Bipolar electrosurgical instrument with movable electrode and related systems and methods

Information

  • Patent Grant
  • 10631914
  • Patent Number
    10,631,914
  • Date Filed
    Friday, July 18, 2014
    10 years ago
  • Date Issued
    Tuesday, April 28, 2020
    4 years ago
Abstract
An electrosurgical device is provided that includes a handset having a shaft extending therefrom, a pair of active electrodes at a distal end of the shaft, and a movable, electrically floating electrode selectively positionable between the active electrodes. The floating electrode, when positioned to contact tissue between the active electrodes, modifies the electrosurgical current flows through tissue. The resultant modified current flows enables a surgeon to more effectively to control tissue desiccation by focusing electrosurgical energy toward targeted tissue and by reducing peripheral current flows. Embodiments are provided wherein the active electrodes include cooling provisions. Related electrosurgical systems and method of use are also provided.
Description
BACKGROUND

Technical Field


The present disclosure relates to a bipolar electrosurgical instrument configured to provide controlled deep tissue desiccation. More particularly, the present disclosure relates to an electrosurgical instrument that includes a pair of electrodes and a movable floating electrode that enables a surgeon to effectively control tissue desiccation.


Description of Related Art


Electrosurgical devices, such as surface tissue desiccation devices are well known in the medical arts and typically include a handset with an on/off switch, a shaft, and at least one electrode operatively coupled to a distal end of the shaft that is configured to perform an electrosurgical procedure, such as surface or deep tissue desiccation. Such electrosurgical devices utilize electrical energy to effectuate hemostasis and desiccation by heating the tissue and blood vessels. Such devices include electrocautery pencils, forceps, and probes of various types and configurations from a number of different manufacturers. The algorithms used with these electrosurgical devices in surgical treatments typically seek to provide a desired amount of delivered energy in accordance with the power level and duration specified by the surgeon.


Electrosurgical devices which utilize this electrical energy for performing deep tissue coagulation and desiccation during orthopedic procedures, such as spinal and joint replacement surgery, may have drawbacks which influence surgical outcomes. For example, a typical issue is the inability of a surgeon to reliably and selectively control tissue treatment depth during desiccation procedures. It has been observed that during desiccation procedures, surgeons tend to manipulate tissue with the electrodes of the device to retract and separate tissue. This technique, however, may extend operative times and/or cause unsatisfactory results due to varying contact area between the electrode and tissue as the instrument is manipulated.


SUMMARY

In view of the foregoing, an electrosurgical instrument that includes a pair of electrodes and a movable floating electrode that enables a surgeon to effectively control tissue desiccation, and associated systems and methods of use, would be a welcome advance in the state of the art.


Embodiments of the present disclosure are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user.


As it is used herein, “electrosurgical procedure” generally refers to any electrosurgical procedure involving any form of energy, such as, for example, microwave energy and radiofrequency (RF) energy.


In one aspect of the present disclosure, an electrosurgical instrument is provided. The electrosurgical instrument includes a handle having a shaft extending distally therefrom, a first active electrode and a second active electrode disposed in spaced relation on a distal end of the shaft, and a floating electrode or electrode selectively positionable between an extended position where the floating electrode is disposed within an area between the first active electrode and a second active electrode, and a retracted position where the floating electrode is removed from the area between the first active electrode and a second active electrode. The first active electrode and a second active electrode may be configured to couple to a source of electrosurgical energy. The first active electrode, the second active electrode, and the floating electrode may each include a tissue-contacting surface.


In some embodiments, when the floating electrode is in the extended position, the tissue-contacting surfaces of the first active electrode, the second active electrode, and the floating electrode lie substantially in the same plane. The active electrodes may be configured to operate in a bipolar mode of operation.


In other embodiments, the electrosurgical instrument includes a coolant supply conduit configured to deliver coolant to the first active electrode and the second active electrode, and a coolant return conduit configured to remove coolant from the first active electrode and the second active electrode. In yet other embodiments, the first and second active electrodes are each in thermal communication with a heat pipe that is configured to draw heat from the first and second active electrodes to the ambient atmosphere.


The electrosurgical instrument may include a drive mechanism having a drive member movable along a longitudinal axis of the shaft between a first position and a second position, a cam slot defined in a distal end of the drive member, and a follower fixed to the floating electrode and configured to operably engage the cam slot. When the drive member is in a first position the floating electrode is in the extended position, and wherein when the drive member is in a second position, the floating electrode is in the retracted position.


In an alternative embodiment, the drive mechanism may include a drive member movable along a longitudinal axis of the shaft between a first position and a second position and an electrode guide. The electrode guide may include an elongated entrance opening defined at an entrance end of the electrode guide having an entrance direction and an elongated exit opening defined at an exit end of the electrode guide and having an exit direction different from the entrance direction. The electrode guide may include a channel joining the entrance opening and the exit opening and include an elbow transitioning the channel from the entrance direction to the exit direction. The cross section of the channel at the elbow may have an elongated rectangular shape, and the cross section of the channel at the exit opening may have a curved elongated rectangular shape. The floating electrode may be formed from a strip of flexible material positioned, in part, within the electrode guide, and operably coupled to a distal end of the drive member.


In another aspect of the present disclosure, an electrosurgical system is provided. The disclosed electrosurgical system includes an electrosurgical generator and an electrosurgical instrument as described above. The electrosurgical generator and the pair of electrodes may be configured to operate in a bipolar mode of operation.


In yet another aspect of the present disclosure, a method for electrosurgically treating tissue is provided. The disclosed method includes the steps of providing an electrosurgical device as described above, applying the first active electrode and the second active electrode to tissue, and delivering electrosurgical energy to tissue via the first active electrode and the second active electrode. The method may include the steps of applying the floating electrode to tissue and/or removing the floating electrode from tissue.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present disclosure are described hereinbelow with references to the drawings, wherein:



FIG. 1 is a perspective view of a system for electrosurgically treating tissue according to an embodiment of the present disclosure;



FIG. 2A is a schematic view of bipolar electrodes and a floating electrode in a raised configuration in accordance with an embodiment of the present disclosure;



FIG. 2B is a schematic view of bipolar electrodes and a floating electrode in a lowered configuration in accordance with an embodiment of the present disclosure;



FIG. 2C is a schematic view of bipolar electrodes and a bifurcated electrode having a fixed potential in a lowered configuration in accordance with another embodiment of the present disclosure;



FIG. 2D is a schematic view of bipolar electrodes and a bifurcated electrode having a variable potential in a lowered configuration in accordance with yet another embodiment of the present disclosure;



FIG. 3 is a view of an electrosurgical instrument in accordance with an embodiment of the present disclosure having a circulating coolant system;



FIG. 4 is a view of an electrosurgical instrument in accordance with an embodiment of the present disclosure having a heat pipe coolant system;



FIG. 5A is a detail, side view of a floating electrode and a drive member of an electrosurgical instrument in accordance with an embodiment of the present disclosure;



FIG. 5B is a detail, perspective view of a floating electrode and a drive member of the FIG. 5A embodiment;



FIG. 5C is an end view of a drive member of a floating electrode and a drive member of the FIG. 5A embodiment;



FIG. 6A is a detail, side view of a floating electrode and a drive member of an electrosurgical instrument in accordance with another embodiment of the present disclosure;



FIG. 6B is a detail, perspective view of a floating electrode and a drive member of the FIG. 6A embodiment;



FIG. 7A is a side view of a deployable floating electrode in a raised position in accordance with yet another embodiment of the present disclosure;



FIG. 7B is a side view of a deployable floating electrode in a lowered position in accordance with the FIG. 7A embodiment;



FIG. 7C is a top view of a floating electrode guide in accordance with the FIG. 7A embodiment;



FIG. 7D is a bottom view of a floating electrode guide in accordance with the FIG. 7A embodiment;



FIG. 7E is a perspective view of a floating electrode and guide in accordance with the FIG. 7A embodiment;



FIG. 7F is a section view of a floating electrode guide in accordance with the FIG. 7A embodiment; and



FIG. 7G is another section view of the floating electrode guide in accordance with the FIG. 7A embodiment.





DETAILED DESCRIPTION

Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed embodiments are merely examples of the disclosure, which may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure. In this description, as well as in the drawings, like-referenced numbers represent elements which may perform the same, similar, or equivalent functions; the term “proximal,” as is traditional, shall refer to the end of the instrument that is closer to the user, while the term “distal” shall refer to the end that is farther from the user. In addition, references to positive (+) and negative (−) are for illustrative purposes only, and it is to be understood that the polarity of the described elements may vary over time in accordance with the alternating current nature of electrosurgical energy.


Referring to FIG. 1, there is shown a perspective view of an electrosurgical system 1 including a generator 5 having a controller 7, and an electrosurgical instrument 10 for electrosurgically treating tissue according to an embodiment of the present disclosure. A coolant unit 27 is provided for delivering fluid to electrodes 12, 14 of electrosurgical instrument 10. Cooling unit 27 includes a coolant reservoir 28 in which a supply of coolant may be maintained, such as, without limitation, deionized water, glycol, saline, and the like. Cooling unit 27 may include a coolant pump 25 that is configured to circulate coolant between reservoir 28 and instrument 10 via coolant supply conduit 26 and coolant return conduit 24. Coolant supply conduit 26 and coolant return conduit 24 are electrically isolated from one other. In some embodiments, the cooling fluid circulated through coolant supply conduit 26 and coolant return conduit 24 is a non-conducting or a low conductive substance.


Continuing with reference to FIG. 1, generator 5 is configured to generate and deliver electrosurgical energy, e.g., radio frequency energy, to active electrodes 12 and 14, for performing electrosurgical procedures. The electrosurgical procedures may include cutting, cauterizing, coagulating, desiccating, and fulgurating tissue; all of which may employ RF energy. Generator 5 may be configured for monopolar and/or bipolar modes of operation. For illustrative purposes, generator 5 and, hence, system 1, is shown configured for a bipolar mode of operation.


Generator 5 includes one or more processors 8 that are in operative communication with controller 7 and configured to transmit electrosurgical energy, which may be in the form of a wave or signal/pulse, via cable 6 to instrument 10. Controller 7 and/or processor 8 may include one or more control algorithms that regulate the delivery of electrosurgical energy to tissue in accordance with an impedance of an electrode-tissue interface. One or more data lookup tables accessible by controller 7 and/or processor 8 may utilized to store relevant information relating to impedance and/or energy delivery. This information relating to impedance and/or pressure may be acquired empirically and/or calculated utilizing one or more suitable equations.


In the embodiment illustrated in FIG. 1, instrument 10 is shown as a bipolar electrocautery pencil (such as the one described in commonly-owned U.S. Pat. No. 7,621,909 to Buchman II, et al.) that includes a proximal handle 15 and a distal shaft 16. Handle 15 includes a slide actuator 19 that is configured to selectively position a movable, electrically floating electrode 11 between active electrode 12 and active electrode 14. Floating electrode 11 is formed from conductive material, and may be lowered (extended) and raised (retracted) between electrodes 12 and 14 to alter the energy field formed therebetween during electrosurgical procedures. In the embodiment illustrated in FIG. 1, moving slide actuator 19 distally causes floating electrode 11 to lower between electrodes 12 and 14. Conversely, moving slide actuator 19 proximally retracts floating electrode 11. In other embodiments, floating electrode 11 may be lowered by moving slide actuator 19 proximally and raised by moving slide actuator 19 distally. In yet other embodiments, a trigger actuator, a rotary actuator, or motorized actuator may be employed to extend and retract floating electrode 11.


Shaft 16 extends distally from handle 15, and active electrode 12 and active electrode 14 are disposed at a distal end 17 of shaft 16. In some embodiments, a guide 18 is operatively associated with floating electrode 11 to facilitate the selective positioning thereof.


In some embodiments, instrument 10 may be configured for a monopolar mode of operation. In these embodiments, one or both of the active electrodes 12 or 14 is configured to deliver monopolar electrosurgical energy to tissue, and a return pad (not explicitly shown) may be positioned on a patient and utilized as a return electrode.


Advantageously, use of the movable floating electrode 11 in accordance with the present disclosure enables a surgeon to selectively control the intensity and/or depth of the electrosurgical effect from the adjacent electrodes 12, 14. This advantage is illustrated in detail with reference to FIGS. 2A and 2B. As shown in FIG. 2A, an electrode assembly 30 includes a first electrode 32 and a second electrode 34 positioned in a fixed, spaced relation to one another and coupled to a source of electrosurgical energy 35 by conductors 36, and a movable, floating electrode 31 selectively positioned in a raised position. The electrodes 32, 34 are brought into contact with tissue T at the targeted area, and the source of electrosurgical energy 35 is activated. Electrosurgical energy flows between electrodes 32, 34 forming a radiating pattern 37 which radiates between electrodes 32, 34. As seen in FIG. 2A, radiating pattern 37 forms not only a relatively direct path directly between electrodes 32, 34, but also radiates away from electrodes 32, 34, which may cause undesired tissue effects peripheral to the targeted tissue area.


Turning to FIG. 2B, where floating electrode 31 is shown in a lowered position in contact with tissue T, a modified radiating pattern 38 is formed when electrosurgical energy is delivered by electrodes 32, 34. As can be seen in FIG. 2B, the modified radiating pattern 38 converges at floating electrode 31 to focus more precisely to the targeted tissue site. In addition, peripheral radiation is decreased. It is believed that the floating electrical potential of floating electrode 31, when positioned between electrodes 32, 34, is determined by the impedance(s) if the tissue T between the electrodes 32, 34 and the electrosurgical current lowing therebetween. Thus the potential of floating electrode 31 falls between the voltages of electrodes 32, 34, which, in turn, creates the modified radiating pattern 38 as illustrated in FIG. 2B.


Advantageously, a surgeon may utilize floating electrode 31 as an additional tool surface with which to dissect tissue T. For example, a surgeon may extend or lower floating electrode 31 and manipulate the entire instrument, bringing electrodes 32, 34 and floating electrode 31 into, and out of, contact with tissue T to work the surgical site. In another example, a surgeon may bring electrodes 32, 34 into substantially continuous contact with tissue T, and manipulate floating electrode 31 up and down using an actuator (e.g., finger trigger or slide as described herein). In yet another example, a surgeon may variously utilize combinations of the above techniques, compound motions, and the like, as required by the instant surgical objective.


In another aspect of the present disclosure illustrated in FIG. 2C, an electrosurgical instrument 130 includes a movable active electrode 131 that is selectively positionable between fixed active electrodes 132, 134. Active electrode 131 includes two conductive sections 141 and 142 that are electrically isolated by an insulator 143 disposed therebetween. An electrosurgical generator 135 is coupled to electrodes 132, 134 by conductors 136, 137, respectively. Conductive sections 141 and 142 are electrically coupled to fixed active electrodes 132, 134 by conductors 146, 147, respectively. By this arrangement, negative movable active electrode 142 is positionable adjacent to positive fixed active electrode 132, and negative movable active electrode 141 is positionable adjacent to positive fixed active electrode 134. Advantageously, the alternating polarity arrangement of the FIG. 2C electrodes enhances the focus of modified radiating pattern 138, which effectively creates a dual bipolar ablation zone.


In yet another aspect of the present disclosure illustrated in FIG. 2D, an electrosurgical instrument 230 includes a movable active electrode 231 that is selectively positionable between fixed active electrodes 232, 234. Active electrode 231 includes two conductive sections 241 and 242 that are electrically isolated by an insulator 243 disposed therebetween. An electrosurgical generator 235 is coupled to electrodes 232, 234 by conductors 236, 237, respectively. Conductive sections 241 and 242 are electrically coupled to a dual-channel intensity control 250 by conductors 244, 248, respectively. Electrosurgical generator 235 is coupled to intensity control 250 by conductors 240 and 247. Intensity control 250 may be continuously variable, and may be user controlled by, e.g., a user interface control such as rotary control (knob) or a linear control (slider or lever). In some embodiments, intensity control 250 may be controlled by a processor and/or in accordance with a tissue parameter, such as, without limitation, tissue temperature, tissue impedance, ablation time, tissue hydration, and/or a rate of change of the same. In some embodiments, intensity control 250 may have an effective range of 0% to 100% of the electrosurgical signal generated by generator 235. In other embodiments, intensity control 250 may have an effective range of −100% to 100% of the electrosurgical signal generated by generator 235. In yet other embodiments, intensity control 250 may have an effective range of 0% to greater than 100% or +/−100% of the electrosurgical signal (e.g., imparting gain to the electrosurgical signal).


In another aspect of the present disclosure illustrated in FIG. 3, an electrosurgical instrument 40 includes a coolant supply conduit 47 configured to deliver coolant to first electrode 42, and to second electrode 44. Electrodes 42, 44 are coupled to a source of electrosurgical energy 45 by conductors 46. As shown, electrodes 42 and 44 each include a cooling chamber 55 and 56, respectively, defined therein. Coolant supply conduit 47 is coupled at a distal end thereof to cooling chamber 55 to deliver coolant thereto. An intermediate outflow conduit 50 having a distal opening 53 disposed within cooling chamber 55 is configured to receive coolant exiting from cooling chamber 55. Coolant flows through intermediate outflow conduit 50 to a coupler 51 which is configured to join intermediate outflow conduit 50 and intermediate inflow conduit 52 in fluid communication. In some embodiments, such as that illustrated in FIG. 3, coupler 51 is u-shaped. In some embodiments, coupler 51 is formed from electrically and/or thermally insulative material. Intermediate inflow conduit 52 receives coolant from intermediate outflow conduit 50 via coupler 51, and, in turn, delivers coolant to second electrode 44 via opening 54 disposed within cooling chamber 56. Coolant return conduit 48 is in fluid communication with cooling chamber 56 of electrode 44 to receive coolant exiting from cooling chamber 56 and, in turn, exhausts coolant from instrument 40 to a reservoir, drain, etc.


In other embodiments, the coolant supply may be arranged in a parallel configuration whereby incoming coolant is divided (using, e.g., a “Y” coupling or a manifold) and directed to each electrode, and outgoing coolant from each electrode is joined at a combining junction and exits instrument 40 via coolant return conduit 48.


Instrument 40 includes a floating electrode 41 that is selectively extendible between electrode 42 and electrode 44. A follower 58 is joined to an upper portion of floating electrode 41 that is configured to ride within a cam slot 57 defined in a distal end of a drive member 43. Drive member 43 is configured to move longitudinally, e.g., distally and proximally, and includes a trigger 49 that facilitates manipulation of drive member 43 by a surgeon. As shown in the FIG. 3 embodiment, a distal movement of drive member 43 causes follower 58 to ride downward within cam slot 57, thereby moving floating electrode 41 into an extended, lowered, or deployed, position. Conversely, proximal movement of drive member 43 causes floating electrode 41 to move to a retracted or raised position. Instrument 40 may include ergonomic features, such as, without limitation, a handle (not explicitly shown), a pistol grip (not explicitly shown) or any other suitable features configured to facilitate grasping and use by a surgeon.


In another aspect of the present disclosure, an embodiment of an electrosurgical instrument 60 is shown in FIG. 4 which includes a first electrode 62 and a second electrode 64 disposed in electrical communication with an electrosurgical generator 65 via conductors 66. A movable floating electrode 61 includes a follower 78 that is configured to engage a cam slot 71 defined in a proximal portion of a drive member 63. Drive member 63 is configured to move distally and proximally, which translates into an up-and-down motion of floating electrode 61 through the cooperation of follower 78 and cam slot 71. Drive member 63 includes a trigger 69 or similar ergonomic feature to facilitate the actuation thereof by a surgeon. Instrument 60 may include ergonomic features, such as, without limitation, a handle 79 or any other suitable features intended to facilitate handling.


Instrument 60 includes a first heat pipe 67 having a hot end 73 that is in thermal communication with electrode 62 and a cool end 75, and a second heat pipe 68 having a hot end 74 that is in thermal communication with electrode 64 and a cool end 76. Heat pipes 67 and 68 may include a heat pipe construction which includes a sealed copper pipe having contained therein a quantity of fluid, such as water or ethanol, and/or a partial vacuum that is near or below the vapor pressure of the fluid. During use, some of the fluid will be in liquid phase and some will be in gas phase. As the hot ends 73, 74 of heat pipes 67, 68 are heated due to thermal effects relating to an electrosurgical procedure, the fluid inside heat pipes 67, 68 vaporizes and increases the vapor pressure therein. The latent heat of evaporation absorbed by the vaporization of the working fluid reduces the temperature at the hot ends 73, 74 of heat pipes 67, 68. The vapors migrate to the respective cool ends 75, 76 of heat pipes 67, 68 where they condense and revert to liquid phase, releasing the absorbed heat. A wick 72, 77 disposed, respectively, within an inner surface of heat pipes 67, 68, absorbs any liquid by capillary action and returns the liquid to the hot ends 73, 74 of heat pipes 67, 68 in an essentially continuous cycle. In some embodiments, cool ends 75, 76 of heat pipes 67, 68 are exposed to the ambient atmosphere, and may include one or more heat sinks (not shown) to facilitate the heat transfer cycle.


Turning to FIGS. 5A-5C, a detailed view of a drive mechanism 80 in accordance with the present disclosure is presented. Drive mechanism 80 is arranged such that a distal motion of an actuation ring 89 results a downward motion of the floating electrode 81. Drive mechanism 80 includes a drive member 83 having a cam slot 87 defined therein at a distal end thereof. As best seen in FIG. 5A, cam slot 87 is angled with respect to the longitudinal axis “A-A” of drive member 83 and has a distal end that is higher than the proximal end. The floating electrode 81 includes a follower 88 joined to an upper portion of the floating electrode 81 by an extension 86. In some embodiments, floating electrode 81, extension 86, and follower 88 may be integrally formed from sheet metal using a punching and/or stamping process. In some embodiments, floating electrode 81, extension 86, and follower 88 may be formed from stainless steel. Follower 88 is disposed at an angle with respect to floating electrode 81 which substantially corresponds to the angle of cam slot 87. In the FIGS. 5A-5C embodiments, where forward (distal) motion of the drive member 83 causes downward deployment of floating electrode 81, an actuation ring 89 may be provided to enable a surgeon to readily manipulate drive member 83 in either a distal or proximal direction.


In another embodiment depicted in FIGS. 6A and 6B, a drive mechanism 90 in accordance with the present disclosure is arranged such that proximal motion of an actuation trigger 99 results a downward motion of the floating electrode 91. Drive mechanism 90 includes a drive member 93 having a cam slot 97 defined therein at a distal end thereof. Here, cam slot 97 is angled with respect to the longitudinal axis “B-B” of drive member 93 such that the distal end of cam slot 97 is lower than the proximal end of cam slot 97. Floating electrode 91 includes a follower 98 joined to an upper portion of the floating electrode 91 by an extension 96. Follower 98 is disposed at an angle which substantially corresponds to the angle of cam slot 97. Rearward (proximal) motion of drive member 93 causes downward deployment of floating electrode 91. In this embodiment, trigger 99 is provided to enable the surgeon to intuitively manipulate drive member 93 in proximal direction to deploy floating electrode 91. A return spring 95 is provided which biases drive member 93 in a distal direction, thus when a surgeon releases pressure on trigger 99, drive member 93 is driven distally and floating electrode 91 is moved upwardly through the cooperation of follower 98 and cam slot 97.


Turning now to FIGS. 7A-7G, yet another embodiment of a drive mechanism 100 for a floating electrode 101 is presented. Floating electrode 101 is formed from a strip of flexible material, such as spring steel, Nitinol (or other shape memory metal), and/or a high-temperature-resistant composite material. A proximal end of floating electrode 101 is joined to a drive member 103 by a pin 102. Drive member 103 includes a thumb actuator 109 which is configured to be manipulated a surgeon to effectively lower and raise floating electrode 101. A distal portion of floating electrode 101 passes through an L-shaped electrode guide 108 having a channel 107 defined therein. Channel 107 includes an entrance 105 into which floating electrode 101 is introduced and an exit 106 through which floating electrode 101 extends toward tissue.


Electrode guide 108 includes a 90° transition elbow having a radius a which enables the distal portion of floating electrode 101, as it is advanced distally by drive member, to bend downwardly and thus extend into a lowered position between the bipolar electrodes (not explicitly shown). As can be seen in FIG. 7F, a cross section of channel 107 adjacent to radius a is substantially straight, enabling the flexible floating electrode 101 to remain flat and thus allowing floating electrode 101 to flex easily as it is advanced through radius a during deployment of floating electrode 101 into position between electrodes. As channel 107 approaches exit 106, the cross section of channel 107 become slightly curved as shown in FIGS. 7E and 7G. As flexible floating electrode 101 extends from exit 106, this curve is imparted to floating electrode 101 (FIG. 7E), which, in turn, provides rigidity and stiffness to the extended portion 110 of floating electrode 101.


In some embodiments, the inner surface of channel 107 and/or the outer surface of flexible floating electrode 101 may include a lubricious coating, such as, without limitation, polytetrafluoroethylene (PTFE).


The various embodiments disclosed herein may also be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery”. Such systems employ various robotic elements to assist the surgeon in the operating theatre and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the surgeon during the course of an operation or treatment. Such robotic systems may include remotely activatable active electrodes, a remotely positionable floating electrode, remotely steerable systems, remotely articulating surgical systems, wireless surgical systems, modular, or selectively configurable remotely operated surgical systems, etc.


The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another surgeon (or group of surgeons) remotely control the instruments via the robotic surgical system. As can be appreciated, a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.


The robotic arms of the surgical system are typically coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors, graspers, knifes, scissors, etc.) which may complement the use of one or more of the embodiments described herein. The movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon. The scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s).


The master handles may include various sensors to provide feedback to the surgeon relating to various tissue parameters or conditions, e.g., tissue resistance due to manipulation, cutting or otherwise treating, pressure by the instrument onto the tissue, tissue temperature, tissue impedance, etc. As can be appreciated, such sensors provide the surgeon with enhanced tactile feedback simulating actual operating conditions. The master handles may also include a variety of different actuators for delicate tissue manipulation or treatment further enhancing the surgeon's ability to mimic actual operating conditions, such as contacting the active electrode to targeted tissue, extending and/or retracting the floating electrode, controlling the delivery of electrosurgical energy, and so forth.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. An electrosurgical instrument, comprising: a handle having a shaft extending distally therefrom;a first active electrode and a second active electrode disposed in spaced relation on a distal end of the shaft, a tip of the first active electrode and a tip of the second active electrode extending radially outside of a circumferential edge of the shaft, the first active electrode being fixed from movement with respect to the second active electrode and with respect to the shaft; anda floating electrode selectively positionable between an extended position where the floating electrode is disposed within an area between the first active electrode and the second active electrode, and a retracted position where the floating electrode is removed from the area between the first active electrode and the second active electrode, wherein the tip of the first active electrode and the tip of the second active electrode are disposed within a common plane, and wherein the floating electrode is parallel to the plane when the floating electrode is in both the extended position and in the retracted position, andwherein, in the extended position of the floating electrode, at least a majority of the floating electrode is radially outside of the circumferential edge of the shaft, and the first active electrode is located on a first lateral side of the floating electrode and the second active electrode is located on a second lateral side of the floating electrode, the first lateral side of the floating electrode being opposite from the second lateral side of the floating electrode.
  • 2. The electrosurgical instrument according to claim 1, wherein the first active electrode and the second active electrode are configured to couple to a source of electrosurgical energy.
  • 3. The electrosurgical instrument according to claim 1, wherein the first active electrode, the second active electrode, and the floating electrode each include a tissue-contacting surface.
  • 4. The electrosurgical instrument according to claim 3, wherein when the floating electrode is in the extended position, the tissue-contacting surfaces of the first active electrode, the second active electrode, and the floating electrode lie substantially in the same plane.
  • 5. The electrosurgical instrument according to claim 1, further comprising: a coolant supply conduit configured to deliver coolant to the first active electrode and the second active electrode; anda coolant return conduit configured to remove coolant from the first active electrode and the second active electrode.
  • 6. The electrosurgical instrument according to claim 1, wherein the first active electrode and the second active electrode each include a heat pipe in thermal communication therewith configured to draw heat from the first active electrode and the second active electrode to the ambient atmosphere.
  • 7. The electrosurgical instrument according to claim 1, wherein the first active electrode and the second active electrode are configured to operate in a bipolar mode of operation.
  • 8. The electrosurgical instrument according to claim 1, further comprising a drive mechanism, including: a drive member movable along a longitudinal axis of the shaft between a first position and a second position;a cam slot defined in a distal end of the drive member; anda follower fixed to the floating electrode and configured to operably engage the cam slot, wherein when the drive member is in a first position the floating electrode is in the extended position and wherein when the drive member is in a second position the floating electrode is in the retracted position.
  • 9. The electrosurgical instrument according to claim 1, further comprising a drive mechanism, including: a drive member movable along a longitudinal axis of the shaft between a first position and a second position; andan electrode guide, comprising: an elongated entrance opening defined at an entrance end of the electrode guide, the entrance opening having an entrance direction;an elongated exit opening defined at an exit end of the electrode guide, the exit opening having an exit direction different from the entrance direction;a channel joining the entrance opening and the exit opening, the channel including an elbow transitioning the channel from the entrance direction to the exit direction,wherein the cross section of the channel at the elbow has an elongated rectangular shape, and the cross section of the channel at the exit opening has a curvaceous elongated rectangular shape;wherein the floating electrode includes a strip of flexible material positioned in part within the electrode guide and operably coupled to a distal end of the drive member.
  • 10. The electrosurgical instrument according to claim 1, wherein the floating electrode includes two conductive sections with alternating polarity.
  • 11. The electrosurgical instrument according to claim 1, wherein a majority of the floating electrode is free from contact with tissue during use and when the floating electrode is in the extended position.
  • 12. The electrosurgical instrument according to claim 1, wherein a distal-most end of the floating electrode is between distal portions of the first active electrode and the second active electrode when the floating electrode is in a fully retracted position.
  • 13. The electrosurgical system according to claim 1, wherein the floating electrode is movable relative to the first active electrode in a direction that is perpendicular with respect to a longitudinal axis defined by the shaft.
  • 14. The electrosurgical instrument according to claim 1, wherein the floating electrode is parallel to the tip of the first active electrode and the tip of the second active electrode while the floating electrode moves between the extended position and the retracted position.
  • 15. The electrosurgical instrument according to claim 14, wherein the floating electrode is disposed in non-pivotable relation relative to the shaft.
  • 16. The electrosurgical instrument according to claim 1, wherein the floating electrode is disposed in non-pivotable relation relative to the shaft.
  • 17. An electrosurgical system, comprising: an electrosurgical generator; andan electrosurgical instrument operably coupled to the electrosurgical generator, comprising: a handle having a shaft extending distally therefrom, the shaft defining a longitudinal axis;a first active electrode and a second active electrode disposed in spaced relation on a distal end of the shaft, a tip of the first active electrode and a tip of the second active electrode extending radially outside of a circumferential edge of the shaft, the first active electrode being immovable with respect to the second active electrode and with respect to the shaft;a floating electrode selectively positionable between an extended position where the floating electrode is disposed directly in-between the first active electrode and the second active electrode, and a retracted position where the floating electrode is not disposed between the first active electrode and the second active electrode, wherein the floating electrode is only movable relative to the first active electrode in a direction that is perpendicular to the longitudinal axis; andan actuator coupled to the floating electrode and configured to move the floating electrode between the extended position and the retracted position, wherein, in the extended position, at least a majority of the floating electrode is radially outside of the circumferential edge of the shaft.
  • 18. The electrosurgical system according to claim 17, wherein the first active electrode, the second active electrode, and the floating electrode each include a tissue-contacting surface.
  • 19. The electrosurgical system according to claim 18, wherein when the floating electrode is in the extended position, the tissue-contacting surfaces of the first active electrode, the second active electrode, and the floating electrode lie substantially in the same plane.
  • 20. The electrosurgical system according to claim 17, further comprising: a cooling unit having a reservoir configured to store coolant;a coolant supply conduit configured to transport coolant from the cooling unit to at least one of the first active electrode and the second active electrode; anda coolant return conduit configured to transport coolant from at least one of the first active electrode and the second active electrode to the cooling unit.
  • 21. The electrosurgical system according to claim 20, wherein the cooling unit further includes a pump configured to deliver coolant to the electrosurgical instrument.
  • 22. The electrosurgical system according to claim 17, the first active electrode and the second active electrode each including a heat pipe in thermal communication therewith configured to draw heat from the first active electrode and the second active electrode to the ambient atmosphere.
  • 23. The electrosurgical system according to claim 17, wherein the electrosurgical generator, the first active electrode, and the second active electrode are configured to operate in a bipolar mode of operation.
  • 24. The electrosurgical system according to claim 17, wherein the electrosurgical instrument further comprises a drive mechanism, including: a drive member movable along the longitudinal axis of the shaft between a first position and a second position;a cam slot defined in a distal end of the drive member; anda follower fixed to the floating electrode and configured to operably engage the cam slot, wherein when the drive member is in a first position the floating electrode is in the extended position and wherein when the drive member is in a second position the floating electrode is in the retracted position.
  • 25. The electrosurgical system according to claim 17, wherein the electrosurgical instrument further comprises a drive mechanism, including: a drive member movable along the longitudinal axis of the shaft between a first position and a second position; andan electrode guide, comprising: an elongated entrance opening defined at an entrance end of the electrode guide, the entrance opening having an entrance direction;an elongated exit opening defined at an exit end of the electrode guide, the exit opening having an exit direction different from the entrance direction;a channel joining the entrance opening and the exit opening, the channel including an elbow transitioning the channel from the entrance direction to the exit direction,wherein the cross section of the channel at the elbow has an elongated rectangular shape, and the cross section of the channel at the exit opening has a curved elongated rectangular shape;wherein the floating electrode includes a strip of flexible material positioned in part within the electrode guide and operably coupled to a distal end of the drive member.
  • 26. A method for electrosurgically treating tissue, comprising: providing an electrosurgical device including: a handle having a shaft extending distally therefrom;a first active electrode and a second active electrode disposed in spaced relation on a distal end of the shaft, a tip of the first active electrode and a tip of the second active electrode extending radially outside of a circumferential edge of the shaft, the first active electrode and the second active electrode being immovable with respect to each other and with respect to the shaft; anda floating electrode positionable between an extended position where the floating electrode is disposed within an area between the first active electrode and the second active electrode and at least a majority of the floating electrode is radially outside of the circumferential edge of the shaft, and a retracted position where the floating electrode is removed from the area between the first active electrode and the second active electrode such that the first active electrode is located on a first lateral side of the floating electrode and the second active electrode is located on a second lateral side of the floating electrode, the first lateral side of the floating electrode being opposite from the second lateral side of the floating electrode;applying the first active electrode and the second active electrode to tissue;delivering electrosurgical energy to tissue via the first active electrode and the second active electrode;moving the floating electrode from the extended position to the retracted position in a direction parallel to the tip of the first active electrode and the second active electrode and within a plane that includes the tip of the first active electrode and the tip of the second active electrode; andapplying the floating electrode to tissue.
  • 27. The method for electrosurgically treating tissue according to claim 26, further comprising removing the floating electrode from tissue.
  • 28. The method for electrosurgically treating tissue according to claim 26, further comprising dissecting tissue using the floating electrode.
CROSS REFERENCE TO RELATED APPLICATION

The present application claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/884,573, filed on Sep. 30, 2013, the entire contents of which are incorporated herein by reference.

US Referenced Citations (392)
Number Name Date Kind
2888928 Seiger Jun 1959 A
D223367 Kountz Apr 1972 S
3682130 Jeffers Aug 1972 A
3750650 Ruttgers Aug 1973 A
3907339 Stumpf et al. Sep 1975 A
3910277 Zimmer Oct 1975 A
3924628 Bingham et al. Dec 1975 A
4018227 Wallach Apr 1977 A
4022215 Benson May 1977 A
4060088 Morrison, Jr. et al. Nov 1977 A
4061135 Widran et al. Dec 1977 A
4063560 Thomas et al. Dec 1977 A
4072152 Linehan Feb 1978 A
4082096 Benson Apr 1978 A
4207897 Lloyd et al. Jun 1980 A
4244371 Farin Jan 1981 A
4248224 Jones Feb 1981 A
4275734 Mitchiner Jun 1981 A
4276874 Wolvek et al. Jul 1981 A
4278090 van Gerven Jul 1981 A
D263020 Rau, III Feb 1982 S
4321931 Hon Mar 1982 A
4342218 Fox Aug 1982 A
4355642 Alferness Oct 1982 A
D266842 Villers et al. Nov 1982 S
4381007 Doss Apr 1983 A
D278306 McIntosh Apr 1985 S
4519389 Gudkin et al. May 1985 A
4598698 Siegmund Jul 1986 A
4601290 Effron et al. Jul 1986 A
4664110 Schanzlin May 1987 A
4671274 Scrochenko Jun 1987 A
4736749 Lundback Apr 1988 A
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
4779611 Grooters et al. Oct 1988 A
4802475 Weshahy Feb 1989 A
4919129 Weber et al. Apr 1990 A
4931047 Broadwin et al. Jun 1990 A
5197964 Parins Mar 1993 A
5318525 West et al. Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5324284 Imran Jun 1994 A
D354218 Van de Peer Jan 1995 S
5396887 Imran Mar 1995 A
5397304 Truckai Mar 1995 A
5400783 Pomeranz et al. Mar 1995 A
5427119 Swartz et al. Jun 1995 A
5443463 Stern et al. Aug 1995 A
5443470 Stern et al. Aug 1995 A
5450843 Moll et al. Sep 1995 A
5452582 Longsworth Sep 1995 A
5452733 Sterman et al. Sep 1995 A
5462545 Wang et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5469853 Law et al. Nov 1995 A
5478309 Sweezer et al. Dec 1995 A
5478330 Imran et al. Dec 1995 A
5486193 Bourne et al. Jan 1996 A
5487385 Avitall Jan 1996 A
5487757 Truckai et al. Jan 1996 A
5496312 Klicek Mar 1996 A
5497774 Swartz et al. Mar 1996 A
5498248 Milder Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5505730 Edwards Apr 1996 A
5516505 McDow May 1996 A
5520682 Baust et al. May 1996 A
5522870 Ben-Zion Jun 1996 A
5545195 Lennox et al. Aug 1996 A
5549661 Kordis et al. Aug 1996 A
5555883 Avitall Sep 1996 A
5558671 Yates Sep 1996 A
5560362 Silwa et al. Oct 1996 A
5569241 Edwards Oct 1996 A
5571088 Lennox et al. Nov 1996 A
5571215 Sterman et al. Nov 1996 A
5573532 Chang et al. Nov 1996 A
5702390 Austin Dec 1997 A
5906615 Thompson May 1999 A
5971983 Lesh Oct 1999 A
5993447 Blewett et al. Nov 1999 A
6007499 Martin et al. Dec 1999 A
6012457 Lesh Jan 2000 A
6016811 Knopp et al. Jan 2000 A
6042556 Beach et al. Mar 2000 A
D424693 Pruter May 2000 S
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
6056744 Edwards May 2000 A
6056745 Panescu et al. May 2000 A
6056746 Goble May 2000 A
6056767 Saadat et al. May 2000 A
6063081 Mulier May 2000 A
6066139 Ryan et al. May 2000 A
6068653 LaFontaine May 2000 A
6071279 Whayne et al. Jun 2000 A
6083237 Huitema et al. Jul 2000 A
6086585 Hovda et al. Jul 2000 A
6088894 Oakley Jul 2000 A
6096037 Mulier Aug 2000 A
6113592 Taylor Sep 2000 A
6113596 Hooven et al. Sep 2000 A
6117101 Diederich et al. Sep 2000 A
6120496 Whayne et al. Sep 2000 A
6141576 Littmann et al. Oct 2000 A
6142993 Whayne et al. Nov 2000 A
6149620 Baker et al. Nov 2000 A
6152920 Thompson et al. Nov 2000 A
6161543 Cox et al. Dec 2000 A
6165174 Jacobs et al. Dec 2000 A
6190384 Ouchi Feb 2001 B1
6212426 Swanson Apr 2001 B1
6217528 Koblish et al. Apr 2001 B1
6217575 DeVore Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6231591 Desai May 2001 B1
6235020 Cheng et al. May 2001 B1
6237605 Vaska et al. May 2001 B1
6238347 Nix et al. May 2001 B1
6238387 Miller, III May 2001 B1
6238393 Mulier May 2001 B1
6245061 Panescu et al. Jun 2001 B1
6245064 Lesh et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6245066 Morgan et al. Jun 2001 B1
6251092 Qin et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6258087 Edwards et al. Jul 2001 B1
6264650 Hovda et al. Jul 2001 B1
6266551 Osadchy et al. Jul 2001 B1
6270471 Hechel et al. Aug 2001 B1
6283988 Laufer et al. Sep 2001 B1
6283989 Laufer et al. Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
D449886 Tetzlaff et al. Oct 2001 S
6299633 Laufer Oct 2001 B1
6302880 Schaer Oct 2001 B1
6311692 Vaska et al. Nov 2001 B1
6312383 Lizzi et al. Nov 2001 B1
6314962 Vaska et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6328736 Mulier Dec 2001 B1
6332881 Carner et al. Dec 2001 B1
6358248 Mulier Mar 2002 B1
6361531 Hissong Mar 2002 B1
6364876 Erb et al. Apr 2002 B1
6368275 Sliwa et al. Apr 2002 B1
6371955 Fuimaono et al. Apr 2002 B1
6371956 Wilson et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
6383151 Diederich et al. May 2002 B1
6385472 Hall et al. May 2002 B1
6398792 O'Connor Jun 2002 B1
6409722 Hoey Jun 2002 B1
6413254 Hissong et al. Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6419648 Vitek et al. Jul 2002 B1
6430426 Avitall Aug 2002 B2
6440130 Mulier Aug 2002 B1
6443952 Mulier Sep 2002 B1
6451016 Karakozian Sep 2002 B1
6461314 Pant et al. Oct 2002 B1
6461956 Patterson Oct 2002 B1
6464700 Koblish et al. Oct 2002 B1
6471697 Lesh Oct 2002 B1
6471698 Edwards et al. Oct 2002 B1
6474340 Vaska et al. Nov 2002 B1
6475216 Muller Nov 2002 B2
6477396 Mest et al. Nov 2002 B1
6484727 Vaska et al. Nov 2002 B1
6488680 Francischelli Dec 2002 B1
6502575 Jacobs et al. Jan 2003 B1
6508815 Strul et al. Jan 2003 B1
6514250 Jahns Feb 2003 B1
6517536 Hooven et al. Feb 2003 B2
6527767 Wang et al. Mar 2003 B2
6537248 Muller Mar 2003 B2
6537272 Hoey Mar 2003 B2
6558379 Batchelor et al. May 2003 B1
6558382 Jahns May 2003 B2
6558385 McClurken et al. May 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6584360 Francischelli Jun 2003 B2
6585732 Muller Jul 2003 B2
6602248 Sharps et al. Aug 2003 B1
6603988 Dowlatshahi Aug 2003 B2
6605084 Acker et al. Aug 2003 B2
6610055 Swanson et al. Aug 2003 B1
6610060 Muller Aug 2003 B2
6613048 Muller Sep 2003 B2
6635034 Cosmescu Oct 2003 B1
6645199 Jenkins et al. Nov 2003 B1
6645202 Pless et al. Nov 2003 B1
6648883 Francischelli Nov 2003 B2
6656175 Francischelli Dec 2003 B2
6663627 Francischelli Dec 2003 B2
6666862 Jain et al. Dec 2003 B2
6679882 Kornerup Jan 2004 B1
6682501 Nelson Jan 2004 B1
D487039 Webster et al. Feb 2004 S
6689131 McClurken Feb 2004 B2
6699240 Francischelli Mar 2004 B2
6702810 McClurken et al. Mar 2004 B2
6702811 Stewart et al. Mar 2004 B2
6706038 Francischelli Mar 2004 B2
6706039 Muller Mar 2004 B2
6716211 Muller Apr 2004 B2
6730075 Palanker et al. May 2004 B2
6736810 Hoey May 2004 B2
6755827 Muller Jun 2004 B2
6764487 Muller Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6766817 da Silva Jul 2004 B2
6773433 Stewart et al. Aug 2004 B2
6776780 Muller Aug 2004 B2
6780178 Palanker et al. Aug 2004 B2
D496997 Dycus et al. Oct 2004 S
6807968 Francischelli Oct 2004 B2
D499181 Dycus et al. Nov 2004 S
6827713 Beck et al. Dec 2004 B2
6827715 Francischelli Dec 2004 B2
6832996 Woloszko et al. Dec 2004 B2
6849073 Hoey Feb 2005 B2
6858028 Muller Feb 2005 B2
6881213 Ryan et al. Apr 2005 B2
6887238 Jahns May 2005 B2
6899711 Stewart et al. May 2005 B2
6911019 Muller Jun 2005 B2
6913605 Fletcher et al. Jul 2005 B2
6915806 Pacek et al. Jul 2005 B2
6916318 Francischelli Jul 2005 B2
6942661 Swanson Sep 2005 B2
6949097 Stewart et al. Sep 2005 B2
6949098 Muller Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
6960205 Jahns Nov 2005 B2
6962589 Muller Nov 2005 B2
7066586 da Silva Jun 2006 B2
D525361 Hushka Jul 2006 S
D531311 Guerra et al. Oct 2006 S
7115139 McClurken et al. Oct 2006 B2
D533942 Kerr et al. Dec 2006 S
D535027 James et al. Jan 2007 S
7156845 Mulier et al. Jan 2007 B2
7166106 Bartel et al. Jan 2007 B2
7189233 Truckai Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
D541938 Kerr et al. May 2007 S
7232440 Dumbauld et al. Jun 2007 B2
7238185 Palanker et al. Jul 2007 B2
7247155 Hoey et al. Jul 2007 B2
7309325 Mulier et al. Dec 2007 B2
7311708 McClurken Dec 2007 B2
7322974 Swoyer et al. Jan 2008 B2
D564662 Moses et al. Mar 2008 S
7357802 Palanker et al. Apr 2008 B2
7364579 Mulier et al. Apr 2008 B2
7367974 Haemmerich et al. May 2008 B2
D576932 Strehler Sep 2008 S
7419488 Ciarrocca Sep 2008 B2
7445617 Eastwood et al. Nov 2008 B2
7537595 McClurken May 2009 B2
D594736 Esjunin Jun 2009 S
D594737 Kelly et al. Jun 2009 S
7604635 McClurken et al. Oct 2009 B2
D606203 Husheer et al. Dec 2009 S
7645277 McClurken et al. Jan 2010 B2
7651494 McClurken et al. Jan 2010 B2
D613412 DeCarlo Apr 2010 S
7727232 Maurer et al. Jun 2010 B1
7736361 Palanker et al. Jun 2010 B2
7789879 Palanker et al. Sep 2010 B2
7811282 McClurken Oct 2010 B2
7815634 McClurken et al. Oct 2010 B2
D634010 DeCarlo Mar 2011 S
7909820 Lipson et al. Mar 2011 B2
7951148 McClurken May 2011 B2
7972330 Alejandro et al. Jul 2011 B2
7976544 McClurken et al. Jul 2011 B2
7998140 McClurken et al. Aug 2011 B2
8038670 McClurken Oct 2011 B2
8043286 Palanker et al. Oct 2011 B2
8048070 O'Brien et al. Nov 2011 B2
8075557 Maurer et al. Dec 2011 B2
8083736 McClurken et al. Dec 2011 B2
8105324 Palanker et al. Jan 2012 B2
8137345 McNall, III et al. Mar 2012 B2
8177783 Davison et al. May 2012 B2
8216233 McClurken Jul 2012 B2
8235989 Palanker et al. Aug 2012 B2
8323276 Palanker et al. Dec 2012 B2
8348946 McClurken Jan 2013 B2
8361068 McClurken Jan 2013 B2
8414572 Davison et al. Apr 2013 B2
D681810 DeCarlo May 2013 S
8475455 McClurken et al. Jul 2013 B2
8506564 Long et al. Aug 2013 B2
8568409 O'Brien et al. Oct 2013 B2
8632533 Greeley et al. Jan 2014 B2
8870864 Davison et al. Oct 2014 B2
8882756 Greeley et al. Nov 2014 B2
8906012 Conley et al. Dec 2014 B2
8920417 Conley et al. Dec 2014 B2
8979842 McNall, III et al. Mar 2015 B2
9011445 Greeley Apr 2015 B2
9018983 Vankov Apr 2015 B2
9023040 Bloom et al. May 2015 B2
9050113 Bloom et al. Jun 2015 B2
9131980 Bloom Sep 2015 B2
9138289 Conley et al. Sep 2015 B2
9226792 Bloom Jan 2016 B2
9254168 Palanker Feb 2016 B2
9333027 Bloom et al. May 2016 B2
9345541 Greeley et al. May 2016 B2
9381061 McClurken et al. Jul 2016 B2
9427281 Bloom et al. Aug 2016 B2
9445858 Conley et al. Sep 2016 B2
9486283 Greeley et al. Nov 2016 B2
20010051802 Woloszko et al. Dec 2001 A1
20020111624 Witt Aug 2002 A1
20030014050 Sharkey et al. Jan 2003 A1
20030032954 Carranza et al. Feb 2003 A1
20030045872 Jacobs Mar 2003 A1
20030073993 Ciarrocca Apr 2003 A1
20030078578 Truckai Apr 2003 A1
20030144656 Ocel Jul 2003 A1
20030191462 Jacobs Oct 2003 A1
20030204185 Sherman et al. Oct 2003 A1
20030216724 Jahns Nov 2003 A1
20040015106 Coleman Jan 2004 A1
20040015219 Francischelli Jan 2004 A1
20040019350 O'Brien Jan 2004 A1
20040024395 Ellman et al. Feb 2004 A1
20040044340 Francischelli Mar 2004 A1
20040049179 Francischelli Mar 2004 A1
20040078069 Francischelli Apr 2004 A1
20040082948 Stewart et al. Apr 2004 A1
20040087940 Jahns May 2004 A1
20040092926 Hoey May 2004 A1
20040111136 Sharkey et al. Jun 2004 A1
20040111137 Sharkey et al. Jun 2004 A1
20040116923 Desinger Jun 2004 A1
20040138621 Jahns Jul 2004 A1
20040138656 Francischelli Jul 2004 A1
20040143260 Francischelli Jul 2004 A1
20040186465 Francischelli Sep 2004 A1
20040215183 Hoey Oct 2004 A1
20040220560 Briscoe Nov 2004 A1
20040236322 Muller Nov 2004 A1
20040267326 Ocel Dec 2004 A1
20050010095 Stewart et al. Jan 2005 A1
20050033280 Francischelli Feb 2005 A1
20050090815 Francischelli Apr 2005 A1
20050124987 Goble Jun 2005 A1
20050143729 Francischelli Jun 2005 A1
20050165392 Francischelli Jul 2005 A1
20050209564 Bonner Sep 2005 A1
20050267454 Hissong Dec 2005 A1
20050267467 Paul et al. Dec 2005 A1
20060009756 Francischelli Jan 2006 A1
20060009759 Christian Jan 2006 A1
20060064085 Schechter et al. Mar 2006 A1
20060217709 Couture Sep 2006 A1
20070049920 McClurken et al. Mar 2007 A1
20070093808 Mulier et al. Apr 2007 A1
20070112343 Mische et al. May 2007 A1
20070118114 Miller et al. May 2007 A1
20070208332 Mulier et al. Sep 2007 A1
20080015563 Hoey et al. Jan 2008 A1
20080058796 O'Brien et al. Mar 2008 A1
20080071270 Desinger et al. Mar 2008 A1
20080234674 McClurken et al. Sep 2008 A1
20090209975 Milijasevic et al. Aug 2009 A1
20090222001 Greeley et al. Sep 2009 A1
20090264879 McClurken et al. Oct 2009 A1
20100076433 Taylor Mar 2010 A1
20100100095 McClurken et al. Apr 2010 A1
20110028965 McClurken et al. Feb 2011 A1
20110290854 Timm Dec 2011 A1
20110306968 Beckman Dec 2011 A1
20120004657 Conley et al. Jan 2012 A1
20120010149 McClurken et al. Apr 2012 A1
20120116397 Rencher et al. May 2012 A1
20120191084 Davison et al. Jul 2012 A1
20120199631 Shelton, IV Aug 2012 A1
20120323227 Wolf Dec 2012 A1
20140188105 Conley et al. Jul 2014 A1
20150320490 Conley et al. Nov 2015 A1
Foreign Referenced Citations (96)
Number Date Country
1103807 Jun 1995 CN
390937 Mar 1924 DE
1099658 Feb 1961 DE
1139927 Nov 1962 DE
1149832 Jun 1963 DE
1439302 Jan 1969 DE
2439587 Feb 1975 DE
2455174 May 1975 DE
2407559 Aug 1975 DE
2415263 Oct 1975 DE
2429021 Jan 1976 DE
2460481 Jun 1976 DE
2602517 Jul 1976 DE
2504280 Aug 1976 DE
2627679 Jan 1977 DE
2540968 Mar 1977 DE
2820908 Nov 1978 DE
2803275 Aug 1979 DE
2823291 Nov 1979 DE
2946728 May 1981 DE
3143421 May 1982 DE
3045996 Jul 1982 DE
3120102 Dec 1982 DE
3510586 Oct 1986 DE
3604823 Aug 1987 DE
8712328 Feb 1988 DE
3711511 Jun 1988 DE
3904558 Aug 1990 DE
3942998 Jul 1991 DE
4238263 May 1993 DE
04303882 Feb 1995 DE
4339049 May 1995 DE
29616210 Nov 1996 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19717411 Nov 1998 DE
19751108 May 1999 DE
19801173 Jul 1999 DE
19848540 May 2000 DE
10217281 Oct 2003 DE
10224154 Dec 2003 DE
10310765 Sep 2004 DE
10328514 Mar 2005 DE
102004022206 Dec 2005 DE
202005015147 Feb 2006 DE
102009015699 May 2010 DE
0 246 350 Nov 1987 EP
0 521 264 Jan 1993 EP
0 556 705 Aug 1993 EP
0 558 429 Sep 1993 EP
0 648 515 Apr 1995 EP
0 836 868 Apr 1998 EP
0 882 955 Dec 1998 EP
1 159 926 Dec 2001 EP
179 607 Nov 1906 FR
1 275 415 Nov 1961 FR
1 347 865 Jan 1964 FR
2 235 669 Jan 1975 FR
2 276 027 Jan 1976 FR
2 313 708 Dec 1976 FR
2 502 935 Oct 1982 FR
2 517 953 Jun 1983 FR
2 573 301 May 1986 FR
2 862 813 May 2005 FR
2 864 439 Jul 2005 FR
56-161636 Dec 1981 JP
59-58933 Apr 1984 JP
5-5106 Jan 1993 JP
5-08933 Feb 1993 JP
05-40112 Feb 1993 JP
06343644 Dec 1994 JP
07265328 Oct 1995 JP
08056955 Mar 1996 JP
08252263 Oct 1996 JP
09000492 Jan 1997 JP
09010223 Jan 1997 JP
9117456 May 1997 JP
11244298 Sep 1999 JP
2000342599 Dec 2000 JP
2000350732 Dec 2000 JP
2001003776 Jan 2001 JP
2001008944 Jan 2001 JP
2001029356 Feb 2001 JP
2001037775 Feb 2001 JP
2001128990 May 2001 JP
2001231870 Aug 2001 JP
2002253569 Sep 2002 JP
2008142467 Jun 2008 JP
20070093068 Sep 2007 KR
20100014406 Feb 2010 KR
20120055063 May 2012 KR
166452 Nov 1964 SU
401367 Oct 1973 SU
727201 Apr 1980 SU
0036985 Jun 2000 WO
2010035831 Apr 2010 WO
Non-Patent Literature Citations (107)
Entry
LigaSureTM Vessel Sealing System, the Seal of Confidence in General , Gynecologic, Urologic, and Laparaoscopic Surgery, Sales/Product Literature, Jan. 2004.
Livraghi et al., (1995) “Saline-enhanced RF Tissue Ablation in the Treatment of Liver Metastases”, Radiology, p. 140 (Abstr).
Lyndon B. Johnson Space Center, Houston, Texas, “Compact Directional Microwave Antenna for Localized Heating,” NASA Tech Briefs, Mar. 2008.
M. A. Astrahan, “A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants” Medical Physics. 9(3), May/Jun. 1982.
Magdy F. Iskander et al., “Design Optimization of Interstitial Antennas”, IEEE Transactions on Biomedical Engineering, vol. 36, No. 2, Feb. 1989, pp. 238-246.
McGahan et al., (1995) “Percutaneous Ultrasound-guided Radiofrequency Electrocautery Ablation of Prostate Tissue in Dogs”, Acad Radiol, vol. 2, No. 1: pp. 61-65.
McLellan et al., “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, DC.
MDTECH product literature (Dec. 1999) “FlexStrand”: product description, 1 page.
MDTECH product literature (Mar. 2000) I'D Wire: product description, 1 page.
Medtrex Brochure “The O.R. Pro 300” 1 page, Sep. 1998.
Michael Choti, “Abdominoperineal Resection with the LigaSureTM Vessel Sealing System and LigaSureTM Atlas 20 cm Open Instrument” Innovations That Work, Jun. 2003.
Muller et al., “Extended Left Hemicolectomy Using the LigaSureTM Vessel Sealing System” Innovations That Work. LJ, Sep. 1999.
Murakami, R. et al., (1995). “Treatment of Hepatocellular Carcinoma: Value of Percutaneous Microwave Coagulation,” American Journal of Radiology (AJR) 164:1159-1164.
Ni Wei et al., “A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . ” Journal of Applied Sciences-Yingyong Kexue Xuebao, Shangha CN, vol. 23, No. 2:(Mar. 2005); pp. 160-184.
Ogden, “Goertzel Alternative to the Fourier Transform” Jun. 1993 pp. 485-487 Electronics World; Reed Business Publishing, Sutton, Surrey, BG, vol. 99, No. 9, 1687.
Olsson M.D. et al., “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
Organ, L W., “Electrophysiologic Principles of Radiofrequency Lesion Making” Appl. Neurophysiol, vol. 39: pp. 69-76 (1976/77).
P.R. Stauffer et al., “Interstitial Heating Technologies”, Thermoradiotheray and Thermochemotherapy (1995) vol. I, Biology, Physiology, Physics, pp. 279-320.
Palazzo et al., “Randomized clinical trial of LigaSureTM versus open haemorrhoidectomy” British Journal of Surgery 2002,89,154-157 “Innovations in Electrosurgery” Sales/Product Literature; Dec. 31, 2000.
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001, pp. 236-237.
Peterson et al., “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001).
R. Gennari et al., (Jun. 2000) “Use of Technetium-99m-Labeled Colloid Albumin for Preoperative and Intraoperative Localization of Non palpable Breast Lesions,” American College of Surgeons. 190(6):692-699.
Valleylab Brochure, “Reducing Needlestick Injuries in the Operating Room” 1 page, Mar. 2001.
Reidenbach, (1995) “First Experimental Results with Special Applicators for High-Frequency Interstitial Thermotherapy”, Society Minimally Invasive Therapy, 4(Suppl 1):40 (Abstr).
Richard Wolf Medical Instruments Corp. Brochure, “Kleppinger Bipolar Forceps & Bipolar Generator” 3 pages, Jan. 1989.
Rothenberg et al., “Use of the LigaSureTM Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (I PEG) 2000.
Sayfan et al., “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery, vol. 234, No. 1, Jul. 2001, pp. 21-24.
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540.
Sigel et al., “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
Solbiati et al., (2001) “Percutaneous Radio-frequency Ablation of Hepatic Metastases from Colorectal Cancer: Long-term Results in 117 Patients”, Radiology, vol. 221, pp. 159-166.
Solbiati et al. (1995) “Percutaneous US-guided RF Tissue Ablation of Liver Metastases: Long-term Follow-up”, Radiology, pp. 195-203.
Stagegaard, N., Petersen H.H., Chen X., Svendsen J.H., “Indication of the Radiofrequency Induced Lesion Size by Pre-ablation Measurements” Europace (2005) 7, 525-534.
Strasberg et al., “Use of a Bipolar Vassel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Sugita et al., “Bipolar Coagulator with Automatic Thermocontrol” J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779.
Sylvain Labonte et al., “Monopole Antennas for Microwave Catheter Ablation”, IEEE Trans. on Microwave Theory and Techniques, vol. 44, No. 10, pp. 1832-1840, Oct. 1995.
T. Matsukawa et al., “Percutaneous Microwave Coagulation Therapy in Liver Tumors”, Acta Radiologica, vol. 38, pp. 410-415, 1997.
T. Seki et al., (1994) “Ultrasonically Guided Percutaneous Microwave Coagulation Therapy for Small Hepatocellular Carcinoma,” Cancer 74(3):817-825.
Urologix, Inc.—Medical Professionals: TargisTM Technology (Date Unknown). “Overcoming the Challenge” located at: <http://www.urologix.com!medicaUtechnology.html > Nov. 18, 1999; 3 pages.
Urrutia et al., (1988). “Retractable-Barb Needle for Breast Lesion Localization: Use in 60 Cases,” Radiology 169 (3):845-847.
Valleylab Brochure, “Valleylab Electroshield Monitoring System” 2 pages, Nov. 1995.
ValleyLab Brochure, “Electosurgery: A Historical Overview”, Innovations in Electrosurgery, 1999.
Vallfors et al., “Automatically Controlled Bipolar Electrocoagulation—‘COA-COMP’” Neurosurgical Review 7:2-3 (1984) pp. 187-190.
W. Scott Helton, “LigaSureTM Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery” Sales/Product Literature 1999.
Wald et al., “Accidental Burns”, JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921.
Walt Boyles, “Instrumentation Reference Book”, 2002, Butterworth-Heinemann, pp. 262-264.
Wonnell et al., “Evaluation of Microwave and Radio Frequency Catheter Ablation in a Myocardium-Equivalent Phantom Model”, IEEE Transactions on Biomedical Engineering, vol. 39, No. 10, Oct. 1992; pp. 1086-1095.
U.S. Appl. No. 08/136,098, filed Oct. 14, 1993; Roger A. Stern.
U.S. Appl. No. 08/483,742, filed Jun. 7, 1995; Roger A. Stern.
U.S. Appl. No. 14/011,414, filed Aug. 27, 2013; inventor: Ohri.
U.S. Appl. No. 14/011,438, filed Aug. 27, 2013; inventor: Ohri.
Alexander et al., “Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance Spatial Accuracy” Journal Neurosurgery, 83 (1995), pp. 271-276.
Anderson et al., “A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia” International Journal of Bio-Medical Computing, 35 (1994), pp. 297-307.
Anonymous. (1999) Auto Suture MIBB Site Marker: Single Use Clip Applier, United States Surgical (Product instructions), 2 pages.
Anonymous. (2001) Disposable Chiba Biopsy Needles and Trays, Biopsy and Special Purpose Needles Cook Diagnostic and Interventional Products Catalog (products list), 4 pages.
Anonymous. (1987) Homer Mammalok™ Breast Lesion Needle/Wire Localizer, Namic ® Angiographic Systems Division, Glens Falls, New York, (Hospital products price list), 4 pages.
Anonymous. (1999) MIBB Site Marker, United States Surgical (Sales brochure), 4 pages.
Anonymous. Blunt Tubes with Finished Ends. Pointed Cannula, Popper & Sons Biomedical Instrument Division, (Products Price List), one page, Jul. 19, 2000.
Anonymous. Ground Cannulae, ISPG, New Milford, CT, (Advertisement) one page, Jul. 19, 2000.
B. Levy M.D. et al., “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
B. Levy M.D. et al., “Update on Hysterectomy New Technologies and Techniques” OBG Management, Feb. 2003.
B. Levy M.D., “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.
B. F. Mullan et al., (May 1999) “Lung Nodules: Improved Wire for CT-Guided Localization,” Radiology 211:561-565.
B. T. Heniford M.D. et al., “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
Bergdahl et al., “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” Journal of Neurosurgery 75:1 (Jul. 1991), pp. 148-151.
Bulletin of the American Physical Society, vol. 47, No. 5, Aug. 2002, p. 41.
C. F. Gottlieb et al., “Interstitial Microwave Hyperthermia Applicators having Submillimetre Diameters”, Int. J. Hyperthermia, vol. 6, No. 3, pp. 707-714, 1990.
C. H. Durney et al., “Antennas for Medical Applications”, Antenna Handbook: Theory Application and Design, p. 24-40, Van Nostrand Reinhold, 1988 New York, V.T. Lo, S.W. Lee.
Carbonell et al., “Comparison of the Gyrus PlasmaKinetic Sealer and the Valleylab LigaSure.Tm. Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center,Charlotte, NC 2003.
Carus et al., “Initial Experience With the LigaSure.TM. Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002.
Chicharo et al., “A Sliding Goertzel Algorithm” Aug. 1996 DOS pp. 283-297 Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 52, No. 3.
Chou, C.K., (1995) “Radiofrequency Hyperthermia in Cancer Therapy,” Chapter 941n Biologic Effects of Nonionizing Electromagnetic Fields, CRC Press, Inc., pp. 1424-1428.
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSureTM” Diseases of the Colon & Rectum, vol. 46, No. 1, Jan. 2003.
Cosman et al., “Methods of Making Nervous System Lesions” In William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw-Hill, vol. 111, (1984), pp. 2490-2499.
Cosman et al., “Radiofrequency Lesion Generation and its Effect on Tissue Impedence”, Applied Neurophysiology, 51:230-242, 1988.
Cosman et al., “Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone” Neurosurgery 15: (1984), pp. 945-950.
Crawford et al., “Use of the LigaSure.TM. Vessel Sealing System in Urologic Cancer Surger” Grand Rounds in Urology 1999, vol. 1, Issue 4, pp. 10-17.
Dulemba et al., “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004.
E. David Crawford, “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000.
E. David Crawford, “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000.
Esterline, “Light Key Projection Keyboard” Advanced Input Systems, located at: <http://www.advanced-input.com/lightkey> 2002.
Esterline Product Literature, “Light Key: Visualize a Virtual Keyboard. One With No Moving Parts”, Nov. 1, 2003; 4 pages.
Geddes et al., “The Measurement of Physiologic Events by Electrical Impedence” Am. J. MI, Jan. Mar. 1964, pp. 16-27.
Goldberg et al., “Image-guided Radiofrequency Tumor Ablation: Challenges and Opportunities—Part I”, (2001) J Vasc. Interv. Radiol, vol. 12, pp. 1021-1032.
Goldberg et al. (1995) “Saline-enhanced RF Ablation: Demonstration of Efficacy and Optimization of Parameters”, Radiology, 197(P): 140 (Abstr).
Goldberg et al., “Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume” Acad Radio (1995) vol. 2, No. 5, pp. 399-404.
H. Schwarzmaier et al., “Magnetic Resonance Imaging of Microwave Induced Tissue Heating” Dept. of Laser Medicine & Dept. of Diagnostic Radiology; Heinrich-Heine-University, Duesseldorf, Germany; Dec. 8, 1994; pp. 729-731.
Heniford et al., “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2001) 15:799-801.
Herman at al., “Laparoscopic Intestinal Resection With the LigaSureTM Vessel Sealing System: A Case Report” Innovations That Work, Feb. 2002.
Humphries Jr. et al., “Finite-Element Codes To Model Electrical Heating And Non-Llnear Thermal Transport In Biological Media”, Proc. ASME HTD—355, 131 (1997).
Ian D. McRury et al., The Effect of Ablation Sequence and Duration on Lesion Shape Using Rapidly Pulsed Radiofrequency Energy Through Electrodes, Feb. 2000, Springer Netherlands, vol. 4; No. 1, pp. 307-320.
Jarrett et al., “Use of the LigaSureTM Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000.
Johnson et al., “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature, Jan. 2004.
Johnson, “Evaluation of the LigaSureTM Vessel Sealing System in Hemorrhoidectormy” American College Of Surgeons (ACS) Clinic La Congress Poster (2000).
Johnson et al., “New Low-Profile Applicators for Local Heating of Tissues”, IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 1, Jan. 1984, pp. 28-37.
Johnson, “Use of the LigaSureTM Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000.
Joseph G. Andriole M.D. et al., “Biopsy Needle Characteristics Assessed in the Laboratory”, Radiology 148: 659-662, Sep. 1983.
Joseph Ortenberg, “LigaSureTM System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
Kennedy et al., “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878.
Kopans, D.B. et al., (Nov. 1985) “Spring Hookwire Breast Lesion Localizer: Use with Rigid-Compression. Mammographic Systems,” Radiology 157(2):537-538.
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
U.S. Appl. No. 14/242,019, filed Apr. 1, 2014; inventor: Brannan.
U.S. Appl. No. 14/242,048, filed Apr. 1, 2014; inventor: Prakash.
U.S. Appl. No. 14/281,264, filed May 19, 2014; inventor: Prakash.
U.S. Appl. No. 14/281,344, filed May 19, 2014; inventor: Shiu.
U.S. Appl. No. 14/300,824, filed Jun. 10, 2014; inventor: Behnke.
U.S. Appl. No. 14/300,871, filed Jun. 10, 2014; inventor: Bonn.
U.S. Appl. No. 14/306,865, filed Jun. 17, 2014; inventor: Brannan.
Related Publications (1)
Number Date Country
20150094708 A1 Apr 2015 US
Provisional Applications (1)
Number Date Country
61884573 Sep 2013 US