The present disclosure is directed to a bipod for a shooting device with a quick connect feature for standard rails and a biasing mechanism that includes a dead center position. In a dead center position the biasing mechanism does, not advance the legs to either a deployed configuration or a collapsed, configuration. The user merely displaces the biasing mechanism slightly off the dead center position and the legs automatically open or close, as desired. The biasing mechanism maintains the interface with the rail when in the deployed configuration and retains the lower portions of the legs adjacent each other in the collapsed configuration.
Bipods are known for use with shooting devices which can be designed specifically for hunting, target practice, war games, etc. These Bipods can greatly improve the accuracy of the shooter by providing a stabilizing support for the shooting device. Bipods can be used while the shooter is sitting, kneeling or even standing if there is a raised platform to support the bipod. Bipods can also be used when the shooter is stalking or tree stand hunting.
Bipods are known which attach to a threaded sling receiver using a sling stud. However, these Bipods require that the sling be removed from the shooting device, at least at the threaded sling receiver, and be replaced with the bipod. While the shooting, device is more convenient to shoot, it is less convenient to carry, and activities such as hunting and war games typically require both convenient carrying and shooting. Also, the threaded sling receiver is part of the shooting device stock, and in modern shooting devices the stock is much shorter than the barrel so that the bipod is located midway along the barrel which is not as stable as a bipod located at or near the end of the barrel. This method also restricts the bipod location to a single position along the stock which may not be the best position particularly when hunting in rough terrain. Further, such a bipod may be limited to use with a single shooting device due to differences in threaded sling receivers and associated bipod compatibility.
Another known method is bipod attachment to a sling swivel. This method is slightly more convenient than attaching the bipod to the threaded sling receiver but has the same disadvantages.
A cradle bipod has the advantages of being able to locate the bipod along a variety of positions along the stock or barrel, can easily adapt to a variety of shooting devices and does not require removal of the sling. However, the cradle bipod has the disadvantage of not positively connecting to the shooting device therefor, particularly when following a moving target, cradle bipods can collapse unless held and even when held may not be stable. When stalking, for example, the cradle bipod will need to be carried which is another disadvantage.
Shooting devices often include a rail according to U.S. military standard MIL-STD-1913 which may provide structure for attachment of accessories, such as bipods. Various types of rail systems, including Picatinny and Weaver rails (referred to herein as “standard rails”) are commercially available. Standard rails are long, thin platform having a flattened hexagonal cross section and a series of uniformly shaped and spaced transverse grooves formed along its length with which to attach various devices to the shooting device. A bipod suitable for stock attachment will not typically be suited for rail attachment.
The present disclosure is directed to a bipod for a shooting device with a quick connect/disconnect feature that couples to a standard rails. The present bipod includes a biasing mechanism coupled to the legs. In a dead center position the, biasing mechanism does not advance the legs to either a deployed configuration or a collapsed configuration. With minimal force the user merely displaces the biasing mechanism slightly off the dead center position and the legs automatically open or close.
One embodiment is directed to a bipod with a quick connect feature that engages with a standard rail having a generally flattened hexagonal cross-sectional shape with alternating transverse, grooves and ridges located along an exposed major surface. The bipod includes a pair legs pivotally attached at a pivot axis. Each of the legs has, upper portions and lower portions located on opposite side of the pivot axis. The legs are moveable between a deployed configuration with the lower portions separated; and the upper portions proximate each other, and a collapsed configuration with the lower portions proximate each other and the upper portions separated. U-shaped portions are located at the upper portions of the legs that form an interface with the standard rail when the legs are in a deployed configuration. A biasing mechanism is coupled to the, legs that has a dead center position when the legs are in an intermediate configuration between the deployed configuration and the collapsed configuration. The biasing mechanism does not bias the legs toward either the deployed configuration or the collapsed configuration when in the dead center position, but shifting the biasing mechanism to one side of the dead center position automatically biases the legs toward the deployed configuration, and shifting the biasing mechanism to an opposite side of the dead center position automatically biases the legs toward the collapsed configuration. The biasing mechanism maintains the interface with the rail when in the deployed configuration and retains the lower portions of the legs adjacent each other in the collapsed configuration.
The bipod optionally includes at least one rail groove engagement members located at the interface that couples with one or more transverse grooves in the standard rail. In one embodiment at least one rail groove engagement member is biased into the interface to engage with a transverse groove in the standard rail members. When compressed, the at least one rail groove engagement member is preferably positioned flush with a lower surface of the interface. In use, the user snaps the bipod onto the rail and then shifts the bipod slightly forward or rearward until the rail groove engagement member snaps into the transverse groove.
In another embodiment, the bipod includes at least one recess in one of the upper portions of the legs adjacent the interface with at least one rail groove engagement member located in the recess. The rail groove engagement member is biased into the interface to selectively couple with a transverse groove in the standard rail. In one embodiment, the rail groove engagement member is pivotally attached to the upper portion in the recess. The biasing mechanism is preferably integrally formed in the rail groove engagement member. Each of the legs preferably includes a rail groove engagement member.
The U-shaped portions preferably include angled surfaces that correspond to opposing angled side surfaces on a standard rail. The lower portions of the legs are optionally telescopically extendable and/or foldable.
The biasing mechanism typically provides one of a tension force or a compression force to bias the legs from the dead center position to either the deployed configuration or the collapsed configuration. In one embodiment, the biasing mechanism is a cam structure coupled to one leg and a compression member biasing a cam follower against the cam structure coupled to the other leg. The cam structure preferably includes a high point or lobe that, engages with the cam follower when the legs are in the intermediate configuration.
In another embodiment the biasing mechanism includes a spring pivotally attached to the upper portions of each of the legs at attachment points that shift between opposite sides of the pivot axis when in the deployed configuration or the collapsed configuration. The spring provides a first tension force located between the interface and the pivot axis when in the deployed configuration, and a second tension force located on the opposite side of the pivot, axis from the interface when in the collapsed configuration.
In another embodiment, the biasing mechanism includes a spring pivotally attached to the upper portions of each of the legs that provides first and second tension forces along axes that shifts to opposite sides of the pivot axis when in the deployed configuration or the collapsed configuration. The spring provides a first tension force along an axis located between the interface and the pivot axis when in the deployed configuration, and a second tension force along an axis located on the opposite side of the pivot axis from the interface when in the collapsed configuration.
In one embodiment the bipod includes a pair legs pivotally attached at a pivot axis. Each of the legs has upper portions and lower portions located on opposite, side of the pivot axis. The legs are moveable between a deployed configuration with the lower portions separated and the upper portions proximate each other, and a collapsed configuration with the lower portions proximate each other and the upper portions separated. U-shaped portions are located at the upper portions of the legs that form an interface with the standard rail when the legs are in a deployed configuration. A spring is pivotally attached to the upper portions of each of the legs at attachment points that shift between opposite sides of the pivot axis when in the deployed configuration or the collapsed configuration. The spring provides a first tension force located between the interface and the pivot axis when in the deployed configuration and a second tension force located on the opposite side of the pivot axis from the interface when in the collapsed configuration.
Each of the legs 54 includes lower portions 62A, 62B (“62”) and upper portions 64A, 64B (“64”). The lengths 66 (see
Turning back to
In the collapsed configuration 90 illustrated in
During the transition between the deployed configuration 52 and the collapsed configuration 90 the spring 87 crosses over the pivot, axis 60 and there is no net biasing force toward either the deployed configuration 52 or the collapsed configuration 90. In this position the biasing mechanism 80 is at dead center. The user must provide a small force that moves the biasing mechanism 80 off dead center by displacing the legs toward either the deployed configuration 52 or the collapsed configuration 90. Once done, the biasing mechanism automatically advance the legs to either the deployed configuration 52 or the collapsed configuration 90. As used herein, “dead center” refers to a configuration on a bipod where a biasing force does not bias the legs to either a deployed configuration or a collapsed configuration.
In the illustrated embodiment, dead center occurs when the legs 54 are in an intermediate configuration somewhere between the deployed configuration 52 or the collapsed configuration 90. Once off dead center the biasing mechanism 80 takes over and automatically completes the transition to either the deployed configuration 52 or the collapsed configuration 90, depending on the force applied by the user.
Rail groove engagement members 74A, 74B (“74”) are preferably located in recesses 86 adjacent the interface 72 so that engagement features 98A, 98B (“98”) can couple with spaced transverse grooves; 104 (see
In an alternate embodiment, the rail groove engagement members 74 are fixed within the interface 72. A user must align the rail groove engagement members 74 with one of the transverse grooves 104 on the rail in order to attach the bipod 50.
In operation, when the interface 72 is coupled with a rail it is not required for the engagement features 98 to be aligned with one of the transverse grooves 104 (see
As illustrated in
The U-shaped portions 70 include angled surfaces 120, 122 corresponding angled side surfaces 124, 126 on the hexagonal cross-section 102, respectively. Distal portions 128 on the U-shaped portions 70 are configured to reside in the undercuts 112. In the illustrated embodiment, base 110 engages with distal portions 128. In use, the weight of a shooting device applies force 187 onto the rail 100 and the interface 72. The force 187 further biases the U-shaped portions 70 toward each other, supplementing the grip on the rail 100.
The legs 254A, 254B (“254”) are pivotally attached at pivot axis 256. Upper portion 258A of leg 254A includes cam structure 260 and upper portion 258b of the leg 254B includes biasing mechanism 252.
In the illustrated embodiment the biasing mechanism 252 includes anchor 264 attached to the upper portion 258B that supports compression spring 266. The compression spring 266 includes follower 268 that it presses against cam surface 270. The traveler 268 is preferably a smooth, low friction device. In one embodiment, the follower 268 is a rotating structure such as a ball bearing or rotating shaft.
As best illustrated in
As best illustrated in
In the intermediate configuration 300, separation 296 between the U-shaped portions 298 is preferably greater than the width of the rail 100 (see e.g.,
In the collapsed configuration 280 illustrated in
As best illustrated in
As best illustrated in
The leg 304A includes biasing mechanism 302 and leg 304B includes cam structure 340. In the illustrated embodiment the biasing mechanism 302 includes compression spring 342 that biases follower 344 against cam surface 346. The follower 344 is preferably a smooth, low friction material, such, as nylon.
As best illustrated in
During the transition between the deployed configuration 350 and the collapsed configuration the legs 304 are in an intermediate configuration (see e.g.,
In use, the interface 322 is positioned, opposite the, rail with the legs 304 in the intermediate configuration. The user then biases one of the legs toward the deployed configuration 350 and the biasing mechanism 302 automatically couples the U-shaped members 324 to the rail. The user then slides the bipod 300 slightly forward or backward along the rail until the rail groove engagement member 320 snaps into one of the transverse groove on the rail.
In the collapsed configuration the compression force 348 presses the follower 344 into depression 358 on the cam surface 346. The compression force 348 maintains the legs 304 in the collapsed configuration. In order to move the legs 304 to the deployed configuration 350 illustrated in
Where a range, of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within this disclosure. The upper and lower limits of these smaller ranges which may independently be included in the smaller ranges is also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either both of those included limits are also included in the disclosure.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the various methods and materials are, now described. All patents and publications mentioned herein, including those cited in the Background of the application, are hereby incorporated by reference to disclose and described the methods and/or materials in connection with which the publications are cited.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
Other embodiments are possible. Although the description above contains much specificity, these should not be construed as limiting the scope of the disclosure, but as merely providing illustrations of some of the presently preferred embodiments. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of this disclosure. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes disclosed. Thus, it is intended that the scope of at least some of the present disclosure should not be limited by the particular disclosed embodiments described above.
Thus the scope of this disclosure should be determined by the appended claims and their legal equivalents. Therefore, it will be appreciated that the scope of the present disclosure fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present disclosure is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural, chemical, and functional equivalents to the elements of the above-described, preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present disclosure, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the, present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims.
The present application claims the benefit of U.S. Prov. Application Ser. No. 62/299,808, filed Feb. 25, 2016, entitled Bipod with a Quick Connection Feature for Standard Rails the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1128248 | Hetzel | Feb 1915 | A |
3235997 | Stoner | Feb 1966 | A |
3235998 | Hadley | Feb 1966 | A |
4397112 | York | Aug 1983 | A |
D346636 | Bechtel | May 1994 | S |
D406302 | Simpson | Mar 1999 | S |
6070569 | Chalin et al. | Jun 2000 | A |
6283875 | Jones | Sep 2001 | B1 |
6763627 | Kaempe | Jul 2004 | B1 |
7032494 | Wygant | Apr 2006 | B2 |
7121034 | Keng | Oct 2006 | B2 |
7197844 | Benson | Apr 2007 | B2 |
7222451 | Keng | May 2007 | B2 |
7380486 | Bean | Jun 2008 | B1 |
7490429 | Moody | Feb 2009 | B2 |
7506846 | Speggiorin | Mar 2009 | B2 |
7631455 | Keng | Dec 2009 | B2 |
7770320 | Bartak | Aug 2010 | B1 |
7779572 | Potterfield et al. | Aug 2010 | B2 |
7845002 | Young et al. | Dec 2010 | B1 |
8104213 | Keng | Jan 2012 | B2 |
8161956 | Bednar | Apr 2012 | B2 |
8448369 | Hinds, Jr. | May 2013 | B2 |
8458946 | Pintsch | Jun 2013 | B1 |
8496212 | Keng | Jul 2013 | B2 |
8596597 | Spicer | Dec 2013 | B1 |
8863430 | Poling | Oct 2014 | B2 |
8882070 | Bean | Nov 2014 | B2 |
8904693 | Beltz | Dec 2014 | B1 |
9285075 | Moody | Mar 2016 | B2 |
9568270 | LoRocco | Feb 2017 | B1 |
20030042388 | Peterson | Mar 2003 | A1 |
20050188596 | Wygant | Sep 2005 | A1 |
20120186126 | Bartak | Jul 2012 | A1 |
20170248385 | Yehle | Aug 2017 | A1 |
Entry |
---|
X-Factor Bow Stand webpage http://www.xfactoroutdoors.com/_p/prd1/2309484621/product/x-factor-bow-stand. |
TruGlo Bow Jack folding bow stand brochure http://www.truglo.com/archery-bow-accessories/bow-jack.asp. |
Number | Date | Country | |
---|---|---|---|
20170248385 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
62299808 | Feb 2016 | US |