The present invention relates to a bipolar needle type microwave operation device.
Conventionally, a bipolar needle type microwave operation device including an operation electrode including a tubular ground electrode inserted into a biological tissue, a tubular insulator provided in the core of the ground electrode and having an end extended from the end of the ground electrode, and a rod-like center electrode provided in the core of the insulator, having a microwave emission portion at the end thereof extended from the end of the insulator, and inserted into the biological tissue together with the end of the insulator, wherein the center electrode includes a rod-like center body and a center outer layer body on the outer periphery of the center body, wherein the center outer layer body and the ground electrode are made of a metal having a lower electric resistivity than the center body, wherein the center body is made of a metal having a higher hardness than the center outer layer body has been known (Patent document 1).
Patent document 1: JP-A-10-137258
However, in the conventional microwave operation device, the pair of electrodes cannot be closely contacted onto the biological tissue at the same time. Consequently, coagulation and the like (coagulation, stop of bleeding, and cauterization) on the surface of the biological tissue are substantially impossible. In addition, coagulation and the like in the vicinity of the end of the microwave operation device is insufficient when the microwave operation device is inserted into the biological tissue to coagulate its deep portion and do the like.
That is, an object of the present invention is to provide a microwave operation device which reliably and easily enables coagulation and the like on the surface of a biological tissue, and allows sufficient coagulation and the like in the vicinity of the end of the microwave operation device when the microwave operation device is inserted into the biological tissue to coagulate its deep portion and do the like.
In a bipolar needle type microwave operation device of the present invention, at least one pair of rod-like electrodes are parallel to a center axis of the electrodes in their entirety, an insulator being filled between the paired electrodes.
The at least one pair of rod-like electrodes may include at least one pair of rod-like electrodes (at least two rod-like electrodes), and may include two pairs or more of rod-like electrodes (four or more rod-like electrodes). Preferably, the at least one pair of rod-like electrodes include one pair to five pairs of rod-like electrodes. More preferably, the at least one pair of rod-like electrodes include one pair to three pairs of rod-like electrodes. Particularly preferably, the at least one pair of rod-like electrodes include one pair or two pairs of rod-like electrodes (two or four rod-like electrodes).
In the at least one pair of rod-like electrodes, distances between two electrode surfaces crossing a straight line which passes through the center axis and is perpendicular to the center axis and the center axis are not always the same, and the electrode surfaces may be formed on surfaces having the same center axis (concentric axis) (on curved surfaces or planes). That is, the rod-like electrodes may be arranged on the side surfaces of a circular cylinder, an elliptic cylinder, a polygonal cylinder, a regular polygonal cylinder and the like. Each of the electrode surfaces does not include the surface contacted onto the insulator, and is a surface which functions as an electrode, that is, a surface which can come into contact with a biological tissue. In addition, the term “rod-like” may include a shape in which a length in the center axis direction is longer than a length perpendicular to the center axis, and its cross-sectional shape is not particularly limited.
The center axis is the center axis (concentric axis) of the electrodes in their entirety including the at least one pair of rod-like electrodes.
The at least one pair of rod-like electrodes may independently function as electrodes. Among two pairs or more of rod-like electrodes, the paired electrodes having the same polarity may be integrated with each other, and only the electrode surfaces may function independently {see
The bipolar needle type microwave operation device of the present invention may include, in addition to the at least one pair of rod-like electrodes, at least one pair of sectionally split electrodes (at least two sectionally split electrodes) arranged along the same center axis.
In such one pair of sectionally split electrodes, electrodes formed by sectionally splitting a circular cylindrical shape, a regular polygonal cylindrical shape, an elliptic cylindrical shape, a spherical shape, or an ellipsoidal body shape may be arranged along the center axis.
The end of the bipolar needle type microwave operation device of the present invention may be planar, spherical, sharp, and rounded although it is sharp.
The insulator is filled between the paired electrodes, and is not limited as long as it is an electric insulator. Examples of the preferred electric insulator include engineering plastics {polyetheretherketone (PEEK), polyethersulfone (PES), polyamide (PA), polyamide imide (PAI), polyimide (PI), polyphenylene sulfide (PPS), polybenzimidazole (PBI) and the like}, fluororesins {polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, a perfluoroalkoxy fluororesin, a tetrafluoroethylene-hexafluoropropylene copolymer, an ethylene-tetrafluoroethylene copolymer, an ethylene-chlorotrifluoroethylene copolymer and the like}, and ceramics {alumina (Al2O3), zirconia (ZrO2), silicon carbide (SiC), silicon nitride (Si3N4) and the like}.
The at least one pair of rod-like electrodes will be described more specifically with reference to the drawings.
Referring to the following drawings, each of rod-like electrodes (100s) and each of rod-like electrodes (200s) are paired, and each of sectionally split electrodes (800s) and each of sectionally split electrodes (900s) are paired.
a) to 2(d) are cross-sectional views of electrode portions of the bipolar needle type microwave operation device of the present invention in which one pair of rod-like electrodes are arranged, the cross sections thereof perpendicular to the center axis being schematically shown.
a) is a cross-sectional view which conceptually shows an example in which one pair of rod-like electrodes (two rod-like electrodes; 101, 201) sandwich a rod-like insulator (400) therebetween to form a circular cylindrical shape.
a) is a cross-sectional view which conceptually shows an example in which one pair of rod-like electrodes (two rod-like electrodes; 101, 201) sandwich a rod-like insulator (400) therebetween to form a circular cylindrical shape. In
b) is a cross-sectional view which conceptually shows an example in which a triangular cylindrical shape is formed as in
c) is a cross-sectional view which conceptually shows an example in which a regular square cylindrical shape is formed as in
a) to 3(e) are cross-sectional views of electrode portions of the bipolar needle type microwave operation device of the present invention in which two pairs of rod-like electrodes are arranged, the cross sections thereof perpendicular to the center axis being schematically shown.
a) is a cross-sectional view which conceptually shows an example in which two pairs of rod-like electrodes (four rod-like electrodes; 101, 102, 201, 202) sandwich a rod-like insulator (400) therebetween to form a circular cylindrical shape.
c) is a cross-sectional view which conceptually shows an example in which a regular square cylindrical shape is formed as in
a) to 4(d) are cross-sectional views of electrode portions of the bipolar needle type microwave operation device of the present invention in which three pairs of rod-like electrodes are arranged, the cross sections thereof perpendicular to the center axis being schematically shown.
a) is a cross-sectional view which conceptually shows an example in which three pairs of rod-like electrodes (six rod-like electrodes; 101, 102, 103, 201, 202, 203) sandwich a rod-like insulator (400) therebetween to form a circular cylindrical shape.
a) to 5(c) are cross-sectional views of electrode portions of the bipolar needle type microwave operation device of the present invention in which four pairs of rod-like electrodes are arranged, the cross sections thereof perpendicular to the center axis being schematically shown.
a) is a cross-sectional view which conceptually shows an example in which four pairs of rod-like electrodes (eight rod-like electrodes; 101, 102, 103, 104, 201, 202, 203, 204) sandwich a rod-like insulator (400) therebetween to form a circular cylindrical shape.
Next, the at least one pair of sectionally split electrodes which may be added to the at least one pair of rod-like electrodes will be described more specifically with reference to the drawings.
a) to 7(d) are perspective views schematically showing one pair of sectionally split electrodes.
a) is a perspective view which conceptually shows an example in which one pair of hexagonal cylindrical-shaped sectionally split electrodes (two electrodes; 801, 901) sandwich a hexagonal cylindrical-shaped sectionally split insulator (400) therebetween to form a hexagonal cylindrical shape.
a) to 9(c) are perspective views of electrode portions of the bipolar needle type microwave operation device of the present invention which includes the at least one pair of sectionally split electrodes in addition to the at least one pair of rod-like electrodes.
a) is a perspective view which conceptually shows an example in which one pair of sectionally split electrodes (two electrodes; 801, 901) formed by sectionally splitting an ellipsoidal body shape (spindle shape) sandwich an insulator (400) therebetween along the same center axis, and one pair of rod-like electrodes (two electrodes; 101, 201) sandwich the insulator (400) therebetween. That is,
b) is a perspective view which conceptually shows an example in which one pair of sectionally split electrodes (two electrodes; 801, 901) formed by sectionally splitting an ellipsoidal body shape (spindle shape) sandwich the insulator (400) therebetween along the same center axis, and two pairs of rod-like electrodes (four electrodes; 101, 102, 201, 202) sandwich the insulator (400) therebetween. That is,
c) is a perspective view which conceptually shows an example in which one pair of sectionally split electrodes (two electrodes; 801, 901) formed by sectionally splitting a hexagonal cylindrical shape sandwich the insulator (400) therebetween along the same center axis, and three pairs of rod-like electrodes (six electrodes; 101, 102, 103, 201, 202, 203) sandwich the insulator (400) therebetween. That is,
The at least one pair of rod-like electrodes may be made of metals or ceramics as long as they function as electrodes, and may be surface protected (metal plated or coated with the fluororesin and the like) (this is ditto for the at least one pair of sectionally split electrodes). In addition, preferably, among the at least one pair of rod-like electrodes, the length of the electrode connected to the center electric conductor of the coaxial cable is natural number times (nλ) a wavelength (λ) of a microwave passing through the biological tissue or is a fraction of a natural number (λ/n) thereof (n is a natural number) (this is ditto for the at least one pair of sectionally split electrodes). The length of the electrode connected to the external electric conductor of the coaxial cable is not particularly limited. In addition, the electrode (201) in
Preferably, the at least one pair of rod-like electrodes include at least two pairs of rod-like electrodes, the at least two pairs of rod-like electrodes are alternate so that the rod-like electrodes having the same polarity are not adjacent to each other. Preferably, the ends of the paired rod-like electrodes having the same polarity are bridged with the same material as the electrodes. That is, the ends of the electrodes including the sectionally split electrodes are bridged since they are already covered with the electrodes. On the other hand, as shown in
A perpendicular distance between each of the rod-like electrodes and the center axis is preferably within 2 mm, more preferably, within 1.3 mm, particularly preferably, within 1 mm, and most preferably, within 0.9 mm. That is, for instance, the circle of the cross-section of the electrodes in
The bipolar needle type microwave operation device of the present invention which is inserted into an endoscope or a catheter is preferable as an operation device.
The bipolar needle type microwave operation device of the present invention is preferably coated in its entirety with the fluororesin. The bipolar needle type microwave operation device of the present invention which is coated with the fluororesin is unlikely to be dirty, can be easily cleaned even when it becomes dirty, is hygienic, and can prevent heavy metal melting. Examples of the fluororesin include known fluororesins {polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, a perfluoroalkoxy fluororesin, a tetrafluoroethylene-hexafluoropropylene copolymer, an ethylene-tetrafluoroethylene copolymer, and an ethylene-chlorotrifluoroethylene copolymer).
In the bipolar needle type microwave operation device of the present invention, the microwave can be applied between the at least one pair of rod-like electrodes (and between the at least one pair of sectionally split electrodes when the sectionally split electrodes are included). By applying the microwave, the biological tissue around the at least one pair of rod-like electrodes (and the biological tissue around the at least one pair of sectionally split electrodes when these are included) can be heated. Stop of bleeding, coagulation and the like can thus be achieved.
The microwave is preferably an electric wave having a frequency of 13 MHz to 25 GHz, more preferably, an electric wave having a frequency of 900 MHz to 6 GHz, particularly preferably, an electric wave having a frequency of 2.45 GHz.
A microwave operation apparatus of the present invention includes the bipolar needle type microwave operation device, a microwave transmitter, and the coaxial cable connecting the bipolar needle type microwave operation device and the microwave transmitter.
The bipolar needle type microwave operation device and the microwave transmitter are connected by the coaxial cable. The microwave generated by the microwave transmitter is transmitted to the at least one pair of electrodes via the coaxial cable.
The microwave transmitter is not limited as long as it can transmit the above frequencies, and its output is preferably approximately 10 W to 200 W.
The microwave operation device of the present invention reliably and easily enables coagulation and the like on the surface of the biological tissue, and allows sufficient coagulation and the like in the vicinity of the end of the microwave operation device when the microwave operation device is inserted into the biological tissue to coagulate its deep portion and do the like.
In addition, the bipolar needle type microwave operation device of the present invention which can be reduced in diameter is applicable to an endoscopic operation and a celioscopic operation. The bipolar needle type microwave operation device of the present invention is also applicable to a typical direct vision operation (surgical operation, brain surgery, otological surgery and the like).
Further, the bipolar needle type microwave operation device of the present invention enables stop of bleeding and coagulation of a duct tissue (a blood vessel, a bile duct and the like), and stop of bleeding, coagulation and the like of a cancer tissue.
The microwave operation apparatus of the present invention includes the bipolar needle type microwave operation device, the microwave transmitter, and the coaxial cable. Therefore, the microwave operation apparatus of the present invention reliably and easily enables coagulation and the like on the surface of the biological tissue, and allows sufficient coagulation and the like in the vicinity of the end of the microwave operation device when the microwave operation device is inserted into the biological tissue to coagulate its deep portion and do the like.
In addition, the microwave operation apparatus of the present invention is applicable to an endoscopic operation and a celioscopic operation. The microwave operation apparatus of the present invention is also applicable to a typical direct vision operation (surgical operation, brain surgery, otological surgery and the like).
a) to 1(d) are cross-sectional views of electrode portions of an embodiment of a bipolar needle type microwave operation device of the present invention {an example in which one pair of rod-like electrodes sandwich a rod-like insulator therebetween to form a circular cylindrical shape (a), an elliptic cylindrical shape (b), a regular square cylindrical shape (c), or a regular hexagonal cylindrical shape (d)}, the cross sections thereof perpendicular to a center axis being schematically shown.
a) to 2(d) are cross-sectional views of electrode portions of an embodiment of a bipolar needle type microwave operation device of the present invention {an example in which one pair of rod-like electrodes sandwich a rod-like insulator therebetween to form a circular cylindrical shape (a), a triangular cylindrical shape (b), a regular square cylindrical shape (c), or an elliptic cylindrical shape (d)}, the cross sections thereof perpendicular to a center axis being schematically shown.
a) to 3(e) are cross-sectional views of electrode portions of an embodiment of a bipolar needle type microwave operation device of the present invention {an example in which two pairs of rod-like electrodes sandwich a rod-like insulator therebetween to form a circular cylindrical shape (a), a regular square cylindrical shape (c), a regular octagonal cylindrical shape (d), or an elliptic cylindrical shape (e), and an example in which two pairs of electrodes include three rod-like electrodes so that these sandwich the rod-like insulator therebetween to form a circular cylindrical shape (b)}, the cross sections thereof perpendicular to a center axis being schematically shown.
a) to 4(d) are cross-sectional views of electrode portions of an embodiment of a bipolar needle type microwave operation device of the present invention {an example in which three pairs of rod-like electrodes sandwich a rod-like insulator to form a circular cylindrical shape (a) or a regular hexagonal cylindrical shape (d), and an example in which three pairs of electrodes include three rod-like electrodes and a polygonal cylindrical electrode whose cross section perpendicular to a center axis is three-forked so that these sandwich the rod-like insulator therebetween to form a circular cylindrical shape (b) or a regular hexagonal cylindrical shape (c)}, the cross sections thereof perpendicular to the center axis being schematically shown.
a) to 5(c) are cross-sectional views of electrode portions of an embodiment of a bipolar needle type microwave operation device of the present invention {an example in which four pairs of rod-like electrodes sandwich a rod-like insulator to form a circular cylindrical shape (a), and an example in which four pairs of electrodes include four rod-like electrodes and a polygonal cylindrical electrode whose cross section perpendicular to a center axis is cross-shaped so that these sandwich the rod-like insulator therebetween to form a circular cylindrical shape (b) or a regular octagonal cylindrical shape (c)}, the cross sections thereof perpendicular to the center axis being schematically shown.
a) to 7(d) are perspective views which schematically show one pair of sectionally split electrodes which can be included in a bipolar needle type microwave operation device of the present invention.
a) to 9(c) are perspective views which schematically show electrode portions of an embodiment of a bipolar needle type microwave operation device of the present invention {an example in which in addition to at least one pair of rod-like electrodes, at least one pair of sectionally split electrodes are included}.
Hereinafter, the bipolar needle type microwave operation device of the present invention will be described in more detail with reference to the drawings. Unless otherwise specified, the first described matter is sharably applicable to the description of the drawings thereafter.
In the bipolar needle type microwave operation device of the present invention shown in
a) shows electrode portions of the bipolar needle type microwave operation device shown in
Two pairs of rod-like electrodes are connected to a center electric conductor (500) and an external electric conductor (600) of a coaxial cable (the coaxial cable is not shown in
The end of the bipolar needle type microwave operation device is planar in
In the bipolar needle type microwave operation device shown in
a) shows electrode portions of the bipolar needle type microwave operation device shown in
One pair of rod-like electrodes is connected to a center electric conductor (500) and an external electric conductor (600) of a coaxial cable. The microwave is applied between one pair of rod-like electrodes (101, 201) via the coaxial cable to heat a biological tissue around between one pair of rod-like electrodes (around the side surfaces and ends of the electrodes). Stop of bleeding, coagulation and the like can thus be achieved.
The end of the bipolar needle type microwave operation device is sharp in
In the bipolar needle type microwave operation device of the present invention shown in
b) shows electrode portions of the bipolar needle type microwave operation device shown in
Two pairs of rod-like electrodes are connected to a center electric conductor (500) and an external electric conductor (600) of the coaxial cable. The microwave is applied between two pairs of rod-like electrodes (101, 102, 201-202) via the coaxial cable to heat a biological tissue around between two pairs of rod-like electrodes (around the side surfaces and ends of the electrodes). Stop of bleeding, coagulation and the like can thus be achieved.
The end of the bipolar needle type microwave operation device is sharp in
In the bipolar needle type microwave operation device shown in
b) shows electrode portions of the bipolar needle type microwave operation device shown in
Two pairs of rod-like electrodes are connected to a center electric conductor (500) and an external electric conductor (600) of the coaxial cable. The microwave is applied between two pairs of rod-like electrodes (101-102, 201-202) via the coaxial cable to heat a biological tissue around between two pairs of rod-like electrodes (around the side surfaces and ends of the electrodes). Stop of bleeding, coagulation and the like can thus be achieved.
The end of the bipolar needle type microwave operation device is spherical in
Number | Date | Country | Kind |
---|---|---|---|
2011-151290 | Jul 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/062993 | 11/7/2012 | WO | 00 | 12/26/2013 |