Bipolar forceps

Information

  • Patent Grant
  • 8579897
  • Patent Number
    8,579,897
  • Date Filed
    Wednesday, November 21, 2007
    17 years ago
  • Date Issued
    Tuesday, November 12, 2013
    11 years ago
Abstract
In various surgical techniques, a bipolar forceps can be used to seal a vessel in two locations such that the vessel can be incised at a location positioned intermediate the two seal locations. The bipolar forceps can include a cutting element which can be configured to incise the vessel. In various embodiments, the cutting element can include a sharp edge which can be moved relative to the vessel. In at least one embodiment, the cutting element can be electrically connected to a source of energy. The bipolar forceps can include first and second electrodes positioned within first and second jaw members, respectively, wherein at least one of the jaw members can include a substantially tapered profile and can be configured to pull the vessel away from the surrounding soft tissue. Such jaw members can include ridges, teeth, and/or a textured outer surface configured to grip the soft tissue and/or vessel.
Description
RELATED APPLICATION

The present application is related to U.S. patent application Ser. No. 11/986,420, entitled BIPOLAR FORCEPS, now U.S. Pat. No. 8,262,655, which is a commonly-owned U.S. patent application filed concurrently herewith, the entire disclosure of which is hereby incorporated by reference herein.


BACKGROUND

1. Field of the Invention


The present invention generally relates to electrical ablation surgical instruments and, more particularly, to bipolar forceps for performing various surgical techniques.


2. Description of the Related Art


Previous bipolar forceps have included a grasping device which is configured to grasp and manipulate soft tissue, for example. In various circumstances, the grasping device has included a first electrode and a second electrode where, when one of the electrodes is brought into close opposition to the other electrode, an electrical current can pass therebetween. More particularly, when soft tissue is captured between the electrodes, current can be supplied to the first electrode and flow to the second electrode through the soft tissue. In such circumstances, the current can cauterize, vaporize, and/or otherwise treat, the soft tissue. Previous bipolar forceps, referring to U.S. Pat. No. 5,944,718, the entire disclosure of which is hereby incorporated be reference herein, have included a first electrode which can be pivoted relative to a stationary second electrode. These forceps have further included a first wire attached to the first electrode where the first wire is configured to supply current to the first electrode from an electrical source. In addition, these forceps have included a second wire which is attached to the second electrode where the second wire is configured to complete the electrical circuit and return the current back to the electrical source. In order for the first wire to remain in electrical communication with the first electrode when the first, or movable, jaw member is pivoted, the first wire must often bend and/or stretch in order to accommodate this movement. In some circumstances, such bending or stretching may cause the wire to break and/or the insulation covering the wire to become chaffed, thereby rendering the surgical instrument inoperative or unreliable. What is needed is an improvement over the foregoing.


SUMMARY

In at least one form of the invention, a bipolar forceps can include a first electrode, a second electrode, and a conductor, or wire, operably connected to an electrical source, for example, wherein the conductor can be selectively placed in electrical communication with the first electrode when the first electrode is moved between open and closed positions. In various embodiments, the wire can include a contact end which is not in contact with the first electrode when the first electrode is in its open position. In such an open position, the first electrode may not be in electrical communication with the electrical source and, as a result, current may not flow through the first electrode. In at least one such embodiment, the first electrode can be moved into its closed position such that the first electrode is in contact with the contact end of the wire. In such a closed position, the first electrode may be in electrical communication with the electrical source allowing current to flow through the first electrode. As a result of the above, the first electrode can move relative to the wire such that the wire does not have to move with the first electrode when the first electrode is moved between its open and closed positions and, as a result, the likelihood that the wire may become damaged or broken can be reduced.


In at least one form of the invention, a bipolar forceps can include two or more electrodes wherein the electrodes can be positioned against, or adjacent to, a vessel, such as a blood vessel, for example, and energy can be supplied to the electrodes. In various circumstances, the energy can be sufficient to at least substantially seal the vessel such that blood does not substantially flow therethrough. In at least one surgical technique, the bipolar forceps can be used to seal the vessel in two locations such that the vessel can be incised, or transected, at a location positioned intermediate the two seal locations. In at least one embodiment, the bipolar forceps can include a cutting element which can be configured to incise the vessel. In various embodiments, the cutting element can include a sharp edge which can be moved relative to the vessel. In at least one embodiment, the cutting element can be electrically connected to a source of energy wherein the energized cutting element can be configured to incise the tissue.


In at least one form of the invention, a bipolar forceps can include first and second electrodes positioned within first and second jaw members, respectively, wherein at least one of the jaw members can include a substantially tapered profile. In various surgical techniques, the jaw members can be positioned in a substantially closed position such that the distal end of the jaw members can be positioned intermediate a vessel, for example, and tissue at least partially surrounding the vessel. Thereafter, in at least one surgical technique, the jaw members can be opened in order to pull the vessel away from the soft tissue. In various techniques, the jaw members can be opened and closed repeatedly to enlarge a hole between the vessel and the tissue and/or otherwise separate the vessel from the tissue. In at least one embodiment, at least one of the jaw members can include ridges, teeth, and/or a textured outer surface configured to grip the soft tissue and/or vessel.





BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features and advantages of the various embodiments of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a perspective view of a hand piece and a shaft assembly of a surgical instrument in accordance with an embodiment of the present invention;



FIG. 2 is a schematic of an electrical source and an actuator for use with the surgical instrument of FIG. 1 in accordance with an embodiment of the present invention;



FIG. 3 is an elevational view of an end effector and a shaft assembly of a surgical instrument in accordance with an embodiment of the present invention;



FIG. 4 is a perspective view of the end effector of FIG. 3;



FIG. 5 is an additional perspective view of the end effector of FIG. 3;



FIG. 6 is a left elevational view of the end effector of FIG. 3;



FIG. 7 is a right elevational view of the end effector of FIG. 3;



FIG. 8 is an end view of the end effector of FIG. 3



FIG. 9 is a left elevational view of the end effector of FIG. 3 with a clevis removed;



FIG. 10 is a left elevational view of a coupling between the end effector and the shaft assembly of the surgical instrument of FIG. 3;



FIG. 11 is a left elevational view of the coupling of FIG. 10 with additional components removed;



FIG. 12 is a perspective view of the shaft assembly of the surgical instrument of FIG. 3;



FIG. 13 is a perspective view of a surgical instrument in accordance with an embodiment of the present invention;



FIG. 14 is a cross-sectional view of a hand piece of the surgical instrument of FIG. 13;



FIG. 15 is a perspective view of an end effector of a surgical instrument having a cutting element in accordance with an embodiment of the present invention;



FIG. 16 is a perspective view of an end effector of a surgical instrument having a cutting element in accordance with an alternative embodiment of the present invention;



FIG. 17 is a perspective view of an end effector of a surgical instrument having a cutting element extending from an electrode in accordance with an alternative embodiment of the present invention;



FIG. 18 is a perspective view of an end effector of a surgical instrument having a cutting element configured to be energized in accordance with an alternative embodiment of the present invention;



FIG. 19 is a detail view of an insulator positioned intermediate an electrode and the cutting element of FIG. 18;



FIG. 20 is a perspective view of an end effector of a surgical instrument having a tapered profile in accordance with an alternative embodiment of the present invention;



FIG. 21 is an elevational view of the end effector of FIG. 20;



FIG. 22 is a top view of the end effector of FIG. 20;



FIG. 23 is a perspective view of the end effector of FIG. 20 in an open configuration; and



FIG. 24 is an elevational view of the end effector of FIG. 20 in the configuration of FIG. 23.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate preferred embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION

Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the various embodiments of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.


The various embodiments described herein are related to electrical therapy ablation devices. Generally, electrical therapy ablation devices can comprise electrodes that can be positioned in, or in proximity to, a tissue treatment region, or target site, within a patient. These devices, and the surgical techniques for using the same, may be employed to treat tissue masses, tissue tumors, and lesions, for example, (all of which are hereinafter referred to as ‘diseased tissue’) at the tissue treatment region. In various embodiments, these devices can be utilized in open surgical procedures as well as external and non-invasive medical procedures. In other various embodiments, these devices may be adapted to provide minimally invasive access to the tissue treatment region or anatomic location, such as lung and liver tissue, for example, in order to diagnose and treat the condition at the tissue treatment region more accurately and effectively. In various embodiments, portions of the electrical therapy ablation devices may be introduced in the tissue treatment region endoscopically (e.g., laparoscopically and/or thoracoscopically), or through a trocar extending through a small incision. Portions of other devices may be introduced into the tissue treatment region by way of a natural orifice through a cannula or catheter. Minimally invasive procedures which introduce medical instruments to a tissue treatment region through a natural opening of the patient are known as Natural Orifice Translumenal Endoscopic Surgery (NOTES)™. In other embodiments, portions of the electrical therapy devices can be introduced percutaneously or in any combination of the methods described above.


Once positioned, the electrical therapy electrodes can deliver electrical current to the treatment region. The electrical current can be generated by a control unit or generator located external to the patient, for example, where the electrical current may be characterized by a particular waveform in terms of frequency, amplitude, and pulse width. Depending on the diagnostic or therapeutic treatment rendered, the diseased tissue can be electrically ablated or destroyed. More particularly, the electrical therapy ablation devices may be employed to deliver sufficient energy to the diseased tissue to ablate or destroy tumors, masses, lesions, and other abnormal tissue growths. In at least one embodiment, the electrical therapy ablation devices and techniques described herein may be employed in the treatment of cancer by quickly creating necrosis and destroying live cancerous tissue in-vivo. Such devices and techniques are further described in a commonly-owned, co-pending U.S. patent application Ser. No. 11/897,676, entitled ELECTRICAL ABLATION SURGICAL INSTRUMENTS, filed on Aug. 31, 2007, the entire disclosure of which is hereby incorporated by reference herein.


In various embodiments, electrical therapy ablation may employ electroporation, or electropermeabilization, techniques where an externally applied electric field (electric potential) significantly increases the electrical conductivity and permeability of a cell plasma membrane. Electroporation is the generation of a destabilizing electric potential across such biological membranes. In electroporation, pores are formed when the voltage across the cell plasma membrane exceeds its dielectric strength. Electroporation destabilizing electric potentials are generally in the range of several hundred volts across a distance of several millimeters. Below certain magnitude thresholds, the electric potentials may be applied across a biological membrane as a way of introducing some substance into a cell, such as loading it with a molecular probe, a drug that can change the function of the cell, a piece of coding DNA, or increasing the uptake of drugs in cells. If the strength of the applied electrical field and/or duration of exposure to it are suitably chosen, the pores formed by the electrical pulse reseal after a short period of time, during such period extra-cellular compounds may enter into the cell. Below a certain field threshold, the process is reversible and the potential does not permanently damage the cell membrane. This process may be referred to as reversible electroporation (RE). On the other hand, excessive exposure of live cells to large electric fields can cause apoptosis and/or necrosis—the processes that result in cell death. Excessive exposure of live cells to large excessive electrical fields or potentials across the cell membranes causes the cells to die and therefore may be referred to as irreversible electroporation (IRE). Electroporation may be performed with devices called electroporators. These appliances can create the electric current and send it through the cell. Electroporators may comprise two or more metallic (e.g., aluminum) electrically conductive electrodes connected to an energy source. The energy source can generate an electric field having a suitable characteristic waveform output in terms of frequency, amplitude, and pulse width.


In various embodiments, an electrical ablation system may be employed in conjunction with a flexible endoscope, such as a GIF-100 model available from Olympus Corporation, for example. In at least one such embodiment, the endoscope, a laparoscope, or a thoracoscope, for example, may be introduced into the patient trans-anally through the colon, the abdomen via an incision or keyhole and a trocar, or trans-orally through the esophagus, for example. These devices can assist the surgeon to guide and position the electrical ablation system near the tissue treatment region to treat diseased tissue on organs such as the liver, for example. In another embodiment, these devices may be positioned to treat diseased tissue near the gastrointestinal (GI) tract, esophagus, and/or lung, for example. In various embodiments, the endoscope may comprise a flexible shaft where the distal end of flexible shaft may comprise a light source, a viewing port, and at least one working channel. In at least one such embodiment, the viewing port can transmit an image within its field of view to an optical device such as a charge coupled device (CCD) camera within the endoscope, for example, so that an operator may view the image on a display monitor (not shown).


In various embodiments, referring to FIG. 1, surgical instrument, or bipolar forceps, 20 can include an end effector, shaft assembly 22, and hand piece 24. In at least one embodiment, shaft assembly 22 can comprise a flexible shaft of an endoscopic surgical instrument wherein at least portions of the end effector and shaft assembly 22 can be configured to be positioned within and/or inserted through a working channel of an endoscope. Hand piece 24 can be configured to be grasped by a surgeon and, in at least one embodiment, hand piece 24 can comprise a pistol grip including stationary member 26 and movable member, or trigger, 28. In use, as described in greater detail below, trigger 28 can be moved toward stationary member 26 as indicated by arrow 27, for example, in order to operate the end effector within a surgical site. Although not illustrated, surgical instrument 20 can include a switch which can place the end effector in electrical communication with an electrical source, or generator, via wires 30 and 32. In at least one embodiment, wires 30 and 32 can terminate in connector 34 where, referring to FIG. 2, connector 34 can be configured to be operably connected to connector 36 of generator 38.


In various embodiments, referring to FIGS. 3-9, an end effector, such as end effector 50, for example, can include a grasping device comprising first jaw member 52 and second jaw member 54, where at least one of jaw members 52 and 54 can be moved relative to the other. In at least one embodiment, jaw members 52 and 54 can be movably coupled to housing, or clevis, 56 such that they can be moved, or pivoted, between open and closed positions about pivot pin 58. In use, jaw members 52 and 54 can be positioned in their closed, or at least partially closed, positions before they are inserted into a surgical site through a trocar, for example. In various embodiments, jaw members 52 and 54 can be configured such that they can be positioned within and/or inserted through a working channel of an endoscope. Once positioned within the surgical site, jaw members 52 and 54 can then be reopened. In their open position, jaw members 52 and 54 can be positioned on, or relative to, the targeted soft tissue within the surgical site. Thereafter, in at least one embodiment, jaw members 52 and 54 can be pivoted into their closed position to hold the soft tissue therebetween. In various embodiments, at least one of jaw members 52 and 54 can include serrations, or teeth, 60 which can be configured to securely hold the soft tissue therebetween.


In order to more easily position end effector 50, the shaft assembly extending between end effector 50 and hand piece 24 can be flexible. In at least one embodiment, referring to FIG. 3, shaft assembly 80 can include a flexible elongate member 82 and a flexible coil spring 84 positioned therearound. In various embodiments, referring to FIGS. 7-11, a surgical instrument can further include adapter assembly 86 for operably connecting end effector 50 to shaft assembly 80. In at least one embodiment, adapter assembly 86 can include ring capture 88 which can include an aperture therein, or any other suitable feature, for receiving and retaining an end of coil spring 84. Adapter assembly 86 can further include bushing coupler 83 which can include projection 85, or any other suitable feature, which can be fixedly connected to housing 56. In addition to the above, adapter assembly 86 can also include inner housing coupler 87 which can be configured to connect ring capture 88 to bushing coupler 83 such that end effector 50 is correspondingly coupled to shaft assembly 80.


In order to move jaw members 52 and 54 between their open and closed positions as described above, trigger 28 of hand piece 24 can be pivoted relative to stationary member 26 such that trigger 28 can displace actuator, or rod, 44 (FIG. 1) relative to shaft 22. In various embodiments, actuator 44 can be round, or any other suitable shape, and can be either solid or tubular. In either event, referring to FIG. 6, actuator rod 44 can be operably engaged with actuator 46 such that, when trigger 28 is pivoted toward stationary member 26 as described above, actuator rod 44 and actuator 46 can be slid proximally such that actuator 46 pulls on jaw links 53 and 55. It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping hand piece 24 of instrument 20, for example. Thus, end effector 50 is distal with respect to hand piece 24. When jaw links 53 and 55 are pulled proximally, jaw links 53 and 55 can apply a force to jaws 52 and 54, respectively, such that they are pivoted about pivot pin 58 into their closed positions. In order to move jaws 52 and 54 into their open positions, trigger 28 can be moved away from stationary portion 26 and, correspondingly, actuator rod 44 and actuator 46 can be moved distally by trigger 28. Similarly, actuator 46 can move links 53 and 55 distally such that such that links 53 and 55 apply a force to jaws 52 and 54 and rotate them about pivot pin 58 in the opposite, or open, direction. Now referring to another exemplary embodiment illustrated in FIGS. 13 and 14, when trigger 28′ is pivotally moved (e.g., squeezed) in the direction indicated by arrow 29, actuator rod 44 can be moved in the direction indicated by arrow 47, and the first and second jaw members 52 and 54 can close in the direction indicated by arrow 49. When trigger 28′ is pivotally moved (e.g., released) in the direction indicated by arrow 31, actuator 44 can be moved in the direction indicated by arrow 45, and the first and second jaw members can open in the direction indicated by arrow 51.


Further to the above, in various embodiments, at least a portion of the distal end of actuator rod 44 can be fixedly received in shaft collar 66′ (FIG. 14) such that, when collar 66′ is moved by trigger 28′, actuator 44 can be moved proximally and distally as described above. In at least one embodiment, trigger 28′ can be operably engaged with pin 67′ in shaft collar 66′ such that the rotational movement of trigger 28′ can be converted to translational movement of shaft collar 66′. More particularly, although not illustrated, trigger 28′ can include a cam slot which is configured to receive pin 67′ such that, when trigger 28′ is rotated as described above, the sidewalls of the slot can motivate shaft collar 66′, and actuator 44 operably engaged therewith, along a path defined by housing portion 65′. In various embodiments, although not illustrated, hand piece 24′ can further include a biasing member, or spring, which is configured to bias trigger 28′, and jaw members 52 and 54, into one of a closed or open position.


In at least one embodiment, referring to FIG. 14, hand piece 24′ can further include spring holders 68′ and 70′ where the spring can be positioned therebetween. In various embodiments, shaft collar 66′ can be connected to one of spring holders 68′ and 70′ and the other of spring holders 68′ and 70′ can be connected to housing portion 65′. In such embodiments, when shaft collar 66′ is moved relative to housing portion 65′, one of spring holders 68′ and 70′ can be moved relative to the other such that the spring is placed in either tension or compression and can apply a spring force to trigger 28′. In at least one embodiment, when trigger 28′ is released from its closed position as indicated by arrow 31, the spring force can bias trigger 28′ into its open position as indicated by arrow 29. In various other embodiments, although not illustrated, trigger 28′ can be biased into its closed position or any other suitable position. In at least one embodiment, trigger 28′ can further include latch 25′ which can be configured to hold trigger 28′ to stationary portion 26′ against the biasing force of the spring.


In various embodiments, referring to FIG. 2, hand piece 24 can include rotation knob 21 and, similarly, referring to FIG. 13, hand piece 24′ can include rotation knob 21′, where rotation knobs 21 and 21′ can be configured to rotate an end effector of their respective surgical instruments relative to hand pieces 24 and 24′. In various embodiments, referring to FIGS. 13 and 14, a portion of actuator rod 44 can be slidably received within aperture 23′ in rotation knob 21′ wherein at least one of the actuator rod 44 and aperture 23′ can include a non-circular profile. In such embodiments, the non-circular profile can allow actuator rod 44 to be rotated by knob 21′ yet allow actuator rod 44 to slide relative thereto when it is moved proximally and distally by trigger 28′ as described above. In at least one embodiment, when rotation knob 21′ is rotated in the direction indicated by arrow 62, end effector 50 can also rotated in the direction indicated by arrow 62. Similarly, when rotation knob 21′ is rotated in the direction indicated by arrow 64, end effector 50 can be rotated in the direction indicated by arrow 64. As a result of the above, jaw members 52 and 54 can be rotated within the surgical site and can be more accurately positioned by a surgeon.


Once end effector 50 has been positioned in a surgical site and jaw members 52 and 54 have been closed onto the soft tissue, as outlined above, the soft tissue can be treated by an electrical current that passes between jaw members 52 and 54. More particularly, in at least one embodiment, surgical instrument 20 can include an electrical circuit which is configured to receive an electrical current from current generator 38 (FIG. 2) and transmit the current to a first electrode 72 positioned within jaw member 52 via first conductor, or wire, 30. In various embodiments, the current can be conducted through the soft tissue positioned between jaw members 52 and 54 such that the current flows into a second electrode 74 positioned in second jaw member 54. The current can return to electrical generator 38 through second conductor, or wire, 32 to complete the circuit. In at least one such embodiment, generator 38 can include plug 42 which can be configured to provide commercially available current to generator 38 where generator 38 can be configured to transform the current as needed. In at least one embodiment, generator 38 can further include a switch, such as foot pedal 40, for example, which can be configured to place surgical instrument 20 in electrical communication with generator 38. In various embodiments, switch 40 can be utilized in addition to, or in lieu of, a switch on surgical instrument 20.


In various embodiments, a surgical instrument in accordance with the present invention can be configured such that at least one electrode can be selectively placed in electrical communication with a conductor associated therewith. In at least one embodiment, referring to FIGS. 5 and 6, first electrode 72 can be placed in electrical communication with first conductor 30 when jaw member 52 is in a first position and can be placed out of electrical communication with conductor 30 when jaw member 52 is in a second position, for example. In at least one such embodiment, first electrode 72 can be configured to abut, or contact, contact end 33 of conductor 30 when jaw 52 is in its closed, or at least a substantially closed, position such that current can flow between first electrode 72 and first conductor 30. In such embodiments, first electrode 72 can be moved away from contact end 33 when jaw member 52 is moved into its open, or at least a substantially open, position such that current cannot flow between first electrode 72 and first conductor 30. In various embodiments, conductor 30 does not have to be attached to first electrode 72 and, as a result, first electrode 72 can be moved relative to conductor 30.


Further to the above, in at least one embodiment, conductor 30, including contact end 33, can remain stationary, or at least substantially stationary, when first electrode 72 is moved between first and second positions as described above and, as a result, conductor 30 does not have to be bent or stretched to accommodate the movement of first electrode 72. In various circumstances, as a result, the likelihood that conductor 30 may break or become otherwise damaged can be reduced. As illustrated in FIGS. 5 and 6, surgical instrument 20 can include one or more additional electrodes which can be selectively placed in electrical communication with a conductor associated therewith. In at least one embodiment, similar to the above, second electrode 74 can be placed in electrical communication with second conductor 32 when jaw member 54 is in a first position and can be placed out of electrical communication with second conductor 32 when jaw member 54 is in a second position, for example. Although not illustrated, surgical instrument 20 can include one or more stationary jaws and electrodes which do not move relative to a corresponding conductor. In such embodiments, the conductor may be attached to the stationary electrode, for example.


In various embodiments, first electrode 72 and first conductor 30 may be coupled to the positive terminal of generator 38 and second electrode 74 and second conductor 32 may be coupled to the negative terminal. In other various embodiments, this arrangement may be reversed. In either event, the switches described above, including foot pedal 40 (FIG. 2), may be placed intermediate, or in series between, the positive terminal and the electrode coupled thereto. In such embodiments, the switch may prevent current from flowing from the generator to this electrode until the switch is actuated. Absent such a switch, current could flow through the circuit comprising first conductor 30, second conductor 32, first electrode 72, and second electrode 74 when the electrodes are placed in electrical communication with the conductors. In these embodiments, current could be immediately transferred to the electrodes, and the soft tissue positioned therebetween, when jaw members 52 and 54 are moved into their closed, or at least substantially closed, positions. While such embodiments can be useful, various surgical techniques may require that the electrodes be manipulated or repositioned on the soft tissue after the jaw members have been closed thereon. In such embodiments, the jaw members could be closed onto the soft tissue and the current could be delivered to the electrodes when a switch is activated as described above.


In various embodiments, referring to FIGS. 4 and 5, each jaw member 52 and 54 can further include an insulator 75 which can be configured to prevent current from flowing from electrodes 72 and 74, respectively, to the other portions of the jaw members. More particularly, absent an insulator 75 positioned intermediate second electrode 74 and outer portion 76 of jaw 54, for example, the current may flow between electrode 74 to outer portion 76 and then flow into adjacent tissue which is not the targeted tissue. In at least one embodiment, insulator 75 may be at least partially comprised of a ceramic material, for example. In various embodiments, conductors 30 and 32 can be comprised of insulated wires. For example, each conductor can include an inner core comprised, of copper, brass, and/or aluminum, for example, and an outer jacket, or sheath, which can cover the core, wherein the jacket can be comprised of PVC or any other suitable polymer, for example. In various embodiments, electrodes 72 and 74 can be comprised of any suitable conductive material such as gold plated stainless steel, for example. In various embodiments, referring to FIG. 12, elongate member 82 can include at least one aperture, or lumen, 81 extending therethrough which can be configured to receive and protect conductors, or wires, 30 and 32 extending between end effector 50 and hand piece 24 as described above. In various embodiments, a lumen 81 can be configured to receive actuator 44 which, as described above, is operably engaged with hand piece 24 and end effector 50.


In various embodiments, an electrode can be formed having a substantially flat paddle-like shape, and/or any other suitable shape. In such embodiments, as described above, the electrode can include a flat surface which can be configured to abut contact end 33 of a conductor. In at least one embodiment, the inner core of the conductor can be configured to touch a portion of this flat surface and place the electrode and the conductor in electrical communication. In various other embodiments, although not illustrated, the electrode can include an aperture, or receptacle, which can be configured to receive contact end 33 therein, for example. In at least one embodiment, contact end 33 can be configured to abut a sidewall of the receptacle or it can be configured to fit snugly therein. In either event, the engagement between the receptacle and contact 33 can prevent, or at least reduce the possibility of, relative movement between the conductor and the electrode when the jaw member is in its closed position. Such relative movement could cause intermittencies in the current flowing therebetween which could affect the reliability of the surgical instrument. In various embodiments, contact end 33 can comprise an electrical contact which is soldered onto, or otherwise attached to, the end of the inner core of the conductor. Such electrical contacts can be configured such that they fit snugly within the receptacles in the electrodes and may require a force to remove them therefrom.


In various embodiments, a bipolar forceps having two or more electrodes can be utilized to seal a vessel, such as a blood vessel, for example. In at least one embodiment, the electrodes can be positioned against, or adjacent to, the vessel and energy can be supplied to the electrodes. In various circumstances, the energy can be sufficient to at least substantially seal the vessel such that blood does not substantially flow therethrough. In at least one surgical technique, the bipolar forceps can be used to thermally seal the vessel in two locations such that the vessel can be incised, or transected, at a location positioned intermediate the two sealed locations. In various embodiments, the bipolar forceps can include a cutting element which can be configured to incise the vessel. Such bipolar forceps can reduce the complexity of various surgical techniques by allowing a surgeon to seal and transect soft tissue with a single surgical instrument as opposed to using at least two surgical instruments which were previously required.


Referring to FIG. 15, surgical instrument 120 can include first jaw member 152 and second jaw member 154 wherein, similar to the above, first jaw member 152 can include first electrode 172 and, in addition, second jaw member 154 can include second electrode 174. In at least one embodiment, surgical instrument 120 can further include cutting element 190, wherein cutting element 190 can be configured to incise soft tissue, for example, positioned intermediate jaw members 152 and 154. In various embodiments, cutting element 190 can be configured to be moved relative to jaw members 152 and 154 and/or electrodes 172 and 174. More particularly, in at least one embodiment, cutting element 190 can be moved between a first, or proximal, position, as illustrated in FIG. 15, to a second, or distal, position, within distal end 192. In various alternative embodiments, the cutting element can be moved from a distal position to a proximal position to incise the soft tissue, for example. In either event, in at least one embodiment, cutting element 190 can include a sharp, or knife, edge configured to incise the soft tissue, for example. In various embodiments, second electrode 174 can include slot 191 which can be configured to slidably receive cutting element 190 and guide it along a predetermined path. In at least one embodiment, as illustrated in FIG. 15, the predetermined path can be linear or at least substantially linear. In other various embodiments, the predetermined path can be curved and/or curvilinear. In any event, in at least one embodiment, first electrode 172 can include a slot therein which can also be configured to slidably receive and guide cutting element 190.


In various embodiments, referring to FIG. 16, surgical instrument 220 can include first jaw member 252 and second jaw member 254 where, similar to the above, jaw members 252 and 254 can be positioned relative to a vessel, for example, such that electrodes within the jaw members can be utilized to cauterize or seal the vessel. In at least one embodiment, surgical instrument 220 can further include cutting element, or cutting barrel, 290 movably attached thereto wherein cutting barrel 290 can be moved between first and second positions similar to the above. In use, jaw members 252 and 254 can be used to at least partially clamp the vessel therebetween such that cutting barrel 290 can be slid over the at least partially closed jaws. In other various embodiments, cutting barrel 290 can be slid against jaw members 252 and 254 in order to push them into an at least partially closed position. In either event, in at least one embodiment, cutting barrel 290 can include aperture 293 extending therethrough which can be configured to receive at least a portion of jaws 252 and 254 as cutting barrel 290 is moved toward distal end 292. In at least one surgical technique, a vessel can be thermally sealed at two locations by electrodes 72 and 74 as described above. Thereafter, jaws 252 and 254 can be positioned intermediate the two sealed locations, jaws 252 and 254 can be at least partially closed onto the vessel, and cutting barrel 290 can be slid distally until cutting edge 294 contacts and incises the vessel.


In various embodiments, referring to FIG. 17, surgical instrument 320 can include first jaw member 352 and second jaw member 354 wherein, similar to the above, first jaw member 352 can include first electrode 372 and, in addition, second jaw member 354 can include second electrode 374. In at least one embodiment, at least one of first electrode 372 and second electrode 374 can include at least one cutting element 390 extending therefrom. In various embodiments, cutting element 390 can comprise a projection, or ‘high point’, having at least one cutting edge 394 configured to incise, or otherwise treat, soft tissue, such as a vessel, for example, when jaw members 352 and 354 are closed onto the soft tissue. In at least one embodiment, cutting edge 394 can be sharp enough to incise the soft tissue when a closing force is applied to jaw members 352 and 354. In various embodiments, energy can be applied to the cutting element via the electrode in order for the cutting element to transect the tissue. In such embodiments, the density of the energy within the electrode can be concentrated at the projection, or high point, of the electrode owing to the reduced surface area of the electrode in contact with the soft tissue. In various embodiments, referring to FIG. 18, surgical instrument 420 can include first jaw member 452 and second jaw member 454 wherein, similar to the above, first jaw member 452 can include first electrode 472 and, in addition, second jaw member 454 can include second electrode 474. In at least one embodiment, surgical instrument 420 can further include cutting element 490, wherein cutting element 490 can be configured to incise soft tissue, for example, positioned intermediate jaw members 452 and 454. In various embodiments, similar to the above, cutting element 490 can be configured to be moved relative to jaw members 452 and 454 and/or electrodes 472 and 474 along a predetermined path. In at least one embodiment, at least one of electrodes 472 and 474 and/or jaw members 452 and 454 can include a slot 491 therein which can be configured to slidably receive cutting element 490.


In various embodiments, cutting element 490 can be energized to incise, or otherwise treat, the soft tissue positioned intermediate jaw members 452 and 454. In at least one embodiment, cutting element 490 can be placed in electrical communication with a monopolar output of an electrosurgical generator such that current can flow from the generator into the soft tissue via cutting element 490. In order to complete the monopolar circuit, a return electrode, or pad, can be placed in contact with the patient's body and can be placed in electrical communication with the generator and/or another suitable ground. In other various embodiments, although not illustrated, surgical instrument 420 can include a return circuit for the electrical current. In either event, referring to FIG. 19, jaw member 454 can further include insulator 495 positioned intermediate cutting element 490 and second electrode 474 to electrically insulate cutting element 490 from electrode 474. In at least one embodiment, insulator 495 can define slot 491 such that cutting element 490 is at least substantially surrounded by insulator 495. Insulator 495 can be comprised of any suitable material such as a ceramic material, for example.


In at least one surgical technique, bipolar electrodes 472 and 474 can be utilized to at least partially seal a vessel as described above. Thereafter, electrodes 472 and 474 can be positioned intermediate the two seals and cutting element 490 can be slid until it touches the vessel. To incise the vessel, the surgeon can operate a switch, for example, to allow current to flow to cutting member 490. In various circumstances, depending on the frequency and voltage of the current, for example, cutting element 490 configured to cut and/or coagulate the soft tissue. In either event, surgical instrument 420 can include a switch, for example, which can be configured to place surgical instrument 420 in a plurality of operating modes. In at least one embodiment, the switch can place instrument 420 in a first operating mode in which electrical energy is supplied to electrodes 472 and 474, but not to cutting element 490. The switch can also place instrument 420 in a second operating mode in which electrical energy is supplied to cutting element 490, but not electrodes 472 and 474. In such embodiments, the possibility of energy being unintentionally transmitted to the targeted soft tissue, or the surrounding soft tissue, can be reduced. In at least one embodiment, cutting element 490 can further include cutting edge 494 which can be configured to incise, or bluntly dissect, the soft tissue. Such embodiments can provide a surgeon with several options for incising soft tissue.


In various embodiments, referring to FIGS. 20-24, a bipolar forceps can include first and second jaw members wherein at least one of the jaw members can include a substantially tapered profile. More particularly, in at least one embodiment, surgical instrument 520 can include end effector 550 having proximal end 596 and distal end 592 where end effector 550 can be tapered between proximal end 596 and distal end 592. In various embodiments, proximal end 596 can define a first perimeter and distal end 592 can define a second perimeter wherein the first perimeter can be larger than the second perimeter. Similarly, proximal end 596 can include a cross-section defined by a first diameter and distal end 592 can include a cross-section defined by a second diameter wherein the first diameter can be larger than the second diameter. Although embodiments where ends 592 and 596 have circular cross-sections are envisioned, other embodiments having non-circular cross-sections are also possible. In either event, in various embodiments, a ‘tapered’ end effector can include a cross-section which becomes gradually smaller between proximal end 596 and distal end 592. Such a taper can be constant along the length of end effector 550 or the taper can include at least two sections having different tapered profiles. In either event, as described in greater detail below, a bipolar forceps having a tapered end effector can be useful in various surgical techniques.


In at least one surgical technique, distal end 592 can be positioned intermediate a vessel and soft tissue surrounding the vessel in order to separate the vessel from the soft tissue. More particularly, end effector 550 can be positioned intermediate the vessel and the soft tissue in a substantially closed position and can be opened such that jaw members 552 and 554 contact the vessel and soft tissue and push them away from each other. In various circumstances, end effector 550 can be opened and closed several times to enlarge a hole between the vessel and soft tissue such that the vessel and the soft tissue can be further separated. In various embodiments, again referring to FIGS. 20-24, at least one of jaw members 552 and 554 can further include ridges, teeth, and/or a textured outer surface configured to grip the soft tissue and/or vessel. In at least one embodiment, jaw member 552, for example, can include ridges 597 extending therefrom along a line defined between distal end 592 and proximal end 596. In various embodiments, ridges 597 can be configured such that, when the jaw members contact the soft tissue and/or vessel as described above, the jaw members can pull the soft tissue and vessel therewith. In effect, ridges 597, for example, can prevent, or at least inhibit, jaw members 552 and 554 from sliding past the soft tissue and/or vessel when the jaw members are opened.


In various embodiments, referring to FIGS. 21 and 24, jaw member 552, for example, can include tapered portion 598 and bullet nose portion 599. In at least one embodiment, both tapered portion 598 and bullet nose portion 599 can include ridges 597, for example, extending therefrom. In such embodiments, bullet nose portion 599 can be especially configured to be burrowed between the vessel and the surrounding soft tissue, as described above, as ridges 597 extending from bullet nose portion 599 can facilitate the creation of a hole in the connective tissue intermediate the vessel and the soft tissue. In addition to or in lieu of the above, the outer surfaces of jaw members 552 and 554 can include an outer surface having a rough texture which can also be configured to prevent, or at least reduce, slipping between the jaw members and the soft tissue and/or vessel. In at least one embodiment, the outer surface of jaw members 552 and 554 can be abraded. In various embodiments, a rough coating can be sprayed onto the jaw members. In either event, once the vessel has been at least partially separated from the soft tissue, one of jaw members 552 and 554 can be positioned intermediate the vessel and the soft tissue and the other of jaw members 552 and 554 can be positioned on the opposite side of the vessel. Thereafter, the electrodes positioned within jaw members 552 and 554 can be utilized to thermally seal the vessel as described above.


In at least one embodiment, the first and second electrodes can be adapted to receive an irreversible electroporation (IRE) waveform from an IRE generator. In another embodiment, the first and second electrodes can be adapted to receive a radio frequency (RF) waveform from an RF generator. In various embodiments, the electrical waveform generator may be a conventional, bipolar/monopolar electrosurgical IRE generator such as one of many models commercially available, including Model Number ECM 830, available from BTX Molecular Delivery Systems Boston, Mass. The IRE generator can generate electrical waveforms having predetermined frequency, amplitude, and pulse width. In various circumstances, the application of these electrical waveforms to the cell membranes of the diseased tissue causes the diseased cells to die. Thus, the IRE electrical waveforms may be applied to the cell membranes of diseased tissue in the tissue treatment region in order to kill the diseased cells and ablate the diseased tissue. IRE electrical waveforms suitable to destroy the cells of diseased tissues are generally in the form of direct current (DC) electrical pulses delivered at a frequency in the range of 1-20 Hz, amplitude in the range of 100-1000 VDC, and pulse width in the range of 0.01-100 ms. For example, an electrical waveform having amplitude of 500 VDC and pulse duration of 20 ms may be delivered at a pulse repetition rate or frequency of 10 HZ to destroy a reasonably large volume of diseased tissue. Unlike RF ablation systems which require high powers and energy input into the tissue to heat and destroy, IRE requires very little energy input into the tissue, rather the destruction of the tissue is caused by high electric fields. It has been determined that in order to destroy living tissue, the electrical waveforms have to generate an electric field of at least 30,000V/m in the tissue treatment region. The embodiments, however, are not limited in this context.


In at least one embodiment, the electrical waveform generator may comprise a radio frequency (RF) waveform generator. The RF generator may be a conventional, bipolar/monopolar electrosurgical generator such as one of many models commercially available, including Model Number ICC 350, available from Erbe, GmbH. Either a bipolar mode or monopolar mode may be used. When using the bipolar mode with two electrodes, one electrode can be electrically connected to one bipolar polarity, and the other electrode can be electrically connected to the opposite bipolar polarity. If more than two electrodes are used, the polarity of the electrodes may be alternated so that any two adjacent electrodes have opposite polarities.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


Preferably, various embodiments of the invention described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility. It is preferred that the instrument is sterilized. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam.


While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains. Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims
  • 1. A surgical instrument for treating soft tissue, comprising: a flexible shaft;a housing extending from said flexible shaft;a conductor in electrical communication with an energy source, said conductor having a contact portion; anda jaw rotatably connected to said housing, wherein said jaw is configured to be inserted through a working channel of an endoscope, wherein said jaw is selectively rotatable between a first position, an intermediate position, and a second position, wherein said intermediate position is between said first position and said second position, and wherein said jaw includes: an electrode, wherein said electrode is not in contact with said contact portion when said jaw is in said first position and when said jaw is in said intermediate position, and wherein said electrode is configured to contact said contact portion when said jaw is in said second position such that said electrode is in electrical communication with said conductor to transmit energy to the soft tissue.
  • 2. The surgical instrument of claim 1, wherein said electrode comprises a first electrode, and wherein said surgical instrument further comprises: a second conductor comprising a second contact portion; anda second jaw comprising a second electrode, wherein said second electrode is operably configured to contact said second contact portion such that said second electrode is in electrical communication with said second conductor to transmit energy to said first electrode via the soft tissue.
  • 3. A method for processing an instrument for surgery, the method comprising: obtaining the surgical instrument of claim 1;sterilizing the surgical instrument; andstoring the surgical instrument in a sterile container.
  • 4. A surgical instrument for treating soft tissue, comprising: a flexible shaft;a first jaw;a second jaw rotatably coupled to said first jaw, wherein said first and second jaws are configured to be inserted through a working channel of an endoscope, wherein said second jaw is selectively rotatable between a first position, an intermediate position, and a second position, and wherein said intermediate position is between said first position and said second position;a conductor in electrical communication with an energy source, said conductor having a contact portion; andan electrode, wherein said electrode is not in contact with said contact portion when said second jaw is in said first position and when said second jaw is in said intermediate position, and wherein said electrode is configured to contact said contact portion when said second jaw is in said second position such that said electrode is in electrical communication with said conductor to transmit energy to the soft tissue.
  • 5. The surgical instrument of claim 4, wherein said electrode comprises a second electrode, and wherein said surgical instrument further comprises: a first conductor comprising a first contact portion; anda first electrode on said first jaw, wherein said first electrode is configured to operably contact said first contact portion such that said first electrode is in electrical communication with said first conductor to transmit energy to said second electrode via the soft tissue.
  • 6. A method for processing an instrument for surgery, the method comprising: obtaining the surgical instrument of claim 4;sterilizing the surgical instrument; andstoring the surgical instrument in a sterile container.
US Referenced Citations (1525)
Number Name Date Kind
645576 Telsa Mar 1900 A
649621 Tesla May 1900 A
787412 Tesla Apr 1905 A
1039354 Bonadio Sep 1912 A
1127948 Wappler Feb 1915 A
1482653 Lilly Feb 1924 A
1625602 Gould et al. Apr 1927 A
1916722 Ende Jul 1933 A
2028635 Wappler Jan 1936 A
2031682 Wappler et al. Feb 1936 A
2113246 Wappler Apr 1938 A
2155365 Rankin Apr 1939 A
2191858 Moore Feb 1940 A
2196620 Attarian Apr 1940 A
2388137 Graumlich Oct 1945 A
2493108 Casey, Jr. Jan 1950 A
2504152 Riker et al. Apr 1950 A
2938382 De Graaf May 1960 A
2952206 Becksted Sep 1960 A
3069195 Buck Dec 1962 A
3070088 Brahos Dec 1962 A
3170471 Schnitzer Feb 1965 A
3435824 Gamponia Apr 1969 A
3470876 Barchilon Oct 1969 A
3595239 Petersen Jul 1971 A
3669487 Roberts et al. Jun 1972 A
3746881 Fitch et al. Jul 1973 A
3799672 Vurek Mar 1974 A
3854473 Matsuo Dec 1974 A
3946740 Bassett Mar 1976 A
3948251 Hosono Apr 1976 A
3961632 Moossun Jun 1976 A
3965890 Gauthier Jun 1976 A
3994301 Agris Nov 1976 A
4011872 Komiya Mar 1977 A
4012812 Black Mar 1977 A
4085743 Yoon Apr 1978 A
4164225 Johnson et al. Aug 1979 A
4174715 Hasson Nov 1979 A
4178920 Cawood, Jr. et al. Dec 1979 A
4207873 Kruy Jun 1980 A
4235238 Ogiu et al. Nov 1980 A
4258716 Sutherland Mar 1981 A
4269174 Adair May 1981 A
4278077 Mizumoto Jul 1981 A
4285344 Marshall Aug 1981 A
4311143 Komiya Jan 1982 A
4329980 Terada May 1982 A
4396021 Baumgartner Aug 1983 A
4406656 Hattler et al. Sep 1983 A
4452246 Bader et al. Jun 1984 A
4461281 Carson Jul 1984 A
4491132 Aikins Jan 1985 A
4527331 Lasner et al. Jul 1985 A
4527564 Eguchi et al. Jul 1985 A
4538594 Boebel et al. Sep 1985 A
D281104 Davison Oct 1985 S
4569347 Frisbie Feb 1986 A
4580551 Siegmund et al. Apr 1986 A
4646722 Silverstein et al. Mar 1987 A
4653476 Bonnet Mar 1987 A
4655219 Petruzzi Apr 1987 A
4669470 Brandfield Jun 1987 A
4671477 Cullen Jun 1987 A
4677982 Llinas et al. Jul 1987 A
4685447 Iversen et al. Aug 1987 A
4711240 Goldwasser et al. Dec 1987 A
4712545 Honkanen Dec 1987 A
4721116 Schintgen et al. Jan 1988 A
4727600 Avakian Feb 1988 A
4733662 DeSatnick et al. Mar 1988 A
D295894 Sharkany et al. May 1988 S
4763669 Jaeger Aug 1988 A
4770188 Chikama Sep 1988 A
4815450 Patel Mar 1989 A
4823794 Pierce Apr 1989 A
4829999 Auth May 1989 A
4867140 Hovis et al. Sep 1989 A
4869238 Opie et al. Sep 1989 A
4869459 Bourne Sep 1989 A
4873979 Hanna Oct 1989 A
4880015 Nierman Nov 1989 A
4911148 Sosnowski et al. Mar 1990 A
4926860 Stice et al. May 1990 A
4938214 Specht et al. Jul 1990 A
4950273 Briggs Aug 1990 A
4950285 Wilk Aug 1990 A
4953539 Nakamura et al. Sep 1990 A
4960133 Hewson Oct 1990 A
4977887 Gouda Dec 1990 A
4979950 Transue et al. Dec 1990 A
4984581 Stice Jan 1991 A
4994079 Genese et al. Feb 1991 A
5007917 Evans Apr 1991 A
5010876 Henley et al. Apr 1991 A
5020514 Heckele Jun 1991 A
5020535 Parker et al. Jun 1991 A
5025778 Silverstein et al. Jun 1991 A
5033169 Bindon Jul 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5046513 Gatturna et al. Sep 1991 A
5050585 Takahashi Sep 1991 A
5052372 Shapiro Oct 1991 A
5065516 Dulebohn Nov 1991 A
5066295 Kozak et al. Nov 1991 A
5108421 Fowler Apr 1992 A
5123913 Wilk et al. Jun 1992 A
5123914 Cope Jun 1992 A
5133727 Bales et al. Jul 1992 A
5147374 Fernandez Sep 1992 A
5174300 Bales et al. Dec 1992 A
5176126 Chikama Jan 1993 A
5190050 Nitzsche Mar 1993 A
5190555 Wetter et al. Mar 1993 A
5192284 Pleatman Mar 1993 A
5192300 Fowler Mar 1993 A
5197963 Parins Mar 1993 A
5201752 Brown et al. Apr 1993 A
5201908 Jones Apr 1993 A
5203785 Slater Apr 1993 A
5203787 Noblitt et al. Apr 1993 A
5209747 Knoepfler May 1993 A
5217003 Wilk Jun 1993 A
5217453 Wilk Jun 1993 A
5219357 Honkanen et al. Jun 1993 A
5219358 Bendel et al. Jun 1993 A
5222362 Maus et al. Jun 1993 A
5222965 Haughton Jun 1993 A
5234437 Sepetka Aug 1993 A
5234453 Smith et al. Aug 1993 A
5235964 Abenaim Aug 1993 A
5242456 Nash et al. Sep 1993 A
5245460 Allen et al. Sep 1993 A
5246424 Wilk Sep 1993 A
5257999 Slanetz, Jr. Nov 1993 A
5259366 Reydel et al. Nov 1993 A
5263958 deGuillebon et al. Nov 1993 A
5273524 Fox et al. Dec 1993 A
5275607 Lo et al. Jan 1994 A
5275614 Haber et al. Jan 1994 A
5275616 Fowler Jan 1994 A
5284128 Hart Feb 1994 A
5284162 Wilk Feb 1994 A
5287845 Faul et al. Feb 1994 A
5287852 Arkinstall Feb 1994 A
5290299 Fain et al. Mar 1994 A
5290302 Pericic Mar 1994 A
5295977 Cohen et al. Mar 1994 A
5297536 Wilk Mar 1994 A
5297687 Freed Mar 1994 A
5301061 Nakada et al. Apr 1994 A
5312023 Green et al. May 1994 A
5312333 Churinetz et al. May 1994 A
5312351 Gerrone May 1994 A
5312423 Rosenbluth et al. May 1994 A
5318589 Lichtman Jun 1994 A
5320636 Slater Jun 1994 A
5324261 Amundson et al. Jun 1994 A
5325845 Adair Jul 1994 A
5330471 Eggers Jul 1994 A
5330486 Wilk Jul 1994 A
5330488 Goldrath Jul 1994 A
5330496 Alferness Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5331971 Bales et al. Jul 1994 A
5334168 Hemmer Aug 1994 A
5334198 Hart et al. Aug 1994 A
5341815 Cofone et al. Aug 1994 A
5342396 Cook Aug 1994 A
5344428 Griffiths Sep 1994 A
5345927 Bonutti Sep 1994 A
5350391 Iacovelli Sep 1994 A
5352184 Goldberg et al. Oct 1994 A
5352222 Rydell Oct 1994 A
5354302 Ko Oct 1994 A
5354311 Kambin et al. Oct 1994 A
5356381 Ensminger et al. Oct 1994 A
5356408 Rydell Oct 1994 A
5360428 Hutchinson, Jr. Nov 1994 A
5364408 Gordon Nov 1994 A
5364410 Failla et al. Nov 1994 A
5366466 Christian et al. Nov 1994 A
5366467 Lynch et al. Nov 1994 A
5368605 Miller, Jr. Nov 1994 A
5370647 Graber et al. Dec 1994 A
5370679 Atlee, III Dec 1994 A
5374273 Nakao et al. Dec 1994 A
5374275 Bradley et al. Dec 1994 A
5374277 Hassler Dec 1994 A
5377695 An Haack Jan 1995 A
5383877 Clarke Jan 1995 A
5383888 Zvenyatsky et al. Jan 1995 A
5386817 Jones Feb 1995 A
5387259 Davidson Feb 1995 A
5391174 Weston Feb 1995 A
5392789 Slater et al. Feb 1995 A
5395386 Slater Mar 1995 A
5401248 Bencini Mar 1995 A
5403311 Abele et al. Apr 1995 A
5403328 Shallman Apr 1995 A
5403342 Tovey et al. Apr 1995 A
5403348 Bonutti Apr 1995 A
5405073 Porter Apr 1995 A
5405359 Pierce Apr 1995 A
5409478 Gerry et al. Apr 1995 A
5417699 Klein et al. May 1995 A
5423821 Pasque Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5439471 Kerr Aug 1995 A
5439478 Palmer Aug 1995 A
5441059 Dannan Aug 1995 A
5441494 Ortiz Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445648 Cook Aug 1995 A
5449021 Chikama Sep 1995 A
5454827 Aust et al. Oct 1995 A
5456667 Ham et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458131 Wilk Oct 1995 A
5458583 McNeely et al. Oct 1995 A
5460168 Masubuchi et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5462561 Voda Oct 1995 A
5465731 Bell et al. Nov 1995 A
5467763 McMahon et al. Nov 1995 A
5468250 Paraschac et al. Nov 1995 A
5470308 Edwards et al. Nov 1995 A
5470320 Tiefenbrun et al. Nov 1995 A
5478347 Aranyi Dec 1995 A
5478352 Fowler Dec 1995 A
5480404 Kammerer et al. Jan 1996 A
5482054 Slater et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5489256 Adair Feb 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499990 Schülken et al. Mar 1996 A
5499992 Meade et al. Mar 1996 A
5501692 Riza Mar 1996 A
5503616 Jones Apr 1996 A
5505686 Willis et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5511564 Wilk Apr 1996 A
5514157 Nicholas et al. May 1996 A
5518501 Oneda et al. May 1996 A
5522829 Michalos Jun 1996 A
5522830 Aranyi Jun 1996 A
5527321 Hinchliffe Jun 1996 A
5533418 Wu et al. Jul 1996 A
5536248 Weaver et al. Jul 1996 A
5538509 Dunlap et al. Jul 1996 A
5540648 Yoon Jul 1996 A
5549637 Crainich Aug 1996 A
5554151 Hinchliffe Sep 1996 A
5555883 Avitall Sep 1996 A
5558133 Bortoli et al. Sep 1996 A
5562693 Devlin et al. Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5569298 Schnell Oct 1996 A
5571090 Sherts Nov 1996 A
5573540 Yoon Nov 1996 A
5578030 Levin Nov 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5584845 Hart Dec 1996 A
5591179 Edelstein Jan 1997 A
5591205 Fowler Jan 1997 A
5593420 Eubanks, Jr. et al. Jan 1997 A
5595562 Grier Jan 1997 A
5597378 Jervis Jan 1997 A
5601573 Fogelberg et al. Feb 1997 A
5601588 Tonomura et al. Feb 1997 A
5601602 Fowler Feb 1997 A
5604531 Iddan et al. Feb 1997 A
5607389 Edwards et al. Mar 1997 A
5607406 Hernandez et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5609601 Kolesa et al. Mar 1997 A
5613975 Christy Mar 1997 A
5616117 Dinkler et al. Apr 1997 A
5618303 Marlow et al. Apr 1997 A
5620415 Lucey et al. Apr 1997 A
5624399 Ackerman Apr 1997 A
5624431 Gerry et al. Apr 1997 A
5626578 Tihon May 1997 A
5628732 Antoon, Jr. et al. May 1997 A
5630782 Adair May 1997 A
5643283 Younker Jul 1997 A
5643292 Hart Jul 1997 A
5643294 Tovey et al. Jul 1997 A
5644798 Shah Jul 1997 A
5645083 Essig et al. Jul 1997 A
5645565 Rudd et al. Jul 1997 A
5649372 Souza Jul 1997 A
5653677 Okada et al. Aug 1997 A
5653690 Booth et al. Aug 1997 A
5653722 Kieturakis Aug 1997 A
5657755 Desai Aug 1997 A
5662621 Lafontaine Sep 1997 A
5662663 Shallman Sep 1997 A
5667527 Cook Sep 1997 A
5669875 van Eerdenburg Sep 1997 A
5681324 Kammerer et al. Oct 1997 A
5681330 Hughett et al. Oct 1997 A
5685820 Riek et al. Nov 1997 A
5690606 Slotman Nov 1997 A
5690656 Cope et al. Nov 1997 A
5690660 Kauker et al. Nov 1997 A
5695448 Kimura et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5695511 Cano et al. Dec 1997 A
5700275 Bell et al. Dec 1997 A
5702438 Avitall Dec 1997 A
5704892 Adair Jan 1998 A
5709708 Thal Jan 1998 A
5711921 Langford Jan 1998 A
5716326 Dannan Feb 1998 A
5716375 Fowler Feb 1998 A
5728094 Edwards Mar 1998 A
5730740 Wales et al. Mar 1998 A
5735849 Baden et al. Apr 1998 A
5741234 Aboul-Hosn Apr 1998 A
5741278 Stevens Apr 1998 A
5741285 McBrayer et al. Apr 1998 A
5741429 Donadio, III et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5746759 Meade et al. May 1998 A
5749826 Faulkner May 1998 A
5749881 Sackier et al. May 1998 A
5749889 Bacich et al. May 1998 A
5752951 Yanik May 1998 A
5755731 Grinberg May 1998 A
5762604 Kieturakis Jun 1998 A
5766167 Eggers et al. Jun 1998 A
5766170 Eggers Jun 1998 A
5766205 Zvenyatsky et al. Jun 1998 A
5769849 Eggers Jun 1998 A
5779701 McBrayer et al. Jul 1998 A
5779716 Cano et al. Jul 1998 A
5779727 Orejola Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5782861 Cragg et al. Jul 1998 A
5782866 Wenstrom, Jr. Jul 1998 A
5791022 Bohman Aug 1998 A
5792113 Kramer et al. Aug 1998 A
5792153 Swain et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5797835 Green Aug 1998 A
5797928 Kogasaka Aug 1998 A
5797939 Yoon Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797959 Castro et al. Aug 1998 A
5803903 Athas et al. Sep 1998 A
5808665 Green Sep 1998 A
5810806 Ritchart et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810865 Koscher et al. Sep 1998 A
5810876 Kelleher Sep 1998 A
5810877 Roth et al. Sep 1998 A
5813976 Filipi et al. Sep 1998 A
5814058 Carlson et al. Sep 1998 A
5817061 Goodwin et al. Oct 1998 A
5817107 Schaller Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5819736 Avny et al. Oct 1998 A
5823947 Yoon et al. Oct 1998 A
5824071 Nelson et al. Oct 1998 A
5827276 LeVeen et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827299 Thomason et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5830231 Geiges, Jr. Nov 1998 A
5833603 Kovacs et al. Nov 1998 A
5833700 Fogelberg et al. Nov 1998 A
5833703 Manushakian Nov 1998 A
5836960 Kolesa et al. Nov 1998 A
5843017 Yoon Dec 1998 A
5843121 Yoon Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5853374 Hart et al. Dec 1998 A
5855585 Kontos Jan 1999 A
5860913 Yamaya et al. Jan 1999 A
5860995 Berkelaar Jan 1999 A
5868762 Cragg et al. Feb 1999 A
5876411 Kontos Mar 1999 A
5882331 Sasaki Mar 1999 A
5882344 Stouder, Jr. Mar 1999 A
5893846 Bales et al. Apr 1999 A
5893874 Bourque et al. Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5897487 Ouchi Apr 1999 A
5899919 Eubanks, Jr. et al. May 1999 A
5902238 Golden et al. May 1999 A
5902254 Magram May 1999 A
5904702 Ek et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5908429 Yoon Jun 1999 A
5911737 Lee et al. Jun 1999 A
5916146 Allotta et al. Jun 1999 A
5916147 Boury Jun 1999 A
5921993 Yoon Jul 1999 A
5921997 Fogelberg et al. Jul 1999 A
5922008 Gimpelson Jul 1999 A
5925052 Simmons Jul 1999 A
5928255 Meade et al. Jul 1999 A
5928266 Kontos Jul 1999 A
5936536 Morris Aug 1999 A
5944718 Austin et al. Aug 1999 A
5951547 Gough et al. Sep 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5954731 Yoon Sep 1999 A
5957936 Yoon et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5957953 DiPoto et al. Sep 1999 A
5964782 Lafontaine et al. Oct 1999 A
5971995 Rousseau Oct 1999 A
5972002 Bark et al. Oct 1999 A
5976074 Moriyama Nov 1999 A
5976075 Beane et al. Nov 1999 A
5976130 McBrayer et al. Nov 1999 A
5976131 Guglielmi et al. Nov 1999 A
5980539 Kontos Nov 1999 A
5980556 Giordano et al. Nov 1999 A
5984938 Yoon Nov 1999 A
5984939 Yoon Nov 1999 A
5984950 Cragg et al. Nov 1999 A
5989182 Hori et al. Nov 1999 A
5993447 Blewett et al. Nov 1999 A
5993474 Ouchi Nov 1999 A
5995875 Blewett et al. Nov 1999 A
5997555 Kontos Dec 1999 A
6001120 Levin Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6004330 Middleman et al. Dec 1999 A
6007566 Wenstrom, Jr. Dec 1999 A
6010515 Swain et al. Jan 2000 A
6012494 Balazs Jan 2000 A
6016452 Kasevich Jan 2000 A
6017356 Frederick et al. Jan 2000 A
6019770 Christoudias Feb 2000 A
6024708 Bales et al. Feb 2000 A
6024747 Kontos Feb 2000 A
6027522 Palmer Feb 2000 A
6030365 Laufer Feb 2000 A
6030384 Nezhat Feb 2000 A
6030634 Wu et al. Feb 2000 A
6033399 Gines Mar 2000 A
6036640 Corace et al. Mar 2000 A
6036685 Mueller Mar 2000 A
6053927 Hamas Apr 2000 A
6053937 Edwards et al. Apr 2000 A
6066160 Colvin et al. May 2000 A
6068603 Suzuki May 2000 A
6068629 Haissaguerre et al. May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6074408 Freeman Jun 2000 A
6086530 Mack Jul 2000 A
6090105 Zepeda et al. Jul 2000 A
6090108 McBrayer et al. Jul 2000 A
6090129 Ouchi Jul 2000 A
6096046 Weiss Aug 2000 A
6102909 Chen et al. Aug 2000 A
6102926 Tartaglia et al. Aug 2000 A
6106473 Violante et al. Aug 2000 A
6106521 Blewett et al. Aug 2000 A
6109852 Shahinpoor et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6110183 Cope Aug 2000 A
6113593 Tu et al. Sep 2000 A
6117144 Nobles et al. Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6139555 Hart et al. Oct 2000 A
6141037 Upton et al. Oct 2000 A
6146391 Cigaina Nov 2000 A
6148222 Ramsey, III Nov 2000 A
6149653 Deslauriers Nov 2000 A
6149662 Pugliesi et al. Nov 2000 A
6152920 Thompson et al. Nov 2000 A
6156006 Brosens et al. Dec 2000 A
6159200 Verdura et al. Dec 2000 A
6165175 Wampler et al. Dec 2000 A
6165184 Verdura et al. Dec 2000 A
6168570 Ferrera Jan 2001 B1
6168605 Measamer et al. Jan 2001 B1
6169269 Maynard Jan 2001 B1
6170130 Hamilton et al. Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6179832 Jones et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183420 Douk et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6190383 Schmaltz et al. Feb 2001 B1
6190384 Ouchi Feb 2001 B1
6190399 Palmer et al. Feb 2001 B1
6203533 Ouchi Mar 2001 B1
6206872 Lafond et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6206904 Ouchi Mar 2001 B1
6210409 Ellman et al. Apr 2001 B1
6214007 Anderson Apr 2001 B1
6214028 Yoon et al. Apr 2001 B1
6216043 Swanson et al. Apr 2001 B1
6228096 Marchand May 2001 B1
6231506 Hu et al. May 2001 B1
6234958 Snoke et al. May 2001 B1
6245079 Nobles et al. Jun 2001 B1
6246914 de la Rama et al. Jun 2001 B1
6258064 Smith et al. Jul 2001 B1
6261242 Roberts et al. Jul 2001 B1
6264664 Avellanet Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270505 Yoshida et al. Aug 2001 B1
6277136 Bonutti Aug 2001 B1
6283963 Regula Sep 2001 B1
6293909 Chu et al. Sep 2001 B1
6293952 Brosens et al. Sep 2001 B1
6296630 Altman et al. Oct 2001 B1
6314963 Vaska et al. Nov 2001 B1
6322578 Houle et al. Nov 2001 B1
6325534 Hawley et al. Dec 2001 B1
6326177 Schoenbach et al. Dec 2001 B1
6328730 Harkrider, Jr. Dec 2001 B1
6350267 Stefanchik Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6352543 Cole Mar 2002 B1
6355013 van Muiden Mar 2002 B1
6355035 Manushakian Mar 2002 B1
6361534 Chen et al. Mar 2002 B1
6364879 Chen et al. Apr 2002 B1
6368340 Malecki et al. Apr 2002 B2
6371956 Wilson et al. Apr 2002 B1
6379366 Fleischman et al. Apr 2002 B1
6383195 Richard May 2002 B1
6383197 Conlon et al. May 2002 B1
6387671 Rubinsky et al. May 2002 B1
6391029 Hooven et al. May 2002 B1
6398708 Hastings et al. Jun 2002 B1
6402735 Langevin Jun 2002 B1
6402746 Whayne et al. Jun 2002 B1
6406440 Stefanchik Jun 2002 B1
6409727 Bales et al. Jun 2002 B1
6409733 Conlon et al. Jun 2002 B1
6419639 Walther et al. Jul 2002 B2
6419641 Mark et al. Jul 2002 B1
6427089 Knowlton Jul 2002 B1
6431500 Jacobs et al. Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6443970 Schulze et al. Sep 2002 B1
6443988 Felt et al. Sep 2002 B2
6447511 Slater Sep 2002 B1
6447523 Middleman et al. Sep 2002 B1
6454783 Piskun Sep 2002 B1
6454785 De Hoyos Garza Sep 2002 B2
6458076 Pruitt Oct 2002 B1
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6470218 Behl Oct 2002 B1
6475104 Lutz et al. Nov 2002 B1
6485411 Konstorum et al. Nov 2002 B1
6489745 Koreis Dec 2002 B1
6491626 Stone et al. Dec 2002 B1
6491627 Komi Dec 2002 B1
6491691 Morley et al. Dec 2002 B1
6493590 Wessman et al. Dec 2002 B1
6494893 Dubrul et al. Dec 2002 B2
6500176 Truckai et al. Dec 2002 B1
6503192 Ouchi Jan 2003 B1
6506190 Walshe Jan 2003 B1
6508827 Manhes Jan 2003 B1
6514239 Shimmura et al. Feb 2003 B2
6520954 Ouchi Feb 2003 B2
6526320 Mitchell Feb 2003 B2
6527782 Hogg et al. Mar 2003 B2
6530922 Cosman et al. Mar 2003 B2
6535764 Imran et al. Mar 2003 B2
6537200 Leysieffer et al. Mar 2003 B2
6543456 Freeman Apr 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6554766 Maeda et al. Apr 2003 B2
6554823 Palmer et al. Apr 2003 B2
6554829 Schulze et al. Apr 2003 B2
6558384 Mayenberger May 2003 B2
6562034 Edwards et al. May 2003 B2
6562035 Levin May 2003 B1
6562052 Nobles et al. May 2003 B2
6569159 Edwards et al. May 2003 B1
6572629 Kalloo et al. Jun 2003 B2
6572635 Bonutti Jun 2003 B1
6575988 Rousseau Jun 2003 B2
6579311 Makower Jun 2003 B1
6581889 Carpenter et al. Jun 2003 B2
6585642 Christopher Jul 2003 B2
6585717 Wittenberger et al. Jul 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6592559 Pakter et al. Jul 2003 B1
6592603 Lasner Jul 2003 B2
6602262 Griego et al. Aug 2003 B2
6605105 Cuschieri et al. Aug 2003 B1
6610072 Christy et al. Aug 2003 B1
6610074 Santilli Aug 2003 B2
6613038 Bonutti et al. Sep 2003 B2
6613068 Ouchi Sep 2003 B2
6616632 Sharp et al. Sep 2003 B2
6620193 Lau et al. Sep 2003 B1
6623448 Slater Sep 2003 B2
6626919 Swanstrom Sep 2003 B1
6632229 Yamanouchi Oct 2003 B1
6632234 Kieturakis et al. Oct 2003 B2
6638275 McGaffigan et al. Oct 2003 B1
6638286 Burbank et al. Oct 2003 B1
6645225 Atkinson Nov 2003 B1
6652518 Wellman et al. Nov 2003 B2
6652521 Schulze Nov 2003 B2
6652551 Heiss Nov 2003 B1
6656194 Gannoe et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6663655 Ginn et al. Dec 2003 B2
6666854 Lange Dec 2003 B1
6672338 Esashi et al. Jan 2004 B1
6673058 Snow Jan 2004 B2
6673087 Chang et al. Jan 2004 B1
6673092 Bacher Jan 2004 B1
6679882 Kornerup Jan 2004 B1
6685628 Vu Feb 2004 B2
6685724 Haluck Feb 2004 B1
6692445 Roberts et al. Feb 2004 B2
6692462 Mackenzie et al. Feb 2004 B2
6692493 McGovern et al. Feb 2004 B2
6699180 Kobayashi Mar 2004 B2
6699256 Logan et al. Mar 2004 B1
6699263 Cope Mar 2004 B2
6706018 Westlund et al. Mar 2004 B2
6708066 Herbst et al. Mar 2004 B2
6709188 Ushimaru Mar 2004 B2
6709445 Boebel et al. Mar 2004 B2
6716226 Sixto, Jr. et al. Apr 2004 B2
6731875 Kartalopoulos May 2004 B1
6736822 McClellan et al. May 2004 B2
6740030 Martone et al. May 2004 B2
6743166 Berci et al. Jun 2004 B2
6743226 Cosman et al. Jun 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6743240 Smith et al. Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6749609 Lunsford et al. Jun 2004 B1
6752768 Burdorff et al. Jun 2004 B2
6752811 Chu et al. Jun 2004 B2
6752822 Jespersen Jun 2004 B2
6758857 Cioanta et al. Jul 2004 B2
6761685 Adams et al. Jul 2004 B2
6761718 Madsen Jul 2004 B2
6773434 Ciarrocca Aug 2004 B2
6776787 Phung et al. Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6780352 Jacobson Aug 2004 B2
6783491 Saadat et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786864 Matsuura et al. Sep 2004 B2
6786905 Swanson et al. Sep 2004 B2
6788977 Fenn et al. Sep 2004 B2
6790173 Saadat et al. Sep 2004 B2
6790217 Schulze et al. Sep 2004 B2
6795728 Chornenky et al. Sep 2004 B2
6800056 Tartaglia et al. Oct 2004 B2
6808491 Kortenbach et al. Oct 2004 B2
6817974 Cooper et al. Nov 2004 B2
6818007 Dampney et al. Nov 2004 B1
6824548 Smith et al. Nov 2004 B2
6830545 Bendall Dec 2004 B2
6836688 Ingle et al. Dec 2004 B2
6837847 Ewers et al. Jan 2005 B2
6840246 Downing Jan 2005 B2
6840938 Morley et al. Jan 2005 B1
6843794 Sixto, Jr. et al. Jan 2005 B2
6861250 Cole et al. Mar 2005 B1
6866627 Nozue Mar 2005 B2
6866628 Goodman et al. Mar 2005 B2
6869394 Ishibiki Mar 2005 B2
6878106 Herrmann Apr 2005 B1
6878110 Yang et al. Apr 2005 B2
6881213 Ryan et al. Apr 2005 B2
6881216 Di Caprio et al. Apr 2005 B2
6884213 Raz et al. Apr 2005 B2
6887255 Shimm May 2005 B2
6889089 Behl et al. May 2005 B2
6896683 Gadberry et al. May 2005 B1
6896692 Ginn et al. May 2005 B2
6899710 Hooven May 2005 B2
6908427 Fleener et al. Jun 2005 B2
6908476 Jud et al. Jun 2005 B2
6913613 Schwarz et al. Jul 2005 B2
6916284 Moriyama Jul 2005 B2
6918871 Schulze Jul 2005 B2
6918908 Bonner et al. Jul 2005 B2
6926725 Cooke et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932824 Roop et al. Aug 2005 B1
6932827 Cole Aug 2005 B2
6936003 Iddan Aug 2005 B2
6939327 Hall et al. Sep 2005 B2
6942613 Ewers et al. Sep 2005 B2
6944490 Chow Sep 2005 B1
6945472 Wuttke et al. Sep 2005 B2
6945979 Kortenbach et al. Sep 2005 B2
6958035 Friedman et al. Oct 2005 B2
6960162 Saadat et al. Nov 2005 B2
6960163 Ewers et al. Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6966919 Sixto, Jr. et al. Nov 2005 B2
6967462 Landis Nov 2005 B1
6971988 Orban, III Dec 2005 B2
6972017 Smith et al. Dec 2005 B2
6974411 Belson Dec 2005 B2
6976992 Sachatello et al. Dec 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6984205 Gazdzinski Jan 2006 B2
6986774 Middleman et al. Jan 2006 B2
6988987 Ishikawa et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6991631 Woloszko et al. Jan 2006 B2
6994708 Manzo Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7001341 Gellman et al. Feb 2006 B2
7008375 Weisel Mar 2006 B2
7008419 Shadduck Mar 2006 B2
7009634 Iddan et al. Mar 2006 B2
7010340 Scarantino et al. Mar 2006 B2
7020531 Colliou et al. Mar 2006 B1
7025580 Heagy et al. Apr 2006 B2
7029435 Nakao Apr 2006 B2
7029438 Morin et al. Apr 2006 B2
7029450 Gellman Apr 2006 B2
7032600 Fukuda et al. Apr 2006 B2
7035680 Partridge et al. Apr 2006 B2
7037290 Gardeski et al. May 2006 B2
7041052 Saadat et al. May 2006 B2
7052489 Griego et al. May 2006 B2
7060024 Long et al. Jun 2006 B2
7060025 Long et al. Jun 2006 B2
7063697 Slater Jun 2006 B2
7063715 Onuki et al. Jun 2006 B2
7066879 Fowler et al. Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070602 Smith et al. Jul 2006 B2
7076305 Imran et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7083629 Weller et al. Aug 2006 B2
7083635 Ginn Aug 2006 B2
7087071 Nicholas et al. Aug 2006 B2
7088923 Haruyama Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7090685 Kortenbach et al. Aug 2006 B2
7093518 Gmeilbauer Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7105000 McBrayer Sep 2006 B2
7105005 Blake Sep 2006 B2
7108696 Daniel et al. Sep 2006 B2
7108703 Danitz et al. Sep 2006 B2
7112208 Morris et al. Sep 2006 B2
7115092 Park et al. Oct 2006 B2
7115124 Xiao Oct 2006 B1
7117703 Kato et al. Oct 2006 B2
7118531 Krill Oct 2006 B2
7118578 West, Jr. et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7128708 Saadat et al. Oct 2006 B2
7130697 Chornenky et al. Oct 2006 B2
RE39415 Bales et al. Nov 2006 E
7131978 Sancoff et al. Nov 2006 B2
7131979 DiCarlo et al. Nov 2006 B2
7131980 Field et al. Nov 2006 B1
7137980 Buysse et al. Nov 2006 B2
7137981 Long Nov 2006 B2
7146984 Stack et al. Dec 2006 B2
7147650 Lee Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150655 Mastrototaro et al. Dec 2006 B2
7150750 Damarati Dec 2006 B2
7152488 Hedrich et al. Dec 2006 B2
7153321 Andrews Dec 2006 B2
7160296 Pearson et al. Jan 2007 B2
7163525 Franer Jan 2007 B2
7172714 Jacobson Feb 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7188627 Nelson et al. Mar 2007 B2
7195612 Van Sloten et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
7204820 Akahoshi Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7211092 Hughett May 2007 B2
7220227 Sasaki et al. May 2007 B2
7223272 Francese et al. May 2007 B2
7229438 Young Jun 2007 B2
7232414 Gonzalez Jun 2007 B2
7232445 Kortenbach et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
7241290 Doyle et al. Jul 2007 B2
7244228 Lubowski Jul 2007 B2
7250027 Barry Jul 2007 B2
7252660 Kunz Aug 2007 B2
7255675 Gertner et al. Aug 2007 B2
7261725 Binmoeller Aug 2007 B2
7270663 Nakao Sep 2007 B2
7291127 Eidenschink Nov 2007 B2
7294139 Gengler Nov 2007 B1
7301250 Cassel Nov 2007 B2
7306597 Manzo Dec 2007 B2
7308828 Hashimoto Dec 2007 B2
7318802 Suzuki et al. Jan 2008 B2
7320695 Carroll Jan 2008 B2
7322934 Miyake et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7329383 Stinson Feb 2008 B2
7335220 Khosravi et al. Feb 2008 B2
7344536 Lunsford et al. Mar 2008 B1
7352387 Yamamoto Apr 2008 B2
7364582 Lee Apr 2008 B2
7371215 Colliou et al. May 2008 B2
7381216 Buzzard et al. Jun 2008 B2
7390324 Whalen et al. Jun 2008 B2
7393222 Asakura Jul 2008 B2
7402162 Ouchi Jul 2008 B2
7404791 Linares et al. Jul 2008 B2
7410483 Danitz et al. Aug 2008 B2
7413563 Corcoran et al. Aug 2008 B2
7416554 Lam et al. Aug 2008 B2
7422590 Kupferschmid et al. Sep 2008 B2
7435229 Wolf Oct 2008 B2
7435257 Lashinski et al. Oct 2008 B2
7452327 Durgin et al. Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7468066 Vargas et al. Dec 2008 B2
7476237 Taniguchi et al. Jan 2009 B2
7485093 Glukhovsky Feb 2009 B2
7488295 Burbank et al. Feb 2009 B2
7494499 Nagase et al. Feb 2009 B2
7497867 Lasner et al. Mar 2009 B2
7498950 Ertas et al. Mar 2009 B1
7507200 Okada Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7511733 Takizawa et al. Mar 2009 B2
7515953 Madar et al. Apr 2009 B2
7520876 Ressemann et al. Apr 2009 B2
7524281 Chu et al. Apr 2009 B2
7524302 Tower Apr 2009 B2
7534228 Williams May 2009 B2
7540872 Schechter et al. Jun 2009 B2
7542807 Bertolero et al. Jun 2009 B2
7544203 Chin et al. Jun 2009 B2
7548040 Lee et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7549998 Braun Jun 2009 B2
7553278 Kucklick Jun 2009 B2
7553298 Hunt et al. Jun 2009 B2
7559452 Wales et al. Jul 2009 B2
7559887 Dannan Jul 2009 B2
7559916 Smith et al. Jul 2009 B2
7560006 Rakos et al. Jul 2009 B2
7561907 Fuimaono et al. Jul 2009 B2
7561916 Hunt et al. Jul 2009 B2
7566334 Christian et al. Jul 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7575548 Takemoto et al. Aug 2009 B2
7579550 Dayton et al. Aug 2009 B2
7582096 Gellman et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7588557 Nakao Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7608083 Lee et al. Oct 2009 B2
7611479 Cragg et al. Nov 2009 B2
7618398 Holman et al. Nov 2009 B2
7621936 Cragg et al. Nov 2009 B2
7632250 Smith et al. Dec 2009 B2
7635373 Ortiz Dec 2009 B2
7637903 Lentz et al. Dec 2009 B2
7648519 Lee et al. Jan 2010 B2
7650742 Ushijima Jan 2010 B2
7651483 Byrum et al. Jan 2010 B2
7651509 Bojarski et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7662089 Okada et al. Feb 2010 B2
7666180 Holsten et al. Feb 2010 B2
7666203 Chanduszko et al. Feb 2010 B2
7670336 Young et al. Mar 2010 B2
7674259 Shadduck Mar 2010 B2
7678043 Gilad Mar 2010 B2
7680543 Azure Mar 2010 B2
7684599 Horn et al. Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7697970 Uchiyama et al. Apr 2010 B2
7699835 Lee et al. Apr 2010 B2
7699864 Kick et al. Apr 2010 B2
7713189 Hanke May 2010 B2
7713270 Suzuki May 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7744615 Couture Jun 2010 B2
7749161 Beckman et al. Jul 2010 B2
7753933 Ginn et al. Jul 2010 B2
7758577 Nobis et al. Jul 2010 B2
7762949 Nakao Jul 2010 B2
7762998 Birk et al. Jul 2010 B2
7763012 Petrick et al. Jul 2010 B2
7765010 Chornenky et al. Jul 2010 B2
7771416 Spivey et al. Aug 2010 B2
7771437 Hogg et al. Aug 2010 B2
7780683 Roue et al. Aug 2010 B2
7780691 Stefanchik Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7794409 Damarati Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7828186 Wales Nov 2010 B2
7833156 Williams et al. Nov 2010 B2
7837615 Le et al. Nov 2010 B2
7842028 Lee Nov 2010 B2
7842068 Ginn Nov 2010 B2
7846171 Kullas et al. Dec 2010 B2
7850660 Uth et al. Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7862546 Conlon et al. Jan 2011 B2
7867216 Wahr et al. Jan 2011 B2
7879004 Seibel et al. Feb 2011 B2
7892220 Faller et al. Feb 2011 B2
7896804 Uchimura et al. Mar 2011 B2
7896887 Rimbaugh et al. Mar 2011 B2
7905828 Brock et al. Mar 2011 B2
7909809 Scopton et al. Mar 2011 B2
7914513 Voorhees, Jr. Mar 2011 B2
7918869 Saadat et al. Apr 2011 B2
7927271 Dimitriou et al. Apr 2011 B2
7931624 Smith et al. Apr 2011 B2
7945332 Schechter May 2011 B2
7947000 Vargas et al. May 2011 B2
7953326 Farr et al. May 2011 B2
7955298 Carroll et al. Jun 2011 B2
7963975 Criscuolo Jun 2011 B2
7965180 Koyama Jun 2011 B2
7967808 Fitzgerald et al. Jun 2011 B2
7969473 Kotoda Jun 2011 B2
7972330 Alejandro et al. Jul 2011 B2
7976552 Suzuki Jul 2011 B2
7985239 Suzuki Jul 2011 B2
7988685 Ziaie et al. Aug 2011 B2
8034046 Eidenschink Oct 2011 B2
8048067 Davalos et al. Nov 2011 B2
8057510 Ginn et al. Nov 2011 B2
8062311 Litscher et al. Nov 2011 B2
8066632 Dario et al. Nov 2011 B2
8075587 Ginn Dec 2011 B2
8088062 Zwolinski Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8118821 Mouw Feb 2012 B2
8147424 Kassab et al. Apr 2012 B2
8157813 Ko et al. Apr 2012 B2
8182414 Handa et al. May 2012 B2
8206295 Kaul Jun 2012 B2
8221310 Saadat et al. Jul 2012 B2
8303581 Arts et al. Nov 2012 B2
8430811 Hess et al. Apr 2013 B2
20010023333 Wise et al. Sep 2001 A1
20010049497 Kalloo et al. Dec 2001 A1
20020022771 Diokno et al. Feb 2002 A1
20020022857 Goldsteen et al. Feb 2002 A1
20020023353 Ting-Kung Feb 2002 A1
20020029055 Bonutti Mar 2002 A1
20020042562 Meron et al. Apr 2002 A1
20020049439 Mulier et al. Apr 2002 A1
20020068945 Sixto, Jr. et al. Jun 2002 A1
20020078967 Sixto, Jr. et al. Jun 2002 A1
20020082516 Stefanchik Jun 2002 A1
20020091391 Cole et al. Jul 2002 A1
20020095164 Andreas et al. Jul 2002 A1
20020107530 Sauer et al. Aug 2002 A1
20020133115 Gordon et al. Sep 2002 A1
20020138086 Sixto, Jr. et al. Sep 2002 A1
20020147456 Diduch et al. Oct 2002 A1
20020165592 Glukhovsky et al. Nov 2002 A1
20020173805 Matsuno et al. Nov 2002 A1
20020183591 Matsuura et al. Dec 2002 A1
20030014090 Abrahamson Jan 2003 A1
20030023255 Miles et al. Jan 2003 A1
20030036679 Kortenbach et al. Feb 2003 A1
20030069602 Jacobs et al. Apr 2003 A1
20030078471 Foley et al. Apr 2003 A1
20030083681 Moutafis et al. May 2003 A1
20030114731 Cadeddu et al. Jun 2003 A1
20030114732 Webler et al. Jun 2003 A1
20030120257 Houston et al. Jun 2003 A1
20030124009 Ravi et al. Jul 2003 A1
20030130564 Martone et al. Jul 2003 A1
20030130656 Levin Jul 2003 A1
20030139646 Sharrow et al. Jul 2003 A1
20030158521 Ameri Aug 2003 A1
20030167062 Gambale et al. Sep 2003 A1
20030171651 Page et al. Sep 2003 A1
20030176880 Long et al. Sep 2003 A1
20030191464 Kidooka Oct 2003 A1
20030191497 Cope Oct 2003 A1
20030195565 Bonutti Oct 2003 A1
20030216611 Vu Nov 2003 A1
20030216615 Ouchi Nov 2003 A1
20030220545 Ouchi Nov 2003 A1
20030225312 Suzuki et al. Dec 2003 A1
20030225332 Okada et al. Dec 2003 A1
20030229269 Humphrey Dec 2003 A1
20030229371 Whitworth Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040002683 Nicholson et al. Jan 2004 A1
20040002735 Lizardi et al. Jan 2004 A1
20040024414 Downing Feb 2004 A1
20040034369 Sauer et al. Feb 2004 A1
20040054322 Vargas Mar 2004 A1
20040098007 Heiss May 2004 A1
20040101456 Kuroshima et al. May 2004 A1
20040104999 Okada Jun 2004 A1
20040116948 Sixto, Jr. et al. Jun 2004 A1
20040127940 Ginn et al. Jul 2004 A1
20040133077 Obenchain et al. Jul 2004 A1
20040133089 Kilcoyne et al. Jul 2004 A1
20040136779 Bhaskar Jul 2004 A1
20040138525 Saadat et al. Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040138587 Lyons, IV Jul 2004 A1
20040161451 Pierce et al. Aug 2004 A1
20040167545 Sadler et al. Aug 2004 A1
20040176699 Walker et al. Sep 2004 A1
20040186350 Brenneman et al. Sep 2004 A1
20040193009 Jaffe et al. Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20040193186 Kortenbach et al. Sep 2004 A1
20040193188 Francese Sep 2004 A1
20040193189 Kortenbach et al. Sep 2004 A1
20040193200 Dworschak et al. Sep 2004 A1
20040199052 Banik et al. Oct 2004 A1
20040199159 Lee et al. Oct 2004 A1
20040206859 Chong et al. Oct 2004 A1
20040210245 Erickson et al. Oct 2004 A1
20040215058 Zirps et al. Oct 2004 A1
20040225183 Michlitsch et al. Nov 2004 A1
20040225186 Horne, Jr. et al. Nov 2004 A1
20040225323 Nagase et al. Nov 2004 A1
20040230095 Stefanchik et al. Nov 2004 A1
20040230096 Stefanchik et al. Nov 2004 A1
20040230097 Stefanchik et al. Nov 2004 A1
20040230161 Zeiner Nov 2004 A1
20040243108 Suzuki Dec 2004 A1
20040249246 Campos Dec 2004 A1
20040249367 Saadat et al. Dec 2004 A1
20040249394 Morris et al. Dec 2004 A1
20040249443 Shanley et al. Dec 2004 A1
20040254572 McIntyre et al. Dec 2004 A1
20040260198 Rothberg et al. Dec 2004 A1
20040260337 Freed Dec 2004 A1
20050004515 Hart et al. Jan 2005 A1
20050033265 Engel et al. Feb 2005 A1
20050033277 Clague et al. Feb 2005 A1
20050033319 Gambale et al. Feb 2005 A1
20050033333 Smith et al. Feb 2005 A1
20050043690 Todd Feb 2005 A1
20050049616 Rivera et al. Mar 2005 A1
20050059963 Phan et al. Mar 2005 A1
20050059964 Fitz Mar 2005 A1
20050065397 Saadat et al. Mar 2005 A1
20050065509 Coldwell et al. Mar 2005 A1
20050065517 Chin Mar 2005 A1
20050070754 Nobis et al. Mar 2005 A1
20050070763 Nobis et al. Mar 2005 A1
20050070764 Nobis et al. Mar 2005 A1
20050080413 Canady Apr 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050085832 Sancoff et al. Apr 2005 A1
20050090837 Sixto, Jr. et al. Apr 2005 A1
20050090838 Sixto, Jr. et al. Apr 2005 A1
20050096502 Khalili May 2005 A1
20050101837 Kalloo et al. May 2005 A1
20050101838 Camillocci et al. May 2005 A1
20050101984 Chanduszko et al. May 2005 A1
20050107663 Saadat et al. May 2005 A1
20050107664 Kalloo et al. May 2005 A1
20050110881 Glukhovsky et al. May 2005 A1
20050113847 Gadberry et al. May 2005 A1
20050119613 Moenning et al. Jun 2005 A1
20050124855 Jaffe et al. Jun 2005 A1
20050125010 Smith et al. Jun 2005 A1
20050131279 Boulais et al. Jun 2005 A1
20050131457 Douglas et al. Jun 2005 A1
20050137454 Saadat et al. Jun 2005 A1
20050143647 Minai et al. Jun 2005 A1
20050143690 High Jun 2005 A1
20050143774 Polo Jun 2005 A1
20050143803 Watson et al. Jun 2005 A1
20050149087 Ahlberg et al. Jul 2005 A1
20050149096 Hilal et al. Jul 2005 A1
20050159648 Freed Jul 2005 A1
20050165272 Okada et al. Jul 2005 A1
20050165378 Heinrich et al. Jul 2005 A1
20050165411 Orban, III Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050182429 Yamanouchi Aug 2005 A1
20050192478 Williams et al. Sep 2005 A1
20050192598 Johnson et al. Sep 2005 A1
20050192602 Manzo Sep 2005 A1
20050192654 Chanduszko et al. Sep 2005 A1
20050209624 Vijay Sep 2005 A1
20050215858 Vail, III Sep 2005 A1
20050216050 Sepetka et al. Sep 2005 A1
20050228224 Okada et al. Oct 2005 A1
20050228406 Bose Oct 2005 A1
20050234297 Devierre et al. Oct 2005 A1
20050250983 Tremaglio et al. Nov 2005 A1
20050250990 Le et al. Nov 2005 A1
20050250993 Jaeger Nov 2005 A1
20050251166 Vaughan et al. Nov 2005 A1
20050251176 Swanstrom et al. Nov 2005 A1
20050261674 Nobis et al. Nov 2005 A1
20050267492 Poncet et al. Dec 2005 A1
20050272975 McWeeney et al. Dec 2005 A1
20050272977 Saadat et al. Dec 2005 A1
20050273084 Hinman et al. Dec 2005 A1
20050274935 Nelson Dec 2005 A1
20050277945 Saadat et al. Dec 2005 A1
20050277951 Smith et al. Dec 2005 A1
20050277952 Arp et al. Dec 2005 A1
20050277954 Smith et al. Dec 2005 A1
20050277955 Palmer et al. Dec 2005 A1
20050277956 Francese et al. Dec 2005 A1
20050277957 Kuhns et al. Dec 2005 A1
20050283118 Uth et al. Dec 2005 A1
20050283119 Uth et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20060004406 Wehrstein et al. Jan 2006 A1
20060004409 Nobis et al. Jan 2006 A1
20060004410 Nobis et al. Jan 2006 A1
20060015009 Jaffe et al. Jan 2006 A1
20060015131 Kierce et al. Jan 2006 A1
20060020167 Sitzmann Jan 2006 A1
20060020247 Kagan et al. Jan 2006 A1
20060025654 Suzuki et al. Feb 2006 A1
20060025781 Young et al. Feb 2006 A1
20060025812 Shelton, IV Feb 2006 A1
20060025819 Nobis et al. Feb 2006 A1
20060036267 Saadat et al. Feb 2006 A1
20060041188 Dirusso et al. Feb 2006 A1
20060058582 Maahs et al. Mar 2006 A1
20060058776 Bilsbury Mar 2006 A1
20060064083 Khalaj et al. Mar 2006 A1
20060069396 Meade et al. Mar 2006 A1
20060069424 Acosta et al. Mar 2006 A1
20060069425 Hillis et al. Mar 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060074413 Behzadian Apr 2006 A1
20060079890 Guerra Apr 2006 A1
20060089528 Tartaglia et al. Apr 2006 A1
20060095031 Ormsby May 2006 A1
20060095060 Mayenberger et al. May 2006 A1
20060100687 Fahey et al. May 2006 A1
20060106423 Weisel et al. May 2006 A1
20060111209 Hinman et al. May 2006 A1
20060111210 Hinman et al. May 2006 A1
20060111704 Brenneman et al. May 2006 A1
20060129166 Lavelle Jun 2006 A1
20060135962 Kick et al. Jun 2006 A1
20060135971 Swanstrom et al. Jun 2006 A1
20060135984 Kramer et al. Jun 2006 A1
20060142644 Mulac et al. Jun 2006 A1
20060142652 Keenan Jun 2006 A1
20060142790 Gertner Jun 2006 A1
20060142798 Holman et al. Jun 2006 A1
20060149131 Or Jul 2006 A1
20060149132 Iddan Jul 2006 A1
20060149135 Paz Jul 2006 A1
20060161190 Gadberry et al. Jul 2006 A1
20060167416 Mathis et al. Jul 2006 A1
20060167482 Swain et al. Jul 2006 A1
20060178560 Saadat et al. Aug 2006 A1
20060183975 Saadat et al. Aug 2006 A1
20060184161 Maahs et al. Aug 2006 A1
20060189844 Tien Aug 2006 A1
20060189845 Maahs et al. Aug 2006 A1
20060189980 Johnson et al. Aug 2006 A1
20060190027 Downey Aug 2006 A1
20060195084 Slater Aug 2006 A1
20060200005 Bjork et al. Sep 2006 A1
20060200121 Mowery Sep 2006 A1
20060200169 Sniffin Sep 2006 A1
20060200170 Aranyi Sep 2006 A1
20060200199 Bonutti et al. Sep 2006 A1
20060217665 Prosek Sep 2006 A1
20060217697 Lau et al. Sep 2006 A1
20060217742 Messerly et al. Sep 2006 A1
20060217743 Messerly et al. Sep 2006 A1
20060229639 Whitfield Oct 2006 A1
20060229640 Whitfield Oct 2006 A1
20060237022 Chen et al. Oct 2006 A1
20060237023 Cox et al. Oct 2006 A1
20060241570 Wilk Oct 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247576 Poncet Nov 2006 A1
20060247663 Schwartz et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060253004 Frisch et al. Nov 2006 A1
20060253039 McKenna et al. Nov 2006 A1
20060258907 Stefanchik et al. Nov 2006 A1
20060258908 Stefanchik et al. Nov 2006 A1
20060258910 Stefanchik et al. Nov 2006 A1
20060258954 Timberlake et al. Nov 2006 A1
20060258955 Hoffman et al. Nov 2006 A1
20060259010 Stefanchik et al. Nov 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060264752 Rubinsky et al. Nov 2006 A1
20060264904 Kerby et al. Nov 2006 A1
20060264930 Nishimura Nov 2006 A1
20060270902 Igarashi et al. Nov 2006 A1
20060271042 Latterell et al. Nov 2006 A1
20060271102 Bosshard et al. Nov 2006 A1
20060276835 Uchida Dec 2006 A1
20060281970 Stokes et al. Dec 2006 A1
20060282106 Cole et al. Dec 2006 A1
20060285732 Horn et al. Dec 2006 A1
20060287644 Inganas et al. Dec 2006 A1
20060287666 Saadat et al. Dec 2006 A1
20060293626 Byrum et al. Dec 2006 A1
20070002135 Glukhovsky Jan 2007 A1
20070005019 Okishige Jan 2007 A1
20070010801 Chen et al. Jan 2007 A1
20070015965 Cox et al. Jan 2007 A1
20070016255 Korb Jan 2007 A1
20070032700 Fowler et al. Feb 2007 A1
20070032701 Fowler et al. Feb 2007 A1
20070043261 Watanabe et al. Feb 2007 A1
20070043345 Davalos et al. Feb 2007 A1
20070049800 Boulais Mar 2007 A1
20070049902 Griffin et al. Mar 2007 A1
20070051375 Milliman Mar 2007 A1
20070060880 Gregorich et al. Mar 2007 A1
20070066869 Hoffman Mar 2007 A1
20070067017 Trapp Mar 2007 A1
20070073102 Matsuno et al. Mar 2007 A1
20070073269 Becker Mar 2007 A1
20070079924 Saadat et al. Apr 2007 A1
20070083195 Werneth et al. Apr 2007 A1
20070088370 Kahle et al. Apr 2007 A1
20070100375 Mikkaichi et al. May 2007 A1
20070100376 Mikkaichi et al. May 2007 A1
20070106118 Moriyama May 2007 A1
20070106317 Shelton, IV et al. May 2007 A1
20070112251 Nakhuda May 2007 A1
20070112331 Weber et al. May 2007 A1
20070112342 Pearson et al. May 2007 A1
20070112383 Conlon et al. May 2007 A1
20070112384 Conlon et al. May 2007 A1
20070112385 Conlon May 2007 A1
20070112417 Shanley et al. May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070123840 Cox May 2007 A1
20070129605 Schaaf Jun 2007 A1
20070129719 Kendale et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070135709 Rioux et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070142706 Matsui et al. Jun 2007 A1
20070142710 Yokoi et al. Jun 2007 A1
20070142780 Van Lue Jun 2007 A1
20070154460 Kraft et al. Jul 2007 A1
20070156028 Van Lue et al. Jul 2007 A1
20070156127 Rioux et al. Jul 2007 A1
20070161855 Mikkaichi et al. Jul 2007 A1
20070162101 Burgermeister et al. Jul 2007 A1
20070167901 Herrig et al. Jul 2007 A1
20070173691 Yokoi et al. Jul 2007 A1
20070173869 Gannoe et al. Jul 2007 A1
20070173870 Zacharias Jul 2007 A2
20070173872 Neuenfeldt Jul 2007 A1
20070179525 Frecker et al. Aug 2007 A1
20070179530 Tieu et al. Aug 2007 A1
20070197865 Miyake et al. Aug 2007 A1
20070198057 Gelbart et al. Aug 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070203487 Sugita Aug 2007 A1
20070208336 Kim et al. Sep 2007 A1
20070208364 Smith et al. Sep 2007 A1
20070213754 Mikkaichi et al. Sep 2007 A1
20070225554 Maseda et al. Sep 2007 A1
20070233040 Macnamara et al. Oct 2007 A1
20070244358 Lee Oct 2007 A1
20070250038 Boulais Oct 2007 A1
20070250057 Nobis et al. Oct 2007 A1
20070255096 Stefanchik et al. Nov 2007 A1
20070255100 Barlow et al. Nov 2007 A1
20070255273 Fernandez et al. Nov 2007 A1
20070255303 Bakos et al. Nov 2007 A1
20070255306 Conlon et al. Nov 2007 A1
20070260112 Rahmani Nov 2007 A1
20070260117 Zwolinski et al. Nov 2007 A1
20070260121 Bakos et al. Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070260273 Cropper et al. Nov 2007 A1
20070260302 Igaki Nov 2007 A1
20070270629 Charles Nov 2007 A1
20070270889 Conlon et al. Nov 2007 A1
20070270895 Nobis et al. Nov 2007 A1
20070270907 Stokes et al. Nov 2007 A1
20070282165 Hopkins et al. Dec 2007 A1
20070282371 Lee et al. Dec 2007 A1
20070293727 Goldfarb et al. Dec 2007 A1
20070299387 Williams et al. Dec 2007 A1
20080004650 George Jan 2008 A1
20080015409 Barlow et al. Jan 2008 A1
20080015413 Barlow et al. Jan 2008 A1
20080015552 Doyle et al. Jan 2008 A1
20080021416 Arai et al. Jan 2008 A1
20080022927 Zhang et al. Jan 2008 A1
20080027387 Grabinsky Jan 2008 A1
20080033451 Rieber et al. Feb 2008 A1
20080051629 Sugiyama et al. Feb 2008 A1
20080051735 Measamer et al. Feb 2008 A1
20080058586 Karpiel Mar 2008 A1
20080058854 Kieturakis et al. Mar 2008 A1
20080065169 Colliou et al. Mar 2008 A1
20080071264 Azure Mar 2008 A1
20080086172 Martin et al. Apr 2008 A1
20080097159 Ishiguro Apr 2008 A1
20080097472 Agmon et al. Apr 2008 A1
20080097483 Ortiz et al. Apr 2008 A1
20080103527 Martin et al. May 2008 A1
20080114384 Chang et al. May 2008 A1
20080119870 Williams May 2008 A1
20080119891 Miles et al. May 2008 A1
20080125796 Graham May 2008 A1
20080132892 Lunsford et al. Jun 2008 A1
20080139882 Fujimori Jun 2008 A1
20080140069 Filloux et al. Jun 2008 A1
20080140071 Vegesna Jun 2008 A1
20080147113 Nobis et al. Jun 2008 A1
20080171907 Long et al. Jul 2008 A1
20080177135 Muyari et al. Jul 2008 A1
20080188710 Segawa et al. Aug 2008 A1
20080188868 Weitzner et al. Aug 2008 A1
20080200755 Bakos Aug 2008 A1
20080200762 Stokes et al. Aug 2008 A1
20080200911 Long Aug 2008 A1
20080200912 Long Aug 2008 A1
20080200933 Bakos et al. Aug 2008 A1
20080200934 Fox Aug 2008 A1
20080208213 Benjamin et al. Aug 2008 A1
20080221587 Schwartz Sep 2008 A1
20080221619 Spivey et al. Sep 2008 A1
20080228213 Blakeney et al. Sep 2008 A1
20080230972 Ganley Sep 2008 A1
20080234696 Taylor et al. Sep 2008 A1
20080243106 Coe et al. Oct 2008 A1
20080243148 Mikkaichi et al. Oct 2008 A1
20080243176 Weitzner et al. Oct 2008 A1
20080249567 Kaplan Oct 2008 A1
20080262513 Stahler et al. Oct 2008 A1
20080262524 Bangera et al. Oct 2008 A1
20080262540 Bangera et al. Oct 2008 A1
20080269782 Stefanchik et al. Oct 2008 A1
20080269783 Griffith Oct 2008 A1
20080275474 Martin et al. Nov 2008 A1
20080275475 Schwemberger et al. Nov 2008 A1
20080287737 Dejima Nov 2008 A1
20080287983 Smith et al. Nov 2008 A1
20080300461 Shaw et al. Dec 2008 A1
20080300547 Bakos Dec 2008 A1
20080309758 Karasawa et al. Dec 2008 A1
20080312496 Zwolinski Dec 2008 A1
20080312499 Handa et al. Dec 2008 A1
20080312500 Asada et al. Dec 2008 A1
20080312506 Spivey et al. Dec 2008 A1
20080319436 Daniel et al. Dec 2008 A1
20080319439 Ootsubu Dec 2008 A1
20090005636 Pang et al. Jan 2009 A1
20090054728 Trusty Feb 2009 A1
20090062788 Long et al. Mar 2009 A1
20090062792 Vakharia et al. Mar 2009 A1
20090062795 Vakharia et al. Mar 2009 A1
20090069634 Larkin Mar 2009 A1
20090076499 Azure Mar 2009 A1
20090078736 Van Lue Mar 2009 A1
20090082776 Cresina Mar 2009 A1
20090082779 Nakao Mar 2009 A1
20090112059 Nobis Apr 2009 A1
20090112062 Bakos Apr 2009 A1
20090112063 Bakos et al. Apr 2009 A1
20090125042 Mouw May 2009 A1
20090131751 Spivey et al. May 2009 A1
20090131933 Ghabrial et al. May 2009 A1
20090143639 Stark Jun 2009 A1
20090143649 Rossi Jun 2009 A1
20090143794 Conlon et al. Jun 2009 A1
20090143818 Faller et al. Jun 2009 A1
20090149710 Stefanchik et al. Jun 2009 A1
20090177031 Surti et al. Jul 2009 A1
20090177219 Conlon Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090192344 Bakos et al. Jul 2009 A1
20090192534 Ortiz et al. Jul 2009 A1
20090198231 Esser et al. Aug 2009 A1
20090198253 Omori Aug 2009 A1
20090210000 Sullivan et al. Aug 2009 A1
20090216248 Uenohara et al. Aug 2009 A1
20090221873 McGrath Sep 2009 A1
20090227828 Swain et al. Sep 2009 A1
20090228001 Pacey Sep 2009 A1
20090248055 Spivey et al. Oct 2009 A1
20090259105 Miyano et al. Oct 2009 A1
20090269317 Davalos Oct 2009 A1
20090281559 Swain et al. Nov 2009 A1
20090287206 Jun Nov 2009 A1
20090287236 Bakos et al. Nov 2009 A1
20090292164 Yamatani Nov 2009 A1
20090299135 Spivey Dec 2009 A1
20090299143 Conlon et al. Dec 2009 A1
20090299362 Long et al. Dec 2009 A1
20090299385 Stefanchik et al. Dec 2009 A1
20090299406 Swain et al. Dec 2009 A1
20090299409 Coe et al. Dec 2009 A1
20090306658 Nobis et al. Dec 2009 A1
20090306683 Zwolinski et al. Dec 2009 A1
20090322864 Karasawa et al. Dec 2009 A1
20090326332 Carter Dec 2009 A1
20090326561 Carroll, II et al. Dec 2009 A1
20100010294 Conlon et al. Jan 2010 A1
20100010298 Bakos et al. Jan 2010 A1
20100010299 Bakos et al. Jan 2010 A1
20100010303 Bakos Jan 2010 A1
20100010510 Stefanchik Jan 2010 A1
20100010511 Harris et al. Jan 2010 A1
20100023032 Granja Filho Jan 2010 A1
20100030211 Davalos et al. Feb 2010 A1
20100036198 Tacchino et al. Feb 2010 A1
20100042045 Spivey Feb 2010 A1
20100048990 Bakos Feb 2010 A1
20100049190 Long et al. Feb 2010 A1
20100049223 Granja Filho Feb 2010 A1
20100056861 Spivey Mar 2010 A1
20100056862 Bakos Mar 2010 A1
20100056864 Lee Mar 2010 A1
20100057085 Holcomb et al. Mar 2010 A1
20100057108 Spivey et al. Mar 2010 A1
20100063538 Spivey et al. Mar 2010 A1
20100076451 Zwolinski et al. Mar 2010 A1
20100076460 Taylor et al. Mar 2010 A1
20100081877 Vakharia Apr 2010 A1
20100087813 Long Apr 2010 A1
20100091128 Ogasawara et al. Apr 2010 A1
20100113872 Asada et al. May 2010 A1
20100121362 Clague et al. May 2010 A1
20100130817 Conlon May 2010 A1
20100130975 Long May 2010 A1
20100131005 Conlon May 2010 A1
20100152539 Ghabrial et al. Jun 2010 A1
20100152609 Zwolinski et al. Jun 2010 A1
20100152746 Ceniccola et al. Jun 2010 A1
20100179510 Fox et al. Jul 2010 A1
20100179530 Long et al. Jul 2010 A1
20100191050 Zwolinski Jul 2010 A1
20100191267 Fox Jul 2010 A1
20100198005 Fox Aug 2010 A1
20100198149 Fox Aug 2010 A1
20100198244 Spivey et al. Aug 2010 A1
20100198248 Vakharia Aug 2010 A1
20100217367 Belson Aug 2010 A1
20100249700 Spivey Sep 2010 A1
20100261994 Davalos et al. Oct 2010 A1
20100286791 Goldsmith Nov 2010 A1
20100298642 Trusty et al. Nov 2010 A1
20100312056 Galperin et al. Dec 2010 A1
20100331622 Conlon Dec 2010 A2
20100331758 Davalos et al. Dec 2010 A1
20100331774 Spivey Dec 2010 A2
20110077476 Rofougaran Mar 2011 A1
20110093009 Fox Apr 2011 A1
20110098694 Long Apr 2011 A1
20110098704 Long et al. Apr 2011 A1
20110105850 Voegele et al. May 2011 A1
20110106221 Neal, II et al. May 2011 A1
20110112434 Ghabrial et al. May 2011 A1
20110115891 Trusty May 2011 A1
20110124964 Nobis May 2011 A1
20110152609 Trusty et al. Jun 2011 A1
20110152610 Trusty et al. Jun 2011 A1
20110152612 Trusty et al. Jun 2011 A1
20110152858 Long et al. Jun 2011 A1
20110152859 Long et al. Jun 2011 A1
20110152878 Trusty et al. Jun 2011 A1
20110152923 Fox Jun 2011 A1
20110160514 Long et al. Jun 2011 A1
20110190659 Long et al. Aug 2011 A1
20110190764 Long et al. Aug 2011 A1
20110193948 Amling et al. Aug 2011 A1
20110245619 Holcomb Oct 2011 A1
20110285488 Scott et al. Nov 2011 A1
20110306971 Long Dec 2011 A1
20120004502 Weitzner et al. Jan 2012 A1
20120029335 Sudam et al. Feb 2012 A1
20120088965 Stokes et al. Apr 2012 A1
20120089089 Swain et al. Apr 2012 A1
20120089093 Trusty Apr 2012 A1
20120116155 Trusty May 2012 A1
20120179148 Conlon Jul 2012 A1
20120191075 Trusty Jul 2012 A1
20120191076 Voegele et al. Jul 2012 A1
20120220998 Long et al. Aug 2012 A1
20120220999 Long Aug 2012 A1
20120221002 Long et al. Aug 2012 A1
20120238796 Conlon Sep 2012 A1
20120330306 Long et al. Dec 2012 A1
20130090666 Hess et al. Apr 2013 A1
Foreign Referenced Citations (162)
Number Date Country
666310 Feb 1996 AU
3008120 Sep 1980 DE
4323585 Jan 1995 DE
19713797 Oct 1997 DE
19757056 Aug 2008 DE
102006027873 Oct 2009 DE
0086338 Aug 1983 EP
0286415 Oct 1988 EP
0589454 Mar 1994 EP
0464479 Mar 1995 EP
0529675 Feb 1996 EP
0621009 Jul 1997 EP
0724863 Jul 1999 EP
0760629 Nov 1999 EP
0818974 Jul 2001 EP
1281356 Feb 2003 EP
0947166 May 2003 EP
0836832 Dec 2003 EP
1402837 Mar 2004 EP
0744918 Apr 2004 EP
0931515 Aug 2004 EP
0941128 Oct 2004 EP
1411843 Oct 2004 EP
1150614 Nov 2004 EP
1477104 Nov 2004 EP
1481642 Dec 2004 EP
1493391 Jan 2005 EP
0848598 Feb 2005 EP
1281360 Mar 2005 EP
1568330 Aug 2005 EP
1452143 Sep 2005 EP
1616527 Jan 2006 EP
1006888 Mar 2006 EP
1629764 Mar 2006 EP
1013229 Jun 2006 EP
1721561 Nov 2006 EP
1153578 Mar 2007 EP
1334696 Mar 2007 EP
1769766 Apr 2007 EP
1836971 Sep 2007 EP
1836980 Sep 2007 EP
1854421 Nov 2007 EP
1857061 Nov 2007 EP
1875876 Jan 2008 EP
1891881 Feb 2008 EP
1902663 Mar 2008 EP
1477106 Jun 2008 EP
1949844 Jul 2008 EP
1518499 Aug 2008 EP
1582138 Sep 2008 EP
1709918 Oct 2008 EP
1985226 Oct 2008 EP
1994904 Nov 2008 EP
1707130 Dec 2008 EP
0723462 Mar 2009 EP
1769749 Nov 2009 EP
2135545 Dec 2009 EP
1493397 Sep 2011 EP
2731610 Sep 1996 FR
330629 Jun 1930 GB
2335860 Oct 1999 GB
2403909 Jan 2005 GB
2421190 Jun 2006 GB
2443261 Apr 2008 GB
56-46674 Apr 1981 JP
63309252 Dec 1988 JP
4038960 Feb 1992 JP
8-29699 Feb 1996 JP
2000245683 Sep 2000 JP
2002-369791 Dec 2002 JP
2003-088494 Mar 2003 JP
2003-235852 Aug 2003 JP
2004-33525 Feb 2004 JP
2004-065745 Mar 2004 JP
2005-121947 May 2005 JP
2005-261514 Sep 2005 JP
2006297005 Nov 2006 JP
2006-343510 Dec 2006 JP
1021295 Feb 2004 NL
194230 May 1967 SU
980703 Dec 1982 SU
WO 8401707 May 1984 WO
WO 9213494 Aug 1992 WO
WO 9310850 Jun 1993 WO
WO 9320760 Oct 1993 WO
WO 9320765 Oct 1993 WO
WO 9509666 Apr 1995 WO
WO 9622056 Jul 1996 WO
WO 9627331 Sep 1996 WO
WO 9639946 Dec 1996 WO
WO 9712557 Apr 1997 WO
WO 9801080 Jan 1998 WO
WO 9900060 Jan 1999 WO
WO 9909919 Mar 1999 WO
WO 9917661 Apr 1999 WO
WO 9930622 Jun 1999 WO
WO 0035358 Jun 2000 WO
WO 0068665 Nov 2000 WO
WO 0110319 Feb 2001 WO
WO 0126708 Apr 2001 WO
WO 0141627 Jun 2001 WO
WO 0158360 Aug 2001 WO
WO 0211621 Feb 2002 WO
WO 0234122 May 2002 WO
WO 02094082 Nov 2002 WO
WO 03045260 Jun 2003 WO
WO 03047684 Jun 2003 WO
WO 03059412 Jul 2003 WO
WO 03078721 Sep 2003 WO
WO 03081761 Oct 2003 WO
WO 03082129 Oct 2003 WO
WO 2004006789 Jan 2004 WO
WO 2004028613 Apr 2004 WO
WO 2004037123 May 2004 WO
WO 2004037149 May 2004 WO
WO 2004052221 Jun 2004 WO
WO 2004086984 Oct 2004 WO
WO 2005009211 Feb 2005 WO
WO 2005018467 Mar 2005 WO
WO 2005037088 Apr 2005 WO
WO 2005048827 Jun 2005 WO
WO 2005065284 Jul 2005 WO
WO 2005097019 Oct 2005 WO
WO 2005097234 Oct 2005 WO
WO 2005112810 Dec 2005 WO
WO 2005120363 Dec 2005 WO
WO 2005122866 Dec 2005 WO
WO 2006007399 Jan 2006 WO
WO 2006012630 Feb 2006 WO
WO 2006040109 Apr 2006 WO
WO 2006041881 Apr 2006 WO
WO 2006060405 Jun 2006 WO
WO 2006110733 Oct 2006 WO
WO 2006113216 Oct 2006 WO
WO 2007013059 Feb 2007 WO
WO 2007014063 Feb 2007 WO
WO 2007048085 Apr 2007 WO
WO 2007063550 Jun 2007 WO
WO 2007100067 Sep 2007 WO
WO 2007109171 Sep 2007 WO
WO 2007143200 Dec 2007 WO
WO 2007144004 Dec 2007 WO
WO 2008005433 Jan 2008 WO
WO 2008033356 Mar 2008 WO
WO 2008041225 Apr 2008 WO
WO 2008076337 Jun 2008 WO
WO 2008076800 Jun 2008 WO
WO 2008079440 Jul 2008 WO
WO 2008101075 Aug 2008 WO
WO 2008102154 Aug 2008 WO
WO 2008108863 Sep 2008 WO
WO 2008151237 Dec 2008 WO
WO 2009021030 Feb 2009 WO
WO 2009027065 Mar 2009 WO
WO 2009029065 Mar 2009 WO
WO 2009032623 Mar 2009 WO
WO 2009036457 Mar 2009 WO
WO 2009121017 Oct 2009 WO
WO 2010027688 Mar 2010 WO
WO 2010056716 May 2010 WO
WO 2010080974 Jul 2010 WO
WO 2010088481 Aug 2010 WO
Non-Patent Literature Citations (157)
Entry
International Search Report for PCT/US2008/084311, Jul. 10, 2009 (7 pages).
K. Sumiyama et al., “Endoscopic Caps,” Tech. Gastrointest. Endosc., vol. 8, pp. 28-32, 2006.
F.N. Denans, Nouveau Procede Pour La Guerison Des Plaies Des Intestines. Extrait Des Seances De La Societe Royale De Medecine De Marseille, Pendant Le Mois De Dec. 1825, et le Premier Tremestre De 1826, Séance Du 24 Fevrier 1826. Recueil De La Societe Royale De Medecin De Marseille. Marseille: Impr. D'Achard, 1826; 1:127-31. (with English translation).
Endoscopic Retrograde Cholangiopancreatogram (ERCP); [online] URL:http://www.webmd.com/digestive-disorders/endoscopic-retrograde-cholangiopancreatogram-ercp.htm; last updated: Apr. 30, 2007; accessed: Feb. 21, 2008 (6 pages).
ERCP; Jackson Siegelbaum Gastroenterology; [online] URL: http://www.gicare.com/pated/epdgs20.htm; accessed Feb. 21, 2008 (3 pages).
D.G. Fong et al., “Transcolonic Ventral Wall Hernia Mesh Fixation in a Porcine Model,” Endoscopy 2007; 39: 865-869.
B. Rubinsky, Ph.D., “Irreversible Electroporation in Medicine,” Technology in Cancer Research and Treatment, vol. 6, No. 4, Aug. (2007), pp. 255-259.
D.B. Nelson, MD et al., “Endoscopic Hemostatic Devices,” Gastrointestinal Endoscopy, vol. 54, No. 6, 2001, pp. 833-840.
CRE™ Pulmonary Balloon Dilator; [online] URL: http://www.bostonscientific.com/Device.bsci?page=HCP—Overview&navRe1Id=1000.1003&method=D..., accessed Jul. 18, 2008 (4 pages).
J.D. Paulson, M.D., et al., “Development of Flexible Culdoscopy,” The Journal of the American Association of Gynecologic Laparoscopists, Nov. 1999, vol. 6, No. 4, pp. 487-490.
H. Seifert, et al., “Retroperitoneal Endoscopic Debridement for Infected Peripancreatic Necrosis,” The Lancet, Research Letters, vol. 356, Aug. 19, 2000, pp. 653-655.
K.E. Mönkemüller, M.D., et al., “Transmural Drainage of Pancreatic Fluid Collections Without Electrocautery Using the Seldinger Technique,” Gastrointestinal Endoscopy, vol. 48, No. 2, 1998, pp. 195-200, (Received Oct. 3, 1997; Accepted Mar. 31, 1998).
D. Wilhelm et al., “An Innovative, Safe and Sterile Sigmoid Access (ISSA) for NOTES,” Endoscopy 2007, vol. 39, pp. 401-406.
Nakazawa et al., “Radiofrequency Ablation of Hepatocellular Carcinoma: Correlation Between Local Tumor Progression After Ablation and Ablative Margin,” AJR, 188, pp. 480-488 (Feb. 2007).
Miklav{hacek over (c)}i{hacek over (c)} et al., “A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy,” Biochimica et Biophysica Acta, 1523, pp. 73-83 (2000).
Evans, “Ablative and cathether-delivered therapies for colorectal liver metastases (CRLM),” EJSO, 33, pp. S64-S75 (2007).
Wong et al., “Combined Percutaneous Radiofrequency Ablation and Ethanol Injection for Hepatocellular Carcinoma in High-Risk Locations,” AJR, 190, pp. W187-W195 (2008).
Heller et al., “Electrically mediated plasmid DNA delivery to hepatocellular carcinomas in vivo,” Gene Therapy, 7, pp. 826-829 (2000).
Widera et al., “Increased DNA Vaccine Delivery and Immunogenicity by Electroporation in Vivo,” The Journal of Immunology, 164, pp. 4635-4640 (2000).
Weaver et al., “Theory of electroporation: A review,” Bioelectrochemistry and Bioenergetics, 41, pp. 135-160 (1996).
Mulier et al., “Radiofrequency Ablation Versus Resection for Resectable Colorectal Liver Metastases: Time for a Randomized Trial?” Annals of Surgical Oncology, 15(1), pp. 144-157 (2008).
Link et al., “Regional Chemotherapy of Nonresectable Colorectal Liver Metastases with Mitoxanthrone, 5-Fluorouracil, Folinic Acid, and Mitomycin C May Prolong Survival,” Cancer, 92, pp. 2746-2753 (2001).
Guyton et al., “Membrane Potentials and Action Potentials,” W.B. Sanders, ed. Textbook of Medical Physiology, p. 56 (2000).
Guyton et al., “Contraction of Skeletal Muscle,” Textbook of Medical Physiology, pp. 82-84 (2000).
“Ethicon Endo-Surgery Novel Investigational Notes and SSL Devices Featured in 15 Presentations at Sages,” Apr. 22, 2009 Press Release; URL http://www.jnj.com/connect/news/all/20090422—152000; accessed Aug. 28, 2009 (3 pages).
“Ethicon Endo-Surgery Studies Presented At DDW Demonstrate Potential of Pure NOTES Surgery With Company's Toolbox,” Jun. 3, 2009 Press Release; URL http://www.inj.com/connect/news/product/20090603—120000; accessed Aug. 28, 2009 (3 pages).
Castellvi et al., “Hybrid Transvaginal NOTES Sleeve Gastrectomy in a Porcine Model Using A Magnetically Anchored Camera and Novel Instrumentation,” Abstract submitted along with Poster at SAGES Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page).
Castellvi et al., “Hybrid Transvaginal NOTES Sleeve Gastrectomy in a Porcine Model Using A Magnetically Anchored Camera and Novel Instrumentation,” Poster submitted along with Abstract at SAGES Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page).
U.S. Appl. No. 12/192,372, filed Aug. 15, 2008.
U.S. Appl. No. 12/203,330, filed Sep. 3, 2008.
U.S. Appl. No. 12/197,749, filed Aug. 25, 2008.
U.S. Appl. No. 12/197,653, filed Aug. 25, 2008.
U.S. Appl. No. 12/202,740, filed Sep. 2, 2008.
U.S. Appl. No. 12/203,458, filed Sep. 3, 2008.
U.S. Appl. No. 12/201,812, filed Aug. 29, 2008.
U.S. Appl. No. 12/207,306, filed Sep. 9, 2008.
U.S. Appl. No. 12/243,334, filed Oct. 1, 2008.
U.S. Appl. No. 12/234,425, filed Sep. 19, 2008.
U.S. Appl. No. 12/060,601, filed Apr. 1, 2008.
U.S. Appl. No. 12/277,975, filed Nov. 25, 2008.
U.S. Appl. No. 12/277,957, filed Nov. 25, 2008.
U.S. Appl. No. 12/332,938, filed Dec. 11, 2008.
U.S. Appl. No. 12/337,340, filed Dec. 17, 2008.
U.S. Appl. No. 12/352,451, filed Jan. 12, 2009.
U.S. Appl. No. 12/359,824, filed Jan. 26, 2009.
U.S. Appl. No. 12/352,375, filed Jan. 12, 2009.
U.S. Appl. No. 12/359,053, filed Jan. 23, 2009.
U.S. Appl. No. 12/362,826, filed Jan. 30, 2009.
U.S. Appl. No. 12/363,137, filed Jan. 30, 2009.
U.S. Appl. No. 12/364,172, filed Feb. 2, 2009.
U.S. Appl. No. 12/364,256, filed Feb. 2, 2009.
U.S. Appl. No. 12/413,479, filed Mar. 27, 2009.
U.S. Appl. No. 12/468,462, filed May 19, 2009.
U.S. Appl. No. 12/607,252, filed Oct. 28, 2009.
U.S. Appl. No. 12/580,400, filed Oct. 16, 2009.
U.S. Appl. No. 12/607,388, filed Oct. 28, 2009.
U.S. Appl. No. 12/612,911, filed Nov. 5, 2009.
U.S. Appl. No. 12/614,143, filed Nov. 6, 2009.
U.S. Appl. No. 12/617,998, filed Nov. 13, 2009.
U.S. Appl. No. 11/986,420, filed Nov. 27, 2007.
U.S. Appl. No. 11/897,676, filed Aug. 31, 2007.
Michael S. Kavic, M.D., “Natural Orifice Translumenal Endoscopic Surgery: “NOTES””, JSLS, vol. 10, pp. 133-134 (2006).
Guido M. Sclabas, M.D., et al., “Endoluminal Methods for Gastrotomy Closure in Natural Orifice TransEnteric Surgery (NOTES),” Surgical Innovation, vol. 13, No. 1, pp. 23-30, Mar. 2006.
Fritscher-Ravens, et al., “Transgastric Gastropexy and Hiatal Hernia Repair for GERD Under EUS Control: a Porcine Model,” Gastrointestinal Endoscopy, vol. 59, No. 1, pp. 89-95, 2004.
Ogando, “Prototype Tools That Go With the Flow,” Design News, 2 pages, Jul. 17, 2006.
Edd, et al., “In Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporation,” IEEE Trans Biomed Eng, vol. 53, pp. 1409-1415, 2006.
Kennedy, et al., “High-Burst-Strength, Feedback-Controlled Bipolar Vessel Sealing,” Surgical Endoscopy, vol. 12, pp. 876-878 (1998).
Collins et al., “Local Gene Therapy of Solid Tumors with GM-CSF and B7-1 Eradicates Both Treated and Distal Tumors,” Cancer Gene Therapy, vol. 13, pp. 1061-1071 (2006).
K. Sumiyama et al., “Transesophageal Mediastinoscopy by Submucosal Endoscopy With Mucosal Flap Safety Value Technique,” Gastrointest Endosc., Apr. 2007, vol. 65(4), pp. 679-683 (Abstract).
K. Sumiyama et al., “Submucosal Endoscopy with Mucosal Flap Safety Valve,” Gastrointest Endosc. Apr. 2007, vol. 65(4) pp. 694-695 (Abstract).
K. Sumiyama et al., “Transgastric Cholecystectomy: Transgastric Accessibility to the Gallbladder Improved with the SEMF Method and a Novel Multibending Therapeutic Endoscope,” Gastrointest Endosc., Jun. 2007, vol. 65(7), pp. 1028-1034 (Abstract).
“Z-Offset Technique Used in the Introduction of Trocar During Laparoscopic Surgery,” M.S. Hershey NOTES Presentation to EES NOTES Development Team, Sep. 27, 2007.
I. Fraser, “An Historical Perspective on Mechanical Aids in Intestinal Anastamosis,” Surg. Gynecol. Obstet. (Oct. 1982), vol. 155, pp. 566-574.
M.E. Ryan et al., “Endoscopic Intervention for Biliary Leaks After Laparoscopic Cholecystectomy: A Multicenter Review,” Gastrointest. Endosc., vol. 47(3), 1998, pp. 261-266.
C. Cope, “Creation of Compression Gastroenterostomy by Means of the Oral, Percutaneous, or Surgical Introduction of Magnets: Feasibility Study in Swine,” J. Vasc Interv Radiol, (1995), vol. 6(4), pp. 539-545.
J.W. Hazey et al., “Natural Orifice Transgastric Endoscopic Peritoneoscopy in Humans: Initial Clinical Trial,” Surg Endosc, (Jan. 2008), vol. 22(1), pp. 16-20.
N. Chopita et al., “Endoscopic Gastroenteric Anastamosis Using Magnets,” Endoscopy, (2005), vol. 37(4), pp. 313-317.
C. Cope et al., “Long Term Patency of Experimental Magnetic Compression Gastroenteric Anastomoses Achieved with Covered Stents,” Gastrointest Endosc, (2001), vol. 53, pp. 780-784.
H. Okajima et al., “Magnet Compression Anastamosis for Bile Duct Stenosis After Duct to Duct Biliary Reconstruction in Living Donor Liver Transplantation,” Liver Transplantation (2005), pp. 473-475.
A. Fritscher-Ravens et al., “Transluminal Endosurgery: Single Lumen Access Anastamotic Device for Flexible Endoscopy,” Gastrointestinal Endosc, (2003), vol. 58(4), pp. 585-591.
G.A. Hallenbeck, M.D. et al., “An Instrument for Colorectal Anastomosis Without Sutrues,” Dis Col Rectum, (1963), vol. 5, pp. 98-101.
T. Hardy, Jr., M.D. et al., “A Biofragmentable Ring for Sutureless Bowel Anastomosis. An Experimental Study,” Dis Col Rectum, (1985), vol. 28, pp. 484-490.
P. O'Neill, M.D. et al., “Nonsuture Intestinal Anastomosis,” Am J. Surg, (1962), vol. 104, pp. 761-767.
C.P. Swain, M.D. et al., “Anastomosis at Flexible Endoscopy: An Experimental Study of Compression Button Gastrojejunostomy,” Gastrointest Endosc, (1991), vol. 37, pp. 628-632.
J.B. Murphy, M.D., “Cholecysto-Intestinal, Gastro-Intestinal, Entero-Intestinal Anastomosis, and Approximation Without Sutures (original research),” Med Rec, (Dec. 10, 1892), vol. 42(24), pp. 665-676.
USGI® EndoSurgical Operating System—g-Prox® Tissue Grasper/Approximation Device; [online] URL: http://www.usgimedical.com/eos/components-gprox.htm—accessed May 30, 2008 (2 pages).
Printout of web page—http://www.vacumed.com/zcom/product/Product.do?compid=27&prodid=852, #51XX Low-Cost Permanent Tubes 2MM ID, Smooth Interior Walls, VacuMed, Ventura, California, Accessed Jul. 24, 2007.
U.S. Appl. No. 11/706,460, filed Feb. 15, 2007.
U.S. Appl. No. 11/706,591, filed Feb. 15, 2007.
U.S. Appl. No. 11/706,685, filed Feb. 15, 2007.
U.S. Appl. No. 11/706,766, filed Feb. 15, 2007.
U.S. Appl. No. 11/706,811, filed Feb. 15, 2007.
U.S. Appl. No. 11/707,831, filed Feb. 16, 2007.
U.S. Appl. No. 11/715,710, filed Mar. 8, 2007.
U.S. Appl. No. 11/744,271, filed May 4, 2007.
U.S. Appl. No. 11/744,279, filed May 4, 2007.
U.S. Appl. No. 11/796,035, filed Apr. 26, 2007.
U.S. Appl. No. 11/796,357, filed Apr. 27, 2007.
U.S. Appl. No. 11/894,358, filed Aug. 21, 2007.
U.S. Appl. No. 11/968,810, filed Jan. 3, 2008.
U.S. Appl. No. 11/981,070, filed Oct. 31, 2007.
U.S. Appl. No. 11/981,078, filed Oct. 31, 2007.
U.S. Appl. No. 11/981,134, filed Oct. 31, 2007.
U.S. Appl. No. 11/986,084, filed Nov. 20, 2007.
U.S. Appl. No. 11/998,370, filed Nov. 29, 2007.
U.S. Appl. No. 12/014,417, filed Jan. 5, 2008.
U.S. Appl. No. 12/019,461, filed Jan. 24, 2008.
U.S. Appl. No. 12/045,318, filed Mar. 10, 2008.
U.S. Appl. No. 12/109,673, filed Apr. 25, 2008.
U.S. Appl. No. 12/109,699, filed Apr. 25, 2008.
U.S. Appl. No. 12/115,916, filed May 6, 2008.
U.S. Appl. No. 12/122,031, filed May 16, 2008.
U.S. Appl. No. 12/129,784, filed May 30, 2008.
U.S. Appl. No. 12/129,880, filed May 30, 2008.
U.S. Appl. No. 12/130,010, filed May 30, 2008.
U.S. Appl. No. 12/130,023, filed May 30, 2008.
U.S. Appl. No. 12/130,224, filed May 30, 2008.
U.S. Appl. No. 12/130,652, filed May 30, 2008.
U.S. Appl. No. 12/133,109, filed Jun. 4, 2008.
U.S. Appl. No. 12/133,953, filed Jun. 5, 2008.
U.S. Appl. No. 12/163,255, filed Jun. 27, 2008.
U.S. Appl. No. 12/169,868, filed Jul. 9, 2008.
U.S. Appl. No. 12/170,862, filed Jul. 10, 2008.
U.S. Appl. No. 12/172,752, filed Jul. 14, 2008.
U.S. Appl. No. 12/172,766, filed Jul. 14, 2008.
U.S. Appl. No. 12/172,782, filed Jul. 14, 2008.
U.S. Appl. No. 11/762,855, filed Jun. 14, 2007.
Written Opinion for PCT/US2008/084311, Jul. 10, 2009 (9 pages).
International Preliminary Report on Patentability for PCT/US2008/084311, May 10, 2010 (9 pages).
OCTO Port Modular Laparoscopy System for Single Incision Access, Jan. 4, 2010; URL http://www.medgadget.com/archives/2010/01/octo—port—modular—laparo...; accessed Jan. 5, 2010 (4 pages).
Hakko Retractors, obtained Aug. 25, 2009 (5 pages).
Zadno et al., “Linear Superelasticity in Cold-Worked NI-TI,” Engineering Aspects of Shape Memory Alloys, pp. 414-419 (1990).
U.S. Appl. No. 12/696,598, filed Jan. 29, 2010.
U.S. Appl. No. 12/696,626, filed Jan. 29, 2010.
U.S. Appl. No. 12/752,701, filed Apr. 1, 2010.
U.S. Appl. No. 13/013,131, filed Jan. 25, 2011.
U.S. Appl. No. 13/013,147, filed Jan. 25, 2011.
U.S. Appl. No. 12/900,132, filed Oct. 7, 2010.
U.S. Appl. No. 12/939,441, filed Nov. 4, 2010.
U.S. Appl. No. 12/902,531, filed Oct. 12, 2010.
U.S. Appl. No. 12/902,550, filed Oct. 12, 2010.
Ethicon, Inc., “Wound Closure Manual: Chapter 3 (The Surgical Needle),” 15 pages, (1994).
How Stuff Works “How Smart Structures Will Work,” http://science.howstuffworks.com/engineering/structural/smart-structure1.htm; accessed online Nov. 1, 2011 (3 pages).
Instant Armor: Science Videos—Science News—ScienCentral; http://www.sciencentral.com/articles./view.php3?article—id=218392121; accessed online Nov. 1, 2011 (2 pages).
Stanway, Smart Fluids: Current and Future Developments. Material Science and Technology, 20, pp. 931-939, 2004; accessed online Nov. 1, 2011 at http://www.dynamics.group.shef.ac.uk/smart/smart.html (7 pages).
Jolly et al., Properties and Applications of Commercial Magnetorheological Fluids. SPIE 5th Annual Int. Symposium on Smart Structures and Materials, 1998 (18 pages).
U.S. Appl. No. 13/036,895, filed Feb. 28, 2011.
U.S. Appl. No. 13/036,908, filed Feb. 28, 2011.
U.S. Appl. No. 13/267,251, filed Oct. 6, 2011.
U.S. Appl. No. 13/325,791, filed Dec. 14, 2011.
U.S. Appl. No. 13/352,495, filed Jan. 18, 2012.
U.S. Appl. No. 13/399,358, filed Feb. 17, 2012.
U.S. Appl. No. 13/420,805, filed Mar. 15, 2012.
U.S. Appl. No. 13/420,818 filed Mar. 15, 2012.
U.S. Appl. No. 13/425,103, filed Mar. 20, 2012.
Rutala et al. “Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008” (available at http://www.cdc.gov/hicpac/Disinfection—Sterilization/13—11sterilizingPractices.html).
Bewlay et al., “Spinning” in ASM Handbook, vol. 14B, Metalworking: Sheet Forming (2006).
Related Publications (1)
Number Date Country
20090131932 A1 May 2009 US