The present disclosure relates generally to optics and, more particularly, to optical fiber amplifiers.
The O-band (for original band) in optical fiber communications systems operates between a wavelength (λ) range from approximately 1260 nanometers (˜1260 nm) to ˜1360 nm. One advantage of operating in the O-band is that transmitter wavelengths are located near the zero-dispersion wavelength (λ0). Thus, neither optical nor electronic chromatic dispersion compensation is typically required. Because of these and other benefits, there are ongoing efforts to improve optical fiber systems and processes that operate within the O-band.
The present disclosure provides optical systems employing Bismuth (Bi) doped optical fibers. One embodiment of the system comprises a Bi-doped optical fiber (or Bi-doped fiber (BiDF)) comprising with a gain band and an auxiliary band. The gain band has a first center wavelength (λ1) and a first six decibel (6 dB) gain bandwidth. The auxiliary gain band has a second center wavelength (λ2). The system further comprises a signal source that is optically coupled to the BiDF. The signal source provides an optical signal within the gain band to the BiDF. Additionally, a pump source is optically coupled to the BiDF. The pump source provides pump light at a pump wavelength (λ3) to the BiDF. For some embodiments, multiple pump sources provide multiple wavelengths of pump light to the BiDF.
Other systems, devices, methods, features, and advantages will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Recently, the total O-band transponder rate was increased to 425 gigabits per second (Gb/s) by using, for example, eight (8) local area network (LAN) wavelength division multiplexed (WDM) channels modulated by approximately 26.6 gigabaud per second (˜26.6 Gbaud/s) four-level pulse amplitude modulated (PAM-4) signals. The use of LAN WDM and complex modulation format reduces both power-per-channel available at the receiver and receiver sensitivity, thereby making optical amplification desired. Although semiconductor optical amplifiers can be used to boost O-band signals, the semiconductor optical amplifiers introduce distortions due to self-gain modulation and cross-gain modulation. Thus, the semiconductor optical amplifiers are not suitable for WDM transmission of complex intensity modulation formats, such as PAM-4.
Praseodymium-doped fiber amplifiers (PrDFA) with a gain bandwidth between approximately 1280 nanometers (˜1280 nm) and ˜1320 nm are used in some O-band applications. However, PrDFA require non-silica host glass, thereby making PrDFA both expensive and complicated.
To address these shortcomings, this disclosure teaches a silica-based bismuth (Bi) doped fiber amplifier (BiDFA) that permits extension of both O-band transmission reach and O-band transmission capacity. The disclosed silica-based BiDFA has a six decibel (6 dB) gain bandwidth of more than ˜60 nm. The center of the gain band is dependent on pump wavelength and can be flexibly centered between ˜1305 nm and ˜1325 nm. The BiDFA uses an optical fiber that is substantially free of erbium (Er) while exhibiting parameters that are comparable to Er-doped fiber amplifier (ErDFA) systems. The disclosed embodiments are capable of extending a 400GBASE-LR-8 transmission distance to beyond approximately forty kilometers (˜40 km) of an optical fiber that complies with the ITU-T G.652 industry standard.
Having provided a broad technical solution to a technical problem, reference is now made in detail to the description of the embodiments as illustrated in the drawings. While several embodiments are described in connection with these drawings, there is no intent to limit the disclosure to the embodiment or embodiments disclosed herein. On the contrary, the intent is to cover all alternatives, modifications, and equivalents.
In the embodiment of
Other manufacturing processes, known in the art, can produce the BiDF 115.
When manufactured, the BiDF 115 has a core diameter of approximately seven micrometers (˜7 μm), an index difference of approximately 6e-3 (˜0.006) between the core and the cladding, and a cutoff wavelength of ˜1100 nm. The ˜7 μm core diameter permits good splice-matching with other silica-based optical fibers. Insofar as those having ordinary skill in the art understand MCVD and other BiDF manufacturing processes, further discussion of the optical fiber manufacturing processes is omitted herein.
The system, as shown specifically in
The transmission fibers and the BiDF 115 are spliced with standard splicers and automatic splicing programs, which are known to those having skill in the art. While it is shown in
At an input power of approximately ˜2 decibel-milliwatts (˜2 dBm), the pump-wavelength (λ3) dependency of G, power, and PCE are shown in
For another embodiment, the second optical isolator 135 is removed (to simplify design and improve performance) and the 3 dB coupler 120 is replaced with a fused fiber wavelength division multiplexer (WDM) transmitting light over a wavelength range covering both the signal and pump (in which induced a loss may be up to ˜4 dB). Gain for short wavelength channels is increased for λ3 of ˜1195 nm. For the WDM embodiment, a graph of G and noise figure (NF) for ˜500 mW pump power is shown in
BiDFA performance is tested with a 400GBASE-LR8 transceiver and a ONT-604 tester. The tester generates 16×26.6 gigabits per second (Gb/s) 231-1 pseudorandom binary sequence (PRBS) on-off keyed (OOK) data lanes at the transmitter side, while detecting individual bit error rates (BER) for each of the 16 receiver-side lanes. The 400GBASE-LR8 transceiver combines the 16 OOK data lanes into 8×26.6 Gbaud/s pulse-amplitude modulated PAM-4 channels and transmits them using a set of eight (8) directly-modulated lasers. At the receiver side, eight (8) WDM channels are demultiplexed (using a filter width that is greater than ˜4 nm), detected, and converted into 16 digital signal lanes. The transceiver signal (at ˜11.7 dBm) is launched into ˜40 km to ˜55 km of optical fiber or a variable optical attenuator (VOA) and amplified by the BiDFA. To control received power, another VOA is placed between the BiDFA and the transmission fiber (compliant with G.652, meaning a transmission center wavelength of ˜1312 nm and a loss of ˜0.33 dB at ˜1310 nm).
With these parameters, average bit-error rate (BER) as a function of signal power for a ˜40 km transmission fiber and 14.6 dB VOA are compared to back-to-back performance in
Inserting a VOA between the G.652 fiber and the BiDFA, maintaining received power at ˜6 dBm, and maintaining a ˜3 dB difference between the best and worst channels permit investigation of BER degradation from OSNR, which is degraded since amplifier produces ASE noise, and, also, permit an estimate of link loss margin. This is shown in
For some embodiments, amplifying stages for the BiDFA can be cascaded. One such embodiment is shown in
The second stage 550 comprises a signal input 515, a third pump source 560, and a third WDM 565 that combines the signal with the pump in a co-pumping configuration (or scheme). The second stage 550 further comprises a second BiDF 570 that is optically coupled to an output of the third WDM 565. The second stage 550 further comprises a fourth pump source 580 and a fourth WDM 575 that optically couples the pump light from the fourth pump source 580 to the second BiDF 570 in a counter-pumping configuration (or scheme). The fourth WDM 575 is optically coupled to a signal output 585.
It should also be appreciated that for some embodiments the bleaching for the first amplifying stage 510 is different from the bleaching for the second amplifying stage 550, while for other embodiments the bleaching for the two stages 510, 550 are the same. The difference in bleaching is accomplished by, for example, changing the Bi concentrations in the gain fiber. Consequently, certain parameters of the overall cascaded system (e.g., overall system gain, output power, etc.) are improved by improving certain parameters (e.g., gain, bleaching level, etc.) at each amplifying stage 510, 550. Furthermore, it should be appreciated that some of the pumps are redundant and, thus, can be omitted (e.g., a co-pumping-only scheme can be used, a counter-pumping-only scheme can be used, or a combination of both co-pumping and counter-pumping schemes (as shown in
Turning now to
For some embodiments, multiple pump wavelengths can be multiplexed together to exhibit many different center wavelengths (λ3), each corresponding to its respective pump source. In some embodiments, λ3 (or λ4, depending on the configuration) is between ˜1155 nm and ˜1255 nm. Specifically, for some embodiments, λ3 (or λ4, depending on the configuration) includes wavelengths of ˜1155 nm, ˜1175 nm, ˜1195 nm, ˜1215 nm, and ˜1235 nm. For multiple pump sources, a VOA balances the output power of λ3 (or λ4).
The signal source 610, pump source 620, and the light source 630 are optically coupled to a BiDF 670. The BiDF 670 has a gain band and an auxiliary band. The gain band has a center wavelength of λ1. For some embodiments, λ1 is between ˜1305 nm and ˜1325 nm. The auxiliary band has a center wavelength of λ2 and a light source in the auxiliary band has a wavelength λA. For some embodiments, λA is ˜1405 nm. The gain band has a 6 dB gain bandwidth that is at least ˜60 nm. For some embodiments, the 6 dB gain bandwidth and the center wavelength λ1 is λ3-dependent. Preferably, the BiDF 670 is substantially free of Er. The system of
The additional light source 630 improves amplifier efficiency by decreasing signal loss at λS (or increasing the signal gain at λS). Specifically, Bi is known to have an excitation and emission band in the ˜1200 nm range (λ2a), ˜1300 nm range (o-band) and the ˜1400 nm range (λ2b). By adding optical power at λ2 above the certain power level, signal excitation may be increased due to reduction in bleaching. Thus, exciting λA (in either λ2a or λ2b) results in an increased signal gain in the gain band (e.g., ˜1260 nm to ˜1360 nm) by somewhere between ˜6 dB and ˜10 dB. This is because gain and efficiency are sensitive to competition between a ground state ion population and an excited state ion population. In particular, higher inversion levels are necessary for higher gains. However, at low input signal power (e.g., less than approximately −10 dBm), emission at out-of-band wavelengths (e.g., λA of ˜1200 nm in range λ2a or λA of ˜1400 nm in range λ2b) can divert power and reduce inversion levels. This diversion effect can be compensated to some degree by introducing out-of-band light at λ2. Relative locations of λS, λ2a, λ2b and λ3 are summarized as follows: λS is located within O-band (at ˜1260 nm to ˜1360 nm); λ3 is located below ˜1240 nm (typically within ˜1195 nm to ˜1240 nm); λ2a is located below the O-band; and λ2b is located above the O-band.
By way of example, for λA of ˜1405 nm and λS of ˜1320 nm, if a lower power level (e.g., ˜4 dBm) λA signal is introduced to a small λS signal (e.g., approximately ˜10 dBm) in the presence of a larger pump signal (e.g., larger than ˜20 dBm) at λ3, then an excitation at λA increases amplification efficiency at therefore gain of ˜6 dB to ˜10 dB at λ1. An example of this is shown in
Another approach to improving amplifier efficiency, especially for small signals (e.g., less than ˜10 dBm), is to modify waveguide properties of the core of the BiDF. As noted above, inversion is dependent to some degree on competition between the excited state and the ground state. Thus, one approach to increasing inversion levels is to increase the intensity of the pump light (λ3).
The intensity of the pump light (at λ3) can be increased by reducing the mode-field area (MFA) of the waveguide. The MFA of the waveguide can be reduced by increasing core index (e.g., by increasing the concentration of non-gain-producing co-dopants in the core) and reducing core diameter. Preferably, the non-gain-producing co-dopants, such as Lanthanum (La) or Lutetium (Lu), do not alter the gain properties of Bi from the desired P-doped silica glass. Alternatively, the MFA of the waveguide can be reduced by decreasing the cladding index, which can be done with Fluorine (F) doping. Regardless of the process by which MFA is reduced, a reduction in the MFA for BiDF produces a corresponding improvement in BiDFA efficiency. It should also be noted that a P—Bi—SiO2 core produces a desirable gain at ˜1300 nm, but Germanium (Ge) or Aluminum (Al) co-dopants (e.g., in a Ge—Bi—SiO2 core or an Al—Bi—SiO2 core) do not produce comparably-desirable gains.
Although exemplary embodiments have been shown and described, it will be clear to those of ordinary skill in the art that a number of changes, modifications, or alterations to the disclosure as described may be made. For example, while most values are provided as approximate values (using “˜”), these approximate values also include the precise numerical value and, thus, the approximation reflects a margin of error to the nearest significant figure. All such changes, modifications, and alterations should therefore be seen as within the scope of the disclosure.
This application claims the benefit of U.S. provisional patent application Ser. No. 62/730,766, filed 2018 Sep. 13, having the title “Bismuth Doped Fiber Amplifier to Extend O-Band,” by DiGiovanni, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/051024 | 9/13/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62730766 | Sep 2018 | US |