This invention relates generally to road surface removal equipment, reclaimer-stabilizer equipment and mining equipment, and more particularly, to bit assemblies including bits, bit holders, and bit blocks that last longer than heretofore known such assemblies when in use in the field and provide for greater ease of replaceability, both when worn out and when broken in the field.
Bit assemblies have long been utilized in road and highway milling machinery, as well as in off-road trenching equipment and in mining machinery. On such machinery, a plurality of bit assemblies are mounted both across the width and around the perimeter, sometimes in spiral or herringbone orientation, on the outside of a hollow rotary drum. Such bit assemblies are also utilized on the outside of a continuous chain, or similar endless looping machinery where the bits are moved through an orbit that is intercepted by the face of the road material being milled, the earth material from which a trench is being dug, and the material being mined.
The bit assemblies include a tip that has a working end and a shank. The shank is received in and may also be rotatably mounted in a bit holder that is secured, in turn, onto a bit block mounted (usually welded) on the outside of the drum. Bits typically have a hardened working end, preferably made of tungsten carbide or other hardened material, which impinges and digs into the surface it contacts to remove a portion of same. By utilizing a plurality of the bit assemblies around the outer surface of such a rotating drum or continuous chain, the amount of material removal in a given period of time may be substantial.
Since such road milling, trenching and mining machinery is considered heavy earth, coal, mineral or macadam moving machinery, substantial forces will operate on the bit assemblies in question. Engineers and operators of such equipment have long sought to extend the working life and decrease the down time of such equipment. A major breakthrough in the longevity of use of such equipment and in decreasing the time necessary to replace worn or broken bit assemblies used on such equipment was made by utilizing the bit assemblies shown and disclosed in U.S. Pat. No. 6,585,326 issued Jul. 1, 2003. That patent disclosed a bit assembly utilizing a bit holder that was held in place in its bit block without the necessity of utilizing a nut, retaining clip, bolt, or the like to maintain the bit holder in operative position in its bit block. By providing a bit holder with a generally cylindrical hollow shank having an elongate slot axially positioned through one side of the shank from the distal end thereof and extending toward the forward body portion of the shank, the bit holder was able to be pressed into a bore of the bit block such that the outer, generally cylindrical, radius of the shank was elastically collapsed an amount that was greater than the interference dimensions of a similarly sized solid shaft in a machined bore. It was found that the bit holder could be maintained in the bit block during operation, and be removed and replaced quickly by being driven out of its associated bit block without the need of removing retaining clips, threaded nuts or the like.
Additionally, the inventions disclosed in U.S. Pat. No. 7,097,258 issued Aug. 29, 2006 disclose a quick-change bit holder preferably having a slightly tapered shank with a pair of raised outer surfaces on a mediate portion along the length of the shank. The shank also includes a pair of diametrically opposed axially oriented slots extending along the shank through the mediate portion and immediately adjacent the raised outer portions of the shank on either side thereof. In this embodiment, unlike the embodiment first disclosed in U.S. Pat. No. 6,585,326, the dual opposed slots were totally internal in the shank and did not extend to the distal end of the shank. As such, the distal end of the shank provided more rigidity than the distal end of the shank disclosed in the '326 patent, but allowed enough deformation in the enlarged mediate portion of the shank, when pressed into a bit block to maintain the bit holder in a tapered bit block.
While the preferred embodiments shown in U.S. Pat. Nos. 6,585,326 and 7,097,258, were slightly (non-lockingly) tapered to the order of 1 degree or less per side, additional disclosures were made not only of tapered shanks, but shanks going from such a taper through and including a concave shape. Such shanks on either side of a strictly cylindrical shank, would be more efficient than a cylindrical shank in a cylindrical bore because the amount of surface contact, i.e., the driving interference distance, of such shanks would be less than the driving interference distance necessary for a completely cylindrical shank. However, such a cylindrical shape shank could work, although less efficiently and with more effort to insert or remove than the other preferred mentioned shanks.
The preferred bit blocks shown and utilized in the '326 patent include bores therethrough that are generally cylindrical with preferably a slight taper of 1 degree per side or less (preferably the same taper as the bit holder shank). Bit block bores that are completely cylindrical and also with 3½ degree per side taper have been utilized in bit assemblies. There are solid bit holder-bit block assemblies that are press fit assemblies.
A bit holder utilizing a substantial distal shank portion having a straight cylindrical outline and fitting into a bit block bore having a straight cylindrical bottom end with a slightly widened top end thereof is shown at U.S. Pat. No. 6,854,810.
As mentioned previously, the use of a quick change type bit holder as disclosed in the '326 patent both lessens down time of its associated machinery, and the additional upper body material of such preferred bit holders lengthens the in-service life thereof.
The use of bit holders of differing bit blocks having both slightly tapered bit holder bores and partially cylindrical bit holder bores has heretofore meant that when one picked a drum, chain, or the like of one manufacturer, one was limited to that manufacturer's bit holders. Therefore, a need has developed for the construction of a bit holder that may be utilized in either existing type quick change style bit blocks.
It is therefore an object of the invention, generally stated, to provide a new and improved bit holder which may be utilized in bit blocks having bit block bores that are cylindrical along its entire length, or that are slightly constantly tapered along their length, and also bit block bores that are tapered along an upper portion thereof and cylindrical along a lower portion thereof.
Another object of the present invention is the provision of a bit holder shank that deflects sufficiently to allow the bit holder to be inserted and retained in a bit block bore that has a bottom portion thereof that is either a cylindrical or a non-locking taper in shape.
The invention resides in a bit holder for use in road milling, trenching and mining equipment as part of an assembly including a bit, bit holder and bit block. The bit holder comprises a front body portion and a generally cylindrical hollow shank portion extending from a rear of the front body portion. A generally cylindrical hollow shank portion defines an annular side wall and includes a first elongate slot radially through the side wall extending generally axially along the side wall from a distal end thereof and has a termination on the side wall between the distal end of the shank and the rear of the front body portion. A second internal elongate slot is positioned substantially spatially opposite the shank from the first elongate slot extends generally axially along the side wall with an upper termination spatially related to the rear of the front body portion, and a lower termination spatially related to the distal end of the shank. At least portions of said shank having a free standing diametrical dimension that is larger than a corresponding diametrical dimensions of one of a cylindrical bit block bore, and a non-locking tapered bit block bore and the insertion of the bit holder shank in the bit block bore provides sufficient outward radial force by radial deflection of the portions of said shank adjacent said slots to retain the shank in the bit block bore during use.
The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention may best be understood from the following detailed description of a currently preferred embodiment and modifications thereof taken in conjunction with the accompanying drawings wherein like numerals refer to like parts, and in which:
Referring to
One of the features of the bit holder front body portion 21 is to provide substantial bulk along with a fairly streamlined outer surface, both to allow removed product to slide or slip by the sides of the bit, bit holder, and block, as well as to provide shoulder bulk to resist wear and extend the working life of this heavy duty equipment. As such, in the preferred embodiment, axially rearwardly of the front leading ring 23, is a generally frustoconical portion 27 that widens as one proceeds axially along the length of the front body portion toward the shank 22 thereof until one comes to an outer rear portion of the body that is annular or cylindrical in shape, and is denoted in the industry as the “tire” portion 28. In this embodiment the body portion is 2.00 inches long and the shank is 2.58 inches long, although other uses, such as mining and trenching utilize differing size equipment. As shown most clearly in
In this preferred embodiment 20, a side hole generally indicated at 30, which is the subject of co-pending application Ser. No. 11/998,676, filed Nov. 30, 2007, extends inwardly from the outside of frustoconical portion 27 and a part of the tire portion 28 of the bit holder body 21 at an acute angle toward the axis of the bit holder bore 25. The side hole 30 is the same diameter as the bit holder bore 25 and is used in connection with a slide hammer removal tool assembly that is the subject matter of co-pending application Ser. No. 12/193,866 filed Aug. 19, 2008. A cylindrical plug, such as shown at 147 in
While the shank 22 extends axially rearwardly from the rear face 29 of the front body portion, the preferred embodiment 20 includes a recess 32 partially formed in the annular rear face 29 and 33 partially formed in the outer surface of the shank 22 adjacent and in continuation of recess 32, provides a round, less stress, joinder between the shank 22 and front body portion 21.
Shank 22 extends in the preferred embodiment from the back annular face recess 32 to the distal end 26 of the shank. Shank 22 is generally cylindrical in shape a nominal diameter of 1.545 inch, although, this preferred embodiment includes two slightly tapered surfaces, the first generally annular surface extends from recess 32 and tapers slightly at 34 axially along the shank until it reaches a raised generally annular shoulder 35 which raises the outer diameter of the shank approximately 0.015 inch on the diameter and begins a second taper portion 36 that extends from the shoulder 35 to a chamfer 37 that extends to a slightly reduced diameter distal end portion 38 which extends to another chamfer 40 that meets distal end flat surface 26.
In one important aspect of the present invention, the hollow generally cylindrical shank that not only includes an elongate slot 41 that extends from the distal end 26 of the shank axially through the outer wall of the shank to a position at 42 which is close to but spatially adjacent from recess 32. In the preferred embodiment, the distance is about ⅜ inch. Along with the elongate first slot is, in this preferred embodiment, an elongate second totally internal slot 43 that extends completely through the side wall of the shank in a diametrically opposed position from elongate slot 41. Slot 43, while elongate, is completely enclosed within the shank in that it has opposed upper end portion 44 which is positioned axially along the shank a like distance from recess 32 to that of the inner end portion 45 of slot 41.
It has been found that narrowing or slightly widening the 9/16 inch wide first slot 41 does not significantly change the radial force exerted by the shank on the bit block bore when the outer diameter 22 and inner diameter 25 remain constant, as much as the addition of the second slot 43. Varying the length of the second slot allows one to fine tune the radial force. For example, a larger trenching machine bit holder will have a shorter second slot to increase the radial force of the bit holder on the bit block.
A second or opposing enclosed end portion 45 is positioned axially adjacent, but spatially related to the chamfer 37 such that slot 43 is completely surrounded by the shank, unlike slot 41. Slot 43 also extends across the shoulder 35 and in this embodiment is approximately 120 percent the length in the first tapered portion 34 and approximately 140 percent the length in the second tapered portion 36. The combination of the first and second elongate slots provides for more elastic deformation in the shank than in the embodiment shown in the '326 patent, while allowing for deformation at the distal end of the shank that is not contemplated in the dual slotted embodiment of the '258 patent. Additionally, the slight elastic deformation capability of the shank 22 of the first embodiment is more symmetrical in its deformation because of the dual opposing slots 41 and 43 than the radial deformation in the single slot shown in the '326 patent when it is inserted into a bit block bore, as will be discussed in more detail below. The provision of the second slot means the beam strength, radial force and frictional force between the bit holder shank and bit block bore may all be adjusted as necessary to maximize the fit between the two members.
Additionally, a locator pin hole 47 extends through the side wall of shank 22 to complete the disclosure of the physical structure of the first embodiment 20 of the present invention.
On mining equipment and trenching equipment, the shank of a bit holder will be larger than that for road milling equipment and will approximate a range of 1 to 1½ inches in nominal cylindrical diameter. These are sizes presently in use and it will be appreciated that other sizes may also be utilized within the present invention, especially as equipment having greater processing capacity is desired by end users.
Referring to
The preferred use for bit holders of the first modification 120 is in lower horse-power machines where the radial force necessary to retain the bit holder in the bit block is less than in the first embodiment 20. The construction allows the insertion and removal to be accomplished with less force than the first embodiment.
A second difference between the first embodiment 20 and the first modification 120 resides in a generally cylindrical plug 154 that is press fittable within the internal slot 143 ( 9/16 inch in this embodiment), and the elongate slot 141 if desired, and is capable of acting on the side walls of the slot to inhibit further collapsing of the diameter of the side wall of the shank at a location anywhere along the length of the slot where the plug is press fit therein. The material and hardness of the cylindrical plug 154 may be varied to achieve desired results in limiting the collapsibility of the slot 143 and therefore, the collapsibility of the bit holder shank diameter. The position of the plug 154 along the internal slot 141 may also be varied to achieve desired results.
Referring to
As with the first embodiment, the internal elongate slot 243 is found completely within the bounds of generally cylindrical shank 222. It is also preferably diametrically opposite first elongate slot 241 and in the second modification, slot 243 has generally converging elongate sides 243a and 243b. The top terminus of slot 244 is, in this preferred embodiment, the same width and shape as the top terminus 44 of the first embodiment.
The bottom internal terminus 245 of the second modification has a smaller radius than that of top terminus 244 where it meets the converging sides 243a, 243b. The use of a slot shaped as slot 243 in the second modification 220 of the bit holder provides for a stiffer second tapered portion of the bit holder shank 236 than found in the second tapered portion 36 of the first embodiment of the bit holder. In other words, by varying the width of the internal slot 243 along its length, the stiffness of the side wall of the shank may be varied in accordance with desired characteristics. Changing the width of the internal slot as shown in the second modification may have similar effects in the second modification as putting the cylindrical press fit plug 154 in the slot 143 of the first embodiment in a position lower, more toward the distal end, of the shank.
Referring to
Referring to
Heretofore, bit holders having a completely cylindrical lower distal end portion of its shank have not been able to be inserted in a bit block bore having a constant tapered bore such as at 66, and conversely, a generally cylindrical but slightly tapered bit holder shank has not been insertable in the bit block bore of a bit block having a completely cylindrical lower portion together with a widening tapered top portion.
As such, purchasers and users of mining, road milling and trenching equipment utilizing such bit assemblies are not limited to the maker of the individual assemblies that were purchased with the mining, milling or trenching equipment. Replacement bit holders may be purchased by others than those who made the original equipment and may be utilized to provide, in some cases, even easier insertion and removability of the bit holders and bits in connection with using the equipment, together with longer wear times which are a product of the added bulk of the bit holder shown in the instant application.
Referring to
In considering how applicant's invention works, explanation has been made referring to interference fits or press fits, which relate to fitting a solid cylinder into a cylindrical holder bore that is somewhat smaller than the outside of the solid cylinder. However, the present invention utilizes a hollow generally cylindrical shank that has not one, but two differing slots in the side of the shank. Standards for interference fits are found in engineering handbooks, so the terms and dimensions of those standards are used as references. But no such standards exist in the machinery world for what is accomplished by the present invention, or applicant's prior inventions on this subject matter.
In a standard press fit, the dimensions of the solid cylindrical shaft and the cylindrical bore both slightly change to allow for the press fit. In applicant's invention, utilizing a hollow cylinder that is slotted, the majority of the radial deflection changes in the slotted region. As shown by experimentation, the deflection of that hollow slotted cylinder is greater than the deflection of a solid cylinder in a standard press fit, at least about 4 times as much. However, the goal of the present invention is similar to the goal achieved by a standard press fit, i.e., to provide sufficient radial force between the cylinder and the bore to maintain the cylinder mounted in the bore. By utilizing dimensional differences that are much greater than that of standard interference of press fits, dimensional tolerances are increased and parts become less expensive to make. Therefore, the advantages of applicant's invention are multiple-fold over prior technology involving this subject matter.
These larger (and less expensive to produce) dimensional differences mean that changes in the above noted bit holder dimensions can be readily accomplished to provide quick change type bit holders usable in completely cylindrical bit block bores, and also in bit block bores that have other tapers, such as 3½ degrees per side. The use of the back face of the bit holder body to seat on the bit block top surface means that seating need not take place between the holder shank and the bit block bore. A complete matching fit between the shank and bore is not necessary, as shown in
While one embodiment, and two modifications of the present invention have been shown and described, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the true spirit and scope of the present invention. It is the intent of the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention