cannabis. The small molecules are currently under investigation as therapeutic agents for a wide variety of health issues, including epilepsy, pain, and other neurological problems, and mental health conditions such as depression, PTSD, opioid addiction, and alcoholism (Committee on the Health Effects of Marijuana, 2017).


Numerous cannabinoids of varying structure are produced in Cannabis spp., each with their own therapeutic profile. However, since some cannabinoids are made in very small quantities in Cannabis spp. and are challenging to separate from other cannabinoids in Cannabis extracts, it is difficult to evaluate the therapeutic and psychotropic effect of each particular cannabinoid.


Rare cannabinoids from Cannabis spp. or from microbial bioproduction are gaining intense interest in the nutraceutical and clinical markets.


In one example, conversion of the abundant cannabinoid, tetrahydrocannabinol (THC) to a rare cannabinoid, cannabinol (CBN) is desirable for many reasons. THC is lower value, has intoxicating psychoactive side effects and is illegal in many jurisdictions. CBN is a high value, legal molecule that shows great clinical promise in treating sleep and skin disorders, and it has shown potential as a therapeutic for amyotrophic lateral sclerosis (Lou Gehrig's disease) (Carter, 2010; reviewed in Giacoppo, 2016). CBN is naturally formed by slow and inefficient non-enzymatic oxidation of THC in Cannabis spp. However, there is no known enzymatic route to produce CBN from THC. CBN can also be synthesized in small batches using organic chemistry (Caprioglio, 2019). Other approaches to make CBN include non-enzymatic oxidation methods applied to purified plant derived cannabinoids, such as heating and exposure to UV light or sunlight (PCT Patent Application Publication WO2014/159688A1 and US Patent Application Publication 2017/0020943A1) These routes are expensive, slow and environmentally unfriendly. An enzymatic route to CBN would greatly aid efforts to produce larger, cheaper and more consistent batches of this highly valuable compound.


There is thus a need to (a) synthesize individual cannabinoids, (b) convert one cannabinoid into another cannabinoid, or (c) convert a particular cannabinoid into a non-cannabinoid. The present invention addresses that need.


BRIEF SUMMARY OF THE INVENTION

The present invention provides enzymes and methods using those enzymes to modify or degrade cannabinoids. Thus, in some embodiments, a method of modifying a first cannabinoid into a second cannabinoid or a non-cannabinoid is provided. The method comprises combining the first cannabinoid with an enzyme that can modify the first cannabinoid into the second cannabinoid or non-cannabinoid under conditions where the first cannabinoid is modified into the second cannabinoid or non-cannabinoid.


Also provided is a non-naturally occurring enzyme that can modify a first cannabinoid into a second cannabinoid or a non-cannabinoid. A nucleic acid encoding that enzyme is additionally provided.


Further provided is a non-naturally occurring nucleic acid that encodes an enzyme having the enzymatic activity of the above non-naturally occurring enzyme. An expression cassette comprising that nucleic acid is additionally provided.


In other embodiments, a cell comprising the above expression cassette is provided. In these embodiments, the cell is capable of expressing the enzyme provided above, or a naturally occurring equivalent thereof.


Also provided is a plant expression cassette comprising the above-identified nucleic acid, as is a plant comprising the expression cassette, where the plant is capable of expressing the above-identified enzyme, or a naturally occurring equivalent thereof.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 depicts cannabinoid synthase substrates, the structures of various cannabinoids, and cannabinoid decarboxylation reactions. Panel A shows the alkylresorcylic acid prenyl acceptor and the polyprenol diphosphate prenyl donor in cannabinoid synthase reactions; Panel B shows various cannabinoid compounds; and Panel C shows cannabinoid decarboxylation reactions.



FIG. 2A depicts the CBN biosynthesis pathway and structures of variants cannabinoids.



FIG. 2B depicts the 11-hydroxylation of THC and CBN by cytochrome P450 CYP2C19.



FIG. 2C depicts oxidases acting on representative cannabinoids, THC and CBN, to form homopolymers and heteropolymers.



FIGS. 3A, 3B and 3C depict different mechanisms by which different classes of enzymes might form an aromatic ring during CBN biosynthesis. FIG. 3A depicts a ring desaturation mechanism carried out by an aromatase. FIG. 3B depicts a ring desaturation mechanism carried out by a dehydrogenase. FIG. 3C depicts a ring desaturation mechanism carried out by a desaturase.



FIG. 4A depicts methods for making CBN biosynthetically using this technology where the entire CBN biosynthesis pathway is contained within one microbial host. Also depicted is a complete biosynthesis pathway to 11-OH CBN where the entire 11-OH CBN biosynthesis pathway is contained within one microbial host.



FIG. 4B depicts a bioconversion strategy where one microbe makes THC, and a second microbe converts THC to CBN.



FIG. 4C depicts bioconversion of crude plant or microbial material by microbe with CBN synthase.



FIG. 4D depicts bioconversion of purified cannabinoids by a microbe containing CBN synthase.



FIG. 4E depicts enzymatic conversion of purified cannabinoids using purified recombinant CBN synthase.



FIG. 4F depicts enzymatic conversion of crude plant or microbial material using purified recombinant CBN synthase.



FIG. 4G depicts a cannabinoid producing plant that is not modified and a plant that is modified to express a CBN synthase



FIG. 5A depicts methods for selective THC degradation where the entire pathway producing THC and CBD is contained within one microbial host.



FIG. 5B depicts a bioconversion strategy where one microbe makes THC, and a second microbe degrades THC.



FIG. 5C depicts elimination of THC from crude plant or microbial material by a microbe expressing THC degradase.



FIG. 5D depicts elimination of THC from purified cannabinoids by a microbe expressing a THC degradase.



FIG. 5E depicts selective enzymatic degradation of THC in purified cannabinoids using purified recombinant THC degradase.



FIG. 5F depicts selective enzymatic degradation of THC in crude plant or microbial material using purified recombinant THC degradase.



FIG. 5G depicts a cannabinoid producing plant that is not modified and a plant that is modified to express a THC degradase.



FIG. 6A depicts HPLC data showing selective degradation of THC and bioconversion of THC into CBN by a microbe possessing CBN synthase activity relative to THC incubated with a microbe that does not have this activity.



FIG. 6B depicts HPLC data showing selective degradation of THC by a microbe possessing THC degradase activity relative to THC incubated with a microbe that does not have this activity.





DETAILED DESCRIPTION OF THE INVENTION
Abbreviations and Definitions

To facilitate understanding of the invention, a number of terms and abbreviations as used herein are defined below as follows:


Conservative amino acid substitutions: As used herein, when referring to mutations in a protein, “conservative amino acid substitutions” are those in which at least one amino acid of the polypeptide encoded by the nucleic acid sequence is substituted with another amino acid having similar characteristics. Examples of conservative amino acid substitutions are ser for ala, thr, or cys; lys for arg; gln for asn, his, or lys; his for asn; glu for asp or lys; asn for his or gln; asp for glu; pro for gly; leu for ile, phe, met, or val; val for ile or leu; ile for leu, met, or val; arg for lys; met for phe; tyr for phe or trp; thr for ser; trp for tyr; and phe for tyr.


Functional variant: The term “functional variant,” as used herein, refers to a recombinant enzyme such as a CBN synthase that comprises a nucleotide and/or amino acid sequence that is altered by one or more nucleotides and/or amino acids compared to the nucleotide and/or amino acid sequences of the parent protein and that is still capable of performing an enzymatic function (e.g., synthesis of CBN) of the parent enzyme. In other words, the modifications in the amino acid and/or nucleotide sequence of the parent enzyme may cause desirable changes in reaction parameters without altering fundamental enzymatic function encoded by the nucleotide sequence or containing the amino acid sequence. The functional variant may have conservative change including nucleotide and amino acid substitutions, additions and deletions. These modifications can be introduced by standard techniques known in the art, such as site-directed mutagenesis and random PCR-mediated mutagenesis, and may comprise natural as well as non-natural nucleotides and amino acids. Also envisioned is the use of amino acid analogs, e.g. amino acids not DNA or RNA encoded in biological systems, and labels such as fluorescent dyes, radioactive elements, electron dense agents, or any other protein modification, now known or later discovered.


Recombinant nucleic acid and recombinant protein: As used herein, a recombinant nucleic acid or protein is a nucleic acid or protein produced by recombinant DNA technology, e.g., as described in Green and Sambrook (2012).


Polypeptide, protein, and peptide: The terms “polypeptide,” “protein,” and “peptide” are used herein interchangeably to refer to amino acid chains in which the amino acid residues are linked by peptide bonds or modified peptide bonds. The amino acid chains can be of any length of greater than two amino acids. Unless otherwise specified, the terms “polypeptide,” “protein,” and “peptide” also encompass various modified forms thereof. Such modified forms may be naturally occurring modified forms or chemically modified forms. Examples of modified forms include, but are not limited to, glycosylated forms, phosphorylated forms, myristoylated forms, palmitoylated forms, ribosylated forms, acetylated forms, and the like. Modifications also include intra-molecular crosslinking and covalent attachment of various moieties such as lipids, flavin, biotin, polyethylene glycol or derivatives thereof, and the like. In addition, modifications may also include protein cyclization, branching of the amino acid chain, and cross-linking of the protein. Further, amino acids other than the conventional twenty amino acids encoded by genes may also be included in a polypeptide.


The term “protein” or “polypeptide” may also encompass a “purified” polypeptide that is substantially separated from other polypeptides in a cell or organism in which the polypeptide naturally occurs (e.g., 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 100% free of contaminants).


Primer, probe and oligonucleotide: The terms “primer,” “probe,” and “oligonucleotide” may be used herein interchangeably to refer to a relatively short nucleic acid fragment or sequence. They can be DNA, RNA, or a hybrid thereof, or chemically modified analogs or derivatives thereof. Typically, they are single-stranded. However, they can also be double-stranded having two complementing strands that can be separated apart by denaturation. In certain aspects, they are of a length of from about 8 nucleotides to about 200 nucleotides. In other aspects, they are from about 12 nucleotides to about 100 nucleotides. In additional aspects, they are about 18 to about 50 nucleotides. They can be labeled with detectable markers or modified in any conventional manners for various molecular biological applications.


Vector: As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is an episome, i.e., a nucleic acid capable of extra-chromosomal replication. Various vectors are those capable of autonomous replication and/expression of nucleic acids to which they are linked. Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as “expression vectors.”


Linker: The term “linker” refers to a short amino acid sequence that separates multiple domains of a polypeptide. In some embodiments, the linker prohibits energetically or structurally unfavorable interactions between the discrete domains.


Cannabinoid: As used herein, the term “cannabinoid” refers to a family of structurally related aromatic meroterpenoid molecules. Cannabinoids are generally formed by the enzymatic fusion, by a cannabinoid synthase (having geranylpyrophosphate:olivetolate geranyltransferase activity), of an alkylresorcylic acid




embedded image


where R1═CH3, (CH2)2CH3 (divarinolic acid), (CH2)4CH3 (olivetolic acid), or (CH2)6CH3, with a polyprenyl pyrophosphate such as geranyl pyrophosphate, neryl pyrophosphate, geranylgeranyl pyrophosphate, of farnesyl pyrophosphate (FIG. 1; see also Luo et al., 2019; Carvalho et al., 2017; and Gülck and Møller, 2020 and references cited therein). The polyprenyl pyrophosphate is synthesized by geranyl pyrophosphate synthase (GPPS) (U.S. Provisional Patent Application 63/141,486).


Codon optimized: As used herein, a recombinant gene is “codon optimized” when its nucleotide sequence is modified to accommodate codon bias of the host organism to improve gene expression and increase translational efficiency of the gene.


Expression cassette: As used herein, an “expression cassette” is a nucleic acid that comprises a gene and a regulatory sequence operatively coupled to the gene such that the promoter drives the expression of the gene in a cell. An example is a gene for an enzyme with a promoter functional in yeast, where the promoter is situated such that the promoter drives the expression of the enzyme in a yeast cell.


The present invention is directed to methods and compositions for modifying a first cannabinoid into a second cannabinoid or a non-cannabinoid using recombinant enzymes in microorganisms.


Methods of Modifying or Degrading Cannabinoids

In some embodiments, a method of modifying a first cannabinoid into a second cannabinoid or a non-cannabinoid is provided. The method comprises combining the first cannabinoid with an enzyme that can modify the first cannabinoid into the second cannabinoid or non-cannabinoid under conditions where the first cannabinoid is modified into the second cannabinoid or non-cannabinoid.


In these embodiments, the first cannabinoid and the second cannabinoid can be any cannabinoid now known or later discovered. In some of these embodiments, the first and/or second cannabinoid comprises the structure




embedded image


wherein R1═CH3, CH2CH3, (CH2)2CH3, (CH2)3CH3, (CH2)3CH3, (CH2)4CH3, (CH2)5CH3, or (CH2)6CH3; R2═H or COOH; and R3═CH3 or CH2OH.


Non-limiting examples of the first cannabinoid or the second cannabinoid are cannabigerolic acid (CBGA), cannabidiolic acid (CBDA), cannabichromene (CBC), cannabidivarin (CBCV), cannabichromenic acid (CBCA), cannabichromevarinic acid (CBCVA) cannabinol (CBN), cannabinerolic acid (CBNA), cannabivarin (CBV), cannabigerolic acid (CBGA), cannabinerovarinic acid (CBNVA), cannabigerophorolic acid (CBGPA), cannabigerovarinic acid (CBGVA), cannabigerogerovarinic acid (CB GGVA), tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), tetrahydrocannabivarin (THCV), tetrahydrocannabivarin acid (THCVA), cannabinerovarinic acid (CBNVA), sesquicannabigerol (CBF), cannabigerogerol (CBGG), sesqui-cannabigerolic acid (CBFA), cannabigerogerolic acid (CBGGA), sesquicannabigerolic acid (CBFA), sesquicannabidiolic acid (CBDFA), sesquiTHCA (THCFA), sesqui-cannabigerovarinic acid (CBFVA), sesquiCBCA (CBCFA), sesquiCBGPA (CBFPA), tetrahydrocannabivarin (THCV), cannabidiol (CBD), cannabidiolic acid (CBDA), cannabidivarinic acid (CBDVA), or cannabidivarin (CBDV) (FIG. 1). The decarboxylation reactions shown in FIG. 1C can be carried out by heat (e.g., combustion) or a-decarboxylase.


These methods can use any enzyme, now known or later discovered, that can carry out the conversion of the first cannabinoid into the second cannabinoid or degrade the first cannabinoid. In some embodiments, the enzyme is an aromatase, a dehydrogenase, an oxidase or a desaturase.


In some embodiments, the first cannabinoid is tetrahydrocannabinol (THC) or tetrahydrocannabinolic acid (THCA) and the second cannabinoid is cannabinol (CBN) or cannabinolic acid (CBNA). In other embodiments, the first cannabinoid is tetrahydrocannabivarinic acid (THCVA), tetrahydrocannabiphorolic acid (TCHPA), tetrahydrocannabiorcinic acid (THCOA) or sesquiTHCA (THCFA) and the second cannabinoid is cannabinerolic acid (CBNA), cannabinerovarinic acid (CBNVA), cannabiphorolic acid (CBNPA), cannabinorcinic acid (CBNOA) or sesqui cannabinerolic acid (sesqui-CBNA), respectively. In additional embodiments, the first cannabinoid is tetrahydrocannabivarinol (THCV), tetrahydrocannabiphorol (TCHP), tetrahydrocannabiorcinol (THCO) or sesquitetrahydrocannabinolic acid (sesquiTHCA) and the second cannabinoid is cannabinerovarinol (CBNV), cannabiphorol (CBNP), cannabinorcinol (CBNO) or sesqui cannabinerol (sesqui-CBN), respectively.


Exemplary enzymatic reactions are shown in FIGS. 2A, 2B, 2C, 3A, 3B, and 3C. FIG. 2A shows the enzymatic conversion of the initial products of cannabinoid synthase, e.g., CBGA, CBGVA and CBG, into THCA, THCVA, THC, CBDA, CBDVA, CBD, CBCA, CBCVA or CBC. FIG. 2A also shows the conversion of THC or THCV into CBN or CBV by CBN synthase. In various embodiments, the CBN synthase is a desaturase, an aromatase, a dehydrogenase, or an oxidase.


In various embodiments, the first cannabinoid is converted into a second cannabinoid that is an 11-hydroxy derivative of the first cannabinoid. In some of these embodiments, the conversion is carried out by the combination of a cytochrome P450 (CYP-450) and a cytochrome P450 reductase (CPR). FIG. 2B shows a nonlimiting example of the conversion of THC and CBN into 11-hydroxy-THC and 11-hydroxy-CBN, respectively, by a CYP-450, for example CYP2C19, and a P450 reductase.


In various embodiments, a cannabinoid is oxidized by an oxidase into a polymeric state, such as a dimer of cannabinoids. This can occur between oxidized cannabinoids of the same species, such as THC or CBN, respectively, to form homopolymers, or a mixture of cannabinoid species, such as THC and CBN, which are oxidized to a heteropolymer of cannabinoids, as show in FIG. 2C.


The enzyme utilized in these methods can have any activity that can modify the first cannabinoid into the second cannabinoid. For example, FIG. 3A shows a generalized aromatase activity that can be utilized to convert, e.g., THC or THCV into CBN or CBV, and FIG. 3B and FIG. 3C show generalized dehydrogenase and desaturase activities, respectively, that, as discussed above, can also serve to create the aromatic ring.


In some embodiments, the enzymes utilized in these methods additionally enable reduction of cannabinoid, e.g., THC, levels in pure cannabinoid preparations while not affecting other cannabinoid molecules. Cannabidiol (CBD) products often contain unwanted THC. Federal law bans any product containing more than 0.3% THC, so even small reductions in THC are critical to maintenance of cannabis products under this legal limit. Enzymes that destroy THC completely or convert THC to a molecule besides CBN are useful for certain applications and are commercially valuable.


The invention methods can be part of a complete biosynthesis pathway for cannabinoids such as CBN, including production of its acidic cannabinoid variant, cannabinolic acid (CBNA). The complete biosynthesis pathway for any cannabinoid is amenable to integration in a cannabinoid producing host cell. If the pathway includes a functional CBN synthase, accumulation of THC during an industrial fermentation is avoided.


The microorganism, e.g., yeast or bacterium, in which the methods are carried out can further comprise other enzymes, e.g., recombinantly transformed enzymes, that can affect the cannabinoid pathway, for example an enzyme that synthesizes the first cannabinoid from a non-cannabinoid or from another cannabinoid. This is illustrated in FIG. 2B and the right panel of FIG. 4A, showing an illustration of a microorganism that is transformed with a CYP-450 and a CPR that converts a cannabinoid (e.g., THC) into an 11-hydroxy cannabinoid (e.g., 11-OH-THC), then converting that 11-hydroxy THC into 11-OH-CBN with CBN synthase. See also Watanabe, 2007.


To execute a CYP reaction, a CPR (cytochrome P450 reductase) is necessary to supply the P450 enzyme with reducing equivalents in the form of NADPH. The combination of the recombinant P450 and CPR genes and enzymes results in an 11-OH hydroxylase capable of acting on various cannabinoid substrates. In some embodiments, the hydroxyl group at the 11-position is added by recombinant CYP-450+CPR before the conversion of tetrahydrocannabinol or tetrahydrocannabinolic acid (THC/A) to CBN/A, yielding a conversion from 11-hydroxy tetrahydrocannabinol (11-OH THC) to 11-OH CBN.


The recombinant hydroxylation enzymes herein described may also hydroxylate other cannabinoid substrates, such as CBD, when expressed in a recombinant host capable of cannabinoid bioproduction. Additional reactions, substrates, and products for the above reconstituted biosynthetic pathways in a modified organism are depicted in FIG. 2A, where cannabinoid variants such as cannabivarinol (CBV) can also be produced via CBN synthases and bioconversion organisms herein described.


The enzymes used in these methods can be recombinantly expressed in a microorganism such as a yeast or bacterium, or a plant such as a Cannabis sp. In those systems, the gene for those enzymes can be modified, e.g., by codon optimizing the gene for the recombinant microorganism or plant.


In other embodiments, the enzyme is not naturally occurring. Such enzymes can be modified from a naturally occurring enzyme by, e.g., having conservative amino acid substitutions or substitutions that alter the enzymatic activity. Those enzymes can also be derived from a naturally occurring gene that has been codon optimized for expression in a recombinant host such as bacteria, yeast or plants.


In some of these methods, the first cannabinoid is converted (degraded) into a non-cannabinoid, for example by eliminating the cannabinoid aromatic ring that is derived from an alkylresorcylic acid in the naturally occurring cannabinoid pathway in Cannabis spp. Acetyl-CoA can also be produced as a result of this conversion.


These methods can be carried out in vivo or in vitro. When in vitro, the enzyme can be synthesized in a recombinant microorganism or plant and extracts of the microorganism or plant can be combined with the first cannabinoid. In various embodiments, the enzyme can be at least partially purified from the extract.


In these in vitro methods, the first cannabinoid can be present in a crude extract of a Cannabis sp. plant or a microorganism from which the first cannabinoid was synthesized. Alternatively, the first cannabinoid can be substantially purified when combined with the enzyme.


Exemplary in vitro methods are illustrated in FIGS. 4E, 4F, 5D and 5E. In FIG. 4E, THC is incubated with purified CBN synthase, converting the THC to CBN. In FIG. 4F, purified CBN synthase is incubated with a crude Cannabis sp. (hemp) preparation, converting THC therein into CBN. FIG. 5D illustrates utilizing a THC degradase inside an organism to degrade THC in a purified mixture of THC and CBD, leaving the CBD. FIG. 5E illustrates the same reaction, where the degradase degrades the THC in a crude Cannabis sp. (hemp) preparation, leaving the CBD.


In other embodiments, bioconversion of THC to CBN takes place using lysate of a microbe containing the CBN synthase while the THC precursor is produced in a second microorganism. The first microbe could express the CBN synthase natively or recombinantly.


In additional embodiments, bioconversion of THC to CBN takes place using lysate of a microorganism containing the CBN synthase while the THC precursor is supplied as lysate from a second, cannabinoid producing microorganism. The first microbe could express the THC-to-CBN synthase natively or recombinantly.


In further embodiments, the CBN synthase is expressed recombinantly in a microbial host and the enzyme purified. The purified enzyme can then be used on purified plant derived THC to do an enzymatic conversion of THC to CBN in vitro.


The methods provided herein can facilitate development of industrial processes to eliminate THC and/or produce CBN in crude cannabinoid preparations, including plant material and microbial cell mass.


In the above exemplary embodiments, THC/A can be selectively degraded instead of being converted to CBN.


When the method is carried out in vivo, the method can be carried out by a living organism that synthesizes the enzyme. Any living organism can be utilized to carry out the method. In some embodiments, the method is carried out in a plant, e.g., a tobacco or Cannabis sp. plant.


In other embodiments, the method is carried out in a microorganism, as illustrated in FIG. 4A. The left panel of FIG. 4A shows an illustration of a microorganism transformed with a CBN synthase gene, that can convert THC, THCV or THCA to CBN, CBV or CBNA. Any microorganism capable of being transformed with a recombinant form of the enzyme can be utilized here. In some of these embodiments, the first microorganism is a yeast, e.g., a yeast that is a species of Saccharomyces, Candida, Pichia, Schizosaccharomyces, Scheffersomyces, Blakeslea, Rhodotorula, or Yarrowia. In other embodiments, the first microorganism is a bacterium, e.g., a bacterium of the genus Rhodococcus, Gordonia, Dietzia, Streptomyces, Escherichia, Nocardia or Mycobacterium.


The microorganism can also comprise a recombinant enzyme “upstream” from cannabinoid synthase, e.g., a recombinant geranyl pyrophosphate synthase (GPPS) (see U.S. Provisional Patent Application 63/141,486). In various embodiments, the microorganism further comprises a recombinant GPPS and cannabinoid synthase, where the cannabinoid synthase can combine a polyprenyl pyrophosphate with alkylresorcylic acid to create a cannabinoid.


In some in vivo embodiments of these methods where the enzyme is in a first microorganism (yeast or bacteria), the first cannabinoid is synthesized in a second microorganism, wherein the method further comprises incubating the first microorganism, or an extract thereof, with the second microorganism. This is illustrated in FIG. 4B, which shows a transgenic microorganism that produces a first cannabinoid (e.g., THC) in co-culture with a transgenic microorganism that converts the first cannabinoid into a second cannabinoid (e.g., CBN). In that example, bioconversion of THC to CBN takes place using a microbe containing CBN synthase while the THC precursor is produced in a second microorganism. The first microbe could express the CBN synthase natively or recombinantly. This bioconversion strategy would follow that outlined by Abbott (1977), but incorporate a recombinant THC producing microbe as well as use on crude plant material or microbial biomass.


In other embodiments, the first cannabinoid is synthesized in a Cannabis sp. plant and matter from the Cannabis sp. plant is incubated with the first microorganism. This is illustrated in FIG. 4C, where THC is produced in a Cannabis sp. (i.e., hemp) plant, and crude plant matter is incubated with the first microorganism (e.g., a yeast or bacterium) that converts the THC into CBN.


In embodiments described above where the first cannabinoid is extracted from the second microorganism or a plant (e.g., a Cannabis sp. plant or tobacco), the first cannabinoid can be in a crude extract or can be partially or substantially purified from the second microorganism.


Various additional in vivo scenarios are illustrated in FIGS. 4D, 5A, 5B and 5C. FIG. 4D illustrates the bioconversion of purified THC into CBN by a microorganism (e.g., a yeast or bacterium) that expresses a recombinant CBN synthase. In FIG. 5B, a first microorganism that produces both THC and CBD is co-cultured with a second microorganism that produces a THC degradase, thus degrading the THC, but not the CBD produced by the first microorganism. Similarly, FIG. 5C illustrates the incubation of a crude preparation of Cannabis sp. (hemp) with a microorganism that produces a THC degradase, thus degrading the THC, but not the CBD in the hemp preparation. In another similar scenario, FIG. 5D illustrates the incubation of a purified cannabinoid preparation comprising THC and CBD with a microorganism that produces a THC degradase, thus eliminating the THC from the preparation.


Nonlimiting examples of enzymes that can be utilized in these reactions are provided in Table 1, where SEQ ID NOs:1-50 provide nucleic acid sequences for the enzymes, codon optimized for expression in yeast, and SEQ ID NOs:51-100 provide corresponding amino acid sequences. SEQ ID NOs:1-12 and 51-62 are P450 nucleic acid and amino acid sequences, respectively; SEQ ID NOs:13-20 and 63-70 are CPR nucleic acid and amino acid sequences, respectively; SEQ ID NOs:21-28 and 71-78 are CBN synthase nucleic acid and amino acid sequences, respectively; SEQ ID NOs:29-38 and 79-88 are THC degradase nucleic acid and amino acid sequences, respectively; and SEQ ID NOs:39-50 and 89-100 are oxidase nucleic acid and amino acid sequences, respectively. Of the oxidase enzymes provided, those comprising nucleic acid sequences SEQ ID NOs:42-50 and amino acid sequences SEQ ID NO:92-100 are laccases.









TABLE 1







Summary of codon optimized sequences provided herewith.












Codon Optimized
Amino Acid




Nucleic Acid
Sequence for



Shorthand
Sequence
Isolated Protein







p450_1
SEQ ID NO: 1
SEQ ID NO: 51



p450_2
SEQ ID NO: 2
SEQ ID NO: 52



p450_3
SEQ ID NO: 3
SEQ ID NO: 53



p450_4
SEQ ID NO: 4
SEQ ID NO: 54



p450_5
SEQ ID NO: 5
SEQ ID NO: 55



p450_6
SEQ ID NO: 6
SEQ ID NO: 56



p450_7
SEQ ID NO: 7
SEQ ID NO: 57



p450_8
SEQ ID NO: 8
SEQ ID NO: 58



p450_9
SEQ ID NO: 9
SEQ ID NO: 59



p450_10
SEQ ID NO: 10
SEQ ID NO: 60



p450_11
SEQ ID NO: 11
SEQ ID NO: 61



p450_12
SEQ ID NO: 12
SEQ ID NO: 62



CPR_1
SEQ ID NO: 13
SEQ ID NO: 63



CPR_2
SEQ ID NO: 14
SEQ ID NO: 64



CPR_3
SEQ ID NO: 15
SEQ ID NO: 65



CPR_4
SEQ ID NO: 16
SEQ ID NO: 66



CPR_5
SEQ ID NO: 17
SEQ ID NO: 67



CPR_6
SEQ ID NO: 18
SEQ ID NO: 68



CPR_7
SEQ ID NO: 19
SEQ ID NO: 69



CPR_8
SEQ ID NO: 20
SEQ ID NO: 70



CBNsyn_1
SEQ ID NO: 21
SEQ ID NO: 71



CBNsyn_2
SEQ ID NO: 22
SEQ ID NO: 72



CBNsyn_3
SEQ ID NO: 23
SEQ ID NO: 73



CBNsyn_4
SEQ ID NO: 24
SEQ ID NO: 74



CBNsyn_5
SEQ ID NO: 25
SEQ ID NO: 75



CBNsyn_6
SEQ ID NO: 26
SEQ ID NO: 76



CBNsyn_7
SEQ ID NO: 27
SEQ ID NO: 77



CBNsyn_8
SEQ ID NO: 28
SEQ ID NO: 78



THCdeg_1
SEQ ID NO: 29
SEQ ID NO: 79



THCdeg_2
SEQ ID NO: 30
SEQ ID NO: 80



THCdeg_3
SEQ ID NO: 31
SEQ ID NO: 81



THCdeg_4
SEQ ID NO: 32
SEQ ID NO: 82



THCdeg_5
SEQ ID NO: 33
SEQ ID NO: 83



THCdeg_6
SEQ ID NO: 34
SEQ ID NO: 84



THCdeg_7
SEQ ID NO: 35
SEQ ID NO: 85



THCdeg_8
SEQ ID NO: 36
SEQ ID NO: 86



THCdeg_9
SEQ ID NO: 37
SEQ ID NO: 87



THCdeg_10
SEQ ID NO: 38
SEQ ID NO: 88



Oxid_1
SEQ ID NO: 39
SEQ ID NO: 89



Oxid_2
SEQ ID NO: 40
SEQ ID NO: 90



Oxid_3
SEQ ID NO: 41
SEQ ID NO: 91



Oxid_4
SEQ ID NO: 42
SEQ ID NO: 92



Oxid_5
SEQ ID NO: 43
SEQ ID NO: 93



Oxid_6
SEQ ID NO: 44
SEQ ID NO: 94



Oxid_7
SEQ ID NO: 45
SEQ ID NO: 95



Oxid_8
SEQ ID NO: 46
SEQ ID NO: 96



Oxid_9
SEQ ID NO: 47
SEQ ID NO: 97



Oxid_10
SEQ ID NO: 48
SEQ ID NO: 98



Oxid_11
SEQ ID NO: 49
SEQ ID NO: 99



Oxid_12
SEQ ID NO: 50
SEQ ID NO: 100










Enzymes

Also provided is a non-naturally occurring enzyme that can modify a first cannabinoid into a second cannabinoid or a non-cannabinoid.


The non-naturally occurring enzyme in these embodiments can have any alterations from a naturally occurring counterpart. In some embodiments, the enzyme comprises at least one amino acid that is not in a naturally occurring enzyme that has the same enzymatic activity. In some of those embodiments, the enzyme comprises a conservative substitution of an amino acid in a naturally occurring enzyme that has the same enzymatic activity. In various embodiments, the naturally occurring enzyme comprises any of SEQ ID NOs:51-100.


These enzymes can be utilized in the above-described methods. As such, in some embodiments, the first and/or second cannabinoid comprises the structure




text missing or illegible when filed


where R1═CH3, CH2CH3, (CH2)2CH3, (CH2)3CH3, (CH2)3CH3, (CH2)4CH3, (CH2)5CH3, or (CH2)6CH3; R2═H or COOH; and R3═CH3 or CH2OH. In other embodiments, the enzyme is an aromatase, a dehydrogenase, an oxidase or a desaturase. In additional embodiments, the first cannabinoid is tetrahydrocannabinol (THC) or tetrahydrocannabinolic acid (THCA) and the second cannabinoid is cannabinol (CBN) or cannabinolic acid (CBNA) and the enzyme is an aromatase, a dehydrogenase, an oxidase or a desaturase. In further embodiments, the first cannabinoid is tetrahydrocannabivarinic acid (THCVA), tetrahydrocannabiphorolic acid (TCHPA), tetrahydrocannabiorcinic acid (THCOA) or sesquiTHCA (THCFA) and the second cannabinoid is cannabinerolic acid (CBNA), cannabinerovarinic acid (CBNVA), cannabiphorolic acid (CBNPA), cannabinorcinic acid (CBNOA) or sesqui cannabinerolic acid (sesqui-CBNA), respectively. Also, the first cannabinoid can be tetrahydrocannabivarinol (THCV), tetrahydrocannabiphorol (TCHP), tetrahydrocannabiorcinol (THCO) or sesquitetrahydrocannabinolic acid (sesquiTHCA) and the second cannabinoid can be cannabinerovarinol (CBNV), cannabiphorol (CBNP), cannabinorcinol (CBNO) or sesqui cannabinerol (sesqui-CBN), respectively.


Where the enzyme activity is the conversion of the first cannabinoid, e.g., THC, THCA, CBN or CBNA, into a 11-hydroxy analog, the enzyme can be a combination of a cytochrome P450 (CYP-450) and a cytochrome P450 reductase (CPR). In some of these embodiments, the CYP-450 is a CYP2C9 or a CYP3A4 or a CYP76AH22-24 or a CYP76AH1 (ferruginol synthases).


In various embodiments, the enzyme is expressed from a codon optimized gene sequence in a yeast or a bacterium, e.g. E. coli.


The enzyme can be in vivo (e.g., in a yeast, bacterium or plant), or in vitro. Nonlimiting examples of transgenic plants in which the enzyme can be expressed are a Cannabis sp. or a tobacco plant. Nonlimiting examples of transgenic yeast in which the enzyme can be expressed are species of Saccharomyces, Candida, Pichia, Schizosaccharomyces, Scheffersomyces, Blakeslea, Rhodotorula, or Yarrowia. In some embodiments, the enzyme is in a yeast that further comprises enzymes to synthesize the first cannabinoid.


Chemistry of the CBN Synthase Reaction

Chemically, the conversion of THC to CBN requires creation of 2 double bonds in a cyclohexene ring resulting in formation of an aromatic ring. See FIG. 2A. This is an oxidation reaction. Enzyme families catalyzing similar reactions include aromatases, dehydrogenases, desaturases, and oxidases (FIGS. 3A, 3B and 3C).


Classes of enzymes that are capable of derivatizing cannabinoids and species that contain such enzymes are provided herewith. Multiple CBN synthase enzymes and enzymes specific for THC catabolism without production of CBN can be provided. Different enzymatic specificity is also envisioned, e.g. conversion of the acid derivative of THC (THCA) to CBNA. Derivatives of THC can also be converted to the appropriate derivatives of CBN, e.g. THCVA to CBVA. See FIG. 2A.


Also envisioned are enzymes of these classes that selectively degrade THC by converting it to molecules other than CBN but leave other cannabinoids untouched.


Enzyme Classes

The conversion of THC/A to CBN/A is an oxidation reaction, so it may be catalyzed by oxidases. CYP-450s are examples of enzymes of this reaction. Some oxygenases may add hydroxyl or ketone groups to the structure as they form the aromatic ring of CBN/A. This would generate a hydroxylated variant of CBN/A, a novel molecule. Oxidases may also include non P450s such as flavin-dependent monooxygenases, copper-dependent monooxygenases, bacterial polysaccharide monooxygenases, non-heme iron-dependent monooxygenases, pterin-dependent monooxygenases, diiron hydroxylases, alpha-ketoglutarate-dependent hydroxylases, other cofactor-dependent monooxygenases, cofactor-independent monooxygenases, and/or laccases (reviewed in Tones Pazmino, 2010).


An aromatic ring is formed by the CBN synthase, so it may also be catalyzed by aromatases (FIG. 3A). An example would be CYP19, an aromatase responsible for adding 2 double bonds to testosterone to create the aromatic ring in estradiol. The reaction is described here: https://www.uniprot.org/uniprot/Q16449.


As hydrogen atoms are abstracted to make the double bonds in CBN/A, a dehydrogenase may be able to catalyze the reaction. An example of a dehydrogenase that catalyzes a similar reaction would be arogenate dehydrogenase, as described here: https://www.uniprot.org/uniprot/Q944B6. Since double bonds are formed in creation of CBN/A, a desaturase may be responsible. An example of a desaturase that catalyzes a similar reaction would be arogenate dehydratase/prephenate dehydratase, as described at https://www.uniprot.org/uniprot/Q9LMR3


Some enzymes of these classes will also degrade THC by converting it to molecules other than CBN. A non-limiting example is reversing THCA synthase to generate CBGA.


In some embodiments, the CBN synthase can use any variant of tetrahydrocannabinolic acid THCA, as starting material, including: tetrahydrocannabivarinic acid (THCVA), tetrahydrocannabiphorolic acid (TCHPA), tetrahydrocannabiorcinic acid (THCOA), sesquiTHCA (THCFA) and produce, respectively, cannabinerolic acid (CBNA), cannabinerovarinic acid (CBNVA), cannabiphorolic acid (CBNPA), cannabinorcinic acid (CBNOA) sesqui cannabinerolic acid (sesqui-CBNA). Decarboxylation of any of these products, either enzymatically or by non-enzymatic methods such as heat, will produce the respective decarboxylated derivatives and is an optional last step of the pathway.


Organisms Originating the Enzymes

The enzyme can be a naturally occurring enzyme, or an enzyme derived from a naturally occurring enzyme, now known or later discovered, that occurs in any living organism, for example a bacterium, an archaeon, a protist, a fungus, an algae, an animal or a plant.


Many microbial enzymes catalyze reactions of these classes using similar substrates, but have never been tested for activity on cannabinoids. To determine a source of a CBN synthase, microbes can be screened for bioconversion activity of appropriate cannabinoids, after the methods of Abbott (1977). Microbes possessing this activity should have their genomes sequenced if there is no publicly available genome. Enzymes from the above listed enzyme classes should be found from the sequenced genomes and thereby identified as good candidates for the CBN synthase activity. Organisms that make molecules similar to desired cannabinoids can be identified from literature and those genomes searched as well to identify additional candidate enzymes. Bioinformatics methods to do this are in U.S. Pat. No. 10,671,632


Some microbes screened will contain a THC degradase instead of a CBN synthase. This is detectable as a reduction in a THC containing starting material relative to a negative control (FIGS. 6A and 6B).


In some embodiments, the gene for the enzyme is derived from a bacterium. It is envisioned that an enzyme derived from any bacterium now known or later discovered can be utilized in the present invention. For example, the bacterium can be from phylum Abditibacteriota, including class Abditibacteria, including order Abditibacteriales; phylum Abyssubacteria or Acidobacteria, including class Acidobacteriia, Blastocatellia, Holophagae, Thermoanaerobaculia, or Vicinamibacteria, including order Acidobacteriales, Bryobacterales, Blastocatellales, Acanthopleuribacterales, Holophagales, Thermotomaculales, Thermoanaerobaculales, or Vicinamibacteraceae; phylum Actinobacteria, including class Acidimicrobiia, Actinobacteria, Actinomarinidae, Coriobacteriia, Nitriliruptoria, Rubrobacteria, or Thermoleophilia, including orders Acidimicrobiales, Acidothermales, Actinomycetales, Actinopolysporales, Bifidobacteriales, Nanopelagicales, Catenulisporales, Corunebacteriales, Cryptosporangiales, Frankiales, Geodermatophilales, Glycomycetales, Jiangellales, Micrococcales, Micromonosporales, Nakamurellales, Propionibacteriales, Pseudonocardiales, Sporichthyales, Streptomycetales, Streptosporangiales, Actinomarinales, Coriobacteriales, Eggerthellales, Egibacterales, Egicoccales, Euzebyales, Nitriliruptorales, Gaiellales, Rubrobacterales, Solirubrobacterales, or Thermoleophilales; phylum Aquificae, including class Aquificae, including order Aquificales or Desulfurobacteriales; phylum Armatimonadetes, including class Armatimonadia, including order Armatimonadales, Capsulimonadales, Chthonomonadetes, Chthonomonadales, Fimbriimonadia, or Fimbriimonadales; phylum Aureabacteria or Bacteroidetes, including class Armatimonadia, Bacteroidia, Chitinophagia, Cytophagia, Flavobacteria, Saprospiria or Sphingobacteriia, including order Bacteroidales, Marinilabiliales, Chitinophagales, Cytophagales, Flavobacteriales, Saprospirales, or Sphingopacteriales; phylum Balneolaeota, Caldiserica, Calditrichaeota, or Chlamydiae, including class Balneolia, Caldisericia, Calditrichae, or Chlamydia, including order Balneolales, Caldisericales, Calditrichales, Anoxychlamydiales, Chlamydiales, or Parachlamydiales; phylum Chlorobi or Chloroflexi, including class Chlorobia, Anaerolineae, Ardenticatenia, Caldilineae, Thermofonsia, Chloroflexia, Dehalococcoidia, Ktedonobacteria, Tepidiformia, Thermoflexia, Thermomicrobia, or Sphaerobacteridae, including order Chlorobiales, Anaerolineales, Ardenticatenales, Caldilineales, Chloroflexales, Herpetosiphonales, Kallotenuales, Dehalococcoidales, Dehalogenimonas, Kte donob acteral es, Thermogemmatisporales, Tepidiformales, Thermoflexales, Thermomicrobiales, or Sphaerobacterales; phylum Chrysiogenetes, Cloacimonetes, Coprothermobacterota, Cryosericota, or Cyanobacteria, including class Chrysiogenetes, Coprothermobacteria, Gloeobacteria, or Oscillatoriophycideae, including order Chrysiogenales, Coprothermobacterales, Chroococcidiopsidales, Gloeoemargaritales, Nostocales, Pleurocapsales, Spirulinales, Synechococcales, Gloeobacterales, Chroococcales, or Oscillatoriales; phyla: Eferribacteres, Deinococcus-thermus, Dictyoglomi, Dormibacteraeota, Elusimicrobia, Eremiobacteraeota, Fermentibacteria, or Fibrobacteres, including class Deferribacteres, Deinococci, Dictyoglomia, Elusimicrobia, Endomicrobia, Chitinispirillia, Chitinivibrionia, or Fibrobacteria, including order Deferribacterales, Deinococcales, Thermales, Dictyoglomales, Elusimicrobiales, Endomicrobiales, Chitinspirillales, Chitinvibrionales, Fibrobacterales, or Fibromonadales; phylum Firmicutes, Fusobacteria, Gemmatimonadetes, or Hydrogenedentes, including class Bacilli, Clostridia, Erysipelotrichia, Limnochordia, Negativicutes, Thermolithobacteria, Tissierellia, Fusobacteriia, Gemmatimonadetes, Longimicrobia, including order Bacillales, Lactobacillales, Borkfalkiales, Clostridiales, Halanaerobiales, Natranaerobiales, Thermoanaerobacterales, Erysipelotrichales, Limnochordales, Acidaminococcales, Selenomonadales, Veillonellales, Thermolithobacterales, Tissierellales, Fusobacteriales, Gemmatimonadales, or Longimicrobia; phylum Hydrogenedentes, Ignavibacteriae, Kapabacteria, Kiritimatiellaeota, Krumholzibacteriota, Kryptonia, Latescibacteria, LCP-89, Lentisphaerae, Margulisbacteria, Marinimicrobia, Melainabacteria, Nitrospinae, or Omnitrophica, including class Ignavibacteria, Kiritimatiellae, Krumholzibacteria, Lentisphaeria, Oligosphaeria, or Nitrospinae, including order Ignavibacteriales, Kiritimatiellales, Krumholzibacteriales, Lentisphaerales, Victivallales, Oligosphaerales, or Nitrospinia; phylum Omnitrophica or Planctomycetes, including class Brocadiae, Phycisphaerae, Planctomycetia, or Phycisphaerales, including order Sedimentisphaerales, Tepidisphaerales, Gemmatales, Isosphaerales, Pirellulales, or Planctomycetales; phylum Proteobacteria including class Acidithiobacillia, Alphaproteobacteria, Betaproteobacteria, Lambdaproteobacteria, Muproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, Gammaproteobacteria, Hydrogenophilalia, Oligoflexia, or Zetaproteobacteria, including order Acidithiobacillales, Caulobacterales, Emcibacterales, Holosporales, Iodidimonadales, Kiloniellales, Kopriimonadales, Kordiimonadales, Magnetococcales, Micropepsales, Minwuiales, Parvularculales, Pelagibacterales, Rhizobiales, Rhodobacterales, Rhodospirillales, Rhodothalassiales, Rickettsiales, Sneathiellales, Sphingomonadales, Burkholderiales, Ferritrophicales, Ferrovales, Neisseriales, Nitrosomonadales, Procabacteriales, Rhodocyclales, Bradymonadales, Acidulodesulfobacterales, Desulfarculales, Desulfobacterales, Desulfovibrionales, Desulfurellales, Desulfuromonadales, Myxococcales, Syntrophobacterales, Campylobacterales, Nautiliales, Acidiferrobacterales, Aeromonadales, Alteromonadales, Arenicellales, Cardiobacteriales, Cellvibrionales, Chromatiales, Enterobacterales, Immundisolibacterales, Legionellales, Methylococcales, Nevskiales, Oceanospirillales, Orbales, Pasteurellales Pseudomonadales, Salinisphaerales, Thiotrichales, Vibrionales, Xanthomonadales, Hydrogenophilales, Bacteriovoracales, Bdellovibrionales, Oligoflexales, Silvanigrellales, or Mariprofundales; phylum Rhodothermaeota, Saganbacteria, Sericytochromatia, Spirochaetes, Synergistetes, Tectomicrobia, or Tenericutes, including class Rhodothermia, Spirochaetia, Synergistia, Izimaplasma, or Mollicutes, including order Rhodothermales, Brachyspirales, Brevinematales, Leptospirales, Spirochaetales, Synergistales, Acholeplasmatales, Anaeroplasmatales, Entomoplasmatales, or Mycoplasmatales; phylum Thermodesulfobacteria, Thermotogae, Verrucomicrobia, or Zixibacteria, including class Thermodesulfobacteria, Thermotogae, Methylacidiphilae, Opitutae, Spartobacteria, or Verrucomicrobiae, including order Thermodesulfobacteriales, Kosmotogales, Mesoaciditogales, Petrotogales, Thermotogales, Methylacidiphilales, Opitutales, Puniceicoccales, Xiphinematobacter, Chthoniobacterales, Terrimicrobium, or Verrucomicrobiales.


In other embodiments, the gene for the enzyme is derived from an archaeon. It is envisioned that an enzyme derived from any archaeon now known or later discovered can be utilized in the present invention. For example, the archaeon can be from phylum Euryarchaeota, including class Archaeoglobi, Hadesarchaea, Halobacteria, Methanobacteria, Methanococci, Methanofastidiosa, Methanomicrobia, Methanopyri, Nanohaloarchaea, Theionarchaea, Thermococci, or Thermoplasmata, including order Archaeoglobales, Hadesarchaeales, Halobacteriales, Methanobacteriales, Methanococcales, Methanocellales, Methanomicrobiales, Methanophagales, Methanosarcinales, Methanopyrales, Thermococcales, Methanomassiliicoccales, Thermoplasmatales, or Nanoarchaeales; DPANN superphylum, including subphyla Aenigmarcheota, Altiarchaeota, Diapherotrites, Micrarchaeota, Nanoarchaeota, Pacearchaeota, Parvarchaeota, or Woesearchaeota; TACK superphylum, including subphylum Korarchaeota, Crenarchaeota, Aigarchaeota, Geoarchaeota, Thaumarchaeota, or Bathyarchaeota; Asgard superphylum including subphylium Odinarchaeota, Thorarchaeota, Lokiarchaeota, Helarchaeota, or Heimdallarchaeota.


In additional embodiments, the gene for the enzyme is derived from a fungus. It is envisioned that a CBN synthase or THC degradase from any fungus now known or later discovered can be utilized in the present invention. This includes but is not limited to the phyla Chytridiomycota, Basidiomycota, Ascomycota, Blastocladiomycota, Ascomycota, Microsporidia, Basidiomycota, Glomeromycota, Symbiomycota, and Neocallimastigomycota. For example, the fungus can be from the phylum Ascomycota, including classes and orders Pezizomycotina, Arthoniomycetes, Coniocybomycetes, Dothideomycetes, Eurotiomycetes, Geoglossomycetes, Laboulbeniomycetes, Lecanoromycetes, Leotiomycetes, Lichinomycetes, Orbiliomycetes, Pezizomycetes, Sordariomycetes, Xylonomycetes, Lahmiales, Itchiclahmadion, Triblidiales, Saccharomycotina, Saccharomycetes, Taphrinomycotina, Archaeorhizomyces, Neolectomycetes, Pneumocystidomycetes, Schizosaccharomycetes, Taphrinomycetes; phylum Basidiomycota including subphyla or classes Pucciniomycotina, Ustilaginomycotina, Wallemiomycetes, and Entorrhizomycetes; subphylum Agaricomycotina including classes Tremellomycetes, Dacrymycetes, and Agaricomycetes; phylum Symbiomycota, including class Entorrhizomycota; subphylum Ustilaginomycotina including classes Ustilaginomycetes and Exobasidiomycetes; phylum Glomeromycota including classes Archaeosporomycetes, Glomeromycetes, and Paraglomeromycetes; subphylum Pucciniomycotina including orders and classes: Pucciniomycotina, Cystobasidiomycetes, Agaricostilbomycetes, Microbotryomycetes, Atractiellomycetes, Classiculomycetes, Mixiomycetes, and Cryptomycocolacomycetes; subphylum incertae sedis Mucoromyceta including orders Calcarisporiellomycota and Mucoromycota; phylum Mortierellomyceta including class Mortierellomycota; subphylum incertae sedis Entomophthoromycotina including order Entomophthorales; phylum Zoopagomyceta including classes Basidiobolomycota, Entomophthoromycota, Kickxellomycota, and Zoopagomycotina; subphylum incertae sedis Mucoromycotina including orders Mucorales, Endogonales, and Mortierellales; phylum Neocallimastigomycota including class Neocallimastigomycetes; phylum Blastocladiomycota including classes Physodermatomycetes and Blastocladiomycetes; phylum Rozellomyceta including classes Rozellomycota and Microsporidia; phylum Aphelidiomyceta including class Aphelidiomycota; Chytridiomyceta including classes Chytridiomycetes and Monoblepharidomycetes; and phylum Oomycota including classes or orders Leptomitales, Myzocytiopsidales, Olpidiopsidales, Peronosporales, Pythiales, Rhipidiales, Salilagenidiales, Saprolegniales, Sclerosporales, Anisolpidiales, Lagenismatales, Rozellopsidales, and Haptoglossales.


Nucleic Acids

The present invention is additionally directed to nucleic acids encoding any of the above-identified enzymes. In some embodiments, the nucleic acids are codon optimized to improve expression, e.g., using techniques as disclosed in U.S. Pat. No. 10,435,727. In some of these embodiments, the codon optimized nucleic acids comprise any of SEQ ID NOs:1-50.


More specifically, optimized nucleotide sequences are generated based on a number of considerations: (1) For each amino acid of the recombinant polypeptide to be expressed, a codon (triplet of nucleotide bases) is selected based on the frequency of each codon in the Saccharomyces cerevisiae genome; the codon can be chosen to be the most frequent codon or can be selected probabilistically based on the frequencies of all possible codons. (2) In order to prevent DNA cleavage due to a restriction enzyme, certain restriction sites are removed by changing codons that cover those sites. (3) To prevent low-complexity regions, long repeats (sequences of any single base longer than five bases) are modified. (2) and (3) are performed recursively to ensure that codon modification does not lead to additional undesirable sequences. (4) A ribosome binding site is added to the N-terminus. (5) A stop codon is added.


In various embodiments, the nucleic acids further comprise additional nucleic acids encoding amino acids that are not part of the enzyme. In some of these embodiments, the additional sequences encode additional amino acids present when the nucleic acid is translated, encoding, for example, an additional protein domain, with or without a linker sequence, creating a fusion protein. Other examples are localization sequences, i.e., signals directing the localization of the folded protein to a specific subcellular compartment or membrane.


In some embodiments, the nucleic acids have, at the 5′ end, a nucleic acid encoding codon optimized cofolding peptides to create a fusion protein, e.g., having SEQ ID NOs:69-73 (Table 2), joining the sequences together to form a fusion polypeptide, e.g., having the amino acid sequence of SEQ ID NO:74-78 fused at the N terminus of the enzyme polypeptide, generating recombinant fusion polypeptides.













TABLE 2








Codon Optimized
Amino Acid




Nucleic Acid
Sequence for



NAME
Sequence
Isolated Protein









MBP
Seq. ID NO: 101
Seq. ID NO: 106



VEN
Seq. ID NO: 102
Seq. ID NO: 107



MST
Seq. ID NO: 103
Seq. ID NO: 108



OSP
Seq. ID NO: 104
Seq. ID NO: 109



OLE
Seq. ID NO: 105
Seq. ID NO: 110










Further provided is a non-naturally occurring nucleic acids that encode an enzyme having the enzymatic activity of any of the non-naturally occurring enzymes described above, or a naturally occurring enzyme having any of the enzyme activities described above. The nucleic acids may be codon optimized, e.g., for production in yeast.


In some embodiments, the nucleic acid comprises additional nucleotide sequences that are not translated. Examples include promoters, terminators, barcodes, Kozak sequences, targeting sequences, and enhancer elements. Particularly useful here are promoters that are functional in yeast.


Expression of a gene encoding an enzyme is determined by the promoter controlling the gene. In order for a gene to be expressed, a promoter must be present within 1,000 nucleotides upstream of the gene. A gene is generally cloned under the control of a desired promoter. The promoter regulates the amount of enzyme expressed in the cell and also the timing of expression, or expression in response to external factors such as sugar source.


Any promoter now known or later discovered can be utilized to drive the expression of the various genes (e.g., 11-OH hydroxylase, CBN synthase, THC degradase) described herein. See e.g. http://parts.igem.org/Yeast for a listing of various yeast promoters. Exemplary promoters listed in Table 3 below drive strong expression, constant gene expression, medium or weak gene expression, or inducible gene expression. Inducible or repressible gene expression is dependent on the presence or absence of a certain molecule. For example, the GAL1, GAL 7, and GAL10 promoters are activated by the presence of the sugar galactose and repressed by the presence of the sugar glucose. The HO promoter is active and drives gene expression only in the presence of the alpha factor peptide. The HXT1 promoter is activated by the presence of glucose while the ADH2 promoter is repressed by the presence of glucose.









TABLE 3







Exemplary yeast promoters











Strong
Medium and weak
Inducible/



constitutive
constitutive
repressible



promoters
promoters
promoters







TEF1
STE2
GAL1



PGK1
TPI1
GAL7



PGI1
PYK1
GAL10



TDH3

HO





HXT1





ADH2










In various embodiments, the nucleic acid is in a yeast expression cassette. Any yeast expression cassette capable of expressing the enzyme in a yeast cell can be utilized. In some embodiments, the expression cassette consists of a nucleic acid encoding a CBN synthase or THC degradase with a promoter.


Additional regulatory elements can also be present in the expression cassette, including restriction enzyme cleavage sites, antibiotic resistance genes, integration sites, auxotrophic selection markers, origins of replication, and degrons.


The expression cassette can be present in a vector that, when transformed into a host cell, either integrates into chromosomal DNA or remains episomal in the host cell. Such vectors are well-known in the art. See e.g. http://parts.igem.org/Yeast for a listing of various yeast vectors.


A nonlimiting example of a yeast vector is a yeast episomal plasmid (YEp) that contains the pBluescript II SK(+) phagemid backbone, an auxotrophic selectable marker, yeast and bacterial origins of replication and multiple cloning sites enabling gene cloning under a suitable promoter (see Table 3). Other exemplary vectors include pRS series plasmids.


Host Cells

The present invention is also directed to genetically engineered host cells that comprise the above-described nucleic acids. Such cells may be, e.g., any species of filamentous fungus, including but not limited to any species of Aspergillus, which have been genetically altered to produce precursor molecules, intermediate molecules, or cannabinoid molecules. Host cells may also be any species of bacteria, including but not limited to Escherichia, Corynebacterium, Caulobacter, Pseudomonas, Streptomyces, Bacillus, or Lactobacillus.


In some embodiments, the genetically engineered host cell is a yeast cell, which may comprise any of the above-described expression cassettes, and capable of expressing the recombinant enzyme encoded therein.


Any yeast cell capable of being genetically engineered can be utilized in these embodiments. Nonlimiting examples of such yeast cells include species of Saccharomyces, Candida, Pichia, Schizosaccharomyces, Scheffersomyces, Blakeslea, Rhodotorula, or Yarrowia.


These cells can achieve gene expression controlled by inducible promoter systems; natural or induced mutagenesis, recombination, and/or shuffling of genes, pathways, and whole cells performed sequentially or in cycles; overexpression and/or deletion of single or multiple genes and reducing or eliminating parasitic side pathways that reduce precursor concentration.


The host cells of the recombinant organism may also be engineered to produce any or all precursor molecules necessary for the biosynthesis of cannabinoids, including but not limited to olivetolic acid (OA), olivetol (OL), FPP and GPP, hexanoic acid and hexanoyl-CoA, malonic acid and malonyl-CoA, dimethylallylpyrophosphate (DMAPP) and isopentenylpyrophosphate (IPP) as disclosed in U.S. Pat. No. 10,435,727.


Construction of Saccharomyces cerevisiae strains expressing a cannabinoid modifying or degrading enzyme such as CBN synthase or THC degradase is carried out via expression of a gene which encodes for the enzyme. The gene encoding the enzyme can be cloned into vectors with the proper regulatory elements for gene expression (e.g. promoter, terminator) and the derived plasmid can be confirmed by DNA sequencing. As an alternative to expression from an episomal plasmid, the gene encoding the enzyme may be inserted into the recombinant host genome. Integration may be achieved by a single or double cross-over insertion event of a plasmid, or by nuclease-based genome editing methods, as are known in the art e.g. CRISPR, TALEN and ZFR. Strains with the integrated gene can be screened by rescue of auxotrophy and genome sequencing. See, e.g., Green and Sambrook (2012).


To produce the desired cannabinoid, each candidate polypeptide may be introduced into a host cell genetically modified to contain all necessary components for cannabinoid biosynthesis using standard yeast cell transformation techniques (Green and Sambrook, 2012). Cells are subjected to fermentation under conditions that activate the promoter controlling the candidate polypeptide (see, e.g., Table 3). The broth may be subsequently subjected to HPLC analysis (FIGS. 6A and 6B).


In some embodiments, for recombinant enzyme purification, the gene encoding the enzyme is cloned into an expression vector such as the pET expression vectors from Novagen, transformed into a protease deficient strain of E. coli such as BL21 and expressed by induction with IPTG. The protein of interest may be tagged with a common tag to facilitate purification, e.g. hexahistidine, GST, calmodulin, TAP, AP, CAT, HA, FLAG, MBP etc. Coexpression of a bacterial chaperone such as dnaK, GroES/GroEL or SecY may help facilitate protein folding. See Green and Sambrook (2012).


Any of the enzymes described above can also be produced in transgenic plants, using techniques known in the art (see, e.g., Keshavareddy et al., 2018). In these embodiments, the above-described nucleic acid encoding the enzyme further comprises a promoter functional in a plant. In various embodiments, the nucleic acid is in a plant expression cassette. Any plant capable of being transformed with the nucleic acid can be utilized here. In some embodiments, the plant is a tobacco or a Cannabis sp. plant. Cannabis sp. that are transformed with a THC degradase are particularly useful, since such an enzyme expressed in Cannabis sp. plants grown for fiber could reduce the THC content to below the 0.3% current legal THC limit.


Preferred embodiments are described in the following examples. Other embodiments within the scope of the claims herein will be apparent to one skilled in the art from consideration of the specification or practice of the invention as disclosed herein. It is intended that the specification, together with the examples, be considered exemplary only, with the scope and spirit of the invention being indicated by the claims, which follow the examples.


Various methods and compositions provided in U.S. patent applications Ser. Nos. 16/553,103, 16/553,120, 16/558,973, 17/068,636 and 63/053,539; U.S. Pat. No. 10,435,727; and US Patent Publications 2020/0063170 and 2020/0063171 are utilized in the examples.


EXAMPLE 1
Expression of a Recombinant Fusion Polypeptides for THC/A Conversion, Degradation, and 11-Hydroxy Cannabinoid Variant Production in a Modified Host Organism

Construction of Saccharomyces cerevisiae strains expressing CBN synthase, THC degradase, P450, and/or CPR enzymes fused with N terminal cofolding peptides from Table 1, having SEQ ID NOs:106-110 to produce CBN/A from THC/A, and 11-hydroxy variants such as 11-OH CBN, is carried out via expression of a fusion gene of any codon optimized nucleic acid sequence SEQ ID NOs:101-105 combined at the 5′ end of a nucleic acid sequence encoding an enzyme that modifies a first cannabinoid into a second cannabinoid or non-cannabinoid. The fusion genes were cloned into vectors with the proper regulatory elements for gene expression (e.g. promoter, terminator) and the derived plasmid was confirmed by DNA sequencing. The fusion genes were also inserted into the recombinant host genome. Integration was achieved by a single or double cross-over insertion event of the plasmid. Strains with the integrated gene were screened by rescue of auxotrophy and genome sequencing.


EXAMPLE 2
Method of Growth of Host Cells

Modified host cells which yield cannabinoids such as THC/A, express recombinant (i) CBN synthase for THC/A conversion to CBN/A, (ii) p450 and CPR protein combinations (11-OH hydroxylases) for 11-OH hydroxy variants of cannabinoids such as 11-OH-THC, or (iii) a combination of CBN synthase and 11-OH hydroxylases for production of cannabinoids such as 11-OH-CBN. More specifically, the cannabinoid-producing strain expressing CBN synthases and/or 11-OH hydroxylases herein is grown in a feedstock as described in U.S. patent application Ser. No. 17/068,636. An example feedstock used for a modified host expressing the recombinant CBN synthase is growing the strain in a minimal-complete or rich culture media containing yeast nitrogen base, amino acids, vitamins, ammonium sulfate, and a carbon source, such as glucose or molasses. The feedstock is consumed by the modified host which expresses the recombinant CBN synthase with a cannabinoid biosynthesis pathway to convert the feedstock into (i) biomass, (ii) THC/A and 11-OH-THC variants thereof, (iii) CBN/A and 11-OH CBN, and variants thereof, or (iv) biomass and the cannabinoids products in (ii) and (iii). Strains expressing the recombinant CBN synthase genes can be grown on feedstock for 12 to 160 hours at 25-37° C. for isolation of products.


EXAMPLE 3
Removal of THC/A by Formation of a Homopolymer or Heteropolymer

Cells are genetically engineered to contain one or more laccase enzymes. Integration is achieved by a single or double cross-over insertion event of the plasmid. Strains with the integrated gene are screened by rescue of auxotrophy and genome sequencing. The laccase gene can be under the control of an inducible promoter. When polymerization of THC/A is desired, inducer is added to the culture along with supplemental copper at a final concentration of 100 μM-100 mM. Polymerized cannabinoids can be separated from the culture by filtration, centrifugation or dialysis. Membranes for filtration and dialysis should be selected such that molecules corresponding to the size of a monomeric cannabinoid pass through the pores of the membrane, but larger molecules such as polymers are retained on the other side of the membrane.


EXAMPLE 4
Purification of Recombinant CBN Synthase and THC Degradase Enzymes for THC/A Conversion or Degradation

The CBN synthase or THC degradase enzyme is cloned into a high-copy vector with key features that allow 1) tight induction by the lactose analog, β-D-thiogalactoside (IPTG), 2) an N-terminal secretory signal peptide (e.g., MKKTAIAIAVALAGFATVAQA), and 3) C-terminal fusion to a HIS tag for purification. E. coli cells harboring the CBN synthase or THC degradase expression vector are grown in M9 minimal media with 1% glucose for 18 h at 37° C. and shaking at 300 rpm. Concentrated cell culture is diluted to an OD600=1 in fresh M9 minimal media with 1% glucose and 0.2 mM IPTG and grown for 48 h.


The supernatant containing the recombinant proteins is equilibrated in binding buffer (50 mM sodium phosphate, 0.5 M NaCl, 20 mM imidazole, 1 mM MgCl2, 10% glycerol, 10 mM 2-mercaptoethanol, 1 mM PMSF, Complete EDTA-free (1 tablet/100 ml), 20 mM 1-phenyl-2-thiourea; pH 7.4) and centrifuged at 2,500 g for 5 min to remove insoluble matter. Then the supernatant is filtered through a 0.45 μm filter (Millipore, MA, USA) and applied onto a HisTrap HP column (GE Healthcare Bioscience). The recombinant proteins are eluted with a step gradient of imidazole (concentrations of 5, 20, 40 and 300 mM). Fractions are analyzed by SDS-PAGE.


Purified CBN synthase or THC degradase protein is resuspended in activity buffer [100 mM sodium phosphate buffer, pH 6.55, 1 mM PMSF, EDTA-free protease inhibitor cocktail at working concentration (Roche, Meylan, France)] for use in converting or degrading THC/A in crude plant matter or THC/A in cannabinoid isolate via incubation and continuous shaking for 6-12 hrs at 30° C.


EXAMPLE 5
Preparation of Cell Lysate from a Host Expression Recombinant CBN Synthase and THC Degradase for Conversion and Degradation of THC/A

Host cells expressing recombinant CBN synthase or THC degradase are resuspended in lysis buffer consisting of 50 mM Tris-HCl pH7.5, 200 mM NaCl, 1 mM MgCl2, 5 mM DTT, 1 mM PMSF, and DNAse. Resuspended host cells are then lysed by sonication/French press/homogenization or enzymatic lysis such as zymolyase or lysozyme. Lysate is cleared by centrifugation at 16000 rpm for 15 min at 4° C. Cleared lysate is added to crude or purified cannabinoid preparations at concentrations ranging from 1 mg/gram to 1 g/g. The mixture is incubated with continuous shaking for 6-12 hrs at 30° C. Cannabinoids are then extracted.


EXAMPLE 6
Detection of Isolated Product

To identify cannabinoid conversion products from CBN synthase, the degradation of THC via THC degradase, 11-hydroxy variants of cannabinoids, and all other products of converted plant matter, cannabinoid isolate, or from a host cell expressing an engineered biosynthetic pathway for cannabinoids, an Agilent 1100 series liquid chromatography (LC) system equipped with a reverse phase C18 column (Agilent Eclipse Plus C18, Santa Clara, Calif., USA) was used. A gradient was used of mobile phase A (ultraviolet (UV) grade H2O+0.1% formic acid) and mobile phase B (UV grade acetonitrile+0.1% formic acid). Column temperature was set at 30° C. Compound absorbance was measured at 210 nm and 305 nm using a diode array detector (DAD) and spectral analysis from 200 nm to 400 nm wavelengths. A 0.1 milligram (mg)/milliliter (mL) analytical standard was made from certified reference material for each terpene and cannabinoid (Cayman Chemical Company, USA). Each sample was prepared by diluting 1) fermentation biomass from a recombinant host expressing the engineered cannabinoid and CBN synthase biosynthesis pathway or 2) a conversion or degradation reaction containing CBN synthase or THC degradase by 1:3 or 1:20 in 100% acetonitrile and filtered in 0.2 um nanofilter vials. The retention time and UV-visible absorption spectrum (i.e., spectral fingerprint) of the samples were compared to the analytical standard retention time and UV-visible spectra (i.e. spectral fingerprint) when identifying the terpene and cannabinoid compounds.



FIG. 6A depicts the detection of CBN and THC isolated from fermentation broth with a recombinant CBN synthase host and from fermentation broth with a control microorganism. Detection and isolation of product are depicted by retention time matching of post-fermentation conversion and degradation of THC into CBN with CBN and THC analytical standards, along with a matching UV-vis spectral fingerprint of the post-fermentation conversion and degradation of THC with the THC analytical standard and CBN with the CBN analytical standard. This also corroborates that the recombinant host is able to successfully convert and degrade THC, which further validates that the systems and methods herein enzymatically target THC/A molecules for conversion and degradation.



FIG. 6B depicts the detection of THC isolated from fermentation broth with a recombinant THC degrading host and from fermentation broth with a control microorganism. Detection and isolation of product are depicted by retention time matching of post-fermentation conversion and degradation of THC with a THC analytical standard, along with a matching UV-vis spectral fingerprint of the post-fermentation conversion and degradation of THC with the THC analytical standard. This also corroborates that the recombinant host is able to successfully convert and degrade THC, which further validates that the systems and methods herein enzymatically target THC/A molecules for conversion and degradation.


REFERENCES

Abbott et al., 1977, Experientia 33:718-720.


Carter et al., 2010, Am J Hosp Palliat Care 27:347-56.


Caprioglio et al., 2019, Org. Lett. 21:6122-6125.


Carvalho et al., 2017, FEMS Yeast Res. 17:fox037.


Committee on the Health Effects of Marijuana, 2017, The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research, National Academies Press.


Giacoppo S. and Mazzon E. 2016, Neural Regeneration Res. 11:1896-4899.


Green and Sambrook (2012) Molecular Cloning: A Laboratory Manual (Fourth Edition), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.


Gülck and Møller, 2020, Trends in Plant Science 25:985-1004.


Keshavareddy et al., 2018, Int. J. Curr. Microbiol.App. Sci 7:2656-2668.


Luo et al., 2019, Nature 567:123-126.


Torres Pazmino, Daniel & Winkler, Margit & Glieder, Anton & Fraaije, Marco. (2010). Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. Journal of biotechnology. 146. 9-24. 10.1016/j.jbiotec.2010.01.021.


Watanabe et al., 2007, Life Sciences 80:1415-1419.


http://parts.igem.org/Yeast.


https://www.uniprot.org/uniprot/Q16449.


PCT Patent Application Publication WO 2014/159688 A1.


US Patent Application Publication 2017/0020943 A1.


U.S. Pat. No. 10,435,727.


U.S. Pat. No. 10,671,632.


U.S. patent application Ser. No. 16/553,103.


U.S. patent application Ser. No. 16/553,120.


U.S. patent application Ser. No. 16/558,973.


U.S. patent application Ser. No. 17/068,636.


U.S. Provisional Patent Application 63/035,692.


U.S. Provisional Patent Application 63/053,539.


U.S. Provisional Patent Application 63/141,486.


US Patent Application Publication 2020/0063170.


US Patent Application Publication 2020/0063171.


In view of the above, it will be seen that several objectives of the invention are achieved and other advantages attained.


As various changes could be made in the above methods and compositions without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.


All references cited in this specification, including but not limited to patent publications and non-patent literature, and references cited therein, are hereby incorporated by reference. The discussion of the references herein is intended merely to summarize the assertions made by the authors and no admission is made that any reference constitutes prior art. Applicants reserve the right to challenge the accuracy and pertinence of the cited references.


As used herein, in particular embodiments, the terms “about” or “approximately” when preceding a numerical value indicates the value plus or minus a range of 10%. Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the disclosure. That the upper and lower limits of these smaller ranges can independently be included in the smaller ranges is also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.


The indefinite articles “a” and “an,” as used herein in the specification and in the embodiments, unless clearly indicated to the contrary, should be understood to mean “at least one.”


The phrase “and/or,” as used herein in the specification and in the embodiments, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements can optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.


As used herein in the specification and in the embodiments, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the embodiments, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of” “only one of” or “exactly one of.” “Consisting essentially of,” when used in the embodiments, shall have its ordinary meaning as used in the field of patent law.


As used herein in the specification and in the embodiments, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements can optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc










SEQ ID NOs



>p450_1


Seq. ID NO: 1



ATGGCCGCAGACAGTCTTGTTGTCCTTGTTCTGTGCCTTAGTTGCCTTTTGCTGCTAT






CTCTTTGGAGACAATCATCAGGGAGAGGTAAACTTCCGCCTGGACCAACTCCACTAC





CCGTCATAGGGAATATATTACAAATCGGTATAAAGGACATCTCCAAGTCCCTGACGA





ATCTTTCCAAGGTGTATGGTCCTGTGTTCACACTATACTTCGGCTTGAAACCCATCGT





GGTCTTACATGGCTACGAGGCAGTGAAAGAGGCCCTGATTGATTTGGGGGAAGAGT





TCAGTGGGAGAGGAATCTTTCCCCTTGCTGAGAGGGCTAATCGTGGTTTTGGGATAG





TGTTTTCTAACGGAAAGAAGTGGAAAGAAATAAGGCGTTTCAGCCTGATGACTTTGC





GTAATTTTGGGATGGGAAAAAGGTCAATTGAAGATCGTGTTCAAGAAGAAGCCCGT





TGCCTGGTGGAGGAGTTGAGAAAGACGAAGGCTTCCCCGTGCGATCCAACTTTCATA





CTGGGATGTGCGCCATGCAATGTCATATGTAGTATAATCTTTCATAAGAGATTCGAC





TATAAGGATCAGCAATTCTTGAACTTGATGGAGAAATTGAACGAGAACATAAAAAT





TCTGTCTTCCCCCTGGATTCAAATATGTAATAACTTTAGCCCAATAATAGACTACTTC





CCAGGTACGCACAATAAACTGTTAAAGAACGTCGCTTTTATGAAATCTTACATATTG





GAGAAGGTGAAAGAGCACCAAGAGAGCATGGACATGAACAATCCGCAAGACTTCA





TTGATTGTTTCCTGATGAAGATGGAAAAAGAAAAGCACAACCAGCCTTCTGAATTTA





CGATTGAAAGCCTTGAAAATACTGCAGTCGATCTATTCGGAGCTGGCACAGAGACT





ACCTCAACCACGTTAAGATATGCTTTGCTTTTACTACTGAAGCATCCAGAGGTGACT





GCCAAGGTGCAAGAAGAGATCGAGAGGGTCATCGGAAGGAACCGTTCCCCGTGTAT





GCAGGACAGGAGCCATATGCCTTACACAGACGCGGTTGTCCACGAAGTCCAGCGTT





ACATAGATCTATTACCGACGTCACTACCCCACGCGGTCACTTGTGACATCAAATTTC





GTAACTACCTGATCCCCAAGGGCACTACCATATTAATTTCACTTACTTCCGTGCTACA





CGACAATAAGGAATTTCCAAATCCCGAGATGTTCGACCCGCATCACTTTCTGGACGA





AGGGGGAAATTTCAAGAAGTCAAAGTACTTCATGCCTTTCTCCGCCGGAAAGAGAA





TCTGTGTAGGAGAAGCTCTGGCGGGGATGGAACTATTCTTGTTTTTAACCTCAATAT





TACAGAATTTTAACCTTAAATCCCTTGTAGATCCTAAGAATCTGGACACAACGCCTG





TGGTTAACGGGTTCGCGTCCGTTCCGCCGTTTTACCAGTTATGCTTTATTCCCGTTTA





A





>p450_2


Seq. ID NO: 2



ATGGCCGCAGACTCTCTTGTTGTATTGGTATTATGCCTAAGCTGCTTGCTTCTATTAA






GCCTATGGAGACAAAGCAGTGGGAGAGGGAAACTTCCGCCCGGACCAACTCCTCTA





CCTGTAATCGGGAACATTTTACAAATCGGCATAAAAGATATCTCAAAAAGTTTAACA





AATTTGTCCAAGGTGTACGGCCCGGTATTTACTCTTTACTTCGGATTGAAGCCGATA





GTAGTTTTGCACGGCTATGAGGCCGTCAAGGAGGCACTTATAGACTTAGGAGAGGA





GTTTTCTGGGAGGGGCATTTTCCCGCTTGCAGAGCGTGCAAATAGGGGGTTTGGGAT





AGTGTTCTCAAATGGTAAGAAATGGAAAGAAATCAGGCGTTTTTCTCTGATGACCCT





TAGGAACTTCGGAATGGGAAAGAGATCTATCGAAGACAGGGTCCAGGAGGAAGCCC





GTTGCCTAGTAGAAGAACTTCGTAAGACGAAGGCTTCCCCATGTGACCCTACCTTTA





TTCTAGGCTGTGCGCCGTGCAATGTCATATGTTCTATTATTTTTCATAAGAGATTCGA





TTATAAGGATCAGCAGTTCCTGAATTTAATGGAGAAATTAAACGAGAATGTTAAAAT





ACTTAGTTCACCTTGGATACAGATATGTAATAACTTTTCACCTATAATCGATTATTTT





CCCGGAACTCATAACAAGCTCTTGAAGAATGTTGCTTTTATGAAGTCTTACATTTTA





GAGAAAGTTAAAGAGCATCAGGAATCCATGGACATGAATAACCCACAGGATTTCAT





TGACTGCTTCTTAATGAAAATGGAAAAGGAAAAGCATAACCAGCCAAGTGAGTTCA





CTATTGAATCTCTTGAAAACACGGCTGTGGATCTGTTCGGAGCAGGAACCGAGACTA





CGTCTACGACGCTGCGTTATGCGTTACTGCTATTACTGAAACATCCAGAAGTTACAG





CGAAGGTACAAGAGGAGATCGAGAGGGTCATCGGAAGAAATAGGAGTCCCTGTATG





CAAGATCGTTCTCATATGCCCTACACAGATGCAGTCGTTCATGAAGTGCAGAGATAT





ATCGACTTGTTACCCACCTCCCTACCTCACGCAGTAACCTGCGATATCAAATTTAGG





AATTATTTAATACCTAAAGGGACGACCATTCTGATAAGCCTAACATCAGTCTTGCAC





GATAACAAGGAATTTCCGAACCCCGAGATGTTTGACCCACACCATTTCCTGGACGAG





GGCGGGAACTTCAAGAAATCCAATTATTTTATGCCTTTCAGTGCTGGTAAGAGGATA





TGCGTAGGAGAGGCTTTAGCCAGGATGGAGCTTTTCCTATTCCTGACATCTATACTT





CAAAACTTCAATCTAAAGAGTTTAGTCGATCCGAAAAATTTAGATACGACGCCTGTT





GTAAATGGGTTCGCCTCCGTACCTCCCTTCTACCAATTGTGCTTTATTCCCGTGTAA





>p450_3


Seq. ID NO: 3



ATGGCCGCAGATTCCTTTGTGGTGCTGGTGCTGTGTTTAAGCTGCTTATTGTTACTAT






CCTTATGGCGTCAATCATCCGGACGTGGCAAATTGCCCCCTGGCCCAACACCCCTGC





CCGTTATAGGAAATATACTTCAGATTGACATAAAAGATATCAGTAAATCCCTAACGA





ATCTTTCTAAAGTTTATGGGCCCGTCTTTACCCTTTATTTCGGTCTGAAACCGATTGT





CGTTTTACACGGATACGAGGCAGTGAAAGAGGCTCTGATCGACTTAGGTGAGGAGT





TCTCTGGCCGTGGACATTTTCCATTGGCAGAACGTGCTAATAGGGGGTTCGGTATTG





TATTCTCCAACGGGAAAAAGTGGAAGGAAATCAGGCGTTTTTCCTTAATGACGCTAA





GAAACTTCGGCATGGGTAAGAGGAGTATAGAAGACCGTGTTCAAGAGGAAGCTAGA





TGCTTAGTAGAGGAGCTGAGGAAGACTAAGGCCTCTCCCTGTGATCCAACATTCATT





CTGGGCTGTGCTCCGTGCAATGTCATCTGTAGTATAATTTTTCGTAAGAGATTTGACT





ATAAGGATCAACAGTTCCTGAATCTTATGGAGAAACTTAATGAAAATGTCAAGATA





CTGTCTTCTCCCTGGATACAAATTTACAACAACTTTTCTCCCATCATAGATTACTTCC





CTGGAACGCATAACAAGCTGTTGAAAAATGTGGCTTTTATGAAGTCCTATATTCTGG





AAAAGGTCAAGGAACATCAGGAAAGTATGGACATGAACAATCCGCAAGATTTCATC





GATTGCTTCTTAATGAAGATGGAGAAAGAAAAACATAATCAACCTAGTGAGTTTAC





GATAGAGAGTCTTGAAAACACTGCCGCGGACCTATTCGGCGCCGGCACGGAAACCA





CATCTACCACCCTTAGGTATGCATTACTTCTACTACTAAAACATCCTGAAGTTACCGC





TAAGGTACAAGAAGAGATCGAGAGAGTAATAGGCAGGAATAGAAGTCCGTGTATGC





AAGATAGGAGCCACATGCCATACACAGACGCAGTCGTCCATGAAGTTCAGCGTTAT





ATTGACCTTCTTCCGACCAGTCTGCCACATGCAGTCACCTGTGACATTAAATTCAGG





AATTATTTAATTCCCAAAGGTACAACAATATTAATCTCTCTGACGAGCGTTCTACAT





GACAATAAGGAGTTCCCTAACCCAGAGATGTTCGATCCGCACCATTTCCTAGACGAA





GGTGGAAACTTTAAGAAGAGCAATTATTTTATGCCATTCTCCGCTGGGAAAAGAATC





TGTGTTGGCGAAGCATTGGCCAGAATGGAATTGTTTTTGTTCCTAACAAGCATCTTA





CAAAATTTCAATCTTAAATCTTTGGTTGACCCGAAGAATCTGGACACCACACCTGTC





GTAAATGGGTTTGCAAGCGTACCACCTTTTTATCAATTGTGTTTCATCCCCGTCTAA





>p450_4


Seq. ID NO: 4



ATGGCCGCAGATCTGGTAGTGTTCTTGGCCTTGACCCTAAGCTGTTTAATTCTACTAT






CATTATGGCGTCAGTCCTCCGGACGTGGTAAACTACCGCCAGGACCAACTCCGCTGC





CCATTATCGGGAACTTTCTTCAAATCGACGTCAAAAACATATCACAATCATTTACAA





ACTTCTCAAAAGCATACGGGCCAGTTTTTACTCTGTACCTAGGAAGCAAACCCACAG





TTATTTTGCATGGCTACGAAGCTGTCAAGGAGGCGTTGATAGACAGAGGAGAAGAA





TTTGCTGGGAGGGGAAGTTTCCCGATGGCCGAAAAGATCATCAAGGGATTTGGCGT





CGTGTTTTCTAACGGCAATAGGTGGAAAGAAATGAGGAGATTCACATTGATGACTCT





GAGGAACCTGGGTATGGGAAAGAGAAACATTGAAGATAGGGTCCAGGAGGAGGCA





CAATGTTTGGTTGAAGAACTAAGAAAAACAAAAGGAAGTCCCTGTGATCCAACGTT





CATTCTATCCTGCGCTCCCTGCAATGTTATCTGTTCTATTATATTCCAAAACCGTTTC





GATTATAAAGATAAAGAATTTCTAATACTAATGGATAAAATTAACGAGAACGTGAA





GATCCTATCCTCACCCTGGTTGCAAGTTTGCAATTCATTTCCTTCCTTAATAGACTAT





TGTCCAGGTTCTCATCACAAAATAGTGAAAAATTTCAACTATTTAAAGTCTTATTTGC





TGGAGAAAATTAAAGAGCATAAAGAGAGCCTTGACGTTACTAACCCCAGGGACTTT





ATTGACTACTATTTAATTAAGCAGAAACAGGTTAACCATATTGAACAGTCAGAATTT





TCTTTAGAGAATTTAGCCTCTACAATTAACGACCTGTTCGGGGCCGGGACAGAAACC





ACGAGCACAACGCTGAGATACGCATTACTACTGCTACTTAAATATCCGGATGTTACT





GCTAAGGTTCAGGAAGAAATCGATAGGGTAGTAGGACGTCATCGTTCACCATGCAT





GCAAGATCGTTCACACATGCCTTATACTGATGCAATGATACACGAAGTTCAGCGTTT





TATTGACTTGTTACCAACCAGTTTACCGCATGCGGTCACATGTGACATCAAATTTAG





GAAATATCTGATCCCCAAGGGTACAACTGTCATCACTAGCCTAAGCTCCGTATTGCA





TGACAGTAAAGAGTTCCCAAATCCAGAGATGTTCGACCCAGGGCACTTTTTGAATGC





GAATGGCAATTTTAAGAAGAGCGACTATTTCATGCCCTTTAGCACTGGCAAGAGAAT





ATGTGCCGGAGAGGGACTAGCAAGGATGGAATTATTCCTGATTCTTACCACAATACT





ACAGAACTTCAAATTAAAATCATTAGTCCACCCAAAAGAGATAGATATTACTCCAGT





GATGAACGGTTTTGCATCCCTTCCGCCACCCTACCAACTATGTTTTATTCCGCTTTAA





>p450_5


Seq. ID NO: 5



AATGGCCGCAATTTTAGGCGTATTCCTTGGTTTGTTTTTGACGTGTTTACTATTGTTA






AGTTTGTGGAAGCAGAATTTCCAAAGGAGAAATTTACCCCCAGGACCGACACCACT





TCCCATTATCGGTAACATACTTCAAATCGACTTAAAGGACATTTCCAAGAGTTTGAG





AAACTTCTCAAAAGTCTACGGCCCGGTATTTACCCTGTACTTGGGGAGGAAACCCGC





GGTCGTTCTGCATGGTTACGAGGCTGTTAAAGAGGCACTTATCGATCACGGGGAAG





AGTTCGCAGGTAGGGGTGTGTTTCCCGTCGCCCAAAAGTTTAACAAGAACTGCGGG





GTGGTTTTCTCATCCGGCCGTACCTGGAAGGAAATGAGGAGATTCTCCTTGATGACA





CTTAGGAATTTTGGGATGGGCAAGAGAAGTATAGAGGATAGGGTACAGGAAGAGGC





ACGTTGTCTAGTAGACGAACTTCGTAAAACTAACGGGGTGCCTTGTGATCCAACCTT





TATCCTGGGGTGCGCCCCGTGTAACGTGATTTGCTCTATCGTATTCCAAAACAGATT





CGATTACAAAGACCAGGAGTTTCTTGCGCTAATAGATATACTAAATGAAAACGTTGA





GATCCTTGGATCACCGTGGATTCAAATTTGTAATAACTTCCCAGCTATTATTGACTAT





TTACCGGGAAGACACAGGAAACTGTTAAAGAACTTTGCTTTTGCGAAACATTACTTC





TTAGCTAAAGTAATTCAACACCAGGAATCATTAGATATCAATAATCCCCGTGATTTC





ATCGACTGCTTCCTTATAAAAATGGAGCAGGAGAAGCATAATCCCAAAACTGAGTTT





ACTTGCGAGAACTTAATCTTCACTGCTTCTGACCTTTTCGCGGCCGGTACGGAGACA





ACCTCTACTACACTTCGTTATTCCTTATTATTGTTGTTAAAGTACCCTGAGGTTACGG





CAAAGGTGCAAGAAGAGATTGACCACGTGATAGGTCGTCACAGGTCTCCATGTATG





CAAGACCGTCATCACATGCCGTACACAGACGCTGTACTGCACGAGATACAGCGTTA





CATCGACCTATTACCCACGAGCTTACCTCACGCGCTTACCTGTGATATGAAGTTTAG





GGATTATTTAATCCCGAAGGGAACTACCGTTATCGCTTCTTTAACTTCAGTGCTTTAC





GATGATAAGGAGTTCCCTAACCCAGAGAAATTTGATCCAAGCCACTTCCTTGACGAG





AACGGAAAATTCAAAAAGTCCGATTACTTCTTCCCGTTCTCTACTGGAAAAAGGATC





TGCGTAGGAGAGGGGCTTGCTCGTACCGAATTGTTTCTATTCTTAACTACAATTCTGC





AAAATTTTAACCTGAAGAGCCCTGTAGATCTGAAGGAGTTAGACACGAATCCTGTG





GCAAACGGTTTTGTGTCAGTACCACCAAAATTTCAGATCTGTTTTATTCCTATATAA





>p450_6


Seq. ID NO: 6



ATGGCCGCAGCATTGATACCAGACTTAGCGATGGAAACCTGGTTGTTGCTTGCGGTG






TCTTTAGTCCTACTGTATCTATACGGTACTCATAGCCATGGTCTGTTCAAAAAGTTAG





GTATCCCCGGTCCAACGCCGCTACCCTTCCTTGGTAATATTCTGTCTTATCATAAGGG





TTTTTGCATGTTCGATATGGAGTGTCATAAGAAGTACGGTAAGGTATGGGGATTTTA





TGACGGTCAGCAGCCAGTCTTGGCAATAACAGACCCGGACATGATCAAGACAGTCC





TTGTAAAAGAGTGTTATAGCGTGTTTACGAACAGGAGACCGTTCGGGCCAGTGGGCT





TCATGAAGTCCGCAATTTCTATTGCGGAAGATGAGGAGTGGAAAAGGCTTCGTAGTC





TTTTGAGCCCTACATTTACGTCTGGAAAATTGAAGGAAATGGTCCCTATCATTGCTC





AATACGGAGATGTTCTAGTGAGGAATTTAAGGAGAGAGGCTGAGACTGGAAAGCCG





GTTACACTAAAAGACGTTTTCGGCGCGTACTCTATGGATGTCATCACCTCTACATCTT





TCGGGGTAAACATCGACAGTCTGAATAACCCGCAAGACCCCTTTGTTGAGAACACA





AAGAAATTACTGAGATTCGACTTTTTGGACCCGTTCTTTCTGTCCATTACTGTATTCC





CCTTTTTGATTCCGATTCTGGAAGTTTTAAATATTTGTGTTTTCCCGCGTGAGGTTAC





AAATTTCCTAAGGAAAAGTGTTAAAAGGATGAAGGAGTCCAGACTGGAAGATACTC





AAAAGCATAGGGTAGATTTCCTACAATTAATGATTGACTCACAGAATAGTAAGGAG





ACCGAGAGCCACAAGGCCCTTAGTGATCTTGAATTAGTCGCACAGTCAATTATTTTC





ATATTTGCGGGCTACGAGACAACCAGCTCAGTTCTATCATTTATAATGTATGAACTG





GCCACCCACCCTGATGTGCAACAAAAACTTCAGGAAGAGATCGATGCAGTCCTTCC





AAATAAAGCTCCACCCACCTATGATACCGTTTTGCAAATGGAGTATCTTGACATGGT





TGTAAACGAAACCCTGCGTTTGTTTCCTATAGCAATGAGATTGGAACGTGTATGTAA





GAAAGACGTGGAGATAAATGGAATGTTTATTCCTAAAGGTGTGGTCGTTATGATTCC





CTCATATGCCTTACATCGTGATCCAAAATATTGGACGGAGCCTGAAAAATTTCTGCC





AGAGAGGTTTTCCAAGAAAAACAAAGATAATATAGATCCCTACATCTATACACCCTT





TGGCAGCGGTCCGAGGAATTGCATTGGCATGCGTTTTGCTTTAATGAATATGAAGCT





GGCCTTAATTAGGGTTTTGCAAAATTTCTCTTTCAAACCGTGCAAGGAAACTCAGAT





ACCATTAAAACTTTCATTAGGAGGCCTACTTCAACCTGAGAAACCTGTGGTTTTAAA





AGTTGAGAGTAGAGACGGTACGGTGAGTGGCGCTTAA





>p450_7


Seq. ID NO: 7



ATGGCCGCAGATCTAATACCTAATCTAGCCGTAGAGACCTGGCTTCTGTTAACCAAA






TTGGAGTTTGGGTTCTACATATTTCCGTTTATCTACGGTACTCATAGCCATGGTCTTT





TCAAGAAACTGGGCATTCCAGGCCCGACGCCATTGCCGTTCCTGGGTAATATCCTAT





CATACAGAAAAGGCTTCTGCATGTTTGACATGGAATGCCACAAGAAGTATGGGAAG





GTATGGGGCTTTTACGATGGCAGACAACCAGTTCTGGCAATTACAGACCCGGACATG





ATAAAAACGGTTCTAGTAAAGGAATGTTATTCTGTATTCACTAATAGGCGTCCTTTC





GGCCCAGTGGGGTTCATGAAATCTGCGATATCTATCGCGGAAGATGAAGAGTGGAA





GAGAATAAGATCTTTACTTAGCCCTACATTCACTAGTGGCAAATTGAAGGAGATGGT





TCCTATTATTGCCCAGTACGGAGACGTCTTAGTACGTAATCTTAGAAGAGAAGCCGA





TACCGGTAAGCCCGTTACACTGAAGGACGTCTTCGGAGCATACAGTATGGACGTGAT





CACATCTACTTCTTTCGGTGTAAACATAGACTCCTTGAACAATCCCCAAGATCCCTTC





GTTGAAAACACTAAGAAACTACTGAGATTTGACTTTTTGGACCCTTTCTTTCTATCTA





TTATAGTCTTTCCTTTCTTGATTCCAATTCTGGAGGTACTGAATATCTGCGTATTTCCT





CGTGAAGTCACAAACTTCCTAAGAAAGTCAGTCAAGAGGATGAAGGAAAGCCGGCT





AGAAGACACTCAAAAGCATAGGGTTGACTTTCTTCAGTTAATGATTGATTCTCAAAA





CTCCAAAGAAACTGAGAGTCACAAAGCTCTATCAGATCTGGAGTTAGTGGCGCAGT





CCATAATTTTTATCTTTGCCGGTTACGAGACCACAAGTTCCGTGCTGTCATTTATCAT





GTATGAGCTGGCTACCCACCCAGATGTGCAGCAAAAACTACAGGAGGAGATCGATG





CAGTTTTACCCAATAAGGCACCGCCCACGTATGACACAGTTCTGCAAATGGAGTACC





TGGACATGGTGGTCAATGAGACGCTTCGTTTGTTCCCAGTTGCTATGAGGTTGGAGA





GGGTGTGCAAGAAGGATGTTGAGATAAACGGTATGTTTATCCCAAAGGGCGTTGTC





GTGATGATACCAAGCTACGCACTTCACCGTGATCCTAAATATTGGACTGAGCCTGAG





AAATTTTTACCTGAACGTTTTAGTAAGAAAAATAAAGATAACATTGATCCCTATATC





TACACGCCTTTCGGAAGCGGACCCCGTAATTGTATAGGAATGAGGTTCGCTCTTATG





AATATGAAATTAGCCCTAATACGTGTGCTACAAAACTTCAGCTTCAAGCCATGCAAG





GAGACACAGATTCCCCTAAAGCTGCGTCTTGGGGGTTTGCTACAGCCGGAAAAACCT





ATCGTTCTAAAAGTCGAAAGTAGGGATGGAACAGTGTCCGGGGCATAA





>p450_8


Seq. ID NO: 8



ATGGCCGCAGCACTTATACCCGATTTAGCGATGGAGACGTGGTTACTACTAGCGGTG






TCACTGGTGCTGCTGTACCTATATGGGACCCATAGTCATGGACTGTTCAAAAAGTTG





GGCATTCCCGGACCGACGCCGCTACCCTTTCTTGGTAATATTTGGTCTTATCGTAAAG





GATTCTGTATGTTCGACATGGAATGCCATAAGAAGTATGGGAAAGTTTGGGGGTTCT





ATGATGGGAGACAGCCAGTTCTAGCTATCACTGATCCCGATATGATTAAAACAGTTC





TTGTAAAAGAGTGTTATAGTGTCTTCACAAACCGTAGGCCTTTCGGCCCAGTCGGCT





TTATGAAGTCTGCCATATCCATTGCTGAGGATGAGGAATGGAAGAGACTGAGATCC





CTTTTGTCTCCGACCTTTACTAGCGGCAAGTTGAAGGAGATGGTACCATTGATCGCA





CAATATGGCGACGTACTTGTCCGTAACCTGCGTTTAGAGGCCGAAACGGGCAAACC





GGTTACGATGAAGGTTATTACTTCTACAAGTTTCGGGGTCAATATAGACTCACTGAA





TAACCCACAAGATCCTTTCGTAGAGAATACTAAAAAGTTGCTGAGATTCGATTTCCT





AGACCCCTTTTTCCTGTCTATTATTGTCTTTCCTTTCTTGACGCCTATACTTGAAGTAT





TGAACATTAGTGTGTTCCCGAGGGCCGTTACTTCATTCTTGCGTAAAAGTGTTAAGA





GAATGAAAGAGTCTAGGCTTGAAGATACTCAGAAACATCGTGTGGACTTCTTACAG





CTAATGATTGACTCCCAAAATAGTAAGGAGACTGAGAGTCATAAAGCGTTAAGCGA





CTTGGAATTGGTAGCACAAAGCATAATCTTCATCTTTGCTGGGTACGAGACGACTTC





CAGCGTGCTGAGTTTTATAACATACGAATTGGCAACGCACCCGGACGTTCAGCAAA





AACTTCAAGAGGAAATAGATGCCGTCTTGCCGAACAAGGCACCCCCGACTTATGAT





ACAGTGTTGCAAATGGAGTACCTAGACATGGTAGTCAACGAGACACTTAGGTTATTT





CCTATAGCCATGAGGTTAGAGAGAGTCTGCAAAAAGGACGTAGAGATTAATGGTAT





GTTCATCCCGAAAGGAGTTGTAGTAATGATCCCTTCCTACGCCCTGCACCACGACCC





TAAGTACTGGACCGAACCCGAAAAGTTCCTGCCCGAGCGTTTCTCTAAGAAAAATA





AAGATAATATCGATCCCTATATTTATACACCATTCGGCTCTGGACCAAGGAACTGCA





TTGGCATGCGTTTTGCCCTGATGAATATGAAGCTGGCGCTAATAAGGGTACTGCAGA





ATTTTTCCTTTAAACCGTGCAAGGAAACCCAAATACCTCTAAAGTTACGTCTGGGAG





GTCTGCTACAACCGGAAAAACCCATTGTCTTGAAAGTGGAATCCAGAGATGGCACC





GTTTCTGGGGCGTAA





>p450_9


Seq. ID NO: 9



ATGGCCGCAGAGTTAATTCCGTCCTTTTCTATGGAAACTTGGGTACTTCTAGCGACC






AGTTTGGTCTTGTTATACATATACGGTACATATTCTTATGGTCTATTTAAAAAGTTAG





GCATTCCGGGCCCGCGTCCCGTACCCTATTTTGGGTCTACTATGGCCTATCATAAGG





GGATTCCGGAGTTCGATAACCAGTGTTTTAAGAAGTATGGCAAAATGTGGGGGTTTT





ATGAAGGCCGTCAGCCTATGCTGGCAATCACAGACCCAGATATAATTAAAACGGTA





CTGGTAAAAGAGTGTTACTCTGTATTCACTAACAGACGTATCTTCGGGCCTATGGGA





ATAATGAAATACGCCATTTCTCTAGCATGGGACGAGCAATGGAAGCGTATCAGAAC





CTTATTATCCCCGGCGTTTACTAGCGGCAAGTTAAAAGAAATGTTCCCTATTATCGG





GCAGTACGGAGATATGTTGGTTAGGAACCTTCGTAAGGAAGCCGAGAAAGGTAACC





CCGTTAATATGAAAGATATGTTTGGAGCCTACTCAATGGATGTTATCACAGGGACGG





CTTTCGGGGTGAACATTGATAGTTTGAATAATCCCCACGACCCCTTCGTGGAGCATT





CCAAGAATCTTCTAAGGTTCAGGCCCTTCGACCCATTTATCTTGAGCATTATCTTATT





TCCGTTCCTAAACCCGGTGTTCGAAATATTAAACATTACTCTGTTTCCGAAGAGCAC





TGTCGATTTCTTTACTAAATCTGTCAAGAAGATCAAAGAATCCAGACTAACCGATAA





GCAGATGAATAGGGTGGATCTGTTACAGTTAATGATTAACTCTCAGAACTCAAAAG





AAATAGATAACCACAAAGCCCTTAGCGACATCGAGCTAGTGGCCCAATCTACCATC





TTTATCTTTGGAGGTTATGAAACCACAAGCTCAACATTGAGCTTTATTATCTACGAA





CTGACAACGCATCCTCATGTACAACAGAAGGTACAGGAAGAAATTGACGCAACATT





TCCAAACAAGGCACCACCCACCTATGATGCGTTGGTACAGATGGAGTACCTAGATAT





GGTAGTGAACGAAACTTTGCGTATGTTTCCTATAGCTGGGCGTCTGGAAAGGGTCTG





CAAGAAGGACGTCGAAATTCACGGGGTGACGATTCCTAAGGGAACGACCGTTCTAG





TACCTTTATTTGTCCTACACAACAACCCAGAGCTTTGGCCTGAACCCGAGGAGTTCA





GGCCTGAAAGGTTTTCTAAAAACAATAAGGACAGCATCAACCCGTATGTGTACCTAC





CATTTGGCACAGGTCCTCGTAATTGCCTGGGTATGCGTTTTGCGATAATGAATATCA





AATTAGCTCTAGTCCGTATTTTACAGAATTTCTCATTTAAACCATGCAAGGAGACGC





AGATTCCTCTGAAGTTGTATACTCAGGGGTTGACTCAACCCGAACAACCAGTGATCT





TGAAGGTGGTTCCGCGTGGTCTTGGCCCGCAGGTTGAACCCGACTTCCTTTAA





>p450_10


Seq. ID NO: 10



ATGGCCGCAGATTCTTTTCCACTGCTGGCGGCATTGTTCTTCATCTTAGCTGCTACAT






GGTTTATTAGCTTCCGTAGACCGAGGAACCTACCCCCAGGTCCATTCCCTTACCCAA





TAGTAGGAAACATGTTGCAACTTGGCACACAACCACACGAAACGTTCGCAAAACTT





TCCAAGAAGTATGGGCCACTAATGTCAATCCACTTGGGCTCCTTGTACACCGTAATA





GTCAGCAGCCCAGAGATGGCTAAGGAGATTATGCATAAGTACGGCCAAGTCTTCTC





AGGCCGTACAGTGGCGCAGGCGGTCCACGCGTGCGGGCATGATAAGATCAGCATGG





GCTTTCTGCCGGTAGGGGGTGAGTGGCGTGATATGAGAAAGATTTGCAAAGAGCAA





ATGTTCTCACACCAATCAATGGAGGATTCACAATGGCTGCGTAAGCAGAAATTACA





GCAACTACTAGAATATGCTCAGAAGTGCTCAGAGAGGGGTAGAGCCATCGACATTA





GGGAGGCAGCGTTTATCACCACTTTGAACTTGATGTCCGCCACTTTGTTCTCCATGCA





GGCGACCGAATTCGATTCCAAGGTAACTATGGAATTTAAGGAGATTATAGAAGGAG





TCGCCTCCATTGTGGGTGTACCAAACTTCGCAGATTATTTTCCTATTTTACGTCCCTT





CGACCCCCAAGGGGTTAAAAGGCGTGCCGACGTATACTTCGGAAGACTTTTAGCCAT





CATTGAGGGGTTCCTTAATGAAAGGGTGGAGAGTAGGAGGACGAACCCCAACGCAC





CTAAAAAGGACGACTTCCTGGAAACGCTAGTTGATACCCTTCAGACTAATGACAATA





AGCTAAAGACGGATCACTTGACTCATTTAATGCTGGACTTATTTGTGGGAGGTTCAG





AAACTAGCACAACCGAGATAGAGTGGATTATGTGGGAGCTTCTAGCGAACCCGGAA





AAGATGGCAAAAATGAAAGCTGAGTTGAAGTCAGTGATGGGTGAAGAGAAGGTTGT





TGATGAAAGTCAGATGCCACGTTTGCCATATTTACAGGCAGTTGTTAAAGAAAGCAT





GAGGTTACATCCACCAGGTCCATTGCTATTACCTAGAAAGGCCGAGTCCGACCAGGT





CGTAAATGGCTATCTGATTCCGAAAGGGGCGCAGGTACTGATCAATGCCTGGGCGA





TTGGAAGGGACCACTCAATCTGGAAAAACCCGGACTCCTTTGAACCGGAAAGATTC





TTAGATCAGAAAATTGATTTTAAGGGCACCGATTACGAACTTATCCCCTTCGGGAGT





GGCAGGAGAGTCTGTCCAGGAATGCCTCTTGCTAATAGGATCCTTCACACAGTCACT





GCCACGCTAGTACATAATTTCGATTGGAAGCTTGAGCGTCCGGAGGCCTCAGACGCT





CATAGGGGCGTGCTGTTCGGCTTTGCTGTAAGGAGAGCAGTCCCTCTAAAGATTGTG





CCTTTTAAGGTG





>p450_11


Seq. ID NO: 11



ATGGCAGCCGATCCCTTCCCTCTGGTAGCAGCGGCATTATTCATAGCTGCAACATGG






TTCATTACCTTCAAAAGGAGACGTAATCTTCCGCCGGGGCCTTTCCCTTACCCGATTG





TGGGCAATATGTTGCAACTAGGTTCCCAACCACACGAGACATTTGCCAAGCTATCCA





AAAAGTACGGGCCATTAATGTCAATTCACCTTGGAAGTTTATATACCGTAATAATAT





CCTCCCCCGAAATGGCCAAAGAGATAATGCACAAGTACGGGCAAGTCTTTTCTGGG





AGAACAATAGCTCAGGCTGTGCACGCATGCGATCACGATAAAATATCTATGGGCTTT





TTACCTGTGGGAGCAGAGTGGCGTGACATGAGGAAGATCTGCAAGGAACAGATGTT





CTCTCATCAAAGCATGGAAGATAGTCAGAACTTACGTAAACAGAAACTTCAGCAAT





TGCTGGAATATGCTCAAAAATGCAGTGAAGAAGGAAGAGGAATCGATATACGTGAG





GCAGCTTTTATTACTACATTAAACCTGATGTCTGCCACGTTATTCAGCATGCAAGCC





ACTGAATTCGATAGTAAAGTCACTATGGAGTTCAAGGAAATAATCGAAGGAGTGGC





GAGCATCGTGGGCGTCCCAAATTTTGCAGATTATTTCCCCATTCTGCGTCCTTTCGAC





CCTCAAGGGGTTAAGCGTCGTGCGGATGTCTACTTTGGAAGATTATTAGGCTTGATC





GAAGGTTATCTTAACGAAAGAATTGAATTCAGAAAAGCCAACCCCAATGCCCCAAA





GAAAGACGATTTTTTAGAAACCCTGGTGGACGCACTTGATGCGAAGGATTACAAAC





TAAAGACTGAACACCTTACTCACCTGATGCTAGACCTATTCGTTGGGGGGAGCGAGA





CGAGCACCACTGAAATTGAGTGGATCATGTGGGAGTTACTGGCATCACCTGAGAAG





ATGGCCAAAGTCAAAGCAGAATTGAAAAGTGTAATGGGGGGCGAAAAGGTCGTGG





ACGAGTCTATGATGCCTAGATTACCTTATCTGCAAGCAGTGGTTAAAGAGTCAATGA





GGTTACACCCGCCAGGCCCATTATTACTTCCAAGAAAAGCGGAAAGTGACCAGGTC





GTAAACGGTTATTTGATTCCTAAGGGAGCGCAAGTACTGATCAATGCGTGGGCGATG





GGTAGAGACCCAAGCCTATGGAAAAACCCTGACTCTTTTGAGCCAGAGCGTTTTTTA





GACCAGAAGATCGACTTTAAGGGTACAGATTACGAACTTATCCCGTTTGGAAGTGGC





AGAAGGGTGTGCCCTGGAATGCCCCTGGCGAACAGAATTCTTCATACGGTTACTGCT





ACTCTTGTGCATAACTTTGATTGGAAATTGGAAAGACCGGAGGCAAGCGACGCGCA





CAAGGGAGTCCTTTTTGGTTTCGCGGTCAGGAGAGCTGTACCTTTGAAGATCGTCCC





TATCAAGGCA





>p450_12


Seq. ID NO: 12



ATGGCGGCAGACAGCTTCCCGTTACTGGCAGCACTTTTCTTTATCGCAGCAACTATA






ACTTTCCTGTCTTTCAGGCGTAGAAGAAACTTGCCGCCCGGACCATTTCCCTACCCT





ATTGTAGGTAATATGCTACAACTGGGTGCAAATCCACACCAAGTCTTCGCCAAACTT





TCAAAAAGATATGGGCCTCTGATGAGTATACATCTGGGAAGCTTGTATACGGTTATA





GTGAGTTCCCCTGAGATGGCGAAGGAAATATTACATAGGCATGGGCAAGTGTTCTCT





GGTCGTACTATTGCCCAAGCTGTCCACGCTTGCGATCATGACAAAATATCTATGGGT





TTCCTTCCAGTAGCCAGCGAATGGAGGGACATGAGGAAAATTTGCAAGGAGCAGAT





GTTCAGCAATCAAAGCATGGAGGCTAGCCAGGGACTTCGTAGGCAGAAACTACAAC





AACTTTTGGATCATGTACAGAAATGCTCCGATAGTGGGAGGGCCGTCGACATTAGA





GAAGCTGCTTTCATAACCACCTTGAATCTTATGTCCGCCACACTGTTCAGCTCCCAG





GCCACCGAGTTCGATTCTAAGGCTACCATGGAATTTAAGGAGATTATTGAAGGTGTA





GCCACCATCGTAGGCGTACCTAACTTCGCAGATTACTTCCCAATTCTTAGGCCCTTTG





ATCCCCAGGGAGTGAAACGTAGGGCCGACGTATTTTTCGGAAAACTGTTAGCCAAA





ATTGAAGGCTATTTAAACGAGAGATTAGAATCCAAGAGGGCAAACCCGAATGCGCC





AAAAAAGGACGATTTCTTGGAGATTGTCGTCGATATTATCCAGGCAAACGAATTTAA





GTTAAAGACTCACCACTTTACTCACTTGATGTTGGACTTATTTGTTGGCGGCTCAGAC





ACGAATACAACGTCCATCGAGTGGGCGATGTCTGAGTTAGTAATGAACCCCGACAA





GATGGCGCGTTTGAAGGCTGAACTGAAATCTGTGGCAGGGGATGAAAAAATAGTTG





ACGAGTCAGCCATGCCAAAGTTGCCTTACTTGCAGGCCGTCATAAAGGAAGTTATGC





GTATACACCCTCCGGGGCCGTTGCTTTTGCCTCGTAAAGCTGAAAGCGATCAAGAAG





TGAATGGATACCTTATTCCGAAAGGCACACAGATCCTGATAAATGCATATGCGATAG





GACGTGATCCATCAATCTGGACTGACCCCGAAACATTTGACCCGGAACGTTTCCTGG





ATAACAAGATTGATTTCAAGGGACAAGATTACGAGCTGTTGCCGTTCGGCTCCGGAC





GTCGTGTATGTCCGGGGATGCCGTTAGCTACTAGAATACTTCACATGGCAACCGCCA





CGCTAGTCCACAACTTCGACTGGAAATTAGAAGACGATAGTACAGCCGCTGCAGAC





CACGCAGGCGAGCTATTTGGAGTTGCAGTGAGAAGGGCAGTTCCGCTTCGTATAATC





CCGATAGTGAAGTCC





>CPR_1


Seq. ID NO: 13



ATGGCCGCAGGAGATTCTCATGTGGATACGTCGTCCACTGTGTCTGAAGCTGTTGCT






GAAGAGGTATCTTTATTCAGTATGACTGACATGATCCTATTCAGCCTTATTGTGGGG





CTACTGACCTACTGGTTCCTATTCAGAAAGAAGAAGGAAGAGGTCCCAGAGTTCAC





CAAGATCCAAACGCTGACTTCCAGCGTCCGTGAATCATCCTTTGTTGAGAAAATGAA





GAAAACAGGGCGTAATATCATTGTGTTTTATGGTAGTCAGACTGGCACTGCAGAAG





AGTTCGCCAACAGGTTGTCTAAAGATGCGCACAGATATGGTATGAGGGGTATGTCTG





CGGACCCGGAGGAATATGACTTAGCGGACTTGTCCTCTCTGCCTGAAATTGATAACG





CGCTAGTGGTCTTCTGTATGGCTACGTACGGAGAAGGCGATCCAACCGATAATGCCC





AAGACTTCTACGATTGGTTGCAAGAGACTGACGTGGATTTGTCCGGAGTAAAGTTCG





CAGTATTTGGGCTGGGAAACAAAACTTATGAACATTTTAATGCAATGGGTAAGTACG





TAGACAAACGTTTAGAACAACTGGGTGCACAAAGAATATTCGAGCTTGGTTTGGGG





GATGATGACGGTAATTTAGAGGAGGATTTCATCACTTGGAGGGAGCAATTCTGGCC





GGCGGTGTGCGAGCATTTCGGCGTTGAGGCGACCGGAGAAGAGTCAAGCATTAGAC





AGTATGAACTTGTTGTGCACACAGATATCGACGCCGCAAAAGTGTATATGGGGGAG





ATGGGTAGATTAAAATCTTATGAGAATCAAAAACCTCCTTTCGATGCGAAAAATCCA





TTCCTTGCCGCTGTGACCACAAACAGGAAACTAAATCAAGGTACAGAGCGTCATTTG





ATGCACTTGGAGCTAGACATCAGTGATTCTAAAATTAGGTACGAATCAGGGGATCA





CGTCGCCGTTTATCCCGCCAATGATAGCGCCTTGGTGAATCAGTTAGGTAAGATACT





GGGTGCTGATTTGGATGTAGTCATGAGCTTGAATAACCTTGATGAAGAGTCCAATAA





GAAACATCCTTTCCCGTGCCCAACAAGTTATAGAACCGCCCTTACGTACTACTTAGA





TATCACCAATCCACCAAGAACGAATGTCCTATATGAGCTTGCTCAATATGCCAGTGA





GCCATCCGAGCAAGAGCTGCTTAGGAAAATGGCGTCCTCATCCGGTGAAGGCAAAG





AATTATACCTGTCCTGGGTGGTCGAGGCCAGGAGGCATATTTTAGCTATTTTGCAAG





ATTGTCCTTCCCTTAGGCCGCCCATCGATCATCTTTGTGAGCTGCTTCCTCGTTTACA





AGCAAGGTATTATTCTATCGCGTCCTCCTCTAAAGTCCATCCAAACAGCGTACACAT





CTGTGCCGTGGTGGTCGAGTACGAGACGAAGGCCGGTAGAATCAACAAGGGCGTTG





CTACAAACTGGTTGAGAGCCAAGGAGCCCGCGGGGGAAAACGGAGGTCGTGCATTA





GTACCGATGTTTGTCCGTAAATCTCAATTCAGGTTGCCTTTTAAGGCAACCACTCCG





GTAATCATGGTCGGGCCTGGCACTGGCGTAGCCCCATTTATAGGATTCATTCAGGAA





AGGGCCTGGTTGAGGCAACAAGGCAAGGAGGTTGGAGAGACTCTGCTGTACTACGG





ATGCCGTAGGAGCGACGAAGATTACTTGTATCGTGAAGAGCTTGCACAATTTCACCG





TGACGGAGCACTTACTCAATTAAATGTGGCTTTTAGTCGTGAACAGTCACATAAGGT





GTATGTACAACATTTATTGAAGCAAGACCGTGAACACCTTTGGAAGCTGATTGAAGG





TGGCGCCCATATTTATGTATGCGGCGATGCTCGTAATATGGCAAGGGACGTTCAAAA





CACTTTCTATGACATCGTCGCAGAACTTGGGGCGATGGAGCATGCTCAAGCAGTAGA





TTACATCAAGAAACTAATGACCAAAGGTAGATATTCACTTGACGTTTGGTCCTAA





>CPR_2


Seq. ID NO: 14



ATGGCCGCACCTTTCGGTATTGACAATACTGACTTCACTGTCTTGGCGGGCCTGGTA






CTGGCAGTACTGTTGTATGTGAAGAGGAACAGTATAAAAGAACTGTTGATGTCAGA





TGATGGTGACATCACAGCTGTTTCTAGTGGGAACAGAGACATTGCCCAGGTCGTCAC





GGAAAATAATAAAAACTATCTAGTCCTGTATGCTTCACAGACCGGCACCGCAGAAG





ATTATGCGAAGAAATTTAGCAAGGAGCTGGTAGCCAAGTTCAACCTTAATGTGATGT





GCGCTGACGTAGAGAATTACGACTTCGAATCCTTAAACGATGTACCGGTTATCGTTT





CTATCTTCATTTCCACCTACGGAGAGGGCGATTTTCCAGACGGTGCGGTTAACTTCG





AAGACTTTATATGTAATGCTGAGGCTGGAGCTTTAAGTAACTTACGTTATAATATGT





TTGGTCTTGGGAACTCTACTTATGAGTTCTTTAATGGCGCTGCCAAGAAAGCCGAAA





AACACTTATCTGCGGCGGGGGCCATCAGACTGGGCAAACTTGGAGAGGCCGACGAT





GGTGCCGGGACAACGGACGAGGATTATATGGCTTGGAAGGATTCTATATTGGAGGT





TCTAAAGGATGAACTACACTTAGATGAGCAGGAAGCCAAATTTACTTCCCAGTTTCA





GTATACTGTTCTGAACGAAATAACAGACTCCATGTCTTTGGGCGAACCGTCTGCGCA





TTACCTACCCAGCCATCAACTGAACAGAAACGCGGACGGAATACAGCTAGGGCCCT





TTGACTTATCGCAGCCTTACATTGCCCCAATTGTAAAATCTAGGGAGCTGTTTAGTTC





TAATGATAGGAATTGCATACATAGCGAGTTCGACTTGTCCGGTTCTAATATTAAGTA





CTCTACAGGTGACCACCTGGCCGTATGGCCGAGCAATCCCCTTGAGAAGGTAGAAC





AATTTTTGTCAATCTTCAACCTAGATCCAGAAACGATATTCGATTTGAAGCCCCTGG





ACCCGACTGTTAAGGTACCGTTTCCCACTCCTACCACCATAGGTGCGGCAATCAAGC





ACTATTTGGAAATCACAGGCCCGGTATCACGTCAATTGTTTAGTAGCTTAATTCAAT





TCGCCCCGAATGCTGACGTAAAGGAGAAACTAACCCTGCTAAGTAAGGACAAGGAC





CAATTCGCTGTGGAAATTACCAGTAAATATTTCAACATAGCGGATGCTTTAAAGTAT





CTGAGTGATGGGGCTAAATGGGACACTGTGCCCATGCAATTTCTGGTGGAGTCCGTG





CCCCAAATGACCCCCAGGTACTACAGTATCAGTTCATCCAGCCTAAGTGAGAAGCA





GACGGTCCATGTAACAAGCATAGTAGAGAATTTCCCAAATCCCGAATTACCGGATG





CGCCCCCTGTCGTGGGAGTGACAACCAATCTTCTAAGGAATATCCAACTAGCCCAAA





ACAATGTGAATATCGCGGAAACGAACCTACCCGTTCACTACGATCTTAATGGACCCA





GGAAACTTTTTGCAAATTACAAACTTCCCGTCCATGTTAGGAGATCAAATTTTAGGC





TACCTTCCAATCCAAGCACTCCAGTGATCATGATTGGACCGGGTACTGGAGTTGCGC





CTTTCCGTGGGTTCATTAGGGAAAGAGTAGCCTTTTTGGAGAGTCAGAAGAAAGGC





GGAAATAATGTCAGCTTGGGCAAACACATATTGTTTTACGGTTCACGTAACACCGAC





GACTTCCTTTACCAGGATGAATGGCCAGAGTACGCTAAGAAACTAGACGGGTCTTTT





GAGATGGTTGTGGCCCACTCTAGGCTTCCAAACACGAAGAAGGTCTATGTACAGGA





TAAGCTGAAAGACTATGAGGATCAAGTTTTTGAAATGATAAACAACGGGGCGTTCA





TTTATGTTTGCGGAGACGCAAAAGGGATGGCTAAGGGTGTGAGCACAGCCTTGGTC





GGTATCTTATCAAGAGGGAAGTCAATAACTACAGACGAAGCCACTGAGCTAATTAA





AATGCTTAAAACGAGCGGAAGGTACCAAGAGGACGTTTGGTAA





>CPR_3


Seq. ID NO: 15



ATGGCCGCAGGAGACAGCCACGAAGATACTAGTGCGACCGTTCCGGAGGCAGTGGC






GGAAGAGGTGAGCCTATTCAGTACTACCGATATTGTACTTTTCTCCCTAATTGTGGG





TGTGCTGACTTACTGGTTCATATTTAAAAAGAAGAAAGAGGAGATTCCCGAATTTTC





CAAAATCCAAACGACAGCTCCACCCGTTAAAGAAAGTAGTTTCGTCGAGAAAATGA





AGAAGACTGGGAGGAATATAATAGTTTTCTATGGAAGCCAAACAGGGACCGCAGAG





GAGTTCGCGAACAGACTAAGTAAAGACGCTCATAGATACGGTATGCGTGGTATGTC





CGCTGACCCAGAGGAGTACGACCTGGCAGACCTAAGCTCACTGCCAGAGATTGACA





AAAGCCTAGTGGTCTTCTGTATGGCTACATATGGTGAAGGTGATCCAACTGATAACG





CTCAGGATTTCTACGATTGGTTACAAGAGACAGATGTGGACCTGACTGGAGTTAAAT





TTGCAGTCTTCGGCTTGGGGAATAAAACATACGAACACTTTAATGCTATGGGGAAAT





ACGTCGATCAAAGATTGGAGCAACTTGGCGCCCAGAGAATTTTCGAGCTAGGCTTG





GGAGACGACGATGGGAATCTTGAGGAGGATTTTATAACTTGGAGAGAACAGTTTTG





GCCAGCCGTGTGCGAATTTTTCGGAGTCGAGGCGACAGGCGAAGAGTCAAGTATCA





GGCAATATGAGCTAGTTGTGCATGAAGATATGGACACGGCGAAAGTCTACACCGGC





GAGATGGGACGTCTAAAAAGTTACGAGAACCAAAAACCGCCTTTTGATGCGAAGAA





TCCATTCTTGGCCGCCGTCACGACAAACCGTAAGTTAAACCAAGGGACTGAAAGAC





ATCTGATGCACTTAGAGCTTGACATCTCCGATAGTAAAATAAGGTATGAAAGTGGA





GATCACGTCGCCGTATACCCGGCTAACGATTCAACTCTAGTTAATCAGATCGGGGAA





ATATTAGGGGCCGACCTAGACGTCATAATGAGTTTAAACAACCTAGATGAAGAATC





AAACAAGAAACACCCATTCCCCTGTCCAACCACTTACAGGACAGCGTTGACTTATTA





TCTTGATATCACCAATCCCCCGAGAACCAACGTGTTATATGAACTTGCTCAGTATGC





CAGTGAACCATCTGAGCAGGAACATCTGCACAAGATGGCATCCTCATCAGGAGAAG





GAAAAGAATTATATCTGTCCTGGGTCGTGGAGGCTAGGAGACATATCCTTGCGATCC





TGCAGGACTATCCTAGCTTGCGTCCGCCTATCGACCATTTATGCGAACTGCTACCTC





GTTTGCAGGCCAGGTACTACAGCATAGCCTCTAGTAGTAAAGTACATCCTAACTCTG





TGCATATATGTGCCGTGGCCGTGGAGTACGAGGCTAAATCAGGAAGAGTAAATAAA





GGAGTCGCAACGAGTTGGCTGAGGACTAAGGAACCAGCCGGCGAGAACGGTAGGA





GAGCACTGGTGCCCATGTTTGTGAGGAAGTCCCAATTTCGTCTGCCATTTAAGCCTA





CAACCCCGGTAATTATGGTCGGTCCCGGGACAGGTGTAGCTCCGTTCATGGGATTTA





TCCAAGAGCGTGCCTGGTTGAGGGAACAGGGTAAAGAAGTCGGAGAGACCTTATTA





TACTATGGATGTAGGCGTTCAGACGAGGATTATTTATACCGTGAGGAGTTAGCCCGT





TTTCACAAAGACGGGGCCTTAACCCAGCTTAATGTAGCTTTTTCTAGGGAGCAAGCG





CATAAGGTCTATGTTCAACACTTGCTTAAAAGGGATAAAGAACACTTGTGGAAGCTA





ATACACGAAGGAGGAGCCCATATCTATGTTTGCGGAGATGCCAGGAACATGGCCAA





GGACGTACAAAATACCTTTTATGATATTGTCGCAGAATTTGGTCCTATGGAGCACAC





ACAAGCTGTAGACTATGTTAAGAAACTAATGACAAAAGGCAGGTACAGTCTGGATG





TCTGGTCTTAA





>CPR_4


Seq. ID NO: 16



ATGGCCGCAGGTGATTCCCATGAGGACACTTCCGCTACTATGCCGGAGGCCGTAGC






GGAGGAGGTCTCATTGTTTTCCACGACTGACATGGTCCTGTTCAGCCTGATCGTCGG





CGTTTTGACGTATTGGTTCATATTTAGAAAGAAAAAGGAAGAAATCCCCGAGTTCTC





CAAAATCCAAACCACTGCCCCTCCGGTAAAAGAAAGCTCTTTTGTTGAGAAGATGA





AGAAGACAGGCCGTAATATCATCGTGTTTTATGGTAGCCAGACTGGTACAGCCGAG





GAATTTGCAAACAGACTGAGCAAGGACGCGCACAGGTACGGTATGCGTGGCATGTC





CGCCGATCCCGAAGAGTATGATCTAGCCGACCTGAGCAGCTTACCGGAAATCGATA





AATCCCTTGTTGTCTTTTGCATGGCGACCTATGGAGAGGGCGATCCGACCGATAACG





CACAGGACTTCTATGATTGGTTGCAAGAGACGGACGTAGACCTGACAGGCGTGAAG





TTCGCCGTCTTCGGACTGGGCAATAAAACATACGAGCACTTCAACGCAATGGGCAA





GTATGTGGATCAGCGTTTAGAGCAACTAGGCGCCCAAAGGATTTTCGAGTTGGGTCT





GGGAGACGACGATGGAAACCTAGAAGAAGATTTCATAACCTGGCGTGAGCAATTCT





GGCCTGCAGTATGCGAGTTCTTTGGTGTTGAGGCCACGGGCGAAGAATCATCTATAA





GGCAGTATGAATTGGTCGTTCACGAAGATATGGACGCCGCGAAGGTATACACCGGC





GAAATGGGGCGTCTTAAATCATACGAAAACCAAAAACCTCCCTTTGACGCTAAAAA





TCCATTTCTAGCTGCTGTCACCGCAAATCGTAAGTTAAACCAGGGCACTGAGAGGCA





CCTAATGCACCTGGAGCTGGATATCAGCGATTCCAAAATCAGATACGAATCAGGAG





ACCACGTCGCGGTGTATCCCGCAAACGATTCAGCGTTAGTAAACCAAATCGGGGAA





ATACTTGGAGCGGATCTTGATGTGATAATGTCTTTAAATAACCTAGACGAGGAATCC





AATAAGAAACACCCATTTCCCTGTCCTACGACATACAGAACCGCGCTGACGTATTAT





TTGGATATAACAAATCCTCCCAGAACGAACGTTCTATATGAGTTAGCCCAGTATGCT





TCAGAGCCGAGTGAACAGGAACATCTGCACAAGATGGCGAGCAGTTCAGGAGAGG





GTAAGGAATTATACCTTTCCTGGGTCGTTGAGGCGCGTAGACACATACTTGCAATTC





TACAAGACTACCCTAGCCTAAGACCACCTATAGACCATCTGTGCGAGTTATTGCCAC





GTTTGCAAGCCAGGTATTATAGCATCGCAAGTTCTTCTAAAGTTCACCCCAACTCTG





TGCACATATGTGCAGTTGCTGTCGAATACGAAGCAAAATCCGGGAGGGTTAATAAG





GGAGTAGCTACGAGTTGGCTAAGAGCAAAAGAACCAGCTGGTGAAAATGGAGGTCG





TGCCCTTGTCCCGATGTTTGTAAGAAAATCCCAATTCAGACTACCGTTTAAGAGTAC





CACGCCCGTGATCATGGTTGGTCCGGGGACTGGTATAGCACCTTTTATGGGGTTCAT





CCAGGAGCGTGCCTGGCTACGTGAGCAAGGCAAAGAGGTAGGCGAGACATTGCTTT





ACTACGGGTGTAGACGTAGCGATGAAGATTACCTGTACAGAGAAGAGTTGGCGAGA





TTCCACAAAGACGGCGCTTTAACCCAACTAAACGTCGCTTTTAGCAGAGAACAGGCT





CATAAAGTGTACGTCCAGCACTTGCTGAAAAGGGACAGGGAGCATTTATGGAAACT





GATTCATGAAGGTGGCGCGCACATATACGTATGCGGGGATGCTCGTAATATGGCTA





AGGATGTGCAGAATACATTTTACGACATTGTAGCGGAGTTCGGCCCTATGGAGCATA





CGCAAGCTGTAGATTATGTCAAGAAATTAATGACCAAAGGTAGATACTCATTGGAC





GTTTGGAGCTAA





>CPR_5


Seq. ID NO: 17



ATGGCCGCAATCAACATGGGTGACTCTCATGTTGACACAAGTTCCACCGTTTCCGAA






GCTGTAGCGGAAGAAGTGAGCCTATTCAGCATGACAGATATGATTCTATTCTCACTT





ATTGTCGGTTTACTGACTTACTGGTTTCTATTCAGAAAGAAGAAGGAAGAGGTCCCC





GAATTTACGAAAATACAAACACTTACTTCCTCAGTTAGGGAATCATCATTCGTTGAG





AAAATGAAAAAGACGGGGCGTAACATCATCGTGTTTTATGGTTCACAAACCGGAAC





TGCCGAAGAGTTTGCGAATAGATTATCTAAGGACGCTCATAGATACGGAATGCGTG





GGATGTCTGCCGATCCCGAGGAATATGATCTGGCAGATCTTAGCAGTCTACCGGAAA





TCGACAATGCACTTGTGGTGTTCTGCATGGCAACATACGGGGAAGGAGATCCGACG





GATAATGCACAGGACTTTTATGACTGGTTGCAAGAGACCGACGTGGATCTATCCGGT





GTCAAGTTTGCCGTTTTTGGGCTTGGGAATAAGACCTACGAGCACTTCAATGCAATG





GGAAAATATGTGGATAAGAGACTGGAGCAGCTGGGAGCCCAAAGAATATTCGAGTT





AGGATTAGGTGACGATGATGGGAATCTTGAGGAAGACTTCATCACCTGGCGTGAAC





AGTTTTGGCCGGCAGTTTGCGAACACTTTGGTGTAGAAGCCACTGGGGAAGAGTCTT





CCATCAGGCAATACGAGCTGGTAGTGCATACAGATATTGATGCAGCTAAGGTATAT





ATGGGTGAGATGGGAAGGTTAAAAAGTTATGAGAACCAGAAACCACCTTTTGATGC





CAAAAATCCTTTTCTGGCCGCAGTTACGACAAACAGGAAATTAAACCAGGGTACGG





AAAGACACTTAATGCATTTAGAACTGGACATCTCAGACAGCAAGATTAGGTACGAA





AGTGGGGACCACGTCGCAGTGTACCCGGCTAATGACAGCGCGCTAGTGAATCAGCT





GGGTAAAATTCTAGGGGCGGATCTTGACATCGTGATGAGCCTGAATAATTTGGACG





AAGAGAGCAACAAGAAACATCCCTTCCCCTGTCCTACTTCCTATAGGACGGCTCTAA





CATATTATCTGGACATAACGAATCCCCCTAGAACGAACGTCTTGTACGAATTGGCAC





AGTACGCTTCTGAACCGTCAGAACAGGAATTACTACGTAAAATGGCGAGTTCTAGTG





GTGAAGGAAAAGAGTTATACCTAAGTTGGGTTGTAGAGGCAAGGAGACACATTCTG





GCTATTTTACAAGATTGCCCTAGTTTGAGGCCGCCTATAGACCACCTTTGTGAGTTAT





TACCGAGGTTACAGGCTCGTTACTATTCTATAGCAAGCAGTAGTAAGGTCCACCCGA





ATAGCGTACACATATGCGCCGTAGTAGTAGAATACGAAACAAAGGCGGGTCGTATC





AACAAAGGAGTGGCGACCAACTGGTTGCGTGCCAAAGAACCGGCAGGAGAAAACG





GTGGGAGGGCTCTAGTTCCGATGTTTGTCCGTAAAAGTCAGTTTAGGTTACCGTTCA





AGGCCACGACCCCCGTAATCATGGTAGGTCCCGGGACTGGAGTTGCGCCGTTCATA





GGCTTTATCCAGGAAAGGGCCTGGTTGCGTCAGCAGGGCAAGGAGGTCGGTGAAAC





ACTGTTATACTATGGATGCAGGAGGAGTGACGAGGACTATCTGTACAGAGAAGAGC





TTGCCCAATTCCACAGGGACGGCGCATTGACTCAACTTAACGTAGCCTTCTCACGTG





AACAGTCTCACAAGGTGTACGTCCAACACCTGCTGAAGAGAGACAGGGAGCATCTG





TGGAAATTAATAGAAGGCGGAGCACATATCTATGTATGTGGCGATGCAAGAAACAT





GGCACGTGATGTCCAGAATACCTTTTACGATATTGTCGCGGAGCTTGGGGCGATGGA





ACACGCTCAAGCCGTAGATTACATCAAGAAACTAATGACAAAGGGGCGTTATTCTCT





TGACGTATGGTCCTAA





>CPR_6


Seq. ID NO: 18



ATGGCCGCAATTAACATGGGAGATTCCCACATGGATACATCCAGCACAGTGTCCGA






AGCAGTTGCGGAGGAAGTGAGTTTATTTTCCATGACAGACATGATCCTTTTCTCACT





TATTGTGGGGTTACTTACCTACTGGTTTTTGTTTAGGAAAAAGAAAGAGGAGGTCCC





GGAATTTACTAAAATACAGACTTTGACATCATCAGTACGTGAGTCTTCCTTTGTAGA





GAAAATGAAGAAGACAGGCAGGAATATAATAGTATTTTATGGATCTCAGACCGGGA





CCGCAGAGGAGTTCGCTAACCGTCTATCCAAAGACGCCCACCGTTATGGTATGAGG





GGCATGAGTGCGGACCCCGAGGAGTACGATCTAGCCGATCTATCCAGCTTACCTGA





GATAGAGAACGCATTGGTTGTATTTTGTATGGCCACGTATGGCGAAGGTGATCCGAC





AGATAATGCTCAAGATTTCTACGACTGGTTACAAGAGACCGACGTAGACTTGTCTGG





TGTAAAGTTCGCTGTATTTGGATTAGGAAATAAGACCTATGAACACTTTAACGCCAT





GGGCAAGTATGTCGATAAACGTCTGGAACAATTAGGCGCTCAGAGAATTTTCGAAC





TGGGACTAGGCGATGACGACGGAAACCTGGAGGAGGACTTTATTACGTGGAGAGAA





CAATTTTGGCCCGCTGTCTGTGAACATTTCGGCGTTGAGGCAACCGGCGAAGAAAGC





TCGATAAGGCAATATGAATTGGTAGTACATACAGATATAGACGCCGCTAAAGTGTA





CATGGGAGAAATGGGAAGGTTGAAGAGTTATGAGAACCAAAAACCTCCGTTCGACG





CTAAGAATCCGTTCCTAGCGGCTGTCACTACAAATAGAAAGTTGAATCAAGGCACA





GAAAGGCATTTAATGCATTTAGAGCTTGATATTTCTGACAGCAAAATCAGATACGAA





TCCGGGGACCATGTTGCGGTCTACCCAGCAAACGACAGTGCCTTAGTAAATCAGCTA





GGGAAAATACTTGGGGCGGATTTGGATGTCGTAATGAGTCTTAATAACCTAGATGA





AGAATCAAATAAGAAACATCCATTTCCTTGTCCCACAAGCTATAGGACCGCGCTGAC





TTACTATCTGGACATCACTAATCCCCCAAGAACCAATGTGTTGTATGAGTTAGCCCA





GTATGCCAGCGAGACGAGTGAGCAAGAGTTATTGAGAAAAATGGCAAGTAGCTCAG





GAGAAGGGAAGGAGCTGTATCTGAGCTGGGTTGTAGAGGCACGTAGACACATTCTG





GCCATTTTGCAAGATTGCCCTTCTTTGAGACCACCTATAGATCATCTTTGTGAGCTTC





TACCAAGGCTGCAGGCTCGTTACTACAGTATTGCTAGTTCAAGCAAAGTTCATCCAA





ACAGTGTCCACATCTGCGCGGTCGTAGTTGAATACGAGACAAAGGCCGGGAGAATT





AATAAAGGTGTGGCCACTAATTGGCTAAGAGCCAAAGAACCTGCTGGTGAGAACGG





TGGGCGGGCGCTTGTCCCGATGTTTGTAAGGAAGAGTCAATTTCGTCTGCCATTTAA





GGCGACCACGCCTGTTATTATGGTGGGTCCAGGAACAGGTGTAGCCCCATTTATAGG





ATTCATTCAAGAAAGGGCCTGGTTAAGGCAACAAGGCAAAGAGGTTGGTGAAACTC





TTCTTTATTATGGGTGTCGTAGATCAGATGAAGATTACCTGTATCGTGAAGAGCTTG





TACAATTCCATAGAGACGGCGCGCTTACACAATTGAATGTTGCTTTTAGTCGTGAGC





AAAGTCATAAAGTCTACGTTCAACATTTATTAAAAAGGGATAGAGAGCACTTGTGG





AAACTGATAGAAGGAGGGGCGCATATCTATGTATGCGGAGACGCGAGGAATATGGC





TAGAGACGTGCAAAATACCTTTTATGATATCGTTGCAGAATTGGGTGCAATGGAGCA





TACGCAAGCCGTTGATTACATAAAGAAGTTGATGACCAAAGGACGTTACAGCCTAG





ATGTTTGGTCTTAA





>CPR_7


Seq. ID NO: 19



ATGGCCGCAAATATGGCAGACAGTAATATGGATGCGGGAACGACCACATCTGAGAT






GGTAGCAGAGGAGGTAAGCCTATTTTCCACTACGGATGTGATATTGTTCAGTTTGAT





CGTAGGTGTTATGACTTATTGGTTTCTTTTCAGGAAAAAGAAAGAAGAGGTGCCGGA





GTTCACAAAGATTCAGACCACTACCTCCTCCGTTAAGGATAGATCATTTGTTGAAAA





GATGAAGAAAACCGGCAGGAATATCATTGTGTTCTACGGTAGCCAGACAGGAACGG





CGGAAGAGTTCGCCAACCGTCTATCCAAAGACGCTCACAGATATGGTATGAGGGGA





ATGGCGGCCGACCCGGAGGAGTACGACCTGGCTGATCTGTCTTCTTTGCCAGAAATA





GAGAAGGCGTTGGCTATATTCTGTATGGCAACCTATGGAGAAGGGGACCCAACAGA





TAACGCTCAGGACTTTTACGATTGGTTGCAAGAGACTGATGTGGACCTAAGTGGTGT





AAAGTATGCGGTATTTGCCCTGGGGAACAAGACGTACGAGCACTTCAATGCAATGG





GTAAGTACGTAGATAAGAGACTGGAACAGTTGGGAGCGCAAAGGATATTCGACTTG





GGATTAGGTGATGACGACGGAAACCTAGAGGAAGATTTCATAACCTGGAGGGAACA





ATTCTGGCCCGCCGTTTGTGAGCATTTTGGCGTTGAAGCAACGGGTGAAGAGAGTTC





TATCCGTCAATACGAGTTGATGGTACATACGGATATGGATATGGCAAAAGTTTACAC





CGGTGAAATGGGAAGACTAAAGTCATACGAAAACCAGAAGCCCCCATTTGATGCGA





AAAACCCTTTCCTAGCAGTCGTAACGACGAACCGTAAGCTGAATCAGGGGACGGAG





AGGCACTTAATGCACTTAGAACTTGATATATCTGACTCTAAAATTAGATATGAATCT





GGGGACCATGTAGCCGTATATCCAGCAAACGATAGCGCCTTAGTAAACCAACTGGG





CGAGATATTGGGGGCTGATCTGGATATCATAATGAGTTTGAACAACTTGGATGAAG





AAAGTAACAAGAAACATCCGTTCCCTTGTCCCACATCATATAGAACAGCCCTTACCT





ACTACTTGGACATAACAAACCCGCCAAGAACTAACGTTCTATACGAGTTGGCTCAAT





ATGCGAGCGAACCGACCGAACATGAACAACTACGTAAAATGGCATCTTCATCTGGT





GAGGGTAAGGAACTTTACTTGAGGTGGGTGCTTGAAGCTAGAAGGCATATCCTGGC





GATTTTGCAAGACTATCCTAGTCTAAGACCGCCGATTGATCACTTGTGTGAGCTTCTT





CCTAGACTTCAAGCTAGGTACTACTCAATCGCCAGCAGTTCAAAAGTGCACCCGAAC





TCAGTACATATATGTGCCGTAGCCGTCGAGTACGAGACCAAGACGGGCAGGATAAA





CAAAGGAGTCGCCACAAGTTGGCTGAGAGCTAAGGAACCAGCAGGCGAAAATGGT





GGGCGTGCCCTAGTGCCTATGTATGTGCGTAAAAGTCAGTTCAGATTACCGTTCAAA





GCTACGACCCCTGTAATAATGGTAGGCCCGGGCACTGGAGTGGCCCCCTTCATTGGA





TTCATTCAAGAGCGTGCCTGGCTAAGGCAACAGGGGAAGGAGGTTGGGGAAACATT





GTTGTATTATGGGTGCAGGAGAAGCGACGAGGATTATCTATATAGGGAAGAGCTGG





CGGGCTTCCATAAGGACGGCGCGCTGACTCAATTAAATGTTGCATTCAGCAGGGAA





CAACCCCAAAAGGTGTACGTGCAGCACTTACTTAAAAAGGATAAGGAACACTTATG





GAAATTAATTCACGAGGGTGGAGCCCACATCTACGTGTGTGGGGATGCCAGGAATA





TGGCTAGGGATGTCCAGAACACATTCTATGATATTGTAGCCGAACAAGGTGCGATG





GAGCACGCCCAAGCTGTTGACTATGTCAAGAAATTGATGACCAAAGGGAGATACTC





TCTGGACGTCTGGTCATAA





>CPR_8


Seq. ID NO: 20



ATGGCCGCTGAACCTACCTCACAAAAGCTTAGTCCTCTTGACTTCATTGCGGCCATT






CTAAAAGGTGATTATTCAGATGGGCAACTGGAAGCTGCATCCCCGGGGATGGCTAT





GCTGCTGGAGAATAGAGATCTTGTAATGGTTCTTACAACAAGTGTGGCTGTATTGAT





AGGGTGTGTGGTGGTGTTAGCCTGGAGACGTACGGCCGGTTCAGCCACCAAAAAGC





AGTTTGAGCCTCCCAAGCTTGTAGTACCGAAAGCCGCAGAACTGGAGGAAGTTGAT





GACGACAAACCTAAGGTAAGTATCTTCTTTGGTACCCAAACCGGAACCGCGGAGGG





CTTTGCGAAAGCTTTCGCCGAGGAGGCCAAGGCCAGATATCCCCAGGCTAACTTCA





AGGTGATCGACTTAGATGATTACGCAGCAGACGACGACGAGTATGAGGAGAAACTG





AAGAAGGAGACGCTGGCGTTCTTCTTTCTGGCGTCCTACGGCGATGGAGAGCCCACA





GACAACGCGGCTAGATTCTACAAGTGGTTCACTGAGGGGAAGGATAGAGGTGATTG





GTTGAAAAATTTACAATACGGAGTGTTTGGTCTAGGCAATAGACAATATGAGCACTT





TAATAAAATCGCTATCGTTGTGAATGACATCATTGTCGAGCAAGGTGGAAAAAAGC





TAGTGTCAGTGGGCCTTGGGGACGACGATCAGTGCATAGAAGACGACTTCGCCGCTT





GGAGAGAATTAGTATGGCCAGAACTTGACAAGTTGCTTCGTAACGAAGACGATGCC





ACCGTCTCTACACCATACACCGCAGCAGTACTGCAATATAGGGTTGTCTTTCATGAT





CAGACAGACGGCTTAATCTCCGAGAACGGCTTCTTGAACGGCAGAGCGAACGGGAC





GTCTGTCTTCGATGCCCAACACCCCTGTCGTTCCAACGTCGCGGTCAAAAAAGAACT





TCACACCCCCGCTAGTGACCGTAGTTGTGCCCATCTTGAATTTGATATATCTGGGACT





GGGTTAGTCTATGAAACTGGAGATCATGTTGGAGTTTACTGCGAAAACCTAATTGAA





ACTGTAGAGGAGGCCGAAAAGTTGTTAAATATTCCCCCTCAAACATATTTTTCCATA





CATACGGATAATGAGGATGGGTCCCCTCGTAGCGGCAGCTCTCTTCCGCCTCCATTC





CCGCCATGCACTTTAAGAACGGCCTTGACCAGGTATGCGGATTTGTTGTCCGCGCCT





AAAAAAAGCACCTTAATTGCTCTAGCAGAGAGTGCCAGCGATCAGAGTGAAGCCGA





CAGATTACGTCACCTTGCGAGCCCCGGTGGTAAGGAGGAATACGCTCAATATATCAC





CGCAAGCCAAAGGTCCCTGCTAGAGGTAATGGCGGACTTCCCCAGTGCGAAGCCTT





CATTGGGCGTCTTTTTCGCAGCCATAGCCCCCCGTTTGCAGCCCCGTTTTTACTCTAT





CTCAAGCTCACCGAAAATAGCACCTAGCAGGATACATGTTACGTGCGCGCTGGTTTA





TGAAAAAACGCCTACGGGTCGTGTTCATAAGGGTGTCTGCAGTACATGGATGAAGA





ACGCTGTGCCCCTGGAGGAATCTAATGACTGTAGCTGGGCGCCGATATTTGTCAGGA





ACTCCAACTTCAAGCTACCTGCCTATCCCAAAGTGCCCATAATTATGATTGGCCCTG





GAACTGGTCTGGCCCCGTTCAGAGGTTTTCTACAAGAGCGTCTTGCGTTAAAAGAAT





CAGGTGCCGAATTGGGACCAGCTATACTATTCTTCGGGTGTAGGAATAGAAAAATG





GACTTCATCTATGAAGATGAGCTAAACAACTTCGTAGAGGCGGGCGTTATAAGTGA





ACTGATAGTAGCGTTTAGTAGGGAGGGACCAACTAAGGAGTATGTACAACACAAGA





TGACTCAGAGGGCGTCAGATGTATGGAAGATCATAAGCGATGGAGGTTATGTTTAT





GTGTGCGGCGACGCGAAAGGAATGGCAAGGGATGTTCACCGTACACTACATACAAT





AGCACAAGAGCAGGGCAGCCTTTCTTCATCTGAAGCAGAGGGAATGGTGAAAAATC





TACAGACAACCGGGCGTTATCTGAGGGACGTATGG





>CBNsyn_1


Seq. ID NO: 21



ATGGCCGCAGACTTCTCAGGTAAAAACGTTTGGGTCACGGGGGCCGGTAAAGGTAT






AGGTTACGCGACAGCATTGGCATTCGTAGAGGCAGGGGCCAAGGTCACAGGCTTCG





ATCAGGCATTTACACAGGAACAGTACCCTTTTGCCACCGAGGTTATGGATGTAGCGG





ACGCCGCCCAAGTAGCACAAGTCTGTCAGCGTCTACTAGCTGAGACAGAGAGATTG





GATGCTCTGGTGAATGCGGCAGGTATTCTTCGTATGGGTGCCACCGACCAATTATCT





AAGGAGGACTGGCAACAAACGTTCGCTGTAAATGTTGGAGGTGCATTTAACCTGTTC





CAACAGACTATGAATCAGTTCAGAAGGCAGCGTGGAGGCGCTATAGTCACAGTAGC





CAGTGACGCCGCGCATACCCCAAGGATTGGAATGTCAGCGTACGGAGCTTCCAAGG





CAGCCCTGAAGAGCCTAGCTTTATCAGTCGGTCTGGAGCTGGCCGGGTCAGGGGTA





AGGTGCAACGTTGTGTCCCCGGGCTCCACGGATACAGACATGCAGAGAACTCTGTG





GGTGTCTGACGACGCAGAGGAACAACGGATCAGAGGTTTCGGAGAGCAGTTCAAAC





TAGGGATTCCGCTGGGCAAGATCGCTAGACCACAAGAGATAGCTAATACTATACTTT





TCCTAGCATCCGATTTAGCCAGTCACATCACTTTACAAGACATCGTAGTGGATGGTG





GTTCAACACTAGGCGCTTAA





>CBNsyn_2


Seq. ID NO: 22



ATGGCCGCAAGCGATCTGCATAATGAGTCCATTTTCATTACAGGCGGAGGCTCTGGT






CTTGGGCTGGCCTTAGTGGAAAGGTTTATAGAGGAAGGGGCACAGGTTGCTACACTT





GAGCTTAGCGCAGCAAAAGTCGCGTCTCTACGTCAACGTTTTGGAGAACATATATTG





GCCGTGGAAGGCAACGTCACGTGTTATGCCGACTATCAAAGAGCTGTAGATCAGAT





ACTAACCCGTTCTGGGAAGTTAGATTGCTTTATAGGGAATGCAGGTATATGGGATCA





TAACGCTTCCCTGGTTAATACCCCAGCAGAAACGCTAGAAACAGGGTTTCATGAGCT





TTTTAACGTAAACGTCCTGGGGTACTTACTGGGAGCAAAAGCATGTGCTCCTGCGCT





TATCGCGTCAGAGGGTTCAATGATATTTACCCTTTCAAACGCGGCTTGGTACCCAGG





TGGAGGGGGTCCTTTATATACGGCCTCCAAACATGCAGCAACTGGCCTGATCCGTCA





ACTAGCCTATGAACTTGCACCCAAGGTAAGGGTTAATGGAGTGGGTCCCTGCGGCAT





GGCTAGTGATCTTAGGGGACCACAAGCCTTAGGGCAATCAGAAACGAGTATAATGC





AGTCATTGACCCCCGAAAAGATTGCGGCGATATTACCTCTGCAATTTTTCCCACAAC





CGGCGGACTTCACTGGACCATACGTCATGTTAACATCTAGGCGTAATAATAGGGCAC





TGAGCGGCGTTATGATTAACGCGGACGCTGGGTTGGCTATCAGAGGCATTAGGCAC





GTGGCAGCAGGACTTGACCTATAA





>CBNsyn_3


Seq. ID NO: 23



ATGGCCGCAACGGGATGGTTAGCGGGAAAAAGAGCTTTGATCGTCGGTGCGGGTTC






CGGAATCGGAAGAGCTACAGTTGACGCATTTCTAAACGAGGACGCGAGAGTTGCAG





TTCTGGAGTATGACTCCGATAAGTGTGCAACACTTAGGCACCAGTTACCAGACGTTC





CCGTGATAGAAGGCGATGGGACCACAAGGACCGCTAACGATGAGGCCGTTCAGGTC





GCTGTGGACGCATTCGGGGGACTAGATACTCTGGTCAACTGTGTTGGAATATTCGAC





TTCTACCGTCGTATCCAAGACATTCCCGCAGAGCTGATCGATCAGGCATTTGACGAA





ATGTTTAGAATCAATGTATTATCACATATCCACTCTGTTAAAGCAGCGGTACCTGCT





CTGATGGGTCAGGACGGAGCATCTATTGTGCTGACGGAGAGTGCTTCTTCATTCTAT





CCCGGTAGGGGCGGGTTGTTGTATGTGGCGTCAAAATTTGCTGTTCGTGGTGTCGTA





ACCGCACTGGCCCATGAGTTGGCTCCCAGGATTCGTGTTAATGGAGTAGCTCCTGGC





GGAACCCTTAATACAGATCTGAGGGGCCTTGACAGTTTGGACCTTGGTGCCCGTAGG





TTAGATGCCGCGCCTGACAGAGCTAGAGAACTTGCAGCGAGGACCCCACTGGGGGT





CGCATTGTCCGGTGAAGACCACGCCTGGTCTTACGTTTTCCTGGCCTCTCATAGGAG





TAGAGGTCTAACAGGCGAAACGATTCACCCTGATGGCGGCTTTTCTTTAGGACCGCC





GCCACAAAGGAATTAA





>CBNsyn_4


Seq. ID NO: 24



ATGAGTAGTATCGAGACCAAAATCTTTCCTGGGCGTTTTGATGGTAGGTGTCTTACC






ATAACAGGTGCCGCCCAAGGCATTGGGTTGACAGTAGCTACGAGGATAGCGGCAGA





AGGCGGTGAAGTGGTGCTTGTTGACCGTGCAGACCTTGTACACGAGGTGGCAGAGC





AGCTACGTGAGGCAGGAGGCAAGGCGCACTCAGTAACGGCTGATTTAGAAACATTT





GAGGGTGCTGAGGAAGCGATCTCTCATGCCGTAAGGACGACTGGCAGAATCGATGT





ACTAATCAATGTTGTGGGCGGGACTATATGGGCAAAACCGTATGAGCACTACGCCC





CGGAGGAAATAGAAAAAGAAATTAGAAGATCCTTATTCCCTACGCTATGGACATGT





AGAGCTGCGGCACCGCATTTAATCGAACGTAGAGCAGGAACGATAGTGAACGTAAG





CTCCGTTGCTACGAGGGGCGTAAATCGTGTTCCCTATTCCGCAGCAAAGGGAGGTGT





TAATGCTATTACTGCGTCTCTGGCGTTGGAATTAGCCCCGTACGGGGTAAGGGTTGT





CGCAACGGCTCCAGGCGGGACCGTCGCGCCAGAGAGAAGAATCGCCAGAGGGCCT





AGCCCACAGAGTGAGCAGGAGAAAGCCTGGTACCAGCAGATTGTAGATCAGACAGT





TGACTCCTCATTACTTAAAAGGTATGGTACTCTTGATGAACAAGCAGCCGCGATCTG





CTTCCTTGCATCAGAAGAGGCGTCATACATCACCGGAACTGTCTTGCCGGTGGCCGG





AGGGGACTTAGGATAA





>CBNsyn_5


Seq. ID NO: 25



ATGAGTAGTACCGGCTGGCTAGACGGCAAAAGGGCCTTAGTTGTTGGGGGAGGAAG






TGGGATAGGTAGAGCTGTCGTAGACGCTTTCTTAGCTGAAGGAGCTTGCGTAGCCGT





CCTGGAAAGGGACCCGAATAAGTGTAGAGTCCTAAGAGAACATCTGCCGCAGGTGC





CCGTAATTGAAGGAGATGCAACAAGGGCTGCAGATAATGACGCAGCGGTAGCTGCA





GCAGTTGCTGCATTTGGAGGACTAGACACGCTTGTAAATTGTGTGGGTATCTTTGAC





TTCTATCAGGGCATCGAGGACATTCCGGCGGACACCCTTGACGTAGCATTCGATGAA





ATGTTCAGAACGAACGTACTATCCCACATGCATAGTGTAAAGGCGGCAGTTCCCGA





GTTACGTAAACATAGGGGCTCTTCTATCGTTCTGGCTGAATCCGCCTCTAGCTTCTAT





CCAGGGAGAGGGGGTGTCCTATATGTCTCTTCTAAATTTGCCGTCAGAGGTCTGGTA





ACCACTCTAGCATACGAGTTGGCCCCAGATATCAGGGTGAATGGGGTCGCCCCAGG





TGGTACGCTGAATACGGATCTGCGTGGCTTAGCGTCACTAGGAAGGGATGCTGACA





GGCTAGATGATAACCCTAATAGGGCCAATGAGTTAGCAGCCAGAACTCCGCTTAAC





GTGGCCCTTAGTGGGGAAGATCATGCGTGGTCTTTTGTCTTCTTCGCTTCCGACAGA





AGCAGGGGAATTACAGCCGGGGCTACTCATCCAGATGGAGGCTTTGGAATTGGTGC





GCCCAAGCCCTCTACTAGATAA





>CBNsyn_6


Seq. ID NO: 26



ATGAGTAGTGGGTTTCTGGATGGCAAGGTTGCTCTTGTGACTGGTGGCGGGAGTGGT






ATTGGAAGGGCCGTCGTCGAATTATACGTTCAGCAAGGAGCTAAAGTAGGTATCTTA





GAAATCTCACCCGAAAAAGTGAAGGACCTGAGGAATGCCCTACCAGCTGACAGTGT





CGTGGTAACAGAGGGAGATGCTACGAGTATGGCGGATAACGAGAGGGCAGTCGCG





GACGTTGTTGACGCATTCGGACCCCTTACTACGTTAGTTTGTGTGGTGGGGGTATTC





GATTACTTTACAGAGATTCCTCAGCTACCTAAAGATAAAATCTCTGAAGCCTTTGAT





CAACTTTTTGGGGTAAATGTTAAATCCAACCTATTGTCTGTGAAAGCGGCGTTAGAC





GAGCTAATTGAGAACGAAGGAGACATAATACTGACGCTAAGTAACGCAGCTTTTTA





TGCCGGTGGAGGCGGCCCACTGTATGTTTCTAGTAAGTTTGCTGTAAGGGGCTTGGT





GACTGAGTTAGCATATGAGCTTGCCCCAAAAGTACGTGTCAACGGGGTAGCCCCAG





GGGGAACGATTACCGAACTTAGAGGAATCCCGGCCTTGGCGAATGAAGGACAAAGG





CTGAAAGACGTTCCTGACATCGAGGGATTAATAGAAGGAATTAATCCCCTTGGTATC





GTTGCTCAGCCTGAGGACCACTCCTGGGCCTACGCGTTATTAGCAAGTAGAGAAAG





GACATCAGCGGTAACAGGCACGATTATAAACAGCGATGGAGGATTAGGAGTCAGGG





GCATGACTCGTATGGCCGGTCTGGCACAATAA





>CBNsyn_7


Seq. ID NO: 27



ATGAGTAGTAGTAGGTCTGTGACTTTGGTAGTCGGCGCTGCCCAAGGAATTGGCAGG






GCTACCGCATTGACGCTTGCGACGGCGGGTCACAGGGTCGTGTTGGCGGATAGGGA





CGTAGACGGCTTGGCCGAGACTGCTGCGCTTCTACACGTCGCTGCACCGGTTCACGG





ACTTGACGTATGTGATGCTGCTGGGGTGGCGGAAGCGGTTGCGAGGGTGGAGGTCG





AGCACGGACCGGTAGATGCTCTAGCTCATGTCGCGGGGGTGTTTACCACGGGCTCTG





TACTTGATTCAGACTTAGCAGAGTGGCAACGTATGTTTGACGTCAACGTGACGGGGC





TAATCAATGTACTGCGTGTCGTGGGGCATGGCATGAGAGAACGTAGACGTGGAGCA





ATCGTCACTGTCGGTTCTAATTCCGCTGGTGTACCAAGGGTGGGGATGGGAGCTTAT





GGTGCATCAAAATCCGCAGCACATATGCTGGTACGTGTATTAGGATTGGAATTAGCA





AGATTCGGCGTCAGGGCGAATGTTGTTGCCCCAGGGTCCACGGACACAGCGATGCA





ACGTTCTCTTTGGCCCGACCCTGCTGACGACGCTGGCGCCCGTACTGCGATAGACGG





TGACGCCGCTTCATTTAAGGTCGGGATTCCACTGGGGAGGATCGCAGACCCAGCCG





ACATCGCGGACGCCGTCGAGTTCCTGCTATCTGATCGTGCTAGGCACATAACAATGC





AGACTCTATATGTAGATGGTGGTGCTACCCTGAGAGCATAA





>CBNsyn_8


Seq. ID NO: 28



ATGAGTAGTCAAATGCTGGATGACCACGTAGCTCTGATACTAGGTGGTGGGAGTGG






ATTGGGTCTAGGAATTGCGCGTCATTTTCTCGGAGAAGGGGCTCAGGTGGCCATCTT





TGAGATCAGTGAATCCAAATTATTAGACCTAAAAGCTGAGTTCGGGGACGACGTAC





TTCTTTTACAGGGGGATGTAACATCAATTGACGACCTAGAGGCAGCCCGTGCCGCAG





TAGTGGATAGGTTCGGAAGGTTGGATGCACTTATTGGTGCGCAAGGGATTTTTGATG





GGAACATCCCATTGAGAGACATCCCGACCGAGAGAATCGAAAAGGTTTTCGACGAA





GTGCTACATGTTGACGTGCTAGGTTATATATTAGCCGCTAGGGTCTTCCTGGAAGAG





CTGGAGAAGACAGACGGAGCAATTGTGTTTACCAGCAGTACTGCGGCTTACGCAGC





CGATGGAGGAGGTTTGTTTTACACTGCCGCCAAGGGTGCCGTTAGAAGTGTAATCAA





TCAGCTTGCATTCGAGTTCGCGCCGAAGGTCAGAGTCAACGGAGTCGCTCCATCCGG





CATCGCTAATTCACAGCTTCAAGGGCCGCGTGCCCTAGGATTAGAGAACAACAAGC





AGAGTGATATTCCCGTTGAGGATTTTACGAACCAATTTCTGTCTCTGACGTTGACAC





CTACCCTGCCCACTCCGGAGGAATATGCGCCACTTTATGCATATTTAGCGTCCAGGA





ACAATACCACAATGACAGGGCAAACGATAATTGCAGATCAGGGCCTATTTAACAGA





GCGGTCATATCTAACGGCGTTGCAGATAGAGTAGGCAAATAA





>THCdeg_1


Seq. ID NO: 29



ATGAGTAGTTCTGGCCCCGCGCACAGCAATTTAGAGCAAGTATTCGCTAACGTGGCT






TCAAATTACCGTGGGGCTGATGTAGACTTGCACGCGGTTTATAGAGAAATGCGTGAG





AAGTCTCCCGTGTTGCCTGAAAATTTCATGGCCAGGCTTGGTGTGCCGTCTATAGCA





GGGCTGGACCCAAATAGGCCAACTTTTACGTTGTTTAAATATGACGATGTGATGGCT





GTAATGAGAGATGCGACTAATTTCACTAGTGGTTTTATTGCGGAAGGTCTGGGCTCT





TTCTTCGATGGTTTAATTCTAACAGCAATGGACGGTGAAGCACACAAGAATATACGT





TCATTGTTACAGCCGGTCTTTATGCCAGAAACTGTTAATAGGTGGAAAGAGACCAAA





ATTGACAGAGTGATAAGGGAAGAGTATCTTAGACCAATGGTGGCTTCAAAGCGTGC





CGATATCATGGAGTTTGCTTTATATTTCCCCATTAGAGTTATTTACTCATTGATTGGA





TTCCCAGAGGACCGTCCGGAGGAGATCGAACAGTATGCGGCTTGGGCCTTAGCGAT





TCTGGCCGGACCTCAAGTAGATCCTGAAAAAGCAGCAGCGGCACGTGGAGCAGCAA





TGGAAGCCGCCCAAGCACTGTACGACGTTGTTAAGGTAGTCGTAGCGCAAAGGAGG





GCCGAAGGGGCGACAGGCGACGACCTGATTTGCAGACTGATCAGAGCAGAGTACGA





AGGACGTAGTCTGGATGACCATGAAATAACGACGTTTGTTAGAAGCCTTCTGCCAGC





AGCTTCTGAAACGACGACGCGTACGTTTGGTACATTGATGACTCTGTTGCTAGAACG





TCCTGAACTGTTGGCACGTATCCGTGAGGATCGTTCTTTAGTCGGAAAAGCTATTGA





TGAGGCGGTACGTTATGAACCAGTGGCTACTTTTAAGGTAAGGCAAGCCGCAAAAG





ACGTGGAAATTAGAGGGGTGGCAATTCCGAAGGGCGCGATGGTGTCCTGCATCGTG





ACTAGCGCAAATCGTGACGAGGACGCTTTTGAGAATGCGGATACATTCGATATCGA





CCGTAGGGCTAAGCCGTCATTTGGATTTGGATTCGGTCCACATATGTGTATTGGTCA





GTTTGTTGCTAAAACCGAAATAAACTGCGCCCTAAATGCCATACTGGATTTGATGCC





AAACATCCGTTTAGACCCAGATAAACCCGCGCCAGAGATTATAGGGGCGCAGCTAA





GAGGACCCCATCACGTCCACGTGATTTGGGACTAA





>THCdeg_2


Seq. ID NO: 30



ATGAGTAGTAGGTCAACTGACCTTCCGGACCTGAAATCTGCGGCCTTTCTTGCGGAC






CGTTACCCAACGTACAGGAGACTACAAAGTGATTTCCCGCACTTCGAAATGAATATA





AATGGAGAGGAGTGTATCGTGCTGACAAGATACAGCGACGTCGATGAAGTCTTACG





AAACCCGTTGGCCACGGTTCAACAAGCTCCTGGTGTATTTCCAGAAAGGATAGGTCA





AGGTGCTGGGGCCCGTTTCTATCGTGAGTCACTACCCAATATTGATGCCCCCGATCA





CACGCGTATCAGGCGTATAGTTACACCGGCGTTCAACCCGAAAACAGTTGCTAACAT





GAGAGGTTGGGTTGAGAAGGTAATAGTGGAGCACCTAGACCGTCTTGAAGGATTGG





ACGAAATTGACTTTGTCTCTAGCTTTGCCGACCCGGTGCCAGCGGAAATAGCATGTA





GGTTGCTTCATGTGCCTGTGTCTGATGCTCCAGAACTTTTTGCTAGGCAGCATGGATT





GAATGCTGTGCTATCTGTTAGCGACATCACACCTGAGAGATTAGCCGAAGCGGACG





CATCCGCTGCTTTCTACTATGAATACATGGACGACGTTTTAAACACACTGAAGGGTA





AATTGCCGGAAGATGATTTCGTGGGAGCGTTAATGGCTGCCGAGGCGCGTGACTCTG





GATTAACTAGGTCTGAATTGGTTACTACGCTTATCGGATTTCTGGTAGCCTCATATCA





CACCACGAAGGTGGCCATGACAAACACTGTCCTAGCTCTACTTAATCACGATGGCG





AGAGAGCTAGGCTTGTGGCGCAGCCGGATTTGGCGAGAAATGCCTGGGAAGAATCA





TTGAGATATGACTCCCCAGTGCATTTCGTCCACCGTTATGCATCTGAACCACTGACA





ATAGGTGGTCAGCCCGTGGCCCAAGGTAAAAGGCTATTATTGGGCTTGCATGCAGCT





AGTAGAGACGAAAATAGGTTTGCCCAGGCAGATCACTACTTGATTGACAGACCGGA





TAACCGTCACCTGGCGTTTGCTGGGGGAGGGCACTTTTGCTTGGGGTCTCAACTTAG





CCGTTTGGAAGGAGACGTACTGTTGCGTACAATTTTTCAAAGATTCCCCGCAATGAG





GCTTACGGAAACCAGATTCGAAAGAGTACCGGACTTGACTTTTCCAATGTTACTAAG





GATGACAGTTTCATTAAGGGCGGAGCAAGGTTAA





>THCdeg_3


Seq. ID NO: 31



ATGAGTAGTACCTCTAATTCAATTAGGAGCCCATTGAGTCCGCCCCAGCCGAGACGT






ACTCCGCCGCCTTGTACCTCCTCAAGGGAACCGCCCATCGTCCGTGGTACTTGGCTT





TTAGGCAGCACCCGTGACTTGTTAAGGGACCCACTGGAGCTAGGGCTGCGTGGATA





CGCTGAAGGCGGGGACGTGGTAAGATATGTAGTTGGGTTACCTGGTCGTAGAAGAG





AGTTCTTCACGGTTAACCATCCCGATGGGGTTGGGGAACTGCTTAATGCTCCCCGTC





ACTTAGACTATCGTAAGGACAGTGAATTTTACCGTGCCATGAGGGATTTATATGGAA





ATGGGCTTGTTACCAGTCAAGATGAAACTTGGCTGAGACAGAGAAGGTTCATACAG





CCGTTGTTTACTCCACAGAGTGTTGATGGTTACGTCACACCAATGGTCGCGGAGGCT





GATAGGGTAGCAATAAGGTGGCACAATTGTACCTCCCGTCTGGTAGATTTGGACGGC





GAGATGCGTGCCCTAACATTAGGCGTGGCCGCCAGAATCCTATTCGGAGTTCAAGCC





CCGAGGATGCTTCCTATCCTGAGGACTACCCTACCGGTACTTGGTAGGGCCGTTCTG





CAACAAGGTGCGTCAGCTATCAGATTTCCTAGCTCTTGGCCTACCCCGGGTAATCGT





CGTATCGCCAGTGCAGAATCTCGTCTGGATGGTTTGTGTGATGCTATTATAGAGCGT





CGTAGGACAGTAGCCGAGCCAGGTACGGATTTGCTGGGTCGTTTGGTCGCTGCAAG





AGAGGACGGTGATACGCTGTCAACGGAGGAAATAAGAGATCAAGTCAAGGTATTTC





TCTTGGCTGGTCACGATACAACGGCAACGATGCTGACGTTTGCCTTATACCTGCTTG





GTAAGGACGCTGGCGTTCAGGATCAAGCGCGTGACGAAGCGGAACGTGTCTTGGGG





GCGGGGACGCCGACCGCAAGCGACGTCCACCGTCTGACATATACTACGATGGTACT





GGAGGAGGCGGCGAGACTGTACCCACCGTCTCCCTATTTAACTCGTAGAGCGGTCG





AGGAAAGCGAGGTCTGCGGGTACAGAATACCCGCTGGGGCCGATGTCAACCTGGCT





CCATGGGTGATCCATCACCGTGCCGATTTATGGCCTGATCCTTTCCGTTTCGATCCCG





ACAGATTCACCCCGGATAGGGTAAAAGAAAGACACAAATACGCGTGGTTCCCGTTT





GGACACGGACCAAGGGGTTGTATCGGTCAGAGATTCGCAATGCTGGAAGCGGCAGT





TACTTTAGCGATTCTTCTAAGAGAATTTGAGTTTAGGTCTCCGCCTGGCAGCGTTCCA





TTAACAGTAGACTTACTGTTGCATCCCGCCGGCGAGGTTCCTTGCCGTGTGAGGAGG





CGTGTACCTGTGCATTCAGCGGTTCATCGTACTCACCAGCCAAGTTAA





>THCdeg_4


Seq. ID NO: 32



ATGAGTAGTGCCCCGGACATTCTTTCTCCCGAGTTTCTGGATAACCCTTATCCTCTTC






ACCGTGTGCTACGTGACCACTACCCCGCTTTACACCACGAGGGGACCGACAGCTATC





TAATATCAAGGTACGCCGATTGCGCAGAAGCATTTCGTTCACCTAAATTCTCCTCCC





GTAACTATGAATGGCAGCTTGAACCGATACACGGTAGAACAATTTTGCAAATGGAA





GGGCGTGAGCATTCTACCCATAGAGCATTGCTAAATCCGTTTTTCAGAGGCAACGGA





CTAGAGAGATTCATGCCTGCCATTACACACAACGCAGCACAACTAATAGGCGATAT





AGTCGCCAGGAATGCAGGGGAATTGCTGGGTGCGGTTGCCAGACAGGGGGAAGCGG





AATTGGTATCACAATTCACTAGTCGTTTTCCTATAAACGTAATGGTGGACATGCTGG





GACTGCCGAAGTCCGACCACGAAAGGTTTAGAGGCTGGTATTTCTCCATTATGGCTT





ATCTTAATAACCTGGCAGGGGACCCTGAAATTAACGCCGCGGCGGAGCGTACACAT





GTTGAACTAAGGGAGTACATGCTTCCAATTATTAGAGAGCGTAGGAGTGGAGATGG





AGACGACCTTCTATCCAGATTATGTCGTGCCGAAGTTGACGGTGAGCAGATGAGTGA





TGAGGAGATAAAGGCCTTTGTCTCTCTACTGCTGGTCGCCGGCGGAGAGACCACAG





ATAAGGCAATAGCAAGCATGATCAGAAATTTGATCGACCACCCAGATCAGATGAGG





GCGGTTAGAGAAGATCGTTCACTTGCTGATAGGGTAATAGCAGAGACCCTTCGTTAT





TCCGGACCCGTACATATGATCATGAGACAAACAGAGGATGAGGTTCAGATAGAGGA





CTCTACCATTCCAGCGGGAGCAACCTGCATAATGATGTTAGCAGCCGCGAACAGAG





ATGAACGTCATTTTTCAAACCCGGACGAGTTCGATATATTTCGTACGGACCTAAACG





TAGACAGAGCCTTCTCAGGGGCGGCCAATCATGTCCAATTTATATTGGGCCGTCATT





TTTGCGTCGGGTCCATGTTGGCTAAAACTGAGATGACCATTGCACTTAATCTGGTCTT





GGACACAATGGATAGCATAGAATACCAAGATGGTTTTGTTCCCAGAGAGGAGGGGC





TGTACACCAGAAGCATCCCGGAGCTTAGGGTAAAATTTGAAGGTAAGTTAGGGTAA





>THCdeg_5


Seq. ID NO: 33



ATGAGTAGTAGCACTCCTGCCGCTGCTACATCCTTGGAGAGTGCCTTTGCGGGCGTC






GCGGACAATTATAAAGGTTCCGACGTGGACCTTCATGCAATCTATAGAGATATGAG





ACGTAACTCTCCTGTCATCGCTGAGGATTTCATGGCACGTCTGGGTGTTCCGAATATT





GCAGGCCTAGACGCTAAAAGGCCAACATTTACCCTTTTCAAGTACAAGGACGTGAT





GTCTGTCTTGAGGGATGCTACCAATTTCACATCAGGCTTTATCGCGGAAGGATTAGG





GGCGTTTTTCGACGGCTTAATCCTGACTGGGATGGATGGTGAAGCACACCGTAGAAC





TAGGTCCCTATTGCAGCCGGTTTTCATGCCCGACGTTGTCAACCGTTGGAGGGAAAC





GAAAATGGCACCAATAGTCAGGAATGAATATATTGAACCGATGGTCCCGAAAAGGC





GTGCTGACCTTATGGACTTTGGACTTCACTTCCCTATACGTCTAATCTACAGTTTGAT





AGGGTTCCCAGACAATAGGCCGGAGCAGATCGAACAGTACGCTGCCTGGGCACTTG





CCATCCTGGCAGGGCCGCAGGTGGACGCAGAGAAAGCAGCCCAGGCGCGTAAAGCT





GCGATGGAAGCCGCCCAGGCGCTTTACGACGCAGTTAAACTTGAAGTTACAGAGGT





CCGTAAAAATGGAGCCCAGGGTGACGATCTAATCTGCAGGCTAATTAGAGCTGAGT





ATGAAGGCCGTCATCTTGATGATCATGAAGTCACAACCTTTGTCAGGTCACTTCTGC





CAGCCGCTGGAGAGACAACTACGAGAACGTTCGGTTCACTGATGGTCGCTCTTCTGG





AAAGACCTGAATTACTGGAACGTGTTAGGGCTGATAGATCCTTAGTGCCAAAGGCG





ATCGACGAAGCGGTGAGGTTCGAACCAGTAGCTACTTTTAAGGTCAGGCAGGCGGC





ACAGGATACGGAAATTGGCGGGTTCTCCATACCGAAGGGAGCAATGGTTCAATGTA





TAGTCAGTTCCGCCAACAGGGACGAAGAGGTCTTCGAAAACTCTGAGAGCTTTGAC





ATTGATAGAAAGCTGAAACCGTCATTCGGCTTCGGGTTCGGTCCACATATGTGCATA





GGGCAGTTCATTGCAAAGGTCGAGTTATCAGTGGCCGTAAACACTATTTTAGATTTA





TTGCCAAACCTTCGTTTAGATCCAGACAGGCCGAAACCTAGAATAGTAGGTGCTCAG





CTGAGAGGTCCCCACGCGCTTCATGTTATTTGGGACTAA





>THCdeg_6


Seq. ID NO: 34



ATGAGTAGTTCTCCCTCAGTGGCAGAGTTAAGCCAGGAGTTGGGAGAAGCATTCCGT






CTATCCAGCATGGACGATCCGTATCCGATGTTGGCAGAGAGGAGAAGAGAGACTCC





TGTGATGAAAGGGGATATAATGGTGGCCTTAGGTGCGCCAAGCTATATGGGCCAAC





ACGCCGGCGAGACTCATACTGTATTCAGGCATGACGACGTAATGGCTATCCTTCGTA





ATCACGAAACGTTCTCAAGCAGTATTTGGGAAATTTCTCAAGGGCCACTAATAGGTA





GATCCATCCTGGCAATGGACGGGGCAGAGCACAGACAATGGAGGGGATACTTACAG





TCTGTATTTGGAGGGAAGCTATTGTCTTCATGGGATGAGTCCATATTCAGGCCCCTT





GCGGCAAAGTATGTCGCAGACCTTGCTAGTAAGAGAGGTGCGGACCTAATAGCGAT





GGCGTTGGAGTATCCCCTTAGGGCTATCTACGAGATCCTGGGCTTGGAAGATTTTAA





AGACAATTATGAGGAATTTCACGCTGACGTACTGACGATTCTACTAGCCCTATGGTC





TACACCCGACCCAGCGCAAGCCGACCAGTTCTTGCTACGTTTTCAAAAAGCTACGGA





AGCATCTGCTAGGAGTTGGGACCGTCTACTACCCATCGTCCAAAGAAAGAGGGCGG





CGGGTGCGAGCAGGAACGACCTTATTTCTAGTCTAATTAGGGCGGAATACGAGGGT





GGTGTTTTGGATGATGAACAAATCACCAGTTTTCTTAGGTCTCTATTGCTTGCAGCCA





CCGATACTACTACCCGTCAGTTTTTGAATACTTTGACCTTGCTTTTACAGAGGCCAGA





TGAGTTGGATCGTATTCGTAGGGATAGGAGCAGATTGAGATTGGCATTGGCGGAAG





GGGAAAGGTTGGAACCGCCCGCCCTATTCATACCCCGTATGATAACGAGGGATGTT





GTTATTAGGGGTACCGAGTTGACGGCGGGGACCCCCTTACTACTTGCCATCGGGAGC





GCGAATCGTGATCCTGAAGCCTACCCACCCGACCCAGATGAATTTCGTATCGATAGA





ACGGGACCACACCACGCCACGTTCGGTTTTGGTACTCACATCTGCTCCGGGATGAAC





ACTACTCGTCGTGAGATAGCAGCCTTGATCGATGCGATGTTAGACGGGCTACCGGGA





CTTCGTGTCGATCCCGACGCTCCCGCGCCACTTATATCAGGGATTCATTTTAGAGGC





CCATCCGCACTGCCGGTTGTATGGGATTAA





>THCdeg_7


Seq. ID NO: 35



ATGAGTAGTGATTACTCCAGGACACCCGAGTCCCTGCGTCCGGCTGATAGTTATGCC






GCGCTATCCTACTCCACAGTTAATGCTGCTCTGCGTAACGATAGAGTATTCTCTTCAA





AGATGTACGACTCCACCATTGGAGTGTTTATGGGTCCTACAATCTTGGCTATGAGTG





GCACTAAACACAGGGCTCACAGAAACCTTGTATCCGCTGCTTTCAAGCCGCAAAGTC





TGAGAGTTTGGGAACCTGATATTGTAAGACCAATTTGTAATGCACTAATTGATGAGT





TTGCCGGGACAGGCCACGCAGACCTGGTTCGTGACTTCACGTTTGAATTTCCTACTA





GAGTAATAGCTAGACTGCTAGGCTTACCAGCGGAGGATTTGCCATTCTTTAGAAAGG





CCGCAGTGGCGATTATCAGTTATGCAGGAAACGTTCCGAGAGCGTTGGAAGCGTCC





GAGGACCTGAAGAACTACTTTCTAGGACACATAGAGCAAAGACGTAGTCAGCCTAC





CGATGATATTATATCTGATTTAGTTACGGCAGAAGTTGAAGGAGAGCAATTGACCGA





TGAGGCAATTTATTCATTCCTGCGTCTGCTGTTACCTGCTGGGTTAGAGACAACCTAC





CGTAGTAGTGGAAATTTGCTGTACCTATTATTACGTCACCCAAGGCAATTTGCGGCC





GTGCAAGGAAACCATGGTCTTATTCCTCAAGCCGTAGAAGAGGGTCTGCGTTATGAG





ACGCCTCTAACGTTTGTCCAGCGTTTCACAACCGAAGACACGGAGCTTGGGGGCGTT





CCTGTTCCCGCGGGCGCAGTAGTAGATTTAGTCTTGGGCTCTGCCAACAGGGATGAA





GACAGATGGGAACGTCCGGGCGAGTTCGACATATTCAGAAAACCCGTGCCCCATAT





AAGTTTTACGGCGGGAGCCCATACTTGTTTAGGACTGCATTTAGCCAGGATGGAGAC





GAGGGTTGCTGTCGAGTGCCTACTAACTCGTCTGACTAACTTCAGACTTCAGGATGA





AGGAGACCCCCACATAACCGGACAGCCATTCCGTAGTCCGAATCTTCTTCCAGTAAC





TTTCGACGTGGTTTAA





>THCdeg_8


Seq. ID NO: 36



ATGAGTAGTCCGACGCCAAGGTGGAGGATACCGGTGCTAGGCGATCTTCTTTCAGTT






GACCCCGCGAAGCCTGTTCAAAAGGAAATGGCTATGGCGGCGGAACTAGGTCCGTT





ATTCGAGCGTAAGATTATAGGGAGCAGACTTACAGTCGTTAGCGGCGTGGACCTAG





TCGCTGAGGTCAACGACGAGAAACATTGGGCTAGAGCTTTGGGGAGGCCCATACTG





AAGCTAAGAGATGTTGCAGGTGATGGGTTGTTCACAGCGTTCAACAGCGAGCCTGC





ATGGGCTAGGGCTCATAGCGTGTTGGGCCCTGGCTTCTCACAAAGCGCATTGAGAAC





CTACCATGGCAGTATGACTAGGGTGTTGGATGATTTGGTGGCGACATGGGACGATGC





AGCGGCATCAGGTGCCCGTGTCGATGTCGCTCGTGATATGACGAGACTGACTTTCGA





TGTGATTGGCAGAGCCGGCTTTGGTCGTGACTTCGGCTCTTTGAGGGGTGATGATCT





GGACCCCTTTGCCGCTGCCATGGGTAGAGCACTTGGTTATGTGAATCAAACATCAAA





TGACATACCACTTCTACGTATGGTATTCGGTAGGGGCGCGGCCAAAAGGTACCAGA





CAGACGTCGCATTTATGCGTGATACCGTAGACGAGCTAGTTGCGAGCAGGGCTGGG





CGTGCCGAGAGGAGCGATGATCTTCTTGACCTAATGTTACACAGTGCTGACCCGGAT





ACTGGGGAGAGGTTGGACATGGAAAACATTAGGAATCAAGTTCTTACCTTCCTTGTT





GCCGGTAATGAGACAACAGCTAGTACATTGGCGTTTGCACTGTATTTTCTGGCTAGA





GAGCCCGAAGTTGTCGAAAGAGCCAGGGCCGAGATCGCGGATGTAGTCGGAGACGG





TGAGATCGCTTTCGAGCAAGTGGCTAAATTACGTTATGTCAGGAGGGTTGTCGATGA





GACGTTAAGACTGTGGCCTGCCGCTCCGGGCTACTTTCGTAAAGTTAGGCATGATAC





GGTATTAGGCGGTCGTTATCCCATGCCTAAAGGTTCATGGGTTTTCGTGCTGTTACCA





CAGCTTCATCGTGACCCTGTATGGGGTGACGATCCGGAAAGGTTTGACCCCGATAGA





TTCGCACCAGACGCTGTGCGTGCAAGGCCTAAAGATGCTTATAGACCGTTTGGCACA





GGCCCCAGAAGTTGTATAGGGAGGCAGTTCGCGTTGCACGAGGCGGTACTTGCCCT





GGCGACGTTGTTGAGAAGATACGACGTTGCCCCAGACCCAGCATATCGTTTAGATAT





CGTAGAAGCTGTAACGCTAAAGCCTAGAGGCTTTGAGCTTACACTACAGAGGAGGT





AA





>THCdeg_9


Seq. ID NO: 37



ATGAGTAGTTCAGCATCTTCCCAGTCTAACCTAGAGCAAGTCTTTGCCAACGTAGCA






TCAAATTATAGAGGAGCAGACATAGACTTGCACGCAGTATATCGTGAAATGAGGGA





AAAGTCTCCGGTTCTGCCAGAGAATTTCATGGCCCGTCTAGGTGTGCCCTCAATCGC





TGGTCTGGACCCCGACCGTCCTGCCTTCACGCTATTCAAATATGACGACGTTATGGC





AGTCATGCGTGATGCTACAAACTTTACTTCAGGCTTTATAGCCGAGGGTTTGGGGTC





CTTCTTTGATGGACTTATATTGACAGCAATGGACGGTGAGGCACATAAAAATATACG





TTCCTTATTGCAGCCTGTCTTTATGCCAGAAACCGTTAACAGATGGAAAGAGACTAA





GATCGACAGAGTGATAAGGGAAGAATACCTGCAACCAATGGTGGCATCCAAAGGGG





CGGATATTATGGAGTTTGCTCTGTATTTTCCAATTAGAGTTATTTATTCCCTGATAGG





ATTCCCAGAAGATAGACCCGAGGAAATCGAACAATACGCAGCATGGGCGCTCGCAA





TCCTGGCGGGCCCACAAGTGGACCCCGAAAAGGCAGTTGCCGCGCGTGGAGCCGCT





ATGGAAGCTGCCCAGGCGTTGTATGACGTGGTGAAAGTCGTAGTCGCGCAGAGGCG





TTCTCAAGGTGCCACGGGAGATGACTTGATATCCAGGCTGATACGTGCCGAGTACGA





AGGTCGTAGCCTGGATGACCACGAGATAACCACGTTCGTCAGGTCCCTACTGCCCGC





GGCATCTGAGACAACGACCAGAACATTCGGGACATTGATGACTTTACTATTGGAAA





GACCGGAGCTTCTAGCACGTATTCGTGAAGACAGAAGCCTGGTGCCAAAAGCAATT





GATGAGGCTGTTAGGTACGAACCTGTAGCAACCTTTAAGGTCAGACAGGCCGCTAA





AGACGTTGAGATACGTGGGGTAGCCATTCCTCAAGGAGCCATGGTTAGCTGTATTGT





AACATCTGCAAATAGGGACGAAGACGCGTTCGAAAATGCTGATACTTTCAATATCG





ATAGAAGAGCGAAACCATCATTCGGTTTCGGATTCGGCCCACACATGTGCATTGGAC





AATTTGTAGCCAAGACCGAGATAAATTGCGCTCTAAATGCTATTCTGGACTTAATGC





CCAATATACGTCTTGATCCCGATAAACCTGCACCAGAAATCATAGGTGCCCAGCTAA





GGGGTCCCCACCATGTACACGTCATTTGGGACTAA





>THCdeg_10


Seq. ID NO: 38



ATGAGTAGTACTGCCACAGAATTGAGGGATGCACCTGGGAGTGCGCCAGGCCTACC






CAGGAGATCCATGTTATCCCTTTTACCCAGAATGGCACGTGATAGATTGTCAGTTAT





GACAAGTGTAGCGGCGCGTTATGGGGACGCCGTGACGTTGCCCTTGGGCTTATCAAC





GTTACACTTCTTCAACCACCCCGACTATGCTAAGCACGTACTGGCTGATAATAGCTC





AAACTACCACAAGGGCATCGGCTTAATCCACGCGAAGCGTGCGTTAGGTGACGGAC





TTCTTACGTCAGAGGGTGAGTTATGGAGAAAACAGAGGAAAACCATTCAGCCGGCA





TTTGCTGTTAAAAGGTTGGCTGGACAAGCGGGGGCAATCGCAGAGGAAGCTGATAG





GTTGGTAGAGCATCTGCTGGCCCGTCAAGGGAGAGGGCCAGTTGACATCAGGCACG





AGATGACTGCCCTTACCCTAGGTGTGTTAGGCCGTACCCTACTTGATGCGGACTTAG





GCGCTTTCGGTTCAGTGGGCCACTGGTTCGAGGCTGTACAAGACCAGGCGATGTTTG





ACATGATGAGCCTTGGTACTGTACCACTATGGTCTCCCTTGCCCAAGCAACTGAGAT





TCAGGAGAGCGAGGAGGGAATTGGAGTCAGTGGTGGACCGTCTAGTAGCTCAGCGA





GGGGATAGACCTAGGGCAGACGGCGATGATGTTGTGTCCAGGCTTGTCGATAGTAC





AGGAAGGGAGCGTGATCCTGCACTAAGGAGAAAGAGAATGCACGATGAATTGGTG





ACTCTGTTACTGGCGGGCCACGAGACAACAGCATCTACCCTTAGCTGGACATTCCAT





TTGGCCGATGAACACCCTGAGGTCTGGGAGCGTTTACACGCCGAAGCCGTGGAGGT





ACTAGGTGATAGGCGTCCGGTCTTTGAAGATTTACATCGTTTGCGTTACACAAATCG





TGTACTAAATGAAGTTATGAGGTTGTACCCTCCAGTTTGGCTGCTTCCTAGAAGAGC





TGTCGCTGACGACGTTGTTGGAGGATATAGAGTACCGGCTGGATCTGATGTTTTAAT





CTGCCCTTATACGCTACACAGACATCCTGAGTTTTGGGAGCTTCCAAGTAGGTTCGA





CCCTGATAGGTTCGATCCGGAAAGGTCTGCCAACAGGCCCAGATATGCTTACATTCC





TTTTGGTGCGGGTCCACGTTTTTGCGTTGGTAACAACCTAGGACTAATGGAGGCAGC





CTTCGTTATTGCAGCTATAGCAAGAAGAATGAGACTAAGGAAGGTTCCGGGAGGAA





CTGTCGTTCCTGAACCAATGTTGACTTTACGTGTTAGAAGTGGGCTGCCTATGACGG





TGCACGCGCTTGACCGTTAA





>Oxid_1


Seq. ID NO: 39



ATGAGTAGTCAGAGAAGAGATTTCCTTAAGTATTCTGTGGCCCTTGGCGTTGCCTCA






GCTTTGCCCCTGTGGTCTAGGGCCGTCTTTGCCGCGGAAAGACCGACTCTTCCGATC





CCCGACTTGCTGACGACCGATGCCAGAAATAGAATTCAACTAACCATCGGGGCAGG





CCAGAGTACCTTCGGCGGCAAAACCGCCACGACTTGGGGTTACAATGGTAACCTGTT





AGGGCCTGCTGTCAAACTACAACGTGGCAAAGCGGTCACGGTAGACATATATAACC





AACTAACTGAGGAAACAACGTTGCACTGGCATGGCCTAGAAGTGCCCGGCGAAGTA





GATGGAGGTCCCCAGGGCATTATCCCCCCAGGGGGTAAAAGATCAGTCACATTGAA





TGTCGACCAGCCTGCGGCTACATGCTGGTTCCATCCACATCAGCACGGGAAGACGG





GGAGGCAAGTGGCAATGGGGCTTGCTGGTTTAGTTGTAATAGAGGATGACGAGATC





TTGAAACTAATGCTTCCAAAACAATGGGGGATAGACGACGTACCTGTAATCGTTCAA





GATAAAAAATTTAGCGCAGATGGGCAAATCGACTACCAGCTGGATGTCATGACAGC





GGCAGTGGGATGGTTTGGGGACACACTGCTAACTAACGGGGCTATATACCCCCAGC





ACGCCGCTCCAAGGGGTTGGTTACGTCTGCGTCTATTAAACGGTTGCAACGCCCGTA





GCTTAAATTTTGCGACCTCAGACAATCGTCCCTTGTATGTAATCGCGAGCGACGGTG





GATTATTGCCGGAGCCCGTAAAAGTCTCCGAGTTGCCTGTGCTGATGGGAGAAAGAT





TTGAGGTTTTGGTGGAGGTTAACGATAACAAGCCCTTTGATCTAGTTACCCTTCCTGT





AAGCCAAATGGGGATGGCCATCGCTCCATTTGACAAACCTCACCCCGTCATGAGAA





TTCAACCCATCGCTATAAGTGCGTCTGGTGCGCTTCCAGATACTCTGTCTAGCCTACC





AGCGCTACCGTCTCTTGAAGGTTTAACAGTAAGGAAACTGCAACTATCTATGGATCC





AATGTTAGATATGATGGGAATGCAAATGTTAATGGAGAAGTACGGTGATCAGGCAA





TGGCGGGTATGGACCACTCCCAGATGATGGGCCACATGGGTCACGGCAATATGAAT





CATATGAACCATGGGGGCAAATTCGACTTCCATCACGCTAACAAGATTAATGGTCAA





GCCTTCGACATGAACAAGCCTATGTTTGCCGCGGCTAAGGGTCAGTACGAAAGATG





GGTCATCTCCGGGGTAGGGGACATGATGCTGCATCCGTTCCACATCCATGGCACACA





ATTTAGGATTCTTAGTGAAAATGGAAAACCTCCTGCTGCACATAGGGCGGGATGGA





AGGATACTGTGAAGGTGGAAGGTAACGTTAGTGAGGTGCTAGTCAAATTCAATCAC





GATGCCCCCAAAGAACATGCCTATATGGCCCACTGTCACCTTTTGGAGCATGAGGAT





ACGGGAATGATGCTAGGTTTCACAGTC





>Oxid_2


Seq. ID NO: 40



ATGTCTAGCAGACTGAGCTTCTTAACGTCATTGGTTACATTGGCGTTGGTATCTAGC






ACGTATGCCGGAGTTGGGCCCGTTGTAGATCTTACAGTTTCAAACGCCGTTATTTCA





CCTGATGGGTTTGACAGAGACGCGATTGTAGTTAACGGCGTGTTCCCAGCGCCTCTT





ATCACAGGTAAGAAAGGTGACAGATTCCAGCTAAATGTGATCGATAACATGACTAA





CCATACTATGCTGAAGTCAACAAGTATTCATTGGCATGGGTTTTTTCAAAAAGGTAC





TAACTGGGCCGATGGCGGGGCCTTTGTCAACCAATGTCCAATCGCTCCTGGCCACTC





CTTCCTATACGATTTCCGTGTACCGGACCAAGCAGGCACATTCTGGTACCACTCACA





CCTTTCTACGCAATATTGCGACGGTTTAAGAGGGCCCATCGTGGTATATGACCCCAA





CGACCCTCATGCGGACCTGTACGATGTGGATAATGATTCCACTGTGATCACACTTGC





CGACTGGTACCACGTTGCCGCCCGTCTTGGGCCCAGATTTCCGCTGGGAGCAGATTC





TACGGTTATTAACGGTCTTGGGCGTTCCCTTAGCACGCCTAACGCTGACTTAGCTGT





GATCTCAGTCACTCAAGGTAAAAGATATAGGTTCCGTCTAATATCTCTTTCATGCGA





CCCCTTCCATACTTTTTCTATCGATGGACATGACTTGACCATTATAGAGGCGGACAG





CGTGAACACGGAGCCCTTGGTGGTGGATGCAATTCCAATCTTCGCCGGACAACGTTA





TTCTTTTGTCTTGAGCGCCGTCAAGGACATAGATAACTATTGGATACGTGCGGACCC





AAACTTTGGAACTACAGGCTTTGCATCAGGTATCAACTCAGCGATCCTTCGTTATGA





CGGGGCTGCACCTATTGAACCAACCGCTGTTTTAGCTCCGGTAAGCGTTAATCCCTT





GGTTGAGACGGATTTGCACCCGCTTGAGGATATGCCTGTACCCGGTAGACCAACAA





AGGGTGGCGTTGATAAAGCAATCAACCTGGATTTTAGTTTTAGCTTCCCTAATTTTTT





CATTAACAATGCCACATTTACAAGCCCCACAGTGCCTATCCTGCTACAGATAATGTC





CGGCGCGCAAGCCGCGCAGGATTTATTGCCTTCTGGTAGCGTGATTGAACTGCCAGC





GCAGTCCACCATAGAACTAACTCTTCCCGCGACGGTCAATGCCCCCGGAGTGCCACA





TCCATTTCATTTGCATGGCCACACATTCGCCGTAGTACGTTCCGCCGGTAGCACTGC





CTACAATTACGACAACCCTATTTGGCGTGACGTCGTATCCACTGGCACGCCCGCCGC





AAATGACAACGTCACTATTAGATTTACAACGGACAATCCCGGACCTTGGTTTTTACA





TTGCCACATTGACTTCCACCTTGAGGCTGGCTTCGCCGTGGTATTCGCGGAGGGTGT





GCCGCAGACCCAAGTGGCGAATCCAGTACCTCAAGCGTGGGAGGAACTGTGCCCGA





TTTATGACGCATTACCGGAAGATGATCAG





>Oxid_3


Seq. ID NO: 41



ATGTCTAGTTTTAAAGTCAGCTGTAAGGTCACTAACAACAATGGTGATCAGAACGTA






GAAACGAATTCCGTTGATAGAAGGAATGTTCTGCTGGGCCTGGGGGGGCTATATGG





TGTCGCTAATGCCATCCCGCTAGCAGCCTCAGCGGCTCCAACGCCACCACCAGACCT





AAAGACTTGTGGGAAGGCGACGATAAGTGACGGGCCTCTAGTTGGATACACCTGTT





GTCCTCCCCCTATGCCTACAAATTTTGACAATATACCCTACTATAAGTTCCCAAGCAT





GACAAAGCTTAGAATCCGTAGTCCGGCACATGCCGTTGACGAAGAATATATCGCTA





AATACAATTTAGCGATTTCCAGGATGAAAGATCTAGATAAAACCGAACCCTTAAAC





CCTCTAGGGTTCAAGCAGCAGGCTAACATCCACTGTGCGTACTGTAACGGTGCGTAT





GTGTTCGGCGACAAGGTACTTCAGGTACATAACTCCTGGCTGTTCTTCCCCTTTCATC





GTTGGTATTTATACTTCTATGAGAGGATATTGGGCAAGTTAATAGATGATCCCACGT





TTGCTCTGCCATATTGGAATTGGGATCACCCAAAAGGCATGCGTTTGCCGCCGATGT





TTGACAGAGAGGGTACATCCATCTATGATGAAAGGAGGAATCAGCAAGTGCGTAAT





GGGACCGTCATGGATTTGGGATCATTCGGAGACAAAGTAGAAACGACCCAACTGCA





ACTTATGTCCAACAATTTGACTTTGATGTATCGTCAAATGGTCACAAATGCGCCCTG





CCCACTACTGTTTTTTGGAGCCCCGTATGTTCTTGGAAACAATGTAGAAGCCCCTGG





CACAATTGAAAATATACCGCACATTCCCGTGCATATATGGGCTGGCACGGTGCGTGG





CTCCACCTTCCCTAACGGGGATACGTCTTACGGAGAAGACATGGGTAATTTTTACTC





CGCAGGTTTAGATAGCGTTTTTTACTGCCATCATGGAAACGTTGATCGTATGTGGAA





CGAGTGGAAGGCTATAGGTGGTAAGAGGCGTGACCTGTCTGAAAAAGATTGGTTGA





ATAGTGAATTTTTTTTTTATGATGAGAACAAGAAGCCGTATAGGGTCAAAGTTCGTG





ATTGCCTGGACGCAAAGAAGATGGGCTACGATTATGCGCCCATGCCCACTCCCTGGC





GTAATTTCAAACCCAAAACGAAGGTGAGCGCAGGCAAGGTCAACACATCATCCCTT





CCGCCTGTCAACGAGGTTTTTCCCTTGGCTAAAATGGATAAGGTGATTAGTTTTTCA





ATAAACAGGCCGGCTAGCTCAAGAACACAGCAAGAAAAAAATGAACAGGAGGAGA





TGTTGACATTTGATAACATCAAGTACGACAATCGTGGTTACATTCGTTTTGACGTCTT





CTTGAACGTCGACAACAACGTTAACGCGAACGAGCTGGACAAAGTTGAATTCGCTG





GAAGCTATACCTCATTACCACATGTGCATCGTGTCGGAGAAAATGATCACACGGCCA





CCGTTACCTTCCAGCTAGCCATCACTGAACTACTGGAAGATATCGGCCTAGAAGATG





AAGAAACCATAGCTGTGACTCTAGTACCCAAGAAGGGGGGTGAAGGAATTAGTATT





GAGAATGTGGAAATTAAATTATTAGACTGT





>Oxid_4


Seq. ID NO: 42



ATGTCTGGCCAGAATAAAATGGGTCTTATACTTGTATTTCTGTTTCTGGACGGGTTGC






TTGTCTGTTTAGCTGCGGATGTGGATGTACATAACTACACCTTTGTTCTGCAGGAAA





AAAACTTTACTAAATGGTGTAGCACTAAAAGTATGCTGGTCGTAAACGGTTCATTCC





CTGGGCCAACTATTACAGCCAGAAAGGGGGATACGATATTTGTCAACGTCATAAAT





CAAGGGAAGTACGGGTTAACCATCCATTGGCATGGTGTTAAGCAACCAAGGAATCC





CTGGAGCGACGGACCCGAATATATAACTCAATGCCCGATTAAACCGGGTACGAACT





TCATTTACGAGGTCATTCTGTCAACCGAGGAGGGAACACTGTGGTGGCATGCACACT





CCGACTGGACGCGTGCCACCGTGCATGGTGCGTTAGTGATTTTACCCGCTAACGGAA





CCACATATCCTTTTCCACCCCCGTACCAGGAGCAGACGATAGTCTTAGCGAGCTGGT





TTAAAGGCGATGTGATGGAGGTAATTACATCTTCTGAAGAGACGGGGGTTTTTCCCG





CCGCGGCTGACGGGTTTACAATCAATGGCGAACTGGGAGACCTGTACAATTGCAGC





AAGGAAACCACATACAGGCTTTCCGTACAGCCGAACAAAACATATTTACTAAGAAT





TGTGAATGCAGTCCTAAACGAGGAAAAGTTTTTTGGTATAGCGAAACACACATTGAC





AGTAGTTGCTCAGGACGCTTCATATATTAAGCCTATAAATACCTCTTATATAATGAT





CACGCCTGGCCAAACGATGGATGTATTATTCACGACCGACCAAACTCCTTCTCACTA





CTATATGGTTGCGAGTCCGTTTCACGACGCACTAGACACGTTTGCAAATTTTAGCAC





TAATGCAATCATACAATATAATGGGTCCTATAAAGCACCGAAAAGTCCCTTCGTGAA





ACCGTTGCCCGTTTATAATGACATCAAGGCAGCAGATAAATTCACGGGGAAACTGC





GTTCTCTTGCCAATGAGAAGTTCCCAGTAAACGTCCCCAAGGTCAACGTTAGAAGGA





TATTTATGGCAGTCTCACTAAATATCGTTAAGTGTGCAAATAAGAGCTGCAACAATA





ATATAGGACACTCTACTTCAGCCTCCCTAAACAACATAAGTTTTGCGCTACCTCAGA





CAGATGTACTGCAGGCATATTATAGAAACATCAGCGGCGTATTCGGTAGAGATTTTC





CTACAGTTCAGAAGAAGGCTAACTTTTCCTTAAATACAGCCCAAGGCACTCAAGTAC





TAATGATAGAGTATGGCGAGGCCGTTGAGATCGTATATCAGGGTACTAATTTGGGA





GCCGCAACCAGTCATCCGATGCACCTTCATGGCTTTAACTTCTATCTAGTTGGCACG





GGTGCTGGAACGTTCAACAACGTGACTGATCCTCCCAAGTATAACCTGGTCGACCCG





CCTGAGTTGAATACTATAAACCTACCACGTATCGGCTGGGCAGCAATTAGGTTTGTC





GCGGACAACCCAGGGGTCTGGTTCCTTCACTGTCACTTCGAGAGACATACAACGGA





GGGTATGGCAACAGTCGTGATTGTGAAAGATGGCGGAACTACAAACACTTCTATGC





TACCAAGTCCCGCGTACATGCCACCATGCAGC





>Oxid_5


Seq. ID NO: 43



ATGTCTTCCCGTAAGATTTGTCTAGGGTGTTCACATTCTTTAAGCTCCCAACCCTTTA






CATATACAACTCAGAAGACTGTAAGTAGTAGGCGTATCGGTGACTCTCAGTGGCGTC





TTAGCCGTGGTTACACCCGTACGCTGACCTCTGCAAGTGCAAGCGTTGCTACAGCTC





CCGCTAAGCTACTTACGGTCAATGAAACTCAAAAATGCCTAAGGAACATGGTCCGT





GGCGGAGACGTAATTAGCTACATTCTTTCCCATTCTTCCCGTAACGCAGACCAGAAT





TTGAAAGATTTAGACAGCTTAATATTGGAGCCTGTCTGCAGTGCTACGCACGAGATG





TTCGACGTTTTCGAGATCCCAGAACACATTTTGACTCCGTTTTGCGATAACAGAAAT





GTCCCCGAGGAACAAGTCACCCGTAATCCTAATCTGAGAACCGACTGTCTGACGAT





GAAGAGGTTTGTGCTATTACAGAGCCTAGTCGCGGTTGCATCCGCCGGAATTGGGCC





AGTAGCAGATCTGTACGTAGGAAATAGAATACTGGCTCCGGATGGGTTTAACAGAA





GTACAGTTCTAGGAGGTACCAGTTCATCTGATTTTGGATTCCCAGCGCCACTAATCA





CCGGCACAAAAGGGGACAGGTTTCAACTGAACGTCATCAATCAATTAACCGACACT





ACGATGTTAAGATCAACAAGCATACATTGGCACGGGTTATTCCAGGCTGGCTCATCT





TGGGCCGACGGCCCTGTAGGAGTAAATCAATGCCCTATAGCTCCAGGAAACTCATTT





CTGTACGACTTTAACGTCCCTGACCAGGCGGGAACTTTCTGGTATCATAGTCATTAT





AGCACACAGTACTGTGATGGTCTTAGGGGGGCTTTTGTGGTAAGAGATCCTAACGAT





CCACATGCGAGTCTTTACGATGTCGATAATGATGACACAGTTATAACATTGGCTGAT





TGGTATCATACGAGCGCTAAAGAGCTATCAGGCTCCTTTCCGGCAGAAGAGGCGAC





CTTGATCAATGGGCTGGGTAGGTATAGCGGGGGTCCTACTTCCCCATTAGCTATCGT





CAATGTAGAAGCGGGCAAGAGGTACCGTTTCCGTTTGGTATCCATAAGCTGCGATCC





ATTCTACACCTTCTCCATTGATGGTCACGATTTGACCATTATAGAGGCGGACGGGGA





GAACACTGATCCACTAGTAGTGGACTATCTGGAAATATACGCTGGGCAACGTTACA





GCGTGGTGTTAAACGCGAACCAGCCAGTAGACAATTACTGGATTAGGGCAAATTCTT





CCAATGGTCCGAGGGACTTTGTTGGCGGCACAAATTCTGCCATACTGCGTTACGCCG





GTGCATCAAACTCAGATCCGACAACAGAGCTAGGGCCGCGTAATAATAGGCTTGTT





GAGAATAACCTTCATGCTCTGGGATCCCCTGGTGTGCCAGGCACGCATACGATTGGA





GAGGCCGATGTAAACATTAATCTTGAAATATTGTTTACGCCACCGAATGTCCTAACC





GTTAATGGCGCCCAATTCATTCCACCTACTGCTCCCGTTTTATTGCAGATATTGTCCG





GGACAAAACAAGCAACGGATTTGTTACCCCCAGGTTCCGTATATGTTCTGCCTAGAA





ACGCGGTAGTTGAGCTAACAATCCCGGGTGGGTCAGGCGGAAGTCCTCATCCGATG





CATCTGCATGGCCACGTCTTTGACGTAGTTAGATCAGCTGGATCAGATACCATAAAT





TGGGACAATCCGGTCAGAAGAGATGTCGTGAACATTGGGACTAGCACATCTGACAA





TGCCACGATTAGGTTCACGACCGACAACCCGGGACCATGGATTTTTCATTGTCATAT





CGACTGGCACTTGGAGGTTGGGCTGGCAGTTGTTTTTGCTGAGGATCCGGATACAAT





TGAAAATAGTACACATCCCGCTGCGTGGGATGAGCTGTGCCCAATTTACGACAACCT





TCCTTCCGACGAGTTA





>Oxid_6


Seq. ID NO: 44



ATGAGCTCCACATTGGAAAAGTTCGTAGATGCCTTACCGATCCCAGATACATTAAAG






CCGGTACAACAATCTAAAGAAAAAACGTATTACGAGGTCACGATGGAGGAATGTAC





GCATCAATTACATAGAGATCTTCCGCCCACAAGGCTATGGGGATATAACGGTTTATT





TCCTGGTCCGACGATCGAAGTGAAGAGAAATGAAAACGTATACGTAAAGTGGATGA





ATAATTTACCTTCAACACATTTTCTTCCTATAGATCATACCATCCACCACAGCGACTC





CCAACATGAAGAGCCTGAGGTAAAGACGGTAGTGCATCTTCATGGCGGTGTTACTCC





GGATGACTCCGACGGCTATCCAGAAGCATGGTTCAGCAAGGATTTCGAACAAACGG





GCCCGTACTTCAAAAGGGAAGTATATCACTACCCAAACCAGCAGCGTGGTGCCATC





CTATGGTATCATGATCATGCAATGGCCTTGACTCGTTTGAATGTTTATGCAGGTCTAG





TCGGGGCATACATTATACACGATCCCAAGGAAAAGAGATTAAAACTGCCTTCAGAT





GAGTACGATGTACCCCTACTGATCACGGACAGGACAATAAACGAGGATGGTTCTCTT





TTTTACCCCAGCGCGCCAGAAAATCCATCCCCCTCACTGCCAAACCCTAGCATTGTC





CCGGCATTTTGCGGGGAGACAATCCTTGTGAATGGTAAAGTATGGCCGTACTTGGAG





GTCGAACCAAGGAAGTATAGATTTAGGGTTATAAATGCGAGCAACACAAGAACATA





TAACTTATCCTTAGACAATGGCGGCGACTTCATTCAAATAGGATCTGATGGGGGCTT





GTTACCCCGTTCAGTGAAGTTGAATTCCTTTTCATTAGCACCTGCAGAAAGGTACGA





TATAATCATTGACTTTACCGCATACGAAGGTGAGAGCATTATCTTAGCTAATAGTGC





TGGCTGCGGGGGGGATGTCAATCCTGAGACGGACGCGAATATTATGCAATTTAGAG





TTACAAAGCCTCTGGCCCAAAAGGATGAATCCAGAAAACCAAAGTACTTGGCATCC





TATCCGTCAGTTCAACATGAGAGGATTCAAAACATAAGGACACTGAAATTAGCAGG





TACGCAAGACGAATATGGTCGTCCGGTACTTTTGCTGAATAATAAGCGTTGGCACGA





TCCAGTTACTGAAACGCCTAAGGTGGGTACCACCGAGATTTGGAGCATAATAAATCC





CACGAGAGGCACCCATCCCATTCACCTACATCTTGTCAGTTTCAGAGTCTTAGACCG





TCGTCCGTTCGATATAGCTCGTTATCAGGAGTCAGGGGAACTTTCCTACACTGGACC





TGCTGTACCGCCGCCACCGTCAGAAAAGGGTTGGAAGGACACGATCCAGGCCCATG





CGGGTGAAGTTCTAAGAATCGCAGCTACCTTCGGTCCGTACAGCGGGAGGTATGTGT





GGCACTGTCATATCTTGGAGCACGAAGACTACGATATGATGAGGCCTATGGATATCA





CTGATCCACACAAG





>Oxid_7


Seq. ID NO: 45



ATGAGCTCTGTGTTTAGTGCTGCGTTTTCCGCATTCGTTGCCTTAGGTCTAACTCTGG






GCGCTTTTGCTGCCGTTGGCCCGGTCGCGGACATCCACATTACCGATGATACCATAG





CACCTGACGGATTTAGTAGGGCTGCCGTACTGGCAGGTGGGACCTTCCCAGGGCCCC





TAATCACCGGGAACATGGGAGACGCCTTTAAGTTAAACGTCATCGACGAGTTGACG





GATGCCTCTATGTTGAAAAGTACCAGTATCCATTGGCACGGCTTCTTTCAGAAGGGA





ACGAACTGGGCTGATGGCCCAGCTTTCGTGAATCAATGCCCCATTACAACTGGAAAC





TCCTTCTTGTATGACTTCCAAGTGCCAGACCAAGCAGGTACTTATTGGTATCACTCCC





ACCTAAGCACTCAGTACTGTGACGGACTGAGAGGTGCCTTCGTGGTTTACGACCCAA





GTGATCCGCACAAAGATCTGTACGACGTGGACGATGAATCCACCGTCATAACCCTA





GCAGACTGGTACCACACGCTGGCCAGGCAGATTGTGGGAGTGGCGATTAGCGATAC





CACGCTTATCAATGGCCTGGGGCGTAATACAGACGGACCCGCAGATGCTGCCTTAG





CCGTGATCAATGTAGAAGCTGGCAAAAGATATAGATTTCGTTTAGTAAGCATCAGTT





GCGACCCGAATTGGGTGTTTAGTATTGACAATCATGACTTTACGGTTATTGAGGTAG





ACGGCGTGAACAGCCAGCCTCTGAATGTTGACAGCGTACAAATATTTGCAGGGCAG





AGGTATTCCCTAGTGTTGAACGCGAACCAGCCCGTCGATAACTATTGGATTAGGGCT





GATCCTAACCTTGGTACCACAGGGTTCGCGGGTGGAATAAATTCAGCAATTCTACGT





TATAAGGGTGCGGCCGTTGCCGAGCCGACTACATCCCAAACCACAAGCACCAAGCC





CTTATTGGAGACTGACTTGCACCCCTTGGTTAGTACACCAGTCCCAGGATTACCGCA





ACCTGGCGGCACGGATGTAGTCCAAAACCTTATTCTAGGCTTCAATGCTGGGCAGTT





CACAATCAATGGCGCATCCTTTGTGCCACCAACAGTTCCAGTTTTGTTACAAATCTTA





TCTGGAACAACGAACGCGCAAGACCTGCTACCGTCCGGTAGTGTATTTGAGTTACCG





TTGGGAAAAACGGTCGAATTAACCCTGGCAGCCGGCGTTTTAGGCGGACCACACCC





GTTTCACTTACACGGTCATAATTTCCATGTCGTCAGGTCCGCTGGACAGGACACGCC





CAATTACGACGATCCAATTGTCCGTGACGTTGTCTCAACCGGAGCGTCTGGGGACAA





TGTTACAATTAGGTTTACTACCGACAATCCTGGGCCCTGGTTCCTACACTGTCATATC





GATTGGCACCTAGAGGCAGGCTTTGCGGTTGTATTCGCAGAGGCAGTGAATGAGAC





TAAATCTGGCAATCCTACACCGGCAGCCTGGGATAACCTATGCACTCTTTACGATGC





TCTAGCTGATGGTGACAAG





>Oxid_8


Seq. ID NO: 46



ATGTCCTCCTGTTTGGCCGCTATATGGTCAAGGAAAAGAGCGGAGCATGCCGCGTCA






AGGCTTCCAGCTTTACAGGAGAAAAGGTCCACACTAAGCTACGCGTATGCTAGGTTA





GATGGCAGTCTTGCGAGTATGTTTCCAAATAGGTTTTGGTCAAGCGTTAGTCTTGGA





GCTAGGATTAAACCGGTGGATGGGAGTAGTGAAGAACCCACCGCAAGGCCCAGCAG





CTGTGCCAGGCCCTTCTTACACTCAGCATCATCTGAATCAGGGTTCGTCTCCTCCTCA





CGTCCGACCAGCTTTTGCGTTACGTGCTCCCGTCGTTGGAGATGCTGTAGTCTTTTGG





CAATGCTGGGATTCAGGTTCTTACACACAAGCGTCCTTGCTGCATTGACTCTTAGTCT





AAAGAGTTATGCGGCGATAGGACCGGTTACAGACTTGACCGTCGCTAATGCGAATA





TTTCACCCGATGGTTATGAAAGAGCTGCGGTGTTAGCCGGCGGTTCATTTCCCGGCC





CACTAATTACTGGCAGAAAGGGGGACCACTTTCAGATTAATGTAGTAGATCAGCTA





ACCAACCACACCATGCTTAAAAGCACCTCTATCCATTGGCACGGGCTGTTCCAGAAA





GGGACTAACTGGGCAGACGGGCCGGCGTTTGTTAACCAGTGTCCCATCTCCACTGGG





AACTCCTTCTTATACGACTTCCATGTTCCTGATCAAGCGGGGACTTTTTGGTATCATT





CCCATCTAAGCACACAGTACTGTGATGGTCTAAGGGGTGCCATGGTGGTGTATGACC





CCAATGACCCTCACAAGAACCTTTATGACGTAGATAATGACGATACCGTAATAACCC





TAGCAGATTGGTATCATGTAGCCTCTAAGCTGGGGCCTGCTGTCCCTTTTGGGGGGG





ACTCAACCTTGATAAATGGCAAGGGTCGTAGCACTGCAACACCAACCGCCGACCTT





GCTGTCATTAGTGTAACTCAAGGTAAAAGATATAGGTTCCGTCTGGTGTCACTTTCA





TGCGACCCGAATTTCACGTTTAGTATAGATGGTCATGCCCTGACCGTAATAGAGGCC





GATGCTGTTTCAACTCAGCCATTAACTGTCGACAGTATCCAAATATTCGCGGGTCAA





AGGTACTCCTTTGTGCTTAATGCCAATCAGTCCGTTGATTCATACTGGATTCGTGCCC





AGCCATCCCTTGGTAATGTGGGCTTTGATGGAGGGCTTAATTCTGCGATCCTTCGTTA





TGACGGGGCTGCGCCGACCGAACCATCCGCGCTAGCTGTTCCAGTCTCTACTAATCC





TTTGGTTGAGACGGCACTGAGGCCGCTTAATTCAATGCCCGTCCCCGGTAAGGCTGA





GGTGGGCGGTGTGGATAAAGCGATTAACCTTGCGTTTAGTTTCAATGGCACGAACTT





TTTCATCAATGGGGCAACGTTTGTGCCGCCCGCCGTGCCCGTTCTACTACAGATCAT





GAGTGGCGCCCAGAGTGCTAGTGATCTTCTTCCTAGCGGCTCAGTGTTTGTGCTACC





CAGTAACGCTACCATCGAATTAAGTTTTCCAGCAACTGCAAACGCCCCAGGCGCTCC





ACATCCCTTCCACCTACATGGACACACGTTCGCGGTAGTACGTTCTGCTGGTTCCGC





GGAGTATAATTATGAAAATCCTATATGGAGAGACGTTGTTTCAACCGGTTCTCCGGG





AGACAATGTCACCATACGTTTCAGGACCGATAATCCGGGCCCCTGGTTTCTGCATTG





TCATATCGATCCCCATCTGGAGGCCGGCTTTGCGGTGGTTATGGCGGAGGACACTAG





GGACGTCAAGGCCGACAATCCCGAACCTAAAGCCTGGGACGATCTTTGCCCCACAT





ACAATGCGCTAGCAGTGGATGACCAA





>Oxid_9


Seq. ID NO: 47



ATGTTTCCAGGGGCGCGTATTCTGGCCACCCTGACGTTGGCACTGCATCTGCTGCAC






GGTACCAATGCCGCAATAGGACCCACTGGAGACATGTACATAGTTAACGAAGACGT





GTCCCCTGACGGCTTCACCAGGTCCGCAGTAGTTGCTAGGAGTGATCCTACCACAAA





CGGGACATCCGAAACTCTAACGGGTGTCTTAGTTCAGGGGAACAAGGGAGACAACT





TCCAATTGAACGTGCTGAACCAGTTATCAGACACAACTATGCTAAAAACGACAAGC





ATTCATTGGCACGGCTTTTTTCAATCTGGATCCACCTGGGCCGACGGCCCAGCCTTTG





TAAACCAATGTCCAATAGCTAGCGGTAATTCTTTCCTTTACGATTTTAATGTACCAGA





CCAGGCCGGCACGTTCTGGTACCACAGTCATCTGTCAACCCAGTACTGTGACGGTTT





GAGGGGACCATTTATCGTTTACGACCCAAGCGATCCCCACCTGTCTCTATACGACGT





CGACAATGCGGACACTATCATAACGCTGGAAGACTGGTACCACGTAGTGGCACCTC





AGAACGCCGTATTGCCGACGGCCGATAGCACACTAATTAACGGCAAAGGCCGTTTC





GCCGGGGGTCCTACAAGCGCCTTAGCGGTCATCAATGTTGAGTCTAATAAACGTTAC





AGATTCCGTCTTATATCCATGTCCTGTGACCCTAATTTTACGTTTAGTATAGACGGAC





ATAGCCTACAAGTGATTGAGGCCGATGCCGTGAACATTGTACCGATAGTAGTGGATT





CCATCCAGATATTCGCCGGACAAAGGTACAGCTTTGTACTTAACGCTAACCAGACCG





TGGACAACTACTGGATCAGAGCTGATCCGAATTTGGGCAGCACTGGTTTCGACGGA





GGTATCAACTCTGCTATTTTAAGGTATGCTGGAGCAACGGAAGATGACCCCACGACG





ACAAGTTCCACCTCAACTCCATTAGAAGAAACAAACTTGGTACCCCTAGAGAATCCT





GGGGCGCCAGGACCGGCGGTACCCGGCGGTGCAGACATAAATATCAATCTTGCCAT





GGCTTTCGACGTGACGAATTTCGAATTAACGATTAACGGATCCCCTTTCAAAGCACC





TACCGCCCCCGTACTTTTACAGATATTGTCAGGAGCAACGACGGCCGCTTCCTTGCT





GCCATCAGGGTCCATTTACTCACTAGAAGCCAATAAAGTAGTGGAGATTTCCATACC





TGCTCTAGCTGTGGGGGGTCCGCATCCTTTCCACTTACACGGGCATACATTTGACGTT





ATACGTTCAGCGGGGAGTACGACTTACAATTTTGACACTCCCGCTCGTAGGGATGTC





GTTAATACAGGAACGGACGCTAATGATAATGTAACAATAAGATTTGTTACCGACAA





CCCAGGGCCGTGGTTTCTGCATTGCCACATAGACTGGCACTTAGAGATAGGGCTGGC





CGTCGTTTTCGCCGAGGACGTTACTAGCATAACCGCACCTCCAGCGGCGTGGGATGA





TTTGTGTCCCATCTATGACGCATTATCTGATAGCGACAAGGATAATCCTAGGTTTGG





ATTTGCACCAGCGACAGGAGGTAAAGCAACGGGCAGGAGAAATTGGTTCTCAAAGG





CTAGGCGTAGAGCAATTTTGGTTCCCTATTTAAAACTTTTAAAATTGGGGTTGGTGA





TGGTCTTCTATATAAGAGCAGAAAGGAACCATGGTAGACTTTCCCAATCTACACCTC





CGAATCGTAGGGTAGATCAGCGTGAATTAATTACTAACACATGGGTGGAGAGGTTTT





TCCTGCACCGTCTAATGTTTCTGAAGCTTTTTGTTGGAACCGCATGTTTCATGCACAT





CTTCAATTCAGTTAGCTCACTAGGGATGTGTACGTTGAGGACCAGCCATGGGTCCTC





CGAGTCATTAGCTTCTCCATCAGCGACCATGATGTTAGGAGGCGGCCTAACTCTTCT





TAGTGCTAACATAAGACTTTGGTGTTATGCCGAGATGAGAGATTTGTACGACTTCGA





AGTTAATATCAAAAAGGCCCACCGTCTTGTAACGACTGGGCCGTATAGTGTTTCTAT





GGTTATGTTTAGCAAGGATCATTGGTTGTATCAATGCGGTCTGCGTTCCATGGTTGG





CGTTGTGCTAAGTTGTATATGGTGCGCGGAAGTTGTACTGATCAACGGAATTATGGT





CCCGGCACGTATGAAGGTGGAAGACGACGGATTGAGAAGGCACTTCGGGCGTGAGT





GGGATGAATATGCATCACGTGTGGCCTATAGGTTGGTCCCCGAGATTTAT





>Oxid_10


Seq. ID NO: 48



ATGTCAAGTAAGAGCTTTATCTCTGCCGCGACCCTACTGGTCGGAATACTTACGCCG






AGTGTGGCGGCTGCTCCACCTAGCACCCCTGAGCAAAGGGACCTGTTGGTTCCCATT





ACAGAAAGGGAGGAAGCTGCTGTTAAAGCGCGTCAGCAGTCTTGCAACACTCCCTC





AAACCGTGCATGCTGGACGGATGGCTATGACATCAATACAGACTATGAAGTAGATT





CTCCTGATACGGGTGTTGTTCGTCCCTACACTTTGACGCTGACCGAGGTTGATAACT





GGACTGGGCCTGATGGTGTCGTCAAGGAAAAGGTTATGCTGGTAAACAATTCAATA





ATCGGACCCACAATTTTTGCCGATTGGGGTGATACCATCCAAGTCACGGTGATTAAT





AACCTTGAGACCAATGGAACGAGTATTCATTGGCACGGCCTACATCAGAAGGGTAC





GAACTTGCACGATGGAGCTAATGGGATTACTGAATGCCCCATCCCGCCCAAGGGGG





GCAGAAAGGTTTATAGATTCAAAGCACAGCAATATGGAACGAGTTGGTATCATAGT





CACTTTTCCGCGCAGTACGGCAACGGTGTGGTTGGCGCGATACAGATCAACGGGCC





GGCCAGTTTACCATACGATACGGACCTGGGCGTTTTTCCTATCAGCGATTATTATTAT





TCCTCAGCGGATGAGCTAGTTGAATTGACCAAAAACAGCGGTGCACCCTTTTCAGAT





AATGTCCTTTTTAACGGAACGGCAAAGCACCCAGAAACAGGCGAGGGCGAGTACGC





AAATGTAACGTTAACCCCAGGAAGGAGGCATCGTTTGCGTCTGATTAACACGAGTGT





TGAAAACCATTTCCAAGTCTCTCTAGTTAATCATACCATGACGATCATTGCCGCCGA





TATGGTTCCAGTAAATGCTATGACCGTTGATTCACTGTTCCTGGGCGTCGGACAAAG





GTACGACGTAGTAATAGAAGCTAGTAGAACTCCAGGGAATTATTGGTTCAATGTGA





CATTCGGGGGCGGCCTGTTGTGCGGAGGCAGTAGGAATCCTTACCCAGCTGCAATAT





TTCACTATGCAGGCGCCCCTGGTGGACCGCCGACTGATGAAGGAAAAGCGCCGGTG





GATCACAACTGCTTGGATCTGCCGAACCTTAAACCTGTTGTTGCTCGTGATGTGCCA





TTATCTGGTTTCGCCAAGAGGCCCGACAACACTTTAGACGTCACTTTGGACACGACT





GGAACTCCCCTTTTCGTCTGGAAGGTAAACGGTAGTGCTATTAACATAGACTGGGGC





CGTCCGGTCGTGGATTACGTACTAACACAAAACACTTCTTTCCCACCCGGTTACAAT





ATAGTCGAGGTCAACGGCGCAGATCAGTGGTCATACTGGTTGATTGAGAATGACCC





AGGTGCGCCATTCACGCTACCGCACCCGATGCACCTACATGGGCATGACTTTTATGT





ACTAGGTAGAAGTCCGGATGAATCACCTGCTAGCAATGAACGTCACGTATTTGATCC





CGCCCGTGATGCGGGATTACTGTCCGGGGCGAACCCAGTGAGGCGTGATGTTACTAT





GTTGCCTGCGTTTGGATGGGTTGTGCTGGCCTTCAGGGCTGACAACCCCGGGGCATG





GCTTTTTCATTGCCATATAGCATGGCACGTATCCGGCGGGCTAGGTGTTGTCTACCTA





GAGCGTGCAGACGACCTGAGGGGAGCGGTATCAGACGCGGACGCGGATGACTTGGA





TAGGCTTTGCGCTGATTGGAGGAGATACTGGCCGACAAATCCGTATCCCAAATCAGA





CTCTGGTCTT





>Oxid_11


Seq. ID NO: 49



ATGTCATCCCGTTTCCAGAGCCTATTTTTCTTTGTGCTGGTAAGCTTGACTGCGGTGG






CGAATGCGGCTATTGGGCCGGTGGCTGACCTTACACTTACAAACGCACAAGTTTCCC





CAGATGGCTTCGCTAGAGAAGCGGTCGTGGTTAACGGAATCACCCCAGCACCATTG





ATTACGGGGAACAAGGGGGACAGATTTCAGTTAAATGTGATCGACCAGCTTACTAA





CCACACGATGTTGAAGACGTCTTCTATACACTGGCATGGTTTTTTCCAGCAGGGTAC





TAACTGGGCAGATGGCCCTGCTTTCGTTAACCAGTGTCCGATTGCGTCCGGTCATAG





TTTTTTGTACGACTTTCAGGTCCCTGATCAAGCGGGGACGTTCTGGTATCACTCACAC





CTAAGTACCCAATACTGTGACGGACTGCGTGGACCGTTCGTGGTGTACGACCCTAAT





GATCCCCATGCGAGCCTTTATGACATCGACAATGACGATACTGTCATAACTCTGGCG





GACTGGTACCATGTAGCCGCGAAATTAGGTCCACGTTTCCCATTCGGTTCAGATAGC





ACCCTAATAAACGGCCTTGGCAGAACTACCGGAATTGCGCCGTCTGACCTTGCAGTC





ATCAAAGTGACACAGGGCAAGCGTTACCGTTTCCGTCTGGTCTCTTTGTCCTGTGAC





CCAAACCACACATTCTCCATTGACAATCACACCATGACGATCATCGAGGCCGACTCT





ATCAATACGCAGCCACTAGAGGTGGATAGCATCCAGATATTCGCTGCTCAGCGTTAT





TCTTTCGTGCTGGACGCTAGCCAACCGGTGGATAACTACTGGATAAGAGCAAATCCG





GCGTTCGGTAACACCGGGTTTGCTGGTGGGATAAACTCTGCCATACTTAGATACGAT





GGTGCACCAGAAATCGAGCCTACTTCTGTCCAAACAACCCCGACTAAGCCTCTGAAT





GAAGTGGATTTGCACCCTTTGTCACCGATGCCAGTACCAGGATCTCCAGAACCGGGA





GGAGTGGATAAGCCACTTAACCTAGTGTTCAATTTCAATGGGACAAACTTTTTCATT





AATGACCACACCTTTGTGCCACCCTCTGTGCCCGTACTTTTGCAAATATTGAGTGGTG





CTCAGGCGGCGCAAGACCTGGTCCCGGAGGGGTCCGTGTTCGTTCTTCCTAGTAATT





CTAGCATTGAGATCTCCTTTCCAGCAACCGCTAATGCTCCAGGTTTCCCGCATCCATT





CCATCTACACGGACACGCATTTGCGGTTGTAAGGAGTGCGGGGAGTTCAGTTTACAA





CTATGACAACCCCATATTCAGGGACGTAGTAAGCACAGGACAACCAGGTGACAATG





TGACTATAAGATTCGAGACCAATAACCCCGGTCCTTGGTTCTTACATTGCCACATAG





ACTTTCACTTAGACGCGGGTTTTGCAGTGGTCATGGCCGAGGATACTCCTGATACTA





AAGCCGCGAATCCAGTGCCTCAAGCCTGGTCTGATTTATGTCCGATCTATGATGCGC





TGGATCCTTCCGATTTA





>Oxid_12


Seq. ID NO: 50



ATGAGCTCCGGACTTCAACGTTTCAGTTTCTTCGTTACGTTAGCATTAGTGGCCCGTT






CACTTGCTGCAATCGGACCAGTGGCATCCCTGGTAGTTGCAAACGCTCCAGTGAGTC





CGGACGGTTTTCTTAGGGACGCCATTGTGGTAAACGGAGTGGTACCGAGTCCACTAA





TAACTGGCAAAAAAGGAGACCGTTTCCAGCTGAATGTCGATGATACCCTGACAAAT





CATAGTATGCTTAAGAGCACGAGCATACACTGGCACGGTTTTTTTCAAGCAGGAACA





AACTGGGCCGACGGACCGGCTTTCGTCAATCAATGTCCCATCGCTAGTGGGCACTCC





TTCCTATACGATTTTCATGTTCCAGACCAAGCGGGGACGTTTTGGTACCATAGTCATC





TAAGTACCCAATACTGCGATGGGCTTCGTGGGCCTTTCGTAGTGTACGACCCAAAGG





ATCCCCATGCGTCCAGGTACGATGTCGACAATGAAAGCACGGTGATTACGCTGACA





GATTGGTATCATACCGCTGCGAGGTTAGGACCGCGTTTTCCCCTTGGAGCAGACGCC





ACTCTAATCAATGGGTTGGGACGTTCTGCCAGTACACCGACCGCCGCGCTGGCTGTT





ATAAACGTACAACATGGGAAAAGATACAGGTTTAGGTTAGTATCTATCAGTTGTGAC





CCTAATTATACATTCTCTATAGATGGTCATAACCTTACGGTCATTGAAGTTGACGGC





ATCAATTCCCAGCCCTTACTGGTTGATAGTATCCAGATCTTCGCTGCCCAGAGATATT





CTTTTGTGCTGAATGCTAATCAGACAGTTGGTAACTATTGGGTCAGGGCCAACCCTA





ACTTTGGGACGGTTGGTTTTGCTGGGGGGATCAACTCAGCCATACTAAGGTACCAAG





GTGCGCCCGTAGCAGAACCTACTACCACGCAGACAACCAGTGTAATCCCTTTGATTG





AGACCAATCTGCATCCGCTTGCACGTATGCCCGTACCGGGCTCACCGACACCAGGA





GGAGTGGACAAAGCCTTAAATCTAGCTTTTAACTTCAATGGAACAAATTTCTTCATC





AACAACGCCACGTTTACACCACCAACGGTGCCTGTATTACTTCAGATCTTAAGCGGC





GCCCAGACGGCACAGGATTTGCTGCCAGCAGGATCAGTATATCCTCTACCCGCGCAC





TCAACCATAGAAATAACGCTTCCTGCCACAGCACTTGCTCCTGGGGCTCCACACCCT





TTCCACCTACATGGGCACGCATTCGCCGTAGTGAGATCTGCGGGATCCACGACTTAC





AATTACAATGACCCCATCTTCCGTGATGTGGTGAGCACAGGGACACCAGCAGCGGG





AGATAATGTTACTATTCGTTTCCAAACTGACAACCCGGGGCCATGGTTTCTGCACTG





CCACATAGATTTTCATCTTGACGCCGGCTTTGCGATCGTGTTCGCCGAGGATGTCGC





AGACGTGAAGGCCGCCAACCCCGTTCCAAAGGCGTGGTCAGATCTATGTCCGATAT





ATGACGGCTTATCTGAAGCCAATCAA





>p450_1


Seq. ID NO: 51



MAADSLVVLVLCLSCLLLLSLWRQSSGRGKLPPGPTPLPVIGNILQIGIKDISKSLTNLSK






VYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAERANRGFGIVFSNGKK





WKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVIC





SIIFHKRFDYKDQQFLNLMEKLNENIKILSSPWIQICNNFSPIIDYFPGTHNKLLKNVAFMK





SYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHNQPSEFTIESLENTAVDLFGAGTE





TTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRYI





DLLPTSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFK





KSKYFMPFSAGKRICVGEALAGMELFLFLTSILQNFNLKSLVDPKNLDTTPVVNGFASVP





PFYQLCFIPV





>p450_2


Seq. ID NO: 52



MAADSLVVLVLCLSCLLLLSLWRQSSGRGKLPPGPTPLPVIGNILQIGIKDISKSLTNLSK






VYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGIFPLAERANRGFGIVFSNGKK





WKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVIC





SIIFHKRFDYKDQQFLNLMEKLNENVKILSSPWIQICNNFSPIIDYFPGTHNKLLKNVAFM





KSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHNQPSEFTIESLENTAVDLFGAGT





ETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRY





IDLLPTSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFK





KSNYFMPFSAGKRICVGEALARMELFLFLTSILQNFNLKSLVDPKNLDTTPVVNGFASVP





PFYQLCFIPV





>p450_3


Seq. ID NO: 53



MAADSFVVLVLCLSCLLLLSLWRQSSGRGKLPPGPTPLPVIGNILQIDIKDISKSLTNLSK






VYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGHFPLAERANRGFGIVFSNGKK





WKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVIC





SIIFRKRFDYKDQQFLNLMEKLNENVKILSSPWIQIYNNFSPIIDYFPGTHNKLLKNVAFM





KSYILEKVKEHQESMDMNNPQDFIDCFLMKMEKEKHNQPSEFTIESLENTAADLFGAGT





ETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHMPYTDAVVHEVQRY





IDLLPTSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDEGGNFK





KSNYFMPFSAGKRICVGEALARMELFLFLTSILQNFNLKSLVDPKNLDTTPVVNGFASVP





PFYQLCFIPV





>p450_4


Seq. ID NO: 54



MAADLVVFLALTLSCLILLSLWRQSSGRGKLPPGPTPLPIIGNFLQIDVKNISQSFTNFSKA






YGPVFTLYLGSKPTVILHGYEAVKEALIDRGEEFAGRGSFPMAEKIIKGFGVVFSNGNRW





KEMRRFTLMTLRNLGMGKRNIEDRVQEEAQCLVEELRKTKGSPCDPTFILSCAPCNVICS





IIFQNRFDYKDKEFLILMDKINENVKILSSPWLQVCNSFPSLIDYCPGSHHKIVKNFNYLK





SYLLEKIKEHKESLDVTNPRDFIDYYLIKQKQVNHIEQSEFSLENLASTINDLFGAGTETTS





TTLRYALLLLLKYPDVTAKVQEEIDRVVGRHRSPCMQDRSHMPYTDAMIHEVQRFIDLL





PTSLPHAVTCDIKFRKYLIPKGTTVITSLSSVLHDSKEFPNPEMFDPGHFLNANGNFKKSD





YFMPFSTGKRICAGEGLARMELFLILTTILQNFKLKSLVHPKEIDITPVMNGFASLPPPYQ





LCFIPL





>p450_5


Seq. ID NO: 55



MAAILGVFLGLFLTCLLLLSLWKQNFQRRNLPPGPTPLPIIGNILQIDLKDISKSLRNFSKV






YGPVFTLYLGRKPAVVLHGYEAVKEALIDHGEEFAGRGVFPVAQKFNKNCGVVFSSGR





TWKEMRRFSLMTLRNFGMGKRSIEDRVQEEARCLVDELRKTNGVPCDPTFILGCAPCN





VICSIVFQNRFDYKDQEFLALIDILNENVEILGSPWIQICNNFPAIIDYLPGRHRKLLKNFA





FAKHYFLAKVIQHQESLDINNPRDFIDCFLIKMEQEKHNPKTEFTCENLIFTASDLFAAGT





ETTSTTLRYSLLLLLKYPEVTAKVQEEIDHVIGRHRSPCMQDRHHMPYTDAVLHEIQRYI





DLLPTSLPHALTCDMKFRDYLIPKGTTVIASLTSVLYDDKEFPNPEKFDPSHFLDENGKF





KKSDYFFPFSTGKRICVGEGLARTELFLFLTTILQNFNLKSPVDLKELDTNPVANGFVSVP





PKFQICFIPI





>p450_6


Seq. ID NO: 56



MAAALIPDLAMETWLLLAVSLVLLYLYGTHSHGLFKKLGIPGPTPLPFLGNILSYHKGFC






MFDMECHKKYGKVWGFYDGQQPVLAITDPDMIKTVLVKECYSVFTNRRPFGPVGFMK





SAISIAEDEEWKRLRSLLSPTFTSGKLKEMVPIIAQYGDVLVRNLRREAETGKPVTLKDV





FGAYSMDVITSTSFGVNIDSLNNPQDPFVENTKKLLRFDFLDPFFLSITVFPFLIPILEVLNI





CVFPREVTNFLRKSVKRMKESRLEDTQKHRVDFLQLMIDSQNSKETESHKALSDLELVA





QSIIFIFAGYETTSSVLSFIMYELATHPDVQQKLQEEIDAVLPNKAPPTYDTVLQMEYLDM





VVNETLRLFPIAMRLERVCKKDVEINGMFIPKGVVVMIPSYALHRDPKYWTEPEKFLPE





RFSKKNKDNIDPYIYTPFGSGPRNCIGMRFALMNMKLALIRVLQNFSFKPCKETQIPLKLS





LGGLLQPEKPVVLKVESRDGTVSGA





>p450_7


Seq. ID NO: 57



MAADLIPNLAVETWLLLTKLEFGFYIFPFIYGTHSHGLFKKLGIPGPTPLPFLGNILSYRKG






FCMFDMECHKKYGKVWGFYDGRQPVLAITDPDMIKTVLVKECYSVFTNRRPFGPVGF





MKSAISIAEDEEWKRIRSLLSPTFTSGKLKEMVPIIAQYGDVLVRNLRREADTGKPVTLK





DVFGAYSMDVITSTSFGVNIDSLNNPQDPFVENTKKLLRFDFLDPFFLSIIVFPFLIPILEVL





NICVFPREVTNFLRKSVKRMKESRLEDTQKHRVDFLQLMIDSQNSKETESHKALSDLEL





VAQSIIFIFAGYETTSSVLSFIMYELATHPDVQQKLQEEIDAVLPNKAPPTYDTVLQMEYL





DMVVNETLRLFPVAMRLERVCKKDVEINGMFIPKGVVVMIPSYALHRDPKYWTEPEKF





LPERFSKKNKDNIDPYIYTPFGSGPRNCIGMRFALMNMKLALIRVLQNFSFKPCKETQIPL





KLRLGGLLQPEKPIVLKVESRDGTVSGA





>p450_8


Seq. ID NO: 58



MAAALIPDLAMETWLLLAVSLVLLYLYGTHSHGLFKKLGIPGPTPLPFLGNIWSYRKGF






CMFDMECHKKYGKVWGFYDGRQPVLAITDPDMIKTVLVKECYSVFTNRRPFGPVGFM





KSAISIAEDEEWKRLRSLLSPTFTSGKLKEMVPLIAQYGDVLVRNLRLEAETGKPVTMKV





ITSTSFGVNIDSLNNPQDPFVENTKKLLRFDFLDPFFLSIIVFPFLTPILEVLNISVFPRAVTS





FLRKSVKRMKESRLEDTQKHRVDFLQLMIDSQNSKETESHKALSDLELVAQSIIFIFAGY





ETTSSVLSFITYELATHPDVQQKLQEEIDAVLPNKAPPTYDTVLQMEYLDMVVNETLRLF





PIAMRLERVCKKDVEINGMFIPKGVVVMIPSYALHHDPKYWTEPEKFLPERFSKKNKDN





IDPYIYTPFGSGPRNCIGMRFALMNMKLALIRVLQNFSFKPCKETQIPLKLRLGGLLQPEK





PIVLKVESRDGTVSGA





>p450_9


Seq. ID NO: 59



MAAELIPSFSMETWVLLATSLVLLYIYGTYSYGLFKKLGIPGPRPVPYFGSTMAYHKGIP






EFDNQCFKKYGKMWGFYEGRQPMLAITDPDIIKTVLVKECYSVFTNRRIFGPMGIMKYA





ISLAWDEQWKRIRTLLSPAFTSGKLKEMFPIIGQYGDMLVRNLRKEAEKGNPVNMKDM





FGAYSMDVITGTAFGVNIDSLNNPHDPFVEHSKNLLRFRPFDPFILSIILFPFLNPVFEILNI





TLFPKSTVDFFTKSVKKIKESRLTDKQMNRVDLLQLMINSQNSKEIDNHKALSDIELVAQ





STIFIFGGYETTSSTLSFIIYELTTHPHVQQKVQEEIDATFPNKAPPTYDALVQMEYLDMV





VNETLRMFPIAGRLERVCKKDVEIHGVTIPKGTTVLVPLFVLHNNPELWPEPEEFRPERFS





KNNKDSINPYVYLPFGTGPRNCLGMRFAIMNIKLALVRILQNFSFKPCKETQIPLKLYTQ





GLTQPEQPVILKVVPRGLGPQVEPDFL





>p450_10


Seq. ID NO: 60



MAADSFPLLAALFFILAATWFISFRRPRNLPPGPFPYPIVGNMLQLGTQPHETFAKLSKKY






GPLMSIHLGSLYTVIVSSPEMAKEINIHKYGQVFSGRTVAQAVHACGHDKISMGFLPVGG





EWRDMRKICKEQMFSHQSMEDSQWLRKQKLQQLLEYAQKCSERGRAIDIREAAFITTL





NLMSATLFSMQATEFDSKVTMEFKEIIEGVASIVGVPNFADYFPILRPFDPQGVKRRADV





YFGRLLAIIEGFLNERVESRRTNPNAPKKDDFLETLVDTLQTNDNKLKTDHLTHLMLDLF





VGGSETSTTEIEWIMWELLANPEKMAKMKAELKSVMGEEKVVDESQMPRLPYLQAVV





KESMRLHPPGPLLLPRKAESDQVVNGYLIPKGAQVLINAWAIGRDHSIWKNPDSFEPERF





LDQKIDFKGTDYELIPFGSGRRVCPGMPLANRILHTVTATLVHNFDWKLERPEASDAHR





GVLFGFAVRRAVPLKIVPFKV





>p450_11


Seq. ID NO: 61



MAADPFPLVAAALFIAATWFITFKRRRNLPPGPFPYPIVGNMLQLGSQPHETFAKLSKKY






GPLMSIHLGSLYTVIISSPEMAKEIMHKYGQVFSGRTIAQAVHACDHDKISMGFLPVGAE





WRDMRKICKEQMFSHQSMEDSQNLRKQKLQQLLEYAQKCSEEGRGIDIREAAFITTLNL





MSATLFSMQATEFDSKVTMEFKEIIEGVASIVGVPNFADYFPILRPFDPQGVKRRADVYF





GRLLGLIEGYLNERIEFRKANPNAPKKDDFLETLVDALDAKDYKLKTEHLTHLMLDLFV





GGSETSTTEIEWIMWELLASPEKMAKVKAELKSVMGGEKVVDESMMPRLPYLQAVVK





ESMRLHPPGPLLLPRKAESDQVVNGYLIPKGAQVLINAWAMGRDPSLWKNPDSFEPERF





LDQKIDFKGTDYELIPFGSGRRVCPGMPLANRILHTVTATLVHNFDWKLERPEASDAHK





GVLFGFAVRRAVPLKIVPIKA





>p450_12


Seq. ID NO: 62



MAADSFPLLAALFFIAATITFLSFRRRRNLPPGPFPYPIVGNMLQLGANPHQVFAKLSKR






YGPLMSIHLGSLYTVIVSSPEMAKEILHRHGQVFSGRTIAQAVHACDHDKISMGFLPVAS





EWRDMRKICKEQMFSNQSMEASQGLRRQKLQQLLDHVQKCSDSGRAVDIREAAFITTL





NLMSATLFSSQATEFDSKATMEFKEIIEGVATIVGVPNFADYFPILRPFDPQGVKRRADVF





FGKLLAKIEGYLNERLESKRANPNAPKKDDFLEIVVDIIQANEFKLKTHHFTHLMLDLFV





GGSDTNTTSIEWAMSELVMNPDKMARLKAELKSVAGDEKIVDESAMPKLPYLQAVIKE





VMRIHPPGPLLLPRKAESDQEVNGYLIPKGTQILINAYAIGRDPSIWTDPETFDPERFLDN





KIDFKGQDYELLPFGSGRRVCPGMPLATRILHMATATLVHNFDWKLEDDSTAAADHAG





ELFGVAVRRAVPLRIIPIVKS





>CPR_1


Seq. ID NO: 63



MAAGDSHVDTSSTVSEAVAEEVSLFSMTDMILFSLIVGLLTYWFLFRKKKEEVPEFTKIQ






TLTSSVRESSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMSADPEEY





DLADLSSLPEIDNALVVFCMATYGEGDPTDNAQDFYDWLQETDVDLSGVKFAVFGLGN





KTYEHFNAMGKYVDKRLEQLGAQRIFELGLGDDDGNLEEDFITWREQFWPAVCEHFGV





EATGEESSIRQYELVVHTDIDAAKVYMGEMGRLKSYENQKPPFDAKNPFLAAVTTNRK





LNQGTERHLMHLELDISDSKIRYESGDHVAVYPANDSALVNQLGKILGADLDVVMSLN





NLDEESNKKHPFPCPTSYRTALTYYLDITNPPRTNVLYELAQYASEPSEQELLRKMASSS





GEGKELYLSWVVEARRHILAILQDCPSLRPPIDHLCELLPRLQARYYSIASSSKVHPNSVH





ICAVVVEYETKAGRINKGVATNWLRAKEPAGENGGRALVPMFVRKSQFRLPFKATTPVI





MVGPGTGVAPFIGFIQERAWLRQQGKEVGETLLYYGCRRSDEDYLYREELAQFHRDGA





LTQLNVAFSREQSHKVYVQHLLKQDREHLWKLIEGGAHIYVCGDARNMARDVQNTFY





DIVAELGAMEHAQAVDYIKKLMTKGRYSLDVWS





>CPR_2


Seq. ID NO: 64



MAAPFGIDNTDFTVLAGLVLAVLLYVKRNSIKELLMSDDGDITAVSSGNRDIAQVVTEN






NKNYLVLYASQTGTAEDYAKKFSKELVAKFNLNVMCADVENYDFESLNDVPVIVSIFIS





TYGEGDFPDGAVNFEDFICNAEAGALSNLRYNMFGLGNSTYEFFNGAAKKAEKHLSAA





GAIRLGKLGEADDGAGTTDEDYMAWKDSILEVLKDELHLDEQEAKFTSQFQYTVLNEIT





DSMSLGEPSAHYLPSHQLNRNADGIQLGPFDLSQPYIAPIVKSRELFSSNDRNCIHSEFDL





SGSNIKYSTGDHLAVWPSNPLEKVEQFLSIFNLDPETIFDLKPLDPTVKVPFPTPTTIGAAI





KHYLEITGPVSRQLFSSLIQFAPNADVKEKLTLLSKDKDQFAVEITSKYFNIADALKYLSD





GAKWDTVPMQFLVESVPQMTPRYYSISSSSLSEKQTVHVTSIVENFPNPELPDAPPVVGV





TTNLLRNIQLAQNNVNIAETNLPVHYDLNGPRKLFANYKLPVHVRRSNFRLPSNPSTPVI





MIGPGTGVAPFRGFIRERVAFLESQKKGGNNVSLGKHILFYGSRNTDDFLYQDEWPEYA





KKLDGSFEMVVAHSRLPNTKKVYVQDKLKDYEDQVFEMINNGAFIYVCGDAKGMAK





GVSTALVGILSRGKSITTDEATELIKMLKTSGRYQEDVW





>CPR_3


Seq. ID NO: 65



MAAGDSHEDTSATVPEAVAEEVSLFSTTDIVLFSLIVGVLTYWFIFKKKKEEIPEFSKIQT






TAPPVKESSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMSADPEEY





DLADLSSLPEIDKSLVVFCMATYGEGDPTDNAQDFYDWLQETDVDLTGVKFAVFGLGN





KTYEHFNAMGKYVDQRLEQLGAQRIFELGLGDDDGNLEEDFITWREQFWPAVCEFFGV





EATGEESSIRQYELVVHEDMDTAKVYTGEMGRLKSYENQKPPFDAKNPFLAAVTTNRK





LNQGTERHLMHLELDISDSKIRYESGDHVAVYPANDSTLVNQIGEILGADLDVIMSLNNL





DEESNKKHPFPCPTTYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLHKMASSSGE





GKELYLSWVVEARRHILAILQDYPSLRPPIDHLCELLPRLQARYYSIASSSKVHPNSVHIC





AVAVEYEAKSGRVNKGVATSWLRTKEPAGENGRRALVPMFVRKSQFRLPFKPTTPVIM





VGPGTGVAPFMGFIQERAWLREQGKEVGETLLYYGCRRSDEDYLYREELARFHKDGAL





TQLNVAFSREQAHKVYVQHLLKRDKEHLWKLIHEGGAHIYVCGDARNMAKDVQNTFY





DIVAEFGPMEHTQAVDYVKKLMTKGRYSLDVWS





>CPR_4


Seq. ID NO: 66



MAAGDSHEDTSATMPEAVAEEVSLFSTTDMVLFSLIVGVLTYWFIFRKKKEEIPEFSKIQ






TTAPPVKESSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMSADPEEY





DLADLSSLPEIDKSLVVFCMATYGEGDPTDNAQDFYDWLQETDVDLTGVKFAVFGLGN





KTYEHFNAMGKYVDQRLEQLGAQRIFELGLGDDDGNLEEDFITWREQFWPAVCEFFGV





EATGEESSIRQYELVVHEDMDAAKVYTGEMGRLKSYENQKPPFDAKNPFLAAVTANRK





LNQGTERHLMHLELDISDSKIRYESGDHVAVYPANDSALVNQIGEILGADLDVIMSLNN





LDEESNKKHPFPCPTTYRTALTYYLDITNPPRTNVLYELAQYASEPSEQEHLHKMASSSG





EGKELYLSWVVEARRHILAILQDYPSLRPPIDHLCELLPRLQARYYSIASSSKVHPNSVHI





CAVAVEYEAKSGRVNKGVATSWLRAKEPAGENGGRALVPMFVRKSQFRLPFKSTTPVI





MVGPGTGIAPFMGFIQERAWLREQGKEVGETLLYYGCRRSDEDYLYREELARFHKDGA





LTQLNVAFSREQAHKVYVQHLLKRDREHLWKLIHEGGAHIYVCGDARNMAKDVQNTF





YDIVAEFGPMEHTQAVDYVKKLMTKGRYSLDVWS





>CPR_5


Seq. ID NO: 67



MAAINMGDSHVDTSSTVSEAVAEEVSLFSMTDMILFSLIVGLLTYWFLFRKKKEEVPEFT






KIQTLTSSVRESSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMSADP





EEYDLADLSSLPEIDNALVVFCMATYGEGDPTDNAQDFYDWLQETDVDLSGVKFAVFG





LGNKTYEHFNAMGKYVDKRLEQLGAQRIFELGLGDDDGNLEEDFITWREQFWPAVCEH





FGVEATGEESSIRQYELVVHTDIDAAKVYMGEMGRLKSYENQKPPFDAKNPFLAAVTT





NRKLNQGTERHLMHLELDISDSKIRYESGDHVAVYPANDSALVNQLGKILGADLDIVMS





LNNLDEESNKKHPFPCPTSYRTALTYYLDITNPPRTNVLYELAQYASEPSEQELLRKMAS





SSGEGKELYLSWVVEARRHILAILQDCPSLRPPIDHLCELLPRLQARYYSIASSSKVHPNS





VHICAVVVEYETKAGRINKGVATNWLRAKEPAGENGGRALVPMFVRKSQFRLPFKATT





PVIMVGPGTGVAPFIGFIQERAWLRQQGKEVGETLLYYGCRRSDEDYLYREELAQFHRD





GALTQLNVAFSREQSHKVYVQHLLKRDREHLWKLIEGGAHIYVCGDARNMARDVQNT





FYDIVAELGAMEHAQAVDYIKKLMTKGRYSLDVWS





>CPR_6


Seq. ID NO: 68



MAAINMGDSHMDTSSTVSEAVAEEVSLFSMTDMILFSLIVGLLTYWFLFRKKKEEVPEF






TKIQTLTSSVRESSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMSAD





PEEYDLADLSSLPEIENALVVFCMATYGEGDPTDNAQDFYDWLQETDVDLSGVKFAVF





GLGNKTYEHFNAMGKYVDKRLEQLGAQRIFELGLGDDDGNLEEDFITWREQFWPAVCE





HFGVEATGEESSIRQYELVVHTDIDAAKVYMGEMGRLKSYENQKPPFDAKNPFLAAVT





TNRKLNQGTERHLMHLELDISDSKIRYESGDHVAVYPANDSALVNQLGKILGADLDVV





MSLNNLDEESNKKHPFPCPTSYRTALTYYLDITNPPRTNVLYELAQYASETSEQELLRK





MASSSGEGKELYLSWVVEARRHILAILQDCPSLRPPIDHLCELLPRLQARYYSIASSSKVH





PNSVHICAVVVEYETKAGRINKGVATNWLRAKEPAGENGGRALVPMFVRKSQFRLPFK





ATTPVIMVGPGTGVAPFIGFIQERAWLRQQGKEVGETLLYYGCRRSDEDYLYREELVQF





HRDGALTQLNVAFSREQSHKVYVQHLLKRDREHLWKLIEGGAHIYVCGDARNMARDV





QNTFYDIVAELGAMEHTQAVDYIKKLMTKGRYSLDVWS





>CPR_7


Seq. ID NO: 69



MAANMADSNMDAGTTTSEMVAEEVSLFSTTDVILFSLIVGVMTYWFLFRKKKEEVPEF






TKIQTTTSSVKDRSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMAA





DPEEYDLADLSSLPEIEKALAIFCMATYGEGDPTDNAQDFYDWLQETDVDLSGVKYAVF





ALGNKTYEHFNAMGKYVDKRLEQLGAQRIFDLGLGDDDGNLEEDFITWREQFWPAVC





EHFGVEATGEESSIRQYELMVHTDMDMAKVYTGEMGRLKSYENQKPPFDAKNPFLAV





VTTNRKLNQGTERHLMHLELDISDSKIRYESGDHVAVYPANDSALVNQLGEILGADLDII





MSLNNLDEESNKKHPFPCPTSYRTALTYYLDITNPPRTNVLYELAQYASEPTEHEQLRK





MASSSGEGKELYLRWVLEARRHILAILQDYPSLRPPIDHLCELLPRLQARYYSIASSSKVH





PNSVHICAVAVEYETKTGRINKGVATSWLRAKEPAGENGGRALVPMYVRKSQFRLPFK





ATTPVIMVGPGTGVAPFIGFIQERAWLRQQGKEVGETLLYYGCRRSDEDYLYREELAGF





HKDGALTQLNVAFSREQPQKVYVQHLLKKDKEHLWKLIHEGGAHIYVCGDARNMARD





VQNTFYDIVAEQGAMEHAQAVDYVKKLMTKGRYSLDVWS





>CBNsyn_1


Seq. ID NO: 71



MAADFSGKNVWVTGAGKGIGYATALAFVEAGAKVTGFDQAFTQEQYPFATEVMDVA






DAAQVAQVCQRLLAETERLDALVNAAGILRMGATDQLSKEDWQQTFAVNVGGAFNLF





QQTMNQFRRQRGGAIVTVASDAAHTPRIGMSAYGASKAALKSLALSVGLELAGSGVRC





NVVSPGSTDTDMQRTLWVSDDAEEQRIRGFGEQFKLGIPLGKIARPQEIANTILFLASDL





ASHITLQDIVVDGGSTLGA





>CBNsyn_2


Seq. ID NO: 72



MAASDLHNESIFITGGGSGLGLALVERFIEEGAQVATLELSAAKVASLRQRFGEHILAVE






GNVTCYADYQRAVDQILTRSGKLDCFIGNAGIWDHNASLVNTPAETLETGFHELFNVNV





LGYLLGAKACAPALIASEGSMIFTLSNAAWYPGGGGPLYTASKHAATGLIRQLAYELAP





KVRVNGVGPCGMASDLRGPQALGQSETSIMQSLTPEKIAAILPLQFFPQPADFTGPYVML





TSRRNNRALSGVMINADAGLAIRGIRHVAAGLDL





>CBNsyn_3


Seq. ID NO: 73



MAATGWLAGKRALIVGAGSGIGRATVDAFLNEDARVAVLEYDSDKCATLRHQLPDVP






VIEGDGTTRTANDEAVQVAVDAFGGLDTLVNCVGIFDFYRRIQDIPAELIDQAFDEMFRI





NVLSHIHSVKAAVPALMGQDGASIVLTESASSFYPGRGGLLYVASKFAVRGVVTALAHE





LAPRIRVNGVAPGGTLNTDLRGLDSLDLGARRLDAAPDRARELAARTPLGVALSGEDH





AWSYVFLASHRSRGLTGETIHPDGGFSLGPPPQRN





>CBNsyn_4


Seq. ID NO: 74



MSSIETKIFPGRFDGRCLTITGAAQGIGLTVATRIAAEGGEVVLVDRADLVHEVAEQLRE






AGGKAHSVTADLETFEGAEEAISHAVRTTGRIDVLINVVGGTIWAKPYEHYAPEEIEKEI





RRSLFPTLWTCRAAAPHLIERRAGTIVNVSSVATRGVNRVPYSAAKGGVNAITASLALE





LAPYGVRVVATAPGGTVAPERRIARGPSPQSEQEKAWYQQIVDQTVDSSLLKRYGTLDE





QAAAICFLASEEASYITGTVLPVAGGDLG





>CBNsyn_5


Seq. ID NO: 75



MSSTGWLDGKRALVVGGGSGIGRAVVDAFLAEGACVAVLERDPNKCRVLREHLPQVP






VIEGDATRAADNDAAVAAAVAAFGGLDTLVNCVGIFDFYQGIEDIPADTLDVAFDEMF





RTNVLSHMHSVKAAVPELRKHRGSSIVLAESASSFYPGRGGVLYVSSKFAVRGLVTTLA





YELAPDIRVNGVAPGGTLNTDLRGLASLGRDADRLDDNPNRANELAARTPLNVALSGE





DHAWSFVFFASDRSRGITAGATHPDGGFGIGAPKPSTR





>CBNsyn_6


Seq. ID NO: 76



MSSGFLDGKVALVTGGGSGIGRAVVELYVQQGAKVGILEISPEKVKDLRNALPADSVV






VTEGDATSMADNERAVADVVDAFGPLTTLVCVVGVFDYFTEIPQLPKDKISEAFDQLFG





VNVKSNLLSVKAALDELIENEGDIILTLSNAAFYAGGGGPLYVSSKFAVRGLVTELAYEL





APKVRVNGVAPGGTITELRGIPALANEGQRLKDVPDIEGLIEGINPLGIVAQPEDHSWAY





ALLASRERTSAVTGTIINSDGGLGVRGMTRMAGLAQ





>CBNsyn_7


Seq. ID NO: 77



MSSSRSVTLVVGAAQGIGRATALTLATAGHRVVLADRDVDGLAETAALLHVAAPVHG






LDVCDAAGVAEAVARVEVEHGPVDALAHVAGVFTTGSVLDSDLAEWQRMFDVNVTG





LINVLRVVGHGMRERRRGAIVTVGSNSAGVPRVGMGAYGASKSAAHMLVRVLGLELA





RFGVRANVVAPGSTDTAMQRSLWPDPADDAGARTAIDGDAASFKVGIPLGRIADPADIA





DAVEFLLSDRARHITMQTLYVDGGATLRA





>CBNsyn_8


Seq. ID NO: 78



MSSQMLDDHVALILGGGSGLGLGIARHFLGEGAQVAIFEISESKLLDLKAEFGDDVLLLQ






GDVTSIDDLEAARAAVVDRFGRLDALIGAQGIFDGNIPLRDIPTERIEKVFDEVLHVDVL





GYILAARVFLEELEKTDGAIVFTSSTAAYAADGGGLFYTAAKGAVRSVINQLAFEFAPK





VRVNGVAPSGIANSQLQGPRALGLENNKQSDIPVEDFTNQFLSLTLTPTLPTPEEYAPLY





AYLASRNNTTMTGQTIIADQGLFNRAVISNGVADRVGK





>THCdeg_1


Seq. ID NO: 79



MSSSGPAHSNLEQVFANVASNYRGADVDLHAVYREMREKSPVLPENFMARLGVPSIAG






LDPNRPTFTLFKYDDVMAVMRDATNFTSGFIAEGLGSFFDGLILTAMDGEAHKNIRSLL





QPVFMPETVNRWKETKIDRVIREEYLRPMVASKRADIMEFALYFPIRVIYSLIGFPEDRPE





EIEQYAAWALAILAGPQVDPEKAAAARGAAMEAAQALYDVVKVVVAQRRAEGATGD





DLICRLIRAEYEGRSLDDHEITTFVRSLLPAASETTTRTFGTLMTLLLERPELLARIREDRS





LVGKAIDEAVRYEPVATFKVRQAAKDVEIRGVAIPKGAMVSCIVTSANRDEDAFENADT





FDIDRRAKPSFGFGFGPHMCIGQFVAKTEINCALNAILDLMPNIRLDPDKPAPEIIGAQLR





GPHHVHVIWD





>THCdeg_2


Seq. ID NO: 80



MSSRSTDLPDLKSAAFLADRYPTYRRLQSDFPHFEMNINGEECIVLTRYSDVDEVLRNPL






ATVQQAPGVFPERIGQGAGARFYRESLPNIDAPDHTRIRRIVTPAFNPKTVANMRGWVE





KVIVEHLDRLEGLDEIDFVSSFADPVPAEIACRLLHVPVSDAPELFARQHGLNAVLSVSDI





TPERLAEADASAAFYYEYMDDVLNTLKGKLPEDDFVGALMAAEARDSGLTRSELVTTL





IGFLVASYHTTKVAMTNTVLALLNHDGERARLVAQPDLARNAWEESLRYDSPVHFVHR





YASEPLTIGGQPVAQGKRLLLGLHAASRDENRFAQADHYLIDRPDNRHLAFAGGGHFCL





GSQLSRLEGDVLLRTIFQRFPAMRLTETRFERVPDLTFPMLLRMTVSLRAEQG





>THCdeg_3


Seq. ID NO: 81



MSSTSNSIRSPLSPPQPRRTPPPCTSSREPPIVRGTWLLGSTRDLLRDPLELGLRGYAEGGD






VVRYVVGLPGRRREFFTVNHPDGVGELLNAPRHLDYRKDSEFYRAMRDLYGNGLVTS





QDETWLRQRRFIQPLFTPQSVDGYVTPMVAEADRVAIRWHNCTSRLVDLDGEMRALTL





GVAARILFGVQAPRMLPILRTTLPVLGRAVLQQGASAIRFPSSWPTPGNRRIASAESRLD





GLCDAIIERRRTVAEPGTDLLGRLVAAREDGDTLSTEEIRDQVKVFLLAGHDTTATMLTF





ALYLLGKDAGVQDQARDEAERVLGAGTPTASDVHRLTYTTMVLEEAARLYPPSPYLTR





RAVEESEVCGYRIPAGADVNLAPWVIHHRADLWPDPFRFDPDRFTPDRVKERHKYAWF





PFGHGPRGCIGQRFAMLEAAVTLAILLREFEFRSPPGSVPLTVDLLLHPAGEVPCRVRRR





VPVHSAVHRTHQPS





>THCdeg_4


Seq. ID NO: 82



MSSAPDILSPEFLDNPYPLHRVLRDHYPALHHEGTDSYLISRYADCAEAFRSPKFSSRNY






EWQLEPIHGRTILQMEGREHSTHRALLNPFFRGNGLERFMPAITHNAAQLIGDIVARNAG





ELLGAVARQGEAELVSQFTSRFPINVMVDMLGLPKSDHERFRGWYFSIMAYLNNLAGD





PEINAAAERTHVELREYMLPIIRERRSGDGDDLLSRLCRAEVDGEQMSDEEIKAFVSLLL





VAGGETTDKAIASMIRNLIDHPDQMRAVREDRSLADRVIAETLRYSGPVHMIMRQTEDE





VQIEDSTIPAGATCIMMLAAANRDERHFSNPDEFDIFRTDLNVDRAFSGAANHVQFILGR





HFCVGSMLAKTEMTIALNLVLDTMDSIEYQDGFVPREEGLYTRSIPELRVKFEGKLG





>THCdeg_5


Seq. ID NO: 83



MSSSTPAAATSLESAFAGVADNYKGSDVDLHAIYRDMRRNSPVIAEDFMARLGVPNIAG






LDAKRPTFTLFKYKDVMSVLRDATNFTSGFIAEGLGAFFDGLILTGMDGEAHRRTRSLL





QPVFMPDVVNRWRETKMAPIVRNEYIEPMVPKRRADLMDFGLHFPIRLIYSLIGFPDNRP





EQIEQYAAWALAILAGPQVDAEKAAQARKAAMEAAQALYDAVKLEVTEVRKNGAQG





DDLICRLIRAEYEGRHLDDHEVTTFVRSLLPAAGETTTRTFGSLMVALLERPELLERVRA





DRSLVPKAIDEAVRFEPVATFKVRQAAQDTEIGGFSIPKGAMVQCIVSSANRDEEVFENS





ESFDIDRKLKPSFGFGFGPHMCIGQFIAKVELSVAVNTILDLLPNLRLDPDRPKPRIVGAQ





LRGPHALHVIWD





>THCdeg_6


Seq. ID NO: 84



MSSSPSVAELSQELGEAFRLSSMDDPYPMLAERRRETPVMKGDIMVALGAPSYMGQHA






GETHTVFRHDDVMAILRNHETFSSSIWEISQGPLIGRSILAMDGAEHRQWRGYLQSVFG





GKLLSSWDESIFRPLAAKYVADLASKRGADLIAMALEYPLRAIYEILGLEDFKDNYEEFH





ADVLTILLALWSTPDPAQADQFLLRFQKATEASARSWDRLLPIVQRKRAAGASRNDLIS





SLIRAEYEGGVLDDEQITSFLRSLLLAATDTTTRQFLNTLTLLLQRPDELDRIRRDRSRLR





LALAEGERLEPPALFIPRMITRDVVIRGTELTAGTPLLLAIGSANRDPEAYPPDPDEFRIDR





TGPHHATFGFGTHICSGMNTTRREIAALIDAMLDGLPGLRVDPDAPAPLISGIHFRGPSAL





PVVWD





>THCdeg_7


Seq. ID NO: 85



MSSDYSRTPESLRPADSYAALSYSTVNAALRNDRVFSSKMYDSTIGVFMGPTILAMSGT






KHRAHRNLVSAAFKPQSLRVWEPDIVRPICNALIDEFAGTGHADLVRDFTFEFPTRVIAR





LLGLPAEDLPFFRKAAVAIISYAGNVPRALEASEDLKNYFLGHIEQRRSQPTDDIISDLVT





AEVEGEQLTDEAIYSFLRLLLPAGLETTYRSSGNLLYLLLRHPRQFAAVQGNHGLIPQAV





EEGLRYETPLTFVQRFTTEDTELGGVPVPAGAVVDLVLGSANRDEDRWERPGEFDIFRK





PVPHISFTAGAHTCLGLHLARMETRVAVECLLTRLTNFRLQDEGDPHITGQPFRSPNLLP





VTFDVV





>THCdeg_8


Seq. ID NO: 86



MSSPTPRWRIPVLGDLLSVDPAKPVQKEMAMAAELGPLFERKIIGSRLTVVSGVDLVAE






VNDEKHWARALGRPILKLRDVAGDGLFTAFNSEPAWARAHSVLGPGFSQSALRTYHGS





MTRVLDDLVATWDDAAASGARVDVARDMTRLTFDVIGRAGFGRDFGSLRGDDLDPFA





AAMGRALGYVNQTSNDIPLLRMVFGRGAAKRYQTDVAFMRDTVDELVASRAGRAERS





DDLLDLMLHSADPDTGERLDMENIRNQVLTFLVAGNETTASTLAFALYFLAREPEVVER





ARAEIADVVGDGEIAFEQVAKLRYVRRVVDETLRLWPAAPGYFRKVRHDTVLGGRYP





MPKGSWVFVLLPQLHRDPVWGDDPERFDPDRFAPDAVRARPKDAYRPFGTGPRSCIGR





QFALHEAVLALATLLRRYDVAPDPAYRLDIVEAVTLKPRGFELTLQRR





>THCdeg_9


Seq. ID NO: 87



MSSSASSQSNLEQVFANVASNYRGADIDLHAVYREMREKSPVLPENFMARLGVPSIAGL






DPDRPAFTLFKYDDVMAVMRDATNFTSGFIAEGLGSFFDGLILTAMDGEAHKNIRSLLQ





PVFMPETVNRWKETKIDRVIREEYLQPMVASKGADIMEFALYFPIRVIYSLIGFPEDRPEE





IEQYAAWALAILAGPQVDPEKAVAARGAAMEAAQALYDVVKVVVAQRRSQGATGDD





LISRLIRAEYEGRSLDDHEITTFVRSLLPAASETTTRTFGTLMTLLLERPELLARIREDRSL





VPKAIDEAVRYEPVATFKVRQAAKDVEIRGVAIPQGAMVSCIVTSANRDEDAFENADTF





NIDRRAKPSFGFGFGPHMCIGQFVAKTEINCALNAILDLMPNIRLDPDKPAPEIIGAQLRG





PHHVHVIWD





>THCdeg_10


Seq. ID NO: 88



MSSTATELRDAPGSAPGLPRRSMLSLLPRMARDRLSVMTSVAARYGDAVTLPLGLSTLH






FFNHPDYAKHVLADNSSNYHKGIGLIHAKRALGDGLLTSEGELWRKQRKTIQPAFAVKR





LAGQAGAIAEEADRLVEHLLARQGRGPVDIRHEMTALTLGVLGRTLLDADLGAFGSVG





HWFEAVQDQAMFDMMSLGTVPLWSPLPKQLRFRRARRELESVVDRLVAQRGDRPRAD





GDDVVSRLVDSTGRERDPALRRKRMHDELVTLLLAGHETTASTLSWTFHLADEHPEVW





ERLHAEAVEVLGDRRPVFEDLHRLRYTNRVLNEVMRLYPPVWLLPRRAVADDVVGGY





RVPAGSDVLICPYTLHRHPEFWELPSRFDPDRFDPERSANRPRYAYIPFGAGPRFCVGNN





LGLMEAAFVIAAIARRMRLRKVPGGTVVPEPMLTLRVRSGLPMTVHALDR





>Oxid_1


Seq. ID NO: 89



MSSQRRDFLKYSVALGVASALPLWSRAVFAAERPTLPIPDLLTTDARNRIQLTIGAGQST






FGGKTATTWGYNGNLLGPAVKLQRGKAVTVDIYNQLTEETTLHWHGLEVPGEVDGGP





QGIIPPGGKRSVTLNVDQPAATCWFHPHQHGKTGRQVAMGLAGLVVIEDDEILKLMLP





KQWGIDDVPVIVQDKKFSADGQIDYQLDVMTAAVGWFGDTLLTNGAIYPQHAAPRGW





LRLRLLNGCNARSLNFATSDNRPLYVIASDGGLLPEPVKVSELPVLMGERFEVLVEVND





NKPFDLVTLPVSQMGMAIAPFDKPHPVMRIQPIAISASGALPDTLSSLPALPSLEGLTVRK





LQLSMDPMLDMMGMQMLMEKYGDQAMAGMDHSQMMGHMGHGNMNHMNHGGKF





DFHHANKINGQAFDMNKPMFAAAKGQYERWVISGVGDMMLHPFHIHGTQFRILSENG





KPPAAHRAGWKDTVKVEGNVSEVLVKFNHDAPKEHAYMAHCHLLEHEDTGMMLGFT





V





>Oxid_2


Seq. ID NO: 90



MSSRLSFLTSLVTLALVSSTYAGVGPVVDLTVSNAVISPDGFDRDAIVVNGVFPAPLITG






KKGDRFQLNVIDNMTNHTMLKSTSIHWHGFFQKGTNWADGGAFVNQCPIAPGHSFLYD





FRVPDQAGTFWYHSHLSTQYCDGLRGPIVVYDPNDPHADLYDVDNDSTVITLADWYH





VAARLGPRFPLGADSTVINGLGRSLSTPNADLAVISVTQGKRYRFRLISLSCDPFHTFSID





GHDLTIIEADSVNTEPLVVDAIPIFAGQRYSFVLSAVKDIDNYWIRADPNFGTTGFASGIN





SAILRYDGAAPIEPTAVLAPVSVNPLVETDLHPLEDMPVPGRPTKGGVDKAINLDFSFSFP





NFFINNATFTSPTVPILLQIMSGAQAAQDLLPSGSVIELPAQSTIELTLPATVNAPGVPHPF





HLHGHTFAVVRSAGSTAYNYDNPIWRDVVSTGTPAANDNVTIRFTTDNPGPWFLHCHI





DFHLEAGFAVVFAEGVPQTQVANPVPQAWEELCPIYDALPEDDQ





>Oxid_3


Seq. ID NO: 91



MSSFKVSCKVTNNNGDQNVETNSVDRRNVLLGLGGLYGVANAIPLAASAAPTPPPDLK






TCGKATISDGPLVGYTCCPPPMPTNFDNIPYYKFPSMTKLRIRSPAHAVDEEYIAKYNLAI





SRMKDLDKTEPLNPLGFKQQANIHCAYCNGAYVFGDKVLQVHNSWLFFPFHRWYLYF





YERILGKLIDDPTFALPYWNWDHPKGMRLPPMFDREGTSIYDERRNQQVRNGTVMDLG





SFGDKVETTQLQLMSNNLTLMYRQMVTNAPCPLLFFGAPYVLGNNVEAPGTIENIPHIP





VHIWAGTVRGSTFPNGDTSYGEDMGNFYSAGLDSVFYCHHGNVDRMWNEWKAIGGK





RRDLSEKDWLNSEFFFYDENKKPYRVKVRDCLDAKKMGYDYAPMPTPWRNFKPKTKV





SAGKVNTSSLPPVNEVFPLAKMDKVISFSINRPASSRTQQEKNEQEEMLTFDNIKYDNRG





YIRFDVFLNVDNNVNANELDKVEFAGSYTSLPHVHRVGENDHTATVTFQLAITELLEDI





GLEDEETIAVTLVPKKGGEGISIENVEIKLLDC





>Oxid_4


Seq. ID NO: 92



MSGQNKMGLILVFLFLDGLLVCLAADVDVHNYTFVLQEKNFTKWCSTKSMLVVNGSF






PGPTITARKGDTIFVNVINQGKYGLTIHWHGVKQPRNPWSDGPEYITQCPIKPGTNFIYEV





ILSTEEGTLWWHAHSDWTRATVHGALVILPANGTTYPFPPPYQEQTIVLASWFKGDVME





VITSSEETGVFPAAADGFTINGELGDLYNCSKETTYRLSVQPNKTYLLRIVNAVLNEEKF





FGIAKHTLTVVAQDASYIKPINTSYIMITPGQTMDVLFTTDQTPSHYYMVASPFHDALDT





FANFSTNAIIQYNGSYKAPKSPFVKPLPVYNDIKAADKFTGKLRSLANEKFPVNVPKVNV





RRIFMAVSLNIVKCANKSCNNNIGHSTSASLNNISFALPQTDVLQAYYRNISGVFGRDFP





TVQKKANFSLNTAQGTQVLMIEYGEAVEIVYQGTNLGAATSHPMHLHGFNFYLVGTGA





GTFNNVTDPPKYNLVDPPELNTINLPRIGWAAIRFVADNPGVWFLHCHFERHTTEGMAT





VVIVKDGGTTNTSMLPSPAYMPPCS





>Oxid_5


Seq. ID NO: 93



MSSRKICLGCSHSLSSQPFTYTTQKTVSSRRIGDSQWRLSRGYTRTLTSASASVATAPAK






LLTVNETQKCLRNMVRGGDVISYILSHSSRNADQNLKDLDSLILEPVCSATHEMFDVFEI





PEHILTPFCDNRNVPEEQVTRNPNLRTDCLTMKRFVLLQSLVAVASAGIGPVADLYVGN





RILAPDGFNRSTVLGGTSSSDFGFPAPLITGTKGDRFQLNVINQLTDTTMLRSTSIHWHGL





FQAGSSWADGPVGVNQCPIAPGNSFLYDFNVPDQAGTFWYHSHYSTQYCDGLRGAFV





VRDPNDPHASLYDVDNDDTVITLADWYHTSAKELSGSFPAEEATLINGLGRYSGGPTSP





LAIVNVEAGKRYRFRLVSISCDPFYTFSIDGHDLTIIEADGENTDPLVVDYLEIYAGQRYS





VVLNANQPVDNYWIRANSSNGPRDFVGGTNSAILRYAGASNSDPTTELGPRNNRLVEN





NLHALGSPGVPGTHTIGEADVNINLEILFTPPNVLTVNGAQFIPPTAPVLLQILSGTKQAT





DLLPPGSVYVLPRNAVVELTIPGGSGGSPHPMHLHGHVFDVVRSAGSDTINWDNPVRRD





VVNIGTSTSDNATIRFTTDNPGPWIFHCHIDWHLEVGLAVVFAEDPDTIENSTHPAAWDE





LCPIYDNLPSDEL





>Oxid_6


Seq. ID NO: 94



MSSTLEKFVDALPIPDTLKPVQQSKEKTYYEVTMEECTHQLHRDLPPTRLWGYNGLFPG






PTIEVKRNENVYVKWMNNLPSTHFLPIDHTIHHSDSQHEEPEVKTVVHLHGGVTPDDSD





GYPEAWFSKDFEQTGPYFKREVYHYPNQQRGAILWYHDHAMALTRLNVYAGLVGAYII





HDPKEKRLKLPSDEYDVPLLITDRTINEDGSLFYPSAPENPSPSLPNPSIVPAFCGETILVN





GKVWPYLEVEPRKYRFRVINASNTRTYNLSLDNGGDFIQIGSDGGLLPRSVKLNSFSLAP





AERYDIIIDFTAYEGESIILANSAGCGGDVNPETDANIMQFRVTKPLAQKDESRKPKYLAS





YPSVQHERIQNIRTLKLAGTQDEYGRPVLLLNNKRWHDPVTETPKVGTTEIWSIINPTRG





THPIHLHLVSFRVLDRRPFDIARYQESGELSYTGPAVPPPPSEKGWKDTIQAHAGEVLRIA





ATFGPYSGRYVWHCHILEHEDYDMMRPMDITDPHK





>Oxid_7


Seq. ID NO: 95



MSSVFSAAFSAFVALGLTLGAFAAVGPVADIHITDDTIAPDGFSRAAVLAGGTFPGPLIT






GNMGDAFKLNVIDELTDASMLKSTSIHWHGFFQKGTNWADGPAFVNQCPITTGNSFLY





DFQVPDQAGTYWYHSHLSTQYCDGLRGAFVVYDPSDPHKDLYDVDDESTVITLADWY





HTLARQIVGVAISDTTLINGLGRNTDGPADAALAVINVEAGKRYRFRLVSISCDPNWVFS





IDNHDFTVIEVDGVNSQPLNVDSVQIFAGQRYSLVLNANQPVDNYWIRADPNLGTTGFA





GGINSAILRYKGAAVAEPTTSQTTSTKPLLETDLHPLVSTPVPGLPQPGGTDVVQNLILGF





NAGQFTINGASFVPPTVPVLLQILSGTTNAQDLLPSGSVFELPLGKTVELTLAAGVLGGP





HPFHLHGHNFHVVRSAGQDTPNYDDPIVRDVVSTGASGDNVTIRFTTDNPGPWFLHCHI





DWHLEAGFAVVFAEAVNETKSGNPTPAAWDNLCTLYDALADGDK





>Oxid_8


Seq. ID NO: 96



MSSCLAAIWSRKRAEHAASRLPALQEKRSTLSYAYARLDGSLASMFPNRFWSSVSLGAR






IKPVDGSSEEPTARPSSCARPFLHSASSESGFVSSSRPTSFCVTCSRRWRCCSLLAMLGFR





FLHTSVLAALTLSLKSYAAIGPVTDLTVANANISPDGYERAAVLAGGSFPGPLITGRKGD





HFQINVVDQLTNHTMLKSTSIHWHGLFQKGTNWADGPAFVNQCPISTGNSFLYDFHVP





DQAGTFWYHSHLSTQYCDGLRGAMVVYDPNDPHKNLYDVDNDDTVITLADWYHVAS





KLGPAVPFGGDSTLINGKGRSTATPTADLAVISVTQGKRYRFRLVSLSCDPNFTFSIDGH





ALTVIEADAVSTQPLTVDSIQIFAGQRYSFVLNANQSVDSYWIRAQPSLGNVGFDGGLNS





AILRYDGAAPTEPSALAVPVSTNPLVETALRPLNSMPVPGKAEVGGVDKAINLAFSFNG





TNFFINGATFVPPAVPVLLQIMSGAQSASDLLPSGSVFVLPSNATIELSFPATANAPGAPH





PFHLHGHTFAVVRSAGSAEYNYENPIWRDVVSTGSPGDNVTIRFRTDNPGPWFLHCHID





PHLEAGFAVVMAEDTRDVKADNPEPKAWDDLCPTYNALAVDDQ





>Oxid_9


Seq. ID NO: 97



MFPGARILATLTLALHLLHGTNAAIGPTGDMYIVNEDVSPDGFTRSAVVARSDPTTNGT






SETLTGVLVQGNKGDNFQLNVLNQLSDTTMLKTTSIHWHGFFQSGSTWADGPAFVNQC





PIASGNSFLYDFNVPDQAGTFWYHSHLSTQYCDGLRGPFIVYDPSDPHLSLYDVDNADTI





ITLEDWYHVVAPQNAVLPTADSTLINGKGRFAGGPTSALAVINVESNKRYRFRLISMSC





DPNFTFSIDGHSLQVIEADAVNIVPIVVDSIQIFAGQRYSFVLNANQTVDNYWIRADPNLG





STGFDGGINSAILRYAGATEDDPTTTSSTSTPLEETNLVPLENPGAPGPAVPGGADININL





AMAFDVTNFELTINGSPFKAPTAPVLLQILSGATTAASLLPSGSIYSLEANKVVEISIPALA





VGGPHPFHLHGHTFDVIRSAGSTTYNFDTPARRDVVNTGTDANDNVTIRFVTDNPGPWF





LHCHIDWHLEIGLAVVFAEDVTSITAPPAAWDDLCPIYDALSDSDKDNPRFGFAPATGG





KATGRRNWFSKARRRAILVPYLKLLKLGLVMVFYIRAERNHGRLSQSTPPNRRVDQREL





ITNTWVERFFLHRLMFLKLFVGTACFMHIFNSVSSLGMCTLRTSHGSSESLASPSATMML





GGGLTLLSANIRLWCYAEMRDLYDFEVNIKKAHRLVTTGPYSVSMVMFSKDHWLYQC





GLRSMVGVVLSCIWCAEVVLINGIMVPARMKVEDDGLRRHFGREWDEYASRVAYRLV





PEIY





>Oxid_10


Seq. ID NO: 98



MSSKSFISAATLLVGILTPSVAAAPPSTPEQRDLLVPITEREEAAVKARQQSCNTPSNRAC






WTDGYDINTDYEVDSPDTGVVRPYTLTLTEVDNWTGPDGVVKEKVMLVNNSIIGPTIFA





DWGDTIQVTVINNLETNGTSIHWHGLHQKGTNLHDGANGITECPIPPKGGRKVYRFKAQ





QYGTSWYHSHFSAQYGNGVVGAIQINGPASLPYDTDLGVFPISDYYYSSADELVELTKN





SGAPFSDNVLFNGTAKHPETGEGEYANVTLTPGRRHRLRLINTSVENHFQVSLVNHTMT





IIAADMVPVNAMTVDSLFLGVGQRYDVVIEASRTPGNYWFNVTFGGGLLCGGSRNPYP





AAIFHYAGAPGGPPTDEGKAPVDHNCLDLPNLKPVVARDVPLSGFAKRPDNTLDVTLD





TTGTPLFVWKVNGSAINIDWGRPVVDYVLTQNTSFPPGYNIVEVNGADQWSYWLIEND





PGAPFTLPHPMHLHGHDFYVLGRSPDESPASNERHVFDPARDAGLLSGANPVRRDVTM





LPAFGWVVLAFRADNPGAWLFHCHIAWHVSGGLGVVYLERADDLRGAVSDADADDL





DRLCADWRRYWPTNPYPKSDSGL





>Oxid_11


Seq. ID NO: 99



MSSRFQSLFFFVLVSLTAVANAAIGPVADLTLTNAQVSPDGFAREAVVVNGITPAPLITG






NKGDRFQLNVIDQLTNHTMLKTSSIHWHGFFQQGTNWADGPAFVNQCPIASGHSFLYD





FQVPDQAGTFWYHSHLSTQYCDGLRGPFVVYDPNDPHASLYDIDNDDTVITLADWYHV





AAKLGPRFPFGSDSTLINGLGRTTGIAPSDLAVIKVTQGKRYRFRLVSLSCDPNHTFSIDN





HTMTIIEADSINTQPLEVDSIQIFAAQRYSFVLDASQPVDNYWIRANPAFGNTGFAGGINS





AILRYDGAPEIEPTSVQTTPTKPLNEVDLHPLSPMPVPGSPEPGGVDKPLNLVFNFNGTNF





FINDHTFVPPSVPVLLQILSGAQAAQDLVPEGSVFVLPSNSSIEISFPATANAPGFPHPFHL





HGHAFAVVRSAGSSVYNYDNPIFRDVVSTGQPGDNVTIRFETNNPGPWFLHCHIDFHLD





AGFAVVMAEDTPDTKAANPVPQAWSDLCPIYDALDPSDL





>Oxid_12


Seq. ID NO: 100



MSSGLQRFSFFVTLALVARSLAAIGPVASLVVANAPVSPDGFLRDAIVVNGVVPSPLITG






KKGDRFQLNVDDTLTNHSMLKSTSIHWHGFFQAGTNWADGPAFVNQCPIASGHSFLYD





FHVPDQAGTFWYHSHLSTQYCDGLRGPFVVYDPKDPHASRYDVDNESTVITLTDWYHT





AARLGPRFPLGADATLINGLGRSASTPTAALAVINVQHGKRYRFRLVSISCDPNYTFSID





GHNLTVIEVDGINSQPLLVDSIQIFAAQRYSFVLNANQTVGNYWVRANPNFGTVGFAGG





INSAILRYQGAPVAEPTTTQTTSVIPLIETNLHPLARMPVPGSPTPGGVDKALNLAFNFNG





TNFFINNATFTPPTVPVLLQILSGAQTAQDLLPAGSVYPLPAHSTIEITLPATALAPGAPHP





FHLHGHAFAVVRSAGSTTYNYNDPIFRDVVSTGTPAAGDNVTIRFQTDNPGPWFLHCHI





DFHLDAGFAIVFAEDVADVKAANPVPKAWSDLCPIYDGLSEANQ





>MBP


Seq. ID NO: 101



ATGAAGATTGAGGAGGGAAAACTTGTCATATGGATTAATGGCGACAAAGGCTATAA






TGGGTTAGCAGAAGTCGGTAAAAAGTTTGAGAAAGACACTGGGATTAAGGTAACGG





TCGAGCACCCAGATAAGCTGGAAGAGAAATTCCCACAGGTTGCCGCGACTGGGGAT





GGCCCCGACATCATATTCTGGGCGCACGACAGATTTGGCGGTTATGCACAAAGTGG





GTTACTAGCTGAAATTACCCCAGATAAGGCATTTCAAGACAAACTATATCCTTTCAC





TTGGGATGCGGTTAGATATAACGGAAAATTGATAGCCTATCCTATTGCCGTGGAGGC





TTTATCACTAATCTATAACAAGGACCTATTGCCGAACCCGCCCAAAACATGGGAAGA





AATCCCTGCCTTAGACAAAGAACTTAAAGCGAAAGGCAAGAGTGCTCTAATGTTCA





ATCTTCAAGAGCCTTATTTTACTTGGCCCTTGATAGCGGCCGATGGCGGCTACGCCTT





CAAGTACGAGAACGGGAAGTATGATATTAAAGACGTTGGAGTGGATAACGCGGGTG





CGAAGGCTGGCCTGACGTTCTTAGTGGACTTGATTAAAAATAAGCACATGAACGCG





GACACGGACTACAGCATCGCGGAGGCGGCTTTTAATAAGGGCGAAACTGCTATGAC





GATCAATGGACCTTGGGCTTGGTCAAATATAGATACAAGTAAGGTAAATTATGGAG





TAACTGTGCTGCCGACCTTTAAGGGCCAACCTAGTAAACCGTTTGTCGGCGTGTTGT





CCGCCGGGATAAACGCCGCCTCCCCCAACAAAGAATTAGCAAAGGAATTTTTGGAG





AATTACTTACTGACCGATGAGGGCTTGGAGGCAGTCAATAAGGATAAGCCCCTGGG





CGCTGTCGCATTGAAGTCATATGAAGAAGAACTTGCAAAAGATCCCCGTATTGCTGC





CACAATGGAGAATGCACAGAAAGGTGAAATAATGCCCAACATACCGCAGATGAGTG





CGTTCTGGTATGCGGTAAGAACAGCTGTTATCAACGCTGCGTCCGGGAGGCAAACA





GTTGATGAGGCTTTGAAAGACGCTCAGACCAATTCCTCCAGCAACAACAATAATAAT





AACAATAACAACAACTTAGGTATAGAAGGTAGATAA





>VEN


Seq. ID NO: 102



ATGGTTAGTAAAGGAGAAGAGTTATTCACTGGCGTTGTACCTATTCTGGTTGAGCTA






GACGGAGATGTTAATGGCCACAAATTCTCCGTATCCGGGGAGGGGGAGGGCGATGC





AACATATGGAAAACTTACGCTAAAACTAATCTGTACGACTGGGAAACTACCCGTTCC





GTGGCCCACATTGGTTACGACACTTGGCTATGGCCTACAGTGTTTCGCTAGATACCC





TGATCATATGAAGCAACATGATTTCTTTAAGAGTGCAATGCCGGAGGGTTACGTTCA





GGAAAGAACAATTTTCTTCAAGGATGACGGCAATTACAAGACGAGGGCCGAGGTAA





AATTCGAGGGGGATACGCTGGTTAACAGGATAGAATTAAAAGGTATAGATTTTAAA





GAAGACGGGAACATTCTAGGTCATAAACTTGAGTACAATTACAACTCCCATAATGTC





TACATAACAGCGGACAAGCAGAAGAATGGTATAAAGGCAAATTTTAAGATCAGACA





TAACATTGAAGACGGGGGAGTCCAGTTGGCTGACCACTATCAACAAAATACCCCCA





TTGGGGACGGTCCGGTGTTGCTTCCAGATAACCACTATCTTTCTTACCAGTCAGCCCT





ATCCAAAGACCCAAACGAGAAGAGGGATCATATGGTTCTTCTGGAGTTTGTCACCGC





AGCAGGGATTACTTTGGGGATGGACGAGCTATACAAGTAA





>MST


Seq. ID NO: 103



ATGGCTATGTTCTGCACTTTCTTCGAAAAACATCATCGTAAATGGGACATTTTACTA






GAGAAATCCACCGGTGTGATGGAGGCGATGAAAGTGACATCCGAAGAAAAGGAAC





AACTGAGCACAGCTATTGACCGTATGAACGAGGGCCTGGATGCTTTTATCCAGCTAT





ATAACGAGTCCGAAATAGACGAGCCCCTTATCCAGCTTGACGATGACACAGCCGAA





TTAATGAAACAAGCTAGAGATATGTACGGTCAGGAGAAGTTAAATGAAAAACTAAA





TACAATCATTAAGCAAATTTTGTCAATCTCTGTATCCGAGGAGGGAGAGAAAGAAG





GCAGCGGATCAGGATAA





>OSP


Seq. ID NO: 104



ATGTATCTTCTAGGGATTGGGCTTATTTTAGCACTGATTGCCTGCAAGCAAAACGTTT






CTTCACTAGACGAGAAAAACTCAGTGTCAGTAGACCTTCCTGGTGAGATGAAGGTTT





TGGTCAGCAAGGAAAAGAACAAAGATGGCAAGTACGATTTAATTGCTACCGTGGAT





AAGTTGGAGCTGAAAGGAACATCCGACAAGAACAACGGCTCTGGGGTACTTGAAGG





AGTCAAGGCCGATAAAAGCAAAGTCAAGCTAACAATTTCCGACGACGGGTCTGGAT





AA





>OLE


Seq. ID NO: 105



ATGGCAGACAGAGATAGGTCAGGTATCTATGGCGGTGCTCATGCGACGTATGGCCA






ACAGCAACAGCAAGGAGGAGGCGGGAGACCTATGGGCGAACAAGTCAAGGGCATG





CTGCATGACAAGGGCCCTACGGCGTCCCAGGCCTTGACAGTTGCTACCTTATTTCCT





TTAGGAGGGCTGCTTTTGGTGCTTAGTGGATTAGCCCTTACTGCTTCCGTAGTCGGTC





TAGCAGTCGCAACGCCGGTCTTTTTGATCTTCAGTCCGGTGCTAGTCCCAGCGGCAT





TGCTAATCGGCACTGCCGTCATGGGGTTCTTGACCTCCGGTGCTCTGGGTCTGGGTG





GTTTGTCCTCTCTGACCTGTCTAGCAAACACTGCGCGTCAGGCTTTTCAGCGTACCCC





TGACTACGTGGAAGAAGCTCATAGAAGGATGGCTGAGGCAGCAGCGCATGCCGGAC





ATAAGACGGCTCAGGCTGGGCAAGCTATTCAAGGCAGGGCTCAAGAGGCTGGCGCT





GGTGGTGGGGCCGGGTAA





>MBP


Seq. ID NO: 106



MSKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGP






DIIFWAHDRFGGYAQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIY





NKDLLPNPPKTWEEIPALDKELKAKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGK





YDIKDVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGPWAW





SNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEA





VNKDKPLGAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINA





ASGRQTVDEALKDAQTNSSSNNNNNNNNNNLGIEGR





>VEN


Seq. ID NO: 107



MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKLICTTGKLPVPWP






TLVTTLGYGLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEG





DTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYITADKQKNGIKANFKIRHNIEDGGV





QLADHYQQNTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMD





ELYK





>MST


Seq. ID NO: 108



MSAMFCTFFEKHHRKWDILLEKSTGVMEAMKVTSEEKEQLSTAIDRMNEGLDAFIQLY






NESEIDEPLIQLDDDTAELMKQARDMYGQEKLNEKLNTIIKQILSISVSEEGEKEGSGSG





>OSP


Seq. ID NO: 109



MSSYLLGIGLILALIACKQNVSSLDEKNSVSVDLPGEMKVLVSKEKNKDGKYDLIATVD






KLELKGTSDKNNGSGVLEGVKADKSKVKLTISDDGSG





>OLE


Seq. ID NO: 110



MSSADRDRSGIYGGAHATYGQQQQQGGGGRPMGEQVKGMLHDKGPTASQALTVATL






FPLGGLLLVLSGLALTASVVGLAVATPVFLIFSPVLVPAALLIGTAVMGFLTSGALGLGG





LSSLTCLANTARQAFQRTPDYVEEAHRRMAEAAAHAGHKTAQAGQAIQGRAQEAGAG





GGAG





Claims
  • 1-76. (canceled)
  • 77. A nucleic acid encoding an enzyme that can modify a first cannabinoid into a second cannabinoid or a non-cannabinoid, wherein the nucleic acid comprises any one of SEQ ID NOs:1-50.
  • 78-88. (canceled)
  • 89. An expression cassette comprising the nucleic acid of claim 77.
  • 90-91. (canceled)
  • 92. A cell comprising the expression cassette of claim 89, capable of expressing the enzyme that can modify a first cannabinoid into a second cannabinoid or a non-cannabinoid.
  • 93. The cell of claim 92, which is a bacterial cell.
  • 94. The cell of claim 92, which is a yeast cell.
  • 95. The yeast cell of claim 95, which is a species of Saccharomyces, Candida, Pichia, Schizosaccharomyces, Scheffersomyces, Blakeslea, Rhodotorula, or Yarrowia.
  • 96. The cell of claim 92, further comprising a THC biosynthetic pathway that allows the yeast cell to produce the first cannabinoid.
  • 97. The cell of claim 96, wherein the cell can synthesize the first cannabinoid from a non-cannabinoid.
  • 98. The cell of claim 96, wherein the cell comprises a recombinant geranyl pyrophosphate synthase and a cannabinoid synthase, wherein the cannabinoid synthase can combine a polyprenyl pyrophosphate with alkylresorcylic acid to create a cannabinoid.
  • 99. The cell of claim 92, wherein the first cannabinoid is THC or THCA and the second cannabinoid is CBN or CBNA.
  • 100-105. (canceled)
  • 106. The cell of claim 92, wherein the first and/or second cannabinoid comprises the structure
  • 107. The cell of claim 92, wherein the enzyme is an aromatase, a dehydrogenase, an oxidase or a desaturase.
  • 108. The cell of claim 92, wherein the enzyme is an oxidase.
  • 109. The cell of claim 108, wherein the oxidase is a laccase comprising an amino acid sequence comprising any one of SEQ ID NOs:92-100.
  • 110. The cell of claim 108, wherein the oxidase is a cytochrome P450, expressed with a cytochrome P450 reductase (CPR).
  • 111. The cell of claim 108, wherein the oxidase is selected from the group consisting of a flavin-dependent monooxygenase, a copper-dependent monooxygenase, a multicopper oxidase, a bacterial polysaccharide monooxygenase, a non-heme iron-dependent monooxygenase, a pterin-dependent monooxygenase, a diiron hydroxylase, an alpha-ketoglutarate-dependent hydroxylase, a cofactor-dependent monooxygenase, and a cofactor-independent monooxygenase.
  • 112. The cell of claim 108, wherein the oxidase is a copper-dependent monooxygenase comprising an amino acid sequence having SEQ ID NO:89 or multicopper oxidase comprising an amino acid sequence having SEQ ID NO:90 or 91.
  • 113. The cell of claim 92, wherein the first cannabinoid is converted into a second cannabinoid.
  • 114. The cell of claim 113, wherein the first cannabinoid is tetrahydrocannabinol (THC) or tetrahydrocannabinolic acid (THCA) and the second cannabinoid is cannabinol (CBN) or cannabinolic acid (CBNA) and the enzyme is a desaturase, an aromatase, a dehydrogenase, or an oxidase.
  • 115. The call of claim 113, wherein the first cannabinoid is tetrahydrocannabivarinic acid (THCVA), tetrahydrocannabiphorolic acid (TCHPA), tetrahydrocannabiorcinic acid (THCOA) or sesquiTHCA (THCFA) and the second cannabinoid is cannabinerolic acid (CBNA), cannabinerovarinic acid (CBNVA), cannabiphorolic acid (CBNPA), cannabinorcinic acid (CBNOA) or sesqui cannabinerolic acid (sesqui-CBNA), respectively.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 63/164,126, filed Mar. 22, 2021, and incorporated by reference herein in its entirety.

Provisional Applications (1)
Number Date Country
63164126 Mar 2021 US