BISPECIFIC AGONISTIC ANTIBODIES TO IL12 RECEPTOR

Abstract
Bispecific agonistic antibodies that bind to IL-12 receptor, and methods of using the same, are provided.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in XML format and is hereby incorporated by reference in its entirety. Said XML file, created on Sep. 24, 2024, is named 750632_DGT9-004_ST26.xml and is 915,653 bytes in size.


BACKGROUND

Interleukin-12 (IL-12) has emerged as one of the most potent cytokines in mediating antitumor activity in a variety of preclinical models. It is known as a T-cell stimulating factor, which can stimulate the growth and function of T cells. Through pleiotropic effects on different immune cells that form the tumor microenvironment, IL-12 establishes a link between innate and adaptive immunity that involves different immune effector cells and cytokines depending on the type of tumor or the affected tissue. IL-12 is a heterodimeric pro-inflammatory cytokine that regulates T-cell and natural killer (NK) cell responses. IL-12 is also known to induce the production of interferon-γ (IFN-γ) and favors the differentiation of T helper 1 (TH1) cells. IL-12 binds to the IL-12 receptor, which is a heterodimeric receptor formed by IL-12Rβ 1 and IL-12Rβ2. IL-12Rβ2 is considered to play a key role in IL-12 function, as it is found on activated T cells. Upon binding, IL-12Rβ2 becomes tyrosine phosphorylated and provides binding sites for Tyk2 and Jak2 kinases. These are important in activating critical transcription factor proteins such as STAT4 that are implicated in IL-12 signaling in T cells and NK cells.


IL-12 has been considered a strong candidate for immunotherapy-based interventions in the treatment of cancer, as it potentiates tumor-specific cytotoxic NK and CD8+ T cells that are largely responsible for tumor killing. However, systemic administration of IL-12 is quite toxic, therefore, alternative methods of inducing signaling through the IL-12 receptor are needed.


SUMMARY

The present disclosure improves upon the prior art by providing heteromeric antibodies which can effectively crosslink the IL-12Rβ1 and the IL-12Rβ2 subunits of the IL-12 receptor and thereby activate IL-12R-mediated cell signaling.


In one aspect, provided herein is a multi-specific binding protein comprising at least a first binding moiety which binds specifically to a human interleukin-12 receptor 31 (IL-12Rβ 1) subunit, and at least a second binding moiety which binds specifically to a human IL-12 receptor β2 (IL-12Rβ2) subunit, wherein the second binding moiety exhibits higher binding affinity (KD) for the human IL-12Rβ2 subunit than the first binding moiety exhibits for the human IL-12Rβ 1 subunit, and is capable of inducing IL-12 receptor signaling by inducing proximity between the IL-12Rβ 1 and IL-12Rβ2 subunits of human IL-12 receptor.


In some embodiments, the binding affinity of the second binding moiety for the IL-12Rβ2 subunit is at least 5-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ1 subunit. In some embodiments, the binding affinity of the second binding moiety for the IL-12Rβ2 subunit is at least 10-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ1 subunit. In some embodiments, the binding affinity of the second binding moiety for the IL-12Rβ2 subunit is at least 20-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the second binding moiety for the IL-12Rβ2 subunit is at least 40-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the second binding moiety for the IL-12Rβ2 subunit is at least 100-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit.


In some embodiments, the binding affinity of the second binding moiety for the IL-12Rβ2 subunit promotes selective binding to activated T cells and/or NK cells.


In some embodiments, the first binding moiety comprises an IL-12Rβ 1 VHH domain and the second binding moiety comprises an IL-12Rβ2 VHH domain. In some embodiments, the first binding moiety comprises an IL-12Rβ1 Fab domain and the second binding moiety comprises an IL-12Rβ2 Fab domain. In some embodiments, the first binding moiety comprises an IL-12Rβ 1 VHH domain and the second binding moiety comprises an IL-12Rβ2 Fab domain. In some embodiments, the first binding moiety comprises an IL-12Rβ 1 Fab domain and the second binding moiety comprises an IL-12Rβ2 VHH domain. In some embodiments, the first binding moiety comprises an IL-12Rβ1 Fab domain and the second binding moiety comprises an IL-12Rβ2 scFv domain. In some embodiments, the first binding moiety comprises an IL-12Rβ 1 scFv domain and the second binding moiety comprises an IL-12Rβ2 Fab domain. In some embodiments, the first binding moiety comprises an IL-12Rβ1 scFv domain and the second binding moiety comprises an IL-12Rβ2 scFv domain. In some embodiments, the first binding moiety comprises an IL-12Rβ 1 scFv domain and the second binding moiety comprises an IL-12Rβ2 VHH domain. In some embodiments, the first binding moiety comprises an IL-12Rβ1 VHH domain and the second binding moiety comprises an IL-12Rβ2 scFv domain.


In some embodiments, the first binding moiety comprises a IL-12Rβ1 VHH domain. In some embodiments, the IL-12Rβ1 VHH domain comprises a HCDR1 sequence, a HCDR2 sequence, and a HCDR3 sequence as found in Table 4. In some embodiments, the IL-12Rβ 1 VHH domain comprises a sequence that is at least about 90% identical, at least about 95%, identical, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to the amino acid sequence of any one of the amino acid sequences in Table 5.


In some embodiments, the second binding moiety comprises an IL-12Rβ2 VHH domain. In some embodiments, the IL-12Rβ2 VHH domain comprises a HCDR1 sequence, a HCDR2 sequence, and a HCDR3 sequence as found in Table 9. In some embodiments, the IL-12Rβ2 VHH domain comprises a sequence that is at least about 90% identical, at least about 95%, identical, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to the amino acid sequence of any one of the amino acid sequences in Table 10.


In some embodiments, the IL-12Rβ1 VHH domain comprises the amino acid sequence of any one of the amino acid sequences in Table 5. In some embodiments, the IL-12Rβ2 VHH domain comprises the amino acid sequence of any one of the amino acid sequences in Table 10.


In some embodiments, the VHH domain comprises a P14A amino acid substitution according to Kabat numbering.


In some embodiments, the P14A amino acid substitution further stabilizes the multispecific binding protein.


In some embodiments, the P14A amino acid substitution increases the agonist properties of the multispecific binding protein.


In some embodiments, the first binding moiety or second binding moiety is a Fab or an scFv. In some embodiments, the Fab or scFv comprises a variable heavy chain region (VH) and a variable light chain region (VL). In some embodiments, the VH comprises a HCDR1 sequence, a HCDR2 sequence, and a HCDR3 sequence as found in Table 1. In some embodiments, the VL comprises a LCDR1 sequence, a LCDR2 sequence, and a LCDR3 sequence as found in Table 2. In some embodiments, the VH of the Fab or scFv of the first binding moiety comprises a sequence that is at least 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, or at least about 99% identical to an amino acid sequence of Table 3. In some embodiments, the VL of the Fab or scFv of the first binding moiety comprises a sequence that is at least 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, or at least about 99% identical to an amino acid sequence of Table 3. In some embodiments, the VH of the Fab or scFv of the first binding moiety comprises the amino acid sequence of Table 3. In some embodiments, the VL of the Fab or scFv of the first binding moiety comprises the amino acid sequence of Table 3. In some embodiments, the VH of the Fab or scFv of the second binding moiety comprises a sequence that is at least 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, or at least about 99% identical to an amino acid sequence of Table 8. In some embodiments, the VL of the Fab or scFv of the second binding moiety comprises a sequence that is at least 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, or at least about 99% identical to an amino acid sequence of Table 8.


In some embodiments, the first binding moiety comprises a IL-12Rβ1 VHH domain comprising a HCDR1 sequence of SEQ ID NO: 293, a HCDR2 sequence of SEQ ID NO: 294, and a HCDR3 sequence of SEQ ID NO: 295, and the second binding moiety comprises a IL-12Rβ2 VH domain and VL domain, the VH domain comprising a HCDR1 sequence of SEQ ID NO: 456, a HCDR2 sequence of SEQ ID NO: 457, and a HCDR3 sequence of SEQ ID NO: 458, and the VL domain comprising a LCDR1 sequence of SEQ ID NO: 532, a LCDR2 sequence of SEQ ID NO: 533, and a LCDR3 sequence of SEQ ID NO: 534.


In some embodiments, the first binding moiety comprises a IL-12Rβ1 VHH domain comprising SEQ ID NO: 369, and the second binding moiety comprises a IL-12Rβ2 VH domain and VL domain, the VH domain comprising SEQ ID NO: 586, and the VL domain comprising SEQ ID NO: 587.


In some embodiments, the multi-specific binding protein comprises a first heavy chain polypeptide (HC1) of SEQ ID NO: 736, a second heavy chain polypeptide (HC2) of SEQ ID NO: 737, and a light chain polypeptide (LC) of SEQ ID NO: 738.


In some embodiments, the first binding moiety comprises a IL-12Rβ1 VHH domain comprising a HCDR1 sequence of SEQ ID NO: 344, a HCDR2 sequence of SEQ ID NO: 345, and a HCDR3 sequence of SEQ ID NO: 346, and the second binding moiety comprises a IL-12Rβ2 VHH domain comprising a HCDR1 sequence of SEQ ID NO: 600, a HCDR2 sequence of SEQ ID NO: 601, and a HCDR3 sequence of SEQ ID NO: 602.


In some embodiments, the first binding moiety comprises a IL-12Rβ1 VHH domain comprising SEQ ID NO: 389, and the second binding moiety comprises a IL-12Rβ2 VHH domain comprising SEQ ID NO: 674.


In some embodiments, the multi-specific binding protein comprises a first heavy chain polypeptide (HC1) of SEQ ID NO: 859, and a second heavy chain polypeptide (HC2) of SEQ ID NO: 860.


In some embodiments, the first binding moiety comprises a IL-12Rβ 1 VH domain and VL domain, the VH domain comprising a HCDR1 sequence of SEQ ID NO: 70, a HCDR2 sequence of SEQ ID NO: 71, and a HCDR3 sequence of SEQ ID NO: 72, and the VL domain comprising a LCDR1 sequence of SEQ ID NO: 175, a LCDR2 sequence of SEQ ID NO: 176, and a LCDR3 sequence of SEQ ID NO: 177, and the second binding moiety comprises a IL-12Rβ2 VHH domain comprising a HCDR1 sequence of SEQ ID NO: 594, a HCDR2 sequence of SEQ ID NO: 595, and a HCDR3 sequence of SEQ ID NO: 596.


In some embodiments, the first binding moiety comprises a IL-12Rβ 1 VH domain and VL domain, the VH domain comprising SEQ ID NO: 257, and the VL domain comprising SEQ ID NO: 258, and the second binding moiety comprises a IL-12Rβ2 a VHH domain comprising SEQ ID NO: 672.


In some embodiments, the multi-specific binding protein comprises a first heavy chain polypeptide (HC1) of SEQ ID NO: 724, a second heavy chain polypeptide (HC2) of SEQ ID NO: 725, and a light chain polypeptide (LC) of SEQ ID NO: 726.


In some embodiments, the first binding moiety comprises a IL-12Rβ1 VHH domain comprising a HCDR1 sequence of SEQ ID NO: 293, a HCDR2 sequence of SEQ ID NO: 294, and a HCDR3 sequence of SEQ ID NO: 295, and the second binding moiety comprises a IL-12Rβ2 VH domain and VL domain, the VH domain comprising a HCDR1 sequence of SEQ ID NO: 411, a HCDR2 sequence of SEQ ID NO: 412, and a HCDR3 sequence of SEQ ID NO: 413, and the VL domain comprising a LCDR1 sequence of SEQ ID NO: 486, a LCDR2 sequence of SEQ ID NO: 487, and a LCDR3 sequence of SEQ ID NO: 488.


In some embodiments, the first binding moiety comprises a IL-12Rβ1 VHH domain comprising SEQ ID NO: 369, and the second binding moiety comprises a IL-12Rβ2 VH domain and VL domain, the VH domain comprising SEQ ID NO: 556, and the VL domain comprising SEQ ID NO: 557.


In some embodiments, the multi-specific binding protein comprises a first heavy chain polypeptide (HC1) of SEQ ID NO: 778, and a second heavy chain polypeptide (HC2) of SEQ ID NO: 779.


In some embodiments, the first binding moiety comprises a IL-12Rβ1 VHH domain comprising a HCDR1 sequence of SEQ ID NO: 344, a HCDR2 sequence of SEQ ID NO: 345, and a HCDR3 sequence of SEQ ID NO: 346, and the second binding moiety comprises a IL-12Rβ2 VHH domain comprising a HCDR1 sequence of SEQ ID NO: 597, a HCDR2 sequence of SEQ ID NO: 598, and a HCDR3 sequence of SEQ ID NO: 599.


In some embodiments, the first binding moiety comprises a IL-12Rβ1 VHH domain comprising SEQ ID NO: 389, and the second binding moiety comprises a IL-12Rβ2 VHH domain comprising SEQ ID NO: 673.


In some embodiments, the multi-specific binding protein comprises a first heavy chain polypeptide (HC1) of SEQ ID NO: 857, and a second heavy chain polypeptide (HC2) of SEQ ID NO: 858.


In some embodiments, the first binding moiety comprises a IL-12Rβ1 VHH domain comprising a HCDR1 sequence of SEQ ID NO: 344, a HCDR2 sequence of SEQ ID NO: 345, and a HCDR3 sequence of SEQ ID NO: 346, and the second binding moiety comprises a IL-12Rβ2 VHH domain comprising a HCDR1 sequence of SEQ ID NO: 612, a HCDR2 sequence of SEQ ID NO: 613, and a HCDR3 sequence of SEQ ID NO: 614.


In some embodiments, the first binding moiety comprises a IL-12Rβ1 VHH domain comprising SEQ ID NO: 389, and the second binding moiety comprises a IL-12Rβ2 VHH domain comprising SEQ ID NO: 678.


In some embodiments, the multi-specific binding protein comprises a first heavy chain polypeptide (HC1) of SEQ ID NO: 863, and a second heavy chain polypeptide (HC2) of SEQ ID NO: 864.


In some embodiments, the first binding moiety comprises a IL-12Rβ1 VHH domain comprising a HCDR1 sequence of SEQ ID NO: 308, a HCDR2 sequence of SEQ ID NO: 309, and a HCDR3 sequence of SEQ ID NO: 310, and the second binding moiety comprises a IL-12Rβ2 VHH domain comprising a HCDR1 sequence of SEQ ID NO: 612, a HCDR2 sequence of SEQ ID NO: 613, and a HCDR3 sequence of SEQ ID NO: 614.


In some embodiments, the first binding moiety comprises a IL-12Rβ 1 VHH domain comprising SEQ ID NO: 374, and the second binding moiety comprises a IL-12Rβ2 VHH domain comprising SEQ ID NO: 678.


In some embodiments, the multi-specific binding protein comprises a first heavy chain polypeptide (HC1) of SEQ ID NO: 828, and a second heavy chain polypeptide (HC2) of SEQ ID NO: 829.


In some embodiments, the first binding moiety comprises a IL-12Rβ 1 VHH domain comprising a HCDR1 sequence of SEQ ID NO: 308, a HCDR2 sequence of SEQ ID NO: 309, and a HCDR3 sequence of SEQ ID NO: 310, and the second binding moiety comprises a IL-12Rβ2 VH domain and VL domain, the VH domain comprising a HCDR1 sequence of SEQ ID NO: 447, a HCDR2 sequence of SEQ ID NO: 448, and a HCDR3 sequence of SEQ ID NO: 449, and the VL domain comprising a LCDR1 sequence of SEQ ID NO: 523, a LCDR2 sequence of SEQ ID NO: 524, and a LCDR3 sequence of SEQ ID NO: 525.


In some embodiments, the first binding moiety comprises a IL-12Rβ 1 VHH domain comprising SEQ ID NO: 374, and the second binding moiety comprises a IL-12Rβ2 VH domain and VL domain, the VH domain comprising SEQ ID NO: 580, and the VL domain comprising SEQ ID NO: 581.


In some embodiments, the multi-specific binding protein comprises a first heavy chain polypeptide (HC1) of SEQ ID NO: 745, a second heavy chain polypeptide (HC2) of SEQ ID NO: 746, and a light chain polypeptide (LC) of SEQ ID NO: 747.


In some embodiments, the first binding moiety comprises a IL-12Rβ 1 VHH domain comprising a HCDR1 sequence of SEQ ID NO: 302, a HCDR2 sequence of SEQ ID NO: 303, and a HCDR3 sequence of SEQ ID NO: 304, and the second binding moiety comprises a IL-12Rβ2 VHH domain comprising a HCDR1 sequence of SEQ ID NO: 597, a HCDR2 sequence of SEQ ID NO: 598, and a HCDR3 sequence of SEQ ID NO: 599.


In some embodiments, the first binding moiety comprises a IL-12Rβ 1 VHH domain comprising SEQ ID NO: 372, and the second binding moiety comprises a IL-12Rβ2 VHH domain comprising SEQ ID NO: 673.


In some embodiments, the multi-specific binding protein is capable of inducing IL-12 receptor signaling in the presence of IL-12.


In some embodiments, induction of IL-12 receptor signaling is detected via a surface plasmon resonance (SPR) assay.


In some embodiments, the SPR assay comprises the following steps: 1) contacting the first binding moiety and/or the second binding moiety with an extracellular domain (ECD) of one or both of IL-12R β1 and IL-12R β2 and isolated IL-12; and 2) detecting binding of the first binding moiety and/or the second binding moiety with the ECD of one or both of IL-12R β1 and IL-12R β2, wherein detection of binding indicates that the multi-specific binding protein is capable of inducing IL-12 receptor signaling in the presence of IL-12.


In some embodiments, the multi-specific binding protein is capable of binding specifically to human IL-12Rβ1 subunit and human IL-12Rβ2 subunit in the presence of IL-12.


In some embodiments, binding specifically to human IL-12Rβ1 subunit and human IL-12Rβ2 subunit is detected via a surface plasmon resonance (SPR) assay.


In some embodiments, the SPR assay comprises the following steps:

    • 1) contacting the first binding moiety and/or the second binding moiety with an extracellular domain (ECD) of one or both of IL-12R β1 and IL12R β2 and isolated IL-12; and
    • 2) detecting binding of the first binding moiety and/or the second binding moiety with the ECD of one or both of IL-12R β1 and IL-12R β2,
    • wherein detection of binding indicates that the multi-specific binding protein is capable of binding specifically to human IL-12Rβ 1 subunit and human IL-12Rβ2 subunit in the presence of IL-12.


In some embodiments, the first binding moiety designated 97B1 and 263B1 of the multi-specific binding protein compete for binding to IL-12Rβ 1.


In some embodiments, the first binding moiety designated 115B1, 258B1, 32B1, and 72B1 of the multi-specific binding protein compete for binding to IL-12Rβ 1.


In some embodiments, the first binding moiety designated 202B1 of the multi-specific binding protein competes for binding to IL-12Rβ 1 with one or more anti-IL-12 Rβ1 binding moieties disclosed herein.


In some embodiments, the first binding moiety designated 233B1 of the multi-specific binding protein competes for binding to IL-12Rβ 1 with one or more anti-IL-12 Rβ1 binding moieties disclosed herein.


In some embodiments, the first binding moiety designated 245B1v2 of the multi-specific binding protein competes for binding to IL-12Rβ 1 with one or more anti-IL-12 Rβ1 binding moieties disclosed herein.


In some embodiments, the first binding moiety designated 187B1 of the multi-specific binding protein competes for binding to IL-12Rβ 1 with one or more anti-IL-12 Rβ1 binding moieties disclosed herein.


In some embodiments, the second binding moiety designated 13B2 and 64B2 of the multi-specific binding protein compete for binding to IL-12Rβ2.


In some embodiments, the second binding moiety designated 185B2 and 219B2 of the multi-specific binding protein compete for binding to IL-12Rβ2.


In some embodiments, the second binding moiety designated 85B2 of the multi-specific binding protein competes for binding to IL-12Rβ2 with one or more anti-IL-12 Rβ2 binding moieties disclosed herein.


In some embodiments, the second binding moiety designated 19B2 of the multi-specific binding protein competes for binding to IL-12Rβ2 with one or more anti-IL-12 Rβ2 binding moieties disclosed herein.


In some embodiments, the second binding moiety designated 230B2 of the multi-specific binding protein competes for binding to IL-12Rβ2 with one or more anti-IL-12 Rβ2 binding moieties disclosed herein.


In some embodiments, the multi-specific binding protein further comprises all or part of an immunoglobulin Fc domain or variant thereof. In some embodiments, the Fc domain or variant thereof comprises a first Fc heavy chain and a second Fc heavy chain.


In some embodiments, the multi-specific binding protein further comprises a variant Fc domain with reduced effector function. In some embodiments, at least one Fc heavy chain comprises a substitution at amino acid position 234, according to EU numbering. In some embodiments, the substitution at amino acid position 234 is an alanine (A). In some embodiments, at least one Fc heavy chain comprises a substitution at amino acid position 235, according to EU numbering. In some embodiments, the substitution at amino acid position 235 is an alanine (A). In some embodiments, at least one Fc heavy chain comprises a substitution at amino acid position 237, according to EU numbering. In some embodiments, wherein the substitution at amino acid position 237 is an alanine (A). In some embodiments, at least one Fc heavy chain comprises one or more substitutions at amino acid positions 234, 235, or 237, according to EU numbering. In some embodiments, the substitution at amino acid position 234 is an alanine (A), the substitution at amino acid position 235 is an alanine (A), and the substitution at amino acid position 237 is an alanine (A).


In some embodiments, the Fc domain comprises heterodimerization mutations to promote heterodimerization of the first binding moiety with the second binding moiety. In some embodiments, wherein the heterodimerization mutations are Knob-in-Hole (KIH) mutations. In some embodiments, the first Fc heavy chain comprises an amino acid substitution at position 366, 368, or 407 which produced a hole, and the second Fc heavy chain comprises an amino acid substitution at position 366 which produced a knob. In some embodiments, the first Fc heavy chain comprises the amino acid substitution T366S, L368A, or Y407V, and the second Fc heavy chain comprises the amino acid substitution T366W.


In some embodiments, the heterodimerization mutations are charge stabilization mutations. In some embodiments, the first Fc heavy chain comprises the amino acid substitution N297K, and the second Fc heavy chain comprises the amino acid substitution N297D. In some embodiments, the first Fc heavy chain comprises the amino acid substitution T299K, and the second Fc heavy chain comprises the amino acid substitution T299D.


In some embodiments, the heterodimerization mutations comprise an engineered disulfide bond. In some embodiments, the engineered disulfide bond is formed by a first Fc heavy chain comprising the amino acid substitution Y349C, and a second Fc heavy chain comprising the amino acid substitution S354C. In some embodiments, the engineered disulfide bond is formed by a C-terminal extension peptide fused to the C-terminus of each of the first Fc heavy chain and the second Fc heavy chain. In some embodiments, the first Fc heavy chain C-terminal extension comprises the amino acid sequence GEC, and the second Fc heavy chain C-terminal extension comprises the amino acid sequence SCDKT(SEQ ID NO:951).


In some embodiments, at least one Fc domain comprises one or more mutations to promote increased half-life. In some embodiments, at least one Fc heavy chain comprises one or more substitutions at amino acid positions 252, 254, or 256, according to EU numbering.


In some embodiments, the substitution at amino acid position 252 is a tyrosine (Y), the substitution at amino acid position 254 is a threonine (T), and the substitution at amino acid position 236 is a glutamic acid (E).


In some embodiments, at least one Fc heavy chain comprises one or more substitutions at amino acid positions 428 or 434, according to EU numbering. In some embodiments, the substitution at amino acid 428 is a leucine (L), and the substitution at amino acid position 434 is a serine (S).


In some embodiments, the first binding moiety which specifically binds to human IL-12Rβ1 comprises heavy chain domain comprising an amino acid sequence set forth in any one of the sequences of Table 11. In some embodiments, the first binding moiety which specifically binds to human IL-12Rβ1 comprises a light chain domain comprising an amino acid sequence set forth in any one of the sequences of Table 11. In some embodiments, the second binding moiety which specifically binds to human IL-12Rβ2 comprises a heavy chain domain comprising an amino acid sequence set forth in any one of the sequences of Table 11. IN some embodiments, the second binding moiety which specifically binds to human IL-12Rβ2 comprises a light chain domain comprising an amino acid sequence set forth in any one of the sequences of Table 11.


In some embodiments, the multi-specific binding protein comprises the HC and LC of any of the antibodies of Table 11.


In another aspect, provided herein is a pharmaceutical composition comprising the multi-specific binding protein of any one of the preceding claims and a pharmaceutically acceptable carrier.


In another aspect, provided herein is an isolated nucleic acid molecule encoding the multi-specific binding protein as disclosed herein. In some embodiments, an expression comprises the nucleic acid encoding the multi-specific binding protein as disclosed herein. In some embodiments, an expression vector comprises the nucleic molecule encoding the multi-specific binding protein as disclosed herein. In some embodiments, a host cell comprises the expression vector disclosed herein.


In an aspect, provided herein is a method for treating a disease or disorder in a subject, comprising administering to a subject in need thereof the multi-specific binding protein as disclosed herein. In some embodiments, the disease or disorder is a cancer.


In some embodiments, the multi-specific binding protein as disclosed herein is for use as a medicament.


In yet another aspect, provided herein is a multi-specific binding protein comprising at least a first binding moiety which binds specifically to a human interleukin-12 receptor 1 (IL-12Rβ1) subunit, and at least a second binding moiety which binds specifically to a human IL-12 receptor β2 (IL-12Rβ2) subunit, wherein:

    • a) the first binding moiety comprises:
    • i) a HCDR1 amino acid sequence, a HCDR2 amino acid sequence, and a HCDR3 amino acid sequence disclosed in Tables 1, 3, 4, 5, or 11;
    • ii) a LCDR1 amino acid sequence, a LCDR1 amino acid sequence, and a LCDR3 amino acid sequence disclosed in Tables 2, 3, or 11; and
    • b) the second binding moiety comprises:
    • i) a HCDR1 amino acid sequence, a HCDR2 amino acid sequence, and a HCDR3 amino acid sequence disclosed in Tables 6, 8, 9, 10, or 11;
    • ii) a LCDR1 amino acid sequence, a LCDR1 amino acid sequence, and a LCDR3 amino acid sequence disclosed in Tables 7, 8, or 11.







DETAILED DESCRIPTION

Before the present disclosure is described, it is to be understood that this disclosure is not limited to particular methods and experimental conditions described, as such methods and conditions may vary. It is also understood that the terminology used herein is for the purpose of describing particular embodiments only, and it is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.


Although the methods and materials similar or equivalent to those described herein can be used in the practice of the present disclosure, exemplary methods and materials are now described. All publications mentioned herein are incorporated herein by reference to describe in their entirety.


As used herein, the term “interleukin-12” or “IL-12” refers to the heterodimeric cytokine comprising a p40 subunit and a p35 subunit. IL-12 is considered a largely pro-inflammatory cytokine, and is produced by antigen-presenting cells, such as dendritic cells and macrophages, and is crucial for the recruitment and effector functions of CD8+ T and NK cells. IL-12 binds through the IL-12 receptor.


As used herein, the term “interleukin-12 receptor” or “IL-12 receptor” or “IL-12R” refers to the type I cytokine receptor, which binds to the IL-12 cytokine. The IL-12 receptor is a heterodimeric receptor comprising an IL-12Rβ 1 subunit and an IL-12Rβ2 subunit. Binding of IL-12 to the IL-12 receptor is initiated by anchoring of the p40 subunit on IL-12Rβ1. The IL-12/IL-12 receptor interaction mediates signaling through the Jak/STAT pathway. Following binding, Jak kinases are activated, leading to the phosphorylation of the IL-12Rβ2 subunit, and recruits STAT4 proteins. STAT4 is phosphorylated to induce homodimerization and translocation to the nucleus where they bind to specific sequences and regulate IFN-γ gene transcription.


As used herein, the term “antigen-binding moiety” or “binding domain” or “binding specificity” refers to a molecule that specifically binds to an antigen as such binding is understood by one skilled in the art. For example, an antigen-binding moiety that specifically binds to an antigen binds to other molecules, generally with lower affinity as determined by, e.g., immunoassays, BIAcore®, KinExA 3000 instrument (Sapidyne Instruments, Boise, ID), or other assays known in the art. In certain embodiments, an antigen-binding moiety that specifically binds to an antigen binds to the antigen with a Ka that is at least 2 logs (e.g., factors of 10), 2.5 logs, 3 logs, 4 logs or greater than the Ka when the molecule binds non-specifically to another antigen. As used herein, the terms “antibody” and “antibodies” include full-length antibodies, antigen-binding fragments of full-length antibodies, and molecules comprising antibody CDRs, VH regions, and/or VL regions. Examples of antibodies include, without limitation, monoclonal antibodies, recombinantly produced antibodies, monospecific antibodies, multi-specific antibodies (including bispecific antibodies), human antibodies, humanized antibodies, chimeric antibodies, immunoglobulins, synthetic antibodies, tetrameric antibodies comprising two heavy chain and two light chain molecules, an antibody light chain monomer, an antibody heavy chain monomer, an antibody light chain dimer, an antibody heavy chain dimer, an antibody light chain-antibody heavy chain pair, intrabodies, heteroconjugate antibodies, antibody-drug conjugates, single domain antibodies, monovalent antibodies, single chain antibodies or single-chain Fvs (scFv), camelized antibodies, affibodies, common light chain antibodies, Fab fragments, F(ab′)2 fragments, disulfide-linked Fvs (sdFv), anti-idiotypic (anti-Id) antibodies (including, e.g., anti-anti-Id antibodies), and antigen-binding fragments of any of the above. In certain embodiments, antibodies described herein refer to polyclonal antibody populations. Antibodies can be of any type (e.g., IgG, IgE, IgM, IgD, IgA or IgY), any class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 or IgA2), or any subclass (e.g., IgG2a or IgG2b) of immunoglobulin molecule. In certain embodiments, antibodies described herein are IgG antibodies, or a class (e.g., human IgG1 or IgG4) or subclass thereof.


As used herein, the terms “VH” and “VL” refer to antibody heavy and light chain variable domain, respectively, as described in Kabat et al., (1991) Sequences of Proteins of Immunological Interest (NIH Publication No. 91-3242, Bethesda), which is herein incorporated by reference in its entirety.


As used herein, the term “VHH” refers to the heavy chain variable domain of a camelid heavy chain-only antibody (HCAb) and humanized variants thereof, as described in Hamers-Casterman C. et al., Nature (1993) 363:446-8.10.1038/363446a0, which is incorporated by reference herein in its entirety.


As used herein, the term “VH/VL Pair” refers to a combination of a VH and a VL that together form the binding site for an antigen.


As used herein, the term “heavy chain” when used in reference to an antibody can refer to any distinct type, e.g., alpha (a), delta (6), epsilon (F), gamma (γ), and mu (p), based on the amino acid sequence of the constant domain, which give rise to IgA, IgD, IgE, IgG, and IgM classes of antibodies, respectively, including subclasses of IgG, e.g., IgG1, IgG2, IgG3, and IgG4.


As used herein, the term “full-length antibody heavy chain” refers to an antibody heavy chain comprising, from N to C terminal, a VH, a CH1 region, a hinge region, a CH2 domain and a CH3 domain.


As used herein, the term “light chain” when used in reference to an antibody can refer to any distinct type, e.g., kappa (κ) or lambda (λ) based on the amino acid sequence of the constant domains. Light chain amino acid sequences are well known in the art. In specific embodiments, the light chain is a human light chain. As used herein, the term “complementarity determining region” or “CDR” refers to sequences of amino acids within antibody variable regions, which confer antigen specificity and binding affinity. In general, there are three CDRs in each heavy chain variable region (CDR-H1, CDR-H2, CDR-H3) and three CDRs in each light chain variable region (CDR-L1, CDR-L2, CDR-L3). “Framework regions” or “FR” are known in the art to refer to the non-CDR portions of the variable regions of the heavy and light chains. In general, there are four FRs in each heavy chain variable region (FR-H1, FR-H2, FR-H3, and FR-H4), and four FRs in each light chain variable region (FR-L1, FR-L2, FR-L3, and FR-L4).


The precise amino acid sequence boundaries of a given CDR or FR can be readily determined using any of a number of well-known schemes, including those described by Kabat et al. (1991), “Sequences of Proteins of Immunological Interest,” 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (“Kabat” numbering scheme), Al-Lazikani et al., (1997) JMB 273, 927-948 (“Chothia” numbering scheme), MacCallum et al., J. Mol. Biol. 262:732-745 (1996), “Antibody-antigen interactions: Contact analysis and binding site topography,” J. Mol. Biol. 262, 732-745. (“Contact” numbering scheme), Lefranc M. P. et al., “IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains,” Dev. Comp. Immunol., 2003 January; 27(1):55-77 (“IMGT” numbering scheme), and Honegger A. and Pluckthun A., “Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool,” J. Mol. Biol., 2001 Jun. 8; 309(3):657-70, (AHo numbering scheme).


The boundaries of a given CDR or FR may vary depending on the scheme used for identification. For example, the Kabat scheme is based on sequence alignments, while the Chothia scheme is based on structural information. Numbering for both the Kabat and Chothia schemes is based upon the most common antibody region sequence lengths, with insertions accommodated by insertion letters, for example, “30a,” and deletions appearing in some antibodies. The two schemes place certain insertions and deletions (“indels”) at different positions, resulting in differential numbering. The Contact scheme is based on analysis of complex crystal structures and is similar in many respects to the Chothia numbering scheme.


As used herein, the term “single chain variable fragment” (scFv) refers to a fusion protein comprising at least one antibody fragment comprising a variable region of a light chain and at least one antibody fragment comprising a variable region of a heavy chain, wherein the light and heavy chain variable regions are contiguously linked via a short flexible polypeptide linker, and capable of being expressed as a single chain polypeptide, and wherein the scFv retains the specificity of the intact antibody from which it is derived. Unless specified, as used herein an scFv may have the VL and VH variable regions in either order, e.g., with respect to the N-terminal and C-terminal ends of the polypeptide, the scFv may comprise VL-linker-VH or may comprise VH-linker-VL.


The term “human antibody,” as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences. The human mAbs of the disclosure may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs and in particular CDR3. However, the term “human antibody,” as used herein, is not intended to include mAbs in which CDR sequences derived from the germline of another mammalian species (e.g., mouse), have been grafted onto human FR sequences. The term includes antibodies recombinantly produced in a non-human mammal, or in cells of a non-human mammal. The term is not intended to include antibodies isolated from or generated in a human subject.


The term “multi-specific antigen-binding molecules,” as used herein refers to bispecific, tri-specific or multi-specific antigen-binding molecules, and antigen-binding fragments thereof. Multi-specific antigen-binding molecules may be specific for different epitopes of one target polypeptide or may contain antigen-binding domains specific for epitopes of more than one target polypeptide. In certain embodiment, the multi-specific antigen binding molecules of the disclosure comprises at least a first binding specificity for the IL-12Rβ 1 subunit and at least a second binding specificity for the IL-12Rβ2 subunit. A multi-specific antigen-binding molecule can be a single multifunctional polypeptide, or it can be a multimeric complex of two or more polypeptides that are covalently or non-covalently associated with one another. The term “multi-specific antigen-binding molecules” includes antibodies of the present disclosure that may be linked to or co-expressed with another functional molecule, e.g., another peptide or protein. For example, an antibody or fragment thereof can be functionally linked (e.g., by chemical coupling, genetic fusion, non-covalent association or otherwise) to one or more other molecular entities, such as a protein or fragment thereof to produce a bi-specific or a multi-specific antigen-binding molecule with a second binding specificity. According to the present disclosure, the term “multi-specific antigen-binding molecules” also includes bispecific, trispecific or multi-specific antibodies or antigen-binding fragments thereof. In certain exemplary embodiments, an antibody of the present disclosure is functionally linked to another antibody or antigen-binding fragment thereof to produce a bispecific antibody with a second binding specificity.


In exemplary embodiments, the heteromeric antibodies of the present disclosure are bispecific antibodies. Bispecific antibodies can be monoclonal, e.g., human or humanized, antibodies that have binding specificities for at least two different antigens. In certain embodiments, the bispecific antibodies of the disclosure comprises at least a first binding domain for the IL-12Rβ1 subunit and at least a second binding domain for the IL-12Rβ2 subunit.


Methods for making bispecific antibodies are well-known. Traditionally, the recombinant production of bispecific antibodies was based on the co-expression of two immunoglobulin heavy chain/light chain pairs, where the two heavy chains have different specificities (Milstein et al., Nature 305:537 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, the hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. More modern techniques for generating bispecific antibodies employ heterodimerization domains that favor desired pairing of heavy chain from the antibody with a first specificity to the heavy chain of an antibody with a second specificity.


Antibody variable domains with the desired binding specificities can be fused to immunoglobulin constant domain sequences. The fusion typically is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It may have the first heavy chain constant region (CH1) containing the site necessary for light chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transformed into a suitable host organism. For further details of generating bispecific antibodies see, for example Suresh et al., Meth. Enzymol. 121:210 (1986).


As used herein, the term “Fc” refers to a polypeptide comprising a CH2 domain and a CH3 domain, wherein the C-terminus of the CH2 domain is linked (directly or indirectly) to the N-terminus of the CH3 domain. The term “Fc polypeptide” includes an antibody heavy chain linked to an antibody light chain by disulfide bonds (e.g., to form a half-antibody).


As used herein, the term “CH1 domain” refers to the first constant domain of an antibody heavy chain (e.g., amino acid positions 118-215 of human IgG1, according to the EU index). The term includes naturally occurring CH1 domains and engineered variants of naturally occurring CH1 domains (e.g., CH1 domains comprising one or more amino acid insertions, deletions, substitutions, or modifications relative to a naturally occurring CH1 domain).


As used herein, the term “CH2 domain” refers to the second constant domain of an antibody heavy chain (e.g., amino acid positions 231-340 of human IgG1, according to the EU index). The term includes naturally occurring CH2 domains and engineered variants of naturally occurring CH2 domains (e.g., CH2 domains comprising one or more amino acid insertions, deletions, substitutions, or modifications relative to a naturally occurring CH2 domain).


As used herein, the term “CH3 domain” refers to the third constant domain of an antibody heavy chain (e.g., amino acid positions 341-447 of human IgG1, according to the EU index). The term includes naturally occurring CH3 domains and engineered variants of naturally occurring CH3 domains (e.g., CH3 domains comprising one or more amino acid insertions, deletions, substitutions, or modifications relative to a naturally occurring CH3 domain).


As used herein, the term “hinge region” refers to the portion of an antibody heavy chain comprising the cysteine residues (e.g., the cysteine residues at amino acid positions 226 and 229 of human IgG1, according to the EU index) that mediate disulfide bonding between two heavy chains in an intact antibody. The term includes naturally occurring hinge regions and engineered variants of naturally occurring hinge regions (e.g., hinge regions comprising one or more amino acid insertions, deletions, substitutions, or modifications relative to a naturally occurring hinge regions). An exemplary full-length IgG1 hinge region comprises amino acid positions 216-230 of human IgG1, according to the EU index. A hinge region may consist of at least 2 (e.g., 5, 10, 15, 20, 40, 60 or more) amino acids which result in a flexible or semi-flexible linkage between adjacent variable regions and/or constant domains in a single polypeptide molecule. In some embodiments, the hinge region is an immunoglobulin-like hinge region. In some embodiments, the immunoglobulin-like hinge region can be from or derived from any IgG1, IgG2, IgG3, or IgG4 subtype, or from IgA, IgE, IgD or IgM, including chimeric forms thereof, e.g., a chimeric IgG1/2 hinge region.


In some embodiments, the hinge region can be from the human IgG1 subtype extending from amino acid 216 to amino acid 230 according to the numbering system of the EU index, or from amino acid 226 to amino acid 243 according to the numbering system of Kabat. Those skilled in the art may differ in their understanding of the exact amino acids corresponding to the various domains of the IgG molecule. Thus, the N-terminal or C-terminal of the domains outlined above may extend or be shortened by 1, 2, 3, 4, 5, 6, 7, 8, 9, or even 10 amino acids.


The term “upper hinge” as used herein typically refers to the last residue of the CH1 domain up to but not including the first inter-heavy chain cysteine. The upper hinge can sometimes be defined as the N-terminal sequence from position 216 to position 225 according to the Kabat EU numbering system of an IgG1 antibody (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institute of Health, Bethesda, Md., 1991). The term “middle hinge” refers to the region extending from the first inter-heavy chain cysteine to a proline residue adjacent to the carboxyl-end of the last middle hinge cysteine. The middle hinge can be the N-terminal sequence from position 226 to position 230 according to the Kabat EU numbering system. The term “lower hinge” refers to a highly conserved 7-8 amino acids. The lower hinge can be defined as the sequence from position 231 to 238 according the Kabat EU numbering system of an IgG1 antibody. In some embodiments, the antibody according to the present invention effectively comprises an upper, a middle, and a lower hinge.


As used herein, the term “a modified hinge region” refers to a hinge region in which alterations are made in one or more of the characteristics of the hinge, including, but not limited to, flexibility, length, conformation, charge and hydrophobicity relative to a wild-type hinge. The modified hinge regions disclosed herein may be generated by methods well known in the art, such as, for example introducing a modification into a wild-type hinge. In some embodiments, the hinge region may be modified by one or more amino acids. Modifications which may be utilized to generate a modified hinge region include, but are not limited to, amino acid insertions, deletions, substitutions, and rearrangements. Said modifications of the hinge and the modified hinge regions disclosed are referred to herein jointly as “hinge modifications of the invention”, “modified hinge(s) of the invention” or simply “hinge modifications” or “modified hinge(s).” The modified hinge regions disclosed herein may be incorporated into a molecule of choice including, but not limited to, antibodies and fragments thereof. In some embodiments, the hinge region may be truncated and contain only a portion of the full hinge region.


As demonstrated herein, molecules comprising a modified hinge may exhibit altered (e.g., enhanced) agonistic activity when compared to a molecule having the same amino acid sequence except for the modified hinge, such as, for example, a molecule having the same amino acid sequence except comprising a wild type hinge. In some embodiments, the antibody comprises a modified hinge region wherein the upper hinge region is up to 7 amino acids in length. In some embodiments, the upper hinge region is absent. In some embodiments, the modified hinge is a modified IgG1 linker. In some embodiments, the modified IgG1 hinge is derived from the sequence PLAPDKTHT (SEQ ID NO: 910). In some embodiments, the modified IgG1 hinge comprises the sequence PLAP (SEQ ID NO: 911). In some embodiments, the modified IgG1 hinge comprises the sequence DKTHT (SEQ ID NO: 912). In some embodiments, the modified hinge is a modified IgG4 hinge. In some embodiments, the modified IgG1 hinge comprises the sequence EKSYGPP (SEQ ID NO: 913). In some embodiments, the modified hinge is a Gly/Ser hinge. In some embodiments, the Gly/Ser hinge comprises the sequence GGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 914). In some embodiments, the C-terminal residues of the variable domain adjacent to the upper hinge are truncated. In some embodiments, at least one residue of the variable domain adjacent to the upper hinge is truncated. In some embodiments, at least two residues of the variable domain adjacent to the upper hinge are truncated.


The modified hinge region of the disclosure may be used as a linker to attach one or more binding moieties (e.g., antigen binding domains) of the disclosure. In certain embodiments, a first binding moiety is linked to a second binding moiety via at least one modified hinge region. In certain embodiments, a first variable heavy chain domain (VH1) linked to a second variable heavy chain domain (VH2) via at least one modified hinge region. In certain embodiments, a first variable light chain domain (VL1) linked to a second variable light chain domain (VL2) via at least one modified hinge region. The VH1 and VL1 associate to form a first antigen binding domain and the VH2 and VL2 associate to form a second antigen binding domain. In other embodiments, a first scFv is linked to a second scFv via at least one modified hinge region.


In certain embodiments, the multispecific binding proteins of the disclosure (i.e., multispecific binding proteins having at least a first binding moiety and a second binding moiety) have greater agonist activity compared to a multispecific binding protein that lacks at least one modified hinge region. For example, but in no way limiting, a multispecific binding protein having a VH1 linked to a VH2 via at least one modified hinge region and/or a VL1 linked to a VL2 via at least one modified hinge region may possess greater agonist activity of a target receptor pair (e.g., a human interleukin-12 receptor R 1 (IL-12Rβ 1) subunit and a human IL-12 receptor 32 (IL-12Rβ2) subunit), than the same multispecific binding protein that does not have the at least one modified hinge region.


As used herein, the term “EU index” refers to the EU numbering convention for the constant regions of an antibody, as described in Edelman, G M. et al., Proc. Natl. Acad. USA, 63, 78-85 (1969) and Kabat et al., Sequences of Proteins of Immunological Interest, U.S. Dept. Health and Human Services, 5th edition, 1991, each of which is herein incorporated by reference in its entirety. All numbering of amino acid positions of the Fc polypeptides, or fragments thereof, used herein is according to the EU index. As used herein, the term “linker” refers to 0-100 contiguous amino acid residues. The linkers are, present or absent, and same or different. Linkers comprised in a protein or a polypeptide may all have the same amino acid sequence or may have different amino acid sequences.


In some embodiments, the term “linker” refers to 1-100 contiguous amino acid residues. Typically, a linker provides flexibility and spatial separation between two amino acids or between two polypeptide domains. A linker may be inserted between VH, VL, CH and/or CL domains to provide sufficient flexibility and mobility for the domains of the light and heavy chains depending on the format of the molecule. A linker is typically inserted at the transition between variable domains between variable and constant domain, or between constant and constant domains, respectively, at the amino sequence level. The transition between domains can be identified because the approximate sizes of the immunoglobulin domains are well understood. The precise location of a domain transition can be determined by locating peptide stretches that do not form secondary structural elements such as beta-sheets or alpha-helices as demonstrated by experimental data or as can be determined by techniques of modeling or secondary structure prediction.


As used herein, the term “specifically binds,” “specifically binding,” “binding specificity” or “specifically recognized” refers that an antigen binding protein or antigen-binding fragment thereof that exhibits appreciable affinity for an antigen (e.g., an IL-12R antigen) and does not exhibit significant cross reactivity to a target that is not an IL-12R protein. As used herein, the term “affinity” refers to the strength of the interaction between an antigen binding protein or antigen-binding fragment thereof antigen binding site and the epitope to which it binds. In certain exemplary embodiments, affinity is measured by surface plasmon resonance (SPR), e.g., in a BIAcore® instrument. As readily understood by those skilled in the art, an antigen binding protein affinity may be reported as a dissociation constant (KD) in molarity (M). The antigen binding protein or antigen-binding fragment thereof of the disclosure have KD values in the range of about 10-5 M to about 10-12 M (i.e., low micromolar to picomolar range), about 10-7 M to 10-11 M, about 10-8 M to about 10-10 M, about 10-9 M. In certain embodiments, the antigen binding protein or antigen-binding fragment thereof has a binding affinity of about 10-5 M, 10-6 M, 10-7 M, 10-8 M, 10-9 M, 10-10 M, 10-11 M, or 10-12 M. In certain embodiments, the antigen binding protein or antigen-binding fragment thereof has a binding affinity of about 10-7 M to about 10-9 M (nanomolar range).


Specific binding can be determined according to any art-recognized means for determining such binding. In some embodiments, specific binding is determined by competitive binding assays (e.g., ELISA) or BIAcore® assays. In certain embodiments, the assay is conducted at about 20° C., 25° C., 30° C., or 37° C.


As used herein, “administer” or “administration” refers to the act of injecting or otherwise physically delivering a substance as it exists outside the body (e.g., an isolated binding polypeptide provided herein) into a patient, such as by, but not limited to, pulmonary (e.g., inhalation), mucosal (e.g., intranasal), intradermal, intravenous, intramuscular delivery and/or any other method of physical delivery described herein or known in the art. When a disease, or a symptom thereof, is being managed or treated, administration of the substance typically occurs after the onset of the disease or symptoms thereof. When a disease, or symptom thereof, is being prevented, administration of the substance typically occurs before the onset of the disease or symptoms thereof and may be continued chronically to defer or reduce the appearance or magnitude of disease-associated symptoms.


As used herein, the term “composition” is intended to encompass a product containing the specified ingredients (e.g., an isolated binding polypeptide provided herein) in, optionally, the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in, optionally, the specified amounts.


“Effective amount” means the amount of active pharmaceutical agent (e.g., an isolated binding polypeptide of the present disclosure) sufficient to effectuate a desired physiological outcome in an individual in need of the agent. The effective amount may vary among individuals depending on the health and physical condition of the individual to be treated, the taxonomic group of the individuals to be treated, the formulation of the composition, assessment of the individual's medical condition, and other relevant factors.


As used herein, the terms “subject” and “patient” are used interchangeably. As used herein, a subject can be a mammal, such as a non-primate (e.g., cows, pigs, horses, cats, dogs, rats, mice, etc.) or a primate (e.g., monkey and human). In certain embodiments, the term “subject,” as used herein, refers to a vertebrate, such as a mammal. Mammals include, without limitation, humans, non-human primates, wild animals, feral animals, farm animals, sport animals, and pets.


As used herein, the term “therapy” refers to any protocol, method and/or agent that can be used in the prevention, management, treatment and/or amelioration of a disease or a symptom related thereto. In some embodiments, the term “therapy” refers to any protocol, method and/or agent that can be used in the modulation of an immune response to an infection in a subject or a symptom related thereto. In some embodiments, the terms “therapies” and “therapy” refer to a biological therapy, supportive therapy, and/or other therapies useful in the prevention, management, treatment and/or amelioration of a disease or a symptom related thereto, known to one of skill in the art such as medical personnel. In other embodiments, the terms “therapies” and “therapy” refer to a biological therapy, supportive therapy, and/or other therapies useful in the modulation of an immune response to an infection in a subject or a symptom related thereto known to one of skill in the art such as medical personnel.


As used herein, the terms “treat,” “treatment” and “treating” refer to the reduction or amelioration of the progression, severity, and/or duration of a disease or a symptom related thereto, resulting from the administration of one or more therapies (including, but not limited to, the administration of one or more prophylactic or therapeutic agents, such as an isolated binding polypeptide provided herein). The term “treating,” as used herein, can also refer to altering the disease course of the subject being treated. Therapeutic effects of treatment include, without limitation, preventing occurrence or recurrence of disease, alleviation of symptom(s), diminishment of direct or indirect pathological consequences of the disease, decreasing the rate of disease progression, amelioration or palliation of the disease state, and remission or improved prognosis.


The term “about” or “approximately” means within about 20%, such as within about 10%, within about 5%, or within about 1% or less of a given value or range.


The IL-12R Signaling Pathway

IL-12 was identified in the late 1980s from the culture media of Epstein-Barr virus-transformed lymphoblastoid B cell lines, which was able to stimulate natural killer (NK) cell activity, generate lymphokine-activated killer cells, and induce the production of IFN-7 from NK and T-cells (Kobayashi et al. J Exp Med. 1989; 170:827-45). It was found to be a heterodimeric molecule, consisting of a p35 subunit and a p40 subunit, which is formed via disulfide bonds. It has been noted that a number of cell types, including B lymphocytes, macrophages, and dendritic cells, produce IL-12.


The IL-12 receptor is primarily expressed on activated T and NK cells (Desai et al., J Immunol. 1992; 148:3125-32), and comprises the IL-12Rβ 1 subunit and the IL-12Rβ2 subunit. IFN-γ, and to a lesser extent, IL-2 positively affect expression of the receptor. Upon binding of IL-12, heterodimerization of the two subunits occurs. This dimerization induces activation of the receptor-associated JAK molecules JAK2 and Tyk2, which trans-phosphorylate one another as well as tyrosine residues in the intracellular domain of IL-12Rβ2, which serve as docking sites for the SH2-containing STAT4 (Yao et al., Arch. Biochem. Biophys. 1999; 368: 147-155). Receptor-associated STAT4 proteins are phosphorylated before translocating to the nucleus, promoting expression of IFN-7 and the polarization of CD4+ T cells toward a T helper (Th1) phenotype (Trinchieri, Nat. Rev. Immunol. 2003; 3: 133-146). In CD4+ T cells, STAT4 activation by IL-12 is required for the transcription of T-bet, a positive regulator of Th1 differentiation. T-bet enhances the expression of Th1-specific cytokines, chemokines, and Th1's associated receptors. T-bet in combination with STAT4 enhances transcription of CXCR3, IL-12Rβ 1, CCL3, and CCL4. CCL3 and CCL4 are required for the intra-tumoral recruitment of cytotoxic NK cells and CD8+ T cells (Vilgelm et al., Front. Immunol. 2019; 10:333. doi: 10.3389/fimmu.2019.00333; Allen et al., Oncoimmunology. 2018; 7:e1393598. doi: 10.1080/2162402X.2017.1393598; and Allen et al., Front. Immunol. 2017; 8:1390. doi: 10.3389/fimmu.2017.01390).


In the presence of IL-12, NK cells are activated, express CD69 and CD25, and can further proliferate in the tumor microenvironment. Activated Th1 and NK cells proliferate and can infiltrate into the tumor, where Th1 cells support the effector functions of tumor-specific cytotoxic T cells. The IFN-γ, granzyme, and perforin secreted by cytotoxic NK cells and CD8+ T cells can induce apoptosis of cancer cells and control tumor growth. Further, IL-12 has been shown to facilitate antigen presentation by upregulating major histocompatibility complex (MHC) I on tumor cells, favoring polarization of M1 macrophages and attracting effector immune cells by enhancing production of chemokines (e.g., CXCL9, CXCL10, and CXCL11). IL-12 can also neutralize signaling by negative regulatory receptors on CD8+ T cells, such as PD-1 and IFNγR2, protecting tumor infiltrating CD8+ T cells from IFN-γ-induced cell death. IL-12 also inhibits tumor-induced Treg cell proliferation.


Cytokine-based immunotherapy has been shown to be effective for a number of different cancers. Because of its effects on cytotoxic T cells and NK cells, IL-12 has been considered a candidate for immunotherapy-based interventions. However, systemic administration of IL-12 has been shown to be quite toxic, therefore alternative methods of delivering IL-12 or inducing signaling via the IL-12 receptor have been investigated. Instead of systemic administration, localized delivery of IL-12 has been the subject of cancer immunotherapy (Nguyen et al., Front. Immunol. 2020; 11:575597. doi: 10.3389/fimmu.2020.575597.). Others have reported systemic delivery using an oncolytic adenovirus encoding IL-12 lacking a signal peptide to reduce the toxic side effects seen with IL-12 administration (Wang et al., Nat. Commun. 2017; 8:1-15). Other strategies employed have utilized nanoparticle-mediated delivery of IL-12. These findings suggest that increasing signaling via the IL-12 receptor, can be an effective cancer immunotherapy.


Anti-IL-12Rβ1 Binding Domains

In one aspect of the multi-specific binding protein of the present disclosure is a binding moiety, binding domain, or binding specificity which binds the IL-12Rβ 1 receptor subunit of the IL-12 receptor (e.g., human IL-12R). Any type of binding moiety that specifically binds the IL-12Rβ1 receptor subunit can be employed in the multi-specific binding proteins disclosed herein. In certain embodiments, the binding moiety comprises an antibody variable domain. Exemplary binding moieties comprising an antibody variable domain include, without limitation: a heavy chain variable domain (VH), a light chain variable domain (VL), a VHH, a VH/VL pair, a single-chain variable fragment (scFv), a diabody, or a fragment antigen binding region (Fab). Other suitable binding moiety formats include, without limitation, lipocalins (see e.g., Gebauer M. et al., 2012, Method Enzymol. 503:157-188, which is incorporated by reference herein in its entirety), adnectins (see e.g., Lipovsek D., 2011, Protein Eng. Des. Sel. 24:3-9, which is incorporated by reference herein in its entirety), avimers (see e.g., Silverman J, et al., 2005, Nat. Biotechnol. 23:1556-1561, which is incorporated by reference herein in its entirety), fynomers (see e.g., Schlatter D, et al., 2012, mAbs 4:497-508, which is incorporated by reference herein in its entirety), kunitz domains (see e.g., Hosse R. J. et al., 2006, Protein Sci. 15:14-27, which is incorporated by reference herein in its entirety), knottins (see e.g., Kintzing J. R. et al., 2016, Curr. Opin. Chem. Biol. 34:143-150, which is incorporated by reference herein in its entirety), affibodies (see e.g., Feldwisch J. et al., 2010 J. Mol. Biol. 398:232-247, which is incorporated by reference herein in its entirety), and DARPins (see e.g., Pluckthun A., 2015, Annu. Rev. Pharmacol. Toxicol. 55:489-511, which is incorporated by reference herein in its entirety).


In certain embodiments, the binding domain comprises the heavy and/or light chain variable regions of a conventional antibody or antigen binding fragment thereof (e.g., a Fab or scFv), wherein the term “conventional antibody” is used herein to describe heterotetrameric antibodies containing heavy and light immunoglobulin chains arranged according to the “Y” configuration. Such conventional antibodies may derive from any suitable species including but not limited to antibodies of llama, alpaca, camel, mouse, rat, rabbit, goat, hamster, chicken, monkey, or human origin. In certain exemplary embodiments, the conventional antibody comprises a VH and a VL wherein the VH and/or VL domains or one or more complementarity determining regions (CDRs) thereof are derived from the same antibodies. In certain embodiments, the conventional antibody antigen binding region may be referred to as a “Fab” (Fragment antigen-binding). The Fab comprises one constant and one variable domain from each of heavy chain and light chain. The variable heavy and light chains contain the CDRs responsible for antigen binding.


In some embodiments, the IL-12Rβ1 receptor subunit binding domain comprises the exemplary CDRs as provided in Table 1 and Table 2. In some embodiments, the IL-12Rβ1 receptor subunit binding domain comprises the sequences as provided in Table 3.









TABLE 1







IL-12Rβ1 heavy variable chain (VH) CDRs (HCDR1, HCDR2, and HCDR3)










Heavy Chain





Hybridoma ID
HCDR1
HCDR2
HCDR3





85801_01D14A
NAWMN
RIKSKTDGGTTDYAAPVKG
DPGWEFDY



(SEQ ID NO: 1)
(SEQ ID NO: 2)
(SEQ ID NO: 3)





85801_01J03A
NYYWS
YIFYNGITDYNPSLKS
ESGMGATLMAFDI



(SEQ ID NO: 4)
(SEQ ID NO: 5)
(SEQ ID NO: 6)





85801_01K04A
NARMGVS
HIFSNDEKSYSTSLKS
IGSGTYYGWFDP



(SEQ ID NO: 7)
(SEQ ID NO: 8)
(SEQ ID NO: 9)





85801_01L02A
DYYMH
WINPDSGGTNYAQKFQG
EGATSNFDY



(SEQ ID NO: 10)
(SEQ ID NO: 11)
(SEQ ID NO: 12)





85801_01M07A
DDYMH
WINPNSGGTNYAQKFQG
GGLNWGWDWFDP



(SEQ ID NO: 13)
(SEQ ID NO: 14)
(SEQ ID NO: 15)





85801_01O02A
DYYMH
WINPDNGGANYAQRFLG
EGSGSPYAFDL



(SEQ ID NO: 16)
(SEQ ID NO: 17)
(SEQ ID NO: 18)





85801_02G10A
SYYIH
IINPSGGITSYAQQFQG
EGDWYFDL



(SEQ ID NO: 19)
(SEQ ID NO: 20)
(SEQ ID NO: 21)





85801_02K24A
SYDWS
RIYTSGSTIYNPSLKS
DRGNYPHDAFDI



(SEQ ID NO: 22)
(SEQ ID NO: 23)
(SEQ ID NO: 24)





85801_02N03A
DYYIH
WINPNSGGTHYAQKFQG
EGGWNYFSGMDV



(SEQ ID NO: 25)
(SEQ ID NO: 26)
(SEQ ID NO: 27)





85801_02O11A
SYDMN
YINSRSSTIYYADSVKG
EIEDSMDV



(SEQ ID NO: 28)
(SEQ ID NO: 29)
(SEQ ID NO: 30)





85801_03P23A
SYWMS
NIKQDGSEKYYVDSVKG
GSIAAPFDY



(SEQ ID NO: 31)
(SEQ ID NO: 32)
(SEQ ID NO: 33)





85801_04D10A
SYAMS
GISGSGGGIYYADSVKG
RLIGYWYFDL



(SEQ ID NO: 34)
(SEQ ID NO: 35)
(SEQ ID NO: 36)





85801_04D14A
DYYMH
WINPNSGGTHYSQKFQG
EGDYISSSAFDY



(SEQ ID NO: 37)
(SEQ ID NO: 38)
(SEQ ID NO: 39)





85801_04E12A
GYYMH
WINPNSSGTNYAQKFQG
MKRWLQGIDF



(SEQ ID NO: 40)
(SEQ ID NO: 41)
(SEQ ID NO: 42)





85801_04G19A
SYYWS
RIYTSGSTIYNPSLKS
SRSYPHDAFDI



(SEQ ID NO: 43)
(SEQ ID NO: 44)
(SEQ ID NO: 45)





85801_04G23A
SYGMH
VIWNDGSNKYYADSVKG
GELFFDY



(SEQ ID NO: 46)
(SEQ ID NO: 47)
(SEQ ID NO: 48)





85801_04M04A
SYYIH
IINPSGGSTSYAQKFQG
SNWAYAFDI



(SEQ ID NO: 49)
(SEQ ID NO: 50)
(SEQ ID NO: 51)





85801_04M10A
SYYWS
RFYTSGSTIYNPSLES
ERDYPHDAFDI



(SEQ ID NO: 52)
(SEQ ID NO: 53)
(SEQ ID NO: 54)





85801_04M12A
SHGMH
IIWYAGNKKYYADSVKG
ESLLNSASDI



(SEQ ID NO: 55)
(SEQ ID NO: 56)
(SEQ ID NO: 57)





85801_04N20A
SYWMS
NIKQDGSEKYYVDSVKG
EELTGLYWYFDL



(SEQ ID NO: 58)
(SEQ ID NO: 59)
(SEQ ID NO: 60)





85801_05E17A
NYYMH
IITSSGGSTSYAQKFQG
EDLYYFDY



(SEQ ID NO: 61)
(SEQ ID NO: 62)
(SEQ ID NO: 63)





85801_05F05A
GYYWN
EINHSGSTHYNPSLKS
ALTGYFDY



(SEQ ID NO: 64)
(SEQ ID NO: 65)
(SEQ ID NO: 66)





85801_05F12A
DYYMH
WINPNSGGTHYAQKFQG
EGETVAGYFDY



(SEQ ID NO: 67)
(SEQ ID NO: 68)
(SEQ ID NO: 69)





85801_05G01A
DYYLH
WINPNNGGTHYAQKFQG
EMGGTTAFDY



(SEQ ID NO: 70)
(SEQ ID NO: 71)
(SEQ ID NO: 72)





85801_06L19A
DYYIH
WINPDSGGTHYAQKFQG
EGEGLASFDS



(SEQ ID NO: 73)
(SEQ ID NO: 74)
(SEQ ID NO: 75)





85801_07A01A
SYWMS
NIKQDGSEKYYVDSVKG
EGLQLGIFDY



(SEQ ID NO: 76)
(SEQ ID NO: 77)
(SEQ ID NO: 78)





85801_07A17A
SYFWS
YLDYRGSTSYNPSVKS
DLEDAFDV



(SEQ ID NO: 79)
(SEQ ID NO: 80)
(SEQ ID NO: 81)





85801_07A19A
DYYMH
WINPNSGGTNYAQKFQG
EVGDIAVAGVFDY



(SEQ ID NO: 82)
(SEQ ID NO: 83)
(SEQ ID NO: 84)





85801_07H04A
SYSMN
YFSSRSGTKYYADSVKG
EPHWDAFDL



(SEQ ID NO: 85)
(SEQ ID NO: 86)
(SEQ ID NO: 87)





85801_07L08A
SYYMH
IINPSGGITSYAQKFQG
DPDWGFFDY



(SEQ ID NO: 88)
(SEQ ID NO: 89)
(SEQ ID NO: 90)





85801_07O09A
SDYWI
RIYTSGSTNYNPSLKS
EVTGEFDY



(SEQ ID NO: 91)
(SEQ ID NO: 92)
(SEQ ID NO: 93)





85801_08M02A
DYYIH
WINPDSGGTTYAQKFQG
EGSGSSSFDY



(SEQ ID NO: 94)
(SEQ ID NO: 95)
(SEQ ID NO: 96)





85801_10F19A
DYYMH
WINPNSGGTHYAQKFQG
EGATTVYFDY



(SEQ ID NO: 97)
(SEQ ID NO: 98)
(SEQ ID NO: 99)





85801_10K15A
TGGVGVG
LIYWNDDKRYSPSLKS
TLRWYHGFDI



(SEQ ID NO: 100)
(SEQ ID NO: 101)
(SEQ ID NO: 102)





85801_10M19A
SYDMH
VIGTAGDTYYPGSVKG
SRGETDWYFDL



(SEQ ID NO: 103)
(SEQ ID NO: 104)
(SEQ ID NO: 105)
















TABLE 2







IL-12Rβ1 light variable chain (VL) CDRs (LCDR1, LCDR2, and LCDR3)










Light Chain





Hybridoma





ID
LCDR1
LCDR2
LCDR3





85801_01D14A
QASQDISNFLN
DASDLET
QQYDNLPLT



(SEQ ID NO: 106)
(SEQ ID NO: 107)
(SEQ ID NO: 108)





85801_01J03A
KSSQSVLYSSNNKNYLA
WASTRES
QQYYSSPLT



(SEQ ID NO: 109)
(SEQ ID NO: 110)
(SEQ ID NO: 111)





85801_01K04A
TGTSSDIGSYNLVS
EGSKRPS
CSYAGTSTFV



(SEQ ID NO: 112)
(SEQ ID NO: 113)
(SEQ ID NO: 114)





85801_01L02A
RASQGISNYLA
AASNLQG
QQYRYYPFT



(SEQ ID NO: 115)
(SEQ ID NO: 116)
(SEQ ID NO: 117)





85801_01M07A
RASQNINNNYLA
GASSRAT
QQYGSSLT



(SEQ ID NO: 118)
(SEQ ID NO: 119)
(SEQ ID NO: 120)





85801_01O02A
RASQGISSYLA
AASTLQS
QQLNRYPFT



(SEQ ID NO: 121)
(SEQ ID NO: 122)
(SEQ ID NO: 123)





85801_02G10A
RASQSVSSSYLA
GASSRAT
QQYGSSYT



(SEQ ID NO: 124)
(SEQ ID NO: 125)
(SEQ ID NO: 126)





85801_02K24A
RASQGISSFLA
AASTLQS
QQLNGYPFT



(SEQ ID NO: 127)
(SEQ ID NO: 128)
(SEQ ID NO: 129)





85801_02N03A
RASQGISSYLA
AASTLHS
QQLNRYPYT



(SEQ ID NO: 130)
(SEQ ID NO: 131)
(SEQ ID NO: 132)





85801_02O11A
SGSSSNIGNNYVS
DNNERPS
GTWDSSLSAGV



(SEQ ID NO: 133)
(SEQ ID NO: 134)
(SEQ ID NO: 135)





85801_03P23A
QASQDISNYLN
DASNLET
QQYDNLPIT



(SEQ ID NO: 136)
(SEQ ID NO: 137)
(SEQ ID NO: 138)





85801_04D10A
RASQGISNYLA
AASSLQS
QQYNSYPPT



(SEQ ID NO: 139)
(SEQ ID NO: 140)
(SEQ ID NO: 141)





85801_04D14A
RASQGISSYLA
AASTLQS
QQLHRYPYT



(SEQ ID NO: 142)
(SEQ ID NO: 143)
(SEQ ID NO: 144)





85801_04E12A
RSSQSLLDSNNGNTYLD
TLSYRAS
MQRIDFPLT



(SEQ ID NO: 145)
(SEQ ID NO: 146)
(SEQ ID NO: 147)





85801_04G19A
RASQGISSYLA
AASTLQS
QQLNGYPFT



(SEQ ID NO: 148)
(SEQ ID NO: 149)
(SEQ ID NO: 150)





85801_04G23A
QASQDISNYLN
DASNLET
QQYDNLFT



(SEQ ID NO: 151)
(SEQ ID NO: 152)
(SEQ ID NO: 153)





85801_04M04A
QGDSLSSYYAG
GKNNRPS
NSRDSSDNHLV



(SEQ ID NO: 154)
(SEQ ID NO: 155)
(SEQ ID NO: 156)





85801_04M10A
RASQDISSFLA
AASTLQS
QQLNGYPLT



(SEQ ID NO: 157)
(SEQ ID NO: 158)
(SEQ ID NO: 159)





85801_04M12A
SGSSSNIGNNYVS
DNNKRPS
GTWDSSLSAVV



(SEQ ID NO: 160)
(SEQ ID NO: 161)
(SEQ ID NO: 162)





85801_04N20A
RASQSINSNYLA
GASSRAT
QQYDS



(SEQ ID NO: 163)
(SEQ ID NO: 164)
(SEQ ID NO: 165)





85801_05E17A
TGTSSDVGSYNLVS
EGSKRPS
CSYAGSSTFYV



(SEQ ID NO: 166)
(SEQ ID NO: 167)
(SEQ ID NO: 168)





85801_05F05A
SGSSSNIGSNYVY
SNNQRPS
AAWDDSLSGPVV



(SEQ ID NO: 169)
(SEQ ID NO: 170)
(SEQ ID NO: 171)





85801_05F12A
RASQGISSYLA
AASTLQN
QQHNSYPYT



(SEQ ID NO: 172)
(SEQ ID NO: 173)
(SEQ ID NO: 174)





85801_05G01A
RASQGIGNYLA
AASSLQS
QQYNIYPYT



(SEQ ID NO: 175)
(SEQ ID NO: 176)
(SEQ ID NO: 177)





85801_06L19A
RASQGINNYLA
AASSLQS
QQYNNYPFT



(SEQ ID NO: 178)
(SEQ ID NO: 179)
(SEQ ID NO: 180)





85801_07A01A
QASQDISNYLN
DASNLET
QQYDNLPFT



(SEQ ID NO: 181)
(SEQ ID NO: 182)
(SEQ ID NO: 183)





85801_07A17A
SGSSSNIGNNYVS
DNNERPS
GTWDSNLSAGV



(SEQ ID NO: 184)
(SEQ ID NO: 185)
(SEQ ID NO: 186)





85801_07A19A
RASQGISSYLA
AASTLQS
QQHSRYPYT



(SEQ ID NO: 187)
(SEQ ID NO: 188)
(SEQ ID NO: 189)





85801_07H04A
SGSSSNIGSNTVN
SNNQRPS
AAWDDSLNGHV



(SEQ ID NO: 190)
(SEQ ID NO: 191)
(SEQ ID NO: 192)





85801_07L08A
RASQSISSWLA
KASSLES
QQYTSYMYT



(SEQ ID NO: 193)
(SEQ ID NO: 194)
(SEQ ID NO: 195)





85801_07O09A
QASQDISNYLN
DASNLET
QQYDNLYT



(SEQ ID NO: 196)
(SEQ ID NO: 197)
(SEQ ID NO: 198)





85801_08M02A
RASQAISNYLA
TASSLQS
QQYRFYPYT



(SEQ ID NO: 199)
(SEQ ID NO: 200)
(SEQ ID NO: 201)





85801_10F19A
RASQGINNYLA
DASTLQS
QQLNMYPYT



(SEQ ID NO: 202)
(SEQ ID NO: 203)
(SEQ ID NO: 204)





85801_10K15A
GLTSGSVSTSYYPS
STYTRSS
VLYMGSGIWV



(SEQ ID NO: 205)
(SEQ ID NO: 206)
(SEQ ID NO: 207)





85801_10M19A
RASQSVSRLLA
DASNRAT
QQRRNWLT



(SEQ ID NO: 208)
(SEQ ID NO: 209)
(SEQ ID NO: 210)
















TABLE 3







IL-12Rβ1 VH and VL sequences.









Hybridoma ID
VH
VL





85801_01D14A
EVQLVESGGGLVKPGGSLRLSC
DIQMTQSPSSLSASVGDRVTITCQ



AASGFTFSNAWMNWVRQAPG
ASQDISNFLNWYQQKPGKAPNLL



KGLEWVGRIKSKTDGGTTDYA
IYDASDLETGVPSRFSGSGSGTDF



APVKGRFTVSRDDPKNTLYLQ
TFTISSLQPEDIATYYCQQYDNLP



MNSLKTEDTAVYYCTTDPGWE
LTFGGGTKVEIK (SEQ ID NO: 212)



FDYWGQGILVTVSS (SEQ ID NO:




211)






85801_01J03A
QVQLQESGPGLVKPSETLSLTC
DIVMTQSPDSLAVSLGERATINCK



TVSGGSISNYYWSWIRQPPGKG
SSQSVLYSSNNKNYLAWYQQKP



LEWIGYIFYNGITDYNPSLKSR
GQPPKMVIYWASTRESGVPDRFS



VTISVDTSKNQFSLKLSSVTAA
GSGSGTDFTLTISSLQAEDVAVYY



DTAMYFCVRESGMGATLMAF
CQQYYSSPLTFGGGTKVEIK (SEQ



DIWGQGTMVTVSS (SEQ ID NO:
ID NO: 214)



213)






85801_01K04A
QVTLKESGPVLVKPTETLTLTC
QSALTQPASVSGSPGQSITISCTGT



TVSGFSLTNARMGVSWIRQPPG
SSDIGSYNLVSWYQQHPGKAPKL



KALEWLAHIFSNDEKSYSTSLK
LIYEGSKRPSGVSNRFSGSKSGTT



SRFTISKDTSKSQVVLTMTNLD
ASLTISGLQAEDEADYYCCSYAG



PVDTATYYCARIGSGTYYGWF
TSTFVFGTGTKVTVL (SEQ ID NO:



DPWGQGTLVTVSS (SEQ ID NO:
216)



215)






85801_01L02A
QVQLVHSGPEVKKPGASVKVS
DIQMTQSPSSLSASVGDRVTITCR



CKASGYTFTDYYMHWVRQAP
ASQGISNYLAWFQQKPGKAPTSLI



GQGLEWMGWINPDSGGTNYA
YAASNLQGGVPSKFSGSGSGTDF



QKFQGRVTMTRDTSISTAYME
TLTISSLQPEDFATYYCQQYRYYP



LSRLRSDDTAVYHCAREGATS
FTFGPGTKVDIK (SEQ ID NO: 218)



NFDYWGQGTLVTVSS (SEQ ID




NO: 217)






85801_01M07A
QVQLVQSGAEVKKPGASVKVS
EIVLTQSPGTLSLSPGERATLSCRA



CKASEYTFTDDYMHWVRQAP
SQNINNNYLAWYQRKPGQAPRLL



GQGLVWMGWINPNSGGTNYA
IYGASSRATGIPDRFSGSGSGTDFT



QKFQGRVTMTRDTSISTAYME
LTISRLEPEDFAMYYCQQYGSSLT



LSRLRSDDTAVYYCARGGLNW
FGGGTKVEIK (SEQ ID NO: 220)



GWDWFDPWGQGTLVTVSS




(SEQ ID NO: 219)






85801_01O02A
QVQLVQSGAEVRKPGASVKVS
DIQLTQSPSFLSASVGDRVTITCRA



CKASGYTFTDYYMHWVRQAP
SQGISSYLAWYQQKPGKAPKLLI



GQGLEWMGWINPDNGGANYA
YAASTLQSGVPSRFSGSGSGTEFT



QRFLGRVTMTRDTSISTAYMEL
LTISSLQPEDFATYCCQQLNRYPF



SRLRSDDTAVYYCAREGSGSP
TFGQGTKLEIK (SEQ ID NO: 222)



YAFDLWGLGTVVTVSS (SEQ ID




NO: 221)






85801_02G10A
QVQLVQSGAEVKKPGASVKVS
EIVLTQSPGTLSLSPGERATLSCRA



CKTSGYTFTSYYIHWVRQAPG
SQSVSSSYLAWYQQKPGQAPRLL



QGLEWMGIINPSGGITSYAQQF
IYGASSRATGIPDRESGSGSGTDFT



QGRVTMTRDTSTSTVYMELSS
LTISRLEPEDFAVYYCQQYGSSYT



LRSEDTAVYYCAREGDWYFDL
FGQGTKLEIK (SEQ ID NO: 224)



WGRGTLVTVSS (SEQ ID NO: 




223)






85801_02K24A
QVQLQESGPGLVKPSETLSLTC
DIQLTQSPSFLSASVGDRVTITCRA



TVSGGSISSYDWSWIRQSAGKG
SQGISSFLAWYQQKPGKAPKLLIY



LEWIGRIYTSGSTIYNPSLKSRV
AASTLQSGVPSRFSGSGSGTEFTL



TMSVDTSKNEISLKLSSVTAAD
TISSLQPEDFATYYCQQLNGYPFT



TAFYYCAKDRGNYPHDAFDIW
FGPGTKVDIK (SEQ ID NO: 226)



GQGTMITVSS (SEQ ID NO: 




225)






85801_02N03A
QVHLVQSGAEVKKPGASVKVS
DIQLTQSPSFLSASVGDRVTITCRA



CEASGYTFTDYYIHWLRQAPG
SQGISSYLAWYQQQPGKPPKLLIY



QGLEWMGWINPNSGGTHYAQ
AASTLHSGVPSRFSGSGSGTEFTL



KFQGRVTMTRDTSISTAYMELS
TISSLQPEDFATYYCQQLNRYPYT



RLSSDDTAVYYCAREGGWNYF
CGQGTKLEIK (SEQ ID NO: 228)



SGMDVWGQGTTVTVSS (SEQ ID




NO: 227)






85801_02O11A
EVQLVESGGGLVQPGGSLRLSC
QSVLTQPPSVSAAPGQKVTISCSG



AASGFTFSSYDMNWVRQAPGK
SSSNIGNNYVSWYQQLPGTAPKL



GLEWISYINSRSSTIYYADSVKG
LIYDNNERPSGIPDRFSGSKSGTSA



RFTISRDNAKNSLYLQMNSLRD
TLGITGLQPGDEADYYCGTWDSS



EDTALYYCAREIEDSMDVWGQ
LSAGVFGGGTKLTVL (SEQ ID NO:



GTTVTVSS (SEQ ID NO: 229)
230)





85801_03P23A
EVQLVESGGGLVQPGGSLRLSC
DIQMTQSPSSLSASVGDRVTITCQ



AASGFTFSSYWMSWVRQAPGK
ASQDISNYLNWYQQKPGKAPKLL



GLEWVANIKQDGSEKYYVDSV
IYDASNLETGVPSRFSGSGSGTDF



KGRFTISRDNAKNSLYLQMNSL
TFTISSLQPEDIATYYCQQYDNLPI



RAEDTAVYYCARGSIAAPFDY
TFGQGTRLEIK (SEQ ID NO: 232)



WGQGTLVTVSS (SEQ ID NO: 




231)






85801_04D10A
EVQLLESGGGLVQPGGSLRLSC
DIQMTQSPSSLSASVGDRVTITCR



AASGFTFSSYAMSWVRQAPGK
ASQGISNYLAWFQQKPGKAPKSLI



GLEWVAGISGSGGGIYYADSV
YAASSLQSGVPSKFSGSGSGTDFT



KGRFTISRDNSKNTLYLQLNSL
LTISSLQPEDFATYYCQQYNSYPP



RADDTAVYYCARRLIGYWYFD
TFGGGTKVEIK (SEQ ID NO: 234)



LWGRGTLVPVSS (SEQ ID NO:




233)






85801_04D14A
QVHLVQSGAEVKKPGASVKVS
DIQLTQSPSFLSASVGDRVTITCRA



CKASGYTFIDYYMHWVRQAPG
SQGISSYLAWYQQKPGKAPKVLI



QGLEWMGWINPNSGGTHYSQ
YAASTLQSGVPSRFSGSGSGTEFT



KFQGRVTMTWDTSISTAYMEL
LTISSLLPEDFATYFCQQLHRYPY



SRLTSDDTAVYYCAREGDYISS
TFGQGAKLEIK (SEQ ID NO: 236)



SAFDYWGQGTLVTVSS (SEQ ID




NO: 235)






85801_04E12A
QVQLVQSGAEVMKPGASVKVS
DIVMTQTPLSLPVTPGEPASISCRS



CKASGYTFTGYYMHWIRQAPG
SQSLLDSNNGNTYLDWYLQKPG



QGLEWMGWINPNSSGTNYAQ
QSPHLLIYTLSYRASGVPDRFSGS



KFQGRVTMTRDTSISTAYMELS
GSGTDFTLKISRVEAEDVGVYYC



RLRSDDTAVYYCARMKRWLQ
MQRIDFPLTFGGGTKVEIK (SEQ ID



GIDFWGQGILVTVSS (SEQ ID
NO: 238)



NO: 237)






85801_04G19A
QVQLQESGPGLVKPSETLSLTC
DIQLTQSPSFLSASVGYRVTITCRA



TVSGGSISSYYWSWIRQSAGKE
SQGISSYLAWYQQKPGKAPQLLI



LEWIGRIYTSGSTIYNPSLKSRV
YAASTLQSGVPSRFSGRGSGTEFT



TMSVDPSKNQFSLKLSSVTAAD
LTISSLQPEDFATYYCQQLNGYPF



TAVYYCANSRSYPHDAFDIWG
TFGPGTKVNIK (SEQ ID NO: 240)



QGTMVTVSS (SEQ ID NO: 239)






85801_04G23A
QVQLVESGGGVVQPGRSLRLS
DIQMTQSPSSLSASVGDRVTITCQ



CAASGFTFSSYGMHWVRQAPG
ASQDISNYLNWYQQKPGKAPKLL



KGLEWVAVIWNDGSNKYYAD
IYDASNLETGVPSRFSGSGSGTDF



SVKGRFTISRDNSKNTLYLQMN
TFTISSLQPEDIATYYCQQYDNLF



SLRAEDTAVYYCARGELFFDY
TFGGGTKVEIK (SEQ ID NO: 242)



WGQGTLVTVSS (SEQ ID NO: 




241)






85801_04M04A
QVQLVQSGAEVKKPGASVRVS
SSELTQDPAVSVALGQTVRITCQG



CKASGYTFTSYYIHWVRQAPG
DSLSSYYAGWYQQKPGQAPVLVI



QGLEWMGIINPSGGSTSYAQKF
YGKNNRPSGIPDRFSGSSSEDTAS



QGRVTMTRDTSTTTVYMELSS  
LTITGAQAEDEADYYCNSRDSSD



LRSEDTAVYYCAKSNWAYAFD
NHLVFGGGTKLTVL (SEQ ID NO:



IWGQGTMVTVSS (SEQ ID NO:
244)



243)






85801_04M10A
QVQLQESGPGLVKPSETLSLTC
DIQLTQSPSFLSASVGDRVTIPCRA



TVSGGSISSYYWSWIRQPAGTG
SQDISSFLAWYQQKPGKAPNLLIY



LEWIGRFYTSGSTIYNPSLESRV
AASTLQSGVPSRFSGSGSGTEFTL



TMSVDTSKNQFSLKLSSVTAA
TISSLQPEDFATYYCQQLNGYPLT



DTAVYYCATERDYPHDAFDIW
FGGGTKVEIK (SEQ ID NO: 246)



GQGTMVTVSS (SEQ ID NO: 




245)






85801_04M12A
QVQLVESGGGVVQPGRSLRLS
QSVLTQPPSVSAAPGQTVTISCSG



CAASGFTFSSHGMHWVRQAPG
SSSNIGNNYVSWYQQLPGTAPKL



KGLEWVAIIWYAGNKKYYADS
LIYDNNKRPSGIPDRFSGSKSGTS



VKGRFTISRDNSKNTLYLQMNS
ATLGITGLQTGDEADYYCGTWDS



LRAEDTAVYYCARESLLNSAS
SLSAVVFGGGTKLTVL (SEQ ID



DIWGQGTMVTVSS (SEQ ID NO:
NO: 248)



247)






85801_04N20A
EVQLVESGGGLVQPGGSLRLSC
EIVLTQSPGTLSLSPGERATLSCRA



AASGFTFSSYWMSWVRQAPGK
SQSINSNYLAWYQQKPGQAPRLLI



GLEWVANIKQDGSEKYYVDSV
YGASSRATGIPDRFSGSGSGTDFT



KGRFTISRDNAKNSLYLQMNSL
LTISRLEPEDFAVYYCQQYDSFGG



RAEDTAVYYCAREELTGLYWY
GTKVEIK (SEQ ID NO: 250)



FDLWGRGTLVTVSS (SEQ ID NO:




249)






85801_05E17A
QVQLVQSGAEVKKPGASVKVS
QSALTQPASVSGSPGQSITISCTGT



CKASGYTFTNYYMHWVRQAP
SSDVGSYNLVSWYQQHPGKAPK



GQGLEWMGIITSSGGSTSYAQK
LMIYEGSKRPSGVSNRFSGSKSGN



FQGRVTMTRDTSTSTVYMELS
TASLTISGLQAEDEADYYCCSYA



SLKSEDTAVYYCAREDLYYFD
GSSTFYVFGTGTKVTVL (SEQ ID



YWGQGTLVTVSS (SEQ ID NO:
NO: 252)



251)






85801_05F05A
QVQLQQWGAGLLKPSETLSLT
QSVLTQPPSASGTPGQRVTISCSG



CAVYGGSFSGYYWNWIRQPPG
SSSNIGSNYVYWYQQLPGTAPKL



KGLEWIGEINHSGSTHYNPSLK
LIYSNNQRPSGVPDRFSGSKSGTS



SRVTISVDTSKNQFSLKLSSVTA
ASLAISGLRSEDEADYYCAAWDD



ADTALYYCARALTGYFDYWG
SLSGPVVFGGGTKLTVL (SEQ ID



QGTLVTVSS (SEQ ID NO: 253)
NO: 254)





85801_05F12A
QVQLVQSGAEVKKPGASVKVS
DIQLTQSPSFLSASVGDRVTITSRA



CKASGYTFTDYYMHWVRQAP
SQGISSYLAWYQQKPGKAPKLLI



GQGLEWMGWINPNSGGTHYA
YAASTLQNGVPSRFSGSGSGTEFT



QKFQGRVTMTKDTSISTAYME
LTISSLQPEDFATYYCQQHNSYPY



LSRLRSDDTAVYYCAREGETV
TFGQGTKLEIK (SEQ ID NO: 256)



AGYFDYWGQGILVTVSS (SEQ




ID NO: 255)






85801_05G01A
QVQLVQSGAEVKKPGASAKVS
DIQMTQSPSSLSASVGDRVTITCR



CKASGYTFTDYYLHWVRQAPG
ASQGIGNYLAWFQQRPGKAPKSL



QGLEWMGWINPNNGGTHYAQ
IYAASSLQSGVPSKFSGSGSGTDF



KFQGRVTMTRDTSISTAYMELS
TLTISSLQPADFAIYYCQQYNIYPY



RLRSDDTAVYYCAREMGGTTA
TFGPGTRLEIK (SEQ ID NO: 258)



FDYWGQGTLVTVSS (SEQ ID




NO: 257)






85801_06L19A
QVQLVQSGAEVKKPGASVKVS
DIQMTQSPSSLSASVGNRVTITCR



CKASGYTFTDYYIHWVRQAPG
ASQGINNYLAWFQQKPGKAPKSL



QGLEWMGWINPDSGGTHYAQ
IYAASSLQSGVPSKFSGSGSGTDF



KFQGRVTMTRDTSISTVYMDL
TLTISSLQPEDFATYYCQQYNNYP



SRLRSDDTAVYYCAREGEGLA
FTFGPGTKVDIK (SEQ ID NO: 260)



SFDSWGQGTLVTVSS (SEQ ID




NO: 259)






85801_07A01A
EVQLVESGGGLVQPGGSLRLSC
DIQMTQSPSSLSASVGDRVTITCQ



AASGFTFSSYWMSWVRQAPGK
ASQDISNYLNWYQQKPGKAPKLL



GLEWVANIKQDGSEKYYVDSV
IYDASNLETGVPSRFSGSGSGTDF



KGRFTISRDNAKNSLYLQMNSL
TFTISSLQPEDIATYYCQQYDNLPF



RAEDTAVYYCAREGLQLGIFD
TFGPGTKVDIK (SEQ ID NO: 262)



YWGQGTLVTVSS (SEQ ID NO:




261)






85801_07A17A
QVQLQESGPGLVKPSETLSLTC
QSVLTQPPSVSAAPGQKVTISCSG



TVSGVSISSYFWSWIRQPPGKG
SSSNIGNNYVSWYQQLPGTAPKL



LEWIGYLDYRGSTSYNPSVKSR
LIYDNNERPSGIPDRFSGSKSGTSA



VTISLDTSKNQFSLKLTSVTAA
TLGITGLQTGDEADYYCGTWDSN



DTAAYYCARDLEDAFDVWGQ
LSAGVFGGGTRLTVL (SEQ ID NO:



GTMVTVSS (SEQ ID NO: 263)
264)





85801_07A19A
QVQLVQSGAEVKKPGASVKVS
DIQLTQSPSFLSASVGDRVTITCRA



CKASGYTFTDYYMHWVRQAP
SQGISSYLAWYQQKPGKAPKLLI



GQGLEWMGWINPNSGGTNYA
YAASTLQSGVPSRFSGSGSGTEFT



QKFQGRVTMTRDTSISTAYME
VTISSLQPEDFATYYCQQHSRYPY



LSRLRSDDTAVYYCAREVGDI
TFGQGTKVEIK (SEQ ID NO: 266)



AVAGVFDYWGQGTLVTVSS




(SEQ ID NO: 265)






85801_07H04A
EVQLVESGGGLVQPGGSLRLSC
QSVLTQPPSASGTPGQRVTISCSG



AASGFTFSSYSMNWVRQAPGK
SSSNIGSNTVNWYQQLPGTAPKL



GLEWLSYFSSRSGTKYYADSV
LIYSNNQRPSGVPDRESGSKSGTS



KGRFTISRDNAKNSLYLQMNSL
ASLAISGLQSEDEADYYCAAWDD



RDEDTAVYYCAREPHWDAFDL
SLNGHVFGTGTKVTVL (SEQ ID



WGQGTMVTVSS (SEQ ID NO:
NO: 268)



267)






85801_07L08A
QVQLVQSGAEVKKPGASVKVS
DIQMTQSPSTLSASVGDRVTITCR



CKPSGYTFTSYYMHWVRQAPG
ASQSISSWLAWYQQKPGKAPKLL



QGLEWMGIINPSGGITSYAQKF
IYKASSLESGVPSRFSGSGSGTEFT



QGRVTMTRDTSTSTVYMELSS
LTISSLQPDDFATYYCQQYTSYM



LRSEDTAVYYCARDPDWGFFD
YTFGQGTKLEIK (SEQ ID NO: 270)



YWGQGSLVTVSS (SEQ ID NO:




269)






85801_07O09A
QVHLQESGPGLVKPSETLSLTC
DIQMTQSPSSLSASVGDRVTITCQ



TVSGVSISSDYWIWIRQPAGKG
ASQDISNYLNWYQQKPGKAPKLL



LEWIGRIYTSGSTNYNPSLKSR
IYDASNLETGVPSRFSGSGSGTDF



VTMSVDTSKNQFSLKLSSVTA
TFTISSLQPEDIATYYCQQYDNLY



ADTAVYYCAREVTGEFDYWG
TFGQGTKLEIK (SEQ ID NO: 272)



QGTLVTVSS (SEQ ID NO: 271)






85801_08M02A
QVQLVQTGAEVKKPGASVKVS
DIQMTQSPSSLSASVGDRVTITCR



CKASRYTFTDYYIHWVRQAPG
ASQAISNYLAWFQQKPGKAPKSLI



QGLEWMGWINPDSGGTTYAQ
YTASSLQSGVPSKFSGSGSGTDFT



KFQGRVTMTRDTSINTAYMEL
LTISSLHPEDFATYYCQQYRFYPY



SRLRSDDTAVYFCAREGSGSSS
TFGLGTKLEIK (SEQ ID NO: 274)



FDYWGQGTLVTVSS (SEQ ID




NO: 273)






85801_10F19A
QVQLVQSGAEVRKPGASVKVS
DIQLTQSPSFLSASVGDRVTLTCR



CKASGYTFTDYYMHWVRQAP
ASQGINNYLAWYQEKPGKAPNPL



GQGREWMGWINPNSGGTHYA
IYDASTLQSGVPSRFSGSGSGTEFT



QKFQGRVTMTWDTSISTAYME
LTISSLQPEDFATYYCQQLNMYPY



LSRLRSDDTAVYYCAREGATT
TFGQGTKLEIK (SEQ ID NO: 276)



VYFDYWGQGTLVTVSS (SEQ ID




NO: 275)






85801_10K15A
QITLKESGPTLVKPTQTLTLTCT
QTVVTQEPSFSVSPGGTVTLTCGL



FFGFSLNTGGVGVGWIRQPPGK
TSGSVSTSYYPSWYQQTPGQAPR



ALEWLTLIYWNDDKRYSPSLK
TLIYSTYTRSSGVPDRFSGSILGNK



SRLTITKDTSKNQVVLTMTNM
AALTITGAQADDESDYYCVLYM



DPVDTATYYCAHTLRWYHGF
GSGIWVFGGGTKLTVL (SEQ ID



DIWGQGTMVTVSS (SEQ ID NO:
NO: 278)



277)






85801_10M19A
EVQLVESGGGLVQPGGSLRLSC
EIVLTQSPATLSLSPGERATLSCRA



AASGFTFSSYDMHWVRQATGK
SQSVSRLLAWYQQKPGQAPRLLI



GLEWVSVIGTAGDTYYPGSVK
YDASNRATGIPARFSGSGSGTDFT



GRFTISRENAKNSLYLQMNSLR
LTISSLEPEDFAVYYCQQRRNWLT



AGDTAVYYCARSRGETDWYF
FGGGTKVEIK (SEQ ID NO: 280)



DLWGRGTLVTVSS (SEQ ID NO:




279)









In other embodiments, the IL-12Rβ1 receptor subunit binding domain comprises at least the CDRs or a VHH domain of a VHH antibody or Nanobody. VHH antibodies, which are camelid-derived heavy chain antibodies, are composed of two heavy chains and are devoid of light chains (Hamers-Casterman, et al. Nature. 1993; 363; 446-8). Each heavy chain of the VHH antibody has a variable domain at the N-terminus, and these variable domains are referred to in the art as “VHH” domains in order to distinguish them from the variable domains of the heavy chains of the conventional antibodies i.e., the VH domains. Similar to conventional antibodies, the VHH domains of the molecule comprise HCDR1, HCDR2 and HCDR3 regions which confer antigen binding specificity and therefore VHH antibodies or fragments such as isolated VHH domains, are suitable as components of the multi-specific binding proteins of the present disclosure.


In some embodiments, the IL-12Rβ1 receptor subunit binding domain comprises the exemplary VHH CDRs as provided in Table 4. In some embodiments, the IL-12Rβ1 receptor subunit binding domain comprises the VHH sequences as provided in Table 5.









TABLE 4







IL-12Rβ1 receptor subunit VHH CDR sequences.










Clone





number
HCDR1
HCDR2
HCDR3





VHH25B1
YFAIG
CIGSSDGSTIYSDSVKG
DRGRRTIIGYACYATMKY



(SEQ ID
(SEQ ID NO: 282)
(SEQ ID NO: 283)



NO: 281)







VHH32B1
NYAMS
VINSGGGSTLYADSVKG
RRDDSTFGSLLYTH



(SEQ ID
(SEQ ID NO: 285)
(SEQ ID NO: 286)



NO: 284)







VHH41B1
TYAMA
HILWSGGSTVYPDSVRG
KSGRQVYRIDSWDSFDY



(SEQ ID
(SEQ ID NO: 288)
(SEQ ID NO: 289)



NO: 287)







VHH50B1
RYSMG
ANYWSNGWTDYADTVKG
RSSSIPSADVVGYDY



(SEQ ID
(SEQ ID NO: 291)
(SEQ ID NO: 292)



NO: 290)







VHH54B1
GYVMG
GITGISSTYFADSVKG
VNSFGVIPTSPNGMDY



(SEQ ID
(SEQ ID NO: 294)
(SEQ ID NO: 295)



NO: 293)







VHH58B1
YAVG
VAAITVSGGSKYYEDSVKG
RTPKFGSGWYNRRGEYDY



(SEQ ID
(SEQ ID NO: 297)
(SEQ ID NO: 298)



NO: 296)







VHH67B1
SYAVA
SISWSGGSTNYADSVKG
DRNYYPSVLGKYTY



(SEQ ID
(SEQ ID NO: 300)
(SEQ ID NO: 301)



NO: 299)







VHH72B1
NYAMA
GITWGGGLTHYVDSVKG
KTQGSTWYHLTPDGYDY



(SEQ ID
(SEQ ID NO: 303)
(SEQ ID NO: 304)



NO: 302)







VHH86B1
AYAMG
GISRSGSTTDYVDTAKG
VTGTFPSSTYHNANAYHH



(SEQ ID
(SEQ ID NO: 306)
(SEQ ID NO: 307)



NO: 305)







VHH97B1
NDDMA
HIDRNAASTNYADSVKG
DPDHFGTTWYQQYTY



(SEQ ID
(SEQ ID NO: 309)
(SEQ ID NO: 310)



NO: 308)







VHH104B1
INIMG
SITSGGSTFYADSVKD
YRSVPLNTVYP



(SEQ ID
(SEQ ID NO: 312)
(SEQ ID NO: 313)



NO: 311)







VHH108B1
DRSMG
AITVGGSTNYADSVKG
RYPPDDY



(SEQ ID
(SEQ ID NO: 315)
(SEQ ID NO: 316)



NO: 314)







VHH115B1
YFMG
AISRSGGGTWYADSVKG
DRRTGTSVYTVDEYDY



(SEQ ID
(SEQ ID NO: 318)
(SEQ ID NO: 319)



NO: 317)







VHH136B1
YAVG
VAAITVSGGSKYYEDSVKG
RTPKFGSGWYNRRGEYDY



(SEQ ID
(SEQ ID NO: 321)
(SEQ ID NO: 322)



NO: 320)







VHH137B1
TYAMG
IAAWKVASTYYVDYGDSVRG
GAFRTDWRSYAY



(SEQ ID
(SEQ ID NO: 324)
(SEQ ID NO: 325)



NO: 323)







VHH172B1
YAVG
VAAITVSGGSKYYEDSVKG
RTPKFGSGWYNRRGEYDY



(SEQ ID
(SEQ ID NO: 327)
(SEQ ID NO: 328)



NO: 326)







VHH154B1
VNTRA
QISSGGNINYADSVKG
HRQHPYADV



(SEQ ID
(SEQ ID NO: 330)
(SEQ ID NO: 331)



NO: 329)







VHH174B1
HYVMA
SIWWGGSTYYADSVKD
GTKIGTMGPRYDY



(SEQ ID
(SEQ ID NO: 333)
(SEQ ID NO: 334)



NO: 332)







VHH187B1
YYAIG
CISSSDRSTWYADSVKG
PCYSDYDPEGYEYDY



(SEQ ID
(SEQ ID NO: 336)
(SEQ ID NO: 337)



NO: 335)







VHH195B1
TYAMG
RISNSGAFTHYADSVKG
TRGTNSAYYTRSTMYEY



(SEQ ID
(SEQ ID NO: 339)
(SEQ ID NO: 340)



NO: 338)







VHH202B1
IDVMA
AISSGGSLNYRDSVKG
NIRTSPVTTRPMGNY



(SEQ ID
(SEQ ID NO: 342)
(SEQ ID NO: 343)



NO: 341)







VHH233B1
FNEMA
TIVSTVGFTNYADSVKG
RRISTDY



(SEQ ID
(SEQ ID NO: 345)
(SEQ ID NO: 346)



NO: 344)







VHH238B1
SYGMS
YISAGGGTTTYVDFVKG
AADGS



(SEQ ID
(SEQ ID NO: 348)
(SEQ ID NO: 349)



NO: 347)







VHH245B1
INAMG
IQLSGQTSYAHSVRG
SNTGSLYGLRNY



(SEQ ID
(SEQ ID NO: 351)
(SEQ ID NO: 352)



NO: 350)







VHH258B1
SYVMG
AIMRNGIMTYYADSVKG
ASRVGVSISQSSSYTS



(SEQ ID
(SEQ ID NO: 354)
(SEQ ID NO: 355)



NO: 353)







VHH263B1
FNAMG
IIINGDMINYADSVKG
TRYVYDY



(SEQ ID
(SEQ ID NO: 357)
(SEQ ID NO: 358)



NO: 356)







VHH276B1
SYAMG
AISGGTPNNIYYTNYKDAVRG
TMGRYWNTGGYDY



(SEQ ID
(SEQ ID NO: 360)
(SEQ ID NO: 361)



NO: 359)







VHH321B1
DYAMK
VIDSEGPTIKYSDAVRG
SNGGSAFSSVLYTD



(SEQ ID
(SEQ ID NO: 363)
(SEQ ID NO: 364)



NO: 362)
















TABLE 5







IL-12Rβ1 receptor subunit VHH sequences.








Clone Number
VHH Sequence





VHH25B1
QVQLQESGGALVQPGGSLRLSCVVSGFT



SDYFAIGWFRQAPGKEREGVSCIGSSDG



STIYSDSVKGRFTISRDNAKNTVYLQMN



SLKPEDTGVYYCALDRGRRTIIGYACYA



TMKYWGKGTPVTVSS (SEQ ID NO: 365)





VHH32B1
EVQLVESGGGLVQPGGSLRLSCAASGFT



FQNYAMSWLRKAPGEGLEWVSVINSGG



GSTLYADSVKGRFTISRDNAKNTLYLQM



HSLKSEDTAVYFCAKRRDDSTFGSLLYT



HRGQGTQVTVSS (SEQ ID NO: 366)





VHH41B1
EVQLVESGGGLVQAGGSLRVACAASGR



TFSTYAMAWFRQAPGKEREFVAHILWS



GGSTVYPDSVRGRFTISRDNAKNTVYLQ



MNSLKPEDTAVYYCAQKSGRQVYRIDS



WDSFDYWGQGTSVTVSS (SEQ ID NO:



367)





VHH50B1
QVQLVESGGGLVQAGGSLRLSCAASGR



AFSRYSMGWFRQAPGKEREFVAANYWS



NGWTDYADTVKGRFSISRDNAKNTVYL



QMNSLKPEDTAVYYCAGRSSSIPSADVV



GYDYWGQGTQVTVSS (SEQ ID NO: 368)





VHH54B1
QVQLVESGGGLVQAGGSLRLSCAASGG



PFSGYVMGWFRQVSGKEREFVAGITGIS



STYFADSVKGRFTISRDNAKNMVYLQM



NSLKPEDTAVYYCAAVNSFGVIPTSPNG



MDYWGKGTLVTVSS (SEQ ID NO: 369)





VHH58B1
QVQLVESGGGLVQAGGSLRLSCAAPGR



YAVGWFRQAPGKEYEFVAAITVSGGSK



YYEDSVKGRFAISRDNAKNTVYLQMNS



LKAEDTAVYYCAARTPKFGSGWYNRRG



EYDYWGQGTQVTVSS (SEQ ID NO: 370)





VHH67B1
QVQLVESGGGLVQAGGSLRLSCAASARI



FNSYAVAWFRQTPGKEREFVASISWSGG



STNYADSVKGRFTISRDNAKNTVFLQM



NSLKPADTAVYYCAADRNYYPSVLGKY



TYWGQGTQVTVSS (SEQ ID NO: 371)





VHH72B1
EVQLVESGGGLVQAGGSLRLSCAASGLT



FRNYAMAWFRQAPGKEREFVAGITWGG



GLTHYVDSVKGRFTISRDNGKNTVYLQ



MNSLKSEDTAVYYCAGKTQGSTWYHLT



PDGYDYWGQGTQVTVSS (SEQ ID NO:



372)





VHH86B1
QVQLVESGGGLMQAGGSLRLSCALSRGI



FSAYAMGWFRQVQGKEREFVSGISRSGS



TTDYVDTAKGRFTISRDNARDTVYLQM



NSLKPEDTAVYYCAAVTGTFPSSTYHNA



NAYHHWGQGTQVTVSS (SEQ ID NO:



373)





VHH97B1
QVQLVESGGGLAQAGGSLRLSCAASGR



TFSNDDMAWFRQAPGKEREFVAHIDRN



AASTNYADSVKGRFTISRDNAKNTVYL



QMTRLKPEDTAVYYCAADPDHFGTTW



YQQYTYWGPGTQVTVSS (SEQ ID NO:



374)





VHH104B1
EVQLVESGGGLVQPGGSLRLFCAASRSIF



NINIMGWYRQAPGKQREWLASITSGGST



FYADSVKDRFTISRDSVKNTVYLQMNSL



KPEDTAAYYCNRYRSVPLNTVYPWGQG



TLVTVSS (SEQ ID NO: 375)





VHH108B1
EVQLVESGGGLVQPGGSLTLSCTASGFR



FSDRSMGWYRQAPGKQRELVAAITVGG



STNYADSVKGRFTISRDNAKNTVYLQM



NSLKPEDTALYYCNRRYPPDDYWGQGT



QVTVSS (SEQ ID NO: 376)





VHH115B1
QVQLVESGGGLVQAGGSLRLSCLASGR



TSNYFMGWFRQAPGKEREFVAAISRSGG



GTWYADSVKGRFAISRDNAKNTVNLQM



NSLKREDTAVYYCAADRRTGTSVYTVD



EYDYWGQGTQVTVSS (SEQ ID NO: 377)





VHH136B1
QVQLQESGGGLVQAGGSLRLSCAAPGR



YAVGWFRQAPGKEYEFVAAITVSGGSK



YYEDSVKGRFTISRDNAKNTVYLEMNSL



KAEDTAVYYCAARTPKFGSGWYNRRGE



YDYWGQGTQVTVSS (SEQ ID NO: 378)





VHH137B1
QVQLVESGGGLVQAGGSLRLSCAASGR



TFRTYAMGWFRQAPGKDREVVGIAAW



KVASTYYVDYGDSVRGRFTISRDDAKST



VYLQMNNLMPEDTAVYYCAAGAFRTD



WRSYAYWGQGTQVTVSS (SEQ ID NO:



379)





VHH172B1
QVQLVESGGGLVQAGGSLRLSCAAPGR



YAVGWFRQAPGKEYEFVAAITVSGGSK



YYEDSVKGRFTISRDNAKNTVYLEMNSL



KAEDTAVYYCAARTPKFGSGWYNRRGE



YDYWGQGTQVAVSS (SEQ ID NO: 380)





VHH154B1
QVQLQESGGGLVQVGDSLRLSCVASGRI



FGVNTRAWYRQAPGNQRELVAQISSGG



NINYADSVKGRFTISMDKFTDTVYLQM



NSLKPEDTAIYRCAAHRQHPYADVWGQ



GTQVSVSS (SEQ ID NO: 381)





VHH174B1
QVQLVESGGGAVQAGGSLRLSCAASGL



TSRHYVMAWFRQAPGIEREFVASIWWG



GSTYYADSVKDRFTISRDNAENTVYLQ



MNSLKPEDTAVYRCAVGTKIGTMGPRY



DYWGQGTQVTVSS (SEQ ID NO: 382)





VHH187B1
EVQLVESGGGLVQPGGSLRLSCAASGFT



LDYYAIGWFRQAPGKEREGVSCISSSDR



STWYADSVKGRFTISRDNAKNTVYLQM



HSLKPEDTAVYYCATPCYSDYDPEGYE



YDYWGQGTQVTVSS (SEQ ID NO: 383)





VHH195B1
QVQLVESGGGLVQAGGSLRLSCAASGR



TFGTYAMGWFRQAPGKERDFVARISNS



GAFTHYADSVKGRFTISRDNAKNTVYL



HMNSLENGDTAAYYCVATRGTNSAYYT



RSTMYEYWGQGTQVTVSS (SEQ ID NO:



384)





VHH202B1
QVQLQESGGGLVQAGGSLRLSCAASGTI



FSIDVMAYYRQAPGKQRELVAAISSGGS



LNYRDSVKGRFTISRDNAKNAVYLQMN



SLKPDDTAVYYCYANIRTSPVTTRPMGN



YWGQGTQVTVSS (SEQ ID NO: 385)





VHH233B1
QVQLVESGGGLVQAGGSLRLSCAASRSI



SSFNEMAWYRQAPGEQRELVATIVSTV



GFTNYADSVKGRFTISRDNAKNTVYLQ



MNSLKAEDTAVYYCNARRISTDYWGQG



TQVTVSS (SEQ ID NO: 386)





VHH238B1
QLQLVESGGGLVQPGGSLRLSCAASGFT



FSSYGMSWVRQAPGKGLEWVSYISAGG



GTTTYVDFVKGRFTISRDNAKNMLYLQ



MNSLKPEDTAVYYCVHAADGSRGQGT



QVTVSS (SEQ ID NO: 387)





VHH245B1
QVQLQESGGGLVQAGGSLRLSCAASGSI



ASINAMGWYRQAPGKQRDFVARIQLSG



QTSYAHSVRGRFTISRDNAKNTVYLQM



NNLKPEDTAVYVCAASNTGSLYGLRNY



WGQGTQVTVSS (SEQ ID NO: 388)





VHH258B1
QVQLVESGGGLVQAGGSLRLSCAASGR



TFSSYVMGWFRQAPGQEREFVAAIMRN



GIMTYYADSVKGRFTISRDNAKNTVYLQ



MNTLKPDDTAVYYCAAASRVGVSISQSS



SYTSWGQGTQVTVSS (SEQ ID NO: 389)





VHH263B1
EVQLVESGGGLVQAGGSLRLSCAASGS



KFSFNAMGWYRQTPGKQRELVAIIINGD



MINYADSVKGRFTISRDNAKNTMYLQM



NSLKPEDTAVYYCKMTRYVYDYWGQG



TQVTVSS (SEQ ID NO: 390)





VHH276B1
QVQLVESGGGLVQAGASLRLSCAASGR



TFSSYAMGWFRQAPGKEREFVAAISGGT



PNNIYYTNYKDAVRGRFTISRDNAKNTV



YLQMSSLKPEDTAVYYCGATMGRYWN



TGGYDYWGQGTQVTVSS (SEQ ID NO:



391)





VHH321B1
QVQLVESGGGLVQPGGSLRLSCIASGFT



FSDYAMKWVRRPPGKGLEWVSVIDSEG



PTIKYSDAVRGRFTISRDNAKNTLYLQM



NSLKPEDTAVYYCAKSNGGSAFSSVLYT



DRGQGTQVTVSS (SEQ ID NO: 392)









Anti-IL-12Rβ2 Binding Domains

In another aspect of the multi-specific binding protein of the present disclosure is a binding domain or binding specificity which binds to the IL-12Rβ2 receptor subunit of the IL-12R receptor (e.g., human IL-12).


In certain embodiments, the binding domain comprises the heavy and/or light chain variable regions or a conventional antibody or antigen binding fragment thereof. In certain embodiments, the binding domain is a Fab. In certain embodiments, the binding domain is a scFv. In certain embodiments, the IL-12Rβ2 binding domain is a Fab or a scFv and is paired with an IL-12Rβ2 binding domain that is a Fab, scFv, or a VHH domain. In some embodiments, the IL-12Rβ2 binding domain is a Fab that shares a common light chain with a Fab of the IL-12Rβ1 binding domain.


Exemplary binding moieties comprising an antibody variable domain include, without limitation, a VH, a VL, a VHH, a VH/VL pair, an scFv, a diabody, or a Fab. Other suitable binding moiety formats, include, without limitation, lipocalins (see e.g., Gebauer M. et al., 2012, Method Enzymol. 503:157-188, which is incorporated by reference herein in its entirety), adnectins (see e.g., Lipovsek D., 2011, Protein Eng. Des. Sel. 24:3-9, which is incorporated by reference herein in its entirety), avimers (see e.g., Silverman J, et al., 2005, Nat. Biotechnol. 23:1556-1561, which is incorporated by reference herein in its entirety), fynomers (see e.g., Schlatter D, et al., 2012, mAbs 4:497-508, which is incorporated by reference herein in its entirety), kunitz domains (see e.g., Hosse R. J. et al., 2006, Protein Sci. 15:14-27, which is incorporated by reference herein in its entirety), knottins (see e.g., Kintzing J. R. et al., 2016, Curr. Opin. Chem. Biol. 34:143-150, which is incorporated by reference herein in its entirety), affibodies (see e.g., Feldwisch J. et al., 2010 J. Mol. Biol. 398:232-247, which is incorporated by reference herein in its entirety), and DARPins (see e.g., Pluckthun A., 2015, Annu. Rev. Pharmacol. Toxicol. 55:489-511, which is incorporated by reference herein in its entirety).


In some embodiments, the IL-12Rβ2 receptor subunit binding domain comprises the exemplary CDRs as provided in Table 6 and Table 7. In some embodiments, the IL-12Rβ2 receptor subunit binding domain comprises the sequences as provided in Table 8. In some embodiments, the IL-12Rβ2 receptor subunit binding domain binds to the IL-12Rβ2 receptor subunit more tightly than the IL-12Rβ1 receptor subunit binding domain to the IL-12Rβ1 receptor subunit.









TABLE 6







IL-12Rβ2 heavy variable chain (VH) CDRs (HCDR1, HCDR2, and HCDR3)










Heavy Chain





Hybridoma ID
HCDR1
HCDR2
HCDR3





85802_02K15A
SYWIG
NIYPGDSDTRYSPSFQG
RGGGY



(SEQ ID
(SEQ ID NO: 394)
(SEQ ID NO: 395)



NO: 393)







85802_06A17A
SYWIG
IIYPGDSDTRYSPSFQG
HEGAYWYFDL



(SEQ ID
(SEQ ID NO: 397)
(SEQ ID NO: 398)



NO: 396)







85802_06F06A
SYYWS
YIYDSGSTNYNPSLKS
GSYFWYFDL



(SEQ ID
(SEQ ID NO: 400)
(SEQ ID NO: 401)



NO: 399)







85802_06H06A
YYYWN
SIYNSGNINYNPSLKS
GGYSYGYFDN



(SEQ ID
(SEQ ID NO: 403)
(SEQ ID NO: 404)



NO: 402)







85802_08F04A
SYAMS
AISGSGGSTYYADSVKG
DGGYFDY



(SEQ ID
(SEQ ID NO: 406)
(SEQ ID NO: 407)



NO: 405)







85802_08F06A
GYYMH
WINPKSGGTNYAQKFQG
DQGYGDYVLKH



(SEQ ID
(SEQ ID NO: 409)
(SEQ ID NO: 410)



NO: 408)







85802_08F20A
GYYIH
WINPHSGGTNYAQKFQG
EANNWGYAFDI



(SEQ ID
(SEQ ID NO: 412)
(SEQ ID NO: 413)



NO: 411)







85802_08G15A
NYYMH
IINPSGGSTSYSQKFQG
DLGTTTDY



(SEQ ID
(SEQ ID NO: 415)
(SEQ ID NO: 416)



NO: 414)







85802_08G21A
TYDMH
LIDTAGDTYYPDSVKG
EGWGYFDY



(SEQ ID
(SEQ ID NO: 418)
(SEQ ID NO: 419)



NO: 417)







85802_08G21A2
DYYWS
YIYYSGSTTYSPSLKS
DNGDYGFDY



(SEQ ID
(SEQ ID NO: 421)
(SEQ ID NO: 422)



NO: 420)







85802_08J15A
DYHWS
EINHSGSTIYKSSLKS
VDWANAFDI



(SEQ ID
(SEQ ID NO: 424)
(SEQ ID NO: 425)



NO: 423)







85802_08K10A
GSVMH
RIRSKANSYATAFPASVKG
GSLDVFDF



(SEQ ID
(SEQ ID NO: 427)
(SEQ ID NO: 428)



NO: 426)







85802_08K16A
TSGMCVN
LIDWDDDKYYSTSLKT
GIAAAGSNWFDP



(SEQ ID
(SEQ ID NO: 430)
(SEQ ID NO: 431)



NO: 429)







85802_09B21A
GYWIG
IIYPGDSDTRYSPSFQG
HPRGWWYFDL



(SEQ ID
(SEQ ID NO: 433)
(SEQ ID NO: 434)



NO: 432)







85802_09K20A
DSSMH
RIRDKANTYATAYAASVKG
HEWDLDAFDI



(SEQ ID
(SEQ ID NO: 436)
(SEQ ID NO: 437)



NO: 435)







85802_09M19A
SYAMS
AINDRGNSPYYADSVKG
MGATSNWFDP



(SEQ ID
(SEQ ID NO: 439)
(SEQ ID NO: 440)



NO: 438)







85802_09N16A
GSVMH
RIRSKANSYATAYAASVTG
GSYDYFDY



(SEQ ID
(SEQ ID NO: 442)
(SEQ ID NO: 443)



NO: 441)







85802_09N23A
GSSMH
RIRDKANSYATAYAASVKG
HEWDLDAFDI



(SEQ ID
(SEQ ID NO: 445)
(SEQ ID NO: 446)



NO: 444)







85802_10D03A
SYYWS
RIYTSGSTNYNPSLKS
AGSSGSSYYYYGMDV



(SEQ ID
(SEQ ID NO: 448)
(SEQ ID NO: 449)



NO: 447)







85802_10G07A
SYYMH
IINPSGGSTSYAQKFQG
GEEWELLGDY



(SEQ ID
(SEQ ID NO: 451)
(SEQ ID NO: 452)



NO: 450)







85802_10K02A
TSGMCVS
LIYWDDDKYYSTSLKT
MRRGIEAFDI



(SEQ ID
(SEQ ID NO: 454)
(SEQ ID NO: 455)



NO: 453)







85802_10K12A
TSGMCVS
LIYWDDDKYYSTSLKT
MRRGIEAFDI



(SEQ ID
(SEQ ID NO: 457)
(SEQ ID NO: 458)



NO: 456)







85802_10M17A
SYSMN
SISSSSDYIHYADSVRG
SELGFDY



(SEQ ID
(SEQ ID NO: 460)
(SEQ ID NO: 461)



NO: 459)







85802_10N05A
TSGMCVS
LIYWDDDKYYSTSLKT
MRRGIEAFDI



(SEQ ID
(SEQ ID NO: 463)
(SEQ ID NO: 464)



NO: 462)







85802_10O18A
DYYWT
YIYYSGNTNYNPSLKS
EGWMGVTPIAFDF



(SEQ ID
(SEQ ID NO: 466)
(SEQ ID NO: 467)



NO: 465)
















TABLE 7







IL-12Rβ2 light variable chain (VL) CDRs (LCDR1, LCDR2, and LCDR3)










Light Chain





Hybridoma ID
LCDR1
LCDR2
LCDR3





85802_02K15A
RSSQSLVYSDGNTYLN
KVSNRDS
MQGTHWPIT



(SEQ ID NO: 468)
(SEQ ID NO: 469)
(SEQ ID NO: 470)





85802_06A17A
TGSSSNIGAGYDVH
GNSNRPS
QSLDTSHVV



(SEQ ID NO: 471)
(SEQ ID NO: 472)
(SEQ ID NO: 473)





85802_06F06A
SGDKLGAKYAS
QDTKRPS
QAWDSSTVV



(SEQ ID NO: 474)
(SEQ ID NO: 475)
(SEQ ID NO: 476)





85802_06H06A
SGRELGNKYAY
EDYKRPS
QAWDSSTVI



(SEQ ID NO: 477)
(SEQ ID NO: 478)
(SEQ ID NO: 479)





85802_08F04A
RASQSISSWLA
KASSLES
QQYNSYSPT



(SEQ ID NO: 480)
(SEQ ID NO: 481)
(SEQ ID NO: 482)





85802_08F06A
GGDNIGSKSVH
DDSDRPS
QVWDSSSDHVV



(SEQ ID NO: 483)
(SEQ ID NO: 484)
(SEQ ID NO: 485)





85802_08F20A
SGGSSNIGTNSVN
YNNQRPS
AAWDDSLNGWV



(SEQ ID NO: 486)
(SEQ ID NO: 487)
(SEQ ID NO: 488)





85802_08G15A
RASQAIRNDLG
AASSFQS
LQDYRYPYT



(SEQ ID NO: 489)
(SEQ ID NO: 490)
(SEQ ID NO: 491)





85802_08G21A
TGTSSDVGSYNRVS
EVSNRPS
SLYTGSSTVV



(SEQ ID NO: 492)
(SEQ ID NO: 493)
(SEQ ID NO: 494)





85802_08G21A2
TGTSSDVGSYNRVS
EVSNRPS
SLYTGSSTVV



(SEQ ID NO: 495)
(SEQ ID NO: 496)
(SEQ ID NO: 497)





85802_08J15A
TGSSSNIGAGYDVH
ANSNRPS
QSYDSSLSVV



(SEQ ID NO: 498)
(SEQ ID NO: 499)
(SEQ ID NO: 500)





85802_08K10A
QASQDISNYLN
DASNLEA
QQYDNLLT



(SEQ ID NO: 501)
(SEQ ID NO: 502)
(SEQ ID NO: 503)





85802_08K16A
SGSSSNIGSHAVN
VNNQRPS
AAWDDSLNGPV



(SEQ ID NO: 504)
(SEQ ID NO: 505)
(SEQ ID NO: 506)





85802_09B21A
TGSSSNIGAGYDVD
GNSNRPS
QSYDNSLSGSV



(SEQ ID NO: 507)
(SEQ ID NO: 508)
(SEQ ID NO: 509)





85802_09K20A
RASQGISSYLV
AASNLQS
QQFNSYPFT



(SEQ ID NO: 510)
(SEQ ID NO: 511)
(SEQ ID NO: 512)





85802_09M19A
TLSSGYSHYKVD
VGTGGIVGSKGD
GADYGSGSHFVYV



(SEQ ID NO: 513)
(SEQ ID NO: 514)
(SEQ ID NO: 515)





85802_09N16A
QASQDISNYLN
DASNLET
QQYDDLLIT



(SEQ ID NO: 516)
(SEQ ID NO: 517)
(SEQ ID NO: 518)





85802_09N23A
RASQGISSYLA
AASTLQS
QQFNSYPFT



(SEQ ID NO: 519)
(SEQ ID NO: 521)
(SEQ ID NO: 522)





85802_10D03A
SGDKLGDKYAC
QDSKRPS
QAWDSSTVV



(SEQ ID NO: 523)
(SEQ ID NO: 524)
(SEQ ID NO: 525)





85802_10G07A
RASQVISNYLA
AASSLQS
LQHNDYPFT



(SEQ ID NO: 526)
(SEQ ID NO: 527)
(SEQ ID NO: 528)





85802_10K02A
TGSSSNIGAGYDVH
GYSNRPS
QSFDISLTGWV



(SEQ ID NO: 529)
(SEQ ID NO: 530)
(SEQ ID NO: 531)





85802_10K12A
TGSSSNIGAGYDVH
GYSNRPS
QSFDISLTGWV



(SEQ ID NO: 532)
(SEQ ID NO: 533)
(SEQ ID NO: 534)





85802_10M17A
RASQGISIWLA
AASSLQS
QQANSFPLT



(SEQ ID NO: 535)
(SEQ ID NO: 536)
(SEQ ID NO: 537)





85802_10N05A
TGSSSNIGAGYDVH
GYSNRPS
QSFDISLTGWV



(SEQ ID NO: 538)
(SEQ ID NO: 539)
(SEQ ID NO: 540)





85802_10O18A
SGSSSNIGSNTVN
NNDQRPS
AAWDDSLNGWV



(SEQ ID NO: 541)
(SEQ ID NO: 542)
(SEQ ID NO: 543)
















TABLE 8







IL-12Rβ2 VH and VL sequences.









Hybridoma ID
VH
VL





85802_02K15A
EVQLVQSGTEVKKPGESLKIS
DVVMTQSPLSLPVTLGQPASISC



CKGSGYSFTSYWIGWVRQMP
RSSQSLVYSDGNTYLNWFQQRP



GKGLEWMGNIYPGDSDTRYS
GQSPRRLIYKVSNRDSGVPDRFS



PSFQGHVTISADKSISTAYLQW
GSGSGTDFTLKISRVEADDVGV



SSLKASDTAMYYCARRGGGY
YYCMQGTHWPITFGQGTRLEIK



WGQGTLVTVSS (SEQ ID NO:
(SEQ ID NO: 545)



544)






85802_06A17A
EVQLVQSGAEVKKPGESLKIS
QSVLTQPPSVSGAPGQRVTISCT



CKGSGYSFTSYWIGWVRQMP
GSSSNIGAGYDVHWYQQLPGT



GKGLECMGIIYPGDSDTRYSPS
APKVLIYGNSNRPSGVPDRFSGS



FQGQVTISADKSISTAYLQWSS
KSGTSASLAITGLQAEDEADYY



LKASDTAMYYCARHEGAYW
CQSLDTSHVVFGGGTKLTVL



YFDLWGRGTLVTVSS (SEQ ID
(SEQ ID NO: 547)



NO: 546)






85802_06F06A
QVQLQESGPGLVKPSETLSLT
SYELTQPPSVSVSPGQTASITCS



CTVSGGSISSYYWSWIRQPPG
GDKLGAKYASWYHQKPGQSPV



KGLEWFGYIYDSGSTNYNPSL
LVIYQDTKRPSGIPERFSGSNSG



KSRVTISVDTSKNQFSLKLSSV
NTATLTISGTQAMDEADYYCQA



TAADTAVYYCARGSYFWYFD
WDSSTVVFGGGTKLTVL (SEQ



LWGRGTLVTVSS (SEQ ID 
ID NO: 549)



NO: 548)






85802_06H06A
QVHLQESGPGLVKPSETLSLT
SYELTQPPSVSVSPGQTASITCS



CTVSGGSISYYYWNWIRQPPG
GRELGNKYAYWYQQKPGQSPV



KGLEWIASIYNSGNINYNPSLK
LVIYEDYKRPSGIPERFSGSNSG



SRVTISVDTSKNQFSLKLTSVT
NTATLTISGTQAMDEADYYCQA



AADTAVYYCARGGYSYGYFD
WDSSTVIFGGGTKLTVL (SEQ ID



NWGQGILVTVSS (SEQ ID 
NO: 551)



NO: 550)






85802_08F04A
EVQLLESGGGLVQPGGSLRLS
DIQMTQSPSTLSASVGDRVTITC



CAASGFTFSSYAMSWVRQAP
RASQSISSWLAWYQQKPGKAPK



GKGLEWVSAISGSGGSTYYAD
LLIYKASSLESGVPSRFSGSGSG



SVKGRFTISRDNSKNTLYLQM
TEFTLTISSLQPDDFATYYCQQY



NSLRAEDTAVYYCAKDGGYF
NSYSPTFGQGTKVEIK (SEQ ID



DYWGQGTLVTVSS (SEQ ID
NO: 553)



NO: 552)






85802_08F06A
QVQLVQPGAEVKKPGASVKV
SYVLTQPPSVSVAPGQTARITCG



SCKASGYTFTGYYMHWVRQA
GDNIGSKSVHWYQQKPGQAPV



PGQGLEWMGWINPKSGGTNY
PVVYDDSDRPSGIPERFSGSNSG



AQKFQGRVTMTRDTSISTAYM
NTATLTISRVEAGDEADYYCQV



ELTRLRSDDTAVYYCARDQG
WDSSSDHVVFGGGTKLTVL



YGDYVLKHWGQGTLVTVSS
(SEQ ID NO: 555)



(SEQ ID NO: 554)






85802_08F20A
QVQLVQSGAEVKKPGASVKV
QSVLTQPPSASGTPGQRVTISCS



SCKASGYTFIGYYIHWVRQAP
GGSSNIGTNSVNWYQQLPGTAP



GQGLEWMGWINPHSGGTNYA
KLLIYYNNQRPSGVPDRFSGSKS



QKFQGRVTMTRDTSISTAYME
GTSASLAISGLQSEDEADYYCA



LSRLRSDDTAIYYCTKEANNW
AWDDSLNGWVFGGGTKLTVL



GYAFDIWGQGTMVTVSS (SEQ
(SEQ ID NO: 557)



ID NO: 556)






85802_08G15A
QVQLVQSGAEVKKPGASVKV
AIQMTQSPSSLSASVGDRVTITC



SCKSSGYTFTNYYMHWVRQA
RASQAIRNDLGWFQQKPGKAPR



PGQGLEWMGIINPSGGSTSYS
LLIYAASSFQSGVPSRFSGSGSG



QKFQGRVTMTRDTSTSTDYM
TDFTLTISSLQPEDFATYYCLQD



ELSSLRSDDTAVYYCARDLGT
YRYPYTFGQGTKLEIK (SEQ ID



TTDYWGQGTLVTVSS (SEQ ID
NO: 559)



NO: 558)






85802_08G21A
EVQLVESGGGLVQPGGSLRLS
QSALTQPPSVSGSPGQSVTISCT



CAASGFTFSTYDMHWVRQAT
GTSSDVGSYNRVSWYQQPPGT



GKGLEWVSLIDTAGDTYYPDS
APKLMIYEVSNRPSGVPDRFSGS



VKGRFTISRENAKNSLYLQMN
KSGNTASLTISGLQAEDEADYY



SLRAGDTAVYYCAREGWGYF
CSLYTGSSTVVFGGGTKVTVL



DYWGQGALVTVSS (SEQ ID
(SEQ ID NO: 561)



NO: 560)






85802_08G21A2
QVQLLESGPGLVKPSETLSLTC
QSALTQPPSVSGSPGQSVTISCT



TVSGGSISDYYWSWIRQSPGK
GTSSDVGSYNRVSWYQQPPGT



GLEWIGYIYYSGSTTYSPSLKS
APKLMIYEVSNRPSGVPDRFSGS



RVTISVDTSKNQFSLKLGSVTA
KSGNTASLTISGLQAEDEADYY



ADTAVYYCARDNGDYGFDY
CSLYTGSSTVVFGGGTKVTVL



WGQGTLVTVSS (SEQ ID NO:
(SEQ ID NO: 563)



562)






85802_08J15A
QVQLQQWGAGLLKPSETLSLT
QSVLTQPPSVSGAPGQRVTISCT



CAVYGGSFSDYHWSWIRQPP
GSSSNIGAGYDVHWYQQLPGT



GKGLEWIGEINHSGSTIYKSSL
APKLLIYANSNRPSGVPDRFSGS



KSRVTISVDTSKNQFSLKLSSV
KSGTSASLAITGLQAEDEADYY



TAADTAVYYCARVDWANAF
CQSYDSSLSVVFGGGTKLTVL



DIWGQGTMVTVSS (SEQ ID
(SEQ ID NO: 565)



NO: 564)






85802_08K10A
EVQLVESGGGLVQPGGSLKLS
DIQMTQSPSSLSASVGDRVTITC



CAGSGFTFSGSVMHWVRQAS
QASQDISNYLNWYQQKPGKAP



GKGLEWVGRIRSKANSYATAF
KLLIYDASNLEAGVPSRFSGSGF



PASVKGRFTISRDDSKNTAYL
GTDFTFTISSLHPEDFATYYCQQ



QMNSLKTEDTAVYYCTSGSL
YDNLLTFGGGTKVEIK (SEQ ID



DVFDFWGQGTMVTVSS (SEQ
NO: 567)



ID NO: 566)






85802_08K16A
QVTLRESGPALVKPTQTLTLT
QSVLTQPPSASGTPGQRVTISCS



CTFSGFSLSTSGMCVNWIRQPP
GSSSNIGSHAVNWYQQLPGTAP



GKALEWLALIDWDDDKYYST
KLLIYVNNQRPSGVPDRFSGSKS



SLKTRLTISKDTSKNQVVLTM
GTSASLAISGLQSEDEADYYCA



TNMDPVDTATYYCTRGIAAA
AWDDSLNGPVFGGGTKLTVL



GSNWFDPWGQGTLVTVSS
(SEQ ID NO: 569)



(SEQ ID NO: 568)






85802_09B21A
EVQLVQSGAEVKKPGESLKIS
QSVLTQPPSVSGAPGQRVTISCT



CKGSGYSFTGYWIGWVRQMP
GSSSNIGAGYDVDWYQQLPGT



GKGLEWMGIIYPGDSDTRYSP
APKVLIHGNSNRPSGVPDRFSGS



SFQGQVTISADKSISTAYLQWS
KSGTSASLAITGLQAEDEADYY



SLKASDTAMYYCVRHPRGW
CQSYDNSLSGSVFGGGTKLTVL



WYFDLWGRGTLVTVSS (SEQ
(SEQ ID NO: 571)



ID NO: 570)






85802_09K20A
EVQLVESGGGLVQPGGSLKLS
DIQLTQSPSFLSASVGDRVTITC



CAASGFTFSDSSMHWVRQAS
RASQGISSYLVWYQQNPGKAPK



GKGLEWVGRIRDKANTYATA
LLIYAASNLQSGVPSRFSGSGSG



YAASVKGRFTISRDDSKNTAY
TEFTLTISSLQPEDFATYYCQQF



LQMNSLKTEDTAVYYCTRHE
NSYPFTFGPGTKVDVK (SEQ ID



WDLDAFDIWGQGTMVTVSS
NO: 573)



(SEQ ID NO: 572)






85802_09M19A
EVQLLESGGDLIQPGGSLRLSC
QPVLTQPPSASASLGASVTLTCT



AASGFTFSSYAMSWVRQAPG
LSSGYSHYKVDWYQQRPGKGP



KGLEWVSAINDRGNSPYYADS
RFVMRVGTGGIVGSKGDGIPDR



VKGRFTISRDNSKNTLFLQMIS
FSVLGSGLNRYLTIKNIQEEDES



LRAEDTAVYYCARMGATSNW
DYHCGADYGSGSHFVYVFGGG



FDPWGQGTLVTVSS (SEQ ID
TKLTVL (SEQ ID NO: 575)



NO: 574)






85802_09N16A
EVQLVESGGGLVQPGGSLKLS
DIQMTQSPSSLSASVGDRVTITC



CAASGFTFSGSVMHWVRQAS
QASQDISNYLNWYQQKPGKAP



GKGLEWVGRIRSKANSYATA
KLLIYDASNLETGVPSRFSGSGS



YAASVTGRFTISRDDSKNTAF
GTDFTFTISSLQPEDIATYYCQQ



LQMNSLKTEDTAVYYCSSGSY
YDDLLITFGQGTRLEIK (SEQ ID



DYFDYWGQGTLVTVSS (SEQ
NO: 577)



ID NO: 576)






85802_09N23A
EVQLVESGGGLVQPGGSLKLS
DIQLTQSPSFLSASVGDRVTITC



CAASGFSISGSSMHWVRQASG
RASQGISSYLAWYQQKPGKAPK



KGLEWVGRIRDKANSYATAY
LLIYAASTLQSGVPSRFSGSGSG



AASVKGRFTVSRDDSKNTAYL
TEFTLTISSLQPEDFATYYCQQF



QMTSLKTEDTAVYFCTRHEW
NSYPFTFGPGTKVDIK (SEQ ID



DLDAFDIWGQGTMVTVSS
NO: 579)



(SEQ ID NO: 578)






85802_10D03A
QVQLQESGPGLVKPSETLSLT
SYELTQPPSVSVSPGQTASITCS



CTVSGGSISSYYWSWIRQPAG
GDKLGDKYACWYQQKPGQSPV



KGLEWIGRIYTSGSTNYNPSLK
LVIYQDSKRPSGIPERFSGSNSG



SRVTMSVDTSKNQFSLKLSSV
NTATLTISGTQAMDEADYYCQA



TAADTAEYYCARAGSSGSSYY
WDSSTVVFGGGTKLTVL (SEQ



YYGMDVWGQGTTVTVSS
ID NO: 581)



(SEQ ID NO: 580)






85802_10G07A
QVQLVQSGAEVKKPGASVKV
DIQMTQSPSAMSASVGDRVTIT



SCKASGYTFTSYYMHWVRQA
CRASQVISNYLAWFQQKPGKVP



PGQGLEWMGIINPSGGSTSYA
KRLIYAASSLQSGVPSRFSGSGS



QKFQGRVTMTRDTSTSTVYM
GTEFTLTISSLQPEDFATYYCLQ



ELSSLRSEDTAVYYCARGEEW
HNDYPFTFGPGTKVDIK (SEQ ID



ELLGDYWGQGTLVTVSS (SEQ
NO: 583)



ID NO: 582)






85802_10K02A
QVTLRESGPALVKPTQTLTLT
QSVLTQPPSVSGAPGQRVTISCT



CTFSGFSLSTSGMCVSWIRQPP
GSSSNIGAGYDVHWYQQLPGT



GKALEWLALIYWDDDKYYST
APKLLIFGYSNRPSGVPVRFSGS



SLKTRLTISKDTSKNQVVLTM
KSGTSASLAITGLLAEDEADFYC



TNMDPVDTATYYCARMRRGI
QSFDISLTGWVFGGGTKLTVL



EAFDIWGQGTMVTVFS (SEQ
(SEQ ID NO: 585)



ID NO: 584)






85802_10K12A
QVTLRESGPALVKPTQTLTLT
QSVLTQPPSVSGAPGQRVTISCT



CTFSGFSLSTSGMCVSWIRQPP
GSSSNIGAGYDVHWYQQLPGT



GKALEWLALIYWDDDKYYST
APKLLIFGYSNRPSGVPVRFSGS



SLKTRLTISKDTSKNQVVLTM
KSGTSASLAITGLLAEDEADFYC



TNMDPVDTATYYCARMRRGI
QSFDISLTGWVFGGGTKLTVL



EAFDIWGQGTMVTVFS (SEQ
(SEQ ID NO: 587)



ID NO: 586)






85802_10M17A
EVLLVESGGGLVKPGGSLRLS
DIQMTQSPSSVSASVGDRVTITC



CAASGFTFSSYSMNWVRQAP
RASQGISIWLAWYQQKPGKAPK



GKGLEWVSSISSSSDYIHYADS
PLIYAASSLQSGVPSRFSGSGSG



VRGRFTISRDNAKNSLYLQMN
TDFTLTISSLQPEDFATYYCQQA



SLRAEDTAVYYCARSELGFDY
NSFPLTFGGGTKVEIK (SEQ ID



WGQGTLVTVSS (SEQ ID NO:
NO: 589)



588)






85802_10N05A
QVTLRESGPALVKPTQTLTLT
QSVLTQPPSVSGAPGQRVTISCT



CTFSGFSLSTSGMCVSWIRQPP
GSSSNIGAGYDVHWYQQLPGT



GKALEWLALIYWDDDKYYST
APKLLIFGYSNRPSGVPVRFSGS



SLKTRLTISKDTSKNQVVLTM
KSGTSASLAITGLLAEDEADFYC



TNMDPVDTATYYCARMRRGI
QSFDISLTGWVFGGGTKLTVL



EAFDIWGQGTMVTVFS (SEQ
(SEQ ID NO: 591)



ID NO: 590)






85802_10O18A
QVQLQESGPGLVKPSETLSLT
QSVLTQPPSASGTPGQRVTISCS



CTVSGDSISDYYWTWIRQSPG
GSSSNIGSNTVNWYQQLPGTAP



KGLEWIGYIYYSGNTNYNPSL
KLLIFNNDQRPSGVPDRFSGSRS



KSRVTISVDTSKNQFSLKLSSV
GTSASLAISGLQSEDEADYYCA



TAADTAVYYCTREGWMGVTP
AWDDSLNGWVFGGGTKLTVL



IAFDFWGQGTMVTVSS (SEQ
(SEQ ID NO: 593)



ID NO: 592)









In other embodiments, the IL-12Rβ2 receptor subunit binding domain comprises at least the CDRs or a VHH domain of a VHH antibody or Nanobody. In some embodiments, the IL-12Rβ2 VHH binding subunit is paired with a Fab, scFv domain that specifically binds to IL-12Rβ1.


In some embodiments, the IL-12R(S2 V binding domain is paired with an IL-12Rβ1/VHH binding domain.


In some embodiments, the IL-12Rβ2 receptor subunit binding domain comprises the exemplary VHH CDRs as provided in Table 9. In some embodiments, the IL-12Rβ2 receptor subunit binding domain comprises the VHH sequences as provided in Table 10.









TABLE 9







IL-12Rβ2 receptor subunit VHH CDR sequences.










Clone





number
HCDR1
HCDR2
HCDR3





VHH13B2
SNGMH
SIGSGGTSIYYADSVKG
EVTGAT



(SEQ ID
(SEQ ID NO: 595)
(SEQ ID NO: 596)



NO: 594)







VHH19B2
NYAMS
AINSDGTSTSYADSVKG
WEGDTDSDYKFKDY



(SEQ ID
(SEQ ID NO: 598)
(SEQ ID NO: 599)



NO: 597)







VHH64B2
SKAMH
SINSGGAITYYKDSVKG
DTDGRT



(SEQ ID
(SEQ ID NO: 601)
(SEQ ID NO: 602)



NO: 600)







VHH67B2
NYAMS
RINSGGGTTSYADSVKG
HSHPDYSSNYY



(SEQ ID
(SEQ ID NO: 604)
(SEQ ID NO: 605)



NO: 603)







VHH68B2
SYAMG
AIMRSGDTTVYVDSVKG
GRPVTRTYYSTYTYPHDYDY



(SEQ ID
(SEQ ID NO: 607)
(SEQ ID NO: 608)



NO: 606)







VHH85B2
LNTMA
FITNGGTTNYVDSVEG
QISQYPYNY



(SEQ ID
(SEQ ID NO: 610)
(SEQ ID NO: 611)



NO: 609)







VHH93B2
PYDMS
AIDKGGGAGATYYADSVKG
TAGPYSDSTPRVAY



(SEQ ID
(SEQ ID NO: 613)
(SEQ ID NO: 614)



NO: 612)







VHH94B2
SYAMS
AINSGGDSTSYADSVEG
WSDCSEYGCYDQT



(SEQ ID
(SEQ ID NO: 616)
(SEQ ID NO: 617)



NO: 615)







VHH185B2
RYRMG
AITKSGATTYDADSVKG
SYHSNWWPKNADEYAY



(SEQ ID
(SEQ ID NO: 619)
(SEQ ID NO: 620)



NO: 618)







VHH190B2
TNYYYWS
AIAYSGSTYYSPSLKS
GINFYSNYPTLNEYDY



(SEQ ID
(SEQ ID NO: 622)
(SEQ ID NO: 623)



NO: 621)







VHH194B2
GYTVG
AIQWSSAYTYSEFVKG
RRSRTSWYASTAEAYDY



(SEQ ID
(SEQ ID NO: 625)
(SEQ ID NO: 626)



NO: 624)







VHH211B2
SYVVG
RISWSGARTYYADSVKG
DLKWEVLLSEHFEY



(SEQ ID
(SEQ ID NO: 628)
(SEQ ID NO: 629)



NO: 627)







VHH216B2
TYRMG
GISWTGQTTYYAASVKG
ETNNLGRWDRPSEYDY



(SEQ ID
(SEQ ID NO: 631)
(SEQ ID NO: 632)



NO: 630)







VHH219B2
SYVVG
RISWSGARTYYADSVEG
DLKWEVLLSEHYEY



(SEQ ID
(SEQ ID NO: 634)
(SEQ ID NO: 635)



NO: 633)







VHH222B2
AYRMG
GITWRGQTTYYAASVKG
ETNGLGRWDRPSEYDY



(SEQ ID
(SEQ ID NO: 637)
(SEQ ID NO: 638)



NO: 636)







VHH229B2
SYAMG
AISWNGGSRYYVESVEG
SRIYTNYVARSYEYDD



(SEQ ID
(SEQ ID NO: 640)
(SEQ ID NO: 641)



NO: 639)







VHH230B2
SYAMG
AISWSGLSTYYVESVQG
SRIYTNYVARSYEYDD



(SEQ ID
(SEQ ID NO: 643)
(SEQ ID NO: 644 )



NO: 642)







VHH241B2
SWTMA
AITATGARTSSAESEG
TGIASWDPGMADKYTY



(SEQ ID
(SEQ ID NO: 646)
(SEQ ID NO: 647)



NO: 645)







VHH277B2
SWTMA
AITATGARTSSAESEG
TEIAGWDPGMGDKYPY



(SEQ ID
(SEQ ID NO: 649)
(SEQ ID NO: 650)



NO: 648)







VHH278B2
SYAMG
VIMRSGDTTAYVDSVKG
GRPVTRTYYHTYTYPHDYDY



(SEQ ID
(SEQ ID NO: 652)
(SEQ ID NO: 653)



NO: 651)







VHH289B2
SYAMG
AIMRSGGTTVYVNSVKG
GRPVSRTSYYTYTYPHDYDY



(SEQ ID
(SEQ ID NO: 655)
(SEQ ID NO: 656)



NO: 654)







VHH294B2
GYTVG
AIQWSSAYTYSEFVKG
QRSRTSWYASTAEAYDY



(SEQ ID
(SEQ ID NO: 658)
(SEQ ID NO: 659)



NO: 657)







VHH307B2
RYIMG
AISWSGLSTHYADSVQG
DRHWETRLLPREYDY



(SEQ ID
(SEQ ID NO: 661)
(SEQ ID NO: 662)



NO: 660)







VHH322B2
IHGMG
AIRWSDGTTIHADSVKG
TSNPQFGRNWYTVAAGVEYGY



(SEQ ID
(SEQ ID NO: 664)
(SEQ ID NO: 665)



NO: 663)







VHH356B2
INAMG
AITSGGSTAYADSVKG
DRDPITSWYVRGDY



(SEQ ID
(SEQ ID NO: 667)
(SEQ ID NO: 668)



NO: 666)







VHH361B2
RYEMA
HISSSGLTTTYADSVKG
NVDGSAWSTLGAGMDY



(SEQ ID
(SEQ ID NO: 670)
(SEQ ID NO: 671)



NO: 669)
















TABLE 10







IL-12Rβ2 receptor subunit VHH sequences.










Clone 




Number
VHH Sequence







VHH13B2
QVQLVESGGGLVRPGGSLRLSCAASGFT




FSSNGMHWFRQAPGKGLEWVSSIGSGG




TSIYYADSVKGRFTISRDNAKNTLYLQM




NSLKSDDTAVYYCSKEVTGATRGQGTQ




VTVSS (SEQ ID NO: 672)







VHH19B2
QVQLVESGGGLVQPGGSLRLSCAASGFT




FSNYAMSWVRQAPGKGLEWVSAINSDG




TSTSYADSVKGQFTISRDNAKNTLYLQM




NSLKPEDTAVYYCTKWEGDTDSDYKFK




DYWGQGTQVTVSS (SEQ ID NO: 673)







VHH64B2
QVQLVESGGGLVQPGGSLRLSCAASGFT




FSSKAMHWFRQAPGKGLEWVSSINSGG




AITYYKDSVKGRFTVSRDNAKNILYLEM




NSLKPEDTALYYCATDTDGRTRGQGTQ




VTVSS (SEQ ID NO: 674)







VHH67B2
QVQLVESGGGLVQPGGSLRLSCAASGFT




FSNYAMSWIRQGPERGFEWVSRINSGGG




TTSYADSVKGRFTISRDNAKNTLYLQMN




SLKPEDTAVYYCAKHSHPDYSSNYYRP




GQGTQVTVSS (SEQ ID NO: 675)







VHH68B2
EVQLVESGGGLVQAGGSLKLSCAASGG




TFSSYAMGWFRQAPGKEREFVAAIMRS




GDTTVYVDSVKGRFTVSRDNAKNTVYL




QMNSLKPEDAAVYYCAAGRPVTRTYYS




TYTYPHDYDYWGQGTQVTVSS (SEQ ID




NO: 676)







VHH85B2
QVQLVESGGGLVQAGGSLRVSCAASGRI




PSLNTMAWYRQAPGKQREFVAFITNGG




TTNYVDSVEGRFSISRDNTKNAVDLQM




NSLKPEDTGVYYCNVQISQYPYNYWGQ




GTQVTVSS (SEQ ID NO: 677)







VHH93B2
QVQLVESGGGLVQPGGSLRLSCAASGFT




FEPYDMSWFRQAPGKGPEWVSAIDKGG




GAGATYYADSVKGRFTISRDNAKKTLY




LQMKSLKPEDTAVYYCAITAGPYSDSTP




RVAYRGEGTQVTVSS (SEQ ID NO: 678)







VHH94B2
EVQLVESGGGLVQPGGSLRLSCAASGFT




FSSYAMSWVRQAPGKGLEWVSAINSGG




DSTSYADSVEGRFTISRDNAKNTLYLQM




NSLKPDDTAVYYCAKWSDCSEYGCYDQ




TTTEGTQVTVSS (SEQ ID NO: 679)







VHH185B2
QVQLVESGGGLVQAGGSLRLSCAASGR




TFSRYRMGWFRQAPGKEREFVAAITKSG




ATTYDADSVKGRFTISRDNAKNTLYLQ




MNSLKPEDTAVYYCAASYHSNWWPKN




ADEYAYWGQGTQVTVSS (SEQ ID NO:




680)







VHH190B2
QVQLQESGPGLVKPSQTLSLTCTVSGGSI




TTNYYYWSWIRQPPGKGLEWMGAIAYS




GSTYYSPSLKSRTSISRDTSKNQFTLQLSS




VTPEDTAVYYCASGINFYSNYPTLNEYD




YWGQGTQVTVSS (SEQ ID NO: 681)







VHH194B2
QLQLVESGGGLVQAGGSLRLSCAASGLT




FSGYTVGWFRQAPGKEREFVAAINWSS




AYTYSEFVKGRFTISRDNAKNTVYLQMS




SLKPEDTAVYYCAARRSRTSWYASTAE




AYDYWGQGTQVTVSS (SEQ ID NO: 682)







VHH211B2
QVQLVESGGGLVQAGNSLRLSCAASGR




TFSSYVVGWFRQAPGKEREFVGRISWSG




ARTYYADSVKGRFTISRDNAKNTVYLQ




MNSLKPEDTAVYYCAADLKWEVLLSEH




FEYWGQGTQVTVSS (SEQ ID NO: 683)







VHH216B2
QVQLVESGGGLVQPGGSLRLSCATSEHT




FGTYRMGWFRQAPGKEREFVAGISWTG




QTTYYAASVKGRFAISKDNAKNTVYLQ




MNTLKSDDTAVYYCAVETNNLGRWDR




PSEYDYWGQGTQVTVSS (SEQ ID NO:




684)







VHH219B2
QVQLEESGGGLVQAGGSLRLSCAASGR




TFSSYVVGWFRQAPGKEREFVGRISWSG




ARTYYADSVEGRFTISRDNAKNTVYLQ




MNSLKPEDTAVYYCAADLKWEVLLSEH




YEYWGQGTQVTVSS (SEQ ID NO: 685)







VHH222B2
QVQLVESGGGLVQAGGSLRLSCAASGRI




FSAYRMGWFRQAPGKEREFVAGITWRG




QTTYYAASVKGRFTISKDNAKKTVYLQ




MNSLKPEETAVYYCAVETNGLGRWDRP




SEYDYWGQGTQVTVSS (SEQ ID NO: 686)







VHH229B2
QVQLVESGGGLVQAGGSLRLSCAASGR




TFSSYAMGWFRQAPGKEREFVSAISWN




GGSRYYVESVEGRFTISRDNAKNTVYLQ




MNSLKPEDTAVYYCAASRIYTNYVARS




YEYDDWGQGTQVTVSS (SEQ ID NO:




687)







VHH230B2
QVQLVESGGGLVQAGGSLRLSCAASGR




TFSSYAMGWFRQAPGKEREFVSAISWSG




LSTYYVESVQGRFTISRDNAKNTVYLQM




NSLKPEDTAVYYCAASRIYTNYVARSYE




YDDWGQGTQVTVSS (SEQ ID NO: 688)







VHH241B2
QVQLVESGGGLVQLGDSLRLSCAASGR




GFSSWTMAWFRQALGKRREFVAAITAT




GARTCSAESEGRFTISRDNAKNMVFLQM




NSLKAEDTAVYYCAATGIASWDPGMAD




KYTYWGQGTQVTVSS (SEQ ID NO: 689)







VHH277B2
QVQLVESGGGLVQLGDSLRLSCAASGR




GFSSWTMAWFRQALGKRREFVAAITAT




GARTCSAESEGRFTISRDNAKNMVFLQM




NSLKAEDTAVYYCAATEIAGWDPGMGD




KYPYWGQGTQVTVSS (SEQ ID NO: 690)







VHH278B2
QVQLVESGGGLVQAGGSLKLSCAASGG




TFSSYAMGWFRQAPGKEREFVAVIMRS




GDTTAYVDSVKGRFTVSRDNAKNTVYL




QMNSLKPEDAAVYFCAAGRPVTRTYYH




TYTYPHDYDYWGQGTQVTVSS (SEQ ID




NO: 691)







VHH289B2
QVQLVESGGGLVQAGGSLKLSCAASGG




TFSSYAMGWFRQAPGKEREFVAAIMRS




GGTTVYVNSVKGRFTVSRDNAKNTVYL




QMNSLKPEDAAVYYCAAGRPVSRTSYY




TYTYPHDYDYWGQGTQVSVSS (SEQ ID




NO: 692)







VHH294B2
QLQLVESGGGLVQAGGSLRLSCAASGLT




FSGYTVGWFRQAPGKEREFVAAINWSS




AYTYSEFVKGRFTISRDNAKNTVYLQMS




SLKPEDTAVYYCAAQRSRTSWYASTAE




AYDYWGQGTQVTVSS (SEQ ID NO: 693)







VHH307B2
QVQLVESGGGLVQAGGSLRLSCAASGR




TFSRYIMGWFRQATGKEREFVAAISWSG




LSTHYADSVQGRFTISRDNAENTVYLQM




NSLKPEDTAVYYCAADRHWETRLLPRE




YDYWGQGTQVTVSS (SEQ ID NO: 694)







VHH322B2
QLQLVESGGGLVQAGGSLRLSCAASGR




TFGIHGMGWFRQAPGKEREFAAAIRWS




DGTTIHADSVKGRLTISRDNAKNTVYLQ




MNSLKPEDTAVYYCAATSNPQFGRNWY




TVAAGVEYGYWGQGTQVTVSS (SEQ ID




NO: 695)







VHH356B2
QLQLVESGGGLVQPGGSLRLSCAASGSI




FSINAMGWYRQAPGKQRELVAAITSGGS




TAYADSVKGRFTISRDNAKNTVYLQMN




SLKPEDTAVYYCNADRDPITSWYVRGD




YWGQGTQVTVSS (SEQ ID NO: 696)







VHH361B2
QVQLVESGGGLVQTGASLRLSCAASGR




TFGRYEMAWFRQAPGKEREFVAHISSSG




LTTTYADSVKGRFTISRGNALNTVYLQM




NSLKPEDTAVYYCAANVDGSAWSTLGA




GMDYWGKGTLVTISS (SEQ ID NO: 697)










VHH or VH P14A Substitutions

It was previously observed that a proline in position 14 (P14) could be destabilizing the molecule in the context of a rigidified hinge (no upper hinge region). Reverting this mutation back to alanine, which is found in the germline gene sequence, improved both the affinity and the activity of the bispecific. Accordingly, an alanine substitution at position 14 of a VHH or a VH domain, according to Kabat, enhances agonist activity. This is further described in PCT/US2024/023406, filed Apr. 5, 2024, and incorporated herein by reference.


Thus, in some embodiments, the VHH domains disclosed herein comprise a P14A amino acid substitution according to Kabat numbering. In other embodiments, VH domains disclosed herein comprise a P14A amino acid substitution according to Kabat numbering.


In some embodiments, the P14A amino acid substitution further stabilizes the multispecific binding protein.


In some embodiments, the P14A amino acid substitution increases the agonist properties of the multispecific binding protein.


Multi-Specific IL-12R Binding Proteins

In some embodiments, the IL-12Rβ1 and IL-12Rβ2 binding domains disclosed herein can be paired together or operatively linked to generate a multi-specific binding protein which is capable of cross-linking the IL-12Rβ1 and IL-12Rβ2 subunits of the IL-12 receptor (e.g., the human IL-12 receptor). In some embodiments, the IL-12Rβ1 binding domain (e.g., VHH) is operatively linked (directly or indirectly) to the N- and/or C-terminus of a first Fc domain or polypeptide, and the IL-12Rβ2 binding domain is operatively linked to the N- and/or C-terminus of a second Fc domain or polypeptide, such that the first Fc domain and the second Fc domain facilitate heterodimerization of the IL-12Rβ1 and the IL-12Rβ2 binding domains.


In certain exemplary embodiments, the multi-specific binding protein comprises a first heavy chain (HC1), a second heavy chain (HC2), and a light chain (LC) of an antibody. In some embodiments, the multi-specific binding protein lacks a LC sequence. In some embodiments, the multi-specific binding protein comprises any one of the sequences of Table 11.









TABLE 11







Heavy chain and light chain amino acid sequences of IL-12 


receptor binders.










Antibody





ID
HC1
HC2
LC1





DGL393
QVQLVHSGPEVKKPGASVK
QVQLVESGGGLVQAGGSLR




VSCKASGYTFTDYYMHWV
LSCAASGRTFSRYRMGWFR




RQAPGQGLEWMGWINPDS
QAPGKEREFVAAITKSGAT




GGTNYAQKFQGRVTMTRD
TYDADSVKGRFTISRDNAK




TSISTAYMELSRLRSDDTAV
NTLYLQMNSLKPEDTAVYY




YHCAREGATSNFDYWGQG
CAASYHSNWWPKNADEYA




TLVTVSSASTKGPSVFPLAP
YWGQGTQVTVEPKSSDKT




SSKSTSGGTAALGCLVKDY
HTCPPCPAPEAAGAPSVFLF




FPEPVTVSWNSGALTSGVH
PPKPKDTLMISRTPEVTCVV




TFPAVLQSSGLYSLSSVVTV
VDVSHEDPEVKFNWYVDG




PSSSLGTQTYICNVNHKPSN
VEVHNAKTKPREEQYNSTY




TKVDKKVEPKSCDKTHTCP
RVVSVLTVLHQDWLNGKE




PCPAPEAAGAPSVFLFPPKP
YKCKVSNKALPAPIEKTISK




KDTLMISRTPEVTCVVVDV
AKGQPREPQVCTLPPSRDEL




SHEDPEVKFNWYVDGVEV
TKNQVSLSCAVKGFYPSDI




HNAKTKPREEQYNSTYRVV
AVEWESNGQPENNYKTTPP




SVLTVLHQDWLNGKEYKC
VLDSDGSFFLVSKLTVDKS




KVSNKALPAPIEKTISKAKG
RWQQGNVFSCSVMHEALH




QPREPQVYTLPPCRDELTK
NRFTQKSLSLSPG 




NQVSLWCLVKGFYPSDIAV
(SEQ ID NO: 699)




EWESNGQPENNYKTTPPVL





DSDGSFFLYSKLTVDKSRW





QQGNVFSCSVMHEALHNH





YTQKSLSLSPG 





(SEQ ID NO: 698)







DGL395
QVQLQESGPGLVKPSETLSL
QVQLVESGGGLVQAGGSLR
DIQLTQSPSFLSAS



TCTVSGGSISSYDWSWIRQS
LSCAASGRTFSSYAMGWFR
VGDRVTITCRAS



AGKGLEWIGRIYTSGSTIYN
QAPGKEREFVSAISWSGLST
QGISSFLAWYQQ



PSLKSRVTMSVDTSKNEISL
YYVESVQGRFTISRDNAKN
KPGKAPKLLIYA



KLSSVTAADTAFYYCAKDR
TVYLQMNSLKPEDTAVYY
ASTLQSGVPSRFS



GNYPHDAFDIWGQGTMITV
CAASRIYTNYVARSYEYDD
GSGSGTEFTLTISS



SSASTKGPSVFPLAPSSKSTS
WGQGTQVTVEPKSSDKTHT
LQPEDFATYYCQ



GGTAALGCLVKDYFPEPVT
CPPCPAPEAAGAPSVFLFPP
QLNGYPFTFGPGT



VSWNSGALTSGVHTFPAVL
KPKDTLMISRTPEVTCVVV
KVDIKRTVAAPS



QSSGLYSLSSVVTVPSSSLG
DVSHEDPEVKFNWYVDGV
VFIFPPSDEQLKS



TQTYICNVNHKPSNTKVDK
EVHNAKTKPREEQYNSTYR
GTASVVCLLNNF



KVEPKSCDKTHTCPPCPAPE
VVSVLTVLHQDWLNGKEY
YPREAKVQWKV



AAGAPSVFLFPPKPKDTLMI
KCKVSNKALPAPIEKTISKA
DNALQSGNSQES



SRTPEVTCVVVDVSHEDPE
KGQPREPQVCTLPPSRDELT
VTEQDSKDSTYS



VKFNWYVDGVEVHNAKTK
KNQVSLSCAVKGFYPSDIA
LSSTLTLSKADYE



PREEQYNSTYRVVSVLTVL
VEWESNGQPENNYKTTPPV
KHKVYACEVTHQ



HQDWLNGKEYKCKVSNKA
LDSDGSFFLVSKLTVDKSR
GLSSPVTKSFNRG



LPAPIEKTISKAKGQPREPQ
WQQGNVFSCSVMHEALHN
EC 



VYTLPPCRDELTKNQVSLW
RFTQKSLSLSPG 
(SEQ ID 



CLVKGFYPSDIAVEWESNG
(SEQ ID NO: 701)
NO: 702)



QPENNYKTTPPVLDSDGSFF





LYSKLTVDKSRWQQGNVFS





CSVMHEALHNHYTQKSLSL





SPG 





(SEQ ID NO: 700)







DGL397
QVHLVQSGAEVKKPGASV
QVQLVESGGGLVQAGGSLR
DIQLTQSPSFLSAS



KVSCEASGYTFTDYYIHWL
LSCAASGRIFSAYRMGWFR
VGDRVTITCRAS



RQAPGQGLEWMGWINPNS
QAPGKEREFVAGITWRGQT
QGISSYLAWYQQ



GGTHYAQKFQGRVTMTRD
TYYAASVKGRFTISKDNAK
QPGKPPKLLIYAA



TSISTAYMELSRLSSDDTAV
KTVYLQMNSLKPEETAVYY
STLHSGVPSRFSG



YYCAREGGWNYFSGMDV
CAVETNGLGRWDRPSEYD
SGSGTEFTLTISSL



WGQGTTVTVSSASTKGPSV
YWGQGTQVTVEPKSSDKT
QPEDFATYYCQQ



FPLAPSSKSTSGGTAALGCL
HTCPPCPAPEAAGAPSVFLF
LNRYPYTCGQGT



VKDYFPEPVTVSWNSGALT
PPKPKDTLMISRTPEVTCVV
KLEIKRTVAAPSV



SGVHTFPAVLQSSGLYSLSS
VDVSHEDPEVKFNWYVDG
FIFPPSDEQLKSGT



VVTVPSSSLGTQTYICNVNH
VEVHNAKTKPREEQYNSTY
ASVVCLLNNFYP



KPSNTKVDKKVEPKSCDKT
RVVSVLTVLHQDWLNGKE
REAKVQWKVDN



HTCPPCPAPEAAGAPSVFLF
YKCKVSNKALPAPIEKTISK
ALQSGNSQESVT



PPKPKDTLMISRTPEVTCVV
AKGQPREPQVCTLPPSRDEL
EQDSKDSTYSLSS



VDVSHEDPEVKFNWYVDG
TKNQVSLSCAVKGFYPSDI
TLTLSKADYEKH



VEVHNAKTKPREEQYNSTY
AVEWESNGQPENNYKTTPP
KVYACEVTHQGL



RVVSVLTVLHQDWLNGKE
VLDSDGSFFLVSKLTVDKS
SSPVTKSFNRGEC



YKCKVSNKALPAPIEKTISK
RWQQGNVFSCSVMHEALH
(SEQ ID



AKGQPREPQVYTLPPCRDE
NRFTQKSLSLSPG 
NO: 705)



LTKNQVSLWCLVKGFYPSD
(SEQ ID NO: 704)




IAVEWESNGQPENNYKTTP





PVLDSDGSFFLYSKLTVDKS





RWQQGNVFSCSVMHEALH





NHYTQKSLSLSPG 





(SEQ ID NO: 703)







DGL398
QVHLVQSGAEVKKPGASV
QVQLVESGGGLVQAGGSLR
DIQLTQSPSFLSAS



KVSCEASGYTFTDYYIHWL
LSCAASGRTFSSYAMGWFR
VGDRVTITCRAS



RQAPGQGLEWMGWINPNS
QAPGKEREFVSAISWSGLST
QGISSYLAWYQQ



GGTHYAQKFQGRVTMTRD
YYVESVQGRFTISRDNAKN
QPGKPPKLLIYAA



TSISTAYMELSRLSSDDTAV
TVYLQMNSLKPEDTAVYY
STLHSGVPSRFSG



YYCAREGGWNYFSGMDV
CAASRIYTNYVARSYEYDD
SGSGTEFTLTISSL



WGQGTTVTVSSASTKGPSV
WGQGTQVTVEPKSSDKTHT
QPEDFATYYCQQ



FPLAPSSKSTSGGTAALGCL
CPPCPAPEAAGAPSVFLFPP
LNRYPYTCGQGT



VKDYFPEPVTVSWNSGALT
KPKDTLMISRTPEVTCVVV
KLEIKRTVAAPSV



SGVHTFPAVLQSSGLYSLSS
DVSHEDPEVKFNWYVDGV
FIFPPSDEQLKSGT



VVTVPSSSLGTQTYICNVNH
EVHNAKTKPREEQYNSTYR
ASVVCLLNNFYP



KPSNTKVDKKVEPKSCDKT
VVSVLTVLHQDWLNGKEY
REAKVQWKVDN



HTCPPCPAPEAAGAPSVFLF
KCKVSNKALPAPIEKTISKA
ALQSGNSQESVT



PPKPKDTLMISRTPEVTCVV
KGQPREPQVCTLPPSRDELT
EQDSKDSTYSLSS



VDVSHEDPEVKFNWYVDG
KNQVSLSCAVKGFYPSDIA
TLTLSKADYEKH



VEVHNAKTKPREEQYNSTY
VEWESNGQPENNYKTTPPV
KVYACEVTHQGL



RVVSVLTVLHQDWLNGKE
LDSDGSFFLVSKLTVDKSR
SSPVTKSFNRGEC



YKCKVSNKALPAPIEKTISK
WQQGNVFSCSVMHEALHN
(SEQ ID 



AKGQPREPQVYTLPPCRDE
RFTQKSLSLSPG 
NO: 708)



LTKNQVSLWCLVKGFYPSD
(SEQ ID NO: 707)




IAVEWESNGQPENNYKTTP





PVLDSDGSFFLYSKLTVDKS





RWQQGNVFSCSVMHEALH





NHYTQKSLSLSPG 





(SEQ ID NO: 706)







DGL400
QVHLVQSGAEVKKPGASV
QVQLVESGGGLVQAGGSLR
DIQLTQSPSFLSAS



KVSCKASGYTFIDYYMHW
LSCAASGRTFSRYRMGWFR
VGDRVTITCRAS



VRQAPGQGLEWMGWINPN
QAPGKEREFVAAITKSGAT
QGISSYLAWYQQ



SGGTHYSQKFQGRVTMTW
TYDADSVKGRFTISRDNAK
KPGKAPKVLIYA



DTSISTAYMELSRLTSDDTA
NTLYLQMNSLKPEDTAVYY
ASTLQSGVPSRFS



VYYCAREGDYISSSAFDYW
CAASYHSNWWPKNADEYA
GSGSGTEFTLTISS



GQGTLVTVSSASTKGPSVFP
YWGQGTQVTVEPKSSDKT
LLPEDFATYFCQQ



LAPSSKSTSGGTAALGCLV
HTCPPCPAPEAAGAPSVFLF
LHRYPYTFGQGA



KDYFPEPVTVSWNSGALTS
PPKPKDTLMISRTPEVTCVV
KLEIKRTVAAPSV



GVHTFPAVLQSSGLYSLSSV
VDVSHEDPEVKFNWYVDG
FIFPPSDEQLKSGT



VTVPSSSLGTQTYICNVNHK
VEVHNAKTKPREEQYNSTY
ASVVCLLNNFYP



PSNTKVDKKVEPKSCDKTH
RVVSVLTVLHQDWLNGKE
REAKVQWKVDN



TCPPCPAPEAAGAPSVFLFP
YKCKVSNKALPAPIEKTISK
ALQSGNSQESVT



PKPKDTLMISRTPEVTCVVV
AKGQPREPQVCTLPPSRDEL
EQDSKDSTYSLSS



DVSHEDPEVKFNWYVDGV
TKNQVSLSCAVKGFYPSDI
TLTLSKADYEKH



EVHNAKTKPREEQYNSTYR
AVEWESNGQPENNYKTTPP
KVYACEVTHQGL



VVSVLTVLHQDWLNGKEY
VLDSDGSFFLVSKLTVDKS
SSPVTKSFNRGEC



KCKVSNKALPAPIEKTISKA
RWQQGNVFSCSVMHEALH
(SEQ ID 



KGQPREPQVYTLPPCRDEL
NRFTQKSLSLSPG 
NO: 711)



TKNQVSLWCLVKGFYPSDI
(SEQ ID NO: 710)




AVEWESNGQPENNYKTTPP





VLDSDGSFFLYSKLTVDKS





RWQQGNVFSCSVMHEALH





NHYTQKSLSLSPG 





(SEQ ID NO: 709)







DGL405
QVQLQESGPGLVKPSETLSL
QVQLVESGGGLVQAGGSLR
DIQLTQSPSFLSAS



TCTVSGGSISSYYWSWIRQS
LSCAASGRIFSAYRMGWFR
VGYRVTITCRAS



AGKELEWIGRIYTSGSTIYN
QAPGKEREFVAGITWRGQT
QGISSYLAWYQQ



PSLKSRVTMSVDPSKNQFSL
TYYAASVKGRFTISKDNAK
KPGKAPQLLIYA



KLSSVTAADTAVYYCANSR
KTVYLQMNSLKPEETAVYY
ASTLQSGVPSRFS



SYPHDAFDIWGQGTMVTVS
CAVETNGLGRWDRPSEYD
GRGSGTEFTLTIS



SASTKGPSVFPLAPSSKSTS
YWGQGTQVTVEPKSSDKT
SLQPEDFATYYC



GGTAALGCLVKDYFPEPVT
HTCPPCPAPEAAGAPSVFLF
QQLNGYPFTFGP



VSWNSGALTSGVHTFPAVL
PPKPKDTLMISRTPEVTCVV
GTKVNIKRTVAA



QSSGLYSLSSVVTVPSSSLG
VDVSHEDPEVKFNWYVDG
PSVFIFPPSDEQLK



TQTYICNVNHKPSNTKVDK
VEVHNAKTKPREEQYNSTY
SGTASVVCLLNN



KVEPKSCDKTHTCPPCPAPE
RVVSVLTVLHQDWLNGKE
FYPREAKVQWKV



AAGAPSVFLFPPKPKDTLMI
YKCKVSNKALPAPIEKTISK
DNALQSGNSQES



SRTPEVTCVVVDVSHEDPE
AKGQPREPQVCTLPPSRDEL
VTEQDSKDSTYS



VKFNWYVDGVEVHNAKTK
TKNQVSLSCAVKGFYPSDI
LSSTLTLSKADYE



PREEQYNSTYRVVSVLTVL
AVEWESNGQPENNYKTTPP
KHKVYACEVTHQ



HQDWLNGKEYKCKVSNKA
VLDSDGSFFLVSKLTVDKS
GLSSPVTKSFNRG



LPAPIEKTISKAKGQPREPQ
RWQQGNVFSCSVMHEALH
EC  



VYTLPPCRDELTKNQVSLW
NRFTQKSLSLSPG 
(SEQ ID



CLVKGFYPSDIAVEWESNG
(SEQ ID NO: 713)
NO: 714)



QPENNYKTTPPVLDSDGSFF





LYSKLTVDKSRWQQGNVFS





CSVMHEALHNHYTQKSLSL





SPG 





(SEQ ID NO: 712)







DGL407
QVQLVESGGGVVQPGRSLR
QVQLVESGGGLVRPGGSLR
DIQMTQSPSSLSA



LSCAASGFTFSSYGMHWVR
LSCAASGFTFSSNGMHWFR
SVGDRVTITCQAS



QAPGKGLEWVAVIWNDGS
QAPGKGLEWVSSIGSGGTSI
QDISNYLNWYQQ



NKYYADSVKGRFTISRDNS
YYADSVKGRFTISRDNAKN
KPGKAPKLLIYD



KNTLYLQMNSLRAEDTAV
TLYLQMNSLKSDDTAVYY
ASNLETGVPSRFS



YYCARGELFFDYWGQGTL
CSKEVTGATRGQGTQVTVE
GSGSGTDFTFTISS



VTVSSASTKGPSVFPLAPSS
PKSSDKTHTCPPCPAPEAAG
LQPEDIATYYCQ



KSTSGGTAALGCLVKDYFP
APSVFLFPPKPKDTLMISRT
QYDNLFTFGGGT



EPVTVSWNSGALTSGVHTF
PEVTCVVVDVSHEDPEVKF
KVEIKRTVAAPSV



PAVLQSSGLYSLSSVVTVPS
NWYVDGVEVHNAKTKPRE
FIFPPSDEQLKSGT



SSLGTQTYICNVNHKPSNTK
EQYNSTYRVVSVLTVLHQD
ASVVCLLNNFYP



VDKKVEPKSCDKTHTCPPC
WLNGKEYKCKVSNKALPA
REAKVQWKVDN



PAPEAAGAPSVFLFPPKPKD
PIEKTISKAKGQPREPQVCT
ALQSGNSQESVT



TLMISRTPEVTCVVVDVSH
LPPSRDELTKNQVSLSCAV
EQDSKDSTYSLSS



EDPEVKFNWYVDGVEVHN
KGFYPSDIAVEWESNGQPE
TLTLSKADYEKH



AKTKPREEQYNSTYRVVSV
NNYKTTPPVLDSDGSFFLVS
KVYACEVTHQGL



LTVLHQDWLNGKEYKCKV
KLTVDKSRWQQGNVFSCS
SSPVTKSFNRGEC



SNKALPAPIEKTISKAKGQP
VMHEALHNRFTQKSLSLSP
(SEQ ID 



REPQVYTLPPCRDELTKNQ
G 
NO: 717)



VSLWCLVKGFYPSDIAVEW
(SEQ ID NO: 716)




ESNGQPENNYKTTPPVLDS





DGSFFLYSKLTVDKSRWQQ





GNVFSCSVMHEALHNHYT





QKSLSLSPG 





(SEQ ID NO: 715)







DGL408
QVQLVESGGGVVQPGRSLR
QVQLVESGGGLVQPGGSLR
DIQMTQSPSSLSA



LSCAASGFTFSSYGMHWVR
LSCAASGFTFSNYAMSWVR
SVGDRVTITCQAS



QAPGKGLEWVAVIWNDGS
QAPGKGLEWVSAINSDGTS
QDISNYLNWYQQ



NKYYADSVKGRFTISRDNS
TSYADSVKGQFTISRDNAK
KPGKAPKLLIYD



KNTLYLQMNSLRAEDTAV
NTLYLQMNSLKPEDTAVYY
ASNLETGVPSRFS



YYCARGELFFDYWGQGTL
CTKWEGDTDSDYKFKDYW
GSGSGTDFTFTISS



VTVSSASTKGPSVFPLAPSS
GQGTQVTVEPKSSDKTHTC
LQPEDIATYYCQ



KSTSGGTAALGCLVKDYFP
PPCPAPEAAGAPSVFLFPPK
QYDNLFTFGGGT



EPVTVSWNSGALTSGVHTF
PKDTLMISRTPEVTCVVVD
KVEIKRTVAAPSV



PAVLQSSGLYSLSSVVTVPS
VSHEDPEVKFNWYVDGVE
FIFPPSDEQLKSGT



SSLGTQTYICNVNHKPSNTK
VHNAKTKPREEQYNSTYRV
ASVVCLLNNFYP



VDKKVEPKSCDKTHTCPPC
VSVLTVLHQDWLNGKEYK
REAKVQWKVDN



PAPEAAGAPSVFLFPPKPKD
CKVSNKALPAPIEKTISKAK
ALQSGNSQESVT



TLMISRTPEVTCVVVDVSH
GQPREPQVCTLPPSRDELTK
EQDSKDSTYSLSS



EDPEVKFNWYVDGVEVHN
NQVSLSCAVKGFYPSDIAV
TLTLSKADYEKH



AKTKPREEQYNSTYRVVSV
EWESNGQPENNYKTTPPVL
KVYACEVTHQGL



LTVLHQDWLNGKEYKCKV
DSDGSFFLVSKLTVDKSRW
SSPVTKSFNRGEC



SNKALPAPIEKTISKAKGQP
QQGNVFSCSVMHEALHNRF
(SEQ ID 



REPQVYTLPPCRDELTKNQ
TQKSLSLSPG 
NO: 720)



VSLWCLVKGFYPSDIAVEW
(SEQ ID NO: 719)




ESNGQPENNYKTTPPVLDS





DGSFFLYSKLTVDKSRWQQ





GNVFSCSVMHEALHNHYT





QKSLSLSPG 





(SEQ ID NO: 718)







DGL411
EVQLVESGGGLVQPGGSLR
QVQLVESGGGLVQAGGSLR
EIVLTQSPGTLSLS



LSCAASGFTFSSYWMSWVR
LSCAASGRTFSRYRMGWFR
PGERATLSCRASQ



QAPGKGLEWVANIKQDGSE
QAPGKEREFVAAITKSGAT
SINSNYLAWYQQ



KYYVDSVKGRFTISRDNAK
TYDADSVKGRFTISRDNAK
KPGQAPRLLIYGA



NSLYLQMNSLRAEDTAVY
NTLYLQMNSLKPEDTAVYY
SSRATGIPDRFSG



YCAREELTGLYWYFDLWG
CAASYHSNWWPKNADEYA
SGSGTDFTLTISR



RGTLVTVSSASTKGPSVFPL
YWGQGTQVTVEPKSSDKT
LEPEDFAVYYCQ



APSSKSTSGGTAALGCLVK
HTCPPCPAPEAAGAPSVFLF
QYDSFGGGTKVE



DYFPEPVTVSWNSGALTSG
PPKPKDTLMISRTPEVTCVV
IKRTVAAPSVFIFP



VHTFPAVLQSSGLYSLSSVV
VDVSHEDPEVKFNWYVDG
PSDEQLKSGTASV



TVPSSSLGTQTYICNVNHKP
VEVHNAKTKPREEQYNSTY
VCLLNNFYPREA



SNTKVDKKVEPKSCDKTHT
RVVSVLTVLHQDWLNGKE
KVQWKVDNALQ



CPPCPAPEAAGAPSVFLFPP
YKCKVSNKALPAPIEKTISK
SGNSQESVTEQDS



KPKDTLMISRTPEVTCVVV
AKGQPREPQVCTLPPSRDEL
KDSTYSLSSTLTL



DVSHEDPEVKFNWYVDGV
TKNQVSLSCAVKGFYPSDI
SKADYEKHKVYA



EVHNAKTKPREEQYNSTYR
AVEWESNGQPENNYKTTPP
CEVTHQGLSSPVT



VVSVLTVLHQDWLNGKEY
VLDSDGSFFLVSKLTVDKS
KSFNRGEC 



KCKVSNKALPAPIEKTISKA
RWQQGNVFSCSVMHEALH
(SEQ ID 



KGQPREPQVYTLPPCRDEL
NRFTQKSLSLSPG 
NO: 723)



TKNQVSLWCLVKGFYPSDI
(SEQ ID NO: 722)




AVEWESNGQPENNYKTTPP





VLDSDGSFFLYSKLTVDKS





RWQQGNVFSCSVMHEALH





NHYTQKSLSLSPG 





(SEQ ID NO: 721)







DGL412
QVQLVQSGAEVKKPGASA
QVQLVESGGGLVRPGGSLR
DIQMTQSPSSLSA



KVSCKASGYTFTDYYLHW
LSCAASGFTFSSNGMHWFR
SVGDRVTITCRAS



VRQAPGQGLEWMGWINPN
QAPGKGLEWVSSIGSGGTSI
QGIGNYLAWFQQ



NGGTHYAQKFQGRVTMTR
YYADSVKGRFTISRDNAKN
RPGKAPKSLIYAA



DTSISTAYMELSRLRSDDTA
TLYLQMNSLKSDDTAVYY
SSLQSGVPSKFSG



VYYCAREMGGTTAFDYWG
CSKEVTGATRGQGTQVTVE
SGSGTDFTLTISSL



QGTLVTVSSASTKGPSVFPL
PKSSDKTHTCPPCPAPEAAG
QPADFAIYYCQQ



APSSKSTSGGTAALGCLVK
APSVFLFPPKPKDTLMISRT
YNIYPYTFGPGTR



DYFPEPVTVSWNSGALTSG
PEVTCVVVDVSHEDPEVKF
LEIKRTVAAPSVF



VHTFPAVLQSSGLYSLSSVV
NWYVDGVEVHNAKTKPRE
IFPPSDEQLKSGT



TVPSSSLGTQTYICNVNHKP
EQYNSTYRVVSVLTVLHQD
ASVVCLLNNFYP



SNTKVDKKVEPKSCDKTHT
WLNGKEYKCKVSNKALPA
REAKVQWKVDN



CPPCPAPEAAGAPSVFLFPP
PIEKTISKAKGQPREPQVCT
ALQSGNSQESVT



KPKDTLMISRTPEVTCVVV
LPPSRDELTKNQVSLSCAV
EQDSKDSTYSLSS



DVSHEDPEVKFNWYVDGV
KGFYPSDIAVEWESNGQPE
TLTLSKADYEKH



EVHNAKTKPREEQYNSTYR
NNYKTTPPVLDSDGSFFLVS
KVYACEVTHQGL



VVSVLTVLHQDWLNGKEY
KLTVDKSRWQQGNVFSCS
SSPVTKSFNRGEC



KCKVSNKALPAPIEKTISKA
VMHEALHNRFTQKSLSLSP
(SEQ ID 



KGQPREPQVYTLPPCRDEL
G 
NO: 726)



TKNQVSLWCLVKGFYPSDI
(SEQ ID NO: 725)




AVEWESNGQPENNYKTTPP





VLDSDGSFFLYSKLTVDKS





RWQQGNVFSCSVMHEALH





NHYTQKSLSLSPG 





(SEQ ID NO: 724)







DGL413
QVQLVQSGAEVKKPGASA
QVQLVESGGGLVQAGGSLR
DIQMTQSPSSLSA



KVSCKASGYTFTDYYLHW
LSCAASGRTFSRYRMGWFR
SVGDRVTITCRAS



VRQAPGQGLEWMGWINPN
QAPGKEREFVAAITKSGAT
QGIGNYLAWFQQ



NGGTHYAQKFQGRVTMTR
TYDADSVKGRFTISRDNAK
RPGKAPKSLIYAA



DTSISTAYMELSRLRSDDTA
NTLYLQMNSLKPEDTAVYY
SSLQSGVPSKFSG



VYYCAREMGGTTAFDYWG
CAASYHSNWWPKNADEYA
SGSGTDFTLTISSL



QGTLVTVSSASTKGPSVFPL
YWGQGTQVTVEPKSSDKT
QPADFAIYYCQQ



APSSKSTSGGTAALGCLVK
HTCPPCPAPEAAGAPSVFLF
YNIYPYTFGPGTR



DYFPEPVTVSWNSGALTSG
PPKPKDTLMISRTPEVTCVV
LEIKRTVAAPSVF



VHTFPAVLQSSGLYSLSSVV
VDVSHEDPEVKFNWYVDG
IFPPSDEQLKSGT



TVPSSSLGTQTYICNVNHKP
VEVHNAKTKPREEQYNSTY
ASVVCLLNNFYP



SNTKVDKKVEPKSCDKTHT
RVVSVLTVLHQDWLNGKE
REAKVQWKVDN



CPPCPAPEAAGAPSVFLFPP
YKCKVSNKALPAPIEKTISK
ALQSGNSQESVT



KPKDTLMISRTPEVTCVVV
AKGQPREPQVCTLPPSRDEL
EQDSKDSTYSLSS



DVSHEDPEVKFNWYVDGV
TKNQVSLSCAVKGFYPSDI
TLTLSKADYEKH



EVHNAKTKPREEQYNSTYR
AVEWESNGQPENNYKTTPP
KVYACEVTHQGL



VVSVLTVLHQDWLNGKEY
VLDSDGSFFLVSKLTVDKS
SSPVTKSFNRGEC



KCKVSNKALPAPIEKTISKA
RWQQGNVFSCSVMHEALH
(SEQ ID 



KGQPREPQVYTLPPCRDEL
NRFTQKSLSLSPG 
NO: 729)



TKNQVSLWCLVKGFYPSDI
(SEQ ID NO: 728)




AVEWESNGQPENNYKTTPP





VLDSDGSFFLYSKLTVDKS





RWQQGNVFSCSVMHEALH





NHYTQKSLSLSPG 





(SEQ ID NO: 727)







DGL415
QVQLVQSGAEVKKPGASV
QVQLVESGGGLVQAGGSLR
DIQMTQSPSSLSA



KVSCKASGYTFTDYYIHWV
LSCAASGRTFSRYRMGWFR
SVGNRVTITCRAS



RQAPGQGLEWMGWINPDS
QAPGKEREFVAAITKSGAT
QGINNYLAWFQQ



GGTHYAQKFQGRVTMTRD
TYDADSVKGRFTISRDNAK
KPGKAPKSLIYAA



TSISTVYMDLSRLRSDDTAV
NTLYLQMNSLKPEDTAVYY
SSLQSGVPSKFSG



YYCAREGEGLASFDSWGQ
CAASYHSNWWPKNADEYA
SGSGTDFTLTISSL



GTLVTVSSASTKGPSVFPLA
YWGQGTQVTVEPKSSDKT
QPEDFATYYCQQ



PSSKSTSGGTAALGCLVKD
HTCPPCPAPEAAGAPSVFLF
YNNYPFTFGPGT



YFPEPVTVSWNSGALTSGV
PPKPKDTLMISRTPEVTCVV
KVDIKRTVAAPS



HTFPAVLQSSGLYSLSSVVT
VDVSHEDPEVKFNWYVDG
VFIFPPSDEQLKS



VPSSSLGTQTYICNVNHKPS
VEVHNAKTKPREEQYNSTY
GTASVVCLLNNF



NTKVDKKVEPKSCDKTHTC
RVVSVLTVLHQDWLNGKE
YPREAKVQWKV



PPCPAPEAAGAPSVFLFPPK
YKCKVSNKALPAPIEKTISK
DNALQSGNSQES



PKDTLMISRTPEVTCVVVD
AKGQPREPQVCTLPPSRDEL
VTEQDSKDSTYS



VSHEDPEVKFNWYVDGVE
TKNQVSLSCAVKGFYPSDI
LSSTLTLSKADYE



VHNAKTKPREEQYNSTYRV
AVEWESNGQPENNYKTTPP
KHKVYACEVTHQ



VSVLTVLHQDWLNGKEYK
VLDSDGSFFLVSKLTVDKS
GLSSPVTKSFNRG



CKVSNKALPAPIEKTISKAK
RWQQGNVFSCSVMHEALH
EC  



GQPREPQVYTLPPCRDELT
NRFTQKSLSLSPG 
(SEQ ID



KNQVSLWCLVKGFYPSDIA
(SEQ ID NO: 731)
NO: 732)



VEWESNGQPENNYKTTPPV





LDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHN





HYTQKSLSLSPG 





(SEQ ID NO: 730)







DGL421
QITLKESGPTLVKPTQTLTL
QVQLQESGPGLVKPSQTLS
QTVVTQEPSFSVS



TCTFFGFSLNTGGVGVGWI
LTCTVSGGSITTNYYYWSW
PGGTVTLTCGLTS



RQPPGKALEWLTLIYWNDD
IRQPPGKGLEWMGAIAYSG
GSVSTSYYPSWY



KRYSPSLKSRLTITKDTSKN
STYYSPSLKSRTSISRDTSKN
QQTPGQAPRTLIY



QVVLTMTNMDPVDTATYY
QFTLQLSSVTPEDTAVYYC
STYTRSSGVPDRF



CAHTLRWYHGFDIWGQGT
ASGINFYSNYPTLNEYDYW
SGSILGNKAALTI



MVTVSSASTKGPSVFPLAPS
GQGTQVTVEPKSSDKTHTC
TGAQADDESDYY



SKSTSGGTAALGCLVKDYF
PPCPAPEAAGAPSVFLFPPK
CVLYMGSGIWVF



PEPVTVSWNSGALTSGVHT
PKDTLMISRTPEVTCVVVD
GGGTKLTVLGQP



FPAVLQSSGLYSLSSVVTVP
VSHEDPEVKFNWYVDGVE
KAAPSVTLFPPSS



SSSLGTQTYICNVNHKPSNT
VHNAKTKPREEQYNSTYRV
EELQANKATLVC



KVDKKVEPKSCDKTHTCPP
VSVLTVLHQDWLNGKEYK
LISDFYPGAVTVA



CPAPEAAGAPSVFLFPPKPK
CKVSNKALPAPIEKTISKAK
WKADSSPVKAGV



DTLMISRTPEVTCVVVDVS
GQPREPQVCTLPPSRDELTK
ETTTPSKQSNNK



HEDPEVKFNWYVDGVEVH
NQVSLSCAVKGFYPSDIAV
YAASSYLSLTPEQ



NAKTKPREEQYNSTYRVVS
EWESNGQPENNYKTTPPVL
WKSHRSYSCQVT



VLTVLHQDWLNGKEYKCK
DSDGSFFLVSKLTVDKSRW
HEGSTVEKTVAP



VSNKALPAPIEKTISKAKGQ
QQGNVFSCSVMHEALHNRF
TECS  



PREPQVYTLPPCRDELTKN
TQKSLSLSPG 
(SEQ ID



QVSLWCLVKGFYPSDIAVE
(SEQ ID NO: 734)
NO: 735)



WESNGQPENNYKTTPPVLD





SDGSFFLYSKLTVDKSRWQ





QGNVFSCSVMHEALHNHY





TQKSLSLSPG 





(SEQ ID NO: 733)







DGL424
QVQLVESGGGLVQAGGSLR
QVTLRESGPALVKPTQTLTL
QSVLTQPPSVSGA



LSCAASGGPFSGYVMGWFR
TCTFSGFSLSTSGMCVSWIR
PGQRVTISCTGSS



QVSGKEREFVAGITGISSTY
QPPGKALEWLALIYWDDD
SNIGAGYDVHWY



FADSVKGRFTISRDNAKNM
KYYSTSLKTRLTISKDTSKN
QQLPGTAPKLLIF



VYLQMNSLKPEDTAVYYC
QVVLTMTNMDPVDTATYY
GYSNRPSGVPVR



AAVNSFGVIPTSPNGMDYW
CARMRRGIEAFDIWGQGTM
FSGSKSGTSASLA



GKGTLVTVEPKSSDKTHTC
VTVFSASTKGPSVFPLAPSS
ITGLLAEDEADFY



PPCPAPEAAGAPSVFLFPPK
KSTSGGTAALGCLVKDYFP
CQSFDISLTGWVF



PKDTLMISRTPEVTCVVVD
EPVTVSWNSGALTSGVHTF
GGGTKLTVLGQP



VSHEDPEVKFNWYVDGVE
PAVLQSSGLYSLSSVVTVPS
KAAPSVTLFPPSS



VHNAKTKPREEQYNSTYRV
SSLGTQTYICNVNHKPSNTK
EELQANKATLVC



VSVLTVLHQDWLNGKEYK
VDKKVEPKSCDKTHTCPPC
LISDFYPGAVTVA



CKVSNKALPAPIEKTISKAK
PAPEAAGAPSVFLFPPKPKD
WKADSSPVKAGV



GQPREPQVYTLPPCRDELT
TLMISRTPEVTCVVVDVSH
ETTTPSKQSNNK



KNQVSLWCLVKGFYPSDIA
EDPEVKFNWYVDGVEVHN
YAASSYLSLTPEQ



VEWESNGQPENNYKTTPPV
AKTKPREEQYNSTYRVVSV
WKSHRSYSCQVT



LDSDGSFFLYSKLTVDKSR
LTVLHQDWLNGKEYKCKV
HEGSTVEKTVAP



WQQGNVFSCSVMHEALHN
SNKALPAPIEKTISKAKGQP
TECS 



HYTQKSLSLSPG 
REPQVCTLPPSRDELTKNQ
(SEQ ID 



(SEQ ID NO: 736)
VSLSCAVKGFYPSDIAVEW
NO: 738)




ESNGQPENNYKTTPPVLDS





DGSFFLVSKLTVDKSRWQQ





GNVFSCSVMHEALHNRFTQ





KSLSLSPG 





(SEQ ID NO: 737)






DGL425
QVQLVESGGGLVQAGGSLR
EVQLVQSGTEVKKPGESLKI
DVVMTQSPLSLP



LSCAASGGPFSGYVMGWFR
SCKGSGYSFTSYWIGWVRQ
VTLGQPASISCRS



QVSGKEREFVAGITGISSTY
MPGKGLEWMGNIYPGDSD
SQSLVYSDGNTY



FADSVKGRFTISRDNAKNM
TRYSPSFQGHVTISADKSIST
LNWFQQRPGQSP



VYLQMNSLKPEDTAVYYC
AYLQWSSLKASDTAMYYC
RRLIYKVSNRDSG



AAVNSFGVIPTSPNGMDYW
ARRGGGYWGQGTLVTVSS
VPDRFSGSGSGTD



GKGTLVTVEPKSSDKTHTC
ASTKGPSVFPLAPSSKSTSG
FTLKISRVEADDV



PPCPAPEAAGAPSVFLFPPK
GTAALGCLVKDYFPEPVTV
GVYYCMQGTHW



PKDTLMISRTPEVTCVVVD
SWNSGALTSGVHTFPAVLQ
PITFGQGTRLEIK



VSHEDPEVKFNWYVDGVE
SSGLYSLSSVVTVPSSSLGT
RTVAAPSVFIFPPS



VHNAKTKPREEQYNSTYRV
QTYICNVNHKPSNTKVDKK
DEQLKSGTASVV



VSVLTVLHQDWLNGKEYK
VEPKSCDKTHTCPPCPAPEA
CLLNNFYPREAK



CKVSNKALPAPIEKTISKAK
AGAPSVFLFPPKPKDTLMIS
VQWKVDNALQS



GQPREPQVYTLPPCRDELT
RTPEVTCVVVDVSHEDPEV
GNSQESVTEQDS



KNQVSLWCLVKGFYPSDIA
KFNWYVDGVEVHNAKTKP
KDSTYSLSSTLTL



VEWESNGQPENNYKTTPPV
REEQYNSTYRVVSVLTVLH
SKADYEKHKVYA



LDSDGSFFLYSKLTVDKSR
QDWLNGKEYKCKVSNKAL
CEVTHQGLSSPVT



WQQGNVFSCSVMHEALHN
PAPIEKTISKAKGQPREPQV
KSFNRGEC 



HYTQKSLSLSPG 
CTLPPSRDELTKNQVSLSCA
(SEQ ID 



(SEQ ID NO: 739)
VKGFYPSDIAVEWESNGQP
NO: 741)




ENNYKTTPPVLDSDGSFFLV





SKLTVDKSRWQQGNVFSCS





VMHEALHNRFTQKSLSLSP





G 





(SEQ ID NO: 740)






DGL427
QVQLVESGGGLVQAGGSLR
EVLLVESGGGLVKPGGSLR
DIQMTQSPSSVSA



LSCAAPGRYAVGWFRQAP
LSCAASGFTFSSYSMNWVR
SVGDRVTITCRAS



GKEYEFVAAITVSGGSKYY
QAPGKGLEWVSSISSSSDYI
QGISIWLAWYQQ



EDSVKGRFAISRDNAKNTV
HYADSVRGRFTISRDNAKN
KPGKAPKPLIYAA



YLQMNSLKAEDTAVYYCA
SLYLQMNSLRAEDTAVYYC
SSLQSGVPSRFSG



ARTPKFGSGWYNRRGEYD
ARSELGFDYWGQGTLVTVS
SGSGTDFTLTISSL



YWGQGTQVTVEPKSSDKT
SASTKGPSVFPLAPSSKSTS
QPEDFATYYCQQ



HTCPPCPAPEAAGAPSVFLF
GGTAALGCLVKDYFPEPVT
ANSFPLTFGGGTK



PPKPKDTLMISRTPEVTCVV
VSWNSGALTSGVHTFPAVL
VEIKRTVAAPSVF



VDVSHEDPEVKFNWYVDG
QSSGLYSLSSVVTVPSSSLG
IFPPSDEQLKSGT



VEVHNAKTKPREEQYNSTY
TQTYICNVNHKPSNTKVDK
ASVVCLLNNFYP



RVVSVLTVLHQDWLNGKE
KVEPKSCDKTHTCPPCPAPE
REAKVQWKVDN



YKCKVSNKALPAPIEKTISK
AAGAPSVFLFPPKPKDTLMI
ALQSGNSQESVT



AKGQPREPQVYTLPPCRDE
SRTPEVTCVVVDVSHEDPE
EQDSKDSTYSLSS



LTKNQVSLWCLVKGFYPSD
VKFNWYVDGVEVHNAKTK
TLTLSKADYEKH



IAVEWESNGQPENNYKTTP
PREEQYNSTYRVVSVLTVL
KVYACEVTHQGL



PVLDSDGSFFLYSKLTVDKS
HQDWLNGKEYKCKVSNKA
SSPVTKSFNRGEC



RWQQGNVFSCSVMHEALH
LPAPIEKTISKAKGQPREPQ
(SEQ ID 



NHYTQKSLSLSPG 
VCTLPPSRDELTKNQVSLSC
NO: 744)



(SEQ ID NO: 742)
AVKGFYPSDIAVEWESNGQ





PENNYKTTPPVLDSDGSFFL





VSKLTVDKSRWQQGNVFS





CSVMHEALHNRFTQKSLSL





SPG 





(SEQ ID NO: 743)






DGL428
QVQLVESGGGLAQAGGSLR
QVQLQESGPGLVKPSETLSL
SYELTQPPSVSVS



LSCAASGRTFSNDDMAWFR
TCTVSGGSISSYYWSWIRQP
PGQTASITCSGDK



QAPGKEREFVAHIDRNAAS
AGKGLEWIGRIYTSGSTNY
LGDKYACWYQQ



TNYADSVKGRFTISRDNAK
NPSLKSRVTMSVDTSKNQF
KPGQSPVLVIYQD



NTVYLQMTRLKPEDTAVY
SLKLSSVTAADTAEYYCAR
SKRPSGIPERFSGS



YCAADPDHFGTTWYQQYT
AGSSGSSYYYYGMDVWGQ
NSGNTATLTISGT



YWGPGTQVTVEPKSSDKTH
GTTVTVSSASTKGPSVFPLA
QAMDEADYYCQ



TCPPCPAPEAAGAPSVFLFP
PSSKSTSGGTAALGCLVKD
AWDSSTVVFGGG



PKPKDTLMISRTPEVTCVVV
YFPEPVTVSWNSGALTSGV
TKLTVLGQPKAA



DVSHEDPEVKFNWYVDGV
HTFPAVLQSSGLYSLSSVVT
PSVTLFPPSSEELQ



EVHNAKTKPREEQYNSTYR
VPSSSLGTQTYICNVNHKPS
ANKATLVCLISDF



VVSVLTVLHQDWLNGKEY
NTKVDKKVEPKSCDKTHTC
YPGAVTVAWKA



KCKVSNKALPAPIEKTISKA
PPCPAPEAAGAPSVFLFPPK
DSSPVKAGVETT



KGQPREPQVYTLPPCRDEL
PKDTLMISRTPEVTCVVVD
TPSKQSNNKYAA



TKNQVSLWCLVKGFYPSDI
VSHEDPEVKFNWYVDGVE
SSYLSLTPEQWKS



AVEWESNGQPENNYKTTPP
VHNAKTKPREEQYNSTYRV
HRSYSCQVTHEG



VLDSDGSFFLYSKLTVDKS
VSVLTVLHQDWLNGKEYK
STVEKTVAPTECS



RWQQGNVFSCSVMHEALH
CKVSNKALPAPIEKTISKAK
(SEQ ID 



NHYTQKSLSLSPG 
GQPREPQVCTLPPSRDELTK
NO: 747)



(SEQ ID NO: 745)
NQVSLSCAVKGFYPSDIAV





EWESNGQPENNYKTTPPVL





DSDGSFFLVSKLTVDKSRW





QQGNVFSCSVMHEALHNRF





TQKSLSLSPG 





(SEQ ID NO: 746)






DGL430
QVQLVESGGGLAQAGGSLR
QVHLQESGPGLVKPSETLSL
SYELTQPPSVSVS



LSCAASGRTFSNDDMAWFR
TCTVSGGSISYYYWNWIRQ
PGQTASITCSGRE



QAPGKEREFVAHIDRNAAS
PPGKGLEWIASIYNSGNINY
LGNKYAYWYQQ



TNYADSVKGRFTISRDNAK
NPSLKSRVTISVDTSKNQFS
KPGQSPVLVIYED



NTVYLQMTRLKPEDTAVY
LKLTSVTAADTAVYYCARG
YKRPSGIPERFSG



YCAADPDHFGTTWYQQYT
GYSYGYFDNWGQGILVTVS
SNSGNTATLTISG



YWGPGTQVTVEPKSSDKTH
SASTKGPSVFPLAPSSKSTS
TQAMDEADYYC



TCPPCPAPEAAGAPSVFLFP
GGTAALGCLVKDYFPEPVT
QAWDSSTVIFGG



PKPKDTLMISRTPEVTCVVV
VSWNSGALTSGVHTFPAVL
GTKLTVLGQPKA



DVSHEDPEVKFNWYVDGV
QSSGLYSLSSVVTVPSSSLG
APSVTLFPPSSEEL



EVHNAKTKPREEQYNSTYR
TQTYICNVNHKPSNTKVDK
QANKATLVCLIS



VVSVLTVLHQDWLNGKEY
KVEPKSCDKTHTCPPCPAPE
DFYPGAVTVAW



KCKVSNKALPAPIEKTISKA
AAGAPSVFLFPPKPKDTLMI
KADSSPVKAGVE



KGQPREPQVYTLPPCRDEL
SRTPEVTCVVVDVSHEDPE
TTTPSKQSNNKY



TKNQVSLWCLVKGFYPSDI
VKFNWYVDGVEVHNAKTK
AASSYLSLTPEQ



AVEWESNGQPENNYKTTPP
PREEQYNSTYRVVSVLTVL
WKSHRSYSCQVT



VLDSDGSFFLYSKLTVDKS
HQDWLNGKEYKCKVSNKA
HEGSTVEKTVAP



RWQQGNVFSCSVMHEALH
LPAPIEKTISKAKGQPREPQ
TECS 



NHYTQKSLSLSPG 
VCTLPPSRDELTKNQVSLSC
(SEQ ID 



(SEQ ID NO: 748)
AVKGFYPSDIAVEWESNGQ
NO: 750)




PENNYKTTPPVLDSDGSFFL





VSKLTVDKSRWQQGNVFS





CSVMHEALHNRFTQKSLSL





SPG 





(SEQ ID NO: 749)






DGL436
EVQLVESGGGLVQPGGSLR
QVQLQESGPGLVKPSETLSL
SYELTQPPSVSVS



LSCAASGFTLDYYAIGWFR
TCTVSGGSISSYYWSWIRQP
PGQTASITCSGDK



QAPGKEREGVSCISSSDRST
AGKGLEWIGRIYTSGSTNY
LGDKYACWYQQ



WYADSVKGRFTISRDNAKN
NPSLKSRVTMSVDTSKNQF
KPGQSPVLVIYQD



TVYLQMHSLKPEDTAVYY
SLKLSSVTAADTAEYYCAR
SKRPSGIPERFSGS



CATPCYSDYDPEGYEYDY
AGSSGSSYYYYGMDVWGQ
NSGNTATLTISGT



WGQGTQVTVEPKSSDKTHT
GTTVTVSSASTKGPSVFPLA
QAMDEADYYCQ



CPPCPAPEAAGAPSVFLFPP
PSSKSTSGGTAALGCLVKD
AWDSSTVVFGGG



KPKDTLMISRTPEVTCVVV
YFPEPVTVSWNSGALTSGV
TKLTVLGQPKAA



DVSHEDPEVKFNWYVDGV
HTFPAVLQSSGLYSLSSVVT
PSVTLFPPSSEELQ



EVHNAKTKPREEQYNSTYR
VPSSSLGTQTYICNVNHKPS
ANKATLVCLISDF



VVSVLTVLHQDWLNGKEY
NTKVDKKVEPKSCDKTHTC
YPGAVTVAWKA



KCKVSNKALPAPIEKTISKA
PPCPAPEAAGAPSVFLFPPK
DSSPVKAGVETT



KGQPREPQVYTLPPCRDEL
PKDTLMISRTPEVTCVVVD
TPSKQSNNKYAA



TKNQVSLWCLVKGFYPSDI
VSHEDPEVKFNWYVDGVE
SSYLSLTPEQWKS



AVEWESNGQPENNYKTTPP
VHNAKTKPREEQYNSTYRV
HRSYSCQVTHEG



VLDSDGSFFLYSKLTVDKS
VSVLTVLHQDWLNGKEYK
STVEKTVAPTECS



RWQQGNVFSCSVMHEALH
CKVSNKALPAPIEKTISKAK
(SEQ ID 



NHYTQKSLSLSPG 
GQPREPQVCTLPPSRDELTK
NO: 753)



(SEQ ID NO: 751)
NQVSLSCAVKGFYPSDIAV





EWESNGQPENNYKTTPPVL





DSDGSFFLVSKLTVDKSRW





QQGNVFSCSVMHEALHNRF





TQKSLSLSPG 





(SEQ ID NO: 752)






DGL439
QVQLVESGGGLVQAGGSLR
QVQLQESGPGLVKPSETLSL
SYELTQPPSVSVS



LSCAASGRTFGTYAMGWF
TCTVSGGSISSYYWSWIRQP
PGQTASITCSGDK



RQAPGKERDFVARISNSGA
AGKGLEWIGRIYTSGSTNY
LGDKYACWYQQ



FTHYADSVKGRFTISRDNA
NPSLKSRVTMSVDTSKNQF
KPGQSPVLVIYQD



KNTVYLHMNSLENGDTAA
SLKLSSVTAADTAEYYCAR
SKRPSGIPERFSGS



YYCVATRGTNSAYYTRST
AGSSGSSYYYYGMDVWGQ
NSGNTATLTISGT



MYEYWGQGTQVTVEPKSS
GTTVTVSSASTKGPSVFPLA
QAMDEADYYCQ



DKTHTCPPCPAPEAAGAPS
PSSKSTSGGTAALGCLVKD
AWDSSTVVFGGG



VFLFPPKPKDTLMISRTPEV
YFPEPVTVSWNSGALTSGV
TKLTVLGQPKAA



TCVVVDVSHEDPEVKFNW
HTFPAVLQSSGLYSLSSVVT
PSVTLFPPSSEELQ



YVDGVEVHNAKTKPREEQ
VPSSSLGTQTYICNVNHKPS
ANKATLVCLISDF



YNSTYRVVSVLTVLHQDW
NTKVDKKVEPKSCDKTHTC
YPGAVTVAWKA



LNGKEYKCKVSNKALPAPI
PPCPAPEAAGAPSVFLFPPK
DSSPVKAGVETT



EKTISKAKGQPREPQVYTLP
PKDTLMISRTPEVTCVVVD
TPSKQSNNKYAA



PCRDELTKNQVSLWCLVKG
VSHEDPEVKFNWYVDGVE
SSYLSLTPEQWKS



FYPSDIAVEWESNGQPENN
VHNAKTKPREEQYNSTYRV
HRSYSCQVTHEG



YKTTPPVLDSDGSFFLYSKL
VSVLTVLHQDWLNGKEYK
STVEKTVAPTECS



TVDKSRWQQGNVFSCSVM
CKVSNKALPAPIEKTISKAK
(SEQ ID 



HEALHNHYTQKSLSLSPG
GQPREPQVCTLPPSRDELTK
NO: 756)



(SEQ ID NO: 754)
NQVSLSCAVKGFYPSDIAV





EWESNGQPENNYKTTPPVL





DSDGSFFLVSKLTVDKSRW





QQGNVFSCSVMHEALHNRF





TQKSLSLSPG 





(SEQ ID NO: 755)






DGL440
QVQLVESGGGLVQAGGSLR
QVQLVQPGAEVKKPGASV
SYVLTQPPSVSVA



LSCAASGRTFGTYAMGWF
KVSCKASGYTFTGYYMHW
PGQTARITCGGD



RQAPGKERDFVARISNSGA
VRQAPGQGLEWMGWINPK
NIGSKSVHWYQQ



FTHYADSVKGRFTISRDNA
SGGTNYAQKFQGRVTMTR
KPGQAPVPVVYD



KNTVYLHMNSLENGDTAA
DTSISTAYMELTRLRSDDTA
DSDRPSGIPERFS



YYCVATRGTNSAYYTRST
VYYCARDQGYGDYVLKH
GSNSGNTATLTIS



MYEYWGQGTQVTVEPKSS
WGQGTLVTVSSASTKGPSV
RVEAGDEADYYC



DKTHTCPPCPAPEAAGAPS
FPLAPSSKSTSGGTAALGCL
QVWDSSSDHVVF



VFLFPPKPKDTLMISRTPEV
VKDYFPEPVTVSWNSGALT
GGGTKLTVLGQP



TCVVVDVSHEDPEVKFNW
SGVHTFPAVLQSSGLYSLSS
KAAPSVTLFPPSS



YVDGVEVHNAKTKPREEQ
VVTVPSSSLGTQTYICNVNH
EELQANKATLVC



YNSTYRVVSVLTVLHQDW
KPSNTKVDKKVEPKSCDKT
LISDFYPGAVTVA



LNGKEYKCKVSNKALPAPI
HTCPPCPAPEAAGAPSVFLF
WKADSSPVKAGV



EKTISKAKGQPREPQVYTLP
PPKPKDTLMISRTPEVTCVV
ETTTPSKQSNNK



PCRDELTKNQVSLWCLVKG
VDVSHEDPEVKFNWYVDG
YAASSYLSLTPEQ



FYPSDIAVEWESNGQPENN
VEVHNAKTKPREEQYNSTY
WKSHRSYSCQVT



YKTTPPVLDSDGSFFLYSKL
RVVSVLTVLHQDWLNGKE
HEGSTVEKTVAP



TVDKSRWQQGNVFSCSVM
YKCKVSNKALPAPIEKTISK
TECS 



HEALHNHYTQKSLSLSPG
AKGQPREPQVCTLPPSRDEL
(SEQ ID 



(SEQ ID NO: 757)
TKNQVSLSCAVKGFYPSDI
NO: 759)




AVEWESNGQPENNYKTTPP





VLDSDGSFFLVSKLTVDKS





RWQQGNVFSCSVMHEALH





NRFTQKSLSLSPG 





(SEQ ID NO: 758)






DGL441
QVQLVESGGGLVQAGGSLR
EVQLVESGGGLVQPGGSLR
QSALTQPPSVSGS



LSCAASGRTFGTYAMGWF
LSCAASGFTFSTYDMHWVR
PGQSVTISCTGTS



RQAPGKERDFVARISNSGA
QATGKGLEWVSLIDTAGDT
SDVGSYNRVSWY



FTHYADSVKGRFTISRDNA
YYPDSVKGRFTISRENAKNS
QQPPGTAPKLMI



KNTVYLHMNSLENGDTAA
LYLQMNSLRAGDTAVYYC
YEVSNRPSGVPD



YYCVATRGTNSAYYTRST
AREGWGYFDYWGQGALVT
RFSGSKSGNTASL



MYEYWGQGTQVTVEPKSS
VSSASTKGPSVFPLAPSSKS
TISGLQAEDEADY



DKTHTCPPCPAPEAAGAPS
TSGGTAALGCLVKDYFPEP
YCSLYTGSSTVVF



VFLFPPKPKDTLMISRTPEV
VTVSWNSGALTSGVHTFPA
GGGTKVTVLGQP



TCVVVDVSHEDPEVKFNW
VLQSSGLYSLSSVVTVPSSS
KAAPSVTLFPPSS



YVDGVEVHNAKTKPREEQ
LGTQTYICNVNHKPSNTKV
EELQANKATLVC



YNSTYRVVSVLTVLHQDW
DKKVEPKSCDKTHTCPPCP
LISDFYPGAVTVA



LNGKEYKCKVSNKALPAPI
APEAAGAPSVFLFPPKPKDT
WKADSSPVKAGV



EKTISKAKGQPREPQVYTLP
LMISRTPEVTCVVVDVSHE
ETTTPSKQSNNK



PCRDELTKNQVSLWCLVKG
DPEVKFNWYVDGVEVHNA
YAASSYLSLTPEQ



FYPSDIAVEWESNGQPENN
KTKPREEQYNSTYRVVSVL
WKSHRSYSCQVT



YKTTPPVLDSDGSFFLYSKL
TVLHQDWLNGKEYKCKVS
HEGSTVEKTVAP



TVDKSRWQQGNVFSCSVM
NKALPAPIEKTISKAKGQPR
TECS 



HEALHNHYTQKSLSLSPG
EPQVCTLPPSRDELTKNQVS
(SEQ ID 



(SEQ ID NO: 760)
LSCAVKGFYPSDIAVEWES
NO: 762)




NGQPENNYKTTPPVLDSDG





SFFLVSKLTVDKSRWQQGN





VFSCSVMHEALHNRFTQKS





LSLSPG 





(SEQ ID NO: 761)






DGL442
QVQLVESGGGLVQAGGSLR
QVHLQESGPGLVKPSETLSL
SYELTQPPSVSVS



LSCAASGRTFGTYAMGWF
TCTVSGGSISYYYWNWIRQ
PGQTASITCSGRE



RQAPGKERDFVARISNSGA
PPGKGLEWIASIYNSGNINY
LGNKYAYWYQQ



FTHYADSVKGRFTISRDNA
NPSLKSRVTISVDTSKNQFS
KPGQSPVLVIYED



KNTVYLHMNSLENGDTAA
LKLTSVTAADTAVYYCARG
YKRPSGIPERFSG



YYCVATRGTNSAYYTRST
GYSYGYFDNWGQGILVTVS
SNSGNTATLTISG



MYEYWGQGTQVTVEPKSS
SASTKGPSVFPLAPSSKSTS
TQAMDEADYYC



DKTHTCPPCPAPEAAGAPS
GGTAALGCLVKDYFPEPVT
QAWDSSTVIFGG



VFLFPPKPKDTLMISRTPEV
VSWNSGALTSGVHTFPAVL
GTKLTVLGQPKA



TCVVVDVSHEDPEVKFNW
QSSGLYSLSSVVTVPSSSLG
APSVTLFPPSSEEL



YVDGVEVHNAKTKPREEQ
TQTYICNVNHKPSNTKVDK
QANKATLVCLIS



YNSTYRVVSVLTVLHQDW
KVEPKSCDKTHTCPPCPAPE
DFYPGAVTVAW



LNGKEYKCKVSNKALPAPI
AAGAPSVFLFPPKPKDTLMI
KADSSPVKAGVE



EKTISKAKGQPREPQVYTLP
SRTPEVTCVVVDVSHEDPE
TTTPSKQSNNKY



PCRDELTKNQVSLWCLVKG
VKFNWYVDGVEVHNAKTK
AASSYLSLTPEQ



FYPSDIAVEWESNGQPENN
PREEQYNSTYRVVSVLTVL
WKSHRSYSCQVT



YKTTPPVLDSDGSFFLYSKL
HQDWLNGKEYKCKVSNKA
HEGSTVEKTVAP



TVDKSRWQQGNVFSCSVM
LPAPIEKTISKAKGQPREPQ
TECS  



HEALHNHYTQKSLSLSPG
VCTLPPSRDELTKNQVSLSC
(SEQ ID



(SEQ ID NO: 763)
AVKGFYPSDIAVEWESNGQ
NO: 765)




PENNYKTTPPVLDSDGSFFL





VSKLTVDKSRWQQGNVFS





CSVMHEALHNRFTQKSLSL





SPG 





(SEQ ID NO: 764)






DGL443
QVQLVESGGGLVQAGGSLR
QVTLRESGPALVKPTQTLTL
QSVLTQPPSVSGA



LSCAASGRTFGTYAMGWF
TCTFSGFSLSTSGMCVSWIR
PGQRVTISCTGSS



RQAPGKERDFVARISNSGA
QPPGKALEWLALIYWDDD
SNIGAGYDVHWY



FTHYADSVKGRFTISRDNA
KYYSTSLKTRLTISKDTSKN
QQLPGTAPKLLIF



KNTVYLHMNSLENGDTAA
QVVLTMTNMDPVDTATYY
GYSNRPSGVPVR



YYCVATRGTNSAYYTRST
CARMRRGIEAFDIWGQGTM
FSGSKSGTSASLA



MYEYWGQGTQVTVEPKSS
VTVFSASTKGPSVFPLAPSS
ITGLLAEDEADFY



DKTHTCPPCPAPEAAGAPS
KSTSGGTAALGCLVKDYFP
CQSFDISLTGWVF



VFLFPPKPKDTLMISRTPEV
EPVTVSWNSGALTSGVHTF
GGGTKLTVLGQP



TCVVVDVSHEDPEVKFNW
PAVLQSSGLYSLSSVVTVPS
KAAPSVTLFPPSS



YVDGVEVHNAKTKPREEQ
SSLGTQTYICNVNHKPSNTK
EELQANKATLVC



YNSTYRVVSVLTVLHQDW
VDKKVEPKSCDKTHTCPPC
LISDFYPGAVTVA



LNGKEYKCKVSNKALPAPI
PAPEAAGAPSVFLFPPKPKD
WKADSSPVKAGV



EKTISKAKGQPREPQVYTLP
TLMISRTPEVTCVVVDVSH
ETTTPSKQSNNK



PCRDELTKNQVSLWCLVKG
EDPEVKFNWYVDGVEVHN
YAASSYLSLTPEQ



FYPSDIAVEWESNGQPENN
AKTKPREEQYNSTYRVVSV
WKSHRSYSCQVT



YKTTPPVLDSDGSFFLYSKL
LTVLHQDWLNGKEYKCKV
HEGSTVEKTVAP



TVDKSRWQQGNVFSCSVM
SNKALPAPIEKTISKAKGQP
TECS 



HEALHNHYTQKSLSLSPG
REPQVCTLPPSRDELTKNQ
(SEQ ID 



(SEQ ID NO: 766)
VSLSCAVKGFYPSDIAVEW
NO: 768)




ESNGQPENNYKTTPPVLDS





DGSFFLVSKLTVDKSRWQQ





GNVFSCSVMHEALHNRFTQ





KSLSLSPG 





(SEQ ID NO: 767)






DGL444
QVQLVESGGGLVQAGGSLR
QVQLVQSGAEVKKPGASV
QSVLTQPPSASGT



LSCAASGRTFGTYAMGWF
KVSCKASGYTFIGYYIHWV
PGQRVTISCSGGS



RQAPGKERDFVARISNSGA
RQAPGQGLEWMGWINPHS
SNIGTNSVNWYQ



FTHYADSVKGRFTISRDNA
GGTNYAQKFQGRVTMTRD
QLPGTAPKLLIYY



KNTVYLHMNSLENGDTAA
TSISTAYMELSRLRSDDTAI
NNQRPSGVPDRF



YYCVATRGTNSAYYTRST
YYCTKEANNWGYAFDIWG
SGSKSGTSASLAI



MYEYWGQGTQVTVEPKSS
QGTMVTVSSASTKGPSVFP
SGLQSEDEADYY



DKTHTCPPCPAPEAAGAPS
LAPSSKSTSGGTAALGCLV
CAAWDDSLNGW



VFLFPPKPKDTLMISRTPEV
KDYFPEPVTVSWNSGALTS
VFGGGTKLTVLG



TCVVVDVSHEDPEVKFNW
GVHTFPAVLQSSGLYSLSSV
QPKAAPSVTLFPP



YVDGVEVHNAKTKPREEQ
VTVPSSSLGTQTYICNVNHK
SSEELQANKATL



YNSTYRVVSVLTVLHQDW
PSNTKVDKKVEPKSCDKTH
VCLISDFYPGAVT



LNGKEYKCKVSNKALPAPI
TCPPCPAPEAAGAPSVFLFP
VAWKADSSPVKA



EKTISKAKGQPREPQVYTLP
PKPKDTLMISRTPEVTCVVV
GVETTTPSKQSN



PCRDELTKNQVSLWCLVKG
DVSHEDPEVKFNWYVDGV
NKYAASSYLSLTP



FYPSDIAVEWESNGQPENN
EVHNAKTKPREEQYNSTYR
EQWKSHRSYSCQ



YKTTPPVLDSDGSFFLYSKL
VVSVLTVLHQDWLNGKEY
VTHEGSTVEKTV



TVDKSRWQQGNVFSCSVM
KCKVSNKALPAPIEKTISKA
APTECS 



HEALHNHYTQKSLSLSPG
KGQPREPQVCTLPPSRDELT
(SEQ ID



(SEQ ID NO: 769)
KNQVSLSCAVKGFYPSDIA
NO: 771)




VEWESNGQPENNYKTTPPV





LDSDGSFFLVSKLTVDKSR





WQQGNVFSCSVMHEALHN





RFTQKSLSLSPG 





(SEQ ID NO: 770)






DGL445
QVQLQESGGGLVQAGGSLR
QVQLVQPGAEVKKPGASV
SYVLTQPPSVSVA



LSCAASGTIFSIDVMAYYRQ
KVSCKASGYTFTGYYMHW
PGQTARITCGGD



APGKQRELVAAISSGGSLN
VRQAPGQGLEWMGWINPK
NIGSKSVHWYQQ



YRDSVKGRFTISRDNAKNA
SGGTNYAQKFQGRVTMTR
KPGQAPVPVVYD



VYLQMNSLKPDDTAVYYC
DTSISTAYMELTRLRSDDTA
DSDRPSGIPERFS



YANIRTSPVTTRPMGNYWG
VYYCARDQGYGDYVLKH
GSNSGNTATLTIS



QGTQVTVEPKSSDKTHTCP
WGQGTLVTVSSASTKGPSV
RVEAGDEADYYC



PCPAPEAAGAPSVFLFPPKP
FPLAPSSKSTSGGTAALGCL
QVWDSSSDHVVF



KDTLMISRTPEVTCVVVDV
VKDYFPEPVTVSWNSGALT
GGGTKLTVLGQP



SHEDPEVKFNWYVDGVEV
SGVHTFPAVLQSSGLYSLSS
KAAPSVTLFPPSS



HNAKTKPREEQYNSTYRVV
VVTVPSSSLGTQTYICNVNH
EELQANKATLVC



SVLTVLHQDWLNGKEYKC
KPSNTKVDKKVEPKSCDKT
LISDFYPGAVTVA



KVSNKALPAPIEKTISKAKG
HTCPPCPAPEAAGAPSVFLF
WKADSSPVKAGV



QPREPQVYTLPPCRDELTK
PPKPKDTLMISRTPEVTCVV
ETTTPSKQSNNK



NQVSLWCLVKGFYPSDIAV
VDVSHEDPEVKFNWYVDG
YAASSYLSLTPEQ



EWESNGQPENNYKTTPPVL
VEVHNAKTKPREEQYNSTY
WKSHRSYSCQVT



DSDGSFFLYSKLTVDKSRW
RVVSVLTVLHQDWLNGKE
HEGSTVEKTVAP



QQGNVFSCSVMHEALHNH
YKCKVSNKALPAPIEKTISK
TECS  



YTQKSLSLSPG 
AKGQPREPQVCTLPPSRDEL
(SEQ ID



(SEQ ID NO: 772)
TKNQVSLSCAVKGFYPSDI
NO: 774)




AVEWESNGQPENNYKTTPP





VLDSDGSFFLVSKLTVDKS





RWQQGNVFSCSVMHEALH





NRFTQKSLSLSPG 





(SEQ ID NO: 773)






DGL495
QVQLVESGGGLVQAGGSLR
QVQLVQSGAEVKKPGASV
QSVLTQPPSASGT



LSCAASGGPFSGYVMGWFR
KVSCKASGYTFIGYYIHWV
PGQRVTISCSGGS



QVSGKEREFVAGITGISSTY
RQAPGQGLEWMGWINPHS
SNIGTNSVNWYQ



FADSVKGRFTISRDNAKNM
GGTNYAQKFQGRVTMTRD
QLPGTAPKLLIYY



VYLQMNSLKPEDTAVYYC
TSISTAYMELSRLRSDDTAI
NNQRPSGVPDRF



AAVNSFGVIPTSPNGMDYW
YYCTKEANNWGYAFDIWG
SGSKSGTSASLAI



GKGTLVTVEPKSSDKTHTC
QGTMVTVSSASTKGPSVFP
SGLQSEDEADYY



PPCPAPEAAGAPSVFLFPPK
LAPSSKSTSGGTAALGCLV
CAAWDDSLNGW



PKDTLMISRTPEVTCVVVD
KDYFPEPVTVSWNSGALTS
VFGGGTKLTVLG



VSHEDPEVKFNWYVDGVE
GVHTFPAVLQSSGLYSLSSV
QPKAAPSVTLFPP



VHNAKTKPREEQYNSTYRV
VTVPSSSLGTQTYICNVNHK
SSEELQANKATL



VSVLTVLHQDWLNGKEYK
PSNTKVDKKVEPKSCDKTH
VCLISDFYPGAVT



CKVSNKALPAPIEKTISKAK
TCPPCPAPEAAGAPSVFLFP
VAWKADSSPVKA



GQPREPQVYTLPPCRDELT
PKPKDTLMISRTPEVTCVVV
GVETTTPSKQSN



KNQVSLWCLVKGFYPSDIA
DVSHEDPEVKFNWYVDGV
NKYAASSYLSLTP



VEWESNGQPENNYKTTPPV
EVHNAKTKPREEQYNSTYR
EQWKSHRSYSCQ



LDSDGSFFLYSKLTVDKSR
VVSVLTVLHQDWLNGKEY
VTHEGSTVEKTV



WQQGNVFSCSVMHEALHN
KCKVSNKALPAPIEKTISKA
APTECS 



HYTQKSLSLSPG 
KGQPREPQVCTLPPSRDELT
(SEQ ID



(SEQ ID NO: 775)
KNQVSLSCAVKGFYPSDIA
NO: 777)




VEWESNGQPENNYKTTPPV





LDSDGSFFLVSKLTVDKSR





WQQGNVFSCSVMHEALHN





RFTQKSLSLSPG 





(SEQ ID NO: 776)






DGL426
EVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGLTFRNYAMAWF
LSCAASGFTFSNYAMSWVR




RQAPGKEREFVAGITWGGG
QAPGKGLEWVSAINSDGTS




LTHYVDSVKGRFTISRDNG
TSYADSVKGQFTISRDNAK




KNTVYLQMNSLKSEDTAV
NTLYLQMNSLKPEDTAVYY




YYCAGKTQGSTWYHLTPD
CTKWEGDTDSDYKFKDYW




GYDYWGQGTQVTVEPKSS
GQGTQVTVEPKSSDKTHTC




DKTHTCPPCPAPEAAGAPS
PPCPAPEAAGAPSVFLFPPK




VFLFPPKPKDTLMISRTPEV
PKDTLMISRTPEVTCVVVD




TCVVVDVSHEDPEVKFNW
VSHEDPEVKFNWYVDGVE




YVDGVEVHNAKTKPREEQ
VHNAKTKPREEQYNSTYRV




YNSTYRVVSVLTVLHQDW
VSVLTVLHQDWLNGKEYK




LNGKEYKCKVSNKALPAPI
CKVSNKALPAPIEKTISKAK




EKTISKAKGQPREPQVYTLP
GQPREPQVCTLPPSRDELTK




PCRDELTKNQVSLWCLVKG
NQVSLSCAVKGFYPSDIAV




FYPSDIAVEWESNGQPENN
EWESNGQPENNYKTTPPVL




YKTTPPVLDSDGSFFLYSKL
DSDGSFFLVSKLTVDKSRW




TVDKSRWQQGNVFSCSVM
QQGNVFSCSVMHEALHNRF




HEALHNHYTQKSLSLSPG
TQKSLSLSPG 




(SEQ ID NO: 778)
(SEQ ID NO: 779)






DGL448
QVQLVESGGGLVQAGGSLR
EVQLVESGGGLVQPGGSLR
QSALTQPPSVSGS



LSCAASRSISSFNEMAWYR
LSCAASGFTFSTYDMHWVR
PGQSVTISCTGTS



QAPGEQRELVATIVSTVGFT
QATGKGLEWVSLIDTAGDT
SDVGSYNRVSWY



NYADSVKGRFTISRDNAKN
YYPDSVKGRFTISRENAKNS
QQPPGTAPKLMI



TVYLQMNSLKAEDTAVYY
LYLQMNSLRAGDTAVYYC
YEVSNRPSGVPD



CNARRISTDYWGQGTQVTV
AREGWGYFDYWGQGALVT
RFSGSKSGNTASL



EPKSSDKTHTCPPCPAPEAA
VSSASTKGPSVFPLAPSSKS
TISGLQAEDEADY



GAPSVFLFPPKPKDTLMISR
TSGGTAALGCLVKDYFPEP
YCSLYTGSSTVVF



TPEVTCVVVDVSHEDPEVK
VTVSWNSGALTSGVHTFPA
GGGTKVTVLGQP



FNWYVDGVEVHNAKTKPR
VLQSSGLYSLSSVVTVPSSS
KAAPSVTLFPPSS



EEQYNSTYRVVSVLTVLHQ
LGTQTYICNVNHKPSNTKV
EELQANKATLVC



DWLNGKEYKCKVSNKALP
DKKVEPKSCDKTHTCPPCP
LISDFYPGAVTVA



APIEKTISKAKGQPREPQVY
APEAAGAPSVFLFPPKPKDT
WKADSSPVKAGV



TLPPCRDELTKNQVSLWCL
LMISRTPEVTCVVVDVSHE
ETTTPSKQSNNK



VKGFYPSDIAVEWESNGQP
DPEVKFNWYVDGVEVHNA
YAASSYLSLTPEQ



ENNYKTTPPVLDSDGSFFLY
KTKPREEQYNSTYRVVSVL
WKSHRSYSCQVT



SKLTVDKSRWQQGNVFSCS
TVLHQDWLNGKEYKCKVS
HEGSTVEKTVAP



VMHEALHNHYTQKSLSLSP
NKALPAPIEKTISKAKGQPR
TECS  



G 
EPQVCTLPPSRDELTKNQVS
(SEQ ID



(SEQ ID NO: 780)
LSCAVKGFYPSDIAVEWES
NO: 908)




NGQPENNYKTTPPVLDSDG





SFFLVSKLTVDKSRWQQGN





VFSCSVMHEALHNRFTQKS





LSLSPG 





(SEQ ID NO: 781)






DGL453
QVQLQESGGALVQPGGSLR
QVQLVESGGGLVQPGGSLR




LSCVVSGFTSDYFAIGWFR
LSCAASGFTFSNYAMSWIR




QAPGKEREGVSCIGSSDGST
QGPERGFEWVSRINSGGGT




IYSDSVKGRFTISRDNAKNT
TSYADSVKGRFTISRDNAK




VYLQMNSLKPEDTGVYYC
NTLYLQMNSLKPEDTAVYY




ALDRGRRTIIGYACYATMK
CAKHSHPDYSSNYYRPGQG




YWGKGTPVTVEPKSSDKTH
TQVTVEPKSSDKTHTCPPCP




TCPPCPAPEAAGAPSVFLFP
APEAAGAPSVFLFPPKPKDT




PKPKDTLMISRTPEVTCVVV
LMISRTPEVTCVVVDVSHE




DVSHEDPEVKFNWYVDGV
DPEVKFNWYVDGVEVHNA




EVHNAKTKPREEQYNSTYR
KTKPREEQYNSTYRVVSVL




VVSVLTVLHQDWLNGKEY
TVLHQDWLNGKEYKCKVS




KCKVSNKALPAPIEKTISKA
NKALPAPIEKTISKAKGQPR




KGQPREPQVYTLPPCRDEL
EPQVCTLPPSRDELTKNQVS




TKNQVSLWCLVKGFYPSDI
LSCAVKGFYPSDIAVEWES




AVEWESNGQPENNYKTTPP
NGQPENNYKTTPPVLDSDG




VLDSDGSFFLYSKLTVDKS
SFFLVSKLTVDKSRWQQGN




RWQQGNVFSCSVMHEALH
VFSCSVMHEALHNRFTQKS




NHYTQKSLSLSPG 
LSLSPG 




(SEQ ID NO: 782)
(SEQ ID NO: 783)






DGL454
QVQLQESGGALVQPGGSLR
QVQLVESGGGLVQPGGSLR




LSCVVSGFTSDYFAIGWFR
LSCAASGFTFEPYDMSWFR




QAPGKEREGVSCIGSSDGST
QAPGKGPEWVSAIDKGGG




IYSDSVKGRFTISRDNAKNT
AGATYYADSVKGRFTISRD




VYLQMNSLKPEDTGVYYC
NAKKTLYLQMKSLKPEDTA




ALDRGRRTIIGYACYATMK
VYYCAITAGPYSDSTPRVA




YWGKGTPVTVEPKSSDKTH
YRGEGTQVTVEPKSSDKTH




TCPPCPAPEAAGAPSVFLFP
TCPPCPAPEAAGAPSVFLFP




PKPKDTLMISRTPEVTCVVV
PKPKDTLMISRTPEVTCVVV




DVSHEDPEVKFNWYVDGV
DVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYR
EVHNAKTKPREEQYNSTYR




VVSVLTVLHQDWLNGKEY
VVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKA
KCKVSNKALPAPIEKTISKA




KGQPREPQVYTLPPCRDEL
KGQPREPQVCTLPPSRDELT




TKNQVSLWCLVKGFYPSDI
KNQVSLSCAVKGFYPSDIA




AVEWESNGQPENNYKTTPP
VEWESNGQPENNYKTTPPV




VLDSDGSFFLYSKLTVDKS
LDSDGSFFLVSKLTVDKSR




RWQQGNVFSCSVMHEALH
WQQGNVFSCSVMHEALHN




NHYTQKSLSLSPG 
RFTQKSLSLSPG 




(SEQ ID NO: 784)
(SEQ ID NO: 785)






DGL461
EVQLVESGGGLVQPGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGFTFQNYAMSWLR
LSCAASGFTFEPYDMSWFR




KAPGEGLEWVSVINSGGGS
QAPGKGPEWVSAIDKGGG




TLYADSVKGRFTISRDNAK
AGATYYADSVKGRFTISRD




NTLYLQMHSLKSEDTAVYF
NAKKTLYLQMKSLKPEDTA




CAKRRDDSTFGSLLYTHRG
VYYCAITAGPYSDSTPRVA




QGTQVTVEPKSSDKTHTCP
YRGEGTQVTVEPKSSDKTH




PCPAPEAAGAPSVFLFPPKP
TCPPCPAPEAAGAPSVFLFP




KDTLMISRTPEVTCVVVDV
PKPKDTLMISRTPEVTCVVV




SHEDPEVKFNWYVDGVEV
DVSHEDPEVKFNWYVDGV




HNAKTKPREEQYNSTYRVV
EVHNAKTKPREEQYNSTYR




SVLTVLHQDWLNGKEYKC
VVSVLTVLHQDWLNGKEY




KVSNKALPAPIEKTISKAKG
KCKVSNKALPAPIEKTISKA




QPREPQVYTLPPCRDELTK
KGQPREPQVCTLPPSRDELT




NQVSLWCLVKGFYPSDIAV
KNQVSLSCAVKGFYPSDIA




EWESNGQPENNYKTTPPVL
VEWESNGQPENNYKTTPPV




DSDGSFFLYSKLTVDKSRW
LDSDGSFFLVSKLTVDKSR




QQGNVFSCSVMHEALHNH
WQQGNVFSCSVMHEALHN




YTQKSLSLSPG 
RFTQKSLSLSPG 




(SEQ ID NO: 786)
(SEQ ID NO: 787)






DGL462
EVQLVESGGGLVQPGGSLR
QVQLVESGGGLVQAGGSLR




LSCAASGFTFQNYAMSWLR
LSCAASGRIFSAYRMGWFR




KAPGEGLEWVSVINSGGGS
QAPGKEREFVAGITWRGQT




TLYADSVKGRFTISRDNAK
TYYAASVKGRFTISKDNAK




NTLYLQMHSLKSEDTAVYF
KTVYLQMNSLKPEETAVYY




CAKRRDDSTFGSLLYTHRG
CAVETNGLGRWDRPSEYD




QGTQVTVEPKSSDKTHTCP
YWGQGTQVTVEPKSSDKT




PCPAPEAAGAPSVFLFPPKP
HTCPPCPAPEAAGAPSVFLF




KDTLMISRTPEVTCVVVDV
PPKPKDTLMISRTPEVTCVV




SHEDPEVKFNWYVDGVEV
VDVSHEDPEVKFNWYVDG




HNAKTKPREEQYNSTYRVV
VEVHNAKTKPREEQYNSTY




SVLTVLHQDWLNGKEYKC
RVVSVLTVLHQDWLNGKE




KVSNKALPAPIEKTISKAKG
YKCKVSNKALPAPIEKTISK




QPREPQVYTLPPCRDELTK
AKGQPREPQVCTLPPSRDEL




NQVSLWCLVKGFYPSDIAV
TKNQVSLSCAVKGFYPSDI




EWESNGQPENNYKTTPPVL
AVEWESNGQPENNYKTTPP




DSDGSFFLYSKLTVDKSRW
VLDSDGSFFLVSKLTVDKS




QQGNVFSCSVMHEALHNH
RWQQGNVFSCSVMHEALH




YTQKSLSLSPG 
NRFTQKSLSLSPG 




(SEQ ID NO: 788)
(SEQ ID NO: 789)






DGL464
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGRAFSRYSMGWFR
LSCAASGFTFSNYAMSWVR




QAPGKEREFVAANYWSNG
QAPGKGLEWVSAINSDGTS




WTDYADTVKGRFSISRDNA
TSYADSVKGQFTISRDNAK




KNTVYLQMNSLKPEDTAV
NTLYLQMNSLKPEDTAVYY




YYCAGRSSSIPSADVVGYD
CTKWEGDTDSDYKFKDYW




YWGQGTQVTVEPKSSDKT
GQGTQVTVEPKSSDKTHTC




HTCPPCPAPEAAGAPSVFLF
PPCPAPEAAGAPSVFLFPPK




PPKPKDTLMISRTPEVTCVV
PKDTLMISRTPEVTCVVVD




VDVSHEDPEVKFNWYVDG
VSHEDPEVKFNWYVDGVE




VEVHNAKTKPREEQYNSTY
VHNAKTKPREEQYNSTYRV




RVVSVLTVLHQDWLNGKE
VSVLTVLHQDWLNGKEYK




YKCKVSNKALPAPIEKTISK
CKVSNKALPAPIEKTISKAK




AKGQPREPQVYTLPPCRDE
GQPREPQVCTLPPSRDELTK




LTKNQVSLWCLVKGFYPSD
NQVSLSCAVKGFYPSDIAV




IAVEWESNGQPENNYKTTP
EWESNGQPENNYKTTPPVL




PVLDSDGSFFLYSKLTVDKS
DSDGSFFLVSKLTVDKSRW




RWQQGNVFSCSVMHEALH
QQGNVFSCSVMHEALHNRF




NHYTQKSLSLSPG 
TQKSLSLSPG 




(SEQ ID NO: 790)
(SEQ ID NO: 791)






DGL465
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGRAFSRYSMGWFR
LSCAASGFTFEPYDMSWFR




QAPGKEREFVAANYWSNG
QAPGKGPEWVSAIDKGGG




WTDYADTVKGRFSISRDNA
AGATYYADSVKGRFTISRD




KNTVYLQMNSLKPEDTAV
NAKKTLYLQMKSLKPEDTA




YYCAGRSSSIPSADVVGYD
VYYCAITAGPYSDSTPRVA




YWGQGTQVTVEPKSSDKT
YRGEGTQVTVEPKSSDKTH




HTCPPCPAPEAAGAPSVFLF
TCPPCPAPEAAGAPSVFLFP




PPKPKDTLMISRTPEVTCVV
PKPKDTLMISRTPEVTCVVV




VDVSHEDPEVKFNWYVDG
DVSHEDPEVKFNWYVDGV




VEVHNAKTKPREEQYNSTY
EVHNAKTKPREEQYNSTYR




RVVSVLTVLHQDWLNGKE
VVSVLTVLHQDWLNGKEY




YKCKVSNKALPAPIEKTISK
KCKVSNKALPAPIEKTISKA




AKGQPREPQVYTLPPCRDE
KGQPREPQVCTLPPSRDELT




LTKNQVSLWCLVKGFYPSD
KNQVSLSCAVKGFYPSDIA




IAVEWESNGQPENNYKTTP
VEWESNGQPENNYKTTPPV




PVLDSDGSFFLYSKLTVDKS
LDSDGSFFLVSKLTVDKSR




RWQQGNVFSCSVMHEALH
WQQGNVFSCSVMHEALHN




NHYTQKSLSLSPG 
RFTQKSLSLSPG 




(SEQ ID NO: 792)
(SEQ ID NO: 793)






DGL478
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQAGGSLR




LSCAAPGRYAVGWFRQAP
LSCAASGRIFSAYRMGWFR




GKEYEFVAAITVSGGSKYY
QAPGKEREFVAGITWRGQT




EDSVKGRFAISRDNAKNTV
TYYAASVKGRFTISKDNAK




YLQMNSLKAEDTAVYYCA
KTVYLQMNSLKPEETAVYY




ARTPKFGSGWYNRRGEYD
CAVETNGLGRWDRPSEYD




YWGQGTQVTVEPKSSDKT
YWGQGTQVTVEPKSSDKT




HTCPPCPAPEAAGAPSVFLF
HTCPPCPAPEAAGAPSVFLF




PPKPKDTLMISRTPEVTCVV
PPKPKDTLMISRTPEVTCVV




VDVSHEDPEVKFNWYVDG
VDVSHEDPEVKFNWYVDG




VEVHNAKTKPREEQYNSTY
VEVHNAKTKPREEQYNSTY




RVVSVLTVLHQDWLNGKE
RVVSVLTVLHQDWLNGKE




YKCKVSNKALPAPIEKTISK
YKCKVSNKALPAPIEKTISK




AKGQPREPQVYTLPPCRDE
AKGQPREPQVCTLPPSRDEL




LTKNQVSLWCLVKGFYPSD
TKNQVSLSCAVKGFYPSDI




IAVEWESNGQPENNYKTTP
AVEWESNGQPENNYKTTPP




PVLDSDGSFFLYSKLTVDKS
VLDSDGSFFLVSKLTVDKS




RWQQGNVFSCSVMHEALH
RWQQGNVFSCSVMHEALH




NHYTQKSLSLSPG 
NRFTQKSLSLSPG 




(SEQ ID NO: 794)
(SEQ ID NO: 795)






DGL479
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQAGGSLR




LSCAAPGRYAVGWFRQAP
LSCAASGRTFSSYAMGWFR




GKEYEFVAAITVSGGSKYY
QAPGKEREFVSAISWSGLST




EDSVKGRFAISRDNAKNTV
YYVESVQGRFTISRDNAKN




YLQMNSLKAEDTAVYYCA
TVYLQMNSLKPEDTAVYY




ARTPKFGSGWYNRRGEYD
CAASRIYTNYVARSYEYDD




YWGQGTQVTVEPKSSDKT
WGQGTQVTVEPKSSDKTHT




HTCPPCPAPEAAGAPSVFLF
CPPCPAPEAAGAPSVFLFPP




PPKPKDTLMISRTPEVTCVV
KPKDTLMISRTPEVTCVVV




VDVSHEDPEVKFNWYVDG
DVSHEDPEVKFNWYVDGV




VEVHNAKTKPREEQYNSTY
EVHNAKTKPREEQYNSTYR




RVVSVLTVLHQDWLNGKE
VVSVLTVLHQDWLNGKEY




YKCKVSNKALPAPIEKTISK
KCKVSNKALPAPIEKTISKA




AKGQPREPQVYTLPPCRDE
KGQPREPQVCTLPPSRDELT




LTKNQVSLWCLVKGFYPSD
KNQVSLSCAVKGFYPSDIA




IAVEWESNGQPENNYKTTP
VEWESNGQPENNYKTTPPV




PVLDSDGSFFLYSKLTVDKS
LDSDGSFFLVSKLTVDKSR




RWQQGNVFSCSVMHEALH
WQQGNVFSCSVMHEALHN




NHYTQKSLSLSPG 
RFTQKSLSLSPG 




(SEQ ID NO: 796)
(SEQ ID NO: 797)






DGL481
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASARIFNSYAVAWFR
LSCAASGFTFSNYAMSWVR




QTPGKEREFVASISWSGGST
QAPGKGLEWVSAINSDGTS




NYADSVKGRFTISRDNAKN
TSYADSVKGQFTISRDNAK




TVFLQMNSLKPADTAVYYC
NTLYLQMNSLKPEDTAVYY




AADRNYYPSVLGKYTYWG
CTKWEGDTDSDYKFKDYW




QGTQVTVEPKSSDKTHTCP
GQGTQVTVEPKSSDKTHTC




PCPAPEAAGAPSVFLFPPKP
PPCPAPEAAGAPSVFLFPPK




KDTLMISRTPEVTCVVVDV
PKDTLMISRTPEVTCVVVD




SHEDPEVKFNWYVDGVEV
VSHEDPEVKFNWYVDGVE




HNAKTKPREEQYNSTYRVV
VHNAKTKPREEQYNSTYRV




SVLTVLHQDWLNGKEYKC
VSVLTVLHQDWLNGKEYK




KVSNKALPAPIEKTISKAKG
CKVSNKALPAPIEKTISKAK




QPREPQVYTLPPCRDELTK
GQPREPQVCTLPPSRDELTK




NQVSLWCLVKGFYPSDIAV
NQVSLSCAVKGFYPSDIAV




EWESNGQPENNYKTTPPVL
EWESNGQPENNYKTTPPVL




DSDGSFFLYSKLTVDKSRW
DSDGSFFLVSKLTVDKSRW




QQGNVFSCSVMHEALHNH
QQGNVFSCSVMHEALHNRF




YTQKSLSLSPG 
TQKSLSLSPG 




(SEQ ID NO: 798)
(SEQ ID NO: 799)






DGL482
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASARIFNSYAVAWFR
LSCAASGFTFSSKAMHWFR




QTPGKEREFVASISWSGGST
QAPGKGLEWVSSINSGGAIT




NYADSVKGRFTISRDNAKN
YYKDSVKGRFTVSRDNAK




TVFLQMNSLKPADTAVYYC
NILYLEMNSLKPEDTALYY




AADRNYYPSVLGKYTYWG
CATDTDGRTRGQGTQVTVE




QGTQVTVEPKSSDKTHTCP
PKSSDKTHTCPPCPAPEAAG




PCPAPEAAGAPSVFLFPPKP
APSVFLFPPKPKDTLMISRT




KDTLMISRTPEVTCVVVDV
PEVTCVVVDVSHEDPEVKF




SHEDPEVKFNWYVDGVEV
NWYVDGVEVHNAKTKPRE




HNAKTKPREEQYNSTYRVV
EQYNSTYRVVSVLTVLHQD




SVLTVLHQDWLNGKEYKC
WLNGKEYKCKVSNKALPA




KVSNKALPAPIEKTISKAKG
PIEKTISKAKGQPREPQVCT




QPREPQVYTLPPCRDELTK
LPPSRDELTKNQVSLSCAV




NQVSLWCLVKGFYPSDIAV
KGFYPSDIAVEWESNGQPE




EWESNGQPENNYKTTPPVL
NNYKTTPPVLDSDGSFFLVS




DSDGSFFLYSKLTVDKSRW
KLTVDKSRWQQGNVFSCS




QQGNVFSCSVMHEALHNH
VMHEALHNRFTQKSLSLSP




YTQKSLSLSPG 
G 




(SEQ ID NO: 800)
(SEQ ID NO: 801)






DGL484
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASARIFNSYAVAWFR
LSCAASGFTFEPYDMSWFR




QTPGKEREFVASISWSGGST
QAPGKGPEWVSAIDKGGG




NYADSVKGRFTISRDNAKN
AGATYYADSVKGRFTISRD




TVFLQMNSLKPADTAVYYC
NAKKTLYLQMKSLKPEDTA




AADRNYYPSVLGKYTYWG
VYYCAITAGPYSDSTPRVA




QGTQVTVEPKSSDKTHTCP
YRGEGTQVTVEPKSSDKTH




PCPAPEAAGAPSVFLFPPKP
TCPPCPAPEAAGAPSVFLFP




KDTLMISRTPEVTCVVVDV
PKPKDTLMISRTPEVTCVVV




SHEDPEVKFNWYVDGVEV
DVSHEDPEVKFNWYVDGV




HNAKTKPREEQYNSTYRVV
EVHNAKTKPREEQYNSTYR




SVLTVLHQDWLNGKEYKC
VVSVLTVLHQDWLNGKEY




KVSNKALPAPIEKTISKAKG
KCKVSNKALPAPIEKTISKA




QPREPQVYTLPPCRDELTK
KGQPREPQVCTLPPSRDELT




NQVSLWCLVKGFYPSDIAV
KNQVSLSCAVKGFYPSDIA




EWESNGQPENNYKTTPPVL
VEWESNGQPENNYKTTPPV




DSDGSFFLYSKLTVDKSRW
LDSDGSFFLVSKLTVDKSR




QQGNVFSCSVMHEALHNH
WQQGNVFSCSVMHEALHN




YTQKSLSLSPG 
RFTQKSLSLSPG 




(SEQ ID NO: 802)
(SEQ ID NO: 803)






DGL487
QVQLVESGGGLVQAGGSLR
QVQLQESGPGLVKPSQTLS




LSCAASARIFNSYAVAWFR
LTCTVSGGSITTNYYYWSW




QTPGKEREFVASISWSGGST
IRQPPGKGLEWMGAIAYSG




NYADSVKGRFTISRDNAKN
STYYSPSLKSRTSISRDTSKN




TVFLQMNSLKPADTAVYYC
QFTLQLSSVTPEDTAVYYC




AADRNYYPSVLGKYTYWG
ASGINFYSNYPTLNEYDYW




QGTQVTVEPKSSDKTHTCP
GQGTQVTVEPKSSDKTHTC




PCPAPEAAGAPSVFLFPPKP
PPCPAPEAAGAPSVFLFPPK




KDTLMISRTPEVTCVVVDV
PKDTLMISRTPEVTCVVVD




SHEDPEVKFNWYVDGVEV
VSHEDPEVKFNWYVDGVE




HNAKTKPREEQYNSTYRVV
VHNAKTKPREEQYNSTYRV




SVLTVLHQDWLNGKEYKC
VSVLTVLHQDWLNGKEYK




KVSNKALPAPIEKTISKAKG
CKVSNKALPAPIEKTISKAK




QPREPQVYTLPPCRDELTK
GQPREPQVCTLPPSRDELTK




NQVSLWCLVKGFYPSDIAV
NQVSLSCAVKGFYPSDIAV




EWESNGQPENNYKTTPPVL
EWESNGQPENNYKTTPPVL




DSDGSFFLYSKLTVDKSRW
DSDGSFFLVSKLTVDKSRW




QQGNVFSCSVMHEALHNH
QQGNVFSCSVMHEALHNRF




YTQKSLSLSPG 
TQKSLSLSPG 




(SEQ ID NO: 804)
(SEQ ID NO: 805)






DGL490
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQAGGSLR




LSCAASARIFNSYAVAWFR
LSCAASGRTFSSYAMGWFR




QTPGKEREFVASISWSGGST
QAPGKEREFVSAISWSGLST




NYADSVKGRFTISRDNAKN
YYVESVQGRFTISRDNAKN




TVFLQMNSLKPADTAVYYC
TVYLQMNSLKPEDTAVYY




AADRNYYPSVLGKYTYWG
CAASRIYTNYVARSYEYDD




QGTQVTVEPKSSDKTHTCP
WGQGTQVTVEPKSSDKTHT




PCPAPEAAGAPSVFLFPPKP
CPPCPAPEAAGAPSVFLFPP




KDTLMISRTPEVTCVVVDV
KPKDTLMISRTPEVTCVVV




SHEDPEVKFNWYVDGVEV
DVSHEDPEVKFNWYVDGV




HNAKTKPREEQYNSTYRVV
EVHNAKTKPREEQYNSTYR




SVLTVLHQDWLNGKEYKC
VVSVLTVLHQDWLNGKEY




KVSNKALPAPIEKTISKAKG
KCKVSNKALPAPIEKTISKA




QPREPQVYTLPPCRDELTK
KGQPREPQVCTLPPSRDELT




NQVSLWCLVKGFYPSDIAV
KNQVSLSCAVKGFYPSDIA




EWESNGQPENNYKTTPPVL
VEWESNGQPENNYKTTPPV




DSDGSFFLYSKLTVDKSRW
LDSDGSFFLVSKLTVDKSR




QQGNVFSCSVMHEALHNH
WQQGNVFSCSVMHEALHN




YTQKSLSLSPG 
RFTQKSLSLSPG 




(SEQ ID NO: 806)
(SEQ ID NO: 807)






DGL496
EVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGLTFRNYAMAWF
LSCAASGFTFSSKAMHWFR




RQAPGKEREFVAGITWGGG
QAPGKGLEWVSSINSGGAIT




LTHYVDSVKGRFTISRDNG
YYKDSVKGRFTVSRDNAK




KNTVYLQMNSLKSEDTAV
NILYLEMNSLKPEDTALYY




YYCAGKTQGSTWYHLTPD
CATDTDGRTRGQGTQVTVE




GYDYWGQGTQVTVEPKSS
PKSSDKTHTCPPCPAPEAAG




DKTHTCPPCPAPEAAGAPS
APSVFLFPPKPKDTLMISRT




VFLFPPKPKDTLMISRTPEV
PEVTCVVVDVSHEDPEVKF




TCVVVDVSHEDPEVKFNW
NWYVDGVEVHNAKTKPRE




YVDGVEVHNAKTKPREEQ
EQYNSTYRVVSVLTVLHQD




YNSTYRVVSVLTVLHQDW
WLNGKEYKCKVSNKALPA




LNGKEYKCKVSNKALPAPI
PIEKTISKAKGQPREPQVCT




EKTISKAKGQPREPQVYTLP
LPPSRDELTKNQVSLSCAV




PCRDELTKNQVSLWCLVKG
KGFYPSDIAVEWESNGQPE




FYPSDIAVEWESNGQPENN
NNYKTTPPVLDSDGSFFLVS




YKTTPPVLDSDGSFFLYSKL
KLTVDKSRWQQGNVFSCS




TVDKSRWQQGNVFSCSVM
VMHEALHNRFTQKSLSLSP




HEALHNHYTQKSLSLSPG
G 




(SEQ ID NO: 808)
(SEQ ID NO: 809)






DGL497
EVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGLTFRNYAMAWF
LSCAASGFTFSNYAMSWIR




RQAPGKEREFVAGITWGGG
QGPERGFEWVSRINSGGGT




LTHYVDSVKGRFTISRDNG
TSYADSVKGRFTISRDNAK




KNTVYLQMNSLKSEDTAV
NTLYLQMNSLKPEDTAVYY




YYCAGKTQGSTWYHLTPD
CAKHSHPDYSSNYYRPGQG




GYDYWGQGTQVTVEPKSS
TQVTVEPKSSDKTHTCPPCP




DKTHTCPPCPAPEAAGAPS
APEAAGAPSVFLFPPKPKDT




VFLFPPKPKDTLMISRTPEV
LMISRTPEVTCVVVDVSHE




TCVVVDVSHEDPEVKFNW
DPEVKFNWYVDGVEVHNA




YVDGVEVHNAKTKPREEQ
KTKPREEQYNSTYRVVSVL




YNSTYRVVSVLTVLHQDW
TVLHQDWLNGKEYKCKVS




LNGKEYKCKVSNKALPAPI
NKALPAPIEKTISKAKGQPR




EKTISKAKGQPREPQVYTLP
EPQVCTLPPSRDELTKNQVS




PCRDELTKNQVSLWCLVKG
LSCAVKGFYPSDIAVEWES




FYPSDIAVEWESNGQPENN
NGQPENNYKTTPPVLDSDG




YKTTPPVLDSDGSFFLYSKL
SFFLVSKLTVDKSRWQQGN




TVDKSRWQQGNVFSCSVM
VFSCSVMHEALHNRFTQKS




HEALHNHYTQKSLSLSPG
LSLSPG 




(SEQ ID NO: 810)
(SEQ ID NO: 811)






DGL499
EVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGLTFRNYAMAWF
LSCAASGFTFEPYDMSWFR




RQAPGKEREFVAGITWGGG
QAPGKGPEWVSAIDKGGG




LTHYVDSVKGRFTISRDNG
AGATYYADSVKGRFTISRD




KNTVYLQMNSLKSEDTAV
NAKKTLYLQMKSLKPEDTA




YYCAGKTQGSTWYHLTPD
VYYCAITAGPYSDSTPRVA




GYDYWGQGTQVTVEPKSS
YRGEGTQVTVEPKSSDKTH




DKTHTCPPCPAPEAAGAPS
TCPPCPAPEAAGAPSVFLFP




VFLFPPKPKDTLMISRTPEV
PKPKDTLMISRTPEVTCVVV




TCVVVDVSHEDPEVKFNW
DVSHEDPEVKFNWYVDGV




YVDGVEVHNAKTKPREEQ
EVHNAKTKPREEQYNSTYR




YNSTYRVVSVLTVLHQDW
VVSVLTVLHQDWLNGKEY




LNGKEYKCKVSNKALPAPI
KCKVSNKALPAPIEKTISKA




EKTISKAKGQPREPQVYTLP
KGQPREPQVCTLPPSRDELT




PCRDELTKNQVSLWCLVKG
KNQVSLSCAVKGFYPSDIA




FYPSDIAVEWESNGQPENN
VEWESNGQPENNYKTTPPV




YKTTPPVLDSDGSFFLYSKL
LDSDGSFFLVSKLTVDKSR




TVDKSRWQQGNVFSCSVM
WQQGNVFSCSVMHEALHN




HEALHNHYTQKSLSLSPG
RFTQKSLSLSPG 




(SEQ ID NO: 812)
(SEQ ID NO: 813)






DGL503
EVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQAGGSLR




LSCAASGLTFRNYAMAWF
LSCAASGRIFSAYRMGWFR




RQAPGKEREFVAGITWGGG
QAPGKEREFVAGITWRGQT




LTHYVDSVKGRFTISRDNG
TYYAASVKGRFTISKDNAK




KNTVYLQMNSLKSEDTAV
KTVYLQMNSLKPEETAVYY




YYCAGKTQGSTWYHLTPD
CAVETNGLGRWDRPSEYD




GYDYWGQGTQVTVEPKSS
YWGQGTQVTVEPKSSDKT




DKTHTCPPCPAPEAAGAPS
HTCPPCPAPEAAGAPSVFLF




VFLFPPKPKDTLMISRTPEV
PPKPKDTLMISRTPEVTCVV




TCVVVDVSHEDPEVKFNW
VDVSHEDPEVKFNWYVDG




YVDGVEVHNAKTKPREEQ
VEVHNAKTKPREEQYNSTY




YNSTYRVVSVLTVLHQDW
RVVSVLTVLHQDWLNGKE




LNGKEYKCKVSNKALPAPI
YKCKVSNKALPAPIEKTISK




EKTISKAKGQPREPQVYTLP
AKGQPREPQVCTLPPSRDEL




PCRDELTKNQVSLWCLVKG
TKNQVSLSCAVKGFYPSDI




FYPSDIAVEWESNGQPENN
AVEWESNGQPENNYKTTPP




YKTTPPVLDSDGSFFLYSKL
VLDSDGSFFLVSKLTVDKS




TVDKSRWQQGNVFSCSVM
RWQQGNVFSCSVMHEALH




HEALHNHYTQKSLSLSPG
NRFTQKSLSLSPG 




(SEQ ID NO: 814)
(SEQ ID NO: 815)






DGL504
EVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQAGGSLR




LSCAASGLTFRNYAMAWF
LSCAASGRTFSSYAMGWFR




RQAPGKEREFVAGITWGGG
QAPGKEREFVSAISWSGLST




LTHYVDSVKGRFTISRDNG
YYVESVQGRFTISRDNAKN




KNTVYLQMNSLKSEDTAV
TVYLQMNSLKPEDTAVYY




YYCAGKTQGSTWYHLTPD
CAASRIYTNYVARSYEYDD




GYDYWGQGTQVTVEPKSS
WGQGTQVTVEPKSSDKTHT




DKTHTCPPCPAPEAAGAPS
CPPCPAPEAAGAPSVFLFPP




VFLFPPKPKDTLMISRTPEV
KPKDTLMISRTPEVTCVVV




TCVVVDVSHEDPEVKFNW
DVSHEDPEVKFNWYVDGV




YVDGVEVHNAKTKPREEQ
EVHNAKTKPREEQYNSTYR




YNSTYRVVSVLTVLHQDW
VVSVLTVLHQDWLNGKEY




LNGKEYKCKVSNKALPAPI
KCKVSNKALPAPIEKTISKA




EKTISKAKGQPREPQVYTLP
KGQPREPQVCTLPPSRDELT




PCRDELTKNQVSLWCLVKG
KNQVSLSCAVKGFYPSDIA




FYPSDIAVEWESNGQPENN
VEWESNGQPENNYKTTPPV




YKTTPPVLDSDGSFFLYSKL
LDSDGSFFLVSKLTVDKSR




TVDKSRWQQGNVFSCSVM
WQQGNVFSCSVMHEALHN




HEALHNHYTQKSLSLSPG
RFTQKSLSLSPG 




(SEQ ID NO: 816)
(SEQ ID NO: 817)






DGL505
EVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQLGDSLR




LSCAASGLTFRNYAMAWF
LSCAASGRGFSSWTMAWF




RQAPGKEREFVAGITWGGG
RQALGKRREFVAAITATGA




LTHYVDSVKGRFTISRDNG
RTSSAESEGRFTISRDNAKN




KNTVYLQMNSLKSEDTAV
MVFLQMNSLKAEDTAVYY




YYCAGKTQGSTWYHLTPD
CAATGIASWDPGMADKYT




GYDYWGQGTQVTVEPKSS
YWGQGTQVTVEPKSSDKT




DKTHTCPPCPAPEAAGAPS
HTCPPCPAPEAAGAPSVFLF




VFLFPPKPKDTLMISRTPEV
PPKPKDTLMISRTPEVTCVV




TCVVVDVSHEDPEVKFNW
VDVSHEDPEVKFNWYVDG




YVDGVEVHNAKTKPREEQ
VEVHNAKTKPREEQYNSTY




YNSTYRVVSVLTVLHQDW
RVVSVLTVLHQDWLNGKE




LNGKEYKCKVSNKALPAPI
YKCKVSNKALPAPIEKTISK




EKTISKAKGQPREPQVYTLP
AKGQPREPQVCTLPPSRDEL




PCRDELTKNQVSLWCLVKG
TKNQVSLSCAVKGFYPSDI




FYPSDIAEWESNGQPENN
AVEWESNGQPENNYKTTPP




YKTTPPVLDSDGSFFLYSKL
VLDSDGSFFLVSKLTVDKS




TVDKSRWQQGNVFSCSVM
RWQQGNVFSCSVMHEALH




HEALHNHYTQKSLSLSPG
NRFTQKSLSLSPG 




(SEQ ID NO: 818)
(SEQ ID NO: 819)






DGL506
EVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQAGGSL




LSCAASGLTFRNYAMAWF
KLSCAASGGTFSSYAMGWF




RQAPGKEREFVAGITWGGG
RQAPGKEREFVAAIMRSGG




LTHYVDSVKGRFTISRDNG
TTVYVNSVKGRFTVSRDNA




KNTVYLQMNSLKSEDTAV
KNTVYLQMNSLKPEDAAV




YYCAGKTQGSTWYHLTPD
YYCAAGRPVSRTSYYTYTY




GYDYWGQGTQVTVEPKSS
PHDYDYWGQGTQVSVEPK




DKTHTCPPCPAPEAAGAPS
SSDKTHTCPPCPAPEAAGAP




VFLFPPKPKDTLMISRTPEV
SVFLFPPKPKDTLMISRTPE




TCVVVDVSHEDPEVKFNW
VTCVVVDVSHEDPEVKFN




YVDGVEVHNAKTKPREEQ
WYVDGVEVHNAKTKPREE




YNSTYRVVSVLTVLHQDW
QYNSTYRVVSVLTVLHQD




LNGKEYKCKVSNKALPAPI
WLNGKEYKCKVSNKALPA




EKTISKAKGQPREPQVYTLP
PIEKTISKAKGQPREPQVCT




PCRDELTKNQVSLWCLVKG
LPPSRDELTKNQVSLSCAV




FYPSDIAVEWESNGQPENN
KGFYPSDIAVEWESNGQPE




YKTTPPVLDSDGSFFLYSKL
NNYKTTPPVLDSDGSFFLVS




TVDKSRWQQGNVFSCSVM
KLTVDKSRWQQGNVFSCS




HEALHNHYTQKSLSLSPG
VMHEALHNRFTQKSLSLSP




(SEQ ID NO: 820)
G 





(SEQ ID NO: 821)






DGL508
EVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQAGGSLR




LSCAASGLTFRNYAMAWF
LSCAASGRTFSRYIMGWFR




RQAPGKEREFVAGITWGGG
QATGKEREFVAAISWSGLS




LTHYVDSVKGRFTISRDNG
THYADSVQGRFTISRDNAE




KNTVYLQMNSLKSEDTAV
NTVYLQMNSLKPEDTAVY




YYCAGKTQGSTWYHLTPD
YCAADRHWETRLLPREYD




GYDYWGQGTQVTVEPKSS
YWGQGTQVTVEPKSSDKT




DKTHTCPPCPAPEAAGAPS
HTCPPCPAPEAAGAPSVFLF




VFLFPPKPKDTLMISRTPEV
PPKPKDTLMISRTPEVTCVV




TCVVVDVSHEDPEVKFNW
VDVSHEDPEVKFNWYVDG




YVDGVEVHNAKTKPREEQ
VEVHNAKTKPREEQYNSTY




YNSTYRVVSVLTVLHQDW
RVVSVLTVLHQDWLNGKE




LNGKEYKCKVSNKALPAPI
YKCKVSNKALPAPIEKTISK




EKTISKAKGQPREPQVYTLP
AKGQPREPQVCTLPPSRDEL




PCRDELTKNQVSLWCLVKG
TKNQVSLSCAVKGFYPSDI




FYPSDIAVEWESNGQPENN
AVEWESNGQPENNYKTTPP




YKTTPPVLDSDGSFFLYSKL
VLDSDGSFFLVSKLTVDKS




TVDKSRWQQGNVFSCSVM
RWQQGNVFSCSVMHEALH




HEALHNHYTQKSLSLSPG
NRFTQKSLSLSPG 




(SEQ ID NO: 822)
(SEQ ID NO: 823)






DGL514
QVQLVESGGGLAQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGRTFSNDDMAWFR
LSCAASGFTFSNYAMSWIR




QAPGKEREFVAHIDRNAAS
QGPERGFEWVSRINSGGGT




TNYADSVKGRFTISRDNAK
TSYADSVKGRFTISRDNAK




NTVYLQMTRLKPEDTAVY
NTLYLQMNSLKPEDTAVYY




YCAADPDHFGTTWYQQYT
CAKHSHPDYSSNYYRPGQG




YWGPGTQVTVEPKSSDKTH
TQVTVEPKSSDKTHTCPPCP




TCPPCPAPEAAGAPSVFLFP
APEAAGAPSVFLFPPKPKDT




PKPKDTLMISRTPEVTCVVV
LMISRTPEVTCVVVDVSHE




DVSHEDPEVKFNWYVDGV
DPEVKFNWYVDGVEVHNA




EVHNAKTKPREEQYNSTYR
KTKPREEQYNSTYRVVSVL




VVSVLTVLHQDWLNGKEY
TVLHQDWLNGKEYKCKVS




KCKVSNKALPAPIEKTISKA
NKALPAPIEKTISKAKGQPR




KGQPREPQVYTLPPCRDEL
EPQVCTLPPSRDELTKNQVS




TKNQVSLWCLVKGFYPSDI
LSCAVKGFYPSDIAVEWES




AVEWESNGQPENNYKTTPP
NGQPENNYKTTPPVLDSDG




VLDSDGSFFLYSKLTVDKS
SFFLVSKLTVDKSRWQQGN




RWQQGNVFSCSVMHEALH
VFSCSVMHEALHNRFTQKS




NHYTQKSLSLSPG 
LSLSPG 




(SEQ ID NO: 824)
(SEQ ID NO: 825)






DGL515
QVQLVESGGGLAQAGGSLR
QVQLVESGGGLVQAGGSLR




LSCAASGRTFSNDDMAWFR
VSCAASGRIPSLNTMAWYR




QAPGKEREFVAHIDRNAAS
QAPGKQREFVAFITNGGTT




TNYADSVKGRFTISRDNAK
NYVDSVEGRFSISRDNTKN




NTVYLQMTRLKPEDTAVY
AVDLQMNSLKPEDTGVYY




YCAADPDHFGTTWYQQYT
CNVQISQYPYNYWGQGTQ




YWGPGTQVTVEPKSSDKTH
VTVEPKSSDKTHTCPPCPAP




TCPPCPAPEAAGAPSVFLFP
EAAGAPSVFLFPPKPKDTL




PKPKDTLMISRTPEVTCVVV
MISRTPEVTCVVVDVSHED




DVSHEDPEVKFNWYVDGV
PEVKFNWYVDGVEVHNAK




EVHNAKTKPREEQYNSTYR
TKPREEQYNSTYRVVSVLT




VVSVLTVLHQDWLNGKEY
VLHQDWLNGKEYKCKVSN




KCKVSNKALPAPIEKTISKA
KALPAPIEKTISKAKGQPRE




KGQPREPQVYTLPPCRDEL
PQVCTLPPSRDELTKNQVSL




TKNQVSLWCLVKGFYPSDI
SCAVKGFYPSDIAVEWESN




AVEWESNGQPENNYKTTPP
GQPENNYKTTPPVLDSDGS




VLDSDGSFFLYSKLTVDKS
FFLVSKLTVDKSRWQQGNV




RWQQGNVFSCSVMHEALH
FSCSVMHEALHNRFTQKSL




NHYTQKSLSLSPG 
SLSPG 




(SEQ ID NO: 826)
(SEQ ID NO: 827)






DGL516
QVQLVESGGGLAQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGRTFSNDDMAWFR
LSCAASGFTFEPYDMSWFR




QAPGKEREFVAHIDRNAAS
QAPGKGPEWVSAIDKGGG




TNYADSVKGRFTISRDNAK
AGATYYADSVKGRFTISRD




NTVYLQMTRLKPEDTAVY
NAKKTLYLQMKSLKPEDTA




YCAADPDHFGTTWYQQYT
VYYCAITAGPYSDSTPRVA




YWGPGTQVTVEPKSSDKTH
YRGEGTQVTVEPKSSDKTH




TCPPCPAPEAAGAPSVFLFP
TCPPCPAPEAAGAPSVFLFP




PKPKDTLMISRTPEVTCVVV
PKPKDTLMISRTPEVTCVVV




DVSHEDPEVKFNWYVDGV
DVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYR
EVHNAKTKPREEQYNSTYR




VVSVLTVLHQDWLNGKEY
VVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKA
KCKVSNKALPAPIEKTISKA




KGQPREPQVYTLPPCRDEL
KGQPREPQVCTLPPSRDELT




TKNQVSLWCLVKGFYPSDI
KNQVSLSCAVKGFYPSDIA




AVEWESNGQPENNYKTTPP
VEWESNGQPENNYKTTPPV




VLDSDGSFFLYSKLTVDKS
LDSDGSFFLVSKLTVDKSR




RWQQGNVFSCSVMHEALH
WQQGNVFSCSVMHEALHN




NHYTQKSLSLSPG 
RFTQKSLSLSPG 




(SEQ ID NO: 828)
(SEQ ID NO: 829)






DGL518
EVQLVESGGGLVQPGGSLR
QVQLVESGGGLVRPGGSLR




LFCAASRSIFNINIMGWYRQ
LSCAASGFTFSSNGMHWFR




APGKQREWLASITSGGSTF
QAPGKGLEWVSSIGSGGTSI




YADSVKDRFTISRDSVKNT
YYADSVKGRFTISRDNAKN




VYLQMNSLKPEDTAAYYC
TLYLQMNSLKSDDTAVYY




NRYRSVPLNTVYPWGQGTL
CSKEVTGATRGQGTQVTVE




VTVEPKSSDKTHTCPPCPAP
PKSSDKTHTCPPCPAPEAAG




EAAGAPSVFLFPPKPKDTL
APSVFLFPPKPKDTLMISRT




MISRTPEVTCVVVDVSHED
PEVTCVVVDVSHEDPEVKF




PEVKFNWYVDGVEVHNAK
NWYVDGVEVHNAKTKPRE




TKPREEQYNSTYRVVSVLT
EQYNSTYRVVSVLTVLHQD




VLHQDWLNGKEYKCKVSN
WLNGKEYKCKVSNKALPA




KALPAPIEKTISKAKGQPRE
PIEKTISKAKGQPREPQVCT




PQVYTLPPCRDELTKNQVS
LPPSRDELTKNQVSLSCAV




LWCLVKGFYPSDIAVEWES
KGFYPSDIAVEWESNGQPE




NGQPENNYKTTPPVLDSDG
NNYKTTPPVLDSDGSFFLVS




SFFLYSKLTVDKSRWQQGN
KLTVDKSRWQQGNVFSCS




VFSCSVMHEALHNHYTQKS
VMHEALHNRFTQKSLSLSP




LSLSPG 
G 




(SEQ ID NO: 830)
(SEQ ID NO: 831)






DGL524
EVQLVESGGGLVQPGGSLR
QVQLVESGGGLVQAGGSLR




LFCAASRSIFNINIMGWYRQ
LSCAASGRIFSAYRMGWFR




APGKQREWLASITSGGSTF
QAPGKEREFVAGITWRGQT




YADSVKDRFTISRDSVKNT
TYYAASVKGRFTISKDNAK




VYLQMNSLKPEDTAAYYC
KTVYLQMNSLKPEETAVYY




NRYRSVPLNTVYPWGQGTL
CAVETNGLGRWDRPSEYD




VTVEPKSSDKTHTCPPCPAP
YWGQGTQVTVEPKSSDKT




EAAGAPSVFLFPPKPKDTL
HTCPPCPAPEAAGAPSVFLF




MISRTPEVTCVVVDVSHED
PPKPKDTLMISRTPEVTCVV




PEVKFNWYVDGVEVHNAK
VDVSHEDPEVKFNWYVDG




TKPREEQYNSTYRVVSVLT
VEVHNAKTKPREEQYNSTY




VLHQDWLNGKEYKCKVSN
RVVSVLTVLHQDWLNGKE




KALPAPIEKTISKAKGQPRE
YKCKVSNKALPAPIEKTISK




PQVYTLPPCRDELTKNQVS
AKGQPREPQVCTLPPSRDEL




LWCLVKGFYPSDIAVEWES
TKNQVSLSCAVKGFYPSDI




NGQPENNYKTTPPVLDSDG
AVEWESNGQPENNYKTTPP




SFFLYSKLTVDKSRWQQGN
VLDSDGSFFLVSKLTVDKS




VFSCSVMHEALHNHYTQKS
RWQQGNVFSCSVMHEALH




LSLSPG 
NRFTQKSLSLSPG 




(SEQ ID NO: 832)
(SEQ ID NO: 833)






DGL525
EVQLVESGGGLVQPGGSLR
QVQLVESGGGLVQAGGSLR




LFCAASRSIFNINIMGWYRQ
LSCAASGRTFSSYAMGWFR




APGKQREWLASITSGGSTF
QAPGKEREFVSAISWSGLST




YADSVKDRFTISRDSVKNT
YYVESVQGRFTISRDNAKN




VYLQMNSLKPEDTAAYYC
TVYLQMNSLKPEDTAVYY




NRYRSVPLNTVYPWGQGTL
CAASRIYTNYVARSYEYDD




VTVEPKSSDKTHTCPPCPAP
WGQGTQVTVEPKSSDKTHT




EAAGAPSVFLFPPKPKDTL
CPPCPAPEAAGAPSVFLFPP




MISRTPEVTCVVVDVSHED
KPKDTLMISRTPEVTCVVV




PEVKFNWYVDGVEVHNAK
DVSHEDPEVKFNWYVDGV




TKPREEQYNSTYRVVSVLT
EVHNAKTKPREEQYNSTYR




VLHQDWLNGKEYKCKVSN
VVSVLTVLHQDWLNGKEY




KALPAPIEKTISKAKGQPRE
KCKVSNKALPAPIEKTISKA




PQVYTLPPCRDELTKNQVS
KGQPREPQVCTLPPSRDELT




LWCLVKGFYPSDIAVEWES
KNQVSLSCAVKGFYPSDIA




NGQPENNYKTTPPVLDSDG
VEWESNGQPENNYKTTPPV




SFFLYSKLTVDKSRWQQGN
LDSDGSFFLVSKLTVDKSR




VFSCSVMHEALHNHYTQKS
WQQGNVFSCSVMHEALHN




LSLSPG 
RFTQKSLSLSPG 




(SEQ ID NO: 835)
(SEQ ID NO: 836)






DGL527
EVQLVESGGGLVQPGGSLT
QVQLVESGGGLVRPGGSLR




LSCTASGFRFSDRSMGWYR
LSCAASGFTFSSNGMHWFR




QAPGKQRELVAAITVGGST
QAPGKGLEWVSSIGSGGTSI




NYADSVKGRFTISRDNAKN
YYADSVKGRFTISRDNAKN




TVYLQMNSLKPEDTALYYC
TLYLQMNSLKSDDTAVYY




NRRYPPDDYWGQGTQVTV
CSKEVTGATRGQGTQVTVE




EPKSSDKTHTCPPCPAPEAA
PKSSDKTHTCPPCPAPEAAG




GAPSVFLFPPKPKDTLMISR
APSVFLFPPKPKDTLMISRT




TPEVTCVVVDVSHEDPEVK
PEVTCVVVDVSHEDPEVKF




FNWYVDGVEVHNAKTKPR
NWYVDGVEVHNAKTKPRE




EEQYNSTYRVVSVLTVLHQ
EQYNSTYRVVSVLTVLHQD




DWLNGKEYKCKVSNKALP
WLNGKEYKCKVSNKALPA




APIEKTISKAKGQPREPQVY
PIEKTISKAKGQPREPQVCT




TLPPCRDELTKNQVSLWCL
LPPSRDELTKNQVSLSCAV




VKGFYPSDIAEWESNGQP
KGFYPSDIAVEWESNGQPE




ENNYKTTPPVLDSDGSFFLY
NNYKTTPPVLDSDGSFFLVS




SKLTVDKSRWQQGNVFSCS
KLTVDKSRWQQGNVFSCS




VMHEALHNHYTQKSLSLSP
VMHEALHNRFTQKSLSLSP




G 
G 




(SEQ ID NO: 837)
(SEQ ID NO: 838)






DGL533
EVQLVESGGGLVQPGGSLT
QVQLVESGGGLVQAGGSLR




LSCTASGFRFSDRSMGWYR
LSCAASGRTFSSYAMGWFR




QAPGKQRELVAAITVGGST
QAPGKEREFVSAISWSGLST




NYADSVKGRFTISRDNAKN
YYVESVQGRFTISRDNAKN




TVYLQMNSLKPEDTALYYC
TVYLQMNSLKPEDTAVYY




NRRYPPDDYWGQGTQVTV
CAASRIYTNYVARSYEYDD




EPKSSDKTHTCPPCPAPEAA
WGQGTQVTVEPKSSDKTHT




GAPSVFLFPPKPKDTLMISR
CPPCPAPEAAGAPSVFLFPP




TPEVTCVVVDVSHEDPEVK
KPKDTLMISRTPEVTCVVV




FNWYVDGVEVHNAKTKPR
DVSHEDPEVKFNWYVDGV




EEQYNSTYRVVSVLTVLHQ
EVHNAKTKPREEQYNSTYR




DWLNGKEYKCKVSNKALP
VVSVLTVLHQDWLNGKEY




APIEKTISKAKGQPREPQVY
KCKVSNKALPAPIEKTISKA




TLPPCRDELTKNQVSLWCL
KGQPREPQVCTLPPSRDELT




VKGFYPSDIAVEWESNGQP
KNQVSLSCAVKGFYPSDIA




ENNYKTTPPVLDSDGSFFLY
VEWESNGQPENNYKTTPPV




SKLTVDKSRWQQGNVFSCS
LDSDGSFFLVSKLTVDKSR




VMHEALHNHYTQKSLSLSP
WQQGNVFSCSVMHEALHN




G 
RFTQKSLSLSPG 




(SEQ ID NO: 839)
(SEQ ID NO: 840)






DGL534
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCLASGRTSNYFMGWFRQ
LSCAASGFTFSNYAMSWVR




APGKEREFVAAISRSGGGT
QAPGKGLEWVSAINSDGTS




WYADSVKGRFAISRDNAK
TSYADSVKGQFTISRDNAK




NTVNLQMNSLKREDTAVY
NTLYLQMNSLKPEDTAVYY




YCAADRRTGTSVYTVDEY
CTKWEGDTDSDYKFKDYW




DYWGQGTQVTVEPKSSDK
GQGTQVTVEPKSSDKTHTC




THTCPPCPAPEAAGAPSVFL
PPCPAPEAAGAPSVFLFPPK




FPPKPKDTLMISRTPEVTCV
PKDTLMISRTPEVTCVVVD




VVDVSHEDPEVKFNWYVD
VSHEDPEVKFNWYVDGVE




GVEVHNAKTKPREEQYNST
VHNAKTKPREEQYNSTYRV




YRVVSVLTVLHQDWLNGK
VSVLTVLHQDWLNGKEYK




EYKCKVSNKALPAPIEKTIS
CKVSNKALPAPIEKTISKAK




KAKGQPREPQVYTLPPCRD
GQPREPQVCTLPPSRDELTK




ELTKNQVSLWCLVKGFYPS
NQVSLSCAVKGFYPSDIAV




DIAVEWESNGQPENNYKTT
EWESNGQPENNYKTTPPVL




PPVLDSDGSFFLYSKLTVDK
DSDGSFFLVSKLTVDKSRW




SRWQQGNVFSCSVMHEAL
QQGNVFSCSVMHEALHNRF




HNHYTQKSLSLSPG 
TQKSLSLSPG 




(SEQ ID NO: 841)
(SEQ ID NO: 842)






DGL537
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQAGGSLR




LSCLASGRTSNYFMGWFRQ
LSCAASGRIFSAYRMGWFR




APGKEREFVAAISRSGGGT
QAPGKEREFVAGITWRGQT




WYADSVKGRFAISRDNAK
TYYAASVKGRFTISKDNAK




NTVNLQMNSLKREDTAVY
KTVYLQMNSLKPEETAVYY




YCAADRRTGTSVYTVDEY
CAVETNGLGRWDRPSEYD




DYWGQGTQVTVEPKSSDK
YWGQGTQVTVEPKSSDKT




THTCPPCPAPEAAGAPSVFL
HTCPPCPAPEAAGAPSVFLF




FPPKPKDTLMISRTPEVTCV
PPKPKDTLMISRTPEVTCVV




VVDVSHEDPEVKFNWYVD
VDVSHEDPEVKFNWYVDG




GVEVHNAKTKPREEQYNST
VEVHNAKTKPREEQYNSTY




YRVVSVLTVLHQDWLNGK
RVVSVLTVLHQDWLNGKE




EYKCKVSNKALPAPIEKTIS
YKCKVSNKALPAPIEKTISK




KAKGQPREPQVYTLPPCRD
AKGQPREPQVCTLPPSRDEL




ELTKNQVSLWCLVKGFYPS
TKNQVSLSCAVKGFYPSDI




DIAVEWESNGQPENNYKTT
AVEWESNGQPENNYKTTPP




PPVLDSDGSFFLYSKLTVDK
VLDSDGSFFLVSKLTVDKS




SRWQQGNVFSCSVMHEAL
RWQQGNVFSCSVMHEALH




HNHYTQKSLSLSPG 
NRFTQKSLSLSPG 




(SEQ ID NO: 843)
(SEQ ID NO: 844)






DGL541
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQAGGSLR




LSCAASGRTFRTYAMGWFR
LSCAASGRTFSSYAMGWFR




QAPGKDREVVGIAAWKVA
QAPGKEREFVSAISWSGLST




STYYVDYGDSVRGRFTISR
YYVESVQGRFTISRDNAKN




DDAKSTVYLQMNNLMPED
TVYLQMNSLKPEDTAVYY




TAVYYCAAGAFRTDWRSY
CAASRIYTNYVARSYEYDD




AYWGQGTQVTVEPKSSDK
WGQGTQVTVEPKSSDKTHT




THTCPPCPAPEAAGAPSVFL
CPPCPAPEAAGAPSVFLFPP




FPPKPKDTLMISRTPEVTCV
KPKDTLMISRTPEVTCVVV




VVDVSHEDPEVKFNWYVD
DVSHEDPEVKFNWYVDGV




GVEVHNAKTKPREEQYNST
EVHNAKTKPREEQYNSTYR




YRVVSVLTVLHQDWLNGK
VVSVLTVLHQDWLNGKEY




EYKCKVSNKALPAPIEKTIS
KCKVSNKALPAPIEKTISKA




KAKGQPREPQVYTLPPCRD
KGQPREPQVCTLPPSRDELT




ELTKNQVSLWCLVKGFYPS
KNQVSLSCAVKGFYPSDIA




DIAVEWESNGQPENNYKTT
VEWESNGQPENNYKTTPPV




PPVLDSDGSFFLYSKLTVDK
LDSDGSFFLVSKLTVDKSR




SRWQQGNVFSCSVMHEAL
WQQGNVFSCSVMHEALHN




HNHYTQKSLSLSPG 
RFTQKSLSLSPG 




(SEQ ID NO: 845)
(SEQ ID NO: 846)






DGL545
QVQLVESGGGAVQAGGSL
QVQLVESGGGLVQAGGSLR




RLSCAASGLTSRHYVMAW
LSCAASGRTFSSYAMGWFR




FRQAPGIEREFVASIWWGG
QAPGKEREFVSAISWSGLST




STYYADSVKDRFTISRDNA
YYVESVQGRFTISRDNAKN




ENTVYLQMNSLKPEDTAVY
TVYLQMNSLKPEDTAVYY




RCAVGTKIGTMGPRYDYW
CAASRIYTNYVARSYEYDD




GQGTQVTVEPKSSDKTHTC
WGQGTQVTVEPKSSDKTHT




PPCPAPEAAGAPSVFLFPPK
CPPCPAPEAAGAPSVFLFPP




PKDTLMISRTPEVTCVVVD
KPKDTLMISRTPEVTCVVV




VSHEDPEVKFNWYVDGVE
DVSHEDPEVKFNWYVDGV




VHNAKTKPREEQYNSTYRV
EVHNAKTKPREEQYNSTYR




VSVLTVLHQDWLNGKEYK
VVSVLTVLHQDWLNGKEY




CKVSNKALPAPIEKTISKAK
KCKVSNKALPAPIEKTISKA




GQPREPQVYTLPPCRDELT
KGQPREPQVCTLPPSRDELT




KNQVSLWCLVKGFYPSDIA
KNQVSLSCAVKGFYPSDIA




VEWESNGQPENNYKTTPPV
VEWESNGQPENNYKTTPPV




LDSDGSFFLYSKLTVDKSR
LDSDGSFFLVSKLTVDKSR




WQQGNVFSCSVMHEALHN
WQQGNVFSCSVMHEALHN




HYTQKSLSLSPG 
RFTQKSLSLSPG 




(SEQ ID NO: 847)
(SEQ ID NO: 848)






DGL547
EVQLVESGGGLVQPGGSLR
QLQLVESGGGLVQAGGSLR




LSCAASGFTLDYYAIGWFR
LSCAASGLTFSGYTVGWFR




QAPGKEREGVSCISSSDRST
QAPGKEREFVAAINWSSAY




WYADSVKGRFTISRDNAKN
TYSEFVKGRFTISRDNAKNT




TVYLQMHSLKPEDTAVYY
VYLQMSSLKPEDTAVYYCA




CATPCYSDYDPEGYEYDY
AQRSRTSWYASTAEAYDY




WGQGTQVTVEPKSSDKTHT
WGQGTQVTVEPKSSDKTHT




CPPCPAPEAAGAPSVFLFPP
CPPCPAPEAAGAPSVFLFPP




KPKDTLMISRTPEVTCVVV
KPKDTLMISRTPEVTCVVV




DVSHEDPEVKFNWYVDGV
DVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYR
EVHNAKTKPREEQYNSTYR




VVSVLTVLHQDWLNGKEY
VVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKA
KCKVSNKALPAPIEKTISKA




KGQPREPQVYTLPPCRDEL
KGQPREPQVCTLPPSRDELT




TKNQVSLWCLVKGFYPSDI
KNQVSLSCAVKGFYPSDIA




AVEWESNGQPENNYKTTPP
VEWESNGQPENNYKTTPPV




VLDSDGSFFLYSKLTVDKS
LDSDGSFFLVSKLTVDKSR




RWQQGNVFSCSVMHEALH
WQQGNVFSCSVMHEALHN




NHYTQKSLSLSPG 
RFTQKSLSLSPG 




(SEQ ID NO: 849)
(SEQ ID NO: 850)






DGL551
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQAGGSLR




LSCAASGRTFGTYAMGWF
LSCAASGRTFSRYRMGWFR




RQAPGKERDFVARISNSGA
QAPGKEREFVAAITKSGAT




FTHYADSVKGRFTISRDNA
TYDADSVKGRFTISRDNAK




KNTVYLHMNSLENGDTAA
NTLYLQMNSLKPEDTAVYY




YYCVATRGTNSAYYTRST
CAASYHSNWWPKNADEYA




MYEYWGQGTQVTVEPKSS
YWGQGTQVTVEPKSSDKT




DKTHTCPPCPAPEAAGAPS
HTCPPCPAPEAAGAPSVFLF




VFLFPPKPKDTLMISRTPEV
PPKPKDTLMISRTPEVTCVV




TCVVVDVSHEDPEVKFNW
VDVSHEDPEVKFNWYVDG




YVDGVEVHNAKTKPREEQ
VEVHNAKTKPREEQYNSTY




YNSTYRVVSVLTVLHQDW
RVVSVLTVLHQDWLNGKE




LNGKEYKCKVSNKALPAPI
YKCKVSNKALPAPIEKTISK




EKTISKAKGQPREPQVYTLP
AKGQPREPQVCTLPPSRDEL




PCRDELTKNQVSLWCLVKG
TKNQVSLSCAVKGFYPSDI




FYPSDIAVEWESNGQPENN
AVEWESNGQPENNYKTTPP




YKTTPPVLDSDGSFFLYSKL
VLDSDGSFFLVSKLTVDKS




TVDKSRWQQGNVFSCSVM
RWQQGNVFSCSVMHEALH




HEALHNHYTQKSLSLSPG
NRFTQKSLSLSPG 




(SEQ ID NO: 851)
(SEQ ID NO: 852)






DGL552
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQAGGSLR




LSCAASGRTFGTYAMGWF
LSCAASGRIFSAYRMGWFR




RQAPGKERDFVARISNSGA
QAPGKEREFVAGITWRGQT




FTHYADSVKGRFTISRDNA
TYYAASVKGRFTISKDNAK




KNTVYLHMNSLENGDTAA
KTVYLQMNSLKPEETAVYY




YYCVATRGTNSAYYTRST
CAVETNGLGRWDRPSEYD




MYEYWGQGTQVTVEPKSS
YWGQGTQVTVEPKSSDKT




DKTHTCPPCPAPEAAGAPS
HTCPPCPAPEAAGAPSVFLF




VFLFPPKPKDTLMISRTPEV
PPKPKDTLMISRTPEVTCVV




TCVVVDVSHEDPEVKFNW
VDVSHEDPEVKFNWYVDG




YVDGVEVHNAKTKPREEQ
VEVHNAKTKPREEQYNSTY




YNSTYRVVSVLTVLHQDW
RVVSVLTVLHQDWLNGKE




LNGKEYKCKVSNKALPAPI
YKCKVSNKALPAPIEKTISK




EKTISKAKGQPREPQVYTLP
AKGQPREPQVCTLPPSRDEL




PCRDELTKNQVSLWCLVKG
TKNQVSLSCAVKGFYPSDI




FYPSDIAVEWESNGQPENN
AVEWESNGQPENNYKTTPP




YKTTPPVLDSDGSFFLYSKL
VLDSDGSFFLVSKLTVDKS




TVDKSRWQQGNVFSCSVM
RWQQGNVFSCSVMHEALH




HEALHNHYTQKSLSLSPG
NRFTQKSLSLSPG 




(SEQ ID NO: 853)
(SEQ ID NO: 854)






DGL568
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVRPGGSLR




LSCAASRSISSFNEMAWYR
LSCAASGFTFSSNGMHWFR




QAPGEQRELVATIVSTVGFT
QAPGKGLEWVSSIGSGGTSI




NYADSVKGRFTISRDNAKN
YYADSVKGRFTISRDNAKN




TVYLQMNSLKAEDTAVYY
TLYLQMNSLKSDDTAVYY




CNARRISTDYWGQGTQVTV
CSKEVTGATRGQGTQVTVE




EPKSSDKTHTCPPCPAPEAA
PKSSDKTHTCPPCPAPEAAG




GAPSVFLFPPKPKDTLMISR
APSVFLFPPKPKDTLMISRT




TPEVTCVVVDVSHEDPEVK
PEVTCVVVDVSHEDPEVKF




FNWYVDGVEVHNAKTKPR
NWYVDGVEVHNAKTKPRE




EEQYNSTYRVVSVLTVLHQ
EQYNSTYRVVSVLTVLHQD




DWLNGKEYKCKVSNKALP
WLNGKEYKCKVSNKALPA




APIEKTISKAKGQPREPQVY
PIEKTISKAKGQPREPQVCT




TLPPCRDELTKNQVSLWCL
LPPSRDELTKNQVSLSCAV




VKGFYPSDIAVEWESNGQP
KGFYPSDIAVEWESNGQPE




ENNYKTTPPVLDSDGSFFLY
NNYKTTPPVLDSDGSFFLVS




SKLTVDKSRWQQGNVFSCS
KLTVDKSRWQQGNVFSCS




VMHEALHNHYTQKSLSLSP
VMHEALHNRFTQKSLSLSP




G 
G 




(SEQ ID NO: 855)
(SEQ ID NO: 856)






DGL569
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASRSISSFNEMAWYR
LSCAASGFTFSNYAMSWVR




QAPGEQRELVATIVSTVGFT
QAPGKGLEWVSAINSDGTS




NYADSVKGRFTISRDNAKN
TSYADSVKGQFTISRDNAK




TVYLQMNSLKAEDTAVYY
NTLYLQMNSLKPEDTAVYY




CNARRISTDYWGQGTQVTV
CTKWEGDTDSDYKFKDYW




EPKSSDKTHTCPPCPAPEAA
GQGTQVTVEPKSSDKTHTC




GAPSVFLFPPKPKDTLMISR
PPCPAPEAAGAPSVFLFPPK




TPEVTCVVVDVSHEDPEVK
PKDTLMISRTPEVTCVVVD




FNWYVDGVEVHNAKTKPR
VSHEDPEVKFNWYVDGVE




EEQYNSTYRVVSVLTVLHQ
VHNAKTKPREEQYNSTYRV




DWLNGKEYKCKVSNKALP
VSVLTVLHQDWLNGKEYK




APIEKTISKAKGQPREPQVY
CKVSNKALPAPIEKTISKAK




TLPPCRDELTKNQVSLWCL
GQPREPQVCTLPPSRDELTK




VKGFYPSDIAVEWESNGQP
NQVSLSCAVKGFYPSDIAV




ENNYKTTPPVLDSDGSFFLY
EWESNGQPENNYKTTPPVL




SKLTVDKSRWQQGNVFSCS
DSDGSFFLVSKLTVDKSRW




VMHEALHNHYTQKSLSLSP
QQGNVFSCSVMHEALHNRF




G 
TQKSLSLSPG 




(SEQ ID NO: 857)
(SEQ ID NO: 858)






DGL570
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASRSISSFNEMAWYR
LSCAASGFTFSSKAMHWFR




QAPGEQRELVATIVSTVGFT
QAPGKGLEWVSSINSGGAIT




NYADSVKGRFTISRDNAKN
YYKDSVKGRFTVSRDNAK




TVYLQMNSLKAEDTAVYY
NILYLEMNSLKPEDTALYY




CNARRISTDYWGQGTQVTV
CATDTDGRTRGQGTQVTVE




EPKSSDKTHTCPPCPAPEAA
PKSSDKTHTCPPCPAPEAAG




GAPSVFLFPPKPKDTLMISR
APSVFLFPPKPKDTLMISRT




TPEVTCVVVDVSHEDPEVK
PEVTCVVVDVSHEDPEVKF




FNWYVDGVEVHNAKTKPR
NWYVDGVEVHNAKTKPRE




EEQYNSTYRVVSVLTVLHQ
EQYNSTYRVVSVLTVLHQD




DWLNGKEYKCKVSNKALP
WLNGKEYKCKVSNKALPA




APIEKTISKAKGQPREPQVY
PIEKTISKAKGQPREPQVCT




TLPPCRDELTKNQVSLWCL
LPPSRDELTKNQVSLSCAV




VKGFYPSDIAVEWESNGQP
KGFYPSDIAVEWESNGQPE




ENNYKTTPPVLDSDGSFFLY
NNYKTTPPVLDSDGSFFLVS




SKLTVDKSRWQQGNVFSCS
KLTVDKSRWQQGNVFSCS




VMHEALHNHYTQKSLSLSP
VMHEALHNRFTQKSLSLSP




G 
G 




(SEQ ID NO: 859)
(SEQ ID NO: 860)






DGL571
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASRSISSFNEMAWYR
LSCAASGFTFSNYAMSWIR




QAPGEQRELVATIVSTVGFT
QGPERGFEWVSRINSGGGT




NYADSVKGRFTISRDNAKN
TSYADSVKGRFTISRDNAK




TVYLQMNSLKAEDTAVYY
NTLYLQMNSLKPEDTAVYY




CNARRISTDYWGQGTQVTV
CAKHSHPDYSSNYYRPGQG




EPKSSDKTHTCPPCPAPEAA
TQVTVEPKSSDKTHTCPPCP




GAPSVFLFPPKPKDTLMISR
APEAAGAPSVFLFPPKPKDT




TPEVTCVVVDVSHEDPEVK
LMISRTPEVTCVVVDVSHE




FNWYVDGVEVHNAKTKPR
DPEVKFNWYVDGVEVHNA




EEQYNSTYRVVSVLTVLHQ
KTKPREEQYNSTYRVVSVL




DWLNGKEYKCKVSNKALP
TVLHQDWLNGKEYKCKVS




APIEKTISKAKGQPREPQVY
NKALPAPIEKTISKAKGQPR




TLPPCRDELTKNQVSLWCL
EPQVCTLPPSRDELTKNQVS




VKGFYPSDIAVEWESNGQP
LSCAVKGFYPSDIAVEWES




ENNYKTTPPVLDSDGSFFLY
NGQPENNYKTTPPVLDSDG




SKLTVDKSRWQQGNVFSCS
SFFLVSKLTVDKSRWQQGN




VMHEALHNHYTQKSLSLSP
VFSCSVMHEALHNRFTQKS




G 
LSLSPG 




(SEQ ID NO: 861)
(SEQ ID NO: 862)






DGL572
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASRSISSFNEMAWYR
LSCAASGFTFEPYDMSWFR




QAPGEQRELVATIVSTVGFT
QAPGKGPEWVSAIDKGGG




NYADSVKGRFTISRDNAKN
AGATYYADSVKGRFTISRD




TVYLQMNSLKAEDTAVYY
NAKKTLYLQMKSLKPEDTA




CNARRISTDYWGQGTQVTV
VYYCAITAGPYSDSTPRVA




EPKSSDKTHTCPPCPAPEAA
YRGEGTQVTVEPKSSDKTH




GAPSVFLFPPKPKDTLMISR
TCPPCPAPEAAGAPSVFLFP




TPEVTCVVVDVSHEDPEVK
PKPKDTLMISRTPEVTCVVV




FNWYVDGVEVHNAKTKPR
DVSHEDPEVKFNWYVDGV




EEQYNSTYRVVSVLTVLHQ
EVHNAKTKPREEQYNSTYR




DWLNGKEYKCKVSNKALP
VVSVLTVLHQDWLNGKEY




APIEKTISKAKGQPREPQVY
KCKVSNKALPAPIEKTISKA




TLPPCRDELTKNQVSLWCL
KGQPREPQVCTLPPSRDELT




VKGFYPSDIAVEWESNGQP
KNQVSLSCAVKGFYPSDIA




ENNYKTTPPVLDSDGSFFLY
VEWESNGQPENNYKTTPPV




SKLTVDKSRWQQGNVFSCS
LDSDGSFFLVSKLTVDKSR




VMHEALHNHYTQKSLSLSP
WQQGNVFSCSVMHEALHN




G 
RFTQKSLSLSPG 




(SEQ ID NO: 863)
(SEQ ID NO: 864)






DGL574
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQAGGSLR




LSCAASRSISSFNEMAWYR
LSCAASGRTFSRYRMGWFR




QAPGEQRELVATIVSTVGFT
QAPGKEREFVAAITKSGAT




NYADSVKGRFTISRDNAKN
TYDADSVKGRFTISRDNAK




TVYLQMNSLKAEDTAVYY
NTLYLQMNSLKPEDTAVYY




CNARRISTDYWGQGTQVTV
CAASYHSNWWPKNADEYA




EPKSSDKTHTCPPCPAPEAA
YWGQGTQVTVEPKSSDKT




GAPSVFLFPPKPKDTLMISR
HTCPPCPAPEAAGAPSVFLF




TPEVTCVVVDVSHEDPEVK
PPKPKDTLMISRTPEVTCVV




FNWYVDGVEVHNAKTKPR
VDVSHEDPEVKFNWYVDG




EEQYNSTYRVVSVLTVLHQ
VEVHNAKTKPREEQYNSTY




DWLNGKEYKCKVSNKALP
RVVSVLTVLHQDWLNGKE




APIEKTISKAKGQPREPQVY
YKCKVSNKALPAPIEKTISK




TLPPCRDELTKNQVSLWCL
AKGQPREPQVCTLPPSRDEL




VKGFYPSDIAVEWESNGQP
TKNQVSLSCAVKGFYPSDI




ENNYKTTPPVLDSDGSFFLY
AVEWESNGQPENNYKTTPP




SKLTVDKSRWQQGNVFSCS
VLDSDGSFFLVSKLTVDKS




VMHEALHNHYTQKSLSLSP
RWQQGNVFSCSVMHEALH




G 
NRFTQKSLSLSPG 




(SEQ ID NO: 865)
(SEQ ID NO: 866)






DGL575
QVQLVESGGGLVQAGGSLR
QVQLQESGPGLVKPSQTLS




LSCAASRSISSFNEMAWYR
LTCTVSGGSITTNYYYWSW




QAPGEQRELVATIVSTVGFT
IRQPPGKGLEWMGAIAYSG




NYADSVKGRFTISRDNAKN
STYYSPSLKSRTSISRDTSKN




TVYLQMNSLKAEDTAVYY
QFTLQLSSVTPEDTAVYYC




CNARRISTDYWGQGTQVTV
ASGINFYSNYPTLNEYDYW




EPKSSDKTHTCPPCPAPEAA
GQGTQVTVEPKSSDKTHTC




GAPSVFLFPPKPKDTLMISR
PPCPAPEAAGAPSVFLFPPK




TPEVTCVVVDVSHEDPEVK
PKDTLMISRTPEVTCVVVD




FNWYVDGVEVHNAKTKPR
VSHEDPEVKFNWYVDGVE




EEQYNSTYRVVSVLTVLHQ
VHNAKTKPREEQYNSTYRV




DWLNGKEYKCKVSNKALP
VSVLTVLHQDWLNGKEYK




APIEKTISKAKGQPREPQVY
CKVSNKALPAPIEKTISKAK




TLPPCRDELTKNQVSLWCL
GQPREPQVCTLPPSRDELTK




VKGFYPSDIAVEWESNGQP
NQVSLSCAVKGFYPSDIAV




ENNYKTTPPVLDSDGSFFLY
EWESNGQPENNYKTTPPVL




SKLTVDKSRWQQGNVFSCS
DSDGSFFLVSKLTVDKSRW




VMHEALHNHYTQKSLSLSP
QQGNVFSCSVMHEALHNRF




G 
TQKSLSLSPG 




(SEQ ID NO: 867)
(SEQ ID NO: 868)






DGL579
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQAGGSLR




LSCAASRSISSFNEMAWYR
LSCAASGRTFSSYAMGWFR




QAPGEQRELVATIVSTVGFT
QAPGKEREFVSAISWSGLST




NYADSVKGRFTISRDNAKN
YYVESVQGRFTISRDNAKN




TVYLQMNSLKAEDTAVYY
TVYLQMNSLKPEDTAVYY




CNARRISTDYWGQGTQVTV
CAASRIYTNYVARSYEYDD




EPKSSDKTHTCPPCPAPEAA
WGQGTQVTVEPKSSDKTHT




GAPSVFLFPPKPKDTLMISR
CPPCPAPEAAGAPSVFLFPP




TPEVTCVVVDVSHEDPEVK
KPKDTLMISRTPEVTCVVV




FNWYVDGVEVHNAKTKPR
DVSHEDPEVKFNWYVDGV




EEQYNSTYRVVSVLTVLHQ
EVHNAKTKPREEQYNSTYR




DWLNGKEYKCKVSNKALP
VVSVLTVLHQDWLNGKEY




APIEKTISKAKGQPREPQVY
KCKVSNKALPAPIEKTISKA




TLPPCRDELTKNQVSLWCL
KGQPREPQVCTLPPSRDELT




VKGFYPSDIAVEWESNGQP
KNQVSLSCAVKGFYPSDIA




ENNYKTTPPVLDSDGSFFLY
VEWESNGQPENNYKTTPPV




SKLTVDKSRWQQGNVFSCS
LDSDGSFFLVSKLTVDKSR




VMHEALHNHYTQKSLSLSP
WQQGNVFSCSVMHEALHN




G 
RFTQKSLSLSPG 




(SEQ ID NO: 869)
(SEQ ID NO: 870)






DGL584
QVQLQESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGSIASINAMGWYR
LSCAASGFTFSSKAMHWFR




QAPGKQRDFVARIQLSGST
QAPGKGLEWVSSINSGGAIT




NYAHSVRGRFTISRDNAKN
YYKDSVKGRFTVSRDNAK




TVYLQMNNLKPEDTAVYV
NILYLEMNSLKPEDTALYY




CAASNTGSLYGLRNYWGQ
CATDTDGRTRGQGTQVTVE




GTQVTVEPKSSDKTHTCPP
PKSSDKTHTCPPCPAPEAAG




CPAPEAAGAPSVFLFPPKPK
APSVFLFPPKPKDTLMISRT




DTLMISRTPEVTCVVVDVS
PEVTCVVVDVSHEDPEVKF




HEDPEVKFNWYVDGVEVH
NWYVDGVEVHNAKTKPRE




NAKTKPREEQYNSTYRVVS
EQYNSTYRVVSVLTVLHQD




VLTVLHQDWLNGKEYKCK
WLNGKEYKCKVSNKALPA




VSNKALPAPIEKTISKAKGQ
PIEKTISKAKGQPREPQVCT




PREPQVYTLPPCRDELTKN
LPPSRDELTKNQVSLSCAV




QVSLWCLVKGFYPSDIAVE
KGFYPSDIAVEWESNGQPE




WESNGQPENNYKTTPPVLD
NNYKTTPPVLDSDGSFFLVS




SDGSFFLYSKLTVDKSRWQ
KLTVDKSRWQQGNVFSCS




QGNVFSCSVMHEALHNHY
VMHEALHNRFTQKSLSLSP




TQKSLSLSPG 
G 




(SEQ ID NO: 871)
(SEQ ID NO: 872)






DGL585
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVRPGGSLR




LSCAASGRTFSSYVMGWFR
LSCAASGFTFSSNGMHWFR




QAPGQEREFVAAIMRNGIM
QAPGKGLEWVSSIGSGGTSI




TYYADSVKGRFTISRDNAK
YYADSVKGRFTISRDNAKN




NTVYLQMNTLKPDDTAVY
TLYLQMNSLKSDDTAVYY




YCAAASRVGVSISQSSSYTS
CSKEVTGATRGQGTQVTVE




WGQGTQVTVEPKSSDKTHT
PKSSDKTHTCPPCPAPEAAG




CPPCPAPEAAGAPSVFLFPP
APSVFLFPPKPKDTLMISRT




KPKDTLMISRTPEVTCVVV
PEVTCVVVDVSHEDPEVKF




DVSHEDPEVKFNWYVDGV
NWYVDGVEVHNAKTKPRE




EVHNAKTKPREEQYNSTYR
EQYNSTYRVVSVLTVLHQD




VVSVLTVLHQDWLNGKEY
WLNGKEYKCKVSNKALPA




KCKVSNKALPAPIEKTISKA
PIEKTISKAKGQPREPQVCT




KGQPREPQVYTLPPCRDEL
LPPSRDELTKNQVSLSCAV




TKNQVSLWCLVKGFYPSDI
KGFYPSDIAVEWESNGQPE




AVEWESNGQPENNYKTTPP
NNYKTTPPVLDSDGSFFLVS




VLDSDGSFFLYSKLTVDKS
KLTVDKSRWQQGNVFSCS




RWQQGNVFSCSVMHEALH
VMHEALHNRFTQKSLSLSP




NHYTQKSLSLSPG 
G 




(SEQ ID NO: 873)
(SEQ ID NO: 874)






DGL586
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGRTFSSYVMGWFR
LSCAASGFTFSNYAMSWVR




QAPGQEREFVAAIMRNGIM
QAPGKGLEWVSAINSDGTS




TYYADSVKGRFTISRDNAK
TSYADSVKGQFTISRDNAK




NTVYLQMNTLKPDDTAVY
NTLYLQMNSLKPEDTAVYY




YCAAASRVGVSISQSSSYTS
CTKWEGDTDSDYKFKDYW




WGQGTQVTVEPKSSDKTHT
GQGTQVTVEPKSSDKTHTC




CPPCPAPEAAGAPSVFLFPP
PPCPAPEAAGAPSVFLFPPK




KPKDTLMISRTPEVTCVVV
PKDTLMISRTPEVTCVVVD




DVSHEDPEVKFNWYVDGV
VSHEDPEVKFNWYVDGVE




EVHNAKTKPREEQYNSTYR
VHNAKTKPREEQYNSTYRV




VVSVLTVLHQDWLNGKEY
VSVLTVLHQDWLNGKEYK




KCKVSNKALPAPIEKTISKA
CKVSNKALPAPIEKTISKAK




KGQPREPQVYTLPPCRDEL
GQPREPQVCTLPPSRDELTK




TKNQVSLWCLVKGFYPSDI
NQVSLSCAVKGFYPSDIAV




AVEWESNGQPENNYKTTPP
EWESNGQPENNYKTTPPVL




VLDSDGSFFLYSKLTVDKS
DSDGSFFLVSKLTVDKSRW




RWQQGNVFSCSVMHEALH
QQGNVFSCSVMHEALHNRF




NHYTQKSLSLSPG 
TQKSLSLSPG 




(SEQ ID NO: 875)
(SEQ ID NO: 876)






DGL587
QVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGRTFSSYVMGWFR
LSCAASGFTFSSKAMHWFR




QAPGQEREFVAAIMRNGIM
QAPGKGLEWVSSINSGGAIT




TYYADSVKGRFTISRDNAK
YYKDSVKGRFTVSRDNAK




NTVYLQMNTLKPDDTAVY
NILYLEMNSLKPEDTALYY




YCAAASRVGVSISQSSSYTS
CATDTDGRTRGQGTQVTVE




WGQGTQVTVEPKSSDKTHT
PKSSDKTHTCPPCPAPEAAG




CPPCPAPEAAGAPSVFLFPP
APSVFLFPPKPKDTLMISRT




KPKDTLMISRTPEVTCVVV
PEVTCVVVDVSHEDPEVKF




DVSHEDPEVKFNWYVDGV
NWYVDGVEVHNAKTKPRE




EVHNAKTKPREEQYNSTYR
EQYNSTYRVVSVLTVLHQD




VVSVLTVLHQDWLNGKEY
WLNGKEYKCKVSNKALPA




KCKVSNKALPAPIEKTISKA
PIEKTISKAKGQPREPQVCT




KGQPREPQVYTLPPCRDEL
LPPSRDELTKNQVSLSCAV




TKNQVSLWCLVKGFYPSDI
KGFYPSDIAVEWESNGQPE




AVEWESNGQPENNYKTTPP
NNYKTTPPVLDSDGSFFLVS




VLDSDGSFFLYSKLTVDKS
KLTVDKSRWQQGNVFSCS




RWQQGNVFSCSVMHEALH
VMHEALHNRFTQKSLSLSP




NHYTQKSLSLSPG 
G 




(SEQ ID NO: 877)
(SEQ ID NO: 878)






DGL594
EVQLVESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGSKFSFNAMGWYR
LSCAASGFTFSSKAMHWFR




QTPGKQRELVAIIINGDMIN
QAPGKGLEWVSSINSGGAIT




YADSVKGRFTISRDNAKNT
YYKDSVKGRFTVSRDNAK




MYLQMNSLKPEDTAVYYC
NILYLEMNSLKPEDTALYY




KMTRYVYDYWGQGTQVT
CATDTDGRTRGQGTQVTVE




VEPKSSDKTHTCPPCPAPEA
PKSSDKTHTCPPCPAPEAAG




AGAPSVFLFPPKPKDTLMIS
APSVFLFPPKPKDTLMISRT




RTPEVTCVVVDVSHEDPEV
PEVTCVVVDVSHEDPEVKF




KFNWYVDGVEVHNAKTKP
NWYVDGVEVHNAKTKPRE




REEQYNSTYRVVSVLTVLH
EQYNSTYRVVSVLTVLHQD




QDWLNGKEYKCKVSNKAL
WLNGKEYKCKVSNKALPA




PAPIEKTISKAKGQPREPQV
PIEKTISKAKGQPREPQVCT




YTLPPCRDELTKNQVSLWC
LPPSRDELTKNQVSLSCAV




LVKGFYPSDIAVEWESNGQ
KGFYPSDIAVEWESNGQPE




PENNYKTTPPVLDSDGSFFL
NNYKTTPPVLDSDGSFFLVS




YSKLTVDKSRWQQGNVFS
KLTVDKSRWQQGNVFSCS




CSVMHEALHNHYTQKSLSL
VMHEALHNRFTQKSLSLSP




SPG 
G 




(SEQ ID NO: 879)
(SEQ ID NO: 880)






DGL599
EVQLVESGGGLVQAGGSLR
QVQLQESGPGLVKPSQTLS




LSCAASGSKFSFNAMGWYR
LTCTVSGGSITTNYYYWSW




QTPGKQRELVAIIINGDMIN
IRQPPGKGLEWMGAIAYSG




YADSVKGRFTISRDNAKNT
STYYSPSLKSRTSISRDTSKN




MYLQMNSLKPEDTAVYYC
QFTLQLSSVTPEDTAVYYC




KMTRYVYDYWGQGTQVT
ASGINFYSNYPTLNEYDYW




VEPKSSDKTHTCPPCPAPEA
GQGTQVTVEPKSSDKTHTC




AGAPSVFLFPPKPKDTLMIS
PPCPAPEAAGAPSVFLFPPK




RTPEVTCVVVDVSHEDPEV
PKDTLMISRTPEVTCVVVD




KFNWYVDGVEVHNAKTKP
VSHEDPEVKFNWYVDGVE




REEQYNSTYRVVSVLTVLH
VHNAKTKPREEQYNSTYRV




QDWLNGKEYKCKVSNKAL
VSVLTVLHQDWLNGKEYK




PAPIEKTISKAKGQPREPQV
CKVSNKALPAPIEKTISKAK




YTLPPCRDELTKNQVSLWC
GQPREPQVCTLPPSRDELTK




LVKGFYPSDIAVEWESNGQ
NQVSLSCAVKGFYPSDIAV




PENNYKTTPPVLDSDGSFFL
EWESNGQPENNYKTTPPVL




YSKLTVDKSRWQQGNVFS
DSDGSFFLVSKLTVDKSRW




CSVMHEALHNHYTQKSLSL
QQGNVFSCSVMHEALHNRF




SPG 
TQKSLSLSPG 




(SEQ ID NO: 881)
(SEQ ID NO: 882)






DGL601
QVQLVQSGAEVKKPGASV
QVQLVESGGGLVQPGGSLR
SSELTQDPAVSVA



RVSCKASGYTFTSYYIHWV
LSCAASGFTFSNYAMSWVR
LGQTVRITCQGDS



RQAPGQGLEWMGIINPSGG
QAPGKGLEWVSAINSDGTS
LSSYYAGWYQQ



STSYAQKFQGRVTMTRDTS
TSYADSVKGQFTISRDNAK
KPGQAPVLVIYG



TTTVYMELSSLRSEDTAVY
NTLYLQMNSLKPEDTAVYY
KNNRPSGIPDRES



YCAKSNWAYAFDIWGQGT
CTKWEGDTDSDYKFKDYW
GSSSEDTASLTIT



MVTVSSASTKGPSVFPLAPS
GQGTQVTVEPKSSDKTHTC
GAQAEDEADYYC



SKSTSGGTAALGCLVKDYF
PPCPAPEAAGAPSVFLFPPK
NSRDSSDNHLVF



PEPVTVSWNSGALTSGVHT
PKDTLMISRTPEVTCVVVD
GGGTKLTVLGQP



FPAVLQSSGLYSLSSVVTVP
VSHEDPEVKFNWYVDGVE
KAAPSVTLFPPSS



SSSLGTQTYICNVNHKPSNT
VHNAKTKPREEQYNSTYRV
EELQANKATLVC



KVDKKVEPKSCDKTHTCPP
VSVLTVLHQDWLNGKEYK
LISDFYPGAVTVA



CPAPEAAGAPSVFLFPPKPK
CKVSNKALPAPIEKTISKAK
WKADSSPVKAGV



DTLMISRTPEVTCVVVDVS
GQPREPQVCTLPPSRDELTK
ETTTPSKQSNNK



HEDPEVKFNWYVDGVEVH
NQVSLSCAVKGFYPSDIAV
YAASSYLSLTPEQ



NAKTKPREEQYNSTYRVVS
EWESNGQPENNYKTTPPVL
WKSHRSYSCQVT



VLTVLHQDWLNGKEYKCK
DSDGSFFLVSKLTVDKSRW
HEGSTVEKTVAP



VSNKALPAPIEKTISKAKGQ
QQGNVFSCSVMHEALHNRF
TECS 



PREPQVYTLPPCRDELTKN
TQKSLSLSPG 
(SEQ ID 



QVSLWCLVKGFYPSDIAVE
(SEQ ID NO: 883)
NO: 884)



WESNGQPENNYKTTPPVLD





SDGSFFLYSKLTVDKSRWQ





QGNVFSCSVMHEALHNHY





TQKSLSLSPG 





(SEQ ID NO: 909)







DGL603
EVQLVESGGGLVQPGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGFTFQNYAMSWLR
LSCAASGFTFSNYAMSWVR




KAPGEGLEWVSVINSGGGS
QAPGKGLEWVSAINSDGTS




TLYADSVKGRFTISRDNAK
TSYADSVKGQFTISRDNAK




NTLYLQMHSLKSEDTAVYF
NTLYLQMNSLKPEDTAVYY




CAKRRDDSTFGSLLYTHRG
CTKWEGDTDSDYKFKDYW




QGTQVTVEPKSSDKTHTCP
GQGTQVTVEPKSSDKTHTC




PCPAPEAAGAPSVFLFPPKP
PPCPAPEAAGAPSVFLFPPK




KDTLMISRTPEVTCVVVDV
PKDTLMISRTPEVTCVVVD




SHEDPEVKFNWYVDGVEV
VSHEDPEVKFNWYVDGVE




HNAKTKPREEQYNSTYRVV
VHNAKTKPREEQYNSTYRV




SVLTVLHQDWLNGKEYKC
VSVLTVLHQDWLNGKEYK




KVSNKALPAPIEKTISKAKG
CKVSNKALPAPIEKTISKAK




QPREPQVYTLPPCRDELTK
GQPREPQVCTLPPSRDELTK




NQVSLWCLVKGFYPSDIAV
NQVSLSCAVKGFYPSDIAV




EWESNGQPENNYKTTPPVL
EWESNGQPENNYKTTPPVL




DSDGSFFLYSKLTVDKSRW
DSDGSFFLVSKLTVDKSRW




QQGNVFSCSVMHEALHNH
QQGNVFSCSVMHEALHNRF




YTQKSLSLSPG 
TQKSLSLSPG 




(SEQ ID NO: 885)
(SEQ ID NO: 886)






DGL604
QVQLVESGGGLVQAGGSLR
QLQLVESGGGLVQAGGSLR




LSCAASRSISSFNEMAWYR
LSCAASGRTFGIHGMGWFR




QAPGEQRELVATIVSTVGFT
QAPGKEREFAAAIRWSDGT




NYADSVKGRFTISRDNAKN
TIHADSVKGRLTISRDNAKN




TVYLQMNSLKAEDTAVYY
TVYLQMNSLKPEDTAVYY




CNARRISTDYWGQGTQVTV
CAATSNPQFGRNWYTVAA




EPKSSDKTHTCPPCPAPEAA
GVEYGYWGQGTQVTVEPK




GAPSVFLFPPKPKDTLMISR
SSDKTHTCPPCPAPEAAGAP




TPEVTCVVVDVSHEDPEVK
SVFLFPPKPKDTLMISRTPE




FNWYVDGVEVHNAKTKPR
VTCVVVDVSHEDPEVKEN




EEQYNSTYRVVSVLTVLHQ
WYVDGVEVHNAKTKPREE




DWLNGKEYKCKVSNKALP
QYNSTYRVVSVLTVLHQD




APIEKTISKAKGQPREPQVY
WLNGKEYKCKVSNKALPA




TLPPCRDELTKNQVSLWCL
PIEKTISKAKGQPREPQVCT




VKGFYPSDIAVEWESNGQP
LPPSRDELTKNQVSLSCAV




ENNYKTTPPVLDSDGSFFLY
KGFYPSDIAVEWESNGQPE




SKLTVDKSRWQQGNVFSCS
NNYKTTPPVLDSDGSFFLVS




VMHEALHNHYTQKSLSLSP
KLTVDKSRWQQGNVFSCS




G 
VMHEALHNRFTQKSLSLSP




(SEQ ID NO: 887)
G 





(SEQ ID NO: 888)






DGL605
QLQLVESGGGLVQPGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGFTFSSYGMSWVR
LSCAASGFTFEPYDMSWFR




QAPGKGLEWVSYISAGGGT
QAPGKGPEWVSAIDKGGG




TTYVDFVKGRFTISRDNAK
AGATYYADSVKGRFTISRD




NMLYLQMNSLKPEDTAVY
NAKKTLYLQMKSLKPEDTA




YCVHAADGSRGQGTQVTV
VYYCAITAGPYSDSTPRVA




EPKSSDKTHTCPPCPAPEAA
YRGEGTQVTVEPKSSDKTH




GAPSVFLFPPKPKDTLMISR
TCPPCPAPEAAGAPSVFLFP




TPEVTCVVVDVSHEDPEVK
PKPKDTLMISRTPEVTCVVV




FNWYVDGVEVHNAKTKPR
DVSHEDPEVKFNWYVDGV




EEQYNSTYRVVSVLTVLHQ
EVHNAKTKPREEQYNSTYR




DWLNGKEYKCKVSNKALP
VVSVLTVLHQDWLNGKEY




APIEKTISKAKGQPREPQVY
KCKVSNKALPAPIEKTISKA




TLPPCRDELTKNQVSLWCL
KGQPREPQVCTLPPSRDELT




VKGFYPSDIAVEWESNGQP
KNQVSLSCAVKGFYPSDIA




ENNYKTTPPVLDSDGSFFLY
VEWESNGQPENNYKTTPPV




SKLTVDKSRWQQGNVFSCS
LDSDGSFFLVSKLTVDKSR




VMHEALHNHYTQKSLSLSP
WQQGNVFSCSVMHEALHN




G 
RFTQKSLSLSPG 




(SEQ ID NO: 890)
(SEQ ID NO: 891)






DGL606
QLQLVESGGGLVQPGGSLR
QVQLEESGGGLVQAGGSLR




LSCAASGFTFSSYGMSWVR
LSCAASGRTFSSYVVGWFR




QAPGKGLEWVSYISAGGGT
QAPGKEREFVGRISWSGAR




TTYVDFVKGRFTISRDNAK
TYYADSVEGRFTISRDNAK




NMLYLQMNSLKPEDTAVY
NTVYLQMNSLKPEDTAVY




YCVHAADGSRGQGTQVTV
YCAADLKWEVLLSEHYEY




EPKSSDKTHTCPPCPAPEAA
WGQGTQVTVEPKSSDKTHT




GAPSVFLFPPKPKDTLMISR
CPPCPAPEAAGAPSVFLFPP




TPEVTCVVVDVSHEDPEVK
KPKDTLMISRTPEVTCVVV




FNWYVDGVEVHNAKTKPR
DVSHEDPEVKFNWYVDGV




EEQYNSTYRVVSVLTVLHQ
EVHNAKTKPREEQYNSTYR




DWLNGKEYKCKVSNKALP
VVSVLTVLHQDWLNGKEY




APIEKTISKAKGQPREPQVY
KCKVSNKALPAPIEKTISKA




TLPPCRDELTKNQVSLWCL
KGQPREPQVCTLPPSRDELT




VKGFYPSDIAVEWESNGQP
KNQVSLSCAVKGFYPSDIA




ENNYKTTPPVLDSDGSFFLY
VEWESNGQPENNYKTTPPV




SKLTVDKSRWQQGNVFSCS
LDSDGSFFLVSKLTVDKSR




VMHEALHNHYTQKSLSLSP
WQQGNVFSCSVMHEALHN




G 
RFTQKSLSLSPG 




(SEQ ID NO: 892)
(SEQ ID NO: 893)






DGL607
QVQLVESGGGLMQAGGSL
QVQLVESGGGLVQAGGSL




RLSCALSRGIFSAYAMGWF
KLSCAASGGTFSSYAMGWF




RQVQGKEREFVSGISRSGST
RQAPGKEREFVAVIMRSGD




TDYVDTAKGRFTISRDNAR
TTAYVDSVKGRFTVSRDNA




DTVYLQMNSLKPEDTAVY
KNTVYLQMNSLKPEDAAV




YCAAVTGTFPSSTYHNANA
YFCAAGRPVTRTYYHTYTY




YHHWGQGTQVTVEPKSSD
PHDYDYWGQGTQVTVEPK




KTHTCPPCPAPEAAGAPSVF
SSDKTHTCPPCPAPEAAGAP




LFPPKPKDTLMISRTPEVTC
SVFLFPPKPKDTLMISRTPE




VVVDVSHEDPEVKFNWYV
VTCVVVDVSHEDPEVKEN




DGVEVHNAKTKPREEQYNS
WYVDGVEVHNAKTKPREE




TYRVVSVLTVLHQDWLNG
QYNSTYRVVSVLTVLHQD




KEYKCKVSNKALPAPIEKTI
WLNGKEYKCKVSNKALPA




SKAKGQPREPQVYTLPPCR
PIEKTISKAKGQPREPQVCT




DELTKNQVSLWCLVKGFYP
LPPSRDELTKNQVSLSCAV




SDIAVEWESNGQPENNYKT
KGFYPSDIAVEWESNGQPE




TPPVLDSDGSFFLYSKLTVD
NNYKTTPPVLDSDGSFFLVS




KSRWQQGNVFSCSVMHEA
KLTVDKSRWQQGNVFSCS




LHNHYTQKSLSLSPG 
VMHEALHNRFTQKSLSLSP




(SEQ ID NO: 894)
G 





(SEQ ID NO: 895)






DGL617
EVQLVESGGGLVQPGGSLR
QLQLVESGGGLVQAGGSLR




LSCAASGFTLDYYAIGWFR
LSCAASGLTFSGYTVGWFR




QAPGKEREGVSCISSSDRST
QAPGKEREFVAAIQWSSAY




WYADSVKGRFTISRDNAKN
TYSEFVKGRFTISRDNAKNT




TVYLQMHSLKPEDTAVYY
VYLQMSSLKPEDTAVYYCA




CATPCYSDYDPEGYEYDY
AQRSRTSWYASTAEAYDY




WGQGTQVTVEPKSSDKTHT
WGQGTQVTVEPKSSDKTHT




CPPCPAPEAAGAPSVFLFPP
CPPCPAPEAAGAPSVFLFPP




KPKDTLMISRTPEVTCVVV
KPKDTLMISRTPEVTCVVV




DVSHEDPEVKFNWYVDGV
DVSHEDPEVKFNWYVDGV




EVHNAKTKPREEQYNSTYR
EVHNAKTKPREEQYNSTYR




VVSVLTVLHQDWLNGKEY
VVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKA
KCKVSNKALPAPIEKTISKA




KGQPREPQVYTLPPCRDEL
KGQPREPQVCTLPPSRDELT




TKNQVSLWCLVKGFYPSDI
KNQVSLSCAVKGFYPSDIA




AVEWESNGQPENNYKTTPP
VEWESNGQPENNYKTTPPV




VLDSDGSFFLYSKLTVDKS
LDSDGSFFLVSKLTVDKSR




RWQQGNVFSCSVMHEALH
WQQGNVFSCSVMHEALHN




NHYTQKSLSLSPG 
RFTQKSLSLSPG 




(SEQ ID NO: 896)
(SEQ ID NO: 897)






DGL557
QVQLQESGGGLVQAGGSLR
QVQLVESGGGLVRPGGSLR




LSCAASGTIFSIDVMAYYRQ
LSCAASGFTFSSNGMHWFR




APGKQRELVAAISSGGSLN
QAPGKGLEWVSSIGSGGTSI




YRDSVKGRFTISRDNAKNA
YYADSVKGRFTISRDNAKN




VYLQMNSLKPDDTAVYYC
TLYLQMNSLKSDDTAVYY




YANIRTSPVTTRPMGNYWG
CSKEVTGATRGQGTQVTVE




QGTQVTVEPKSSDKTHTCP
PKSSDKTHTCPPCPAPEAAG




PCPAPEAAGAPSVFLFPPKP
APSVFLFPPKPKDTLMISRT




KDTLMISRTPEVTCVVVDV
PEVTCVVVDVSHEDPEVKF




SHEDPEVKFNWYVDGVEV
NWYVDGVEVHNAKTKPRE




HNAKTKPREEQYNSTYRVV
EQYNSTYRVVSVLTVLHQD




SVLTVLHQDWLNGKEYKC
WLNGKEYKCKVSNKALPA




KVSNKALPAPIEKTISKAKG
PIEKTISKAKGQPREPQVCT




QPREPQVYTLPPCRDELTK
LPPSRDELTKNQVSLSCAV




NQVSLWCLVKGFYPSDIAV
KGFYPSDIAVEWESNGQPE




EWESNGQPENNYKTTPPVL
NNYKTTPPVLDSDGSFFLVS




DSDGSFFLYSKLTVDKSRW
KLTVDKSRWQQGNVFSCS




QQGNVFSCSVMHEALHNH
VMHEALHNRFTQKSLSLSP




YTQKSLSLSPG 
G 




(SEQ ID NO: 898)
(SEQ ID NO: 899)






DGL559
QVQLQESGGGLVQAGGSLR
QVQLVESGGGLVQPGGSLR




LSCAASGTIFSIDVMAYYRQ
LSCAASGFTFSSKAMHWFR




APGKQRELVAAISSGGSLN
QAPGKGLEWVSSINSGGAIT




YRDSVKGRFTISRDNAKNA
YYKDSVKGRFTVSRDNAK




VYLQMNSLKPDDTAVYYC
NILYLEMNSLKPEDTALYY




YANIRTSPVTTRPMGNYWG
CATDTDGRTRGQGTQVTVE




QGTQVTVEPKSSDKTHTCP
PKSSDKTHTCPPCPAPEAAG




PCPAPEAAGAPSVFLFPPKP
APSVFLFPPKPKDTLMISRT




KDTLMISRTPEVTCVVVDV
PEVTCVVVDVSHEDPEVKF




SHEDPEVKFNWYVDGVEV
NWYVDGVEVHNAKTKPRE




HNAKTKPREEQYNSTYRVV
EQYNSTYRVVSVLTVLHQD




SVLTVLHQDWLNGKEYKC
WLNGKEYKCKVSNKALPA




KVSNKALPAPIEKTISKAKG
PIEKTISKAKGQPREPQVCT




QPREPQVYTLPPCRDELTK
LPPSRDELTKNQVSLSCAV




NQVSLWCLVKGFYPSDIAV
KGFYPSDIAVEWESNGQPE




EWESNGQPENNYKTTPPVL
NNYKTTPPVLDSDGSFFLVS




DSDGSFFLYSKLTVDKSRW
KLTVDKSRWQQGNVFSCS




QQGNVFSCSVMHEALHNH
VMHEALHNRFTQKSLSLSP




YTQKSLSLSPG 
G 




(SEQ ID NO: 900)
(SEQ ID NO: 901)






DGL562
QVQLQESGGGLVQAGGSLR
QVQLVESGGGLVQAGGSLR




LSCAASGTIFSIDVMAYYRQ
LSCAASGRTFSRYRMGWFR




APGKQRELVAAISSGGSLN
QAPGKEREFVAAITKSGAT




YRDSVKGRFTISRDNAKNA
TYDADSVKGRFTISRDNAK




VYLQMNSLKPDDTAVYYC
NTLYLQMNSLKPEDTAVYY




YANIRTSPVTTRPMGNYWG
CAASYHSNWWPKNADEYA




QGTQVTVEPKSSDKTHTCP
YWGQGTQVTVEPKSSDKT




PCPAPEAAGAPSVFLFPPKP
HTCPPCPAPEAAGAPSVFLF




KDTLMISRTPEVTCVVVDV
PPKPKDTLMISRTPEVTCVV




SHEDPEVKFNWYVDGVEV
VDVSHEDPEVKFNWYVDG




HNAKTKPREEQYNSTYRVV
VEVHNAKTKPREEQYNSTY




SVLTVLHQDWLNGKEYKC
RVVSVLTVLHQDWLNGKE




KVSNKALPAPIEKTISKAKG
YKCKVSNKALPAPIEKTISK




QPREPQVYTLPPCRDELTK
AKGQPREPQVCTLPPSRDEL




NQVSLWCLVKGFYPSDIAV
TKNQVSLSCAVKGFYPSDI




EWESNGQPENNYKTTPPVL
AVEWESNGQPENNYKTTPP




DSDGSFFLYSKLTVDKSRW
VLDSDGSFFLVSKLTVDKS




QQGNVFSCSVMHEALHNH
RWQQGNVFSCSVMHEALH




YTQKSLSLSPG 
NRFTQKSLSLSPG 




(SEQ ID NO: 902)
(SEQ ID NO: 903)






DGL577
QVQLVESGGGLVQAGGSLR
QVQLEESGGGLVQAGGSLR




LSCAASRSISSFNEMAWYR
LSCAASGRTFSSYVVGWFR




QAPGEQRELVATIVSTVGFT
QAPGKEREFVGRISWSGAR




NYADSVKGRFTISRDNAKN
TYYADSVEGRFTISRDNAK




TVYLQMNSLKAEDTAVYY
NTVYLQMNSLKPEDTAVY




CNARRISTDYWGQGTQVTV
YCAADLKWEVLLSEHYEY




EPKSSDKTHTCPPCPAPEAA
WGQGTQVTVEPKSSDKTHT




GAPSVFLFPPKPKDTLMISR
CPPCPAPEAAGAPSVFLFPP




TPEVTCVVVDVSHEDPEVK
KPKDTLMISRTPEVTCVVV




FNWYVDGVEVHNAKTKPR
DVSHEDPEVKFNWYVDGV




EEQYNSTYRVVSVLTVLHQ
EVHNAKTKPREEQYNSTYR




DWLNGKEYKCKVSNKALP
VVSVLTVLHQDWLNGKEY




APIEKTISKAKGQPREPQVY
KCKVSNKALPAPIEKTISKA




TLPPCRDELTKNQVSLWCL
KGQPREPQVCTLPPSRDELT




VKGFYPSDIAVEWESNGQP
KNQVSLSCAVKGFYPSDIA




ENNYKTTPPVLDSDGSFFLY
VEWESNGQPENNYKTTPPV




SKLTVDKSRWQQGNVFSCS
LDSDGSFFLVSKLTVDKSR




VMHEALHNHYTQKSLSLSP
WQQGNVFSCSVMHEALHN




G 
RFTQKSLSLSP 




(SEQ ID NO: 904)
(SEQ ID NO: 905)






DGL616
EVQLVESGGGLVQAGGSLR
QLQLVESGGGLVQAGGSLR




LSCAASGLTFRNYAMAWF
LSCAASGLTFSGYTVGWFR




RQAPGKEREFVAGITWGGG
QAPGKEREFVAAIQWSSAY




LTHYVDSVKGRFTISRDNG
TYSEFVKGRFTISRDNAKNT




KNTVYLQMNSLKSEDTAV
VYLQMSSLKPEDTAVYYCA




YYCAGKTQGSTWYHLTPD
AQRSRTSWYASTAEAYDY




GYDYWGQGTQVTVEPKSS
WGQGTQVTVEPKSSDKTHT




DKTHTCPPCPAPEAAGAPS
CPPCPAPEAAGAPSVFLFPP




VFLFPPKPKDTLMISRTPEV
KPKDTLMISRTPEVTCVVV




TCVVVDVSHEDPEVKFNW
DVSHEDPEVKFNWYVDGV




YVDGVEVHNAKTKPREEQ
EVHNAKTKPREEQYNSTYR




YNSTYRVVSVLTVLHQDW
VVSVLTVLHQDWLNGKEY




LNGKEYKCKVSNKALPAPI
KCKVSNKALPAPIEKTISKA




EKTISKAKGQPREPQVYTLP
KGQPREPQVCTLPPSRDELT




PCRDELTKNQVSLWCLVKG
KNQVSLSCAVKGFYPSDIA




FYPSDIAVEWESNGQPENN
VEWESNGQPENNYKTTPPV




YKTTPPVLDSDGSFFLYSKL
LDSDGSFFLVSKLTVDKSR




TVDKSRWQQGNVFSCSVM
WQQGNVFSCSVMHEALHN




HEALHNHYTQKSLSLSPG
RFTQKSLSLSPG 




(SEQ ID NO: 906)
(SEQ ID NO: 907)









In some embodiments, the multi-specific binding protein is a bivalent binding protein (e.g., comprises two antigen binding domains). In some embodiments, the multi-specific binding protein comprises more than two antigen binding domains. In some embodiments, the multi-specific binding protein is a trivalent binding protein (e.g., comprises three antigen binding domains). In some embodiments, the multi-specific binding protein is a tetravalent binding protein (e.g., comprises four antigen binding domains). In some embodiments, the at least first and second binding domains are two different polypeptides. In some embodiments, the at least first and second binding domains are part of the same polypeptide.


In certain exemplary embodiments, the multi-specific binding proteins of the disclosure are agonistic to the IL-12R signaling pathway, i.e., they are not antagonistic to the IL-12R pathway. In some embodiments, agonism may be measured using an IL-12 potency assay (e.g., HEK-Blue™ IL-12 potency assay (InVivogen)). In this assay, HEK-Blue™ IL-12 cells are generated by stably transfecting HEK293-derived cells with the genes encoding IL-12Rβ1 and IL-12Rβ2.


The HEK-Blue™ IL-12 cells also express a STAT4-inducible secreted embryonic alkaline phosphatase (SEAP) reporter gene. The binding of bispecific antibodies to the heterodimeric IL-12 receptor on the surface of these cells triggers a signaling cascade leading to the activation of STAT4 and the subsequent production of SEAP which can be quantified.


As used herein, the term “inducing proximity” between IL-12Rβ1 and IL-12Rβ2 refers to bringing IL-12Rβ 1 and IL-12Rβ2 together such that the IL-12Rβ 1/IL-12Rβ2 signaling cascade is stimulated. In certain embodiments, the proximity induced by the multispecific binding proteins of the disclosure is the same or similar to the proximity induced when IL-12 brings IL-12Rβ1 and IL-12Rβ2 together. Stimulation of the IL-12Rβ 1/IL-12Rβ2 signaling cascade may be detected through the above recited HEK-Blue™ IL-12 potency assay.


Alternatively, stimulation of the IL-12Rβ1/IL-12Rβ2 signaling cascade may be detected through any of the downstream results of said signaling cascade, including, but not limited to, detection of phosphorylated STAT4, expression of IFN-γ, or expression of any one or more of CXCR3, IL-12Rβ 1, CCL3, and CCL4.


Ligand Blocking Activity

In certain aspects, the multi-specific binding proteins of the disclosure are capable of binding specifically to IL-12R β1 and IL-12R β2 and induce IL-12 receptor signaling in the presence of IL-12. The ability to induce IL-12 receptor signaling in the presence of IL-12 has therapeutic advantages, in that the multi-specific binding protein may retain activity despite IL-12 in the subject.


Thus, in certain embodiments, the multi-specific binding proteins of the disclosure are capable of inducing IL-12 receptor signaling in the presence of IL-12. In certain embodiments, the induction of IL-12 receptor signaling is detected via a surface plasmon resonance (SPR) assay.


In certain embodiments, the SPR assay comprises the following steps: 1) contacting the first binding moiety and/or the second binding moiety with an extracellular domain (ECD) of one or both of IL-12R β1 and IL-12R β2 and isolated IL-12; and 2) detecting binding of the first binding moiety and/or the second binding moiety with the ECD of one or both of IL-12R β1 and IL-12R β2, wherein detection of binding indicates that the multi-specific binding protein is capable of inducing IL-12 receptor signaling in the presence of IL-12.


In certain embodiments, the multi-specific binding proteins of the disclosure are capable of binding specifically to human IL-12Rβ1 subunit and human IL-12Rβ2 subunit in the presence of IL-12. In certain embodiments, binding specifically to human IL-12Rβ1 subunit and human IL-12Rβ2 subunit is detected via a surface plasmon resonance (SPR) assay.


In certain embodiments, the SPR assay comprises the following steps: 1) contacting the first binding moiety and/or the second binding moiety with an extracellular domain (ECD) of one or both of IL-12R β1 and IL-12R β2 and isolated IL-12; and 2) detecting binding of the first binding moiety and/or the second binding moiety with the ECD of one or both of IL-12R β1 and IL-12R β2, wherein detection of binding indicates that the multi-specific binding protein is capable of binding specifically to human IL-12Rβ1 subunit and human IL-12Rβ2 subunit in the presence of IL-12.


The ligand blocking activity of the multi-specific binding proteins against IL-12Rβ 1 or IL-12Rβ2 can be characterized using procedures well known in the art including but not limited to the following: competition ELISA assay, ligand binding assay with radio-labeled ligand (e.g. saturation binding, Scatchard plot, dose-dependent competition binding assay), ligand binding assay with fluorescently labeled ligand (e.g., fluorescence polarization (FP), fluorescence resonance energy transfer (FRET)), surface plasmon resonance (SPR) ligand competition assay with instrumentation commercially available (e.g., Biocore 8K from Cytiva Life Sciences, Carterra LSA from Carterra Bio), liquid phase ligand binding assay (e.g., real-time polymerase chain reaction (RT-qPCR), and immunoprecipitation), and solid phase ligand binding assays (e.g., multiwell plate assays, on-cell ligand binding assays, on-bead ligand binding assays, on-column ligand binding assays, and filter assays).


Multispecific Binding Protein Formats

The multi-specific binding proteins of the disclosure may employ at least one modified hinge region. The modified hinge region serves as a linker to connect different domains of the multi-specific binding protein. In certain embodiments, the modified hinge region links a first binding moiety to a second binding moiety. In certain embodiments, the modified hinge region links a first variable heavy chain domain (VH1) to a second variable heavy chain domain (VH2), and/or the modified hinge region links a first variable light chain domain (VL1) linked to a second variable light chain domain (VL2). In another embodiment, the modified hinge region links a first scFv to a second scFv. In certain embodiments, the modified hinge region comprises; i) an upper hinge region of up to 7 amino acids in length or is absent; and ii) a lower hinge region. In certain embodiments, the modified hinge region comprises or consists of an amino acid sequence of PLAP(SEQ ID NO: 911) or PAPNLLGGP(SEQ ID NO:915).


The multi-specific binding proteins have greater agonist activity compared to a multi-specific binding protein that lacks at least one modified hinge region. Agonist activity may be measured using a specific receptor potency assay (e.g., HEK-Blue™ IL-12 cells from InvivoGen that stably express human IL-12 receptor genes and the genes of the IL-12 signaling pathway including a STAT4-inducible SEAP reporter gene, or Pathhunter U2OS dimerization assay (DiscoverX) Potency assays (e.g., Pathhunter) involve a cell line (e.g., U2OS) that expresses the target receptors of interest). The binding of the multi-specific binding proteins to the receptors triggers a signaling cascade leading to the expression of a reporter gene which can be quantified.


In certain embodiments, the multispecific binding protein comprises a dual variable domain format. “Dual variable domain” (“DVD”) binding proteins of the disclosure comprise two or more antigen binding sites and are tetravalent or multivalent binding proteins. The DVDs of the disclosure are multispecific, i.e., capable of binding IL-12Rβ1 and IL-12Rβ2. A DVD binding protein comprising two heavy chain DVD polypeptides and two light chain DVD polypeptides is referred to as a “DVD immunoglobulin” or “DVD-Ig”. Each half of a DVD-Ig comprises a heavy chain DVD polypeptide and a light chain DVD polypeptide, and two or more antigen binding sites. Each binding site comprises a heavy chain variable domain and a light chain variable domain with a total of six CDRs involved in antigen binding per antigen binding site.


A description of the design, expression, and characterization of DVD-Ig molecules is provided in PCT Publication No. WO 2007/024715; U.S. Pat. No. 7,612,181; and Wu et al., Nature Biotechnol., 25: 1290-1297 (2007). An example of such DVD-Ig molecules comprises a heavy chain that comprises the structural formula VD1-(X1)n-VD2-C-(X2)n, wherein VD1 is a first heavy chain variable domain, VD2 is a second heavy chain variable domain, C is a heavy chain constant domain, X1 is a linker with the proviso that it is not CH1, X2 is an Fc region, and n is 0 or 1; and a light chain that comprises the structural formula VD1-(X1)n-VD2-C-(X2)n, wherein VD1 is a first light chain variable domain, VD2 is a second light chain variable domain, C is a light chain constant domain, X1 is a linker with the proviso that it is not CH1, and X2 does not comprise an Fc region; and n is 0 or 1. Such a DVD-Ig may comprise two such heavy chains and two such light chains, wherein each chain comprises variable domains linked in tandem without an intervening constant region between variable regions, wherein a heavy chain and a light chain associate to form tandem functional antigen binding sites, and a pair of heavy and light chains may associate with another pair of heavy and light chains to form a tetrameric binding protein with four functional antigen binding sites. In another example, a DVD-Ig molecule may comprise heavy and light chains that each comprise three variable domains (VD1, VD2, VD3) linked in tandem without an intervening constant region between variable domains, wherein a pair of heavy and light chains may associate to form three antigen binding sites, and wherein a pair of heavy and light chains may associate with another pair of heavy and light chains to form a tetrameric binding protein with six antigen binding sites.


In an embodiment, the disclosure provides a binding protein comprising first and second polypeptide chains, wherein said first polypeptide chain comprises a first VD1-(X1)n-VD2-C-(X2)n, wherein: VD1 is a first heavy chain variable domain; VD2 is a second heavy chain variable domain; C is a heavy chain constant domain; X1 is a linker with the proviso that it is not CH1; X2 is an Fc region; and n is independently 0 or 1; and wherein said second polypeptide chain comprises a second VD1-(X1)n-VD2-C-(X2)n, wherein: VD1 is a first light chain variable domain; VD2 is a second light chain variable domain; C is a light chain constant domain; X1 is a linker with the proviso that it is not CH1; X2 does not comprise an Fc region; and n is independently 0 or 1.


With respect to constructing DVD-Ig or other binding protein molecules, a “linker” is used to denote a single amino acid or a polypeptide (“linker polypeptide”) comprising two or more amino acid residues joined by peptide bonds and used to link one or more antigen binding portions. Such linker polypeptides are well known in the art (see, e.g., Holliger et al., Proc. Natl. Acad. Sci. USA, 90: 6444-6448 (1993); Poljak, R. J., Structure, 2: 1121-1123 (1994)). Flexible linkers may be employed, which are generally composed of small, non-polar (e.g. Gly) or polar (e.g. Ser or Thr) amino acids. Exemplary flexible linkers include, but are not limited to, GGGGSG (SEQ ID NO: 916), GGSGG (SEQ ID NO: 917), GGGGSGGGGS (SEQ ID NO: 918), GGSGGGGSG (SEQ ID NO: 919), GGSGGGGSGS (SEQ ID NO: 920), GGSGGGGSGGGGS (SEQ ID NO: 921), GGGGSGGGGSGGGG (SEQ ID NO: 922), GGGGSGGGGSGGGGS (SEQ ID NO: 923), and RADAAAAGGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 924).


Alternatively, rigid linkers may be employed to join one or more antigen binding proteins. Said rigid linkers may allow for the maintenance of fixed distances between linked antigen binding proteins, thereby promoting the activity of each individual protein. Rigid linkers may employ one of more proline amino acids to confer the rigidity. Exemplary rigid linkers include, but are not limited to, ASTKGP (SEQ ID NO: 925), ASTKGPSVFPLAP (SEQ ID NO: 926), TVAAP (SEQ ID NO: 927), RTVAAP (SEQ ID NO: 928), TVAAPSVFIFPP (SEQ ID NO: 929), RTVAAPSVFIFPP (SEQ ID NO: 930), AKTTPKLEEGEFSEAR (SEQ ID NO: 931), AKTTPKLEEGEFSEARV (SEQ ID NO: 932), AKTTPKLGG (SEQ ID NO: 933), SAKTTPKLGG (SEQ ID NO: 934), SAKTTP (SEQ ID NO: 935), RADAAP (SEQ ID NO: 936), RADAAPTVS (SEQ ID NO: 937), RADAAAAGGPGS (SEQ ID NO: 938), SAKTTPKLEEGEFSEARV (SEQ ID NO: 939), ADAAP (SEQ ID NO: 940), ADAAPTVSIFPP (SEQ ID NO: 941), QPKAAP (SEQ ID NO: 942), QPKAAPSVTLFPP (SEQ ID NO: 943), AKTTPP (SEQ ID NO: 944), AKTTPPSVTPLAP (SEQ ID NO: 945), AKTTAP (SEQ ID NO: 946), AKTTAPSVYPLAP (SEQ ID NO: 947), GENKVEYAPALMALS (SEQ ID NO: 948), GPAKELTPLKEAKVS (SEQ ID NO: 949), and GHEAAAVMQVQYPAS (SEQ ID NO: 950).


In certain embodiments, the linker comprises a modified hinge region as described herein.


In certain embodiments, the linker comprises or consists of PLAP(SEQ ID NO: 911, PAPNLLGGP(SEQ ID NO:915), PLAPDKTHT(SEQ ID NO: 910), EKSYGPP(SEQ ID NO: 913), or DKTHT(SEQ ID NO: 912).


In certain embodiments, the multispecific binding protein comprises a first and a second polypeptide chain, wherein:

    • said first polypeptide chain comprises VH1-(HX1)n-VH2-C-(HX2)n, wherein:
    • VH1 is a first heavy chain variable domain; VH2 is a second heavy chain variable domain; C is a heavy chain constant domain; HX1 is a linker; HX2 is an Fc region; and n is independently 0 or 1; and said second polypeptide chain comprises VL1-(LX1)n-VL2-C-(LX2)n, wherein:
    • VL1 is a first light chain variable domain; VL2 is a second light chain variable domain; C is a light chain constant domain; LX1 is a linker; LX2 does not comprise an Fc region; and n is independently 0 or 1.


In certain embodiments, VH1 binds specifically to human IL-12Rβ1 and VH2 binds specifically to human IL-12Rβ2.


In certain embodiments, VL1 binds specifically to human IL-12Rβ1 and VL2 binds specifically to human IL-12Rβ2.


In certain embodiments, VH1 binds specifically to human IL-12Rβ2 and VH2 binds specifically to human IL-12RP 1.


In certain embodiments, VL1 binds specifically to human IL-12Rβ2 and VL2 binds specifically to human IL-12RP 1.


In certain embodiments, linker HX1 comprises an amino acid sequence of PLAP(SEQ ID NO: 911 or PAPNLLGGP(SEQ ID NO:915).


In certain embodiments, linker LX1 comprises an amino acid sequence of PLAP(SEQ ID NO: 911 or PAPNLLGGP(SEQ ID NO:915).


In certain embodiments, linker HX1 comprises an amino acid sequence of PLAP(SEQ ID NO: 911 and linker LX1 comprises an amino acid sequence of PLAP(SEQ ID NO: 911 or PAPNLLGGP(SEQ ID NO:915).


In certain embodiments, the multispecific binding protein comprises two polypeptide chains of VH1-(HX1)n-VH2-C-(HX2)n and two polypeptide chains of VL1-(LX1)n-VL2-C-(LX2)n.


In certain embodiments, for (HX1)n, n is 1 and for (HX2)n, n is 1.


In certain embodiments, for (LX1)n, n is 1 and for (LX2)n, n is 0.


In certain embodiments, the multispecific binding protein comprises a first and a second polypeptide chain, wherein:

    • said first polypeptide chain comprises VH1-(HX1)n-VH2-C-Fc, wherein:
    • VH1 is a first heavy chain variable domain; VH2 is a second heavy chain variable domain; C is a heavy chain constant domain; HX1 is a linker; Fc is an Fc region; and n is independently 0 or 1; and
    • said second polypeptide chain comprises VL1-(LX1)n-VL2-C, wherein:
    • VL1 is a first light chain variable domain; VL2 is a second light chain variable domain; C is a light chain constant domain; LX1 is a linker; and n is independently 0 or 1.


Non-DVD-Ig Formats

In another aspect of the disclosure, the multispecific binding protein comprises from N-terminus to C-terminus:

    • ai) a first polypeptide chain comprising a first antigen binding domain, a first linker (e.g., a modified hinge region), and a first constant region; and
    • bi) a second polypeptide chain comprising a second antigen binding domain, a second linker (e.g., a modified hinge region), and a second constant region;
    • aii) a first polypeptide chain comprising a second antigen binding domain, a first antigen binding domain, a first linker (e.g., a modified hinge region), and a first constant region; and
    • bii) a second polypeptide chain comprising a second linker (e.g., a modified hinge region) or the absence of a linker, and a second constant region;
    • aiii) a first polypeptide chain comprising a first linker (e.g., a modified hinge region) or the absence of a linker, and a first constant region; and
    • biii) a second polypeptide chain comprising a second antigen binding domain, a first antigen binding domain, a second linker (e.g., a modified hinge region), and a second constant region; or
    • aiv) a first polypeptide chain comprising a first antigen binding domain, an optional first linker (e.g., a modified hinge region), a second antigen binding domain, an optional second linker (e.g., a modified hinge region), and a first constant region; and
    • biv) a second polypeptide chain comprising a third antigen binding domain, an optional third linker (e.g., a modified hinge region), a fourth antigen binding domain, an optional fourth linker (e.g., a modified hinge region), and a second constant region.


In certain embodiments, the first antigen binding domain comprises an scFv, VHH, Fab, F(ab′)2, or a single domain antibody.


In certain embodiments, the second antigen binding domain comprises an scFv, VHH, Fab, F(ab′)2, or a single domain antibody.


In certain embodiments, the third antigen binding domain comprises an scFv, VHH, Fab, F(ab′)2, or a single domain antibody.


In certain embodiments, the fourth antigen binding domain comprises an scFv, VHH, Fab, F(ab′)2, or a single domain antibody.


In certain embodiments, any one or more of the first antigen binding domain, second antigen binding domain, third antigen binding domain, and fourth antigen binding domain comprise an scFv, VHH, Fab, F(ab′)2, or a single domain antibody.


In certain embodiments, the first antigen binding domain, second antigen binding domain, third antigen binding domain, and fourth antigen binding domain each comprise an scFv.


In some embodiments, the upper hinge region comprises an amino acid sequence derived from an upper hinge region of a human IgG antibody. In some embodiments, the IgG antibody is selected from IgG1, IgG2, IgG3, and IgG4. In some embodiments, the IgG antibody is IgG1.


The Fc polypeptides employed in the multi-specific binding proteins as disclosed herein generally comprise a CH2 domain and a CH3 domain, wherein the C-terminus of the CH2 domain is linked (directly or indirectly) to the N-terminus of the CH3 domain. Any naturally occurring or variant CH2 and/or CH3 domain can be used. For example, in certain embodiments, the CH2 and/or CH3 domain is a naturally occurring CH2 or CH3 domain from an IgG1, IgG2, IgG3, IgG4, IgA1, or IgA2 antibody heavy chain, e.g., a human IgG1, IgG2, IgG3, IgG4, IgA1, or IgA2 antibody heavy chain. The CH2 and CH3 domains can be from the same or different antibody heavy chains. In certain embodiments, the Fc polypeptide comprises a CH2 and CH3 domain-containing portion from a single antibody heavy chain. In certain embodiments, the CH2 and/or CH3 domain is a variant of a naturally occurring CH2 or CH3 domain, respectively. In certain embodiments, the CH2 and/or CH3 domain is a variant comprising one or more amino acid insertions, deletion, substitutions, or modifications relative to a naturally occurring CH2 or CH3 domain, respectively. In certain embodiments, the CH2 and/or CH3 domain is a chimera of one or more CH2 or CH3 domains, respectively. In certain embodiments, the CH2 domain comprises amino acid positions 231-340 of a naturally occurring hinge region (e.g., human IgG1), according to the EU index. In certain embodiments, the CH3 domain comprises amino acid positions 341-447 of a naturally occurring hinge region (e.g., human IgG1), according to the EU index.


In certain embodiments, the Fc polypeptides further comprise a hinge region, wherein the C-terminus of hinge region is linked (directly or indirectly) to the N-terminus of the CH2 domain. For example, in certain embodiments, the hinge region is a naturally occurring hinge region from an IgG1, IgG2, IgG3, IgG4, IgA1, or IgA2 antibody heavy chain, e.g., a human IgG1, IgG2, IgG3, IgG4, IgA1, or IgA2 antibody heavy chain. The hinge region can be from the same or different antibody heavy chain than the CH2 and/or CH3 domains. In certain embodiments, the hinge region is a variant comprising one or more amino acid insertions, deletion, substitutions, or modifications relative to a naturally occurring hinge region. In certain embodiments, the hinge region is a chimera of one or more hinge regions. In certain embodiments, the hinge region comprises amino acid positions 226-229 of a naturally occurring hinge region (e.g., human IgG1), according to the EU index. In certain embodiments, the hinge region comprises amino acid positions 216-230 of a naturally occurring hinge region (e.g., human IgG1), according to the EU index. In certain embodiments, the hinge region comprises amino acid positions 216-230 of a naturally occurring hinge region (e.g., human IgG1), according to the EU index. In certain embodiments, the hinge region is a variant IgG4 hinge region comprising a serine (S) at amino acid position 228, according to the EU index.


In some embodiments, the multi-specific binding protein further comprises one or more modified hinge regions. In some embodiments, the one or more modified hinges comprises an upper hinge region of up to 7 amino acids in length or is absent; and a middle hinge region and a lower hinge region, wherein the lower hinge region is linked to the N-terminus of a heavy chain constant region. In some embodiments, the upper hinge region of the first and the second modified hinge regions are the same sequence. In some embodiments, the upper hinge region of the first and the second modified hinge regions are different sequences.


In certain embodiments, the Fc polypeptides further comprise a CH1 domain, wherein the C-terminus of CH1 domain is linked (directly or indirectly) to the N-terminus of the hinge region. For example, in certain embodiments, the CH1 domain is a naturally occurring CH1 domain from an IgG1, IgG2, IgG3, IgG4, IgA1, or IgA2 antibody heavy chain, e.g., a human IgG1, IgG2, IgG3, IgG4, IgA1, or IgA2 antibody heavy chain. The CH1 domain can be from the same or different antibody heavy chain than the hinge region, CH2 domain and/or CH3 domain. In certain embodiments, the CH1 domain is a variant comprising one or more amino acid insertions, deletions, substitutions, or modifications relative to a naturally occurring CH1 domain. In certain embodiments, the CH1 domain is a chimera of one or more CH1 domain. In certain embodiments, the CH1 domain comprises amino acid positions 118-215 of a naturally occurring hinge region (e.g., human IgG1), according to the EU index.


In certain embodiment, the Fc polypeptide lacks a CH1 domain or comprises mutations in a CH1 domain or heavy chain variable domain that prevent association of the heavy chain with an antibody light chain. In certain embodiments, the antibody heavy chain lacks a portion of a hinge region.


Heterodimerization Motifs

In certain exemplary embodiments, the first and the second Fc domains are further engineered to enhance heterodimerization of the IL-12Rβ1 and IL-12Rβ2 binding domains and minimize the effects of incorrect chain pairing (i.e., pairing of IL-12Rβ1 binding domains or identical IL-12Rβ2 domains).


Any art-recognized approach that addresses the problem of incorrect chain pairing can be employed to improve desired multi-specific antibody production. For instance, US2010/0254989 A1 describes the construction of bispecific cMet-ErbB1 antibodies, where the VH and VL of the individual antibodies are fused genetically via a GlySer linker. For bispecific antibodies including an Fc domain, mutations may be introduced into the Fc to promote the correct heterodimerization of the Fc portion. Several such approaches are reviewed in Klein et al. (mAbs (2012) 4:6, 1-11), the contents of which are incorporated herein by reference in their entirety.


In certain embodiments, the IL-12Rβ 1 and IL-12Rβ2 binding specificities of the multi-specific antibody are heterodimerized through knobs-into-holes (KiH) pairing of Fc domains. This dimerization technique utilizes “protuberances” or “knobs” with “cavities” or “holes” engineered into the interface of CH3 domains. Where a suitably positioned and dimensioned knob or hole exists at the interface of either the first or second CH3 domain, it is only necessary to engineer a corresponding hole or knob, respectively, at the adjacent interface, thus promoting and strengthening Fc domain pairing in the CH3/CH3 domain interface. The IgG Fc domain that is fused to the VHH is provided with a knob, and the IgG Fc domain of the conventional antibody is provided with a hole designed to accommodate the knob, or vice-versa. A “knob” refers to an at least one amino acid side chain, typically a larger side chain, that protrudes from the interface of the CH3 portion of a first Fc domain. The protrusion creates a “knob” which is complementary to and received by a “hole” in the CH3 portion of a second Fc domain. The “hole” is an at least one amino acid side chain, typically a smaller side chain, which recedes from the interface of the CH3 portion of the second Fc domain. This technology is described, for example, in U.S. Pat. Nos. 5,821,333; 5,731,168 and 8,216,805; Ridgway et al. Protein Engineering (1996) 9:617-621); and Carter P. J. Immunol. Methods (2001) 248: 7-15, which are herein incorporated by reference.


Exemplary amino acid residues that may act as the knob include arginine (R), phenylalanine (F), tyrosine (Y) or tryptophan (W). An existing amino acid residue in the CH3 domain may be replaced or substituted with a knob amino acid residue. Preferred amino acids to substitute may include any amino acids with a small side chain, such as alanine (A), asparagine (N), aspartic acid (D), glycine (G), serine (S), threonine (T), or valine (V).


Exemplary amino acid residues that may act as the hole include alanine (A), serine (S), threonine (T), or valine (V). An existing amino acid residue in the CH3 domain may be replaced or substituted with a hole amino acid residue. Preferred amino acids to substitute may include any amino acids with a large side chain, such as arginine (R), phenylalanine (F), tyrosine (Y) or tryptophan (W).


The CH3 domain is preferably derived from a human IgG1 antibody. Exemplary amino acid substitutions to the CH3 domain include Y349C, S354C, T366S, T366Y, T366W, F405A, F405W, Y407T, Y407A, Y407V, T394S, or combinations thereof. A preferred exemplary combination is S354C, T366Y or T366W for the knob mutation on a first CH3 domain and Y349C, T366S, L368A, Y407T or Y407V for the hole mutation on a second CH3 domain.


In certain embodiments, the two Fc domains of the antigen binding construct are heterodimerized through Fab arm exchange (FAE). A human IgG1 possessing a P228S hinge mutation may contain an F405L or K409R CH3 domain mutation. Mixing of the two antibodies with a reducing agent leads to FAE. This technology is described in U.S. Pat. No. 9,212,230 and Labrijn A. F. PNAS (2013) 110(13):5145-5150, which are incorporated herein by reference.


In other embodiments, the two Fc domains of the antigen binding construct are heterodimerized through electrostatic steering effects. This dimerization technique utilizes electrostatic steering to promote and strengthen Fc domain pairing in the CH3/CH3 domain interface. The charge complementarity between two CH3 domains is altered to favor heterodimerization (opposite charge paring) over homodimerization (same charge pairing). In this method, the electrostatic repulsive forces prevent homodimerization. Certain exemplary amino acid residue substitutions which confer electrostatic steering effects include K409D, K392D, and/or K370D in a first CH3 domain and D399K, E356K, and/or E357K in a second CH3 domain. This technology is described in US Patent Publication No. 2014/0154254 A1 and Gunasekaran K. JBC (2010) 285(25):19637-19646, which are incorporated herein by reference.


In other embodiments, the charge complementarity is formed by a first Fc domain comprising a N297K and/or a T299K mutation, and a second Fc domain comprising a N297D and/or a T299D mutation.


In an aspect of the invention, the two Fc domains of the antigen binding construct are heterodimerized through hydrophobic interaction effects. This dimerization technique utilizes hydrophobic interactions instead of electrostatic ones to promote and strengthen Fc domain pairing in the CH3/CH3 domain interface. Exemplary amino acid residue substitution may include K409W, K360E, Q347E, Y349S, and/or S354C in a first CH3 domain and D399V, F405T, Q347R, E357W, and/or Y349C in a second CH3 domain. Preferred pairs of amino acid residue substitutions between a first CH3 domain and a second CH3 domain include K409W:D399V, K409W:F405T, K360E:Q347R, Y349S:E357W, and S354C:Y349C. This technology is described in US Patent Publication No. 2015/0307628 A1.


In an aspect of the invention, heterodimerization can be mediated through the use of leucine zipper fusions. Leucine zipper domains fused to the C terminus of each CH3 domain of the antibody chains force heterodimerization. This technology is described in Wranik B. JBC (2012) 287(52):43331-43339.


In an aspect of the invention, heterodimerization can be mediated through the use of a Strand Exchange Engineered Domain (SEED) body. CH3 domains derived from an IgG and IgA format force heterodimerization. This technology is described in Muda M. PEDS (2011) 24(5): 447-454.


In other embodiments, the heterodimerization motif may comprise non-native, disulfide bonds formed by engineered cysteine residues. In certain embodiments, the first set of disulfide may comprise a Y349C mutation in the first Fc domain and a S354C mutation in the second Fc domain. In other embodiment, an engineered disulfide bond may be introduced by fusion a C-terminal extension peptide with an engineered cysteine residue to the C-terminus of each of the two Fe domains. In certain embodiments, the first Fc domain may comprise the substitution of the carboxyl-terminal as “PGK” with “GEC”, and the second Fc domain may comprise the substitution of the carboxyl terminal amino acids “PGK” with “KSCDKT (SEQ ID NO:952)”.


In yet another approach, the multi-specific antibodies may employ the CrossMab principle (as reviewed in Klein et al.), which involves domain swapping between heavy and light chains so as to promote the formation of the correct pairings. Yet another approach involves engineering the interfaces between the paired VH-VL domains or paired CH1-CL domains of the heavy and light chains so as to increase the affinity between the heavy chain and its cognate light chain (Lewis et al. Nature Biotechnology (2014) 32: 191-198).


An alternative approach to the production of multi-specific antibody preparations having the correct antigen specificity has been the development of methods that enrich for antibodies having the correct heavy chain-light chain pairings. For example, Spiess et al. (Nature Biotechnology (2013) 31: 753-758) describe a method for the production of a MET-EGFR bispecific antibody from a co-culture of bacteria expressing two distinct half-antibodies.


Methods have also been described wherein the constant region of at least one of the heavy chains of a bispecific antibody is mutated so as to alter its binding affinity for an affinity agent, for example Protein A. This allows correctly paired heavy chain heterodimers to be isolated based on a purification technique that exploits the differential binding of the two heavy chains to an affinity agent (see US2010/0331527, WO2013/136186).


International patent application no. PCT/EP2012/071866 (WO2013/064701) addresses the problem of incorrect chain pairing using a method for multi-specific antibody isolation based on the use of anti-idiotypic binding agents, in particular anti-idiotypic antibodies. The anti-idiotype binding agents are employed in a two-step selection method in which a first agent is used to capture antibodies having a VH-VL domain pairing specific for a first antigen and a second agent is subsequently used to capture antibodies also having a second VH-VL domain pairing specific for a second antigen.


In yet another embodiment, the multi-specific antibody employs a first binding specificity having a conventional Fab binding region and a second binding specificity comprising a single domain antibody (VHH) binding region. The heterodimerization method employed forces the binding of the heavy chain region of the Fab and the full, heavy chain only, of the VHH. Because the VHH chain does not associate with light chains, the light chain region of the Fab portion will only associate with its corresponding heavy chain.


In certain other embodiments, the multi-specific binding protein described herein further comprises a common light chain. The term “common light chain” as used herein refers to a light chain which is capable of pairing with a first heavy chain of an antibody which binds to a first antigen in order to form a binding site specifically binding to said first antigen and which is also capable of pairing with a second heavy chain of an antibody which binds to a second antigen in order to form a binding site specifically binding to said second antigen. A common light chain is a polypeptide comprising in N-terminal to C-terminal direction an antibody light chain variable domain (VL), and an antibody light chain constant domain (CL), which is herein also abbreviated as “VL-CL”. Multi-specific binding proteins with a common light chain require heterodimerization of the distinct heavy chains. In certain embodiments, the heterodimerization methods listed above may be used with a common light chain. In certain exemplary embodiments, the heterodimerization motif may comprise non-native, disulfide bonds formed by engineered cysteine residues. Adding disulfide bonds, both between the heavy and light chain of an antibody has been shown to improve stability. Additionally, disulfide bonds have also been used as a solution to improve light-chain pairing within bispecific antibodies (Geddie M. L. et al, mAbs (2022) 14(1)).


Unless otherwise stated, all antibody constant region numbering employed herein corresponds to the EU numbering scheme, as described in Edelman et al. (Proc. Natl. Acad. Sci. 63(1): 78-85. 1969).


Additional methods of heterodimerization of heavy and/or light chains and the generation and purification of asymmetric antibodies are known in the art. See, for example, Klein C. mAbs (2012) 4(6): 653-663, and U.S. Pat. No. 9,499,634, each of which is incorporated herein by reference.


Effector Function Mutations

As discussed above, multi-specific binding proteins of the disclosure can be provided in various isotypes and with different constant regions. The Fc region of the multi-specific binding primarily determines its effector function in terms of Fc binding, antibody-dependent cell-mediated cytotoxicity (ADCC) activity, complement dependent cytotoxicity (CDC) activity, and antibody-dependent cell phagocytosis (ADCP) activity. These “cellular effector functions”, as distinct from effector T cell function, involve the recruitment of cells bearing Fc receptors to the site of the target cells, resulting in killing of the antibody-bound cell.


An antibody according to the present invention may be one that exhibits reduced effector function. In certain embodiments, the one or more mutations reduces one or more of antibody dependent cellular cytotoxicity (ADCC), antibody dependent cellular phagocytosis (ADCP), or complement dependent cytotoxicity (CDC). In certain embodiments, an antibody according to the present invention may lack ADCC, ADCP and/or CDC activity. In either case, an antibody according to the present invention may comprise, or may optionally lack, an Fc region that binds to one or more types of Fc receptor. Use of different antibody formats, and the presence or absence of FcR binding and cellular effector functions, allow the antibody to be tailored for use in particular therapeutic purposes as discussed elsewhere herein.


In certain embodiments, the first and the second Fc domain comprise one or more mutations that reduces Fc effector function. In certain embodiments, the first Fc domain and the second Fc domain each comprise a L234A and L235A mutation. These IgG1 mutations are also known as the “LALA” mutations and are described in further detail in Xu et al. (Cell Immunol. 2000; 200:16-26). In certain embodiments the first Fc domain and the second Fc domain each comprise a L234A, L235A, G237A, and/or P329G mutation. The Fc domain amino acid positions referred to herein are based on EU antibody numbering. Alternatively, an antibody may have a constant region which is effector null. An antibody may have a heavy chain constant region that does not bind Fc receptors, for example the constant region may comprise a L235E mutation. Another optional mutation for a heavy chain constant region is S228P, which increases stability. A heavy chain constant region may be an IgG4 comprising both the L235E mutation and the S228P mutation. This “IgG4-PE” heavy chain constant region is effector null. A disabled IgG1 heavy chain constant region is also effector null. A disabled IgG1 heavy chain constant region may contain alanine at position 234, 235 and/or 237 (EU index numbering), e.g., it may be an IgG1 sequence comprising the L234A, L235A and/or G237A mutations (“LALAGA”).


Human IgG1 constant regions containing specific mutations or altered glycosylation on residue Asn297 (e.g., N297Q, N297D, and N297K, EU index numbering) have been shown to reduce binding to Fc receptors.


In other embodiments, it may be desirable to enhance the binding of the Fc region of a multi-specific antibody to human Fc gamma receptor IIIA (FcγRIIIA) relative to that of the Fc region of a corresponding naturally occurring antibody. In certain embodiments, a constant region may be engineered for enhanced ADCC and/or CDC and/or ADCP. The potency of Fc-mediated effects may be enhanced by engineering the Fc domain by various established techniques. Such methods increase the affinity for certain Fc-receptors, thus creating potential diverse profiles of activation enhancement. This can be achieved by modification of one or several amino acid residues. Example mutations are one or more of the residues selected from 239, 332 and 330 for human IgG1 constant regions (or the equivalent positions in other IgG isotypes). An antibody may thus comprise a human IgG1 constant region having one or more mutations independently selected from S239D, 1332E and A330L (EU index numbering).


Increased affinity for Fc receptors can also be achieved by altering the natural glycosylation profile of the Fc domain by, for example, generating under fucosylated or de-fucosylated variants. Non-fucosylated antibodies harbor a tri-mannosyl core structure of complex-type N-glycans of Fc without fucose residue. These glycoengineered antibodies that lack core fucose residue from the Fc N-glycans may exhibit stronger ADCC than fucosylated equivalents due to enhancement of FcγRIIIA binding capacity. For example, to increase ADCC, residues in the hinge region can be altered to increase binding to FcγRIIIA. Thus, an antibody may comprise a human IgG heavy chain constant region that is a variant of a wild-type human IgG heavy chain constant region. In certain embodiments, the variant human IgG heavy chain constant region binds to human Fcγ receptors selected from the group consisting of FcγRIIB and FcγRIIA with higher affinity than the wild type human IgG heavy chain constant region binds to the human FcγRIIIA. The antibody may comprise a human IgG heavy chain constant region that is a variant of a wild type human IgG heavy chain constant region, wherein the variant human IgG heavy chain constant region binds to human FcγRIIB with higher affinity than the wild type human IgG heavy chain constant region binds to human FcγRIIB. The variant human IgG heavy chain constant region can be a variant human IgG1, a variant human IgG2, or a variant human IgG4 heavy chain constant region. In one embodiment, the variant human IgG heavy chain constant region comprises one or more amino acid mutations selected from G236D, P238D, S239D, S267E, L328F, and L328E (EU index numbering system). In another embodiment, the variant human IgG heavy chain constant region comprises a set of amino acid mutations selected from the group consisting of: S267E and L328F; P238D and L328E; P238D and one or more substitutions selected from the group consisting of E233D, G237D, H268D, P271G, and A330R; P238D, E233D, G237D, H268D, P271G, and A330R; G236D and S267E; S239D and S267E; V262E, S267E, and L328F; and V264E, S267E, and L328F (EU index numbering system). In some embodiments, the variant human IgG heavy chain constant region comprises the set of amino acid mutations consisting of G236A, S239D, and 1332E.


The enhancement of CDC may be achieved by amino acid changes that increase affinity for C1q, the first component of the classic complement activation cascade. Another approach is to create a chimeric Fc domain created from human IgG1 and human IgG3 segments that exploit the higher affinity of IgG3 for C1q. Antibodies of the present invention may comprise mutated amino acids at residues 329, 331 and/or 322 to alter the C1q binding and/or reduced or abolished CDC activity. In another embodiment, the antibodies or antibody fragments disclosed herein may contain Fc regions with modifications at residues 231 and 239, whereby the amino acids are replaced to alter the ability of the antibody to fix complement. In one embodiment, the antibody or fragment has a constant region comprising one or more mutations selected from E345K, E430G, R344D and D356R, in particular a double mutation comprising R344D and D356R (EU index numbering system).


The functional properties of the multi-specific binding proteins may be further tuned by combining amino acid substitutions that alter Fc binding affinity with amino acid substitutions that affect binding to FcRn. Binding proteins with amino acid substitutions that affect binding to FcRn (also referred to herein as “FcRn variants”) may in certain situations also increase serum half-life in vivo as compared to an unmodified binding protein. As will be appreciated, any combination of Fc and FcRn variants may be used to tune clearance of the antigen-antibody complex. Suitable FcRn variants that may be combined with any of the Fc variants described herein that include without limitation N434A, N434S, M428L, V308F, V259I, M428L/N434S, V259I/V308F, Y436I/M428L, Y436I/N434S, Y436V/N434S, Y436V/M428L, M252Y, M252Y/S254T/T256E, and V259I/V308F/M428L.


Half-Life Extending Mutations

In some embodiments, it is desirable to substitute certain amino acids in the Fc domain to extend the half-life of the multi-specific binding protein as disclosed herein. In some embodiments, the half-life of the multi-specific binding protein is improved relative to the half-life of a parent multi-specific binding protein (e.g., a multi-specific binding protein without an amino acid substitution that extends half-life).


In some embodiments, the substitution is at amino acid position 428, according to EU numbering. In some embodiments, the substitution is at amino acid position 434, according to EU numbering. In some embodiments, the substitution is at amino acid position 428 and amino acid position 434, according to EU numbering. In some embodiments, the amino acid substitution at position 428 is a leucine (L). In some embodiments, the substitution at amino acid position 434 is a serine (S).


In some embodiments, the substitution is at amino acid position 433, according to EU numbering. In some embodiments, the substitution is at amino acid position 434, according to EU numbering. In some embodiments, the substitution is at amino acid position 433 and amino acid position 434, according to EU numbering. In some embodiments, the amino acid substitution at position 433 is a lysine (K). In some embodiments, the amino acid substitution at position 434 is asparagine (N).


Differential Binding

As defined in this disclosure, the term affinity refers to the strength of the interaction between an antigen binding moiety and the epitope to which it binds. As readily understood by those skilled in the art, an antigen binding moiety affinity may be reported as a dissociation constant (KD) in molarity (M). Many antigen binding moieties have KD values in the range of 10-6 to 10-9 M. High affinity antibodies have KD values of 10-9 M (1 nanomolar, nM) and lower. For example, a high affinity antigen binding moiety may have KD value in the range of about 1 nM to about 0.01 nM. A high affinity antibody may have KD value of about 1 nM, about 0.9 nM, about 0.8 nM, about 0.7 nM, about 0.6 nM, about 0.5 nM, about 0.4 nM, about 0.3 nM, about 0.2 nM, or about 0.1 nM. Very high affinity antibodies have KD values of 10−12 M (1 picomolar, pM) and lower.


Low to medium affinity antibodies have KD values of greater than about 10-9 M (1 nanomolar, nM). For example, a low to medium affinity antibody may have KD value in the range of about 1 nM to about 100 nM. A low affinity antibody may have KD value in the range of about 10 nM to about 100 nM. A low affinity antibody may have KD value in the range of about 10 nM to about 80 nM. A low affinity antibody may have KD value of about 10 nM, about 15 nM, about 20 nM, about 25 nM, about 30 nM, about 35 nM, about 40 nM, about 45 nM, about 50 nM, about 55 nM, about 60 nM, about 65 nM, about 70 nM, about 75 nM, about 80 nM, about 85 nM, about 90 nM, about 95 nM, about 100 nM, or greater than 100 nM.


In some embodiments, the antigen binding moiety with high affinity is the binding moiety that specifically binds to the IL-12Rβ2 receptor subunit. In some embodiments, the binding moiety that specifically binds to the IL-12Rβ2 receptor subunit has higher affinity to the IL-12Rβ2 receptor subunit compared to the affinity the binding moiety that specifically binds to the IL-12Rβ1 receptor subunit exhibits toward the IL-12Rβ1 receptor subunit. In some embodiments, the antigen binding moiety with low affinity is the binding moiety that specifically binds to the IL-12Rβ1 receptor subunit. In some embodiments, the higher affinity to the IL-12Rβ2 receptor subunit allows for selective binding to NK and/or T cells.


In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 2-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 5-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 10-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 15-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 20-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 25-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 30-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 35-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 40-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 45-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 50-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 60-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 70-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 90-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 100-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 150-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 200-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 250-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 300-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 350-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 400-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 450-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 500-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 600-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 700-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 800-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 900-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 1000-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 1500-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 2000-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 5000-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit. In some embodiments, the binding affinity of the binding moiety for the IL-12Rβ2 subunit is at least 10000-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ 1 subunit.


Expression of Antigen-Binding Proteins

In one aspect, polynucleotides encoding the binding proteins (e.g., antigen-binding proteins and antigen-binding fragments thereof) disclosed herein are provided. Methods of making binding proteins comprising expressing these polynucleotides are also provided.


Polynucleotides encoding the binding proteins disclosed herein are typically inserted in an expression vector for introduction into host cells that may be used to produce the desired quantity of the binding proteins. Accordingly, in certain aspects, the disclosure provides expression vectors comprising polynucleotides disclosed herein and host cells comprising these vectors and polynucleotides.


The term “vector” or “expression vector” is used herein to mean vectors used in accordance with the present disclosure as a vehicle for introducing into and expressing a desired gene in a cell. As known to those skilled in the art, such vectors may readily be selected from the group consisting of plasmids, phages, viruses and retroviruses. In general, vectors compatible with the disclosure will comprise a selection marker, appropriate restriction sites to facilitate cloning of the desired gene and the ability to enter and/or replicate in eukaryotic or prokaryotic cells.


Numerous expression vector systems may be employed for the purposes of this disclosure. For example, one class of vector utilizes DNA elements which are derived from animal viruses such as bovine papilloma virus, polyoma virus, adenovirus, vaccinia virus, baculovirus, retroviruses (RSV, MMTV or MOMLV), or SV40 virus. Others involve the use of polycistronic systems with internal ribosome binding sites. Additionally, cells which have integrated the DNA into their chromosomes may be selected by introducing one or more markers which allow selection of transfected host cells. The marker may provide for prototrophy to an auxotrophic host, biocide resistance (e.g., antibiotics) or resistance to heavy metals such as copper. The selectable marker gene can either be directly linked to the DNA sequences to be expressed, or introduced into the same cell by co-transformation. Additional elements may also be needed for optimal synthesis of mRNA. These elements may include signal sequences, splice signals, as well as transcriptional promoters, enhancers, and termination signals. In some embodiments, the cloned variable region genes are inserted into an expression vector along with the heavy and light chain constant region genes (e.g., human constant region genes) synthesized as discussed above.


In other embodiments, the binding proteins may be expressed using polycistronic constructs. In such expression systems, multiple gene products of interest such as heavy and light chains of antibodies may be produced from a single polycistronic construct. These systems advantageously use an internal ribosome entry site (IRES) to provide relatively high levels of polypeptides in eukaryotic host cells. Compatible IRES sequences are disclosed in U.S. Pat. No. 6,193,980, which is incorporated by reference herein in its entirety for all purposes. Those skilled in the art will appreciate that such expression systems may be used to effectively produce the full range of polypeptides disclosed in the instant application.


More generally, once a vector or DNA sequence encoding a binding protein, e.g. an antibody or fragment thereof, has been prepared, the expression vector may be introduced into an appropriate host cell. That is, the host cells may be transformed. Introduction of the plasmid into the host cell can be accomplished by various techniques well known to those of skill in the art. These include, but are not limited to, transfection (including electrophoresis and electroporation), protoplast fusion, calcium phosphate precipitation, cell fusion with enveloped DNA, microinjection, and infection with intact virus. See, Ridgway, A. A. G. “Mammalian Expression Vectors” Chapter 24.2, pp. 470-472 Vectors, Rodriguez and Denhardt, Eds. (Butterworths, Boston, Mass. 1988). Plasmid introduction into the host can be by electroporation. The transformed cells are grown under conditions appropriate to the production of the light chains and heavy chains, and assayed for heavy and/or light chain protein synthesis. Exemplary assay techniques include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), or fluorescence-activated cell sorter analysis (FACS), immunohistochemistry and the like.


As used herein, the term “transformation” shall be used in a broad sense to refer to the introduction of DNA into a recipient host cell that changes the genotype.


Along those same lines, “host cells” refers to cells that have been transformed with vectors constructed using recombinant DNA techniques and encoding at least one heterologous gene. In descriptions of processes for isolation of polypeptides from recombinant hosts, the terms “cell” and “cell culture” are used interchangeably to denote the source of antibody unless it is clearly specified otherwise. In other words, recovery of polypeptide from the “cells” may mean either from spun down whole cells, from supernatant of lysed cells culture, or from the cell culture containing both the medium and the suspended cells.


In one embodiment, a host cell line used for antibody expression is of mammalian origin. Those skilled in the art can determine particular host cell lines which are best suited for the desired gene product to be expressed therein. Exemplary host cell lines include, but are not limited to, GS-CHO and CHO-K1 (Chinese Hamster Ovary lines), DG44 and DUXB11 (Chinese Hamster Ovary lines, DHFR minus), HELA (human cervical carcinoma), CV-1 (monkey kidney line), COS (a derivative of CV-1 with SV40 T antigen), R1610 (Chinese hamster fibroblast) BALBC/3T3 (mouse fibroblast), HEK (human kidney line), SP2/O (mouse myeloma), BFA-1c1BPT (bovine endothelial cells), RAJI (human lymphocyte), 293 (human kidney). In one embodiment, the cell line provides for altered glycosylation, e.g., afucosylation, of the antibody expressed therefrom (e.g., PER.C6® (Crucell) or FUT8-knock-out CHO cell lines (POTELLIGENT® cells) (Biowa, Princeton, N.J.)). In one embodiment, NS0 cells may be used. CHO cells are particularly useful. Host cell lines are typically available from commercial services, e.g., the American Tissue Culture Collection, or from authors of published literature.


In vitro production allows scale-up to give large amounts of the desired polypeptides. Techniques for mammalian cell cultivation under tissue culture conditions are known in the art and include homogeneous suspension culture, e.g., in an airlift reactor or in a continuous stirrer reactor, or immobilized or entrapped cell culture, e.g., in hollow fibers, microcapsules, on agarose microbeads or ceramic cartridges. If necessary and/or desired, the solutions of polypeptides can be purified by the customary chromatography methods, for example gel filtration, ion-exchange chromatography, chromatography over DEAE-cellulose and/or (immuno-) affinity chromatography.


Genes encoding the binding proteins featured in the disclosure can also be expressed in non-mammalian cells such as bacteria or yeast or plant cells. In this regard, it will be appreciated that various unicellular non-mammalian microorganisms such as bacteria can also be transformed, i.e., those capable of being grown in cultures or fermentation. Bacteria, which are susceptible to transformation, include members of the Enterobacteriaceae, such as strains of Escherichia coli or Salmonella; Bacillaceae, such as Bacillus subtilis; Pneumococcus; Streptococcus, and Haemophilus influenzae. It will further be appreciated that, when expressed in bacteria, the binding proteins can become part of inclusion bodies. In some embodiments, the binding proteins are then isolated, purified and assembled into functional molecules. In some embodiments, the binding proteins of the disclosure are expressed in a bacterial host cell. In some embodiments, the bacterial host cell is transformed with an expression vector comprising a nucleic acid molecule encoding a binding protein of the disclosure.


In addition to prokaryotes, eukaryotic microbes may also be used. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among eukaryotic microbes, although a number of other strains are commonly available. For expression in Saccharomyces, the plasmid YRp7, for example (Stinchcomb et al., Nature, 282:39 (1979); Kingsman et al., Gene, 7:141 (1979); Tschemper et al., Gene, 10:157 (1980)), is commonly used. This plasmid already contains the TRP1 gene which provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example ATCC No. 44076 or PEP4-1 (Jones, Genetics, 85:12 (1977)). The presence of the trp1 lesion as a characteristic of the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan.


Formulations/Pharmaceutical Compositions

In certain embodiments, a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of an antigen-binding protein described herein is provided. Some embodiments include pharmaceutical compositions comprising a therapeutically effective amount of any one of the binding proteins as described herein, or a binding protein-drug conjugate, in admixture with a pharmaceutically or physiologically acceptable formulation agent selected for suitability with the mode of administration.


Acceptable formulation materials are typically non-toxic to recipients at the dosages and concentrations employed.


In some embodiments, the pharmaceutical composition can contain formulation materials for modifying, maintaining, or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption, or penetration of the composition. Suitable formulation materials include, but are not limited to, amino acids (such as glycine, glutamine, asparagine, arginine, or lysine), antimicrobials, antioxidants (such as ascorbic acid, sodium sulfite, or sodium hydrogen-sulfite), buffers (such as borate, bicarbonate, Tris-HCl, citrates, phosphates, or other organic acids), bulking agents (such as mannitol or glycine), chelating agents (such as ethylenediamine tetraacetic acid (EDTA)), complexing agents (such as caffeine, polyvinylpyrrolidone, beta-cyclodextrin, or hydroxypropyl-beta-cyclodextrin), fillers, monosaccharides, disaccharides, and other carbohydrates (such as glucose, mannose, or dextrins), proteins (such as serum albumin, gelatin, or immunoglobulins), coloring, flavoring and diluting agents, emulsifying agents, hydrophilic polymers (such as polyvinylpyrrolidone), low molecular weight polypeptides, salt-forming counterions (such as sodium), preservatives (such as benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid, or hydrogen peroxide), solvents (such as glycerin, propylene glycol, or polyethylene glycol), sugar alcohols (such as mannitol or sorbitol), suspending agents, surfactants or wetting agents (such as pluronics; PEG; sorbitan esters; polysorbates such as polysorbate 20 or polysorbate 80; triton; tromethamine; lecithin; cholesterol or tyloxapal), stability enhancing agents (such as sucrose or sorbitol), tonicity enhancing agents (such as alkali metal halides, e.g., sodium or potassium chloride, or mannitol sorbitol), delivery vehicles, diluents, excipients and/or pharmaceutical adjuvants (see, e.g., REMINGTON'S PHARMACEUTICAL SCIENCES (18th Ed., A. R. Gennaro, ed., Mack Publishing Company 1990), and subsequent editions of the same, incorporated herein by reference for any purpose).


In some embodiments the optimal pharmaceutical composition will be determined by a skilled artisan depending upon, for example, the intended route of administration, delivery format, and desired dosage. Such compositions can influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of the binding protein.


In some embodiments the primary vehicle or carrier in a pharmaceutical composition can be either aqueous or non-aqueous in nature. For example, a suitable vehicle or carrier for injection can be water, physiological saline solution, or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration. Neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles. Other exemplary pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5, histidine buffer of above pH 5.5-6.5, or acetate buffer of about pH 4.0-5.5, which can further include sorbitol or a suitable substitute. In one embodiment of the disclosure, binding protein compositions can be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents in the form of a lyophilized cake or an aqueous solution. Further, the binding protein can be formulated as a lyophilizate using appropriate excipients such as sucrose.


In some embodiments, the pharmaceutical compositions of the disclosure can be selected for parenteral delivery or subcutaneous delivery. Alternatively, the compositions can be selected for inhalation or for delivery through the digestive tract, such as orally. The preparation of such pharmaceutically acceptable compositions is within the skill of the art.


In some embodiments, the formulation components are present in concentrations that are acceptable to the site of administration. For example, buffers are used to maintain the composition at physiological pH or at a slightly lower pH, typically within a pH range of from about 5 to about 8.


When parenteral administration is contemplated, the therapeutic compositions for use can be in the form of a pyrogen-free, parenterally acceptable, aqueous solution comprising the desired binding protein in a pharmaceutically acceptable vehicle. A particularly suitable vehicle for parenteral injection is sterile distilled water in which a binding protein is formulated as a sterile, isotonic solution, properly preserved. Yet another preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-erodible particles, polymeric compounds (such as polylactic acid or polyglycolic acid), beads, or liposomes, that provides for the controlled or sustained release of the product which can then be delivered via a depot injection. Hyaluronic acid can also be used, and this can have the effect of promoting sustained duration in the circulation. Other suitable means for the introduction of the desired molecule include implantable drug delivery devices.


In one embodiment, a pharmaceutical composition can be formulated for inhalation. For example, a binding protein can be formulated as a dry powder for inhalation. Binding protein inhalation solutions can also be formulated with a propellant for aerosol delivery. In yet another embodiment, solutions can be nebulized.


It is also contemplated that certain formulations can be administered orally. In one embodiment of the disclosure, multi-specific binding proteins that are administered in this fashion can be formulated with or without those carriers customarily used in the compounding of solid dosage forms such as tablets and capsules. For example, a capsule can be designed to release the active portion of the formulation at the point in the gastrointestinal tract when bioavailability is maximized and pre-systemic degradation is minimized. Additional agents can be included to facilitate absorption of the binding protein. Diluents, flavorings, low melting point waxes, vegetable oils, lubricants, suspending agents, tablet disintegrating agents, and binders can also be employed.


Another pharmaceutical composition can involve an effective quantity of multi-specific binding proteins in a mixture with non-toxic excipients that are suitable for the manufacture of tablets. By dissolving the tablets in sterile water, or another appropriate vehicle, solutions can be prepared in unit-dose form. Suitable excipients include, but are not limited to, inert diluents, such as calcium carbonate, sodium carbonate or bicarbonate, lactose, or calcium phosphate; or binding agents, such as starch, gelatin, or acacia; or lubricating agents such as magnesium stearate, stearic acid, or talc.


Additional pharmaceutical compositions of the disclosure will be evident to those skilled in the art, including formulations involving binding proteins in sustained- or controlled-delivery formulations. Techniques for formulating a variety of other sustained- or controlled-delivery means, such as liposome carriers, bio-erodible microparticles or porous beads and depot injections, are also known to those skilled in the art. Additional examples of sustained-release preparations include semipermeable polymer matrices in the form of shaped articles, e.g., films, or microcapsules. Sustained release matrices can include polyesters, hydrogels, polylactides, copolymers of L-glutamic acid and gamma ethyl-L-glutamate, poly(2-hydroxyethyl-methacrylate), ethylene vinyl acetate, or poly-D(−)-3-hydroxybutyric acid. Sustained-release compositions can also include liposomes, which can be prepared by any of several methods known in the art.


In some embodiments, pharmaceutical compositions are to be used for in vivo administration typically must be sterile. This can be accomplished by filtration through sterile filtration membranes. Where the composition is lyophilized, sterilization using this method can be conducted either prior to, or following, lyophilization and reconstitution. The composition for parenteral administration can be stored in lyophilized form or in a solution. In addition, parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper that can be pierced by a hypodermic injection needle.


Once the pharmaceutical composition has been formulated, it can be stored in sterile vials as a solution, suspension, gel, emulsion, solid, or as a dehydrated or lyophilized powder. Such formulations can be stored either in a ready-to-use form or in a form (e.g., lyophilized) requiring reconstitution prior to administration.


The disclosure also encompasses kits for producing a single dose administration unit. The kits can each contain both a first container having a dried multi-specific binding protein and a second container having an aqueous formulation. Also included within the scope of this disclosure are kits containing single and multi-chambered pre-filled syringes (e.g., liquid syringes and lyosyringes).


The effective amount of a binding protein pharmaceutical composition to be employed therapeutically will depend, for example, upon the therapeutic context and objectives. One skilled in the art will appreciate that the appropriate dosage levels for treatment will thus vary depending, in part, upon the molecule delivered, the indication for which the binding protein is being used, the route of administration, and the size (body weight, body surface, or organ size) and condition (the age and general health) of the patient. Accordingly, the clinician can titer the dosage and modify the route of administration to obtain the optimal therapeutic effect.


Dosing frequency will depend upon the pharmacokinetic parameters of the binding protein in the formulation being used. Typically, a clinician will administer the composition until a dosage is reached that achieves the desired effect. The composition can therefore be administered as a single dose, as two or more doses (which may or may not contain the same amount of the desired molecule) over time, or as a continuous infusion via an implantation device or catheter. Further refinement of the appropriate dosage is routinely made by those of ordinary skill in the art and is within the ambit of tasks routinely performed by them. Appropriate dosages can be ascertained through use of appropriate dose-response data.


The route of administration of the pharmaceutical composition is in accord with known methods, e.g., orally; through injection by intravenous, intraperitoneal, intracerebral (intraparenchymal), intracerebroventricular, intramuscular, intraocular, intraarterial, intraportal, or intralesional routes; by sustained release systems; or by implantation devices. Where desired, the compositions can be administered by bolus injection or continuously by infusion, or by implantation device.


In some embodiments, the composition can also be administered locally via implantation of a membrane, sponge, or other appropriate material onto which the desired molecule has been absorbed or encapsulated. Where an implantation device is used, the device can be implanted into any suitable tissue or organ, and delivery of the desired molecule can be via diffusion, timed-release bolus, or continuous administration.


Multi-specific binding proteins disclosed herein can be formulated as an aerosol for topical application, such as by inhalation (see, e.g., U.S. Pat. Nos. 4,044,126, 4,414,209 and 4,364,923, which describe aerosols for delivery of a steroid useful for treatment of inflammatory diseases, particularly asthma and are herein incorporated by reference in their entireties). These formulations for administration to the respiratory tract can be in the form of an aerosol or solution for a nebulizer, or as a microfine powder for insufflations, alone or in combination with an inert carrier such as lactose. In such a case, the particles of the formulation will, in one embodiment, have diameters of less than 50 microns, in one embodiment less than 10 microns.


A multi-specific binding protein disclosed herein can be formulated for local or topical application, such as for topical application to the skin and mucous membranes, such as in the eye, in the form of gels, creams, and lotions and for application to the eye or for intracisternal or intraspinal application. Topical administration is contemplated for transdermal delivery and also for administration to the eyes or mucosa, or for inhalation therapies. Nasal solutions of the heterodimeric protein alone or in combination with other pharmaceutically acceptable excipients can also be administered.


Transdermal patches, including iontophoretic and electrophoretic devices, are well known to those of skill in the art, and can be used to administer a heterodimeric protein. For example, such patches are disclosed in U.S. Pat. Nos. 6,267,983, 6,261,595, 6,256,533, 6,167,301, 6,024,975, 6,010715, 5,985,317, 5,983,134, 5,948,433, and 5,860,957, all of which are herein incorporated by reference in their entireties.


In certain embodiments, a pharmaceutical composition comprising a multi-specific binding protein described herein is a lyophilized powder, which can be reconstituted for administration as solutions, emulsions and other mixtures. It may also be reconstituted and formulated as solids or gels. The lyophilized powder is prepared by dissolving heterodimeric protein described herein, or a pharmaceutically acceptable derivative thereof, in a suitable solvent. In certain embodiments, the lyophilized powder is sterile. The solvent may contain an excipient which improves the stability or other pharmacological component of the powder or reconstituted solution, prepared from the powder. Excipients that may be used include, but are not limited to, dextrose, sorbitol, fructose, corn syrup, xylitol, glycerin, glucose, sucrose or other suitable agent. The solvent may also contain a buffer, such as citrate, sodium or potassium phosphate or other such buffer known to those of skill in the art at, in one embodiment, about neutral pH. Subsequent sterile filtration of the solution followed by lyophilization under standard conditions known to those of skill in the art provides the desired formulation. In one embodiment, the resulting solution will be apportioned into vials for lyophilization. Each vial will contain a single dosage or multiple dosages of the compound. The lyophilized powder can be stored under appropriate conditions, such as at about 4° C. to room temperature. Reconstitution of this lyophilized powder with water for injection provides a formulation for use in parenteral administration. For reconstitution, the lyophilized powder is added to sterile water or other suitable carrier. The precise amount depends upon the selected compound. Such amount can be empirically determined. Multi-specific binding proteins provided herein can also be formulated to be targeted to a particular tissue, receptor, or other area of the body of the subject to be treated. Many such targeting methods are well known to those of skill in the art. All such targeting methods are contemplated herein for use in the instant compositions. For non-limiting examples of targeting methods, see, e.g., U.S. Pat. Nos. 6,316,652, 6,274,552, 6,271,359, 6,253,872, 6,139,865, 6,131,570, 6,120,751, 6,071,495, 6,060,082, 6,048,736, 6,039,975, 6,004,534, 5,985,307, 5,972,366, 5,900,252, 5,840,674, 5,759,542 and 5,709,874, all of which are herein incorporated by reference in their entireties. In a specific embodiment, a heterodimeric protein described herein is targeted to a tumor.


Methods of Treatment/Use

Another aspect of the disclosure is a multi-specific antibody and/or an antigen-binding protein as described herein for use as a medicament.


In a particular embodiment, a method of treating a disorder through the activation of IL-18R is provided, the method comprising administering to a subject in need thereof an effective amount of an antigen-binding protein described herein.


The binding proteins can be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays for the detection and quantitation of one or more target antigens. The binding proteins will bind the one or more target antigens with an affinity that is appropriate for the assay method being employed.


For diagnostic applications, in some embodiments, binding proteins can be labeled with a detectable moiety. The detectable moiety can be any one that is capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety can be a radioisotope, such as 3H, 14C, 32P, 35S, 1251, 99Tc, 111In, or 67Ga; a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin; or an enzyme, such as alkaline phosphatase, β-galactosidase, or horseradish peroxidase.


The binding proteins are also useful for in vivo imaging. A binding protein labeled with a detectable moiety can be administered to an animal, e.g., into the bloodstream, and the presence and location of the labeled antibody in the host assayed. The binding protein can be labeled with any moiety that is detectable in an animal, whether by nuclear magnetic resonance, radiology, or other detection means known in the art.


The disclosure also relates to a kit comprising a binding protein and other reagents useful for detecting target antigen levels in biological samples. Such reagents can include a detectable label, blocking serum, positive and negative control samples, and detection reagents. In some embodiments, the kit comprises a composition comprising any binding protein, polynucleotide, vector, vector system, and/or host cell described herein. In some embodiments, the kit comprises a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, IV solution bags, etc. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which is by itself or combined with another composition effective for treating, preventing and/or diagnosing a condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper that can be pierced by a hypodermic injection needle). In some embodiments, the label or package insert indicates that the composition is used for preventing, diagnosing, and/or treating the condition of choice. Alternatively, or additionally, the article of manufacture or kit may further comprise a second (or third) container comprising a pharmaceutically acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.


In some embodiments, the present disclosure relates to a method of preventing and/or treating a disease or disorder (e.g., cancer). In some embodiments, the method comprises administering to a patient a therapeutically effective amount of at least one of the binding proteins, or pharmaceutical compositions related thereto, described herein. In some embodiments, the patient is a human.


The contents of the articles, patents, and patent applications, and all other documents and electronically available information mentioned or cited herein, are hereby incorporated by reference in their entirety to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference. Applicants reserve the right to physically incorporate into this application any and all materials and information from any such articles, patents, patent applications, or other physical and electronic documents.


While the present disclosure has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the disclosure. It will be readily apparent to those skilled in the art that other suitable modifications and adaptations of the methods described herein may be made using suitable equivalents without departing from the scope of the embodiments disclosed herein. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present disclosure. All such modifications are intended to be within the scope of the claims appended hereto. Having now described certain embodiments in detail, the same will be more clearly understood by reference to the following examples, which are included for purposes of illustration only and are not intended to be limiting.


EXAMPLES

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the methods and compositions featured in the invention and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.


Example 1. Generation of Anti-IL-12R Antibodies from an Immunized VHH Library

Two llamas per target were injected five times with purified recombinant protein (human IL-12Rβ1-Fc, Acro Biosystems or human 12Rβ2-Fc, R&D Systems) weekly. Following the final protein immunization, blood samples were collected and PBMCs were isolated. RNA was then extracted and stored. The RNA purity and integrity was analyzed by micro-capillary electrophoresis using the 2100 Bioanalyzer (Agilent). RNA was converted to cDNA using reverse transcriptase and random primers. The VHHs were amplified using multiple primers and cloned into a phagemid vector. Phage were prepared and a library from each llama was generated and analyzed. Each library had a size of greater than 2.3E+08 and contained more than 95% VHH insert.


Recombinant proteins (human IL-12Rβ 1-his, Acro Biosystems, cyno IL-12Rβ 1-his, Sino Biological, human IL-12Rβ2-huFc-his, R&D system, cyno IL-12Rβ2-moFc, Sino Biological) was biotinylated using standard protocols and used to probe the libraries. The biotinylated antigen was incubated with the phage at various concentrations over multiple rounds of panning. E. coli were infected with output phage after each selection round to use for subsequent selections or characterization of individual clones. Periplasmic extract (PE) samples were tested for binding to ELISA and then sequenced.


To measure the activity of the PE samples in the ELISA assay, plates were coated with Neutravidin following by blocking with 1% Casein in PBS. Biotinylated human IL-12Rβ1-his or biotinylated human IL-12Rβ2-huFc-his were used to capture. PE Samples were diluted 1:5 in ELISA Buffer (0.1% casein in 1×PBS). Detection was done using an anti-c-myc antibody (Roche) followed by an anti-mouse IgG-HRP antibody (JIR). Plates were then incubated with TMB substrate (Invitrogen) followed by the addition of H2SO4 (Fisher) to stop the reaction. Plates were read at 450 nm using a microplate spectrophotometer.


To measure the activity of the PE samples in a FACS assay, DNA containing the open reading frame with a C-terminal tag (FLAG for IL-12RB1, HA for IL-12RB2) were transiently transfected using lipofectamine into HEK-293T cells. Expression was validated using commercially available antibodies (anti-huIL-12Rβ 1(R&D systems, anti-huIL-12Rβ2 (R&D systems) or anti-huIL-12Rβ2 (Biolegend). After transfection, cells were recovered and resuspended to a final concentration of 1.0E+06 cells/ml in FACS buffer and aliquoted in a 96-well plate. PE samples were added, and binding was detected using a primary antibody against the c-myc tag (Roche) and the secondary antibody against mouse IgG conjugated to APC (Invitrogen). All steps were completed in FACS buffer (0.5% FBS, 0.5 mM EDTA in 1×PBS). Analysis was performed using an iQUE3. Data is reported as fold over background (FOB), where the background are cells without any PE samples.









TABLE 12







ELISA and FACS data for VHHs against IL-12Rβ1










FACS data













FOB
FOB


Clone
Bio-huIL-12Rβ1-His
human
cyno


nr.
OD450 nm
IL-12RB1
IL-12RB1













VHH25B1
0.479
160
121


VHH32B1
1.280
78
129


VHH41B1
0.413
48
19


VHH50B1
0.151
132
106


VHH54B1
0.822
43
19


VHH58B1
3.033
82
88


VHH67B1
2.928
88
82


VHH72B1
1.980
117
120


VHH86B1
0.422
104
64


VHH97B1
0.409
133
99


VHH104B1
2.972
152
161


VHH108B1
2.735
260
184


VHH115B1
1.901
101
62


VHH136B1
2.841
80
88


VHH137B1
3.314
116
152


VHH172B1
3.142
75.09
50


VHH154B1
2.846
24
21


VHH174B1
1.192
80
68


VHH187B1
0.125
86
42


VHH195B1
2.931
78
58


VHH202B1
3.304
86
55


VHH233B1
0.349
146
81


VHH238B1
3.332
50
44


VHH245B1
3.124
78
36


VHH258B1
3.297
183
91


VHH263B1
0.144
105
89


VHH276B1
3.202
31
24


VHH321B1
1.064
119
93
















TABLE 13







ELISA and FACS data for VHHs against IL-12Rβ2













Bio-huIL-12Rβ2-
FOB:
FOB:



Clone
huFc-His
human
cyno



nr.
OD450 nm
IL-12Rβ2
IL-12Rβ2
















VHH13B2
1.713
1.77
2.65



VHH19B2
1.303
1.63
2.75



VHH64B2
2.220
1.68
2.69



VHH67B2
0.581
1.73
2.32



VHH68B2
2.135
2.25
3.47



VHH85B2
2.988
1.64
2.31



VHH93B2
0.151
1.98
1.35



VHH94B2
0.190
3.19
3.84



VHH185B2
2.100
2.71
4.18



VHH190B2
0.174
2.25
3.78



VHH194B2
0.602
1.68
3.06



VHH211B2
0.227
1.64
0.99



VHH216B2
0.586
0.99
0.98



VHH219B2
0.237
1.54
0.99



VHH222B2
0.961
3.17
1.28



VHH229B2
0.138
1.42
1.00



VHH230B2
0.308
2.05
1.66



VHH241B2
0.139
1.63
2.37



VHH277B2
0.137
1.21
1.55



VHH278B2
0.794
2.46
3.97



VHH289B2
3.195
1.91
2.88



VHH294B2
2.196
1.98
3.19



VHH307B2
0.626
1.95
3.16



VHH322B2
1.672
1.99
3.21



VHH356B2
2.860
1.43
2.00



VHH361B2
1.351
2.16
4.01



VHH375B2
3.201
1.88
2.86










Example 2. Generation of Antibodies from an Immunized Human Transgenic Mouse

For each target receptor, eight mice immunized using protein and/or DNA until a robust titer was observed. After confirmation of titer, two fusions were performed on one mouse, seeding five 384 well plates per mouse. Hybridomas were screened using FACS with 293T cells overexpressing either the human or cyno versions of IL-12RB1 or IL-12RB2, as well as parental 293T cells as a control. For IL-12Rβ1, 376 hybridomas showed confirmed binding and were grown as saturated supernatants. For IL-12Rβ2, 321 hybridomas showed binding to human and cyno IL-12RB2 and were grown as saturated supernatants. The FACS experiment was repeated for the saturated supernatant. Data in Table 14 and Table 15 shows the binding of the hybridomas of HEK293T cell lines overexpressing the receptor of interest compared to the parent HEK293T cell line. In addition, saturated hybridomas were screened for binding to THP-1 cells (ATCC), a cell line that shows high endogenous expression of the IL-12 receptor. The binding of the hybridomas to the THP-1 cells was compared to buffer only wells (Table 14 and Table 15).









TABLE 14







FACS data for hybridomas against IL-12Rβ1











FACS: 293T
FACS: 293T




human
cyno
FACS:



IL-12RB1
IL-12RB1
THP-1


Hybridoma
(Fold over
(Fold over
(Fold over


ID
parental 293T)
parental 293T)
buffer)













85801_01D14
116
52
24


85801_01L02
117
32
41


85801_01M07
91
28
7


85801_01002
107
13
38


85801_02G10
78
40
5


85801_02K24
130
53
33


85801_02N03
221
85
41


85801_02011
114
56
35


85801_03P23
69
23
39


85801_04D10
76
20
42


85801_04D14
202
44
17


85801_04G19
262
116
40


85801_04G23
73
27
46


85801_04M04
620
195
12


85801_04M10
336
122
36


85801_04M12
192
71
45


85801_04N20
317
116
41


85801_05F05
311
118
56


85801_05F12
80
34
44


85801_05G01
170
73
7


85801_06L19
73
25
9


85801_07A01
57
21
37


85801_10F19
41
16
8


85801_10K15
57
21
7


85801_10M19
58
21
35
















TABLE 15







FACS data for hybridomas against IL-12Rβ2











FACS: 293T
FACS: 293T




human
cyno
FACS:



IL-12RB2
IL-12RB2
THP1


Hybridoma
(Fold over
(Fold over
(Fold over


ID
parental 293T)
parental 293T)
buffer)













85802_10D03
3.4
6
24


85802_08G21
3.8
10
26


85802_06H06
2.9
10
34


85802_06F06
3.3
14
35


85802_06A17
2.8
11
28


85802_10K12
3.3
13
27


85802_02K15
3.3
6
53


85802_10M17
3.8
12
21


85802_08F20
3.4
8
21


85802_09B22
3.4
11
19









Example 3. Identification and Generation of Heteromeric Antibodies

To establish the screening triage, an epitopically diverse set of VHHs and/or Fabs was selected by the DIAGONAL platform for the assembly into heteromeric molecules. Binding moieties were fused to an Fc containing mutations to promote heterodimerization ((Y349C, S354C, T366S, L368A, Y470V, T366W), as well as mutations (L234A, L235A, and G237A) to reduce effector function. Constructs also contained H435R and Y436F to ablate protein A binding on the “hole” Fe side to facilitate high throughput purification. 1254 heteromeric molecules were assembled and tested; 87 of these were chosen for further characterization (see Table 16).


Antibodies were transiently transfected into HEK293 cells. Cells were harvested six days post transfection and purified using a HiTrap MabSelect SuRe column. Antibodies that had less than 88% monomer were further purified by preparative SEC. Purity of the final product was assessed using a LabChip® and analytical gel filtration with a Superdex™ 200 10/30 column.









TABLE 16







IL-12 receptor heteromeric antibodies. Each binding domain is indicated


by the clone number or hybridoma ID of the Tables above.











Antibody ID
IL-12Rβ1 Binder
IL-12Rβ2 Binder







DGL393
85801_01L02A
185B2



DGL395
85801_02K24A
230B2



DGL397
85801_02N03A
222B2



DGL398
85801_02N03A
230B2



DGL400
85801_04D14A
185B2



DGL405
85801_04G19A
222B2



DGL407
85801_04G23A
13B2



DGL408
85801_04G23A
19B2



DGL411
85801_04N20A
185B2



DGL412
85801_05G01A
13B2



DGL413
85801_05G01A
185B2



DGL415
85801_06L19A
185B2



DGL421
85801_10K15A
190B2



DGL424
54B1
85802_10K12A



DGL425
54B1
85802_02K15A



DGL427
58B1
85802_10M17A



DGL428
97B1
85802_10D03A



DGL430
97B1
85802_06H06A



DGL436
187B1
85802_10D03A



DGL439
195B1
85802_10D03A



DGL440
195B1
85802_08F06A



DGL441
195B1
85802_08G21A



DGL442
195B1
85802_06H06A



DGL443
195B1
85802_10K12A



DGL444
195B1
85802_08F20A



DGL445
202B1
85802_08F06A



DGL426
54B1
85802_08F20A



DGL495
72B1
19B2



DGL448
233B1
85802_08621A



DGL453
25B1
67B2



DGL454
25B1
93B2



DGL461
32B1
93B2



DGL462
32B1
222B2



DGL464
50B1
19B2



DGL465
50B1
93B2



DGL478
58B1
222B2



DGL479
58B1
230B2



DGL481
67B1
19B2



DGL482
67B1
64B2



DGL484
67B1
93B2



DGL487
67B1
190B2



DGL490
67B1
230B2



DGL496
72B1
64B2



DGL497
72B1
67B2



DGL499
72B1
93B2



DGL503
72B1
222B2



DGL504
72B1
230B2



DGL505
72B1
241B2v2



DGL506
72B1
289B2



DGL508
72B1
307B2



DGL514
97B1
67B2



DGL515
97B1
85B2



DGL516
97B1
93B2



DGL518
104B1
13B2



DGL524
104B1
222B2



DGL525
104B1
230B2



DGL527
108B1
13B2



DGL533
108B1
230B2



DGL534
115B1
19B2



DGL537
115B1
222B2



DGL541
137B1
230B2



DGL545
174B1
230B2



DGL547
187B1
294B2v2



DGL551
195B1
185B2



DGL552
195B1
222B2



DGL557
202B1
13B2



DGL559
202B1
64B2



DGL562
202B1
185B2



DGL568
233B1
13B2



DGL569
233B1
19B2



DGL570
233B1
64B2



DGL571
233B1
67B2



DGL572
233B1
93B2



DGL574
233B1
185B2



DGL575
233B1
190B2



DGL577
233B1
219B2



DGL579
233B1
230B2



DGL584
245B1v2
64B2



DGL585
258B1
13B2



DGL586
258B1
19B2



DGL587
258B1
64B2



DGL594
263B1
64B2



DGL599
263B1
190B2



DGL601
85801_04M04A
19B2



DGL603
32B1
19B2



DGL604
233B1
322B2



DGL605
238B1
93B2



DGL606
238B1
219B2



DGL607
86B1
278B2



DGL616
72B1
294B2v2



DGL617
187B1
294B2v2










Example 4. Screen for Agonist Activity

HEK-Blue™ IL-12 cells were purchased from InvivoGen. HEK-Blue™ IL-12 cells were generated by stably introducing the human genes for the IL-12 receptor and the genes of the IL-12 signaling pathway including a STAT4-inducible SEAP reporter gene. The binding of IL-12 to the IL-12R on the surface of HEK-Blue™ IL-12 cells triggers a signaling cascade leading to the activation of STAT-4 with the subsequent production of SEAP. Reporter cells were revived and cultured according to the supplier's recommendations. Cells were rinsed with PBS and added to 96-well plates at a density of about 50,000 cells/well. Controls or the heteromeric antibodies were added to the wells at a volume of 20 μL/well at the final assay condition listed in Table X. The plate was incubated at 37° C. in a CO2 incubator for 20-24 hours. QUANTI-Blue™ Solution (InvivoGen) used to detect SEAP activity was prepared using manufacturer's instructions and 180 μL were added to a new plate. 20 μL of the induced HEK-Blue IL-12 supernatant was added to each well and the plate was incubated at 37° C. for 3 hours and read on a spectrophotometer at 630 nm.


To determine EC50, antibodies were diluted to 100 nM, then seven 4-fold dilutions were also measured. EC50 values were calculated in PRISM by using the log(agonist) vs. response (three parameters) fit.


The agonist activity of the heteromeric antibodies is shown in Table 17. below.









TABLE 17







Agonistic activity of heteromeric IL-12 receptor antibodies.











Antibody ID
EC50
Max Absorbance















DGL424
2.6E−10
1.49



DGL570
>100 nM
1.44



DGL412
>100 nM
1.28



DGL426
2.7E−10
1.24



DGL569
5.2E−09
1.19



DGL572
1.2E−08
1.05



DGL516
6.5E−11
1.05



DGL428
8.8E−10
1.03



DGL495
6.4E−10
0.96



DGL481
3.3E−10
0.93



DGL606
8.8E−09
0.92



DGL568
>100 nM
0.91



DGL421
1.1E−09
0.90



DGL514
3.5E−11
0.85



DGL601
6.6E−11
0.79



DGL605
4.6E−10
0.74



DGL534
4.5E−10
0.69



DGL465
>100 nM
0.69



DGL482
2.9E−09
0.68



DGL515
>100 nM
0.64



DGL571
>100 nM
0.64



DGL487
3.1E−09
0.64



DGL607
7.0E−09
0.61



DGL444
1.5E−10
0.61



DGL586
7.7E−11
0.60



DGL551
4.7E−09
0.59



DGL545
>100 nM
0.59



DGL524
4.4E−10
0.58



DGL584
>100 nM
0.58



DGL499
8.1E−09
0.56



DGL537
5.9E−10
0.55



DGL484
9.7E−09
0.54



DGL527
>100 nM
0.54



DGL462
1.2E−09
0.52



DGL599
>100 nM
0.48



DGL464
>100 nM
0.47



DGL454
>100 nM
0.47



DGL441
4.0E−11
0.45



DGL575
>100 nM
0.43



DGL445
>100 nM
0.42



DGL533
>100 nM
0.42



DGL504
>100 nM
0.41



DGL574
>100 nM
0.41



DGL478
4.0E−09
0.40



DGL552
>100 nM
0.40



DGL448
1.0E−09
0.39



DGL541
N.C.
0.37



DGL585
3.2E−09
0.37



DGL436
>100 nM
0.36



DGL579
N.C.
0.36



DGL503
N.C.
0.35



DGL594
N.C.
0.33



DGL497
N.C.
0.32



DGL587
N.C.
0.32



DGL603
N.C.
0.31



DGL506
N.C.
0.31



DGL461
N.C.
0.31



DGL413
N.C.
0.29



DGL479
N.C.
0.29



DGL397
1.6E−11
0.28



DGL508
N.C.
0.28



DGL518
N.C.
0.27



DGL496
N.C.
0.27



DGL395
2.3E−10
0.26



DGL405
N.C.
0.26



DGL505
N.C.
0.26



DGL490
N.C.
0.25



DGL453
N.C.
0.25



DGL427
N.C.
0.25



DGL443
N.C.
0.24



DGL507
N.C.
0.24



DGL393
>100 nM
0.23



DGL415
N.C.
0.23



DGL604
N.C.
0.23



DGL411
N.C.
0.23



DGL440
N.C.
0.22



DGL442
N.C.
0.22



DGL525
N.C.
0.21



DGL430
N.C.
0.21



DGL400
N.C.
0.21



DGL439
N.C.
0.21



DGL602
N.C.
0.19



DGL425
N.C.
0.19



DGL547
N.C.
0.18



DGL407
N.C.
0.17



DGL398
N.C.
0.17



DGL408
N.C.
0.17










Example 5. Characterization of Binding to Each IL-12 Receptor Subunit

The disassociation constant (KD) was measured for a subset of the generated bispecific antibodies as described above. To measure the KD, purified bispecifics were loaded onto an AHC biosensor tip (Sartorius) to a threshold of 0.8 in a Octet BLI system. Analytes (human IL-12Rβ1, Acro and human IL-12Rβ2, Acro) were measured at three concentrations (100 nM, 33 nM, 11 nM) and a buffer control. Binding association was measured for 300 seconds, followed by a 600 second dissociation time. KD values were obtained for each arm—the IL-12Rβ1 binding domain and the IL-12Rβ2 binding domain. The results can be found in Table 18.









TABLE 18







KD measurements for the IL-12Rβ1 and the IL-12Rβ2


binding domains of bispecific agonistic antibodies.











Antibody ID
KD (M) IL-12Rβ1
KD (M) IL-12Rβ2







DGL514
9.86E−09
5.48E−09



DGL534
5.95E−08
7.06E−10



DGL551
1.06E−08
8.29E−09



DGL444
8.96E−09
3.86E−10



DGL568
1.78E−09
2.34E−09



DGL569
1.70E−09
7.23E−10



DGL570
1.38E−09
7.66E−09



DGL572
1.48E−09
2.41E−09



DGL606
2.68E−09
6.03E−09



DGL605
2.25E−09
1.87E−09



DGL586
7.26E−09
7.68E−10



DGL426
1.59E−08
3.21E−10



DGL424
1.72E−08
7.26E−10



DGL487
5.49E−09
1.61E−08



DGL481
7.17E−09
7.72E−10



DGL482
6.83E−09
7.40E−09



DGL495
1.07E−08
7.70E−10



DGL601
1.63E−09
6.82E−10



DGL412
1.13E−08
2.21E−09



DGL421
6.06E−09
1.95E−08



DGL607
2.74E−08
1.18E−08



DGL428
1.66E−08
1.97E−09



DGL515
2.08E−08
1.00E−12



DGL516
2.73E−08
3.41E−09











For many of these antibodies, the IL-12Rβ2 binding domain of the bispecific antibodies bind tighter to the IL-12Rβ2 receptor subunit than the IL-12Rβ31 binding domain to the IL-12Rβ31 receptor subunit.


Example 6. Epitope Binning of Selected Antibodies

Epitope binning was performed using Carterra's LSA SPR (surface plasmon resonance) platform in the classic binning assay format. A HC30M chip was conditioned with a base and salt solution (50 mM NaOH, 10 mM NaCl) followed by an acid solution (10 mM glycine, pH 2.0) using 25 mM MES, pH5.5, 0.01% tween-20 as the running buffer. The binning surface lawn was activated with freshly prepared 1:1:1 v/v/v mix of 0.4 M EDC (Pierce), 0.1 M sulfo-NHS (Pierce), and 0.1 M MES, pH 5.5 for 7 minutes. The binning antibodies were coupled at 20ug/mL in 10 mM sodium acetate at 3 different pHs (4.5, 4.75 and 5.0) by using all 4 print blocks with 15 minutes total coupling time. Unreactive esters on the chip surface were quenched using 1M ethanolamine pH 8.5 (Carterra) for 7 minutes and then the antibody coupled chip was washed with 25 mM MES, pH 5.5, 0.01% tween-20 buffer twice for 15 seconds each. The binning experiment was performed on the coupled chip by injecting 200 nM recombinant human IL-12R β1 (Acro Biosystem #ILB-H52H9) or IL-12Rβ2 (Acro Biosystem #TLB-H52H6) in 1×HBSTE, 0.5 mg/L BSA buffer for 5 minutes, and then 20 μg/mL antibody analyte in 1×HBSTE, 0.5 mg/L BSA for 5 minutes. After every binning cycle, the arrayed antibodies were regenerated using 10 mM glycine, pH 2.0 (2, 30-sec pulses). Carterra's epitope binning software was used to analyze the experimental data.









TABLE 19







Epitope Community of IL-12Rβ1










DGL
IL-12RB1 binder
IL-12RB2 binder
Community Group





DGL515
97B1
85B2
Group 1


DGL594
263B1
64B2
Group 1


DGL534
115B1
19B2
Group 2


DGL585
258B1
13B2
Group 2


DGL586
258B1
19B2
Group 2


DGL587
258B1
64B2
Group 2


DGL603
32B1
19B2
Group 2


DGL616
72B1
294B2v2
Group 2


DGL557
202B1
13B2
Group 3


DGL559
202B1
64B2
Group 3


DGL562
202B1
185B2
Group 3


DGL570
233B1
64B2
Group 4


DGL577
233B1
219B2
Group 4


DGL579
233B1
230B2
Group 4


DGL584
245B1v2
64B2
Group 5


DGL617
187B1
294B2v2
Group 6
















TABLE 20







Epitope Community of IL-12Rβ2












DGL
IL-12RB1 binder
IL-12RB2 binder
Group







DGL515
97B1
85B2
Group 1



DGL534
115B1
19B2
Group 2



DGL586
258B1
19B2
Group 2



DGL603
32B1
19B2
Group 2



DGL557
202B1
13B2
Group 3



DGL559
202B1
64B2
Group 3



DGL570
233B1
64B2
Group 3



DGL584
245B1v2
64B2
Group 3



DGL585
258B1
13B2
Group 3



DGL587
258B1
64B2
Group 3



DGL594
263B1
64B2
Group 3



DGL562
202B1
185B2
Group 4



DGL577
233B1
219B2
Group 4



DGL579
233B1
230B2
Group 5



DGL616
72B1
294B2v2
Group 6



DGL617
187B1
294B2v2
Group 6










Example 7. Characterization of Antibodies for Ligand Blocking

To characterize the ligand blocking activity of recombinant anti-IL12Rβ1 or anti-IL12Rβ2 antibodies, an SPR ligand competition assay is deployed using a Carterra LSA instrument (Carterra Bio). Anti-IL12Rβ1 or anti-IL 12Rβ2 is first immobilized via affinity capture with a custom anti-human Fc sensor chip (Goat anti-human IgG (H+L) from Southern Biotech (Cat. #2087-01) coupled to HC30M sensor chip (Carterra Bio)). Subsequently, recombinant extracellular domain (ECD) of IL-12Rβ1/IL-12Rβ2 is injected to the captured surface with or without molar excess of recombinant IL-12 ligand. In a scenario where the anti-IL12Rβ1/IL12Rβ2 antibody binds to a surface on the receptor protein that is non-overlapping with IL-12 ligand binding interface, a robust, positive response is observed, consistent with the antibody capturing the receptor-ligand complex. Conversely, in a scenario where the anti-IL12Rβ1/IL 2Rβ2 antibody binds to a surface on the receptor protein that is overlapping with IL-12 ligand binding surface, no response is observed, consistent with the IL-12 ligand preventing anti-IL12Rβ1/IL12Rβ2 antibody from capturing the receptor ECD protein. Using this assay, a panel of anti-IL-12Rβ1 or IL-12Rβ2 binding antibodies are classified as ligand blocking or non-blocking antibodies.

Claims
  • 1. A multi-specific binding protein comprising at least a first binding moiety which binds specifically to a human interleukin-12 receptor β1 (IL-12Rβ1) subunit, and at least a second binding moiety which binds specifically to a human IL-12 receptor β2 (IL-12Rβ2) subunit, wherein the second binding moiety exhibits higher binding affinity (KD) for the human IL-12Rβ2 subunit than the first binding moiety exhibits for the human IL-12Rβ1 subunit, and is capable of inducing IL-12 receptor signaling by inducing proximity between the IL-12Rβ1 and IL-12Rβ2 subunits of human IL-12 receptor.
  • 2. The multi-specific binding protein of claim 1, wherein the binding affinity of the second binding moiety for the IL-12Rβ2 subunit is: at least 5-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ1 subunit,at least 10-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ1 subunit;at least 20-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ1 subunit:at least 40-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ1 subunit;at least 100-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ1 subunit; orat least 1000-fold greater than the binding affinity of the first binding moiety for the IL-12Rβ1 subunit.
  • 3-7. (canceled)
  • 8. The multi-specific binding protein of claim 1, wherein the binding affinity of the second binding moiety for the IL-12Rβ2 subunit promotes selective binding to activated T cells and/or NK cells.
  • 9. The multi-specific binding protein of claim 1, wherein: a. the first binding moiety comprises an IL-12Rβ1 VHH domain and the second binding moiety comprises an IL-12Rβ2 VHH domain;b. the first binding moiety comprises an IL-12Rβ1 Fab domain and the second binding moiety comprises an IL-12Rβ2 Fab domain;c. the first binding moiety comprises an IL-12Rβ1 VHH domain and the second binding moiety comprises an IL-12Rβ2 Fab domain;d. the first binding moiety comprises an IL-12Rβ1 Fab domain and the second binding moiety comprises an IL-12Rβ2 VHH domain;e. the first binding moiety comprises an IL-12Rβ1 Fab domain and the second binding moiety comprises an IL-12Rβ2 scFv domain;f. the first binding moiety comprises an IL-12Rβ1 scFv domain and the second binding moiety comprises an IL-12Rβ2 Fab domain;g. the first binding moiety comprises an IL-12Rβ1 scFv domain and the second binding moiety comprises an IL-12Rβ2 scFv domain;h. the first binding moiety comprises an IL-12Rβ1 scFv domain and the second binding moiety comprises an IL-12Rβ2 VHH domain; ori. the first binding moiety comprises an IL-12Rβ1 VHH domain and the second binding moiety comprises an IL-12Rβ2 scFv domain.
  • 10. The multi-specific binding protein of claim 1, wherein the first binding moiety comprises a IL-12Rβ1 VHH domain, optionally wherein: the IL-12Rβ1 VHH domain comprises a HCDR1 sequence, a HCDR2 sequence, and a HCDR3 sequence as found in Table 4; and/orthe IL-12Rβ1 VHH domain comprises a sequence that is at least about 90% identical, at least about 95% identical, at least about 96%, at least about 97%, at least about 98%, or at least 99% identical to the amino acid sequence of any one of the amino acid sequences in Table 5.
  • 11-12. (canceled)
  • 13. The multi-specific binding protein of claim 1, wherein the second binding moiety comprises an IL-12Rβ2 VHH domain, optionally wherein: the IL-12Rβ2 VHH domain comprises a HCDR1 sequence, a HCDR2 sequence, and a HCDR3 sequence as found in Table 9; and/orthe IL-12Rβ2 VHH domain comprises a sequence that is at least about 90% identical, at least about 95% identical, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical t the amino acid sequence of any one of the amino acid sequences in Table 10.
  • 14-15. (canceled)
  • 16. The multi-specific binding protein of claim 1, wherein the IL-12Rβ1 VHH domain comprises the amino acid sequence of any one of the amino acid sequences in Table 5 and/or the IL-12Rβ2 VHH domain comprises the amino acid sequence of any one of the amino acid sequences in Table 10.
  • 17. (canceled)
  • 18. The multi-specific binding protein of claim 1, wherein the first binding moiety or second binding moiety is a Fab or an scFv, optionally wherein: the Fab or scFv comprises a variable heavy chain region (VH) and a variable light chain region (VL), optionally wherein the VH comprises a HCDR1 sequence, a HCDR2 sequence, and a HCDR3 sequence as found in Table 1 and/or the VL comprises a LCDR1 sequence, a LCDR2 sequence, and a LCDR3 sequence as found in Table 2:the VH of the Fab or scFv of the first binding moiety comprises a sequence that is at least 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98%, or at least about 99% identical to an amino acid sequence of Table 3;the VL of the Fab or scFv of the first binding moiety comprises a sequence that is at least 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, or at least about 99% identical to an amino acid sequence of Table 3;the VH of the Fab or scFv of the first binding moiety comprises the amino acid sequence of Table 3;the VL of the Fab or scFv of the first binding moiety comprises the amino acid sequence of Table 3;the VH of the Fab or scFv of the second binding moiety comprises a sequence that is at least 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, or at least about 99% identical to an amino acid sequence of Table 8;the VL of the Fab or scFv of the second binding moiety comprises a sequence that is at least 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, or at least about 99% identical to an amino acid sequence of Table 8;the VH of the Fab or scFv of the second binding moiety comprises the amino acid sequence of an amino acid sequence of Table 8; and/orthe VL of the Fab or scFv of the second binding moiety comprises the amino acid sequence of an amino acid sequence of Table 8.
  • 19-29. (canceled)
  • 30. The multi-specific binding protein of claim 1, capable of inducing IL-12 receptor signaling in the presence of IL-12, optionally wherein induction of IL-12 receptor signaling is detected via a surface plasmon resonance (SPR) assay, optionally wherein the SPR assay comprises the following steps: 1) contacting the first binding moiety and/or the second binding moiety with an extracellular domain (ECD) of one or both of IL-12R β1 and IL-12R β2 and isolated IL-12; and2) detecting binding of the first binding moiety and/or the second binding moiety with the ECD of one or both of IL-12R β1 and IL-12R β2,wherein detection of binding indicates that the multi-specific binding protein is capable of inducing IL-12 receptor signaling in the presence of IL-12.
  • 31-32. (canceled)
  • 33. The multi-specific binding protein of claim 1, capable of binding specifically to human IL-12Rβ1 subunit and human IL-12Rβ2 subunit in the presence of IL-12: optionally wherein binding specifically to human IL-12Rβ1 subunit and human IL-12Rβ2 subunit is detected via a surface plasmon resonance (SPR) assay, optionally wherein the SPR assay comprises the following steps: 1) contacting the first binding moiety and/or the second binding moiety with an extracellular domain (ECD) of one or both of IL-12R β1 and IL-12R β2 and isolated IL-12; and 2) detecting binding of the first binding moiety and/or the second binding moiety with the ECD of one or both of IL-12R β1 and IL-12R β2,wherein detection of binding indicates that the multi-specific binding protein is capable of binding specifically to human IL-12Rβ1 subunit and human IL-12Rβ2 subunit in the presence of IL-12.
  • 34-35. (canceled)
  • 36. The multi-specific binding protein of claim 1, wherein: the first binding moiety designated 97B1 and 263B1 of the multi-specific binding protein compete for binding to IL-12Rβ1;the first binding moiety designated 115B1, 258B1, 32B1, and 72B1 of the multi-specific binding protein compete for binding to IL-12Rβ1the first binding moiety designated 202B1 of the multi-specific binding protein competes for binding to IL-12Rβ1 with one or more anti-IL-12Rβ1 binding moieties disclosed herein:the first binding moiety designated 233B1 of the multi-specific binding protein competes for binding to IL-12Rβ1 with one or more anti-IL-12Rβ1 binding moieties disclosed herein;the first binding moiety designated 245B1v2 of the multi-specific binding protein competes for binding to IL-12Rβ1 with one or more anti-IL-12Rβ1 binding moieties disclosed herein;the first binding moiety designated 187B1 of the multi-specific binding protein competes for binding to IL-12Rβ1 with one or more anti-IL-12Rβ1 binding moieties disclosed herein;the second binding moiety designated 13B2 and 64B2 of the multi-specific binding protein compete for binding to IL-12Rβ2;the second binding moiety designated 185B2 and 219B2 of the multi-specific binding protein compete for binding to IL-12Rβ2;the second binding moiety designated 85B2 of the multi-specific binding protein competes for binding to IL-12Rβ2 with one or more anti-IL-12Rβ2 binding moieties disclosed herein;the second binding moiety designated 19B2 of the mutely-specific binding protein competes for binding to IL-12Rβ2 with one or more anti-IL-12Rβ2 binding moieties disclosed herein; orthe second binding moiety designated 230B2 of the multi-specific binding protein competes for binding to IL-12Rβ2 with one or more anti-IL-12Rβ2 binding moieties disclosed herein.
  • 37-46. (canceled)
  • 47. The multi-specific binding protein of claim 1, further comprising all or part of an immunoglobulin Fc domain or variant thereof-optionally wherein the Fc domain or variant thereof comprises a first Fc heavy chain and a second Fc heavy chain.
  • 48. (canceled)
  • 49. The multi-specific binding protein of claim 47, further comprising a variant Fc domain with reduced effector function, optionally wherein at least one Fc heavy chain comprises: a substitution at amino acid position 234, according to EU numbering, optionally wherein the substitution at amino acid position 234 is an alanine (A):a substitution at amino acid position 235, according to EU numbering, optionally wherein the substitution at amino acid position 235 is an alanine (A):a substitution at amino acid position 237, according to EU numbering, optionally wherein the substitution at amino acid position 237 is an alanine (A): orone or more substitutions at amino acid positions 234, 235, or 237, according to EU numbering, optionally wherein the substitution at amino acid position 234 is an alanine (A), wherein the substitution at amino acid position 235 is an alanine, and wherein the substitution at amino acid position 237 is an alanine (A).
  • 50-57. (canceled)
  • 58. The multi-specific binding protein of claim 1, wherein the Fc domain comprises heterodimerization mutations to promote heterodimerization of the first binding moiety with the second binding moiety, optionally wherein the heterodimerization mutations are Knob-in-Hole (KIH) mutations, optionally wherein: the first Fc heavy chain comprises an amino acid substitution at position at position 366, 368, or 407 which produced a hole, and the second Fc heavy chain comprises an amino acid substitution at position 366 which produce a knob, optionally wherein the first:the heterodimerization mutations are charge stabilization mutations, optionally wherein the first Fc heavy chain comprises the amino acid substitution N297K, and the second Fc heavy chain comprises the amino acid substitution N297D or wherein the first Fc heavy chain comprises the amino acid substitution T299K, and the second Fc heavy chain comprises the amino acid substitution T299D: orthe heterodimerization mutations comprise an engineered disulfide bond, optionally wherein the engineered disulfide bond is formed by a first Fc heavy chain comprising the amino acid substitution Y349C, and a second Fc heavy chain comprising the amino acid substitution S354C or wherein the engineered disulfide bond is formed by a C-terminal extension peptide fused to the C-terminus of each of the first Fc heavy chain and the second Fc heavy chain, optionally wherein the first Fc heavy chain C-terminal extension comprises the amino acid sequence GEC, and the second Fc heavy chain C-terminal extension comprises the amino acid sequence SCDKT (SEQ ID NO: 951).
  • 59-68. (canceled)
  • 69. The multi-specific binding protein of claim 1, wherein at least one Fc domain comprises one or more mutations to promote increased half-life, optionally wherein at least one Fc heavy chain comprises: one or more substitutions at amino acid positions 252, 254, or 256, according to EU numbering, optionally wherein the substitution at amino acid position 252 is a tyrosine (Y), wherein the substitution at amino acid position 254 is a threonine (T), and wherein the substitution at amino acid position 236 is a glutamic acid (E); orone or more substitutions at amino acid positions 428 or 434, according to EU numbering, wherein the substitution at amino acid position 428 is a leucine (L), and wherein the substitution at amino acid position 434 is a serine (S).
  • 70-73. (canceled)
  • 74. The multi-specific binding protein of claim 1, wherein: the first binding moiety which specifically binds to human IL-12Rβ1 comprises heavy chain domain comprising an amino acid sequence set forth in any one of the sequences of Table 11;the first binding moiety which specifically binds to human IL-12Rβ1 comprises a light chain domain comprising an amino acid sequence set forth in any one of the sequences in Table 11;the second binding moiety which specifically binds to human IL-12Rβ2 comprises a heavy chain domain comprising an amino acid sequence set forth in any one of the sequences of Table 11;the second binding moiety which specifically binds to human IL-12Rβ2 comprises a light chain domain comprising an amino acid sequence set forth in any one of the sequences of Table 11; and/orthe multi-specific binding protein comprises the HC and LC of any of the antibodies of Table 11.
  • 75-78. (canceled)
  • 79. A pharmaceutical composition comprising the multi-specific binding protein of claim 1 and a pharmaceutically acceptable carrier.
  • 80. An isolated nucleic acid molecule encoding the multi-specific binding protein of claim 1.
  • 81. An expression vector comprising the nucleic acid molecule of claim 80.
  • 82. A host cell comprising the expression vector of claim 81.
  • 83. A method for treating a disease or disorder in a subject, comprising administering to a subject in need thereof the multi-specific binding protein according to an claim 1, optionally wherein the disease or disorder is a cancer.
  • 84-85. (canceled)
  • 86. A multi-specific binding protein comprising at least a first binding moiety which binds specifically to a human interleukin-12 receptor β1 (IL-12Rβ1) subunit, and at least a second binding moiety which binds specifically to a human IL-12 receptor β2 (IL-12Rβ2) subunit, wherein: a) the first binding moiety comprises: i) a HCDR1 amino acid sequence, a HCDR2 amino acid sequence, and a HCDR3 amino acid sequence disclosed in Tables 1, 3, 4, 5, or 11;ii) a LCDR1 amino acid sequence, a LCDR1 amino acid sequence, and a LCDR3 amino acid sequence disclosed in Tables 2, 3, or 11; andb) the second binding moiety comprises: i) a HCDR1 amino acid sequence, a HCDR2 amino acid sequence, and a HCDR3 amino acid sequence disclosed in Tables 6, 8, 9, 10, or 11;ii) a LCDR1 amino acid sequence, a LCDR1 amino acid sequence, and a LCDR3 amino acid sequence disclosed in Tables 7, 8, or 11.
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 63/467,832, filed May 19, 2023, the entire disclosure of which is hereby incorporated herein by reference.

Provisional Applications (1)
Number Date Country
63467832 May 2023 US