Embodiments of the present disclosure generally relate to a bit error rate determination method for determining a bit error rate of an input signal. Further, embodiments of the present disclosure generally relate to a measurement instrument.
For jitter analysis, the components of jitter such as Data Dependent Jitter (DDJ), Periodic Jitter (PJ), Other Bounded Uncorrelated Jitter (OBUJ) and Random Jitter (RJ) must be separated and the bit error rate (BER) must be calculated.
So far, techniques are known that exclusively relate on determining the Time Interval Error (TIE) of the Total Jitter (TJ). In fact, the causes of the different jitter types lead to a distortion of the received signal and they, therefore, have an influence on the TIE via the received signal. Accordingly, the respective components of jitter are calculated once the Time Interval Error (TIE) of the Total Jitter (TJ) is determined.
Similarly, measurements of the bit error rate (BER) associated with the Total Jitter (TJ) are based on the measurement of a number of times that the Total Jitter (TJ) exceeds a certain threshold.
It turned out that the measurement of the bit error rate (BER) done this way takes a long time if small bit error rates shall be observed, for example bit error rates (BER) smaller than 10−6. This is due to the fact that for measuring a bit error rate smaller than 10n, wherein n is an integer bigger than zero, approximately 10n+1 bits need to be measured. Thus, the measurement duration scales exponentially with n, which results in very long measurement durations for small bit error rates (BER) that are to be measured.
Accordingly, there is a need for a fast and reliable possibility to determine a bit error rate of an input signal.
Embodiments of the present disclosure provide a bit error rate determination method for determining a bit error rate of an input signal, wherein the input signal is generated by a signal source. In an embodiment, the method comprises the following steps:
at least one of receiving and generating a first histogram of a time interval error associated with a first bounded jitter component of the input signal;
at least one of receiving and generating random jitter data comprising information on a time interval error associated with a random jitter component of the input signal; and
determining the bit error rate based on at least one of the first histogram and the random jitter data.
The bit error rate determination method according to the disclosure is based on the rationale that the bit error rate can be determined based on the first histogram of a time interval error associated with a first bounded jitter component and based on the random jitter data without explicitly measuring the number of times that the total jitter exceeds a certain threshold.
Instead, the bit error rate is extrapolated based on the first histogram and the random jitter data which enables determining even very small bit error rates that would usually take a very long time to measure if measured directly.
Thus, a method capable of determining the bit error rate in a particularly fast way is provided.
The first bounded jitter component may be at least one of deterministic jitter, data dependent jitter, periodic jitter and other bounded uncorrelated jitter, i.e. at least one of the components of the total jitter that have an upper bound. The first bounded jitter component may also be associated with a sum of two or more of these bounded jitter components.
Generally, a bit error occurs if the absolute value of the total jitter is bigger than a certain threshold.
According to one aspect of the disclosure, a second histogram of a time interval error associated with a second bounded jitter component is at least one of received and/or generated, and wherein the bit error rate is determined based on at least one of the first histogram, the second histogram and the random jitter data. Therein, the second bounded jitter component is different from the first bounded jitter component. Thus, the bit error rate is extrapolated based on the first bounded jitter component, the second bounded jitter component and/or the random jitter data. This way, the bit error rate associated with the first bounded jitter component, the second bounded jitter component and/or the random jitter data can be determined in a particularly fast way without explicitly measuring the number of times that the total jitter and/or the individual jitter components exceed a certain threshold.
In another embodiment of the disclosure, the bit error rate is determined selectively based on at least one of the first histogram, the second histogram and the random jitter data. In other words, which of the first histogram, the second histogram and the random jitter data is taken into account for determining the bit error rate is adjustable, for example adjustable by a user. Thus, the individual bounded jitter components may each be considered or neglected for the determination of the bit error rate. Put differently, the impact of the individual bounded jitter components on the bit error rate can be determined by considering or neglecting the individual components and comparing the different results for the bit error rate. This is particularly useful for the debugging of devices under test, as the jitter components yielding the largest contributions to the total jitter can be identified even for very small total bit error rates.
Moreover, the individual contributions may be selectively displayed on a display such that a user can easily identify the different contributions of the bounded jitter components to the bit error rate.
According to one aspect of the present disclosure, the bit error rare is determined selectively based on at least one of a time interval error associated with vertical periodic jitter, a time interval error associated with horizontal periodic jitter, a time interval error associated with vertical random jitter and a time interval error associated with horizontal random jitter. Thus, the individual aforementioned jitter components may each be considered or neglected for the determination of the bit error rate. Put differently, the impact of the individual jitter components on the bit error rate can be determined by considering or neglecting the individual components and comparing the different results for the bit error rate. This is particularly useful for the debugging of devices under test, as the jitter components yielding the largest contributions to the total jitter can be identified even for very small total bit error rates.
The first bounded jitter component may be associated with at least one of deterministic jitter, data dependent jitter, periodic jitter and other bounded uncorrelated jitter. Similarly, the second bounded jitter component may be associated with at least one of deterministic jitter, data dependent jitter, periodic jitter and other bounded uncorrelated jitter. Thus, the individual contributions of the deterministic jitter, data dependent jitter, periodic jitter and other bounded uncorrelated jitter to the total jitter can be determined in a particularly fast and convenient way.
In some embodiments, the first bounded jitter component is associated with at least two different bounded jitter components. In other words, the first bounded jitter component corresponds to a sum over at least two of the data dependent jitter, the periodic jitter and the other bounded uncorrelated jitter. Accordingly, the corresponding histogram also contains the time interval errors associated with the respective sum of these at least two bounded jitter components.
At least one of the at least two different bounded jitter components may be associated with data dependent jitter. Data dependent jitter is directly correlated with the data contained within the input signal, more precisely with a symbol sequence comprised in the input signal. The data dependent jitter comprises at least one of duty cycle distortion, which is due to different slopes of rising signal edges and falling signal edges, and inter-symbol interferences, which relate to limited bandwidths of the transmission channel or rather reflections in the transmission channel.
According to a further aspect, the random jitter data comprises a standard deviation of the time interval error associated with the random jitter component of the input signal. As the random jitter is normal-distributed and centred around zero, the standard deviation is the only parameter needed to completely describe the probability distribution of the random jitter. In other words, if the standard deviation is known, the whole probability distribution of the random jitter is known. Thus, the probability of the random jitter giving a certain contribution to the total jitter can easily be determined based on the standard deviation.
In a further embodiment of the disclosure, a probability of the time interval error associated with the random jitter component being inside a predefined interval is calculated based on the standard deviation in order to determine the bit error rate. As already stated above, the standard deviation completely describes the probability distribution of the random jitter. The probability is then determined as the integral of the probability distribution of the random jitter over the predefined interval.
The determined bit error rate may be displayed on a display. In some embodiments, the contributions of the individual components of the bounded jitter components and/or of the random jitter may be selectively displayed on the display. In this way, the user can easily identify the different contributions of the bounded jitter components and/or the contribution of the random jitter to bit error rate.
According to another embodiment of the disclosure, the input signal is PAM-n coded, wherein n is an integer bigger than 1. Accordingly, the method is not limited to binary signals (PAM-2 coded) since any kind of pulse-amplitude modulated signals may be processed.
Embodiments of the disclosure further provide a bit error rate determination method for determining a bit error rate of an input signal, wherein the input signal is generated by a signal source, comprising the following steps:
at least one of receiving and generating a first histogram of a time interval error associated with a first bounded jitter component of the input signal;
at least one of receiving and generating random jitter data comprising information on a time interval error associated with a random jitter component of the input signal; and
determining the bit error rate based on at least one of the first histogram and the random jitter data by applying the error function or the complementary error function to the random jitter data.
The bit error rate determination method according to the disclosure is based on the rationale that the bit error rate can be determined based on the first histogram of a time interval error associated with a first bounded jitter component and based on the random jitter data without explicitly measuring the number of times that the total jitter exceeds a certain threshold.
Instead, the bit error rate is extrapolated based on the first histogram and the random jitter data which enables determining even very small bit error rates that would usually take a very long time to measure if measured directly. This extrapolation can be done in a particularly fast fashion by applying the error function or the complementary error function to the random jitter data.
Thus, a method capable of determining the bit error rate in a particularly fast way is provided.
Embodiments of the disclosure further provide a measurement instrument, comprising at least one input channel and an analysis module being connected to the at least one input channel, the measurement instrument being configured to receive an input signal via the input channel and to forward the input signal to the analysis module, the analysis module being configured to at least one of receive and generate a first histogram of a time interval error associated with a first bounded jitter component of the input signal, the analysis module being configured to at least one of receive and generate random jitter data comprising information on a time interval error associated with a random jitter component of the input signal, and the analysis module being configured to determine a bit error rate of the input signal based on at least one of the first histogram and the random jitter data.
The measurement instrument according to the disclosure is based on the finding that the bit error rate can be determined based on the first histogram of a time interval error associated with a first bounded jitter component and based on the random jitter data without explicitly measuring the number of times that the total jitter exceeds a certain threshold.
Instead, the bit error rate is extrapolated by the measurement instrument based on the first histogram and the random jitter data which enables determining even very small bit error rates that would usually take a very long time to measure if measured directly.
Thus, a measurement instrument capable of determining the bit error rate in a particularly fast way is provided.
In some embodiments, the measurement instrument is configured to perform the bit error rate determination method for determining a bit error rate in an input signal that is described above.
According to an aspect, an analysis circuit or module is configured to at least one of generate and receive a second histogram of a time interval error associated with a second bounded jitter component, and wherein the analysis module is configured to determine the bit error rate based on at least one of the first histogram, the second histogram and the random jitter data. Therein, the second bounded jitter component is different from the first bounded jitter component. Thus, the bit error rate is extrapolated based on the first bounded jitter component, the second bounded jitter component and/or the random jitter data. This way, the bit error rate associated with the first bounded jitter component, the second bounded jitter component and/or the random jitter data can be determined by the measurement instrument in a particularly fast way without explicitly measuring the number of times that the total jitter and/or the individual jitter components exceed a certain threshold.
According to another aspect, the analysis module is configured to determine the bit error rate selectively based on at least one of the first histogram, the second histogram and the random jitter data. In other words, which of the first histogram, the second histogram and the random jitter data is taken into account by the measurement instrument for determining the bit error rate is adjustable, for example adjustable by a user. Thus, the individual bounded jitter components may each be considered or neglected for the determination of the bit error rate. Put differently, the impact of the individual bounded jitter components on the bit error rate can be determined by considering or neglecting the individual components and comparing the different results for the bit error rate. This is particularly useful for the debugging of devices under test, as the jitter components yielding the largest contributions to the total jitter can be identified by the measurement instrument even for very small total bit error rates.
Moreover, the measurement instrument may be configured to selectively display the individual contributions on a display such that a user can easily identify the different contributions of the bounded jitter components to the bit error rate.
In some embodiments, the random jitter data comprises a standard deviation of the time interval error associated with the random jitter component of the input signal. As the random jitter is normal-distributed and centred around zero, the standard deviation is the only parameter needed to completely describe the probability distribution of the random jitter. In other words, if the standard deviation is known, the whole probability distribution of the random jitter is known. Thus, the probability of the random jitter giving a certain contribution to the total jitter can easily be determined based on the standard deviation. In some embodiments, the measurement instrument or rather the analysis module is configured to determine the probability distribution of the random jitter based on the standard deviation.
Accordingly, the analysis module may be configured to determine a probability of the time interval error associated with the random jitter component being inside a predefined interval based on the standard deviation in order to determine the bit error rate. For example, the analysis module is configured to determine the integral of the probability distribution of the random jitter over the predefined interval in order to obtain the probability.
According to another aspect of the present disclosure, the measurement instrument comprises a display, wherein the measurement instrument is configured to display the determined bit error rate on the display. In some embodiments, the measurement instrument may be configured to display the contributions of the individual components of the bounded jitter components and/or of the random jitter to the bit error rate on the display. In this way, the user can easily identify the different contributions of the bounded jitter components and/or the contribution of the random jitter to bit error rate.
The analysis module can comprise hardware and/or software portions, hardware and/or software modules, etc. In some embodiments, the measurement instrument is configured to perform the jitter determination methods described above. Some of the method steps may be implemented in hardware and/or in software. In some embodiments, one or more of the method steps may be implemented, for example, only in software. In some embodiments, all of the method steps are implemented, for example, only in software. In some embodiments, the method steps are implemented only in hardware.
The foregoing aspects and many of the attendant advantages of the claimed subject matter will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
The detailed description set forth below in connection with the appended drawings, where like numerals reference like elements, is intended as a description of various embodiments of the disclosed subject matter and is not intended to represent the only embodiments. Each embodiment described in this disclosure is provided merely as an example or illustration and should not be construed as preferred or advantageous over other embodiments. The illustrative examples provided herein are not intended to be exhaustive or to limit the claimed subject matter to the precise forms disclosed.
The probe 16 is connected to the input channel 18 which in turn is connected to the analysis module 20. The display 22 is connected to the analysis module 20 and/or to the input channel 18 directly. Typically, a housing is provided that encompasses at least the analysis module 20.
Generally, the measurement instrument 12 may comprise an oscilloscope, as a spectrum analyzer, as a vector network analyzer or as any other kind of measurement device being configured to measure certain properties of the device under test 14.
The device under test 14 comprises a signal source 24 as well as a transmission channel 26 connected to the signal source 24.
In general, the signal source 24 is configured to generate an electrical signal that propagates via the transmission channel 26. In some embodiments, the device under test 14 comprises a signal sink to which the signal generated by the signal source 24 propagates via the transmission channel 26.
More specifically, the signal source 24 generates the electrical signal that is then transmitted via the transmission channel 26 and probed by the probe 16, for example a tip of the probe 16. In fact, the electrical signal generated by the signal source 24 is forwarded via the transmission channel 26 to a location where the probe 16, for example its tip, can contact the device under test 14 in order to measure the input signal. Thus, the electrical signal may generally be sensed between the signal source 24 and the signal sink assigned to the signal source 24, wherein the electrical signal may also be probed at the signal source 24 or the signal sink directly. Put another way, the measurement instrument 12, for example the analysis module 20, receives an input signal via the probe 16 that senses the electrical signal.
The input signal probed is forwarded to the analysis module 20 via the input channel 18. The input signal is then processed and/or analyzed by the analysis module 20 in order to determine the properties of the device under test 14.
Therein and in the following, the term “input signal” is understood to be a collective term for all stages of the signal generated by the signal source 24 that exist before the signal reaches the analysis module 20. In other words, the input signal may be altered by the transmission channel 26 and/or by other components of the device under test 14 and/or of the measurement instrument 12 that process the input signal before it reaches the analysis module 20. Accordingly, the input signal relates to the signal that is received and analyzed by the analysis module 20.
The input signal usually contains perturbations in the form of total jitter (TJ) that is a perturbation in time and total noise (TN) that is a perturbation in amplitude. The total jitter and the total noise in turn each comprise several components. Note that the abbreviations introduced in parentheses will be used in the following.
As is shown in
The deterministic jitter (DJ) itself comprises data dependent jitter (DDJ), periodic jitter (PJ) and other bounded uncorrelated jitter (OBUJ).
The data dependent jitter is directly correlated with the input signal, for example directly correlated with signal edges in the input signal. The periodic jitter is uncorrelated with the input signal and comprises perturbations that are periodic, for example in time. The other bounded uncorrelated jitter comprises all deterministic perturbations that are neither correlated with the input signal nor periodic. The data dependent jitter comprises up to two components, namely inter-symbol interference (ISI) and duty cycle distortion (DCD).
Analogously, the total noise (TN) comprises random noise (RN) and deterministic noise (DN), wherein the deterministic noise contains data dependent noise (DDN), periodic noise (PN) and other bounded uncorrelated noise (OBUN).
Similarly to the jitter, the data dependent noise is directly correlated with the input signal, for example directly correlated with signal edges in the input signal. The periodic noise is uncorrelated with the input signal and comprises perturbations that are periodic, for example in amplitude. The other bounded uncorrelated noise comprises all deterministic perturbations that are neither correlated with the input signal nor periodic. The data dependent noise comprises up to two components, namely inter-symbol interference (ISI) and duty cycle distortion (DCD).
In general, there is cross-talk between the perturbations in time and the perturbations in amplitude. Put another way, jitter may be caused by “horizontal” temporal perturbations, which is denoted by “(h)” in
Likewise, noise may be caused by “horizontal” temporal perturbations, which is denoted by “(h)” in
In detail, the terminology used below is the following: Horizontal periodic jitter PJ(h) is periodic jitter that is caused by a temporal perturbation.
Vertical periodic jitter PJ(v) is periodic jitter that is caused by an amplitude perturbation.
Horizontal other bounded uncorrelated jitter OBUJ(h) is other bounded uncorrelated jitter that is caused by a temporal perturbation.
Vertical other bounded uncorrelated jitter OBUJ(v) is other bounded uncorrelated jitter that is caused by an amplitude perturbation.
Horizontal random jitter RJ(h) is random jitter that is caused by a temporal perturbation.
Vertical random jitter RJ(v) is random jitter that is caused by an amplitude perturbation.
The definitions for noise are analogous to those for jitter:
Horizontal periodic noise PN(h) is periodic noise that is caused by a temporal perturbation.
Vertical periodic noise PN(v) is periodic noise that is caused by an amplitude perturbation.
Horizontal other bounded uncorrelated noise OBUN(h) is other bounded uncorrelated noise that is caused by a temporal perturbation.
Vertical other bounded uncorrelated noise OBUN(v) is other bounded uncorrelated noise that is caused by an amplitude perturbation.
Horizontal random noise RN(h) is random noise that is caused by a temporal perturbation.
Vertical random noise RN(v) is random noise that is caused by an amplitude perturbation.
As mentioned above, noise and jitter each may be caused by “horizontal” temporal perturbations and/or by “vertical” amplitude perturbations.
The measurement instrument 12 or rather the analysis module 20 is configured to perform the steps schematically shown in
In some embodiments, one or more computer-readable storage media is provided containing computer readable instructions embodied thereon that, when executed by one or more computing devices (contained in or associated with the measurement instrument 12, the analysis module 20, etc.), cause the one or more computing devices to perform one or more steps of the method of
Model of the Input Signal
First of all, a mathematical substitute model of the input signal or rather of the jitter components and the noise components of the input signal is established. Without loss of generality, the input signal is assumed to be PAM-n coded in the following, wherein n is an integer bigger than 1. Hence, the input signal may be a binary signal (PAM-2 coded).
Based on the categorization explained above with reference to
In the first term, namely
b(k) represents a bit sequence sent by the signal source 24 via the transmission channel 26, wherein Tb is the bit period.
Note that strictly speaking the term “bit” is only correct for a PAM-2 coded input signal. However, the term “bit” is to be understood to also include a corresponding signal symbol of the PAM-n coded input signal for arbitrary integer n.
h(t/Tb) is the joint impulse response of the signal source 24 and the transmission channel 26. In case of directly probing the signal source 24, h(t/Tb) is the impulse response of the signal source 24 since no transmission channel 26 is provided or rather necessary.
Note that the joint impulse response h(t/Tb) does not comprise contributions that are caused by the probe 16, as these contributions are usually compensated by the measurement instrument 12 or the probe 16 itself in a process called “de-embedding”. Moreover, contributions from the probe 16 to the joint impulse response h(t/Tb) may be negligible compared to contributions from the signal source 24 and the transmission channel 26.
Npre and Npost respectively represent the number of bits before and after the current bit that perturb the input signal due to inter-symbol interference. As already mentioned, the length Npre+Npost+1 may comprise several bits, for example several hundred bits, especially in case of occurring reflections in the transmission channel 26.
Further, ε(k) is a function describing the time perturbation, i.e. ε(k) represents the temporal jitter.
Moreover, the input signal also contains periodic noise perturbations, which are represented by the second term in eauation (E.11. namely
The periodic noise perturbation is modelled by a series over NPN(v) sine-functions with respective amplitudes Ai, frequencies fi and phases ϕi, which is equivalent to a Fourier series of the vertical periodic noise.
The last two terms in equation (E.1), namely
+xRN(v)(t/Tb)+xOBUN(v)(t/Tb),
represent the vertical random noise and the vertical other bounded uncorrelated noise contained in the input signal, respectively.
The function ε(k) describing the temporal jitter is modelled as follows:
The first term in equation (E.2), namely
represents the periodic jitter components that are modelled by a series over NpJ(h) sine-functions with respective amplitudes ai, frequencies εi and phases φi, which is equivalent to a Fourier series of the horizontal periodic jitter.
The last two terms in equation (E.2), namely
εRJ(k)/Tb+εOBUJ(k)/Tb,
represent the random jitter and the other bounded uncorrelated jitter contained in the total jitter, respectively.
In order to model duty cycle distortion (DCD), the model of (E.1) has to be adapted to depend on the joint step response hs(t/Tb, b(k)) of the signal source 24 and the transmission channel 26.
As mentioned earlier, the step response hs(t/Tb, b(k)) of the signal source 24 may be taken into account provided that the input signal is probed at the signal source 24 directly.
Generally, duty cycle distortion (DCD) occurs when the step response for a rising edge signal is different to the one for a falling edge signal.
The inter-symbol interference relates, for example, to limited transmission channel or rather reflection in the transmission.
The adapted model of the input signal due to the respective step response is given by
Therein, x-∞ represents the state at the start of the transmission of the input signal, for example the state of the signal source 24 and the transmission channel 26 at the start of the transmission of the input signal.
The step response hs(t/Tb, b(k)) depends on the bit sequence b(k), or more precisely on a sequence of NDCD bits of the bit sequence b(k), wherein NDCD is an integer bigger than 1.
Note that there is an alternative formulation of the duty cycle distortion that employs NDCD=1. This formulation, however, is a mere mathematical reformulation of the same problem and thus equivalent to the present disclosure.
Accordingly, the step response hs(t/Tb, b(k)) may generally depend on a sequence of NDCD bits of the bit sequence b(k), wherein NDCD is an integer value.
Typically, the dependency of the step response hs(t/Tb, b(k)) on the bit sequence b(k) ranges only over a few bits, for instance NDCD=2, 3, . . . , 6.
For NDCD=2 this is known as “double edge response (DER)”, while for NDCD>2 this is known as “multi edge response (MER)”.
Without restriction of generality, the case NDCD=2 is described in the following. However, the outlined steps also apply to the case NDCD>2 with the appropriate changes. As indicated above, the following may also be (mathematically) reformulated for NDCD=1.
In equation (E.3), the term b(k)−b(k−1), which is multiplied with the step response hs(t/Tb, b(k)), takes two subsequent bit sequences, namely b(k) and b(k−1), into account such that a certain signal edge is encompassed.
In general, there may be two different values for the step response hs(t/Tb, b(k)), namely hs(r)(t/Tb) for a rising signal edge and hs(f)(t/Tb) for a falling signal edge. In other words, the step response hs(t/Tb, b(k)) may take the following two values:
If the temporal jitter ε(k) is small, equation (E.3) can be linearized and then becomes
Note that the last term in equation (E.5), namely
describes an amplitude perturbation that is caused by the temporal jitter ε(k).
It is to be noted that the input signal comprises the total jitter as well as the total noise so that the input signal may also be labelled by xTJ(t/Tb).
Clock Data Recovery
A clock data recovery is now performed based on the received input signal employing a clock timing model of the input signal, which clock timing model is a slightly modified version of the substitute model explained above. The clock timing model will be explained in more detail below.
Generally, the clock signal Tclk is determined while simultaneously determining the bit period Tb from the times tedge(i) of signal edges based on the received input signal.
More precisely, the bit period Tb scaled by the sampling rate 1/Ta is inter alia determined by the analysis module 20.
In the following, {circumflex over (T)}b/Ta is understood to be the bit period that is determined by the analysis module 20. The symbol “{circumflex over ( )}” marks quantities that are determined by the analysis module 20, for example quantities that are estimated by the analysis module 20.
One aim of the clock data recovery is to also determine a time interval error TIE (k) caused by the different types of perturbations explained above.
Moreover, the clock data recovery may also be used for decoding the input signal, for determining the step response h(t\Tb) and/or for reconstructing the input signal. Each of these applications will be explained in more detail below.
Note that for each of these applications, the same clock data recovery may be performed. Alternatively, a different type of clock data recovery may be performed for at least one of these applications.
In order to enhance the precision or rather accuracy of the clock data recovery, the bit period {circumflex over (T)}b/Ta is determined jointly with at least one of the deterministic jitter components mentioned above and with a deviation Δ{circumflex over (T)}b/Ta from the bit period {circumflex over (T)}b/Ta.
In the case described in the following, the bit period {circumflex over (T)}b/Ta and the deviation Δ{circumflex over (T)}b/Ta are estimated together with the data dependent jitter component and the periodic jitter components. Therefore, the respective jitter components are taken into account when providing a cost functional that is to be minimized.
The principle of minimizing a cost functional, also called criterion, in order to determine the clock signal Tclk is known.
More precisely, the bit period {circumflex over (T)}b/Ta and the deviation Δ{circumflex over (T)}b/Ta are determined by determining the times tedge(i) of signal edges based on the received input signal and by then minimizing the following cost functional K, for example by employing a least mean squares approach:
As mentioned above, the cost functional K used by the method according to the present disclosure comprises terms concerning the data dependent jitter component, which is represented by the fourth term in equation (E.6) and the periodic jitter components, which are represented by the fifth term in equation (E.6), namely the vertical periodic jitter components and/or the horizontal periodic jitter components.
Therein, LISI, namely the length LISI
Hence, the cost functional K takes several signal perturbations into account rather than assigning their influences to (random) distortions as typically done in the prior art.
In fact, the term
relates to the data dependent jitter component. The term assigned to the data dependent jitter component has several arguments for improving the accuracy since neighbored edge signals, also called aggressors, are taken into account that influence the edge signal under investigation, also called victim.
In addition the term
concerns the periodic jitter components, namely the vertical periodic jitter components and/or the horizontal periodic jitter components, that are also explicitly mentioned as described above. Put it another way, it is assumed that periodic perturbations occur in the received input signal which are taken into consideration appropriately.
If the signal source 24 is configured to perform spread spectrum clocking, then the bit period Tb/Ta is not constant but varies over time.
The bit period can then, as shown above, be written as a constant central bit period Tb, namely a central bit period being constant in time, plus a deviation ΔTb from the central bit period Tb, wherein the deviation ΔTb varies over time.
In this case, the period of observation is divided into several time slices or rather time sub-ranges. For ensuring the above concept, the several time slices are short such that the central bit period Tb is constant in time.
The central bit period Tb and the deviation ΔTb are determined for every time slice or rather time sub-range by minimizing the following cost functional K:
which is the same cost functional as the one in equation (E.6).
Based on the determined bit period {circumflex over (T)}b/Ta and based on the determined deviation Δ{circumflex over (T)}b/Ta, the time interval error TIE(i)/Ta is determined as
TIE(i)/Ta=tedge(i)/Ta−ki,η·{circumflex over (T)}b(η)/Ta−Δ{circumflex over (T)}b(η)Ta,
Put another way, the time interval error TIE(i)/Ta corresponds to the first three terms in equations (E.6) and (E.7), respectively.
However, one or more of the jitter components may also be incorporated into the definition of the time interval error TIE (i)/Ta.
In the equation above regarding the time interval error TIE(i)/Ta, the term ki,η·{circumflex over (T)}b(η)/Ta+Δ{circumflex over (T)}b(η)/Ta represents the clock signal for the i-th signal edge. This relation can be rewritten as follows {circumflex over (T)}clk=ki,η·{circumflex over (T)}b(η)/Ta+Δ{circumflex over (T)}b(η)/Ta.
As already described, a least mean squares approach is applied with which at least the constant central bit period Tb and the deviation ΔTb from the central bit period Tb are determined.
In other words, the time interval error TIE(i)/Ta is determined and the clock signal Tclk is recovered by the analysis described above.
In some embodiments, the total time interval error TIETJ(k) is determined employing the clock data recovery method described above (step S.3.1 in
Generally, the precision or rather accuracy is improved since the occurring perturbations are considered when determining the bit period by determining the times tedge (i) of signal edges based on the received input signal and by then minimizing the cost functional K.
Decoding the Input Signal
With the recovered clock signal Tclk determined by the clock recovery analysis described above, the input signal is divided into the individual symbol intervals and the values of the individual symbols (“bits”) b(k) are determined.
The signal edges are assigned to respective symbol intervals due to their times, namely the times tedge(i) of signal edges. Usually, only one signal edge appears per symbol interval.
In other words, the input signal is decoded by the analysis module 20, thereby generating a decoded input signal. Thus, b(k) represents the decoded input signal.
The step of decoding the input signal may be skipped if the input signal comprises an already known bit sequence. For example, the input signal may be a standardized signal such as a test signal that is determined by a communication protocol. In this case, the input signal does not need to be decoded, as the bit sequence contained in the input signal is already known.
Joint Analysis of the Step Response and of the Periodic Signal Components
The analysis module 20 is configured to jointly determine the step response of the signal source 24 and the transmission channel 26 on one hand and the vertical periodic noise parameters defined in equation (E.5) on the other hand, wherein the vertical periodic noise parameters are the amplitudes Ai, the frequencies fi and the phases ϕi (step S.3.2 in
Therein and in the following, the term “determine” is understood to mean that the corresponding quantity may be computed and/or estimated with a predefined accuracy.
Thus, the term “jointly determined” also encompasses the meaning that the respective quantities are jointly estimated with a predefined accuracy.
However, the vertical periodic jitter parameters may also be jointly determined with the step response of the signal source 24 and the transmission channel 26 in a similar manner.
The concept is generally called joint analysis method.
In general, the precision or rather accuracy is improved due to jointly determining the step response and the periodic signal components.
Put differently, the first three terms in equation (E.5), namely
are jointly determined by the analysis module 20.
As a first step, the amplitudes Ai, the frequencies fi and the phases ϕi are roughly estimated via the steps depicted in
First, a clock data recovery is performed based on the received input signal (step S.4.1), for example as described above.
Second, the input signal is decoded (step S.4.2).
Then, the step response, for example the one of the signal source 24 and the transmission channel 26, is roughly estimated based on the decoded input signal (step S.4.3), for example by matching the first term in equation (E.5) to the measured input signal, for example via a least mean squares approach.
Therein and in the following, the term “roughly estimated” is to be understood to mean that the corresponding quantity is estimated with an accuracy being lower compared to the case if the quantity is determined.
Now, a data dependent jitter signal xDDJ being a component of the input signal only comprising data dependent jitter is reconstructed based on the roughly estimated step response (step S.4.4).
The data dependent jitter signal xDDJ is subtracted from the input signal (step S.4.5). The result of the subtraction is the signal xpN-FRN that approximately only contains periodic noise and random noise.
Finally, the periodic noise parameters Ai, fi, ϕi are roughly estimated based on the signal xPN+FRN (step S.4.6), for example via a fast Fourier transform of the signal xPN+RN.
In the following, these roughly estimated parameters are marked by subscripts “0”, i.e. the rough estimates of the frequencies are fi,0 and the rough estimates of the phases are ϕi,0. The roughly estimated frequencies fi,0 and phases ϕi,0 correspond to working points for linearizing purposes as shown hereinafter.
Accordingly, the frequencies and phases can be rewritten as follows:
f
i
/f
b
=f
i,0
/f
b
+Δf
i
/f
b
ϕi=ϕi,0+Δϕi (E.8)
Therein, Δfi and Δϕi are deviations of the roughly estimated frequencies fi,0 and phases ϕi,0 from the actual frequencies and phases, respectively. By construction, the deviations Δfi and Δϕi are much smaller than the associated frequencies fi and phases ϕi, respectively.
With the re-parameterization above, the sine-function in the third term in equation (E.5), namely
can be linearized as follows while using small-angle approximation or rather the Taylor series:
In the last two lines of equation (E.9), the following new, linearly independent parameters have been introduced, which are determined afterwards:
p
i,0
=A
i
p
i,1
=A
i
·Δf
i
/f
b
p
i,2=Δi·Δϕi (E.10)
With the mathematical substitute model of equation (E.5) adapted that way, the analysis module 20 can now determine the step response hs(t/Tb,b(k)), more precisely the step response hs(r) (t/Tb) for rising signal edges and the step response hs(f)(t/Tb) for falling signal edges, and the vertical periodic noise parameters, namely the amplitudes Ai, the frequencies fi and the phases ϕi, jointly, i.e. at the same time.
This may be achieved by minimizing a corresponding cost functional K, for example by applying a least mean squares method to the cost functional K. The cost functional has the following general form:
K=[A(k)·{circumflex over (x)}−xL(k)]·[A(k)·{circumflex over (x)}−xL(k)]. (E.11)
Therein, xL(k) is a vector containing L measurement points of the measured input signal. {circumflex over (x)} is a corresponding vector of the input signal that is modelled as in the first three terms of equation (E.5) and that is to be determined. A(k) is a matrix depending on the parameters that are to be determined.
In some embodiments, matrix A(k) comprises weighting factors for the parameters to be determined that are assigned to the vector xL(k).
Accordingly, the vector xL(k) may be assigned to the step response hs(r)(t/Tb) for rising signal edges, the step response hs(f)(t/Tb) for falling signal edges as well as the vertical periodic noise parameters, namely the amplitudes A1, the frequencies fi and the phases ϕi.
The least squares approach explained above can be extended to a so-called maximum-likelihood approach. In this case, the maximum-likelihood estimator {circumflex over (x)}ML is given by
x
ML=[A(k)·Rn−1(k)·A(k)]−1·[AT(k)·Rn−1(k)·xL(k)]. (E.11a)
Therein, Rn(k) is the covariance matrix of the perturbations, i.e. the jitter and noise components comprised in equation (E.5).
Note that for the case of pure additive white Gaussian noise, the maximum-likelihood approach is equivalent to the least squares approach.
The maximum-likelihood approach may be simplified by assuming that the perturbations are not correlated with each other. In this case, the maximum-likelihood estimator becomes
{circumflex over (x)}
ML≈[AT(k)·((rn,i(k)·1T)∘A(k))]−1·[AT(k)·(rn,i(k)∘xL(k))]. (E.11b)
Therein, 1T is a unit vector and the vector rn,i(k) comprises the inverse variances of the perturbations.
For the case that only vertical random noise and horizontal random noise are considered as perturbations, this becomes
Employing equation (E.11c) in equation (E.11b), an approximate maximum likelihood estimator is obtained for the case of vertical random noise and horizontal random noise being approximately Gaussian distributed.
If the input signal is established as a clock signal, i.e. if the value of the individual symbol periodically alternates between two values with one certain period, the approaches described above need to be adapted. The reason for this is that the steps responses usually extend over several bits and therefore cannot be fully observed in the case of a clock signal. In this case, the quantities above have to be adapted in the following way:
Input Signal Reconstruction and Determination of Time Interval Error
With the determined step response and with the determined periodic noise signal parameters, a reconstructed signal {circumflex over (x)}DDJ+PN(v)(t/Tb) containing only data dependent jitter and vertical periodic noise can be determined while taking equation (E.5) into account.
Thus, the reconstructed signal {circumflex over (x)}DDJ+PN(v)(t/Tb) is given by
Moreover, also a reconstructed signal {circumflex over (x)}DDJ(t/Tb) containing only data dependent jitter and a reconstructed signal {circumflex over (x)}PN(v)(t/Tb) containing only vertical periodic noise are determined by the analysis module 20 (steps S.3.3 and S.3.4).
Based on the reconstructed signals {circumflex over (x)}DDJ (t/Tb) and {circumflex over (x)}DDJ+PN(v) (t/Tb), the time interval error TIEDDJ+PJ(v)(k) that is associated with data dependent jitter and the time interval error TIEDDJ+pJ(v)(k) that is associated with data dependent jitter and with vertical periodic jitter are determined (steps S.3.3.1 and S.3.4.1).
Histograms
The analysis module 20 is configured to determine histograms of at least one component of the time interval error based on the corresponding time interval error (step S.3.5).
Generally speaking, the analysis unit 20 is firstly configured to determine the time interval error TIEJx associated with a jitter component Jx. The analysis module 20 can determine a histogram associated with that jitter component Jx and may display it on the display 22.
In the cases of total jitter and data dependent jitter, rising signal edges and falling signal edges are treated separately such that information on duty cycle distortion is contained within the histogram.
Of course, a histogram corresponding only to certain components of the periodic jitter and/or of the random jitter may be determined and displayed, for example a histogram corresponding to at least one of horizontal periodic jitter, vertical periodic jitter, horizontal random jitter and vertical random jitter.
Note that from
Moreover, the deterministic jitter and the random jitter are statistically independent from each other. Thus, the histogram of the total jitter may be determined by convolution of the histograms related to deterministic jitter and random jitter.
The measurement instrument 12 may be configured to selectively display one or more of the determined histograms on the display 22.
For example, the user may choose which of the jitter components are selectively displayed.
Thus, the histogram corresponding to the time interval error associated with at least one of the vertical periodic jitter, the horizontal periodic jitter, the vertical random jitter, the horizontal random jitter, the data dependent jitter and the other bounded uncorrelated jitter may be selectively displayed on the display 22.
Separation of Random Jitter and Horizontal Periodic Jitter
The analysis module 20 is configured to determine the time interval error TIERJ that is associated with the random jitter and the time interval error TIEPJ(h) that is associated with the horizontal periodic jitter (step S.3.6).
As shown in
Then, TIEDDJ+PJ (v) is subtracted from the total time interval error TIETJ(k) such that the time interval error TIERJ+pJ(h) is obtained that only contains random jitter, horizontal periodic jitter and other bounded uncorrelated jitter. In this regard, reference is made to
Note that in the following, the other bounded uncorrelated jitter component is neglected. However, it may also be incorporated into the analysis described below.
Analogously to the joint analysis method described above (step S.3.2), also the horizontal periodic jitter defined by the first term in equation (E.2), for example its time interval error, can be determined by determining the corresponding amplitudes ai, frequencies ϑi and phases φi. A flow chart of the corresponding method is depicted in
For this purpose, the amplitudes ai, frequencies ϑi and phases φi are roughly estimated at first (step S.6.1).
Then, at least these parameters are determined jointly (step S.6.2).
The time interval error TIEPJ(h) that is associated with horizontal periodic jitter is then reconstructed (step S.6.3). The result is given by
From this, also the time interval error TIERJ being associated only with random jitter is calculated by subtracting TÎEPJ(h) from TIERJ+PJ(h).
Determination of Random Jitter
Generally, the analysis module 20 is configured to determine a statistical moment that is associated with the temporal random jitter εRJ. Therein, the statistical moment is of second order or higher.
In some embodiments, the analysis module 20 is configured to determine the variance σε
The approach is based on determining an autocorrelation function rTIE,TIE(m) the time interval error that is defined by
wherein NACF (m) is the number of elements that are taken into account for the calculation of the autocorrelation function. As shown, the number of elements depends on displacement parameter m.
Further, LACF corresponds to the length of the autocorrelation function. The length may be adjustable by the user and/or may be equal to or bigger than the maximum of the maximal period of the periodic jitter and the length of the impulse response of the signal source 24 and the transmission channel 26.
In general, the analysis module 20 may be configured to selectively determine the respective autocorrelation function rTIE
Generally, the measurement instrument 12 may be configured to selectively display the autocorrelation function rTIE
Accordingly, the approach for determining the variance σε
A component xDDJ+RJ(t/Tb)≈xDDJ(t/Tb)+nRJ(t/Tb) of the input signal contains the data dependent jitter signal
and the perturbation
that is caused by the random jitter εRJ(k)/Tb. As shown above, the periodic jitter is not taken into account in the following. However, it might be taken into account if desired.
As can be seen from
In this approach the times tedge of the signal edges of the data dependent jitter signal xDDJ(t/Tb) are determined by the analysis module 20, for example based on the reconstructed data dependent jitter signal {circumflex over (x)}DDJ(t/Tb).
Alternatively, as depicted in
In some embodiments, the clock times tCLK can be used provided that the slopes of the respective jitter signals, namely the data dependent jitter signal xDDJ(t/Tb) as well as the component xDDJ+RJ(t/Tb) of the input signal, are substantially equal as indicated in
The respective equations can be easily determined from the respective gradient triangle in
In the following, the relation of equation (E.16) is used to derive the variance σε
Using equation (E.16), the autocorrelation function of the random jitter is given by
Therein and in the following, E{y} indicates an expected value of quantity y.
The method for determining the autocorrelation function rTIE
The upper two rows in
The memory range of the transmission channel 26 is Npre+Npost+1. Thus, there are 2N
The upper rows and the lower rows overlap in an overlap region starting at k=Nstart and ending at k=Nend. In the overlap region, the permutations of the bit sequences b(k) in the memory ranges of the upper and the lower rows have to be identical.
Note that only the overlap region contributes to the autocorrelation function.
In order to calculate the number of possible permutations in the overlap region, a case differentiation is made as follows:
The bit change at k=0 may be completely within the overlap region, completely outside of the overlap region or may overlap with the edge of the overlap region (i.e. one bit is inside of the overlap region and one bit is outside of the overlap region).
Similarly, the bit change at k=m may be completely within the overlap region, completely outside of the overlap region or may overlap with the edge of the overlap region (i.e. one bit is inside of the overlap region and one bit is outside of the overlap region).
Thus, there is a total of 3·3=9 cases that are taken into account.
Each permutation {b(k)} has a chance of P(u, v) for occurring and implies a particular slope
or the data dependent jitter signal xDDJ(tedge/Tb). Therein, u and v represent a particular realization of the bit sequence inside the overlap region and a particular realization of the bit sequence outside of the overlap region, respectively.
Now, the autocorrelation function of the perturbation nRJ(tedge/Tb k) for two particular realizations of the memory ranges at times k=0 and k=m leading to the particular realization u in the overlap region are determined. The conditional autocorrelation function of the perturbation nRJ(tedge/Tb) is determined to be
The temporal random jitter εRJ(k)/Tb is normally distributed, for example stationary and normally distributed. Thus, the autocorrelation function for the temporal random jitter εRJ(k)/Tb can be isolated since the other terms relate to deterministic contributions. In fact, the autocorrelation function for the temporal random jitter εRJ(k)/Tb is
Hence, the autocorrelation function for the temporal random jitter εRJ(k)/Tb has only one contribution different from zero, namely for k0=k1+m. Accordingly, equation (E.19) becomes
As already mentioned, only the overlap region has a contribution. Employing equation (E.21), the autocorrelation function of the random jitter is determined to be
wherein P((u, v)∩(u, w)) is the joint probability density defined by
As can clearly be seen from equations (E.21) and (E.22), the autocorrelation function rTIE
Thus, the variance σ∈
On one hand, the impulse response h (tedge/Tb−k, b(k)) is already known or can be determined, as it is the time derivative of the determined step response hs(t/Tb−k, b(k)) evaluated at time t=tedge. Moreover, the bit sequence b(k) is also known via the signal decoding procedure described above.
On the other hand, the time interval error TIERJ(k) is known from the separation of the random jitter and the horizontal periodic jitter described above (step S.3.6) and the autocorrelation function can be also calculated from this directly.
Thus, the only unknown quantity in equations (E.21) and (E.22) is the variance σ∈
As shown in
In
Power Spectral Density
The power spectral density RTIE,TIE(f/fb) of the time interval error is calculated based on the autocorrelation function by a Fourier series, which reads
The analysis module 20 may be configured to selectively determine the power spectral density RTIE
Moreover, the measurement instrument 12 may be configured to selectively display the power spectral density RTIE
As shown in
In
Generally, the respective result may be displayed on the display 22.
Bit Error Rate
The analysis module 20 is configured to determine the bit error rate BER(t/Tb) that is caused by the time interval error TIEDJ+RJ being associated with the deterministic jitter and the random jitter, i.e. with the total jitter (step S.3.8).
A bit error occurs if the time interval error TIEDJ being associated with the deterministic jitter and the time interval error TIERJ being associated with the random jitter fulfill one of the following two conditions:
Thus, based on the histogram of the time interval error TIEDJ associated with deterministic jitter and based on the variance σRJ2 of the time interval error TIERJ, the bit error rate BER(t/Tb) is determined as follows for times t/Tb<1/2:
For times 1/2<t/Tb<1, the bit error rate BER(t/Tb) is determined to be
Therein, Prise and Pfall are the probabilities of a rising signal edge and of a falling signal edge, respectively. NDJ,rise and NDJ,fall are the numbers of histogram containers of the deterministic jitter for rising signal edges and for falling signal edges, respectively. Correspondingly, TIEDJ,rise(i) and TIEDJ,fall(i) are the histogram values of the deterministic jitter for rising signal edges and for falling signal edges, respectively.
Thus, the bit error rate BER(t/Tb) is calculated based on the histogram of the deterministic jitter and based on the variance of the random jitter rather than determined directly by measuring the number of bit errors occurring within a certain number of bits.
Generally spoken, the bit error rate BER(t/Tb) is determined based on the respective time interval error used for deriving at the corresponding histogram.
This way, the bit error rate can also be determined in regions that are not accessible via direct measurements or that simply take a too long time to measure, for example for bit error rates BER(t/Tb)<10−6.
In some embodiments, bit error rates smaller than 10−8, smaller than 10−10 or even smaller than 10−12 can be determined employing the method described above.
In order to linearize the curves describing the bit error rate, a mathematical scale transformation Q(t/Tb) may be applied to the bit error rate, which is, at least for the case of Prise Pfall==0.5, given by:
Q(t/Tb)−√{square root over (2)}·erf−1(1−2·BER(t/Tb)) (E.28)
Instead of employing the histogram of the complete deterministic jitter, a histogram corresponding to at least one of the components of the deterministic jitter may be employed. Put differently, one or more of the components of the deterministic jitter may be selectively suppressed and the corresponding change of the bit error rate may be determined. This is also shown in
More precisely, one of or an arbitrary sum of the data dependent jitter, the other bounded uncorrelated jitter, the horizontal periodic jitter and the vertical periodic jitter may be included and the remaining components of the deterministic jitter may be suppressed.
For instance, the bit error rate BER(t/Tb) is determined based on the histogram related to data dependent jitter, the histogram related to data dependent jitter and periodic jitter or the histogram related to data dependent jitter and other bounded uncorrelated jitter.
Moreover, the horizontal and vertical components may be selectively taken into account. In fact, the precision or rather accuracy may be improved.
Analogously, only the variance of the vertical random jitter or of the horizontal random jitter may be employed instead of the variance of the complete random jitter such that the other one of the two random jitter components is suppressed and the effect of this suppression may be determined.
The respective histograms may be combined in any manner. Hence, the periodic jitter may be obtained by subtracting the data dependent jitter from the deterministic jitter.
Depending on which of the deterministic jitter components is included, the final result for the bit error rate BER(t/Tb) includes only the contributions of these deterministic jitter components.
Thus, the bit error rate BER(t/Tb) corresponding to certain jitter components can selectively be determined.
The determined bit error rate BER(t/Tb) may be displayed on the display 22 as shown in
In
In
In some embodiments, a bit error rate BER(t/Tb) containing only certain deterministic jitter components may be displayed on the display 22, wherein a user may choose which of the deterministic jitter components are included. Moreover, the fraction of the complete bit error rate that is due to the individual jitter components may be determined and displayed on the display 22.
Note that if the individual histograms of two statistically independent components TIE0 and TIE1 of the time interval error TIE are known, the resulting collective histogram containing both components can be determined by a convolution of the two individual histograms:
As mentioned already, the deterministic jitter and the random jitter are statistically independent from each other.
Thus, the histogram of the time interval error related to total jitter may be determined by convolution of the histograms of the time interval errors related to deterministic jitter and random jitter.
Joint Random Jitter and Random Noise Analysis
The analysis module 20 is configured to separate the vertical random noise and the horizontal random jitter contained within the input signal.
More precisely, the analysis module is configured to perform a joint random jitter and random noise analysis of the input signal in order to separate and/or determine the vertical random noise and the horizontal random jitter.
First, the determined data dependent jitter signal xDDJ(t/Tb), which is determined in step S.4.4, and the determined vertical periodic noise signal xPN(v) (step S.3.2) are subtracted from the input signal, labelled in the following by xTJ(t/Tb), thereby generating a perturbation signal n0(t/Tb), which is determined to be
The perturbation signal n0(t/Tb) approximately only contains horizontal random jitter, vertical random noises xRN(v)(t/Tb) and horizontal periodic jitter, wherein the temporal jitter
approximately only contains horizontal random jitter and horizontal periodic jitter.
As already mentioned, more than a single bit period may be taken into account.
The next step performed by the analysis module 20 is to determine the horizontal periodic jitter components.
For this purpose, a time variant equalizer filter ĥe(k,t/Tb) is applied to the perturbation signal n0(t/Tb). The time variant equalizer filter ĥe(k,t/Tb) is determined from a time variant equalizer filter {tilde over (h)}e(k,t/Tb) that is defined by:
{tilde over (h)}
e(k,t/Tb)=[b(−k)−b(−k+1)]·h(k−t/Tb,b(k)). (E.32)
More precisely, the time variant equalizer filter is determined by minimizing the following cost functional K, for example by applying a least mean squares approach:
Therein, {tilde over (H)}e(f/fb) is the Fourier transform of the time variant equalizer filter {tilde over (h)}e(k,t/Tb). Of course, this analysis could also be performed in time domain instead of the frequency domain as in equation (E.33).
The resulting time variant equalizer filter is then applied to the perturbation signal n0(t/Tb) such that a filtered perturbation signal is obtained, which is determined to be
Now, the frequencies εi and the phases φi are roughly estimated at first and then the amplitudes âi, the frequencies {circumflex over (ϑ)}i and the phases {circumflex over (φ)}i are determined jointly. For this purpose, the following cost functional
is minimized analogously to the joint parameter analysis method outlined above that corresponds to step S.3.2. shown in
If there is no duty cycle distortion or if the duty cycle distortion present in the input signal is much smaller than the horizontal periodic jitter, a time invariant equalizer filter {tilde over (h)}e(k,t/Tb)=h(k−t/Tb) may be used for determining the time invariant equalizer filter ĥe(k,t/Tb).
In this case, the filtered perturbation signal
still comprises a modulation [b(k)−b(k−1)] that is due to the bit sequence, which is however known and is removed before roughly estimating the frequencies ϑi and the phases φi.
With the determined amplitudes âi, the determined frequencies {circumflex over (ϑ)}i and the determined phases {circumflex over (φ)}i, the horizontal periodic jitter signal is now reconstructed to be
Based on the reconstructed horizontal periodic jitter signal, a random perturbation signal n1(t/Tb) is determined by subtracting the reconstructed horizontal periodic jitter signal shown in equation (E.37) from the perturbation signal. The determined random perturbation signal reads
and contains approximately only horizontal random jitter represented by the first term in the second line of equation (E.38) and vertical random noise represented by the second term in the second line of equation (E.38).
Generally speaking, the analysis module 20 now applies a statistical method to the signal of equation (E.38) at two different times in order to determine two statistical moments that are associated with the horizontal random jitter and with the vertical random noise, respectively.
More specifically, the analysis module 20 determines the variances σRJ(h)2 and σRN(v)2 that are associated with the horizontal random jitter and with the vertical random noise, respectively, based on equation (E.38). Note that both the horizontal random jitter and the vertical random noise are normal-distributed. Further, they are statistically independent from each other.
According to a first variant, the conditional expected value of n12(t/Tb) for a particular realization (u,v) of the memory range is used and is determined to be
Therein, P(u
According to a second variant, all possible permutations (ui, vi) are taken into account in equation (E.39), such that an unconditional expected value of n12(t/Tb) is obtained that reads
Therein, Pr and Pf are the probabilities for a rising signal flank and for a falling signal flank, respectively.
If there is no duty cycle distortion present or if the duty cycle distortion is very small, equation (E.39) simplifies to
The analysis module 20 is configured to determine the variances σRJ(h)2 and σRN(v)2 based on at least one of equations (E.39) to (E.41). More precisely, the respective equation is evaluated for at least two different times t/Tb. For example, the signal edge time t0/Tb=0 and the time ti/Tb=1/2 may be chosen.
As everything except for the two variances is known in equations (E.39) to (E.41), the variances σRJ(h)2 and σRN(v)2 are then determined from the resulting at least two equations. It is to be noted that the variances σRJ(h)2 and σRN(v)2 correspond to the respective standard deviations.
In order to enhance accuracy, the equations can be evaluated at more than two times and fitted to match the measurement points in an optimal fashion, for example by applying a least mean squares approach.
Alternatively or additionally, only the variance σRN(v)2 may be determined from the equations above and the variance σRJ(v)2 may be determined from the following relation
As the horizontal random jitter and the vertical random jitter are statistically independent, the variance σRJ(h)2 is then determined to be
σRJ(h)2/Tb2=σRJ2/Tb2−σRJ(v)2/Tb2 (E.43)
Therein, Pi is the probability that a signal edge with slope dxDDJ
Separation of Random Jitter and Other Bounded Uncorrelated Jitter
The analysis module 20 is further configured to determine a probability density fx
For instance, the separation of the random jitter and other bounded uncorrelated jitter may be done by modelling the random jitter x0 with a standard deviation σRJ whereas the other bounded uncorrelated jitter x1 is random having the probability density fx
The probability distribution may read as follows
A mathematical scale transformation Qx(x) as already described may be applied so that
is obtained, wherein the line obtained by the mathematical scale transformation may correspond to
for respective ends of the mathematical scale transformation.
The standard deviation σ and the parameters μ0,μ1 may be determined.
The standard deviation σ may also be determined differently, for instance as already described above.
In the input signal, the random jitter and the other bounded uncorrelated jitter are superposed. Therefore, a collective probability density fx(x) is given by a convolution of the individual probability densities with x=x0+x1, i.e.
Transformed into frequency domain, the convolution of equation (E.43) becomes a mere product. The Fourier transform fx
This property is employed in the separation of the random jitter component and the other bounded uncorrelated jitter component.
For example, the spectrum is determined based on measurements of the input signal and by matching the function of equation (E.44) to the measurement data.
In
Alternatively or additionally, the variance σRJ2 of the random jitter may already be known from one of the steps described above.
The probability density of the random jitter component is then determined to be
Based on the result of equation (E.45), the probability density fx
This is achieved by minimizing the following cost functional K, for example via a least mean squares approach:
Thus, the histogram of the other bounded uncorrelated jitter component can be determined.
Accordingly, histograms of all jitter components may be determined as already mentioned and shown in
Certain embodiments disclosed herein utilize circuitry (e.g., one or more circuits) in order to implement protocols, methodologies or technologies disclosed herein, operably couple two or more components, generate information, process information, analyze information, generate signals, encode/decode signals, convert signals, transmit and/or receive signals, control other devices, etc. Circuitry of any type can be used.
In an embodiment, circuitry includes, among other things, one or more computing devices such as a processor (e.g., a microprocessor), a central processing unit (CPU), a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a system on a chip (SoC), or the like, or any combinations thereof, and can include discrete digital or analog circuit elements or electronics, or combinations thereof. In an embodiment, circuitry includes hardware circuit implementations (e.g., implementations in analog circuitry, implementations in digital circuitry, and the like, and combinations thereof).
In an embodiment, circuitry includes combinations of circuits and computer program products having software or firmware instructions stored on one or more computer readable memories that work together to cause a device to perform one or more protocols, methodologies or technologies described herein. In an embodiment, circuitry includes circuits, such as, for example, microprocessors or portions of microprocessor, that require software, firmware, and the like for operation. In an embodiment, circuitry includes an implementation comprising one or more processors or portions thereof and accompanying software, firmware, hardware, and the like.
The present application may reference quantities and numbers. Unless specifically stated, such quantities and numbers are not to be considered restrictive, but exemplary of the possible quantities or numbers associated with the present application. Also in this regard, the present application may use the term “plurality” to reference a quantity or number. In this regard, the term “plurality” is meant to be any number that is more than one, for example, two, three, four, five, etc. The terms “about,” “approximately,” “near,” etc., mean plus or minus 5% of the stated value. For the purposes of the present disclosure, the phrase “at least one of A and B” is equivalent to “A and/or B” or vice versa, namely “A” alone, “B” alone or “A and B.”. Similarly, the phrase “at least one of A, B, and C,” for example, means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B, and C), including all further possible permutations when greater than three elements are listed.
The principles, representative embodiments, and modes of operation of the present disclosure have been described in the foregoing description. However, aspects of the present disclosure which are intended to be protected are not to be construed as limited to the particular embodiments disclosed. Further, the embodiments described herein are to be regarded as illustrative rather than restrictive. It will be appreciated that variations and changes may be made by others, and equivalents employed, without departing from the spirit of the present disclosure. Accordingly, it is expressly intended that all such variations, changes, and equivalents fall within the spirit and scope of the present disclosure, as claimed.
This application claims the benefit of U.S. Provisional Application No. 62/795,931, filed Jan. 23, 2019, and U.S. Provisional Application No. 62/799,558, filed Jan. 31, 2019, the disclosures of which are incorporated herein in their entirety.
Number | Date | Country | |
---|---|---|---|
62799558 | Jan 2019 | US | |
62795931 | Jan 2019 | US |