Claims
- 1. A bipolar separator for electrochemical cells, said separator constructed and arranged for distributing electrical current to an anode which is bonded to the surface of a semi-permeable membrane or diaphragm, said separator comprising a rigid, molded aggregate of an electrically conductive powdered material and a chemically resistant resin with a vertical array of electrically conductive valve metal ribs partially embedded in the molded aggregate at least on the anode side and having the entire surface of the aggregate which is exposed to the anolyte, coated with a layer of a chemically resistant and electrically nonconductive resin, the said ribs being arranged to form a grid to distribute electric current to the anode at a uniformly distributed multiplicity of points over the entire anode surface.
- 2. The bipolar separator of claim 1 wherein the resin is a two-component mixture of an epoxy resin and an aromatic amine hardener.
- 3. The bipolar separator of claim 1 wherein the powder of electrically conductive material is graphite powder.
- 4. The bipolar separator of claim 1 wherein the electrically conductive valve metal ribs are titanium rods coated with a layer of a non-passivatable material.
- 5. The bipolar separator of claim 1 wherein the electrically conductive valve metal ribs are coated with non-passivatable material which is at least one member of the group consisting of platinum, rhodium, ruthenium, palladium, osmium and iridium and oxides thereof.
- 6. The bipolar separator of claim 1 wherein the molded separator is provided over both its major surfaces with a recessed central zone and a substantially flat peripheral zone, at least four holes within said flat peripheral zone, said four holes being hydraulically connected in pairs respectively to each of the recessed central zones on each of the major surfaces of the separator, projections within said recessed central zone on the cathode side surface of the separator, said projections constituting the means for establishing the electrical contact between the bipolar separator and the cathode of one cell, an array of valve metal ribs, partially embedded in the electrically conductive aggregate, within said recessed central zone on the anode side surface of the separator, said ribs constituting means for establishing the electrical contact between the bipolar separator and the anode of the adjacent cell.
- 7. The bipolar separator of claim 6 wherein the entire surface of the electrically conductive aggregate exposed to contact with the electrolyte, with the exception of the areas for the electrical contact with the electrodes of the cell, are coated with a layer of electrically insulating resin and the areas of electrical contact with the electrodes of the cell are coated with a layer of a non-passivatable material comprising one member of the group consisting of Pt, Rh, Ru, Pd, Os, Ir and oxides thereof.
- 8. In an electrochemical cell with a plurality of uni cells in electrical series, each uni cell containing a porous anode and a porous cathode respectively bonded onto the opposite surfaces of an ion exchange membrane and wherein individual unit cells are separated by a bipolar separator which conducts electric current from the anode of one unit cell to the cathode of the adjacent unit cell, the improvement comprising using the separator of claim 1 as the bipolar separator.
- 9. The cell of claim 8 provided with a foraminous, electrically conductive, fine mesh element coated with a non-passivating material is in electrical contact with the ribs of the separator and the anode.
- 10. The cell of claim 8 wherein the resin is a two-compoenent mixture of an epoxy resin and an aromatic amine hardener.
- 11. The cell of claim 8 wherein the powder of electrically conductive material is graphite powder.
- 12. The cell of claim 8 wherein the ribs are titanium rods coated with a layer of a non-passivatable material.
- 13. The cell of claim 8 wherein the ribs are coated with at least one member of the group consisting of platinum, rhodium, ruthenium, palladium, osmium and iridium and oxides thereof.
- 14. The cell of claim 8 wherein the molded separator is provided over both its major surfaces with a recessed central zone and a substantially flat peripheral zone, at least four holes within said flat peripheral zone, said four holes being hydraulically connected in pairs respectively to each of the recessed central zones on each of the major surfaces of the separator, projections within said recessed central zone on the cathode side surface of the separator, said projections constituting the means for establishing the electrical contact between the bipolar separator and the cathode of one unit cell, an array of valve metal ribs, partially embedded in electrically conductive aggregate within said recessed central zone on the anode side surface of the separator, said ribs constituting means for establishing the electrical contact between the bipolar separator and the anode of the adjacent cell.
- 15. The cell of claim 8 wherein the entire surface of the electrically conductive aggregate exposed to contact with the electrolyte, with the exception of the areas for the electrical contact with the electrodes of the cell, are coated with a layer of electrically insulating resin and the areas of electrical contact with the electrodes of the cell are coated with a layer of a non-passivatable material comprising one member of the group consisting of Pt, Rh, Ru, Pd, Os, Ir and oxides thereof.
Priority Claims (1)
Number |
Date |
Country |
Kind |
25.510 A/78 |
Jul 1978 |
ITX |
|
PRIOR APPLICATION
This application is a continuation-in-part of our copending, commonly assigned U.S. patent application Ser. No. 951,984 filed Oct. 16, 1978 now abandoned.
US Referenced Citations (7)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
951984 |
Oct 1978 |
|