Bismuth inhibitors for acid gas conditioning solutions

Information

  • Patent Grant
  • 4420337
  • Patent Number
    4,420,337
  • Date Filed
    Thursday, July 1, 1982
    42 years ago
  • Date Issued
    Tuesday, December 13, 1983
    41 years ago
Abstract
A corrosion inhibited composition containing an aqueous gas conditioning solution such as an alkanolamine with small amounts of soluble trivalent bismuth compounds. The compositions are useful to separate acid gases such as carbon dioxide from feed streams in gas conditioning apparatus with minimum amounts of corrosion of the stainless steel.
Description

BACKGROUND OF THE INVENTION
This invention relates to alkanolamine corrosion inhibiting compositions containing bismuth salts for use in stainless steel acid gas removal equipment and methods for their use.
It is well known from the prior art that acid gases such as carbon dioxide, hydrogen sulfide and carbonyl sulfide can be removed from gaseous feed streams such as natural gas and synthesis gas using dilute aqueous solutions of potassium carbonate, alkanolamines such as monoethanolamine, diethanolamine, and methyl diethanolamine, and other weak bases. The usual procedure is to use a contactor wherein the absorbent solution contacts the feed stream and to use a regenerator with a reboiler wherein the rich absorbent containing the acid gas components is regenerated back to the free absorbent. The solution is then recycled back to the contactor for reuse.
There has been much activity devoted to solving the problem of metallic corrosion in the equipment used in the above process.
It is common practice to use stainless steel and nickel alloys in sensitive areas such as heat exchange equipment, regenerator trays and absorber trays.
U.S. Pat. No. 3,087,778 (4-30-63) provides for inhibition of potassium carbonate solutions by using 1,000 to 5,000 p.p.m. of the trivalent oxides of arsenic, antimony or bismuth.
U.S. Pat. No. 3,808,140 (4-30-74) provides for inhibition of alkanolamine solutions by using minor amounts of vanadium and antimony compounds.
U.S. Pat. No. 3,896,044 (7-22-75) provides for inhibition of alkanolamine solutions by using minor amounts of nitro substituted aromatic acids or salts thereof.
U.S. Pat. No. 3,959,170 (5-25-76) provides for inhibition of alkanolamine solutions using a minor amount of a stannous salt.
U.S. Pat. No. 4,071,470 (1-31-78) provides for inhibition of alkanolamine solutions using a minor amount of the reaction product of copper, sulfur, and an alkanolamine.
U.S. Pat. No. 4,096,085 (6-20-78) provides for inhibition of alkanolamine solutions using minor amounts of a polyamine, with or without copper, and sulfur.
U.S. Pat. No. 4,100,099 (7-11-78) provides for inhibition of sour gas conditioning fluids using minor amounts of quaternary pyridinium salts and alkylene polyamines.
U.S. Pat. No. 4,100,100 (7-11-78) provides for inhibition of sour gas conditioning fluids using minor amounts of quaternary pyridinium salts, thiocyanate compounds or thioamide compounds, and divalent cobalt compounds.
U.S. Pat. No. 4,102,804 (7-25-78) provides for inhibition of sour gas conditioning solutions using minor amounts of a quaternary pyridinium salt, and a thiocyanate compound, a sulfide compound or a thioamide compound.
U.S. Pat. No. 4,116,629 (9-26-78) provides for the corrosion inhibition of stainless steels (types 410 and 430) when in contact with carbonate solutions by using nickel salts.
U.S. Pat. No. 4,143,119 (3-6-79) provides for inhibition of sour gas conditioning solutions using minor amounts of copper and a polysulfide generated in situ.
While the above compositions are effective, they each have various defects which detract from their universal use. For example, compounds of arsenic, antimony and vanadium are known to be toxic and their use presents waste disposal problems for the plant operators. The use of the quaternary pyridinium compounds are known to cause a foaming problem in certain instances.
SUMMARY OF THE INVENTION
It now has been discovered that the corrosion of stainless steel in gas removal equipment can be effectively reduced by using a gas conditioning solution inhibited by effective amounts of a soluble bismuth compound in the trivalent state.
The inhibitors are constantly replenished or maintained in the gas conditioning solution in order to obtain effective passivation.
The invention is a composition which comprises an aqueous alkanolamine solution and an corrosion effective amount of a soluble bismuth compound in the trivalent state, as well as a method of using the composition.





DETAILED DESCRIPTION OF THE INVENTION
The inhibitors of this invention are effective in aqueous solutions of alkanolamines, i.e., solutions containing 15 to 50 weight percent alkanolamines and 85 to 50 weight percent of water.
Alkanolamines which are useful in this invention are mono and polyalkanolamines having two to four carbon atoms in each alkanol group. Examples of these alkanolamines are monoethanolamine, diethanolamine, and monoisopropanolamine.
The impure gaseous hydrocarbons feed streams which can be treated with the inhibited gas conditioning solutions of this invention to remove carbon dioxide can contain trace amounts, i.e., 300 parts per million or less of hydrogen sulfide and/or carbonyl sulfide.
Examples of useful soluble trivalent bismuth compounds are bismuth nitrate, bismuth citrate, bismuth ammonium citrate, bismuth subcarbonate, bismuth halides such as the bromide, and chloride, bismuth hydroxide, bismuth subsalicylate, bismuth sulfate, bismuth acetate, bismuth benzoate, bismuth molybdate, bismuth tartrate, bismuth trioxide, and bismuth oxyhalides such as the fluoride, bromide, and chloride.
It is to be noted that the terms soluble compound means for the purpose of this invention that the compound is sufficiently soluble in the aqueous gas conditioning solution, i.e., aqueous alkanolamine to be useful herein.
It has been found that the bismuth inhibitors must be maintained in the gas conditioning solutions in amounts from 1.0 to 300 parts per million. Since these compounds are depleted during use, large amounts such as 400 or more p.p.m. can be used at start-up and periodic additions can be made thereafter to maintain the required effective amounts in the solution.
The preferred effective amount of the trivalent bismuth compounds can range from 1 to 200 p.p.m. and more preferably 5 to 25 p.p.m.
TESTING PROCEDURE
The effectiveness of the corrosion inhibitors of this invention were determined in a static coupon corrosion test. In this test a solution of 30 percent by weight of monoethanolamine and 70 percent deionized water was saturated with CO.sub.2 to obtain a final solution containing 0.45 to 0.55 moles of CO.sub.2 per mole of amine. This solution simulates a rich amine solution commonly found in gas conditioning plants.
About 350 ml of this solution with inhibitors is then placed in a 2" by 10" teflon-lined steel cylinder, prepared metal test coupons were inserted, and the cylinder was sealed and bolted shut.
The cylinder and its contents were then heated to 250.degree. F. for 24 hours. The coupons were then removed, cleaned and weighed. The corrosion rate in mils per year (M.P.Y.) is calculated from the following equation ##EQU1##
In the manner set forth above, Table I gives the corrosion rate using 304 stainless steel coupons at 250.degree. F. over a 24-hour period. The inhibitors used in these tests are listed therein.
Table I shows the dramatic decrease in the corrosion rates for stainless steel when using the inhibitors of this invention.
TABLE I______________________________________ METAL CORRO- SION RATE-MPYRUNS INHIBITOR 304SS______________________________________Control 1 NONE 11.6Example1 1 ppm Bi.sup.+3 (citrate) 0.532 3 ppm Bi.sup.+3 (subsalicylate) 0.733 4 ppm Bi.sup.+3 (ammonium citrate) 0.374 5 ppm Bi.sup.+3 (citrate) 0.55 10 ppm Bi.sup.+3 (subcarbonate) 0.96 10 ppm Bi.sup.+3 (citrate) 0.807 12 ppm Bi.sup.+3 (subgallate) 1.068 14 ppm Bi.sup.+3 (subsalicylate) 0.669 15 ppm Bi.sup.+3 (citrate) 0.5310 20 ppm Bi.sup.+3 (citrate) 0.3311 25 ppm Bi.sup.+3 (nitrate) 0.5512 25 ppm Bi.sup.+3 (nitrate) 0.4313 30 ppm Bi.sup.+3 (subcarbonate) 0.3314 50 ppm Bi.sup.+3 (nitrate) 0.615 75 ppm Bi.sup.+3 (nitrate) 0.616 100 ppm Bi.sup.+3 (nitrate) 0.5517 200 ppm Bi.sup.+3 (citrate) 0.17______________________________________
Claims
  • 1. A corrosion inhibited composition useful to inhibit corrosion in stainless steel acid gas removal equipment which comprises
  • (A) an aqueous alkanolamine solution, and
  • (B) a corrosion effective amount of a soluble bismuth compound in the trivalent state.
  • 2. The composition as set forth in claim 1 wherein the amount of said bismuth compound is in the range from 1 to 300 parts per million.
  • 3. A corrosion inhibited composition useful to inhibit corrosion in stainless steel acid gas removal equipment which comprises
  • (A) 15 to 20 weight percent of an alkanolamine,
  • (B) 85 to 50 weight percent of water, and
  • (C) 1 to 300 parts per million of a soluble bismuth compound in the trivalent state.
  • 4. The composition of claim 3 wherein the amount of said bismuth compound is in the range from 5 to 25 parts per million.
US Referenced Citations (11)
Number Name Date Kind
2776870 Fischer Jan 1957
3808140 Mago et al. Apr 1974
3896044 Mago et al. Jul 1975
3959170 Mago et al. May 1976
4071470 Davidson et al. Jan 1978
4096085 Holoman et al. Jun 1978
4100099 Asperger et al. Jul 1978
4100100 Clouse et al. Jul 1978
4102804 Clouse et al. Jul 1978
4116629 Gancy et al. Sep 1978
4143119 Asperger et al. Mar 1979