The present application is a U.S. National Stage Application under 35 U.S.C. § 371(a) of PCT/CN2013/080953 filed Aug. 7, 2013, the entire contents of which are incorporated by reference herein.
1. Background of Related Art
The present disclosure relates to forceps used for open surgical procedures. More particularly, the present disclosure relates to a bipolar forceps for treating tissue that is capable of sealing and cutting tissue.
2. Technical Field
A hemostat or forceps is a simple plier-like tool which uses mechanical action between its jaws to constrict vessels and is commonly used in open surgical procedures to grasp, dissect and/or clamp tissue. Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue.
Certain surgical procedures require sealing and cutting blood vessels or vascular tissue. Several journal articles have disclosed methods for sealing small blood vessels using electrosurgery. An article entitled Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator, J. Neurosurg., Volume 75, Jul. 1991, describes a bipolar coagulator which is used to seal small blood vessels. The article states that it is not possible to safely coagulate arteries with a diameter larger than 2 to 2.5 mm. A second article is entitled Automatically Controlled Bipolar Electrocoagulation—“COA-COMP”, Neurosurg. Rev. (1984), pp. 187-190, describes a method for terminating electrosurgical power to the vessel so that charring of the vessel walls can be avoided.
By utilizing an electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate, reduce or slow bleeding and/or seal vessels by controlling the intensity, frequency and duration of the electrosurgical energy applied to the tissue. Generally, the electrical configuration of electrosurgical forceps can be categorized in two classifications: 1) monopolar electrosurgical forceps; and 2) bipolar electrosurgical forceps.
Monopolar forceps utilize one active electrode associated with the clamping end effector and a remote patient return electrode or pad which is typically attached externally to the patient. When the electrosurgical energy is applied, the energy travels from the active electrode, to the surgical site, through the patient and to the return electrode.
Bipolar electrosurgical forceps utilize two generally opposing electrodes which are disposed on the inner opposing surfaces of the end effectors and which are both electrically coupled to an electrosurgical generator. Each electrode is charged to a different electric potential. Since tissue is a conductor of electrical energy, when the effectors are utilized to grasp tissue therebetween, the electrical energy can be selectively transferred through the tissue.
The present disclosure relates to forceps used for open surgical procedures. More particularly, the present disclosure relates to a bipolar forceps for treating tissue that is capable of sealing and cutting tissue.
As is traditional, the term “distal” refers herein to an end of the apparatus that is farther from an operator, and the term “proximal” refers herein to the end of the electrosurgical forceps that is closer to the operator.
The bipolar forceps includes a mechanical forceps including first and second shafts. A jaw member extends from a distal end of each shaft. A handle is disposed at a proximal end of each shaft for effecting movement of the jaw members relative to one another about a pivot from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue. A disposable housing is configured to releasably couple to one or both of the shafts. An electrode assembly is associated with the disposable housing and has a first electrode releasably coupleable to the jaw member of the first shaft and a second electrode releasably coupleable to the jaw member of the second shaft. Each electrode is adapted to connect to a source of electrosurgical energy to allow selective conduction of electrosurgical energy through tissue. One or both of the electrodes includes a knife channel defined along its length. The knife channel is configured to receive a knife blade therethrough to cut tissue grasped between the jaw members. An actuation mechanism is at least partially disposed within the housing and configured to selectively advance the knife blade through the knife channel to cut tissue.
Additionally or alternatively, the bipolar forceps may also include a knife lockout mechanism configured to prohibit advancement of the knife blade into the knife channel when the jaw members are in the first position.
Additionally or alternatively, the knife lockout mechanism may move from a first position wherein the knife lockout mechanism engages the actuation mechanism when the jaw members are in the first position to a second position wherein the knife lockout mechanism disengages the actuation mechanism when the jaw members are in the second position to permit selective advancement of the knife blade through the knife channel.
Additionally or alternatively, at least one of the shafts may be configured to engage the knife lockout mechanism upon movement of the jaw members to the second position and move the knife lockout mechanism out of engagement with the actuation mechanism to permit advancement of the knife blade through the knife channel.
Additionally or alternatively, the bipolar forceps may also include at least one depressible button supported by the housing configured to selectively deliver electrosurgical energy to the electrodes.
Additionally or alternatively, the pivot may define a longitudinal slot therethrough and the knife blade may be configured to move within the longitudinal slot upon translation thereof.
Additionally or alternatively, the bipolar forceps may also include at least one handle member extending from the housing. The at least one handle member may be operably coupled to the actuation mechanism and configured to effect advancement of the knife blade through the knife channel.
Additionally or alternatively, each of the electrodes may include an electrically conductive sealing surface and an insulating substrate coupled thereto.
Additionally or alternatively, each of the electrodes may include at least one mechanical interface configured to complement a corresponding mechanical interface on one of the jaw members to releasably couple the electrode to the jaw member.
Additionally or alternatively, the actuation mechanism may include a biasing member configured to bias the actuation mechanism to an unactuated position.
Additionally or alternatively, the bipolar forceps may also include a knife guide supported in the housing and having a longitudinal slot defined therethrough that receives the knife blade therein to align the knife blade with the knife channel.
According to another aspect of the present disclosure, a bipolar forceps is provided. The bipolar forceps includes a mechanical forceps including first and second shafts each having a jaw member extending from its distal end. A handle is disposed at a proximal end of each shaft for effecting movement of the jaw members relative to one another about a pivot from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue. A disposable housing has opposing halves configured to releasably couple to each other to at least partially encompass one or both of the shafts. An electrode assembly is associated with the disposable housing and has a first electrode releasably coupleable to the jaw member of the first shaft and a second electrode releasably coupleable to the jaw member of the second shaft. Each electrode is adapted to connect to a source of electrosurgical energy to allow selective conduction of electrosurgical energy through tissue held therebetween. At least one of the electrodes includes a knife channel defined along a length thereof, the knife channel configured to receive a knife blade therethrough to cut tissue grasped between the jaw members. An actuation mechanism is at least partially disposed within the housing and is configured to selectively advance the knife blade through the knife channel to cut tissue. A knife lockout mechanism is configured to move from a first position wherein the knife lockout mechanism engages the actuation mechanism to prohibit advancement of the knife blade through the knife channel when the jaw members are in the first position to a second position wherein the knife lockout mechanism disengages the actuation mechanism when the jaw members are in the second position to permit advancement of the knife blade through the knife channel.
Additionally or alternatively, at least one of the shafts may be configured to engage the knife lockout mechanism upon movement of the jaw members to the second position and move the knife lockout mechanism out of engagement with the actuation mechanism and permit advancement of the knife blade through the knife channel.
Additionally or alternatively, the pivot may define a longitudinal slot therethrough and the knife blade may be configured to advance through the longitudinal slot upon translation thereof.
Additionally or alternatively, the bipolar forceps may also include a knife guide supported in the housing and having a longitudinal slot defined therethrough that receives the knife blade therein to align the knife blade with the knife channel.
Additionally or alternatively, the bipolar forceps may also include at least one handle member configured to effect advancement of the knife blade through the knife channel. The at least one handle member may extend from the housing and may be operably coupled to the actuation mechanism.
According to another aspect of the present disclosure, a bipolar forceps is provided. The bipolar forceps includes a mechanical forceps including first and second shafts each having a jaw member extending from its distal end. A handle is disposed at a proximal end of each shaft for effecting movement of the jaw members relative to one another about a pivot from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween. A disposable housing is configured to be releasably coupled to at least one of the shafts. An electrode assembly is configured to releasably couple to the jaw members and is adapted to connect to a source of electrosurgical energy to allow selective conduction of electrosurgical energy through tissue held between the jaw members. At least one of the jaw members includes a knife channel defined along its length. The knife channel is configured to receive a knife blade therethrough to cut tissue grasped between the jaw members. A knife guide is supported in the housing and has a longitudinal slot defined therethrough that receives the knife blade therein to align the knife blade with the knife channel. An actuation mechanism is at least partially disposed within the housing and is configured to selectively advance the knife blade through the knife channel to cut tissue. At least one handle member extends from the housing. The at least one handle member is operably coupled to the actuation mechanism and is configured to effect advancement of the knife blade through the knife channel. A knife lockout mechanism is configured to be engaged by at least one of the shaft members and move the knife lockout mechanism from a first position wherein the knife lockout mechanism engages the actuation mechanism to prohibit advancement of the knife blade into the knife channel when the jaw members are in the first position to a second position wherein the knife lockout mechanism disengages the actuation mechanism when the jaw members are in the second position to permit selective advancement of the knife blade through the knife channel.
Additionally or alternatively, the knife guide may extend through a longitudinal slot defined through the pivot.
Additionally or alternatively, the at least one handle member may be moveable from a first position wherein the knife blade is disposed within the housing to a second position wherein the knife blade is advanced through the knife channel.
Additionally or alternatively, the actuating mechanism may include a biasing member configured to bias the at least one movable handle from the second position to the first position.
Various embodiments of the subject instrument are described herein with reference to the drawings wherein:
Referring initially to
Shaft members 12 and 14 are affixed to one another about a pivot 25 such that movement of shaft members 12, 14, imparts movement of the jaw members 42, 44 from a first configuration (
Each shaft member 12 and 14 also includes a ratchet portion 32 and 34, respectively. Each ratchet 32, 34 extends from the proximal end portion 13, 15 of its respective shaft member 12, 14 towards the other ratchet in a generally vertically aligned manner such that the inner facing surfaces of each ratchet 32 and 34 abut one another when the shaft members 12, 14 are approximated. Each ratchet 32 and 34 includes a plurality of flanges 31 and 33 (
Referring to
As shown in
Referring now to
Substantially as described above with respect to electrode 120, electrode 110 includes an electrically conductive sealing surface 116 configured to conduct electrosurgical energy therethrough and an electrically insulative substrate 111 attached thereto, as shown in
Referring to
To electrically control the end effector 24, the housing 70 supports a pair of depressible activation buttons 50a, 50b that are operable by the user to actuate corresponding switches 60a, 60b, respectively, disposed within housing 70. Although not explicitly shown, switches 60a, 60b are electrically interconnected with wires 61, 62, respectively, and serve to initiate and terminate the delivery of electrosurgical energy from a suitable energy source to the end effector 24 to effect a tissue seal.
Once a tissue seal is established, the knife blade 85 may be advanced through the knife channel 58 to transect the sealed tissue, as detailed below. However, in some embodiments, knife blade 85 may be advanced through the knife channel 58 before, during, or after tissue sealing. In some embodiments, a knife lockout mechanism 80 is provided to prevent extension of the knife blade 85 into the knife channel 58 when the jaw members 42, 44 are in the open configuration, thus preventing accidental or premature transection of tissue, as detailed below.
With reference to
A biasing member 95 (e.g., torsion spring) is disposed coaxially about at least a portion of the shaft member 47 between the first link 92 and handle member 45a. The biasing member 95 is operably coupled at one end to a portion of the first link 92 and at the other end to a suitable mechanical interface within the housing 70 that braces or stabilizes biasing member 95 during use of the knife actuation mechanism 90. The biasing member 95 serves to bias the trigger 45 such that subsequent to actuation of the knife blade 85 through the knife channel 58 (
With reference to
A knife guide 86 is supported within the housing 70 between the end effector 24 and the knife actuation mechanism 90 and extends through passageway 27. The longitudinal slot 87 of the knife guide 86 provides lateral support to the knife blade 85 and constrains side-to-side lateral motion of the knife blade 85. Thus, the distal knife guide 86 serves to urge the knife blade 85 into a central position relative to end effector 24, thereby ensuring proper alignment of the knife blade 85 as the knife blade 85 enters the knife channel 58 (
In some embodiments, the forceps 10 includes a knife blade lockout mechanism 80 supported within the housing 70 and that serves to prevent advancement of the knife blade 85 into the knife channel 85 when the jaw members 42, 44 are in the open configuration (
The tissue seal thickness and tissue seal effectiveness may be influenced by the pressure applied to tissue between jaw members 44, 42 and the gap distance between the opposing electrodes 110 and 120 (
In some embodiments, the performance of forceps 10 may be tested using a virtual tissue vessel. More specifically, the user may place a virtual tissue vessel between sealing surfaces 116, 126 and apply a clamping force to the vessel. The virtual tissue vessel may be, for example, any suitable plastic having impedance. The user may seal the virtual tissue vessel using electrosurgical energy from a suitable electrosurgical generator, e.g., LIGASURE® Vessel Sealing Generator and the ForceTriad® Generator sold by Covidien. The user may also actuate the handle members 45a, 45b to advance the knife blade 85 through the knife channel 58 to cut the sealed virtual tissue vessel. In this scenario, the electrosurgical generator may be configured to automatically run a test procedure that serves to sense the applied clamping force, the gap distance between the opposing electrodes 110, 120, and/or the impedance of the virtual tissue vessel before, during, or after sealing. From this sensed information, the electrosurgical generator may serve to verify that the forceps 10 is in proper working condition (e.g., proper clamping force, gap distance, etc.) following assembly of the electrode assembly 21 to the mechanical forceps 20 and prior to use of the assembled forceps 10 in a vessel sealing procedure.
Referring now to
The jaw members 42, 44 may be moved from the open configuration of
Upon movement of the safety link 81 out of engagement with the pivot pin 94a, handle members 45a, 45b may be selectively moved from the unactuated configuration of
In some embodiments, the knife actuation mechanism 90 may be positioned relative to shaft member 14 different than the depiction of knife actuation mechanism 90 in
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as examples of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Although the foregoing disclosure has been described in some detail by way of illustration and example, for purposes of clarity or understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2013/080953 | 8/7/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/017994 | 2/12/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
D249549 | Pike | Sep 1978 | S |
D263020 | Rau, III | Feb 1982 | S |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
D298353 | Manno | Nov 1988 | S |
D299413 | DeCarolis | Jan 1989 | S |
D343453 | Noda | Jan 1994 | S |
D348930 | Olson | Jul 1994 | S |
D349341 | Lichtman et al. | Aug 1994 | S |
D354564 | Medema | Jan 1995 | S |
D358887 | Feinberg | May 1995 | S |
5499992 | Meade | Mar 1996 | A |
D384413 | Zlock et al. | Sep 1997 | S |
H1745 | Paraschac | Apr 1998 | H |
5800449 | Wales | Sep 1998 | A |
D402028 | Grimm et al. | Dec 1998 | S |
D408018 | McNaughton | Apr 1999 | S |
D416089 | Barton et al. | Nov 1999 | S |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
H1904 | Yates et al. | Oct 2000 | H |
D449886 | Tetzlaff et al. | Oct 2001 | S |
D453923 | Olson | Feb 2002 | S |
D454951 | Bon | Mar 2002 | S |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
H2037 | Yates et al. | Jul 2002 | H |
D465281 | Lang | Nov 2002 | S |
D466209 | Bon | Nov 2002 | S |
D493888 | Reschke | Aug 2004 | S |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
D502994 | Blake, III | Mar 2005 | S |
D509297 | Wells | Sep 2005 | S |
D525361 | Hushka | Jul 2006 | S |
D531311 | Guerra et al. | Oct 2006 | S |
D533274 | Visconti et al. | Dec 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
D535027 | James et al. | Jan 2007 | S |
D538932 | Malik | Mar 2007 | S |
D541418 | Schechter et al. | Apr 2007 | S |
D541611 | Aglassinger | May 2007 | S |
D541938 | Kerr et al. | May 2007 | S |
D545432 | Watanabe | Jun 2007 | S |
D547154 | Lee | Jul 2007 | S |
D564662 | Moses et al. | Mar 2008 | S |
D567943 | Moses et al. | Apr 2008 | S |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
D582038 | Swoyer et al. | Dec 2008 | S |
D617900 | Kingsley et al. | Jun 2010 | S |
D617901 | Unger et al. | Jun 2010 | S |
D617902 | Twomey et al. | Jun 2010 | S |
D617903 | Unger et al. | Jun 2010 | S |
D618798 | Olson et al. | Jun 2010 | S |
D621503 | Otten et al. | Aug 2010 | S |
D627462 | Kingsley | Nov 2010 | S |
D628289 | Romero | Nov 2010 | S |
D628290 | Romero | Nov 2010 | S |
D630324 | Reschke | Jan 2011 | S |
D649249 | Guerra | Nov 2011 | S |
D649643 | Allen, IV et al. | Nov 2011 | S |
D661394 | Romero et al. | Jun 2012 | S |
D670808 | Moua et al. | Nov 2012 | S |
D680220 | Rachlin | Apr 2013 | S |
9084608 | Larson et al. | Jul 2015 | B2 |
9211657 | Ackley et al. | Dec 2015 | B2 |
9498279 | Artale et al. | Nov 2016 | B2 |
20030109875 | Tetzlaff | Jun 2003 | A1 |
20030220637 | Truckai et al. | Nov 2003 | A1 |
20040236325 | Tetzlaff et al. | Nov 2004 | A1 |
20050119655 | Moses | Jun 2005 | A1 |
20050159745 | Truckai et al. | Jul 2005 | A1 |
20100179545 | Twomey | Jul 2010 | A1 |
20120083786 | Artale et al. | Apr 2012 | A1 |
20120172873 | Artale | Jul 2012 | A1 |
20130041370 | Unger | Feb 2013 | A1 |
20130046295 | Kerr et al. | Feb 2013 | A1 |
20130138101 | Kerr | May 2013 | A1 |
20140221994 | Reschke | Aug 2014 | A1 |
20140221995 | Guerra et al. | Aug 2014 | A1 |
20140221999 | Cunningham et al. | Aug 2014 | A1 |
20140228842 | Dycus et al. | Aug 2014 | A1 |
20140230243 | Roy et al. | Aug 2014 | A1 |
20140236149 | Kharin et al. | Aug 2014 | A1 |
20140243811 | Reschke et al. | Aug 2014 | A1 |
20140243824 | Gilbert | Aug 2014 | A1 |
20140249528 | Hixson et al. | Sep 2014 | A1 |
20140250686 | Hempstead et al. | Sep 2014 | A1 |
20140257274 | McCullough, Jr. et al. | Sep 2014 | A1 |
20140257283 | Johnson et al. | Sep 2014 | A1 |
20140257284 | Artale | Sep 2014 | A1 |
20140257285 | Moua | Sep 2014 | A1 |
20140276803 | Hart | Sep 2014 | A1 |
20140284313 | Allen, IV et al. | Sep 2014 | A1 |
20140288549 | McKenna et al. | Sep 2014 | A1 |
20140288553 | Johnson et al. | Sep 2014 | A1 |
20140330308 | Hart et al. | Nov 2014 | A1 |
20140336635 | Hart et al. | Nov 2014 | A1 |
20140353188 | Reschke et al. | Dec 2014 | A1 |
20150018816 | Latimer | Jan 2015 | A1 |
20150025528 | Arts | Jan 2015 | A1 |
20150032106 | Rachlin | Jan 2015 | A1 |
20150051598 | Orszulak et al. | Feb 2015 | A1 |
20150051640 | Twomey et al. | Feb 2015 | A1 |
20150066026 | Hart et al. | Mar 2015 | A1 |
20150080889 | Cunningham et al. | Mar 2015 | A1 |
20150082928 | Kappus et al. | Mar 2015 | A1 |
20150088122 | Jensen | Mar 2015 | A1 |
20150088126 | Duffin et al. | Mar 2015 | A1 |
20150088128 | Couture | Mar 2015 | A1 |
20150094714 | Lee et al. | Apr 2015 | A1 |
20160157925 | Artale et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
201299462 | Sep 2009 | CN |
102525639 | Jul 2012 | CN |
2415263 | Oct 1975 | DE |
02514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
03423356 | Jun 1986 | DE |
03612646 | Apr 1987 | DE |
3627221 | Feb 1988 | DE |
8712328 | Feb 1988 | DE |
04303882 | Feb 1995 | DE |
04403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
19506363 | Aug 1996 | DE |
29616210 | Nov 1996 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19751108 | May 1999 | DE |
19946527 | Jul 2001 | DE |
20121161 | Apr 2002 | DE |
10045375 | Oct 2002 | DE |
202007009165 | Aug 2007 | DE |
202007009317 | Aug 2007 | DE |
202007009318 | Aug 2007 | DE |
10031773 | Nov 2007 | DE |
202007016233 | Jan 2008 | DE |
19738457 | Jan 2009 | DE |
102004026179 | Jan 2009 | DE |
102008018406 | Jul 2009 | DE |
1281878 | Feb 2003 | EP |
1159926 | Mar 2003 | EP |
61-501068 | Sep 1984 | JP |
10-24051 | Jan 1989 | JP |
11-47150 | Jun 1989 | JP |
6502328 | Mar 1992 | JP |
5-5106 | Jan 1993 | JP |
05-40112 | Feb 1993 | JP |
0006030945 | Feb 1994 | JP |
6-121797 | May 1994 | JP |
6-285078 | Oct 1994 | JP |
6-511401 | Dec 1994 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
8-56955 | May 1996 | JP |
08252263 | Oct 1996 | JP |
8-289895 | Nov 1996 | JP |
8-317934 | Dec 1996 | JP |
8-317936 | Dec 1996 | JP |
9-10223 | Jan 1997 | JP |
09000538 | Jan 1997 | JP |
9-122138 | May 1997 | JP |
0010000195 | Jan 1998 | JP |
10-155798 | Jun 1998 | JP |
11-47149 | Feb 1999 | JP |
11-070124 | Mar 1999 | JP |
11-169381 | Jun 1999 | JP |
11-192238 | Jul 1999 | JP |
11244298 | Sep 1999 | JP |
2000-102545 | Apr 2000 | JP |
2000-135222 | May 2000 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001008944 | Jan 2001 | JP |
2001-29355 | Feb 2001 | JP |
2001029356 | Feb 2001 | JP |
2001-03400 | Apr 2001 | JP |
2001128990 | May 2001 | JP |
2001-190564 | Jul 2001 | JP |
2002-136525 | May 2002 | JP |
2002-528166 | Sep 2002 | JP |
2003-116871 | Apr 2003 | JP |
2003-175052 | Jun 2003 | JP |
2003245285 | Sep 2003 | JP |
2004-517668 | Jun 2004 | JP |
2004-528869 | Sep 2004 | JP |
2005-152663 | Jun 2005 | JP |
2005-253789 | Sep 2005 | JP |
2005312807 | Nov 2005 | JP |
2006-015078 | Jan 2006 | JP |
2006-501939 | Jan 2006 | JP |
2006-095316 | Apr 2006 | JP |
2008-054926 | Mar 2008 | JP |
2011125195 | Jun 2011 | JP |
401367 | Nov 1974 | SU |
0036986 | Jun 2000 | WO |
0059392 | Oct 2000 | WO |
0115614 | Mar 2001 | WO |
0154604 | Aug 2001 | WO |
0245589 | Jun 2002 | WO |
02080786 | Oct 2002 | WO |
02080793 | Oct 2002 | WO |
06021269 | Mar 2006 | WO |
05110264 | Apr 2006 | WO |
08040483 | Apr 2008 | WO |
2011018154 | Feb 2011 | WO |
2013009758 | Jan 2013 | WO |
2013022928 | Feb 2013 | WO |
Entry |
---|
Extended European Search Report corresponding to Int'l Appl. No. EP 13 89 1305.8 dated Feb. 24, 2017. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410384505.2 dated Apr. 19, 2017. |
“Automatically Controlled Bipolar Electrocoagulation—COA-COMP”, Neurosurg. Rev. (1984), pp. 187-190. |
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument” ; Innovations That Work, Jun. 2003. (4 pages). |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003, pp. 87-92. |
Tinkcler L.F., “Combined Diathermy and Suction Forceps” , Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447. |
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, NC; Date: Aug. 2003. (1 page). |
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). (8 pages). |
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000. (6 pages). |
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004. (1 page). |
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000. (1 page). |
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000). (1 page). |
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999. (4 pages). |
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878. |
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. (4 pages). |
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801. (4 pages). |
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002. (4 pages). |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002, pp. 15-19. |
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999. (1 page). |
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002. (8 pages). |
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. (4 pages). |
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237. |
Benaron et al., “Optical Time-Of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. (8 pages). |
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157. |
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003, pp. 147-151. |
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001. (1 page). |
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151. |
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001. (1 page). |
Seyfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1, Jul. 2001 pp. 21-24. |
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003. (15 pages). |
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004. (1 page). |
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000. (1 page). |
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17. |
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. (4 pages). |
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999. (1 page). |
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.. (1 page). |
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000. (1 page). |
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000. (1 page). |
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005. |
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C.. (1 page). |
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999. (1 page). |
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997; inventor: James G. Chandler. |
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998; inventor: Randel A. Frazier. |
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999; inventor: Dale F. Schmaltz. |
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000; inventor: Thomas P. Ryan. |
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008; inventor: Paul R. Sremeich. |
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. (1 page). |
European Examination Report issued in Appl. No. EP 13 891 305.8 dated Feb. 21, 2018 (6 pages). |
Australian Examination Report dated Sep. 20, 2017 in Appl. No. AU 2015264858 (4 pages). |
Chinese Second Office Action issued in Appln. No. CN 201410384505.2 dated Dec. 6, 2017, together with English translation (14 pages). |
Notification of Third Office Action issued by the Chinese Patent Office in Appl. No. CN 201410384505.2 dated May 15, 2018, together with English language translation (9 pages). |
Canadian Office Action issued in corresponding Appl. No. CA 2,918,484 dated Feb. 28, 2019 (4 pages). |
Number | Date | Country | |
---|---|---|---|
20160157924 A1 | Jun 2016 | US |