This disclosure generally relates to a system configured to synthesize a birds-eye-view image of an area around a vehicle, and more particularly relates to way to align multiple cameras using a feature of the vehicle present in an image from a camera as an alignment guide to align the cameras of the system.
Surround view monitoring or birds-eye-view image systems configured to synthesize a birds-eye-view image of an area around a vehicle are known. Such systems typically have a plurality of cameras, and the images from each of these cameras are combined or ‘stitched’ together to form or synthesize the birds-eye-view image. In order to form a birds-eye-view image without objectionable discontinuities in the birds-eye-view image, each of the cameras needs to be physically aligned, and/or the images from each camera need to be electronically aligned. The alignment process may include a factory alignment of the cameras prior to installation, and/or may include an initial calibration of the system when the system is first installed on a vehicle. This initial calibration may employ an arrangement of known visual targets to assist with the initial calibration.
During the life of the system one or more of the cameras may need to be replaced because of, for example, inadvertent damage to a camera. The replacement may introduce misalignment of the cameras leading to undesirable discontinuities in the birds-eye-view image. Furthermore, vehicle vibration and/or exposure to temperature extremes may introduce undesirable misalignment of the cameras. Having to employ a qualified technician to realign the cameras is inconvenient and expensive for the owner of the vehicle, and such re-alignment may not be effective to correct a problem if the misalignment occurs only at temperature extremes. What is needed is a way for the system to automatically check the alignment of the images from the cameras on a periodic basis.
In accordance with one embodiment, a surround view monitoring system configured to synthesize a birds-eye-view image of an area around a vehicle is provided. The system includes a camera and a controller. The camera is configured to capture a present-image of a field-of-view about the vehicle and output a signal indicative of the present-image. The present-image includes a feature of the vehicle. The controller is configured to receive the signal, compare the present-image to a reference-image from an initial calibration of the system. The reference-image also includes the feature. The controller is further configured to determine a correction table for the present-image to align the feature in the present-image to the feature in the reference-image.
Further features and advantages will appear more clearly on a reading of the following detailed description of the preferred embodiment, which is given by way of non-limiting example only and with reference to the accompanying drawings.
The present invention will now be described, by way of example with reference to the accompanying drawings, in which:
The system 10 includes a camera 18. By way of example and not limitation, the camera 18 may be a left-view-camera 18L, a right-view-camera 18R, a front-view-camera 18F, and/or a back-view-camera 18B. The non-limiting example of the system 10 described herein shows four cameras, but systems with more or less than four cameras are contemplated. In this instance four cameras are shown as this seems to be a good balance between cost and performance, where costs may undesirably increase if more than four cameras are used, and performance (i.e. quality of the birds-eye-view image 14) may undesirably decrease if fewer than four cameras are used. As used herein, the camera 18 may refer to any one and/or all of the cameras shown. As will become apparent in the description that follows, the focus of the non-limiting examples provided herein is generally directed to the left-view-camera 18L. However, references to the camera 18 are not to be construed as being limited to the left-view-camera 18L.
The camera 18 is configured to capture a present-image 20 (
Continuing to refer to
In particular, the controller 30 is configured to compare the present-image 20 (
As the camera 18 may become misaligned at any time due to vibration or temperature extremes, it may be advantageous if the controller 30 is configured to align the present-image on a periodic basis, once per minute for example. A periodic alignment may be particularly useful when the system 10 is properly aligned at, for example, cold temperatures (e.g. <0° C.), but becomes misaligned at elevated temperatures (e.g. <30° C.)
The area 16 may include a surface (e.g. the ground) underlying the vehicle 12 with a color and/or illumination that makes it difficult to distinguish the ground from the body of the vehicle 12. As such, it may be advantageous if the controller 30 is configured to perform the initial calibration and/or the alignment process only when the vehicle 12 is moving, for example at a speed greater than thirty kilometers-per-hour (30 kph). It is expected that when the vehicle 12 is moving at a sufficient speed, the portion of the field-of-view 22 that is the roadway underneath the vehicle 12 will vary in appearance. As such, as will be recognized by those in the image processing arts, the unchanging portion of the field-of-view 22 that is the vehicle 12 will be easier to distinguish from the roadway.
It may also be advantageous if the controller 30 is configured to perform the initial calibration and/or the alignment process only when an ambient light intensity is greater than an illumination threshold. By way of example, the illumination threshold may correspond to noon on a cloudy day. If this illumination threshold is used, then alignment will not be performed at night when artificial illumination from street lights, for example, may make it difficult for the controller 30 to determine the location of the edge 36.
Accordingly, a surround view monitoring system (the system 10) configured to synthesize a birds-eye-view image 14 of an area around a vehicle 12 is provided. The system 10 advantageously makes use of features of the vehicle 12 in captured images to adjust the alignment of the cameras of the system. The adjustment or alignment is made based on a comparison of the locations of a particular feature in a present-image 20 captured at about the time when the adjustment is being made to a reference image captured at about the time when the system 10 was initially installed on the vehicle 12. Such an alignment scheme is advantageous as it can be performed in the background, so the vehicle owner does not need to employ a skilled technician to align the system if misalignment occurs. Furthermore, the system can compensate for variations in alignment due to changes in temperature.
While this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
201510064891.1 | Feb 2015 | CN | national |