1. Field of the Disclosure
This disclosure relates generally to drill bits that include sensors for providing measurements relating to naturally occurring gamma ray sources.
2. Brief Description of the Related Art
Oil wells (wellbores) are usually drilled with a drill string that includes a tubular member having a drilling assembly (also referred to as the bottom hole assembly or “BHA”) with a drill bit attached to the bottom end thereof. The drill bit is rotated to disintegrate the earth formations to drill the wellbore. The BHA includes devices and sensors for providing information about a variety of parameters relating to the drilling operations (drilling parameters), behavior of the BHA (BHA parameters) and formation surrounding the wellbore being drilled (formation parameters). Drilling parameters include weight-on-bit (“WOB”), rotational speed (revolutions per minute or “RPM”) of the drill bit and BHA, rate of penetration (“ROP”) of the drill bit into the formation, and flow rate of the drilling fluid through the drill string. The BHA parameters typically include torque, whirl and stick-slip. Formation parameters include the various characteristics of the formation, such as resistivity, porosity and permeability.
Information relating to the lithology of a formation may be use useful in several aspects of wellbore construction. In many instances, wellbores are formed along predetermined paths and may intersect a variety of formations. During drilling, a driller may control the drilling parameters such as weight on bit, drilling fluid flow through the drill pipe, drill string rotational speed and drilling mud characteristics. The downhole operating conditions can be dynamic and drilling parameter may require adjustments to efficiently and cost-effectively drill the formation. Knowledge of the formation may be one factor used to adjust these drilling parameters. Also, it may be desirable to drill a wellbore at a specified distance from fluid contacts within the reservoir or from bed boundaries defining the top of a reservoir. Thus, knowledge of the lithology of the formation may be useful in appropriate placing such a wellbore.
Therefore, there is a need for devices, systems and methods for evaluating formations during drilling of a wellbore.
In aspects, the present disclosure provides a drill bit that includes a bit body and a gamma ray sensor in the bit body. The gamma ray sensor is configured to detect naturally occurring gamma rays from a formation being drilled. The gamma ray sensor may be integrated into a cutter positioned on the bit body, in a shank, or any other suitable location. The gamma ray sensor may be configured to a naturally occurring gamma ray source such as potassium, uranium and/or thorium.
In aspects, the present disclosure provides a method of making a drill bit. The method may include placing in a bit body of the drill bit a gamma ray sensor configured to provide signals representative of a naturally occurring gamma ray source in a formation being drilled.
In aspects, the present disclosure provides a drilling system for use in drilling a wellbore in an earth formation. The drilling system may include a drill bit having a bit body positioned at an end of a drill string; a gamma ray sensor configured to provide signals representative of one or more naturally occurring gamma ray sources in a formation being drilled and that is positioned in the bit body; and a processor configured to receive data from the gamma ray sensor and estimate a desired parameter of interest relating to the formation being drilled. The desired parameter of interest may be a lithology of the formation and/or a bed boundary.
In aspects, the present disclosure provides a method for drilling a wellbore in an earth formation. The method may include drilling the wellbore with a drill bit having a gamma ray sensor; and detecting one or more naturally occurring gamma ray sources in a formation being drilled using the gamma ray sensor. The method may further include comprising processing signals from the gamma ray sensor. The method may also include estimating a location of a bed boundary by processing the signals, estimating a lithology of a formation being drilled by processing the signals, and/or adjusting at least one drilling parameter after processing the signals.
Examples of certain features of the apparatus and method disclosed herein are summarized rather broadly in order that the detailed description thereof that follows may be better understood. There are, of course, additional features of the apparatus and method disclosed hereinafter that will form the subject of the claims appended hereto.
For detailed understanding of the present disclosure, references should be made to the following detailed description, taken in conjunction with the accompanying drawings in which like elements have generally been designated with like numerals and wherein:
The present disclosure relates to devices and methods for obtaining information relating to naturally occurring gamma ray sources by using sensors positioned in a drill bit. The present disclosure is susceptible to embodiments of different forms. The drawings show and the written specification describes specific embodiments of the present disclosure with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described herein.
The drill string 118 is shown conveyed into the wellbore 110 from a rig 180 at the surface 167. The exemplary rig 180 shown in
Still referring to
The MWD sensors 175 may includes sensors for measuring near-bit direction (e.g., BHA azimuth and inclination, BHA coordinates, etc.), dual rotary azimuthal gamma ray, bore and annular pressure (flow-on & flow-off), temperature, vibration/dynamics, multiple propagation resistivity, and sensors and tools for making rotary directional surveys. Exemplary sensors may also include sensors for determining parameters of interest relating to the formation, borehole, geophysical characteristics, borehole fluids and boundary conditions. These sensor include formation evaluation sensors (e.g., resistivity, dielectric constant, water saturation, porosity, density and permeability), sensors for measuring borehole parameters (e.g., borehole size, and borehole roughness), sensors for measuring geophysical parameters (e.g., acoustic velocity and acoustic travel time), sensors for measuring borehole fluid parameters (e.g., viscosity, density, clarity, rheology, pH level, and gas, oil and water contents), and boundary condition sensors, sensors for measuring physical and chemical properties of the borehole fluid.
The sensor package 240a,b,c may be configured to utilize gamma ray spectroscopy to determine the amounts of potassium, uranium and thorium concentrations that naturally occur in a geological formation. As is known, measurements of gamma radiation from these elements are possible because these elements are associated with radioactive isotopes that emit gamma radiations at characteristics energies. The amount of each element present within a formation may be determined by its contribution to the gamma ray flux at a given energy. Measuring gamma radiation of these specific element concentrations is known as spectral stripping which refers to the subtraction of the contribution of unwanted elements within an energy window, including upper and lower boundaries, set to encompass the characteristic energy(s) of the desired element within the gamma ray energy spectrum. Because of these factors, spectral stripping may be accomplished in practice by calibrating the tool initially in an artificial formation with known concentrations of potassium, uranium and thorium under standard conditions. Illustrative devices for detecting or measuring naturally occurring gamma radiation include magnetic spectrometers, scintillation spectrometers, proportional gas counters and semiconductors with solid state counters. For instance, a suitable gamma ray sensor may utilize a sensor element that includes a scintillation crystal and an optically coupled photomultiplier tube. Output signals from the photomultiplier tube may be transmitted to a suitable electronics package which may include pre-amplification and amplification circuits. The amplified sensor signals may be transmitted to the processor 172. In certain applications, scintillation gamma ray detectors, such as those incorporating NaI, may be not be suitable due to their size and use of photomultiplier tubes. Accordingly, in certain embodiments of the disclosure, solid state devices for gamma ray detection may be utilized. An example of such a device is shown in U.S. Pat. No. 5,969,359 to Ruddy et al. Another embodiment of the disclosure uses a photodiode whose long-wavelength cutoff is in the short-wavelength range having reduced temperature sensitivity is used in downhole applications. It may be matched with scintillation devices having an output matched to the response curve of the photodiode for use with nuclear logging devices. Such a device is disclosed in U.S. patent application Ser. No. 11/503,688 of Estes et al., having the same assignee as the present disclosure and the contents of which are incorporated herein by reference. It is also envisaged in the present disclosure that downhole cooling of the gamma ray sensor may be provided using a quantum thermo-tunneling of electrons. Such a disclosure is found in U.S. patent application Ser. No. 11/087,362 of DiFoggio et al., having the same assignee as the present disclosure and the contents of which are incorporated herein by reference.
It should be appreciated that a bit-based gamma ray sensor configured to detect naturally occurring gamma ray sources may provide an early indication, or even a first indication, of a lithology or change in lithology in the vicinity of the bit body 150. In embodiments, the signals from the bit-based gamma ray sensor may be used to estimate an energy signature for the formation being drilled. Thereafter, the detected energy signature may be compared or correlated with the energy signatures from reference formations having a known lithology. This comparison or correlation may be used to estimate or predict the lithology of the formation being drilled. In one embodiment, the sensor package 240 may provide the primary or only measurements from which a lithology or a change in lithology may be estimated. In other embodiments, the measurements provided by the sensor package 240 may be utilized in conjunction with the measurements provided by the formation evaluation sensors of the MWD system 170 to estimate a lithological characteristic or a change in a lithological characteristic.
Referring to
In a mode of operation utilizing surface control, the sensor signals or the computed values of the measured gamma rays may be determined by the controller 170 and sent to the surface controller 40 for further processing. The measured or detected gamma rays may be used to estimate an energy signature of the formation being drilling. Thereafter, this estimated energy signature may compared against the energy signatures of formations having a known lithology to estimate the lithology of the formation being drilled. In one aspect, the surface controller 140 may utilize any such information to cause one or more changes, including, but not limited to, altering weight-on-bit, rotational speed of the drill bit, and the rate of the fluid flow so as to increase the efficiency of the drilling operations and extend the life of the drill bit 150 and drilling assembly 130. It should be appreciated that the early implementation of adjustments to drilling parameters may provide more efficient drilling and extend the life of the drill bit 150 and/or BHA.
In still another mode of operation, the sensor package 240 may be utilized to geosteer the drilling assembly 130. The measurements furnished by the sensor package 240 may be continuously or periodically processed by the processor 170 and/or 140 to estimate the location of a particular subsurface feature or features. That is, the detected energy signatures may be compared with the predicted energy signature of the subsurface feature or features. This comparison may be utilized to determine whether the subsurface feature is present and the relative location of that subsurface feature. Geosteering objectives may include drilling a deviated borehole at a selected depth proximate to an identified oil-water contact, drilling a wellbore or navigating a formation above an oil-water contacts, maintaining a drilling depth below a gas cap, avoiding a shale lens, and/or steering a course relative to bed boundaries that are of interest in horizontal drilling include hard calcite streaks and intrusives. In some embodiment, the gamma ray sensor measurements may be used to estimate the location of or the distance to fluid contacts, bed boundaries, and other subsurface features that my be utilized to geosteer the drilling assembly 150. In one preferred closed-loop mode of operation, the processors 170 and/or 140 include instructions relating to a desired well profile or trajectory and/or desired characteristics of a target formation. The processors 170 and/or 140 maintain control over aspects of the drilling activity to maintain a desired position or location vis-à-vis a subsurface formation of interest. For instance, during an exemplary operation, the sensor package 240 provides data relating to a naturally occurring gamma ray emissions. The processor 170 may use this data to evaluate the formation ahead of the drill bit 150 and determine the proximity, location or orientation of the drilling assembly 130 relative to a bed boundary or other subsurface feature and, if needed, issue steering instructions that prevents the drilling assembly 130 from exiting the target formation or entering into an undesirable formation. This automated control of the drilling assembly 130 may include periodic two-way telemetric communication with the surface control unit 140 that receives selected sensor data and processed data from the downhole processor 170 and issues command instructions thereto. The command instructions transmitted by the control unit 140 may, for instance, be based on calculations based on data received from surface sensors (not shown) and downhole sensors. The processor 170 reconfigures the steering unit (not shown) of the drilling assembly 130 to re-orient the drilling assembly 130 to drill in the desired direction.
The foregoing description is directed to particular embodiments for the purpose of illustration and explanation. It will be apparent, however, to persons skilled in the art that many modifications and changes to the embodiments set forth above may be made without departing from the scope and spirit of the concepts and embodiments disclosed herein. It is intended that the following claims be interpreted to embrace all such modifications and changes.
Number | Name | Date | Kind |
---|---|---|---|
3411361 | McLellan | Nov 1968 | A |
4821563 | Maron | Apr 1989 | A |
4941951 | Sheppard et al. | Jul 1990 | A |
5144589 | Hardage | Sep 1992 | A |
5386724 | Das et al. | Feb 1995 | A |
5415030 | Jogi et al. | May 1995 | A |
5448227 | Orban et al. | Sep 1995 | A |
5475309 | Hong et al. | Dec 1995 | A |
5720355 | Lamine et al. | Feb 1998 | A |
5798488 | Beresford et al. | Aug 1998 | A |
5813480 | Zaleski, Jr. et al. | Sep 1998 | A |
6057784 | Schaaf et al. | May 2000 | A |
6150822 | Hong et al. | Nov 2000 | A |
6230822 | Sullivan et al. | May 2001 | B1 |
6419032 | Sullivan et al. | Jul 2002 | B1 |
6429431 | Wilk | Aug 2002 | B1 |
6510389 | Winkler et al. | Jan 2003 | B1 |
6516898 | Krueger | Feb 2003 | B1 |
6540033 | Sullivan et al. | Apr 2003 | B1 |
6543312 | Sullivan et al. | Apr 2003 | B2 |
6564883 | Fredericks et al. | May 2003 | B2 |
6571886 | Sullivan et al. | Jun 2003 | B1 |
6626251 | Sullivan et al. | Sep 2003 | B1 |
6681633 | Schultz et al. | Jan 2004 | B2 |
6769497 | Dubinsky et al. | Aug 2004 | B2 |
6796746 | Jessmore et al. | Sep 2004 | B2 |
6850068 | Chemali et al. | Feb 2005 | B2 |
7046165 | Beique et al. | May 2006 | B2 |
7058512 | Downton | Jun 2006 | B2 |
7066280 | Sullivan et al. | Jun 2006 | B2 |
7143844 | Alft et al. | Dec 2006 | B2 |
7172037 | Dashevskiy et al. | Feb 2007 | B2 |
7207215 | Spross et al. | Apr 2007 | B2 |
7278499 | Richert et al. | Oct 2007 | B2 |
7308937 | Radford et al. | Dec 2007 | B2 |
7350568 | Mandal et al. | Apr 2008 | B2 |
7387177 | Zahradnik et al. | Jun 2008 | B2 |
7497276 | Pastusek et al. | Mar 2009 | B2 |
7506695 | Pastusek et al. | Mar 2009 | B2 |
7510026 | Pastusek et al. | Mar 2009 | B2 |
20010042643 | Krueger et al. | Nov 2001 | A1 |
20010054514 | Sullivan et al. | Dec 2001 | A1 |
20040069539 | Sullivan et al. | Apr 2004 | A1 |
20040222018 | Sullivan et al. | Nov 2004 | A1 |
20050161258 | Lockerd, Sr. et al. | Jul 2005 | A1 |
20050200498 | Gleitman | Sep 2005 | A1 |
20060065395 | Snell | Mar 2006 | A1 |
20060175057 | Mandal et al. | Aug 2006 | A1 |
20070105339 | Faris | May 2007 | A1 |
20070114062 | Hall et al. | May 2007 | A1 |
20070186639 | Spross et al. | Aug 2007 | A1 |
20070272442 | Pastusek et al. | Nov 2007 | A1 |
20080060848 | Pastusek et al. | Mar 2008 | A1 |
20080065331 | Pastusek et al. | Mar 2008 | A1 |
20080066959 | Pastusek et al. | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
1365103 | Nov 2003 | EP |
1607571 | Dec 2005 | EP |
Number | Date | Country | |
---|---|---|---|
20100089645 A1 | Apr 2010 | US |