1. Field of the Invention
The present invention relates generally to endoscopic surgical instruments. More particularly, the invention relates to an endoscopic surgical instrument having end effectors made out of a combination of conductive and non-conductive materials. The invention has particular use with respect to bipolar endoscopic cautery. For purposes herein, the term “endoscopic instruments” is to be understood in its broadest sense to include laparoscopic, arthroscopic, and neurological instruments, as well as instruments which are inserted through an endoscope.
2. State of the Art
Endoscopic surgery is widely practiced throughout the world today and its acceptance is growing rapidly. In general, endoscopic/laparoscopic surgery involves one or more incisions made by trocars where trocar tubes are left in place so that endoscopic surgical tools may be inserted through the tubes. A camera, magnifying lens, or other optical instrument is often inserted through one trocar tube, while a cutter, dissector, or other surgical instrument is inserted through the same or another trocar tube for purposes of manipulating and/or cutting the internal organ. Sometimes it is desirable to have several trocar tubes in place at once in order to receive several surgical instruments. In this manner, organ or tissue may be grasped with one surgical instrument, and simultaneously may be cut with another surgical instrument; all under view of the surgeon via the optical instrument in place in the trocar tube.
Various types of endoscopic surgical instruments are known in the art. These instruments generally comprise a slender tube containing a push rod which is axially movable within the tube by means of a handle or trigger-like actuating means. An end effector is provided at the distal end of the tube and is coupled to the push rod by means of a clevis so that axial movement of the push rod is translated to rotational or pivotal movement of the end effector. End effectors may take the form of scissors, grippers, cutting jaws, forceps, and the like. Because of their very small size and the requirements of strength and/or sharpness, end effectors are difficult to manufacture and are typically formed of forged stainless steel. As such, they form an expensive portion of the endoscopic instrument.
Modern endoscopic procedures often involve the use of electrocautery, as the control of bleeding by coagulation during surgery is critical both in terms of limiting loss of blood and in permitting a clear viewing of the surgical site. As used herein, cautery, electrocautery, and coagulation are used interchangeably. Several types of electrocautery devices for use in endoscopic surgery are described in the prior art. Monopolar electrosurgical instruments employ the instrument as an electrode, with a large electrode plate beneath and in contact with the patient serving as the second electrode. High frequency voltage spikes are passed through the instrument to the electrode (i.e., end effector) of the endoscopic instrument to cause an arcing between the instrument and the proximate tissue of the patient. The current thereby generated continues through the patient to the large electrode plate beneath the patient. Monopolar cautery has the disadvantage that the current flows completely through the patient. Because control of the current path through the body is not possible, damage can occur to tissue both near and at some distance from the surgical site. In addition, it is has been observed that monopolar cautery can result in excessive tissue damage due to the arcing between the end effector and the tissue.
In order to overcome the problems associated with monopolar cautery instruments, bipolar instruments have been introduced. In bipolar electrosurgical instruments, two electrodes which are closely spaced together are utilized to contact the tissue. Typically, one end effector acts as the first electrode, and the other end effector acts as the second electrode, with the end effectors being electrically isolated from each other and each having a separate current path back through to the handle of the instrument. Thus, in a bipolar instrument, the current flow is from one end effector electrode, through the tissue to be cauterized, to the other end effector electrode.
Various endoscopic instruments with cautery capability are known in the art. U.S. Pat. No. 4,418,692 to Guay, for example, discloses a device for use in laparoscopic tubal cauterization for blocking the Fallopian tubes of a patient. The device comprises a substantially tubular body member having a spring-biased piston slidably mounted therein. A pair of electrodes (either monopolar or bipolar) are disposed to grasp living tissue when the piston is in a first position biased by the spring and to release the tissue when a button is pressed which moves the piston into a second position. The device includes a circuit breaker which interrupts current flowing to the electrodes when the piston is in the second position. When the electrodes grasp the tissue, however, current is supplied to the entire surface of the electrode, that is, both the grasping surface and the outer non-grasping surface.
Another electrosurgical instrument for use in combination with an endoscope is disclosed in U.S. Pat. No. 5,007,908 to Rydell for “Electrosurgical Instrument Having Needle Cutting Electrode and Spot-Coag Electrode”. Rydell's device includes an elongated flexible tubular member with a plurality of lumens. The distal end of the tubular member is provided with a bullet shaped ceramic tip covered with a conductive layer and having an opening coupled to a first one of the lumens. The conductive layer is coupled to a conductor which extends through a second one of the lumens to an electrical source. A second conductor, also coupled to the electrical source is slidable through the first lumen by a plunger. The two electrodes form a bipolar pair. In a second embodiment, the conductive layer on the ceramic tip is split by an insulating gap and both halves of the tip form a bipolar pair of electrodes. As with the Guay device, above, substantially the entire distal surface of Rydell's device serves as an electrode when energized.
Several hemostatic bipolar electrosurgical scissors have also been described. U.S. Pat. No. 3,651,811 to Hildebrandt describes a bipolar electrosurgical scissors having opposing cutting blades forming active electrodes. The described scissors enables a surgeon to sequentially coagulate the blood vessels contained in the tissue and then to mechanically sever the tissue with the scissor blades. In particular, with the described bipolar electrosurgical scissors, the surgeon must first grasp the tissue with the scissor blades, energize the electrodes to cause hemostasis, de-energize the electrodes, and then close the scissor blades to sever the tissue mechanically. The scissors are then repositioned for another cut accomplished in the same manner. With the bipolar electrosurgical scissors of Hildebrandt, the surgeon cannot maintain the electrodes in a continuously energized state because the power supply would be shorted out and/or the blades damaged if the blades are permitted to contact each other while energized.
The disadvantages of the bipolar scissors of Hildebrandt are overcome by the disclosure in U.S. Pat. Nos. 5,324,289 and 5,330,471 to Eggers. In its preferred embodiment, the bipolar electrosurgical scissors of Eggers comprise a pair of metal scissor blades which are provided with an electrically insulating material interposed between the shearing surfaces of the blades so that when the scissor blades are closed, the metal of one blade never touches the metal of the other blade; i.e., the insulating material provides the cutting edge and the shearing surface. With the arrangement provided by Eggers, a cautery current will pass from the top back edge of the bottom metal blade through the tissue which is to be cut and to the bottom back edge of the top metal blade directly in advance of the cutting action. As the scissors are gradually closed, the hemostasis preferentially occurs at a location just in advance of the cutting point which itself moves distally along the insulated cutting edges of the blades in order to sever the hemostatically heated tissue. With this arrangement, the scissors may be maintained in a continuously energized state while performing the cutting. The Eggers patent describes various alternative embodiments of the bipolar scissors, including the use of metal blades with only one blade being insulated on its shearing surface, and the use of insulating blades with back surfaces coated with metal.
It is therefore an object of the invention to provide a pair of scissor blades for a bipolar cauterizing surgical scissors which provide a metal on metal cutting/shearing action.
It is another object of the invention to provide a pair of scissor blades for a bipolar cauterizing surgical scissors which have shearing surfaces that are insulated from cautery surfaces.
It is also an object of the invention to provide an endoscopic bipolar cauterizing scissors which provides a metal on metal cutting action and which may be either curved or flat.
In accord with the objects of the invention, the scissor blades of the present invention are comprised of an electrically conductive electrode, an electrically insulating material, and a metal shearing surface which is electrically insulated and physically spaced from the electrode by the insulating material which is disposed therebetween. The scissor blades, for example, may comprise but are not limited to a composite assembly of an electrode layer, an insulating layer, and a metal shearing surface layer. In the presently preferred embodiment, the electrode layer is a metal blade which is typically constructed from stainless steel, while the insulating layer is a ceramic which is deposited, bonded, or otherwise fixed on the metal blade, and the metal shearing surface layer which also provides the cutting edge is a metal (e.g., copper, gold, stainless steel etc.) which is metalized, deposited, sputtered, plated, bonded, or otherwise fixed onto the ceramic. In a second embodiment, the insulating layer is a ceramic support, with the electrode layer and the metal shearing surface layer being metalized, deposited, sputtered, plated, bonded, or otherwise fixed to the ceramic support. In a third embodiment, the insulating layer is deposited, bonded, or otherwise fixed onto a metal blade which includes the cutting edge and shearing surface, while the electrode metal layer is metalized, deposited, sputtered, plated, bonded, or otherwise fixed onto the insulating layer. In a fourth embodiment, the insulating layer is a composite material such as fiberglass which is provided with metal electrode and metal shearing surface layers which are metalized, deposited, sputtered, plated, bonded, or otherwise fixed onto opposite sides of the fiberglass layer. In all embodiments, since the metal cutting edges and shearing surfaces are insulated from the electrodes, no short circuit can form between the electrodes even though the cutting edges and shearing surfaces are metal.
As the scissor blades are intended for use as part of an endoscopic instrument, each blade is preferably provided with a first hole which receives an axle or clevis pin around which the blades rotate. In addition, each blade is preferably provided with a pin or protrusion extending from a proximal or base portion of the blade. The pins are provided to receive links which couple the blades to an actuator mechanism.
The endoscopic bipolar cautery scissors instrument which utilizes the blades of the invention is substantially as is described in U.S. Pat. No. 5,569,243, issued on Oct. 29, 1996, the complete disclosure of which is hereby incorporated by reference herein, and utilizes a push rod assembly with two conductive push rods which are stabilized and insulated relative to each other. The distal ends of the push rods are coupled to the end effectors by the links. The proximal ends of the push rods extend through the handle and lever of the scissors instrument and present electrical cautery pins onto which a standard bipolar cautery plug can be mated.
Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures.
a is an enlarged broken top view in partial section of the distal end of the instrument of
a is a side elevation view of the collar of
b is a distal end view of the collar of
c is a proximal end view of the collar of
Turning now to
The presently preferred embodiment of the push rod assembly 20 includes a pair of stainless steel rods 32, 34 which are molded into a proximal collar 36 and captured in a distal collar 46. The proximal collar has a radial groove 40 in its distal portion and an increased diameter proximal portion 37 which carries a pair of electrical coupling pins 39 which are electrically coupled to the rods 32, 34. As shown, the pins 39 are spaced farther apart from each other than the rods 32, 34 so as to accommodate a standard cautery connector. The rods 32, 34 are covered with insulating high density polyethylene (HDPE) tubes along substantially their entire length between the proximal and distal collars 36, 46. A plurality of spaced apart polypropylene cylinders 50 are molded about the rods between the proximal collar 36 and the distal collar 46. These cylinders stabilize the rods against helical twisting when the tube 16 is rotated and, by being discontinuous, prevent against warping of the push rod assembly.
According to one embodiment, and as seen best in
According to a presently preferred embodiment, and as best seen in
Referring now to a first embodiment of the scissor blade invention seen in
According to the first embodiment shown in
The embodiment shown in
From the foregoing, it will be appreciated that in order to achieve the object of preventing the cutting edges and shearing surface from short circuiting the device, it is only necessary that one of the scissor blades be constructed as described above.
The embodiment shown in
It will be appreciated that either of the blades 226, 228 from
Again, it should be noted that either of the blades 326, 328 of the third embodiment may be utilized with an opposed blade 28, 26, 228, or 226 from
A fourth embodiment of scissor blades 426, 428 is shown in
According to this fourth embodiment, both blades 426 and 428 are laminated assemblies having a non-conductive core 426r, 428r. The core 426r, 428r is preferably formed from a fiberglass or a similar material and includes the curved distal portion 426a, 428a, the proximal tang 426c, 428c, and the mounting hole 426d, 428d. A metal blade layer 426f, 428f defining a shearing surface is laminated to the inner surface of the non-conductive core 426r, 428r along the curved distal portion 426a, 428a. It will be appreciated that the metal blade layers 426f, 428f are preferably provided with sharpened opposing cutting edges 426b, 428b. An outer metallic support layer 426q, 428q is laminated to the outer surface of the non-conductive core 426r, 428r from the mounting hole 426d, 428d along the curved distal portion 426a, 428a. The outer metallic support layers 426q, 428q form the electrically conductive portions of the blades through which cautery current is applied. Thus, the outer metallic support layer 426q, 428q extends along substantially the entire length of the core 426r, 428r to make and electrical connection at the lug 426e, 428e as described above with reference to
There have been described and illustrated herein several embodiments of bipolar endoscopic surgical scissor blades and an instrument incorporating them. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while particular conductive and non-conductive materials have been disclosed, it will be appreciated that other materials could be utilized. Also, while blades of specific shape and dimension have been shown, it will be recognized that blades having different shapes and dimensions could be used with similar results obtained. While means for pivotally joining the blades has been shown as an axle screw with a nut, other pivotal joining means could be used. For example, a clevis with an integral axle pin, or a snap-in axle pin, or a riveted axle pin could all be used. While means for supplying each blade with a voltage has been shown as a bipolar push rod, it will be appreciated that other means such as a bipolar clevis and bipolar hollow tube could be used. Individual shielded electrical conductors within the hollow tube could also be used for this purpose. In addition, while the electrical coupling of the conductive portion of each blade has been shown as the proximal connecting lug which connects to a link, it will be appreciated that an electrical coupling could be made through a two piece bipolar clevis axle. Also, while the means for imparting scissor-like movement to the blades has been shown as a push rod, a pull wire or other reciprocating arrangement might be used as well. In addition, while the means for coupling the scissor blades to the push rod has been shown as an orthogonal lug, it will be understood that other means such as a connecting hole could be used while achieving substantially the same results. Moreover, while particular methods have been disclosed in reference to laminating conductive and non-conductive layers, it will be appreciated that other methods could be used as well.
This is a continuation of application Ser. No. 09/177,502, filed Oct. 23, 1998, which is a continuation of application Ser. No. 08/354,992, filed Dec. 13, 1994, abandoned, all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2002594 | Wappler et al. | May 1935 | A |
2031682 | Wappler et al. | Feb 1936 | A |
3651811 | Hildebrandt et al. | Mar 1972 | A |
3920021 | Hiltebrandt | Nov 1975 | A |
3970088 | Morrison | Jul 1976 | A |
4003380 | Wien | Jan 1977 | A |
4016881 | Rioux et al. | Apr 1977 | A |
4128099 | Bauer | Dec 1978 | A |
4232676 | Herczog | Nov 1980 | A |
4347842 | Beale | Sep 1982 | A |
4370980 | Lottick | Feb 1983 | A |
4492231 | Auth | Jan 1985 | A |
4644651 | Jacobsen | Feb 1987 | A |
4657016 | Garito et al. | Apr 1987 | A |
4671274 | Sorochenko | Jun 1987 | A |
4754754 | Garito et al. | Jul 1988 | A |
4802476 | Noerenberg et al. | Feb 1989 | A |
4819633 | Bauer et al. | Apr 1989 | A |
4848337 | Shaw et al. | Jul 1989 | A |
4850353 | Stasz et al. | Jul 1989 | A |
4862890 | Stasz et al. | Sep 1989 | A |
4938761 | Ensslin | Jul 1990 | A |
4953559 | Salerno | Sep 1990 | A |
4958539 | Stasz et al. | Sep 1990 | A |
5009656 | Reimels | Apr 1991 | A |
5013312 | Parins et al. | May 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5026370 | Lottick | Jun 1991 | A |
5035248 | Zinnecker | Jul 1991 | A |
5082000 | Picha et al. | Jan 1992 | A |
5085659 | Rydell | Feb 1992 | A |
5116332 | Lottick | May 1992 | A |
5133727 | Bales et al. | Jul 1992 | A |
5147356 | Bhatta | Sep 1992 | A |
5147357 | Rose et al. | Sep 1992 | A |
5151102 | Kamiyama et al. | Sep 1992 | A |
5160343 | Brancel et al. | Nov 1992 | A |
5171256 | Smith et al. | Dec 1992 | A |
5171311 | Rydell et al. | Dec 1992 | A |
5174300 | Bales et al. | Dec 1992 | A |
5176677 | Wuchinich | Jan 1993 | A |
5197963 | Parins | Mar 1993 | A |
5197964 | Parins | Mar 1993 | A |
5207675 | Canady | May 1993 | A |
5217458 | Parins | Jun 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5219354 | Choudhury et al. | Jun 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5300087 | Knoepfler | Apr 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5324289 | Eggers | Jun 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5391166 | Eggers | Feb 1995 | A |
5395369 | McBrayer et al. | Mar 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5451223 | Ben-Simhon | Sep 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5462546 | Rydell | Oct 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5496312 | Klicek | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5514134 | Rydell et al. | May 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5540685 | Parins et al. | Jul 1996 | A |
5562659 | Morris | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5573534 | Stone | Nov 1996 | A |
5573535 | Viklund | Nov 1996 | A |
5611813 | Lichtman | Mar 1997 | A |
5658281 | Heard | Aug 1997 | A |
5766166 | Hooven | Jun 1998 | A |
5860975 | Goble et al. | Jan 1999 | A |
5951549 | Richardson et al. | Sep 1999 | A |
RE36795 | Rydell | Jul 2000 | E |
Number | Date | Country |
---|---|---|
0 517 243 | Dec 1992 | EP |
0 572 131 | Dec 1993 | EP |
0717966 | Jun 1996 | EP |
342619 | Jul 1972 | SU |
575103 | Oct 1977 | SU |
Number | Date | Country | |
---|---|---|---|
20040199160 A1 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09177502 | Oct 1998 | US |
Child | 10626599 | US | |
Parent | 08354992 | Dec 1994 | US |
Child | 09177502 | US |