As the solar photovoltaic industry matures, there is a trend toward higher power converter DC input voltages and higher AC output voltages. Higher voltage operation can provide higher energy production efficiencies and reduced costs. One barrier to higher voltage operation is the maximum system voltage rating of solar photovoltaic modules with respect to earth ground. By using a grounded bipolar photovoltaic array configuration, the operational voltage of the power converter can be effectively doubled, compared to using a monopolar array. For bipolar photovoltaic arrays to meet the requirements of the National Electrical Code, the neutral point or center-tap of the bipolar array must be solidly grounded to earth or must have a system in place that provides equivalent protection. In larger photovoltaic systems, power converters are DC to 3-phase, utility grid-interactive types. When sourced from bipolar photovoltaic arrays, these power converters could operate more efficiently if the neutral point of the bipolar array could be safely lifted from earth ground while power is being converted. With the ground lifted, higher AC output voltages could be supported for a given DC input.
The invention is an apparatus and method for safely disconnecting a bipolar photovoltaic array from earth ground under normal static operating conditions. The invention senses the voltage to earth on all three terminals of a bipolar photovoltaic array and uses a set of operable contacts to selectively couple or uncouple the DC neutral point of the array (the center tap) to earth ground. When all three terminals of the bipolar array are within the rated voltage capability of the photovoltaic array, the DC neutral point is allowed to float.
When the array is not producing power, contacts 9B remain closed. Contacts 9B are normally closed types or latched types. Load 30 will typically be a DC-to-AC 3-phase, utility grid-interactive power converter. Also, in practice, control circuit 10 will be an integral part of or will communicate with the greater power converter control circuit. When there is sufficient array power, the power converter will start with contacts 9B closed. At startup, contacts 9B will be opened when the voltages of sources 21 and 22 are loaded down and transition from open circuit potentials to below some preprogrammed voltage or below some voltage derived from other real time parameters like power converter AC line voltage or power level. At shutdown, when power production ceases, contacts 9B will be closed.
If a “hard” low impedance ground fault 13 is in place and contacts 9B are open, source 22 will be shorted through reactor 4 and source 22 will be held at earth potential. If reactor 4 were not in the circuit and with fault 13 in place and contacts 9B open, the potential at the positive terminal of source 21 would be twice the potential under normal (non-fault) operating conditions, with respect to earth ground. Reactor 4 then prevents an overvoltage photovoltaic array fault during the time it takes to close contacts 9B or depending on the specific apparatus design variant, provides redundancy for contacts 9B where ground faults are concerned.
The invention as illustrated in
Current sensor 5 serves two purposes, sensing a ground fault current and preventing contacts 9B from opening under load.
An alternate embodiment includes a second set of contacts in series with reactor 4 and under control of control circuit 10.
An alternate embodiment with limited functionality does not include electromagnetic contactor 9 or drive signal 19.