The present disclosure provides apparatuses and computer readable media for measuring sub-epidermal moisture in patients to identify damaged tissue for clinical intervention. The present disclosure also provides methods for determining damaged tissue.
The skin is the largest organ in the human body. It is readily exposed to different kinds of damages and injuries. When the skin and its surrounding tissues are unable to redistribute external pressure and mechanical forces, ulcers may be formed. Prolonged continuous exposure to even modest pressure, such as the pressure created by the body weight of a supine patient on their posterior skin surfaces, may lead to a pressure ulcer. In the presence of other damage, such as the neuropathy and peripheral tissue weakening that can be induced by diabetes, even periodic exposure to moderate levels of pressure and stress may lead to an ulcer, for example a foot ulcer.
Pressure ulcers are developed by approximately 2.5 million people a year in the United States and an equivalent number in the European Union. In long-term and critical-care settings, up to 25% of elderly and immobile patients develop pressure ulcers. Approximately 60,000 U.S. patients die per year due to infection and other complications from pressure ulcers.
Detecting tissue damage before the skin breaks and intervening with the appropriate therapy to avoid further deterioration of the underlying tissue is desirable not only for the patient but society. The average cost of treating pressure-induced damage at the earliest visible sign (a Stage 1 ulcer) is only $2,000 but this rises to $129,000 when the ulcer is deep enough to expose muscle or bone (a Stage 4 ulcer.) The current standard to detect pressure ulcers is by visual inspection, which is subjective, unreliable, untimely, and lacks specificity.
In an aspect, the present disclosure provides for, and includes, an apparatus for identifying damaged tissue, the apparatus comprising: a first and a second sensors, where the sensors each comprises a first electrode and a second electrode, and where each of the sensors is configured to be placed against a patient's skin; a circuit electronically coupled to the first and second electrodes and configured to measure an electrical property between the first and second electrodes of each of the sensors and provide information regarding the electrical property; a processor electronically coupled to the circuit and configured to receive the information from the circuit and convert the information into a sub-epidermal moisture (SEM) value; and a non-transitory computer-readable medium electronically coupled to the processor and comprising instructions stored thereon that, when executed on the processor, perform the step of: determining a difference between a first SEM value corresponding to the electrical property as measured by the first sensor at a first location on the patient's skin and a second SEM value corresponding to the electrical property as measured by the second sensor at a second location on the patient's skin, where the second location is bisymmetric relative to the first location.
In an aspect, an apparatus for identifying damaged tissue is provided by the present disclosure, the apparatus comprising: a substrate configured to be placed against a surface of a patient's skin; a plurality of sensors that are disposed on the substrate at a respective plurality of positions, where each sensor comprises a pair of electrodes; a circuit electronically coupled to the pair of electrodes of each of the plurality of sensors and configured to measure an electrical property between the pairs of electrodes of a portion of the plurality of sensors and provide information regarding the measured electrical properties; a processor electronically coupled to the circuit and configured to receive the information regarding the electrical properties from the circuit and convert the plurality of electrical properties into a respective plurality of sub-epidermal moisture (SEM) values; and a non-transitory computer-readable medium electronically coupled to the processor and comprising instructions stored thereon that, when executed on the processor, perform the steps of: identifying from the plurality of SEM values a first sensor and a second sensor that are located at first and second positions that are bisymmetric with respect to the patient's skin, and comparing a first SEM value that is associated with the first sensor with a second SEM value that is associated with the second sensor.
In one aspect, an apparatus for identifying damaged tissue is provided by the present disclosure, the apparatus comprising: an apparatus body; two sensors comprising a first sensor and a second sensor, where the two sensors are disposed on the apparatus body to allow simultaneous positioning of the first sensor on a first location on a patient's skin and the second sensor on a second location bisymmetric relative to the first location; a circuit electronically coupled to each of the two sensors and configured to measure an electrical property from each of the two sensors; a processor electronically coupled to the circuit and is configured to receive a first electrical property measurement from a first location and a second electrical property measurement from a second location, and to convert the first electrical property measurement to a first SEM value and the second electrical property measurement into a second SEM value; a non-transitory computer-readable medium electronically coupled to the processor and contains instructions that, when executed on the processor, perform the step of determining a difference between the first SEM value and the second SEM value.
In an aspect, a method for identifying damaged tissue is provided by the present disclosure, the method comprising: obtaining a first sub-epidermal moisture (SEM) value from a first location on a patient's skin; obtaining a second SEM value from a second location that is bisymmetric relative to the first location; determining a difference between a first SEM value and a second SEM value.
Aspects of the disclosure are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and are for purposes of illustrative discussion of aspects of the disclosure. In this regard, the description and the drawings, considered alone and together, make apparent to those skilled in the art how aspects of the disclosure may be practiced.
This description is not intended to be a detailed catalog of all the different ways in which the disclosure may be implemented, or all the features that may be added to the instant disclosure. For example, features illustrated with respect to one embodiment may be incorporated into other embodiment, and features illustrated with respect to a particular embodiment may be deleted from that embodiment. Thus, the disclosure contemplates that in some embodiments of the disclosure, any feature or combination of features set forth herein can be excluded or omitted. In addition, numerous variations and additions to the various embodiments suggested herein will be apparent to those skilled in the art in light of the instant disclosure, which do not depart from the instant disclosure. In other instances, well-known structures, interfaces, and processes have not been shown in detail in order not to unnecessarily obscure the invention. It is intended that no part of this specification be construed to effect a disavowal of any part of the full scope of the invention. Hence, the following descriptions are intended to illustrate some particular embodiments of the disclosure, and not to exhaustively specify all permutations, combinations and variations thereof.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The terminology used in the description of the disclosure herein is for the purpose of describing particular aspects or embodiments only and is not intended to be limiting of the disclosure.
All publications, patent applications, patents and other references cited herein are incorporated by reference in their entireties for the teachings relevant to the sentence and/or paragraph in which the reference is presented. References to techniques employed herein are intended to refer to the techniques as commonly understood in the art, including variations on those techniques or substitutions of equivalent techniques that would be apparent to one of skill in the art.
U.S. patent application Ser. No. 14/827,375 discloses an apparatus that uses radio frequency (RF) energy to measure the sub-epidermal capacitance using a bipolar sensor similar to the sensor 90 shown in
U.S. patent application Ser. No. 15/134,110 discloses an apparatus for measuring sub-epidermal moisture (SEM) similar to the device shown in
Both U.S. patent application Ser. Nos. 14/827,375 and 15/134,110 are incorporated herein by reference in their entireties.
Unless the context indicates otherwise, it is specifically intended that the various features of the disclosure described herein can be used in any combination. Moreover, the present disclosure also contemplates that in some embodiments of the disclosure, any feature or combination of features set forth herein can be excluded or omitted.
The methods disclosed herein include and comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the present invention. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the present invention.
As used in the description of the disclosure and the appended claims, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
As used herein, “and/or” refers to and encompasses any and all possible combinations of one or more of the associated listed items, as well as the lack of combinations when interpreted in the alternative (“or”).
The terms “about” and “approximately” as used herein when referring to a measurable value such as a length, a frequency, or a SEM value and the like, is meant to encompass variations of ±20%, ±10%, ±5%, ±1%, ±0.5%, or even ±0.1% of the specified amount.
As used herein, phrases such as “between X and Y” and “between about X and Y” should be interpreted to include X and Y. As used herein, phrases such as “between about X and Y” mean “between about X and about Y” and phrases such as “from about X to Y” mean “from about X to about Y.”
As used herein, the term “sub-epidermal moisture” or “SEM” refers to the increase in tissue fluid and local edema caused by vascular leakiness and other changes that modify the underlying structure of the damaged tissue in the presence of continued pressure on tissue, apoptosis, necrosis, and the inflammatory process.
As used herein, a “system” may be a collection of devices in wired or wireless communication with each other.
As used herein, “interrogate” refers to the use of radiofrequency energy to penetrate into a patient's skin.
As used herein, a “patient” may be a human or animal subject.
As used herein, “bisymmetric” refers to a pair of locations that are approximately equidistant from a line of symmetry.
As used herein, “delta” refers to a calculated difference between two SEM values.
Without being limited to a particular theory, comparison of SEM measurements taken at bisymmetric locations can compensate for an offset of readings of a particular patient from a population of patients. For example, a patient may be dehydrated on a particular day when measurements are being made. A comparison of the SEM value of healthy tissue from the same patient, while in a dehydrated condition, may be shifted from the SEM value of the same tissue at the same location when the patient is fully hydrated. If the tissue at one location is healthy while the tissue at the bisymmetric location is damaged, a comparison of the readings taken at the bisymmetric locations will exclude the “common mode” effect of dehydration on both locations and provide a more robust indication that tissue is damaged at one location.
In use, apparatus 180 can measure an electrical property or parameter that comprises one or more electrical characteristics selected from the group consisting of a resistance, a capacitance, an inductance, an impedance, a reluctance, and other electrical characteristics with one or more sensors 184A and 184B. In an aspect, sensors 184A and 184B are configured as toroidal sensors such as shown in
In an aspect, apparatus 180 comprises a processor (not shown) that is coupled to a circuit and receives information about a measured electrical property from the circuit. In one aspect, information is in the form of an analog signal, e.g. an electrical voltage, or a digital signal. In an aspect, a processor is coupled directly to sensors 184A and 184B, and is configured to measure the electrical property directly. In one aspect, a processor is configured to convert the received electrical property into an SEM value. In an aspect, a processor is configured by machine-readable instructions that are stored on a non-transitory, computer-readable medium that is electronically coupled to the processor. In one aspect, instructions are loaded from a medium into a processor when apparatus 180 is powered on.
In an aspect, a measured electrical parameter is related to the moisture content of the epidermis of a patient at a depth that is determined by the geometry of the electrodes of sensors 184A and 184B, the frequency and strength of electrical field 140, with reference to
In an aspect, measurements of capacitance are taken simultaneously with sensors 184A and 184B when contact sensors (not visible in
In one aspect, a difference between SEM values is determined, where a difference that exceeds a predetermined threshold is indicative of tissue damage at one of the locations where the corresponding capacitance measurements were taken. In an aspect, means of SEM values obtained at each bisymmetric locations are determined and compared. In one aspect, medians or modes of SEM values obtained at each bisymmetric locations are determined and compared. In an aspect, the damage is indicated to be at the location associated with the larger of the SEM values. In one aspect, the damage is indicated to be at the location associated with the smaller of the SEM values. In an aspect, determination of whether there is tissue damage comprises one or more of comparison of individual SEM values with one or more predetermined ranges or thresholds and comparison of the difference with one or more predetermined ranges or thresholds. In an aspect, a predetermined range may be from 0.1 to 8.0, such as from 0.1 to 1.0, from 1.1 to 2.0, from 2.1 to 3.0, from 3.1 to 4.0, from 4.1 to 5.0, from 5.1 to 6.0, from 6.1 to 7.0, from 7.1 to 8.0, from 0.1 to 7.5, from 0.5 to 8.0, from 1.0 to 7.0, from 1.5 to 6.5, from 2.0 to 6.0, from 3.0 to 5.5, from 3.5 to 5.0, or from 4.0 to 4.5. In an aspect, a predetermined range may be from 0.1 to 4.0, such as from 0.5 to 4.0, from 0.1 to 3.5, from 1.0 to 3.5, from 1.5 to 4.0, from 1.5 to 3.5, from 2.0 to 4.0, from 2.5 to 3.5, from 2.0 to 3.0, from 2.0 to 2.5, or from 2.5 to 3.0. In one aspect, a predetermined range may be from 4.1 to 8.0, such as from 4.5 to 8.0, from 4.1 to 7.5, from 5.0 to 7.5, from 5.5 to 7.0, from 5.5 to 7.5, from 6.0 to 8.0, from 6.5 to 7.5, from 6.0 to 7.0, from 6.0 to 6.5, or from 6.5 to 7.0. In one aspect, a predetermined threshold may be about 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, or 7.5. In one aspect, a predetermined threshold may range from 0.1 to 8.0, such as from 0.1 to 1.0, from 1.1 to 2.0, from 2.1 to 3.0, from 3.1 to 4.0, from 4.1 to 5.0, from 5.1 to 6.0, from 6.1 to 7.0, from 7.1 to 8.0, from 0.1 to 7.5, from 0.5 to 8.0, from 1.0 to 7.0, from 1.5 to 6.5, from 2.0 to 6.0, from 3.0 to 5.5, from 3.5 to 5.0, or from 4.0 to 4.5. In an aspect, a predetermined range or threshold can be scaled by a factor or a multiple based on the values provided herein. It will be understood that a predetermined value is not limited by design, but rather, one of ordinary skill in the art would be capable of choosing a predetermined value based on a given unit of SEM. In one aspect, ranges and thresholds of the present disclosure are varied according to the specific bisymmetric locations, the portion of a patient's body on which measurements are being made, or one or more characteristics of the patient such as age, height, weight, family history, ethnic group, and other physical characteristics or medical conditions.
One or more regions may be defined on a body. In an aspect, measurements made within a region are considered comparable to each other. A region may be defined as an area on the skin of the body wherein measurements may be taken at any point within the area. In an aspect, a region corresponds to an anatomical region (e.g., heel, ankle, lower back). In an aspect, a region may be defined as a set of two or more specific points relative to anatomical features wherein measurements are taken only at the specific points. In an aspect, a region may comprise a plurality of non-contiguous areas on the body. In an aspect, the set of specific locations may include points in multiple non-contiguous areas.
In an aspect, a region is defined by surface area. In an aspect, a region may be, for example, between 5 and 200 cm2, between 5 and 100 cm2, between 5 and 50 cm2, or between 10 and 50 cm2, between 10 and 25 cm2, or between 5 and 25 cm2.
In an aspect, measurements may be made in a specific pattern or portion thereof. In an aspect, the pattern of readings is made in a pattern with the target area of concern in the center. In an aspect, measurements are made in one or more circular patterns of increasing or decreasing size, T-shaped patterns, a set of specific locations, or randomly across a tissue or region. In an aspect, a pattern may be located on the body by defining a first measurement location of the pattern with respect to an anatomical feature with the remaining measurement locations of the pattern defined as offsets from the first measurement position.
In an aspect, a plurality of measurements are taken across a tissue or region and the difference between the lowest measurement value and the highest measurement value of the plurality of measurements is recorded as a delta value of that plurality of measurements. In an aspect, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more measurements are taken across a tissue or region.
In an aspect, a threshold may be established for at least one region. In an aspect, a threshold of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or other value may be established for the at least one region. In an aspect, a delta value is identified as significant when the delta value of a plurality of measurements taken within a region meets or exceeds a threshold associated with that region. In an aspect, each of a plurality of regions has a different threshold. In an aspect, two or more regions may have a common threshold.
In an aspect, a threshold has both a delta value component and a chronological component, wherein a delta value is identified as significant when the delta value is greater than a predetermined numerical value for a predetermined portion of a time interval. In an aspect, the predetermined portion of a time interval is defined as a minimum of X days wherein a plurality of measurements taken that day produces a delta value greater than or equal to the predetermined numerical value within a total of Y contiguous days of measurement. In an aspect, the predetermined portion of a time interval may be defined as 1, 2, 3, 4, or 5 consecutive days on which a plurality of measurements taken that day produces a delta value that is greater than or equal to the predetermined numerical value. In an aspect, the predetermined portion of a time interval may be defined as some portion of a different specific time period (weeks, month, hours etc.).
In an aspect, a threshold has a trending aspect wherein changes in the delta values of consecutive pluralities of measurements are compared to each other. In an aspect, a trending threshold is defined as a predetermined change in delta value over a predetermined length of time, wherein a determination that the threshold has been met or exceeded is significant. In an aspect, a determination of significance will cause an alert to be issued. In an aspect, a trend line may be computed from a portion of the individual measurements of the consecutive pluralities of measurements. In an aspect, a trend line may be computed from a portion of the delta values of the consecutive pluralities of measurements.
In an aspect, the number of measurements taken within a single region may be less than the number of measurement locations defined in a pattern. In an aspect, a delta value will be calculated after a predetermined initial number of readings, which is less than the number of measurement locations defined in a pattern, have been taken in a region and after each additional reading in the same region, wherein additional readings are not taken once the delta value meets or exceeds the threshold associated with that region.
In an aspect, the number of measurements taken within a single region may exceed the number of measurement locations defined in a pattern. In an aspect, a delta value will be calculated after each additional reading.
In an aspect, a quality metric may be generated for each plurality of measurements. In an aspect, this quality metric is chosen to assess the repeatability of the measurements. In an aspect, this quality metric is chosen to assess the skill of the clinician that took the measurements. In an aspect, the quality metric may include one or more statistical parameters, for example an average, a mean, or a standard deviation. In an aspect, the quality metric may include one or more of a comparison of individual measurements to a predefined range. In an aspect, the quality metric may include comparison of the individual measurements to a pattern of values, for example comparison of the measurement values at predefined locations to ranges associated with each predefined location. In an aspect, the quality metric may include determination of which measurements are made over healthy tissue and one or more evaluations of consistency within this subset of “healthy” measurements, for example a range, a standard deviation, or other parameter.
In one aspect, a measurement, for example, a threshold value, is determined by SEM Scanner Model 200 (Bruin Biometrics, LLC, Los Angeles, Calif.). In another aspect, a measurement is determined by another SEM scanner.
In an aspect, a measurement value is based on a capacitance measurement by reference to a reference device. In an aspect, a capacitance measurement can depend on the location and other aspects of any electrode in a device. Such variations can be compared to a reference SEM device such as an SEM Scanner Model 200 (Bruin Biometrics, LLC, Los Angeles, Calif.). A person of ordinary skill in the art understands that the measurements set forth herein can be adjusted to accommodate a difference capacitance range by reference to a reference device.
In an aspect, apparatus 180 is capable of storing multiple measurement and computation results. In one aspect, an apparatus in accordance with the present disclosure may also comprise other components, for example a camera or barcode scanner (not visible in
In an aspect, mat assembly 190 comprises one or more of pressure sensors, temperature sensors, optical sensors, and contact sensors (not visible in
In an aspect, mat assembly 190 is configured as a floor mat and actuation of one or more of the pressure, temperature, optical, and contact sensors, for example detection of a person standing on mat assembly 190 due to detection of the weight of a person by a pressure sensor, initiates a measurement by one or more of sensors 90. In one aspect, sensors 90 are operated in a “detection mode” that is capable of detecting when a person steps onto mat assembly 190 and transitions into a “measurement mode” upon determination that a person is standing on mat assembly 190.
In an aspect, mat assembly 190 is configured as a portable apparatus that can be placed against a surface of a patient's skin, for example against a patient's back or against the soles of one or both of their feet while the patient is lying in bed. In one aspect, mat assembly 190 comprises one or more of a support tray, stiffening element, and conformal pad (not shown in
In an aspect, two sensors may overlap 0-50%, such as 0-10%, 5-15%, 10-20%, 15-25%, 20-30%, 25-35%, 30-40%, 35%-45%, 40-50%, 0-25%, 15-35%, or 25-50%. In one aspect, two sensors may overlap 25-75%, such as 25-35%, 30-40%, 35%-45%, 40-50% 45-55%, 50-60%, 55-65%, 60-70%, 65-75%, 25-50%, 40-55%, or 50-75%. In one aspect, two sensors may overlap 50-100%, such as 50-60%, 55-65%, 60-70%, 65-75%, 70-80%, 75%-85%, 80-90%, 85-95%, 90-100%, 50-75%, 65-85%, or 75-100%.
In one aspect, an array of sensors 400 may further comprise a plurality of contact sensors (not shown on
From the foregoing, it will be appreciated that the present invention can be embodied in various ways, which include but are not limited to the following:
An apparatus for identifying damaged tissue, the apparatus comprising: a first sensor and a second sensor, where the first and second sensors each comprises a first electrode and a second electrode, and where each of the sensors is configured to be placed against a patient's skin, a circuit electronically coupled to the first and second electrodes and configured to measure an electrical property between the first and second electrodes of each of the sensors and provide information regarding the electrical property, a processor electronically coupled to the circuit and configured to receive the information from the circuit and convert the information into a sub-epidermal moisture (SEM) value, and a non-transitory computer-readable medium electronically coupled to the processor and comprising instructions stored thereon that, when executed on the processor, perform the step of: determining a difference between a first SEM value corresponding to the electrical property as measured by the first sensor at a first location on the patient's skin and a second SEM value corresponding to the electrical property as measured by the second sensor at a second location on the patient's skin, where the second location is bisymmetric relative to the first location.
The apparatus according to embodiment 1, where the difference being greater than a predetermined threshold is indicative of damaged tissue at one of the first and second locations.
The apparatus according to embodiment 1, where: the circuit is electronically coupled to the first and second electrodes of each of the first and second sensors, and the circuit is configured to convert a first electrical property measured with the first sensor into the first SEM value and convert a second electrical property measured with the second sensor into the second SEM value.
The apparatus according to embodiment 2, further comprising: a substrate configured to be placed in a known position on the patient's skin, and the first and second sensors are disposed on the substrate such that the first and second sensors are positioned at bisymmetric locations on the patient's skin when the substrate is placed in the known position on the patient's skin.
The apparatus according to embodiment 1, further comprising a gap between the first and second electrodes.
The apparatus according to embodiment 1, where the electrical property comprises one or more of an electrical component selected from the group consisting of a resistance, a capacitance, an inductance, an impedance, and a reluctance.
An apparatus for identifying damaged tissue, the apparatus comprising: a substrate configured to be placed against a surface of a patient's skin, a plurality of sensors that are disposed on the substrate at a respective plurality of positions, where each sensor comprises a pair of electrodes, a circuit electronically coupled to the pair of electrodes of each of the plurality of sensors and configured to measure an electrical property between the pairs of electrodes of a portion of the plurality of sensors and provide information regarding the measured electrical properties, a processor electronically coupled to the circuit and configured to receive the information regarding the electrical properties from the circuit and convert the plurality of electrical properties into a respective plurality of sub-epidermal moisture (SEM) values, and a non-transitory computer-readable medium electronically coupled to the processor and comprising instructions stored thereon that, when executed on the processor, perform the steps of: identifying from the plurality of SEM values a first sensor and a second sensor that are located at first and second positions that are bisymmetric with respect to the patient's skin, and comparing a first SEM value that is associated with the first sensor with a second SEM value that is associated with the second sensor.
The apparatus according to embodiment 7, where the instructions further comprise the steps of: determining a difference between the first and second SEM values, and providing an indication that tissue is damaged at one of the first and second locations if the difference is greater than a predetermined threshold.
The apparatus according to embodiment 7, where the instructions further comprise the steps of: determining a difference between the first and second SEM values, determining which of the first and second SEM values is larger than the other, and providing an indication that tissue is damaged at the location associated with the larger SEM value if the difference is greater than a predetermined threshold.
The apparatus according to embodiment 7, where the electrical property comprises one or more of an electrical component selected from the group consisting of a resistance, a capacitance, an inductance, an impedance, and a reluctance.
An apparatus for identifying damaged tissue, the apparatus comprising: an apparatus body; two sensors comprising a first sensor and a second sensor, where the two sensors are disposed on the apparatus body to allow simultaneous positioning of the first sensor on a first location on a patient's skin and the second sensor on a second location bisymmetric relative to the first location; a circuit electronically coupled to each of the two sensors and configured to measure an electrical property from each of the two sensors; a processor electronically coupled to the circuit and is configured to receive a first electrical property measurement from a first location and a second electrical property measurement from a second location, and to convert the first electrical property measurement to a first sub-epidermal moisture (SEM) value and the second electrical property measurement to a second SEM value; a non-transitory computer-readable medium electronically coupled to the processor and contains instructions that, when executed on the processor, perform the step of determining a difference between the first SEM value and the second SEM value.
The apparatus according to embodiment 11, where each of the two sensors are disposed on two ends of the apparatus body while being aligned on a common plane.
The apparatus according to embodiment 11, where the apparatus body is rigid and maintains the two sensors at a fixed separation distance and fixed orientation to each other.
The apparatus according to embodiment 11, where the apparatus body is flexible and allows the two sensors to be oriented at an angle to each other.
The apparatus according to embodiment 14, where the apparatus body comprises a hinge.
The apparatus according to embodiment 11, where each of the two sensors comprises a first electrode and a second electrode separated by a gap.
The apparatus according to embodiment 16, where the electrical property is measured between the first electrode and the second electrode.
The apparatus according to embodiment 11, where each of the two sensors comprises a plurality of electrodes separated by a gap.
The apparatus according to embodiment 18, where the plurality of electrodes are selectively activated to form a virtual ring electrode and a virtual central electrode.
The apparatus according to embodiment 11, where the electrical property comprises one or more of an electrical characteristic selected from the group consisting of a resistance, a capacitance, an inductance, an impedance, and a reluctance.
The apparatus according to embodiment 11, where the first electrical property measurement and the second electrical property measurement are measured simultaneously.
The apparatus according to embodiment 21, where the apparatus further comprises a contact sensor positioned proximate to one of the two sensors, and where the simultaneous measurements are triggered by the actuation of the contact sensor.
The apparatus according to embodiment 22, where the contact sensor is a pressure sensor or an optical sensor.
The apparatus according to embodiment 11, where the instructions further comprise the step of providing an indication that tissue is damaged at one of the first and second locations if the difference is greater than a predetermined threshold.
The apparatus according to embodiment 11, where the instructions further comprise the steps of: determining the greater of the first and second SEM values, and providing an indication that tissue is damaged at the location associated with the greater SEM value if the difference exceeds a predetermined threshold.
A method for identifying damaged tissue, the method comprising: obtaining a first sub-epidermal moisture (SEM) value from a first location on a patient's skin; obtaining a second SEM value from a second location that is bisymmetric relative to the first location; determining a difference between the first SEM value and the second SEM value.
The method according to embodiment 26, further comprising providing an indication that tissue is damaged at one of the first and second locations if the difference is greater than a predetermined threshold.
The method according to embodiment 26, further comprising: determining the greater of the first and second SEM values, and providing an indication that tissue is damaged at the location associated with the greater SEM value if the difference exceeds a predetermined threshold.
While the invention has been described with reference to particular aspects, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to a particular situation or material to the teachings of the invention without departing from the scope of the invention. Therefore, it is intended that the invention not be limited to the particular aspects disclosed but that the invention will include all aspects falling within the scope and spirit of the appended claims.
This application claims the benefit of priority of U.S. Provisional Application 62/454,455 filed Feb. 3, 2017, and U.S. Provisional Application 62/521,871 filed Jun. 19, 2017, each of which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62454455 | Feb 2017 | US | |
62521871 | Jun 2017 | US |