Bismelamine stabilizers

Information

  • Patent Grant
  • 4492643
  • Patent Number
    4,492,643
  • Date Filed
    Monday, November 1, 1982
    42 years ago
  • Date Issued
    Tuesday, January 8, 1985
    40 years ago
Abstract
There is described new alkylene bismelamines and their production. They correspond to the formula ##STR1## in which o is a number from 10 to 18. Alkylene bismelamines serve as stabilizers for formaldehyde solutions and as such have an outstanding suitability and activity.
Description

BACKGROUND OF THE INVENTION
The invention is directed to new bismelamines and the use of bismelamines for the stabilization of formaldehyde.
There are known alkylene bismelamines of the formula ##STR2## in which m is a number from 1 to 10, see Dudley U.S. Pat. No. 2,544,071, e.g. Example 10. Dudley also shows using octadecamethylenediamine as a starting material in making his polymelamines. Kaiser, J. Amer. Chem. Soc. Volume 73, pages 2984-2986 shows ethylene bismelamine.
SUMMARY OF THE INVENTION
In one aspect of the present invention there are prepared new alkylene bismelamines of the formula ##STR3## in which o is a number from 10 to 18 inclusive.
The alkylene bis melamines of the invention can be produced in the same manner as the known alkylene bismelamines, for example by reaction of the corresponding aliphatic diamine with 2-chloro-4,6-diamine-1,3,5-triazine corresponding to the process according to Dudley U.S. Pat. No. 2,544,071 or according to Kaiser, J. Amer. Chem. Soc. Vol 73 (1951) pages 2984-2986. For example, for the production of decamethylene bismelamine the starting material is 1,10-diaminodecane, for the production of dodecamethylene bismelamine the starting material is 1,12-diaminododecane, for the production of tetradecamethylene bis melamine the starting material is 1,14-diaminotetradecane and for the production of hexadecamethylene bismelamine the starting material is 1,16-diaminohexadecane.
Aqueous formaldehyde solutions, especially solutions having a formaldehyde content above 30 weight percent are unstable if the temperature at which they are stored falls below a certain minimum. There occurs turbidity through the formation of formaldehyde oligomers and finally the precipitation of paraformaldehyde. The higher the concentration of formaldehyde and the lower the storage temperature the more unstable are the solutions. Accordingly to the data in the monograph "Formaldehyde" by J. F. Walker, 3rd edition, page 95, a 30 percent formaldehyde solution remains stable for up to about 3 months if it is held at at least 7.degree. C. For a 37 percent solution the required minimum temperature is 35.degree. C., for a 45% solution 55.degree. C. and for a 50% solution 65.degree. C. However, a disadvantage of the use of higher storage temperature is that formic acid forms to a considerable extent in the formaldehyde solutions. This causes corrosion and is particularly disturbing in the use of formaldehyde solutions for condensation reactions.
The above mentioned values refer to formaldehyde solutions which contain less than 1 weight percent methanol as a stabilizer. To be sure by using higher methanol concentrations there can be produced equal storability at lower temperature, but there are required disproportionately high methanol concentrations. For example there is needed in a 37 percent formaldehyde solution for a storage temperature of 21.degree. C., a methanol content of 7%, for 7.degree. C. a methanol content of 10% and for 6.degree. C. a methanol content of 12%. The addition of methanol, however considerably increases the cost of the formaldehyde solutions, especially since the methanol is generally lost in using the solutions. Apart therefrom through the methanol the speed of reaction in numerous condensation reactions, for example in the condensation with melamine, is reduced.
Besides methanol there are known as stabilizers (for formaldehyde), ethanol, propanol-1, propanol-2, ethylene glycol, glycerine, urea, methyl urea, dimethyl urea, thiourea, diethyl thiourea, formamide, melamine, methylol melamine and acetoxime (J. F. Walker "Formaldehyde", third edition, page 95, U.S. Pat. No. 2,000,152, U.S. Pat. No. 2,002,243, and Swain U.S. Pat. No. 2,237,092). However, these materials must be used in concentrations of at least 2% to be effective.
There are also used as stabilizers 2,4-diamino-1,3,5-triazines or their methylol derivatives which contain a phenyl group or an aliphatic group with 7 to 9 carbon atoms in the 6-position, especially capric guanamine (German AS No. 1205071) and German AS No. 1205073). (Higher and lower alkyl guanamines were less effective.) The effect of these stabilizers is increased by additionally employing hydrophilic polyglycol ethers of fatty alcohol or of polyalcohol-fatty acid partial esters (German AS No. 2138309). However, even in these cases the effect of the stabilizers is unsatisfactory. Besides, the formaldehyde solutions stabilized in this manner are inclined to foam strongly.
Furthermore it is known to employ phenylene bisguanamines as stabilizers (German AS No. 2358856). To be sure these materials display a useful action. However, they are relatively difficult to obtain and especially have the disadvantage that they are only soluble with difficulty. Therefore it is hard and requires much time to bring the required amount of stabilizer into soluble form.
Finally it is known to use as stabilizers alkylene bisguanamines (German OS No. 29194 96 and related Werle U.S. Pat. No. 4,339,578. The entire disclosure of Werle is hereby incorporated by reference and relied upon). Indeed these materials have a suitable stabilizing effect and have good solubility in formaldehyde solutions and therefore are easy to handle, but they are difficult to obtain.
There has now been found a process for the stabilization of formaldehyde solutions which is characterized by employing as stabilizing agents alkylene bismelamines of the formula ##STR4## in which o is a number from 10 to 18. These compounds at the same concentration show a better action than all material previously used for this purpose. The alkylene bismelamines have relatively good solubility and therefore are easy to handle.
According to the invention there are employed as stabilizers the alkylene bismelamines in which according to the formula o is a number from 10 to 18, preferably a number from 11 to 14, especially 12.
The amount of the stabilizers to be added to the formaldehyde solutions depends, in a given case, to a certain extent on the formaldehyde contents and the storage temperature of the solutions. In most cases there are employed stabilizer contents between 0.001 and 0.1 weight percent. Preferably there are chosen stabilizer contents between 0.005 and 0.05, especially between 0.01 and 0.03 weight percent.
Unless otherwise indicated all parts and percentages are by weight.
The compositions can comprise, consist essentially of, or consist of the stated materials.





DETAILED DESCRIPTION
EXAMPLES
A. Production of the Alkylene Bismelamines
EXAMPLE 1
There were added 200 grams (1.0 mole) of 1,12-diaminododecane to a suspension of 291 grams (2.0 moles) of 2,4-dichloro-6-aminotriazine-1,3,5 in 500 ml of water. The pH of the mixture was adjusted to 8.5 by addition of a 50% aqueous sodium hydroxide solution. The mixture was heated to boiling with stirring and held at the boiling temperature under reflux for 2.5 hours, then cooled and filtered. The filter residue was washed with water until it was free from chloride ions. There remained 388 grams of pure dodecamethylene bismelamine, corresponding to a yield of 95%. The melting point (decomposition point) of the material was 182.degree. to 185.degree. C. The elemental analysis gave (in parantheses are given the calculated values for C.sub.18 H.sub.34 N.sub.12); 52.1 (51.7)% C; 8.0 (8.2)% H; 39.9 (40.2)% N. The dodecamethylene bismelamine was identified by IR and NMR spectroscopically as well as by mass spectrograph.
EXAMPLE 2
The procedure was as in Example 1 but there were employed 228 grams (1.0 mole) of 1,14-diaminotetradecane. There were obtained 397 grams of tetradecamethylene bismelamine, corresponding to a yield of 91%. The melting point (decomposition point) of the material was 150.degree. C. The elemental analysis gave (in parantheses are given the calculated values for C.sub.20 H.sub.38 N.sub.12): 54.3 (53.8)% C; 8.2 (8.8)% H; 37.5 (37.6)% N.
In addition to IR and NMR spectroscopic analysis the tetradecamethylene bismelamine was identified mass spectroscopically.
B. Stabilization of the Formaldehyde Solutions
There were used formaldehyde solutions with various contents of formaldehyde. There were added to these solutions different amounts of bismelamines and other materials as stabilizers and there was tested how long these solutions were stable at specific storage temperatures.
To dissolve the stabilizers in the formaldehyde solutions these were held in each case 20 to 30 minutes with stirring at 80.degree. C., except for isophthalobisguanamine which was held 120 minutes at this temperature.
The results are collected in the following tables. The stabilizer contents are given in weight percents, based on the total formaldehyde solution. As storability there is considered the time in which the solution was stable. The solutions were regarded as stable until the first just perceptible deposition occurred.
TABLE 1______________________________________Solutions having 37 weight percent formalde-hyde and 0.40 weight percent methanol:Stabilizer Storage StorabilityType Content Temperature .degree.C. Days______________________________________Decamethylene 0.01 0 12bismelamineDodecamethyl- 0.01 0 28ene bismel-amineTetradecamethyl- 0.01 0 30ene bismel-amineCapric- 0.01 0 4guanamineDodecano-bis 0.01 0 10guanamineIsophthalo- 0.01 0 10bisguanamine______________________________________
TABLE 2______________________________________Solutions having 40 weight percent formalde-hyde and 0.50 weight percent methanol:Stabilizer Storage StorabilityType Content Temperature .degree.C. Days______________________________________Decamethylene 0.03 0 6bismelamineDodecamethylene 0.03 0 15bismelamineTetradecamethyl- 0.03 0 18ene bismelamineCapric-guanamine 0.03 0 4Dodecano- 0.03 0 8bisguanamineIsophthalo- 0.03 0 7bisguanamine______________________________________
TABLE 3______________________________________Solutions having 50 weight percent formalde-hyde and 0.55 weight percent methanol:Stabilizer Storage StorabilityType Content Temperature .degree.C. Days______________________________________Decamethylene 0.015 39 8bismelamineDodecamethyl- 0.010 39 12ene bismelamine 0.015 39 30 0.020 35 60Tetradecamethyl- 0.010 39 16ene bismelamine 0.015 39 30______________________________________
Claims
  • 1. An aqueous formaldehyde solution stabilized with a stabilizingly effective amount of an alkylene bismelamine of the formula ##STR5## where o is an integer from 10 to 18.
  • 2. An aqueous solution according to claim 1 containing methanol, the methanol being present in an amount of less than 1 weight %.
  • 3. An aqueous formaldehyde solution according to claim 1 wherein o is an integer from 12 to 16.
  • 4. An aqueous solution according to claim 3 wherein o is an integer from 12 to 14.
  • 5. An aqueous solution according to claim 3 where o is 12.
  • 6. An aqueous solution according to claim 3 wherein o is 14.
  • 7. An aqueous solution according to claim 3 which contains 0.001 to 0.1 weight percent of the alkylene bismelamine.
  • 8. An aqueous solution according to claim 7 wherein o is an integer from 12 to 14.
  • 9. An aqueous solution according to claim 7 which contains 0.005 to 0.05 weight percent of the alkylene bismelamine.
  • 10. An aqueous solution according to claim 9 where o is an integer from 12 to 14.
  • 11. An aqueous solution according to claim 9 which contains 0.01 to 0.03 weight percent of the alkylene bismelamines.
  • 12. An aqueous solution according to claim 11 wherein o is an integer from 12 to 14.
  • 13. An aqueous solution according to claim 3 containing 30 to 50 weight percent of formaldehyde.
Priority Claims (1)
Number Date Country Kind
3143920 Nov 1981 DEX
US Referenced Citations (15)
Number Name Date Kind
2000152 Walker May 1935
2002243 Scott May 1935
2191362 Widmer Feb 1940
2237092 Swain Apr 1941
2544071 Dudley Mar 1951
3206407 Lutwack Sep 1965
3309345 Lutwack Mar 1967
3645841 Cabestany et al. Feb 1972
4028334 Chalmers et al. Jun 1977
4086204 Cassandrini et al. Apr 1978
4234728 Rody Nov 1980
4315859 Nikles Feb 1982
4339578 Werle Jul 1982
4400505 Loffelman et al. Aug 1983
4409348 Wiezer et al. Oct 1983
Foreign Referenced Citations (8)
Number Date Country
14683 Aug 1980 EPX
65169 Nov 1982 EPX
1205071 Nov 1965 DEX
1205073 Nov 1965 DEX
2138309 Feb 1973 DEX
2358856 May 1975 DEX
2919496 Dec 1980 DEX
22347 Mar 1981 JPX
Non-Patent Literature Citations (2)
Entry
Kaiser, J. Amer. Chem. Soc., vol. 73, pp. 2984-2986, (1951).
Walker, Formaldehyde, 3rd edition, p. 95.