Bit holder with annular rings

Information

  • Patent Grant
  • 11891895
  • Patent Number
    11,891,895
  • Date Filed
    Tuesday, January 12, 2021
    3 years ago
  • Date Issued
    Tuesday, February 6, 2024
    4 months ago
Abstract
A bit holder that includes a front body portion and a shank axially depending from the bottom of the front body portion. The shank of the bit holder includes at least one slot and at least one annular ring disposed partially or nearly circumferentially around the shank. The slotted shank of the bit holder and the at least one annular ring are radially compressible to achieve and maintain an interference fit when inserted into a bore of a base block.
Description
TECHNICAL FIELD

This disclosure relates to bit assemblies for road milling, mining and trenching machines and, more particularly, to bit holders with at least one annular ring.


BACKGROUND

Road milling, mining, and trenching equipment utilizes bits and/or picks traditionally set in a bit assembly. Bit assemblies can include a bit and/or pick retained within a bore in a base block. Bit assemblies can also include a bit and/or pick retained by a bit holder and the bit holder retained within a bore in a base block. A plurality of the bit assemblies are mounted on the outside of a rotatable drum, typically in a V-shaped or spiral configuration. A plurality of the bit assemblies can also be mounted on an endless chain and plate configurations. The combinations of bit assemblies have been utilized to remove material from the terra firma, such as degrading the surface of the earth, minerals, cement, concrete, macadam or asphalt pavement. Individual bits and/or picks, bit holders, and base blocks may wear down or break over time due to the harsh road degrading environment. Additionally, the forces and vibrations exerted on the bit assemblies may cause the bit holder to wear away the bore in the base block. As a result, the diameter of the bore of the base block increases over time, decreasing the interference contact between the bit holder and the bore of the base block, thereby damaging the bit holder or base block and requiring replacement of the bit holder or base block long before the standard minimum lifetime required by the industry.


To prolong the life of the bit assembly, and the bit holder and/or the base block, a bit holder comprising a slotted shank and two annular rings partially or nearly circumferentially disposed around the shank is provided to form and maintain the interference contact between the bore of the base block initially and even as the diameter of the bore of the base block increases from use. The service life of the bit holder and base block are substantially increased due to the bore wear compensation provided by the annular rings and the slotted shank of the bit holder.


SUMMARY

This disclosure relates generally to bit assemblies for road milling, mining, and trenching equipment. One implementation of the teachings herein is a bit holder that includes a body portion; a generally cylindrical hollow shank axially depending from a bottom of the body portion, the shank including: a first annular groove adjacent the bottom of the body portion; and a second annular groove adjacent a distal end of the shank.


In another implementations of the teachings herein is a combination bit holder and base block that includes a base block including: a base mounting portion including a base surface; and a device receiving portion integrally extending from the base mounting portion opposite the base surface, the device receiving portion comprising a bore extending from a front face of the device receiving portion to a rear face of the device receiving portion; and a bit holder including: a body portion; a generally cylindrical hollow shank axially depending from a bottom of the body portion, the shank including: a first annular groove adjacent the bottom of the body portion; and a second annular groove adjacent a distal end of the shank.


These and other aspects of the present disclosure are disclosed in the following detailed description of the embodiments, the appended claims and the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The various features, advantages, and other uses of the apparatus will become more apparent by referring to the following detailed description and drawings, wherein like reference numerals refer to like parts throughout the several views. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity.



FIG. 1 is an exploded perspective view of a first embodiment of a bit holder and a first embodiment of two annular rings, in accordance with implementations of this disclosure;



FIG. 2 is an exploded side elevational view of the first embodiment of the bit holder and the first embodiment of the two annular rings, in accordance with implementations of this disclosure;



FIG. 3 is an exploded perspective view of the first embodiment of the bit holder, the first embodiment of the two annular rings, and a first embodiment of a base block, in accordance with implementations of this disclosure;



FIG. 4 is an exploded perspective view of the first embodiment of the bit holder and the first embodiment of the two annular rings, and showing Detail A, in accordance with implementations of this disclosure;



FIG. 5 is a detail view of Detail A of the first embodiment of the bit holder of FIG. 4, in accordance with implementations of this disclosure;



FIG. 6 is an exploded side elevation view of the first embodiment of the bit holder and the first embodiment of the two annular rings, in accordance with implementations of this disclosure;



FIG. 7 is a right side elevation view of the first embodiment of the bit holder, shown with the first embodiment of the two annular rings disposed on a shank of the bit holder, showing invisible internal elements in dotted lines, in accordance with implementations of this disclosure;



FIG. 8 is a top elevation view of the first embodiment of the bit holder, shown with the first embodiment of the two annular rings disposed on the shank of the bit holder, showing invisible internal elements in dotted lines, in accordance with implementations of this disclosure;



FIG. 9 is a left side elevation view of the first embodiment of the bit holder, shown with the first embodiment of the two annular rings disposed on the shank of the bit holder, showing invisible internal elements in dotted lines, in accordance with implementations of this disclosure;



FIG. 10 is a perspective view of the first embodiment of the bit holder, shown with the first embodiment of the two annular rings disposed on the shank of the bit holder, in accordance with implementations of this disclosure;



FIG. 11 is a perspective view of the first embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 12 is a front elevation view of the first embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 13 is a side elevation view of the first embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 14 is a right side elevation view of the first embodiment of the bit holder, shown with the first embodiment of the two annular rings disposed on the shank of the bit holder, showing invisible internal elements in dotted lines, in accordance with implementations of this disclosure;



FIG. 15 is a top elevation view of the first embodiment of the bit holder, shown with the first embodiment of the two annular rings disposed on the shank of the bit holder, showing invisible internal elements in dotted lines, in accordance with implementations of this disclosure;



FIG. 16 is a left side elevation view of the first embodiment of the bit holder, shown with the first embodiment of the two annular rings disposed on the shank of the bit holder, showing invisible internal elements in dotted lines, in accordance with implementations of this disclosure;



FIG. 17 is a perspective view of the first embodiment of the bit holder, shown with the first embodiment of the two annular rings disposed on the shank of the bit holder, in accordance with implementations of this disclosure;



FIG. 18 is a perspective view of the first embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 19 is a front elevation view of the first embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 20 is a side elevation view of the first embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 21 is an exploded rear perspective view of the first embodiment of the bit holder, the first embodiment of the two annular rings, and the first embodiment of the base block, in accordance with implementations of this disclosure;



FIG. 22 is an exploded rear perspective view of the first embodiment of the bit holder, shown with the first embodiment of the two annular rings disposed on the shank of the bit holder, and the first embodiment of the base block, in accordance with implementations of this disclosure;



FIG. 23 is an exploded perspective view of the first embodiment of the bit holder, the first embodiment of the two annular rings, and the first embodiment of the base block, in accordance with implementations of this disclosure;



FIG. 24 is an exploded right side elevation view of the first embodiment of the bit holder, the first embodiment of the two annular rings, and the first embodiment of the base block, in accordance with implementations of this disclosure;



FIG. 25 is an exploded perspective view of the first embodiment of the bit holder, shown with the first embodiment of the two annular rings disposed on the shank of the bit holder, and the first embodiment of the base block, in accordance with implementations of this disclosure;



FIG. 26 is an exploded right side elevation view of the first embodiment of the bit holder, shown with the first embodiment of the two annular rings disposed on the shank of the bit holder, and the first embodiment of the base block, in accordance with implementations of this disclosure;



FIG. 27 is a perspective view of the first embodiment of the bit holder assembled in the first embodiment of the base block in accordance with implementations of this disclosure;



FIG. 28 is a right side elevation view of the first embodiment of the bit holder assembled in the first embodiment of the base block in accordance with implementations of this disclosure;



FIG. 29 is a front elevation view of the first embodiment of the bit holder assembled in the first embodiment of the base block in accordance with implementations of this disclosure;



FIG. 30 is a cross-sectional view of the first embodiment of the bit holder, shown with the first embodiment of the two annular rings disposed on the shank of the bit holder, assembled in the first embodiment of the base block, taken along line B-B of FIG. 29, in accordance with implementations of this disclosure;



FIG. 31 is a right side elevation view of the first embodiment of the bit holder assembled in the first embodiment of the base block in accordance with implementations of this disclosure;



FIG. 32 is a cross-sectional view of the first embodiment of the bit holder, shown with the first embodiment of the two annular rings disposed on the shank of the bit holder, assembled in the first embodiment of the base block, taken along line C-C of FIG. 31, in accordance with implementations of this disclosure;



FIG. 33 is a front elevation view of the first embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 34 is a cross-sectional view of the first embodiment of the annular ring, taken along line D-D of FIG. 33, in accordance with implementations of this disclosure;



FIG. 35 is a rear elevation view of the first embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 36 is a bottom elevation view of the first embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 37 is a front elevation view of a second embodiment of an annular ring in accordance with implementations of this disclosure;



FIG. 38 is a cross-sectional view of the second embodiment of the annular ring, taken along line E-E of FIG. 37, in accordance with implementations of this disclosure;



FIG. 39 is a rear elevation view of the second embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 40 is a bottom elevation view of the second embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 41 is a front elevation view of a third embodiment of an annular ring in accordance with implementations of this disclosure;



FIG. 42 is a cross-sectional view of the third embodiment of the annular ring, taken along line F-F of FIG. 41, in accordance with implementations of this disclosure;



FIG. 43 is a rear elevation view of the third embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 44 is a bottom elevation view of the third embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 45 is a front elevation view of a fourth embodiment of an annular ring in accordance with implementations of this disclosure;



FIG. 46 is a cross-sectional view of the fourth embodiment of the annular ring, taken along line G-G of FIG. 45, in accordance with implementations of this disclosure;



FIG. 47 is a rear elevation view of the fourth embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 48 is a bottom elevation view of the fourth embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 49 is a front elevation view of a fifth embodiment of an annular ring in accordance with implementations of this disclosure;



FIG. 50 is a cross-sectional view of the fifth embodiment of the annular ring, taken along line H-H of FIG. 51, in accordance with implementations of this disclosure;



FIG. 51 is a rear elevation view of the fifth embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 52 is a bottom elevation view of the fifth embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 53 is a front elevation view of a sixth embodiment of an annular ring in accordance with implementations of this disclosure;



FIG. 54 is a cross-sectional view of the sixth embodiment of the annular ring, taken along line I-I of FIG. 53, in accordance with implementations of this disclosure;



FIG. 55 is a rear elevation view of the sixth embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 56 is a bottom elevation view of the sixth embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 57 is a front elevation view of a seventh embodiment of an annular ring in accordance with implementations of this disclosure;



FIG. 58 is a cross-sectional view of the seventh embodiment of the annular ring, taken along line J-J of FIG. 57, in accordance with implementations of this disclosure;



FIG. 59 is a rear elevation view of the seventh embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 60 is a bottom elevation view of the seventh embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 61 is a front elevation view of an eighth embodiment of an annular ring in accordance with implementations of this disclosure;



FIG. 62 is a cross-sectional view of the eighth embodiment of the annular ring, taken along line K-K of FIG. 61, in accordance with implementations of this disclosure;



FIG. 63 is a rear elevation view of the eighth embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 64 is a bottom elevation view of the eighth embodiment of the annular ring in accordance with implementations of this disclosure;



FIG. 65 is an exploded perspective view of the first embodiment of the bit holder, the fifth embodiment of the annular rings, and the first embodiment of the base block, in accordance with implementations of this disclosure;



FIG. 66 is a perspective view of the first embodiment of the bit holder assembled in the first embodiment of the base block in accordance with implementations of this disclosure;



FIG. 67 is an exploded view of the first embodiment of the bit holder, shown with the fifth embodiment of the two annular rings disposed on the shank of the bit holder, and the first embodiment of the base block, in accordance with implementations of this disclosure;



FIG. 68 is right side elevation view of the first embodiment of the bit holder assembled in the first embodiment of the base block in accordance with implementations of this disclosure;



FIG. 69 is a front elevation view of the first embodiment of the bit holder assembled in the first embodiment of the base block in accordance with implementations of this disclosure;



FIG. 70 is a cross-sectional view of the first embodiment of the bit holder, shown with the fifth embodiment of the two annular rings disposed on the shank of the bit holder, assembled in the first embodiment of the base block, taken along line L-L of FIG. 69, in accordance with implementations of this disclosure;



FIG. 71 is a right side elevation view of the first embodiment of the bit holder assembled in the first embodiment of the base block in accordance with implementations of this disclosure; and



FIG. 72 is a cross-sectional view of the first embodiment of the bit holder, shown with the fifth embodiment of the two annular rings disposed on the shank of the bit holder, assembled in the first embodiment of the base block, taken along line M-M of FIG. 71, in accordance with implementations of this disclosure.





DETAILED DESCRIPTION

Referring to FIGS. 1-4, 6-10, 14-17, 21-32, and 65-72, a first embodiment of a bit holder 10 is shown. The bit holder 10, in this illustrated embodiment, is an approximately 2¾ inch generally standard length shank bit holder that comprises a “beefed up” bit holder body 12 and a generally cylindrical hollow shank 14 axially depending from a bottom of the bit holder body 12. This design of the bit holder can also be implemented successfully with various length shanks. The bit holder body 12, in this exemplary implementation of the first embodiment, is generally annular in shape and comprises a generally cylindrical upper body portion 18 axially extending from a top surface 16, such as a flat annular top surface. Subjacent the upper body portion 18 is a flared mediate portion 20, which in this embodiment includes a concave side surface that extends axially, downwardly, and radially outwardly to a generally cylindrical tire portion 22 axially extending from the mediate portion 20. A chamfer 24 (FIGS. 2, 6-9, 14-16, 21, 22, 24, 26, and 67) extends from a bottom of the tire portion 22 to a back flange 26, which may be flat and generally annular. The chamfer 24 provides, when the bit holder 10 is fully mounted in a first embodiment of a base block 100 (FIGS. 3, 21-32, and 65-72), a hollowed out area between the back flange 26 of the bit holder body 12 and a face of the base block 100 that provides a space in which an extraction tool (not shown) may be inserted and utilized to easily remove the bit holder 10 from the base block 100. A pair of notches 64-64, shown in FIGS. 3, 6-9, 14-16, 23-29, 31, 65-69, and 71, are formed into the bit holder body 12 and extend from the flat annular top surface 16 through the upper body portion 18, terminating at a point just within the flared mediate portion 20. The notches 64-64 provide access and leverage for a tool to extract, or knock out, a bit from the bit holder body 12.


The back flange 26 includes a pair of horizontal tapered cutouts 28-28 (FIGS. 3, 6-9, 14-16, 21-28, 31, 67, 68, and 71) generally perpendicular to the longitudinal axis of the bit holder 10, one on either side of the back flange 26. The tapered cutouts 28-28 each include a flat vertical inside surface parallel with each other and a flat tapered top surface. The outside edge of each top surface is arcuate in shape and follows the periphery of the tire portion 22. The interior border, or declining terminus 29, of each tapered cutout 28-28 may extend to a plane through the centerline of the bit holder 10, may not extend to a plane through the centerline of the bit holder 10, may extend beyond a plane through the centerline of the bit holder 10, and/or may be offset from each other. The tapered cutouts 28-28 are adapted to receive a pair of bifurcated fork tines that may be inserted between the base of the bit holder body 12 and the face of the first embodiment of the base block 100 into which the shank 12 of the bit holder 10 is inserted and retained by outward radial forces of the shank while in use. Other base block configurations can be used without deviating from the concept of this design.


The shank 14 includes an elongate first slot 30 extending from a distal end 32, such as a generally annular distal end, of the shank 14 axially upward or forward to an upper termination 34 near the upper or forward end of the shank 14. In this exemplary implementation, the shank 14 also includes an optional internally oriented second slot 36 located approximately 180 degrees around the annular shank 14 from the first slot 30. This second slot 36 is parallel to the first slot in this illustrated embodiment, and is an internal slot having a rearward termination 38 inwardly adjacent to the distal end 32 of the shank 14 and a forward termination 40 generally coinciding longitudinally and axially with the upper termination 34 of the first slot 30.


A central bore 42 axially extends from the top surface 16 of the bit holder 10 to the distal end 32 of the shank 14. The central bore 42 is adapted to receive the shank of a bit (not shown). The central bore 42 and the slots 30, 36 allow the generally C-shaped annular sidewall of the shank 14 to radially contract when the shank is mounted into a bore 102 (FIGS. 3, 21-23, 25, 32, 70, and 72) of the base block 100.


Depending from the back flange 26 of the bit holder body 12 is the generally cylindrical hollow shank 14. In a second embodiment of the bit holder, the top portion of the shank 14 can include an optional rounded junction (not shown) between the bit holder body 12 and the shank 14 which provides a stress relieving portion between the bit holder body 12 and the shank 14 of the bit holder, avoiding sharp corners and/or edges and which may provide an area for stress cracks to begin. An increased diameter first segment 44, which in this illustrated embodiment is tapered, axially depends from the bottom of the bit holder body 12 and includes a groove 46 adapted to receive an annular ring. Groove 46 includes the same profile seat, or inner diameter, for the bottom portion of the groove 46 as the inner diameter of the annular ring. The axial length 66 of the first segment 44 is a design feature of the bit holder 10 and is positioned in the tapered zone of a bore of the base block 100 to support radial deflection. The distal end of the increased diameter first segment 44 includes a tapered portion 48 that axially extends from the distal end of the increased diameter tapered first segment 44 to a decreased diameter generally cylindrical second segment 50. The decreased diameter generally cylindrical second segment 50 axially extends to stepped shoulder 52 disposed between the decreased diameter generally cylindrical second segment 50 and an increased diameter third segment 54. The stepped shoulder 52 increases, or steps up, as it axially extends from the decreased diameter generally cylindrical second segment 50 to the increased diameter third segment 54. The increased diameter third segment 54 includes a groove 56 (FIG. 5) adapted to receive an annular ring. Groove 56 includes the same profile seat, or inner diameter, for the bottom portion of the groove 56 as the inner diameter of the annular ring. A first tapered portion 58 axially extends from the distal end of the increased diameter third segment 54 to a decreased diameter generally cylindrical fourth segment A second tapered portion 62 axially extends from the distal end of the decreased diameter generally cylindrical fourth segment 60 to the distal end 32 of the shank 14. In other embodiments, the shank 14 may comprise different configurations, for example, the first segment 44, the second segment 50, the third segment 54, and/or the fourth segment 60 may comprises a generally cylindrical shape, an arcuate shape, an outward taper, an inward taper, a slight draw angle, or a slight draft angle. Also in other embodiments, the shank 14 can also be cylindrical or tapered towards or away from a central axis of the bit holder 10 from the distal end 32 to a forward end of the shank 14 and still have the two annular ring concept to achieve the same functional aspects.


Referring to FIGS. 3, 21-32, and 65-72, the first embodiment of the base block 100 is shown. Base block 100 includes a base surface 104 which may be flat or slightly concave to fit a drum or additional mounting plates thereon (not shown) on which a plurality of base blocks may be mounted, usually in chevron or spiral fashion. Outwardly of the mounting portion or base surface 104 of the base block 100, is a generally annular bit holder mounting portion 106, also called a device receiving portion or front end, having a central nominal 1½ inch diameter annular or generally cylindrical bore 102 positioned therethrough, which is generally positioned, in this illustrated embodiment, at between 30-60 degrees from the horizontal. The base block bore 102 includes a tapered section 103 axially extending from the front face of the device receiving portion 106 to a generally cylindrical section 105 that axially extends from the tapered section 103 to a rear 108 of the device receiving portion 106. The increased diameter first segment 44 and the annular ring 70 are positioned in the tapered section of the base block bore 102 and supports radial deflection. The annular bit holder mounting portion or device receiving portion 106 of the base block 100 is, in this illustrated embodiment, about 2½ inch in length and is configured to receive the shank 14 of the bit holder 10.


The base block 100 includes added space behind the device receiving portion 106. This added space provides additional access up to about ⅞ inch from the device receiving portion 106 for tools to remove or punch out either bits from the bit holder 10 annular or circular bore 42 or the bit holder 10 from the base block bore 102. The base block 100 includes a surface 110 opposite the base surface 104 that extends past the rear 108 of the device receiving portion 106. Surface 110 includes an extension of an arcuate segment 112 of the generally cylindrical section 105 of the base block bore 102.


Referring to FIGS. 1-4, 6-26, 30, and 32-36, a first embodiment of a c-shaped annular ring 70, 72 is shown. In this illustrated exemplary first embodiment, the c-shaped annular rings 70, 72 are a steel round wire round ring, including a round cross-section 74 taken at an angle to a longitudinal axis of the round wire round rings 70, 72, that extend from a first end 76 to a second end 78. In alternate embodiments, described below, the c-shaped annular rings can have various other shapes, such as square, hexagon, angular, etc. The outer profile of the annular rings of each embodiment match the base block bore 102 profile. Annular ring 70, in this illustrated embodiment, has a greater diameter than annular ring 72. Regardless of what annular ring designs are used, the c-shaped annular ring disposed in the groove 46 will have a larger diameter than the c-shaped annular ring disposed in groove 56.


To assemble the c-shaped annular rings 70, 72 with the bit holder 10 of the first embodiment, the first c-shaped annular ring 70 is disposed around/in groove 46 of the increased diameter tapered first segment 44 and the second c-shaped annular ring 72 of a smaller size or diameter is disposed around/in groove 56 of the increased diameter third segment 54, as shown in FIGS. 7-10, 14-17, 22, 25, 26, 30, and 32. When disposed around groove 46 and groove 56, the first end 76 and the second end 78 of annular rings 70, 72 are spatially oriented from each other, in this illustrated embodiment, such that annular rings 70, 72 do not extend completely around the circumference of the shank 14 in groove 46 and groove 56. The annular rings 70, 72 include exaggerated raised profiles, shown in FIG. 21, that provide additional interference that will compensate for bore wear in the tapered section 103 and the generally cylindrical section 105, respectively, of bore 102 of the base block 100. The shank 14 of the bit holder 10, including annular rings 70, 72, is inserted into the bore 102 of the base block 100 and forms a non-rotatable interference fit with the bore 102 of the base block 100. Generally, base blocks must be replaced before a drum requires replacement. Typically, two sets of base blocks are consumed during the life of a drum. The design described by the present disclosure increases the life of the base block that is welded to the drum, or welded to a riser, which is first welded to the drum that is attached to the machine. The purpose of adding the bore wear compensating features, such as the annular rings 70, 72, to the bit holder 10 is to provide a base block that has the same lifespan as the lifespan of the drum on which they're mounted, thereby increasing the lifespan of the drum itself.


Referring to FIGS. 29-32, the first embodiment of the bit holder 10, with the first embodiment of annular ring 70 disposed around groove 46 of increased diameter first segment 44 and the first embodiment of annular ring 72 disposed around groove 56 of increased diameter third segment 54, is shown assembled in the bore 102 of the first embodiment of the base block 100. When assembled into base block bore 102, the outer diameter of annular rings 70, 72 are slightly flattened and conform to any base block bore diameter, as shown in FIGS. 30 and 32, so that the outer profile of the annular rings 70, 72 match the bore 102 profile of the base block 100. The flattened outer diameter of annular rings 70, 72 adds surface area that provides higher load capacity.


Referring to FIGS. 37-40, a second embodiment of a c-shaped annular ring 120 is shown. In this illustrated exemplary second embodiment, the c-shaped annular ring 120 is a steel angular flat ring, including a rectangular cross-section 122 taken at an angle to a longitudinal axis of the angular flat ring 120, that extends from a first end 124 to a second end 126. The c-shaped angular flat ring 120 includes a planar inner surface and a planar outer surface that tapers inwardly as the outer surface axially extends from a top of the round wire round ring to a distal end adjacent the first end 124 and the second end 126 of the angular flat ring. The outer profile of the annular rings of each embodiment match the base block bore 102 profile.


To assemble the c-shaped annular ring 120 with the bit holder of the first embodiment, a first c-shaped annular ring 120 is disposed around/in groove 46 of the increased diameter tapered first segment 44 and a second c-shaped annular ring 120 of a smaller size or diameter is disposed around/in groove 56 of the increased diameter third segment 54. When disposed around groove 46 and groove 56, the first end 124 and the second end 126 of the annular ring 120 are spatially oriented from each other, in this illustrated embodiment, such that annular ring 120 does not extend completely around the circumference of the shank 14 in groove 46 and/or groove 56. The annular ring 120 includes an exaggerated raised profile that when seated on the groove 56 provides additional interference that will compensate for bore wear in the tapered section 103 and the generally cylindrical section 105, respectively, of bore 102 of the base block 100. The shank 14 of the bit holder 10, including annular rings 120, 120, is inserted into the bore 102 of the base block 100 and forms an added interference fit between the rings seated on the grooves and the bore 102 of the base block 100. Generally, base blocks must be replaced before a drum requires replacement. Typically, two sets of base blocks are consumed during the life of a drum. The design described by the present disclosure increases the life of the base block that is welded to the drum, or welded to a riser, which is first welded to the drum that is attached to the machine. The purpose of adding the bore wear compensating features, such as annular ring 120 to the bit holder 10 is to provide a base block that has the same lifespan as the lifespan of the drum on which they're mounted, thereby increasing the lifespan of the drum itself.


Referring to FIGS. 41-44, a third embodiment of c-shaped annular ring 130 is shown. In this illustrated exemplary third embodiment, the c-shaped annular ring 130 is a steel hexagonal ring, including a hexagonal cross-section 132 taken at an angle to a longitudinal axis of the hexagonal ring 130, that extends from a first end 134 to a second end 136. The outer profile of the annular rings of each embodiment match the base block bore 102 profile.


To assemble the c-shaped annular ring 130 with the bit holder 10 of the first embodiment, the first c-shaped annular ring 130 is disposed around/in groove 46 of the increased diameter tapered first segment 44 and a second c-shaped annular ring 130 of a smaller size or diameter is disposed around/in groove 56 of the increased diameter third segment 54. When disposed around groove 46 and groove 56, the first end 134 and the second end 136 of the annular ring 130 are spatially oriented from each other, in this illustrated embodiment, such that annular ring 130 does not extend completely around the circumference of the shank 14 in groove 46 and/or groove 56. The annular ring 130 includes an exaggerated raised profile that provides additional interference that will compensate for bore wear in the tapered section 103 and the generally cylindrical section 105, respectively, of bore 102 of the base block 100. The shank 14 of the bit holder 10, including annular rings 130, 130, is inserted into the bore 102 of the based block 100 and forms an interference fit with the bore 102 of the base block 100. Generally, base blocks must be replaced before a drum requires replacement. Typically, two sets of base blocks are consumed during the life of a drum. The design described by the present disclosure increases the life of the base block that is welded to the drum, or welded to a riser, which is first welded to the drum that is attached to the machine. The purpose of adding the bore wear compensating features, such as annular ring 130 to the bit holder 10 is to provide a base block that has the same lifespan as the lifespan of the drum on which they're mounted, thereby increasing the lifespan of the drum itself.


Referring to FIGS. 45-48, a fourth embodiment of c-shaped annular ring 140 is shown. In this illustrated exemplary fourth embodiment, the c-shaped annular ring 140 is a steel square ring, including a square cross-section 142 taken at an angle to a longitudinal axis of the square ring 140, that extends from a first end 144 to a second end 146. The outer profile of the annular rings of each embodiment match the base block bore 102 profile.


To assemble the c-shaped annular ring 140 with the bit holder 10 of the first embodiment, a first c-shaped annular ring 140 is disposed around/in groove 46 of the increased diameter tapered first segment 44 and a second c-shaped annular ring 140 of a smaller size is disposed around/in groove 56 of the increased diameter third segment 54. When disposed around groove 46 and groove 56, the first end 144 and the second end 146 of the annular ring 140 are spatially oriented from each other, in this illustrated embodiment, such that annular ring 140 does not extend completely around the circumference of the shank 14 in groove 46 and/or groove 56. The annular ring 140 includes an exaggerated raised profile that provides additional interference that will compensate for bore wear in the tapered section 103 and the generally cylindrical section 105, respectively, of bore 102 of the base block 100. The shank 14 of the bit holder 10, including annular rings 140, 140, is inserted into the bore 102 of the base block 100 and forms an interference fit with the bore 102 of the base block 100. Generally, base blocks must be replaced before a drum requires replacement. Typically, two sets of base blocks are consumed during the life of a drum. The design described by the present disclosure increases the life of the base block that is welded to the drum, or welded to a riser, which is first welded to the drum that is attached to the machine. The purpose of adding the bore wear compensating features, such as annular ring 140 to the bit holder 10 is to provide a base block that has the same lifespan as the lifespan of the drum on which they're mounted, thereby increasing the lifespan of the drum itself.


Referring to FIGS. 49-52, a fifth embodiment of a c-shaped annular ring 150 is shown. In this illustrated exemplary fifth embodiment, the c-shaped annular ring 150 is a steel flat ring, including a rectangular cross-section 152 taken at an angle to a longitudinal axis of the flat ring 150, that extends from a first end 154 to a second end 156. The outer profile of the annular rings of each embodiment match the base block bore 102 profile.


To assemble the c-shaped annular ring 150 with the bit holder 10 of the first embodiment, a first c-shaped annular ring 150 is disposed around/in groove 46 of the increased diameter tapered first segment 44 and a second c-shaped annular ring 150 of a smaller size or diameter is disposed around/in groove 56 of the increased diameter third segment 54. When disposed around groove 46 and groove 56, the first end 154 and the second end 156 of the annular ring 150 are spatially oriented from each other, in this illustrated embodiment, such that annular ring 150 does not extend completely around the circumference of the shank 14 in groove 46 and/or groove 56. The annular ring 150 includes an exaggerated raised profile that provides additional interference that will compensate for bore wear in the tapered section 103 and the generally cylindrical section 105, respectively, of bore 102 of the base block 100. The shank 14 of the bit holder 10, including annular rings 150, 150, is inserted into the bore 102 of the base block 100 and forms an interference fit with the bore 102 of the base block 100. Generally, base blocks must be replaced before a drum requires replacement. Typically, two sets of base blocks are consumed during the life of a drum. The design described by the present disclosure increases the life of the base block that is welded to the drum, or welded to a riser, which is first welded to the drum that is attached to the machine. The purpose of adding the bore wear compensating features, such as annular ring 150 to the bit holder 10 is to provide a base block that has the same lifespan as the lifespan of the drum on which they're mounted, thereby increasing the lifespan of the drum itself.


Referring to FIGS. 53-56, a sixth embodiment of a c-shaped annular ring 160 is shown. In this illustrated exemplary sixth embodiment, the c-shaped annular ring 160 is a steel semi-flat ring, including a semi-flat cross-section 162 taken at an angle to a longitudinal axis of the semi-flat ring 160, that extends from a first end 164 to a second end 166. This c-shaped annular ring 160 is semi-flat in that the semi-flat ring 160 includes a planar inner surface and an arcuate outer surface. The outer profile of the annular rings of each embodiment match the base block bore 102 profile and the inner surface contacts the groove.


To assemble the c-shaped annular ring 160 with the bit holder 10 of the first embodiment, a first c-shaped annular ring 160 is disposed around/in groove 46 of the increased diameter tapered first segment 44 and a second c-shaped annular ring 160 of a smaller size or diameter is disposed around/in groove 56 of the increased diameter third segment 54. When disposed around groove 46 and groove 56, the first end 164 and the second end 166 of the annular ring 160 are spatially oriented from each other, in this illustrated embodiment, such that annular ring 160 does not extend completely around the circumference of the shank 14 in groove 46 and/or groove 56. The annular ring 160 includes an exaggerated raised profile that provides additional interference that will compensate for bore wear in the tapered section 103 and the generally cylindrical section 105, respectively, of bore 102 of the base block 100. The shank 14 of the bit holder 10, including annular rings 160, 160, is inserted into the bore 102 of the base block 100 and forms an interference fit with the bore 102 of the base block 100. Generally, base blocks must be replaced before a drum requires replacement. Typically, two sets of base blocks are consumed during the life of a drum. The design described by the present disclosure increases the life of the base block that is welded to the drum, or welded to a riser, which is first welded to the drum that is attached to the machine. The purpose of adding the bore wear compensating features, such as annular ring 160 to the bit holder 10 is to provide a base block that has the same lifespan as the lifespan of the drum on which they're mounted, thereby increasing the lifespan of the drum itself.


Referring to FIGS. 57-60, a seventh embodiment of a c-shaped annular ring 170 is shown. In this illustrated exemplary seventh embodiment, the c-shaped annular ring 170 is a steel oval ring, including an oval cross-section 172 taken at an angle to a longitudinal axis of the oval ring 170 that extends from a first end 174 to a second end 176. The outer profile of the annular rings of each embodiment match the base block bore 102 profile.


To assemble the c-shaped annular ring 170 with the bit holder 10 of the first embodiment, a first c-shaped annular ring 170 is disposed around/in the increased diameter tapered first segment 44 and a second c-shaped annular ring 170 of a smaller size or diameter is disposed around/in the increased diameter third segment 54. When disposed around groove 46 and groove 56, the first end 174 and the second end 176 of the annular ring 170 are spatially oriented from each other, in this illustrated embodiment, such that annular ring 170 does not extend completely around the circumference of the shank 14 in groove 46 and/or groove 56. The annular ring 170 includes an exaggerated raised profile that provides additional interference that will compensate for bore wear in the tapered section 103 and the generally cylindrical section 105, respectively, of bore 102 of the base block 100. The shank 14 of the bit holder 10, including annular rings 170, 170, is inserted into the bore 102 of the base block 100 and forms an interference fit with the bore 102 of the base block 100. Generally, base blocks must be replaced before a drum requires replacement. Typically, two sets of base blocks are consumed during the life of a drum. The design described by the present disclosure increases the life of the base block that is welded to the drum, or welded to a riser, which is first welded to the drum that is attached to the machine. The purpose of adding the bore wear compensating features, such as annular ring 170 to the bit holder 10 is to provide a base block that has the same lifespan as the lifespan of the drum on which they're mounted, thereby increasing the lifespan of the drum itself.


Referring to FIGS. 61-64, an eighth embodiment of a c-shaped annular ring 180 is shown. In this illustrated exemplary eighth embodiment, the c-shaped annular ring 180 is a steel semi-oval ring, including a semi-oval cross-section 182 taken at an angle to a longitudinal axis of the semi-oval ring 180, that extends from a first end 184 to a second end 186. This c-shaped annular ring 180 is semi-oval in that the semi-oval ring 180 includes a planar inner surface and an arcuate or half-oval outer surface. The outer profile of the annular rings of each embodiment match the base block bore 102 profile and the inner surface contacts the groove.


To assemble the c-shaped annular ring 180 with the bit holder 10 of the first embodiment, a first c-shaped annular ring 180 is disposed around/in groove 46 of the increased diameter tapered first segment 44 and a second c-shaped annular ring 180 of a smaller size or diameter is disposed around/in the increased diameter third segment 54. When disposed around groove 46 and groove 56, the first end 184 and the second end 186 of the annular ring 180 are spatially oriented from each other, in this illustrated embodiment, such that annular ring 180 does not extend completely around the circumference of the shank 14 in groove 46 and/or groove 56. The annular ring 180 includes an exaggerated raised profile that provides additional interference that will compensate for bore wear in the tapered section 103 and the generally cylindrical section 105, respectively, of bore 102 of the base block 100. The shank 14 of the bit holder 10, including annular rings 180, 180, is inserted into the bore 102 of the base block 100 and forms an added interference fit with the bore 102 of the base block 100. Generally, base blocks must be replaced before a drum requires replacement. Typically, two sets of base blocks are consumed during the life of a drum. The design described by the present disclosure increases the life of the base block that is welded to the drum, or welded to a riser, which is first welded to the drum that is attached to the machine. The purpose of adding the bore wear compensating features, such as annular ring 180 to the bit holder 10 is to provide a base block that has the same lifespan as the lifespan of the drum on which they're mounted, thereby increasing the lifespan of the drum itself.


In other embodiments, the annular rings can also include a fully or partially circular elastomer rings, such as polytetrafluoroethylene (Teflon), acrylonitrile butadiene rubber (NBR) or nitrile rubber, also know as Buna-N, silicone, etc., that have a sufficient radial strength to withstand the radial forces generated while in use. An example of use of elastomer rings is for smaller equipment with less horsepower that would not require the radial strength of a metal ring.


It is to be understood that while the first embodiment of annular round wire round rings 70, 72 were used in grooves 46, 56, respectively, of shank 14 of bit holder 10 in FIGS. 7-14-17, 22, 25, 26, 30, and 32, groove 46 and groove 56 of shank 14 of bit holder 10 can accept any variation and/or combination of annular rings, such as annular rings 70, 72, 120, 130, 140, 150, 160, 170, and 180 for example, that form an interference fit with the bore 102 of the base block 100. The annular rings can be partially or nearly circumferentially disposed around the shank and/or can be up to 259 degrees in circumference.


For example, referring to FIGS. 65-72, the first embodiment of the bit holder 10, with the second embodiment of annular angular flat ring 120 disposed around groove 46 of increased diameter first segment 44 and the fifth embodiment of annular flat ring 150 disposed around groove 56 of increased diameter third segment 54, is shown assembled in the bore 102 of the first embodiment of the base block 100. Groove 46 and groove 56 include the same profile seat, or inner diameter, for the bottom portion of the groove 46, 56 as the inner diameter of the ring 120, 150, respectively. When assembled into base block bore 102, the outer diameter of annular rings 120, 150 are flattened and conform to any base block bore diameter, as shown in FIGS. 70 and 72, so that the outer profile of the annular rings 120, 150 match the tapered section 103 and generally cylindrical section 105 of bore 102 profile of the base block 100. The flattened outer diameter of annular rings 120, 150 adds surface area that provides higher load capacity.


As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X includes A or B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes A or B” is satisfied under any of the foregoing instances. In addition, “X includes at least one of A and B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes at least one of A and B” is satisfied under any of the foregoing instances. The articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form. Moreover, use of the term “an implementation” or “one implementation” throughout is not intended to mean the same embodiment, aspect or implementation unless described as such.


While the present disclosure has been described in connection with certain embodiments and measurements, it is to be understood that the present disclosure is not to be limited to the disclosed embodiments and measurements but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.

Claims
  • 1. A bit holder comprising: a body portion;a generally cylindrical hollow shank axially depending from a bottom of the body portion, the shank comprising: a forward portion of the shank adjacent the bottom of the body portion, the forward portion comprising an outer diameter including one of a declining taper outer surface towards a distal end of the shank and a generally cylindrical outer surface, the forward portion including a first annular groove positioned circumferentially around the forward portion approximately midway between a forward end of the forward portion and a distal end of the forward portion;a distal portion of the shank comprising an outer diameter including an outer surface, the distal portion including a second annular groove therearound;an elongate slot through a side wall of said hollow shank axially extending from the distal end of the shank to the forward portion adjacent the first annular groove, the elongate slot comprising an upper termination adjacent said forward portion;a first c-shaped annular ring disposed in the first annular groove;a second c-shaped annular ring disposed in the second annular groovean outer diameter of said first annular ring being larger than the outer diameter of said forward portion of the shank;an outer diameter of said second annular ring being larger than the outer diameter of said distal portion; anda bore axially extending from a forward end of the body portion to the distal end of the shank.
  • 2. The bit holder of claim 1, further comprising: a tire portion of the body portion upwardly adjacent the bottom of the body portion, the tire portion comprising a first pair of spatially positioned parallel undercuts extending into the tire portion from the bottom of the body portion, the undercuts being a hollow wedge shape, each undercut comprising a declining terminus that at least one of ends short of a plane through a longitudinal axis of the body portion, ends at the plane through the longitudinal axis of the body portion, ends past the plane through the longitudinal axis of the body portion, and is offset from the declining terminus of an adjacent undercut.
  • 3. The bit holder of claim 2, the tire portion further comprises a radially inward outer annular tapered portion adjacent the bottom of the body portion.
  • 4. The bit holder of claim 1, the first c-shaped annular ring comprising at least one of: a first ring comprising a round first cross-section taken at an angle to a first longitudinal axis of the first ring;a second ring comprising a rectangular second cross-section taken at an angle to a second longitudinal axis of the second ring, a second planar inner surface, and a second planar outer surface that tapers inwardly as the second planar outer surface axially extends from a first side of the second ring to a second side of the second ring;a hexagonal third ring comprising a hexagonal third cross-section taken at an angle to a third longitudinal axis of the third ring;a square fourth ring comprising a square fourth cross-section taken at an angle to a fourth longitudinal axis of the fourth ring;a flat fifth ring comprising a rectangular fifth cross-section taken at an angle to a fifth longitudinal axis of the fifth ring, a fifth planar inner surface, and a fifth planar outer surface;a semi-flat sixth ring comprising a sixth planar inner surface and a sixth arcuate outer surface;a seventh ring comprising an oval seventh cross-section taken at an angle to a seventh longitudinal axis of the seventh ring; andan eighth ring comprising an eighth planar inner surface and an eighth arcuate outer surface.
  • 5. The bit holder of claim 1, the second c-shaped annular ring comprising at least one of: a first ring comprising a round first cross-section taken at an angle to a first longitudinal axis of the first ring;a second ring comprising a rectangular second cross-section taken at an angle to a second longitudinal axis of the second ring, a second planar inner surface, and a second planar outer surface that tapers inwardly as the second planar outer surface axially extends from a first side of the second ring to a second side of the second ring;a third ring comprising hexagonal third cross-section taken at an angle to a third longitudinal axis of the third ring;a fourth ring comprising a square fourth cross-section taken at an angle to a fourth longitudinal axis of the fourth ring;a fifth ring comprising a rectangular fifth cross-section taken at an angle to a fifth longitudinal axis of the fifth ring, a fifth planar inner surface, and a fifth planar outer surface;a sixth ring comprising a sixth planar inner surface and a sixth arcuate outer surface;a sixth ring comprising an oval sixth cross-section taken at an angle to a sixth longitudinal axis of the sixth ring; andan eighth ring comprising an eighth planar inner surface and an eighth arcuate outer surface.
  • 6. The bit holder of claim 1, further comprising: an internal slot of the shank axially extending from a rearward termination adjacent the distal end of the shank to a forward termination adjacent the bottom of the body portion.
  • 7. The bit holder of claim 1, further comprising: a first end and a second end of the first c-shaped annular ring, the first end of the first c-shaped annular ring being spatially positioned from the second end of the first c-shaped annular ring; anda first end and a second end of the second c-shaped annular ring, the first end of the second c-shaped annular ring being spatially positioned from the second end of the second c-shaped annular ring.
  • 8. The bit holder of claim 1, the first c-shaped annular ring comprising one of a round wire ring, a steel ring, an elastomer ring, a polytetrafluoroethylene ring, an acrylonitrile butadiene rubber ring, a nitrile rubber ring, and a silicone ring and the second c-shaped annular ring comprising one of a round wire ring, a steel ring, an elastomer ring, a polytetrafluoroethylene ring, an acrylonitrile butadiene rubber ring, a nitrile rubber ring, and a silicone ring.
  • 9. The bit holder of claim 1, the distal portion of said shank comprising one of an outer generally cylindrical surface, an outer declining taper surface toward the distal end of the shank, and an outer increasing taper surface toward the distal end of the shank.
  • 10. The bit holder of claim 1, at least a part of the distal portion of said shank comprising a cylindrical surface adjacent the distal end of the shank.
  • 11. The bit holder of claim 1, further comprising: a distal reverse taper surface toward the distal end of said shank.
  • 12. The bit holder of claim 1, the outer diameter of said forward portion of said shank being larger than the diameter of said distal portion of said shank.
  • 13. The bit holder of claim 1, said first C-shaped annular ring being larger than said second C-shaped annular ring.
  • 14. The bit holder of claim 1, both said first and second C-shaped annular rings seating in their first and second annular grooves, respectively.
  • 15. A combination bit holder and base block comprising: a base block comprising: a base mounting portion including a base surface; anda device receiving portion integrally extending from the base mounting portion opposite the base surface, the device receiving portion comprising a base block bore extending from a front face of the device receiving portion to a rear face of the device receiving portion; anda bit holder comprising: a body portion; anda generally cylindrical hollow shank axially depending from a bottom of the body portion, the shank comprising: a forward portion of the shank adjacent the bottom of the body portion, the forward portion comprising an outer diameter sized for a non-rotatable interference fit with said base block bore including one of a declining taper outer surface towards a distal end of the shank and a generally cylindrical outer surface, the forward portion including a first annular groove positioned circumferentially around the forward portion approximately midway between a forward end of the forward portion and a distal end of the forward portion;a distal portion of the shank comprising an outer diameter including an outer surface that is sized for an interference fit with said base block bore, the distal portion including a second annular groove therearound;an elongate slot through a side wall of said hollow shank axially extending from the distal end of the shank to the forward portion adjacent the first annular groove, the elongate slot comprising an upper termination adjacent said forward portion;a first c-shaped annular ring disposed in the first annular groove;a second c-shaped annular ring disposed in the second annular groove;an outer diameter of said first annular ring being larger than the outer diameter of said forward portion of the shank, providing added interference between said forward portion and said base block bore;an outer diameter of said second annular ring being larger than the outer diameter of said distal portion, providing added interference between said distal portion and said base block bore; anda bit holder bore axially extending from a forward end of the body portion to the distal end of the shank.
  • 16. The combination bit holder and base block of claim 15, further comprising: a tire portion of the body portion upwardly adjacent the bottom of the body portion, the tire portion comprising a first pair of spatially positioned parallel undercuts extending into the tire portion from the bottom of the body portion, the undercuts being a hollow wedge shape, each undercut comprising a declining terminus that at least one of ends short of a plane through a longitudinal axis of the body portion, ends at the plane through the longitudinal axis of the body portion, ends past the plane through the longitudinal axis of the body portion, and is offset from the declining terminus of an adjacent undercut.
  • 17. The combination bit holder and base block of claim 16, the tire portion further comprises a radially inward outer annular tapered portion adjacent the bottom of the body portion.
  • 18. The combination bit holder and base block of claim 15, the first c-shaped annular ring comprising at least one of: a first ring comprising a round first cross-section taken at an angle to a first longitudinal axis of the first ring;a second ring comprising a rectangular second cross-section taken at an angle to a second longitudinal axis of the second ring, a second planar inner surface, and a second planar outer surface that tapers inwardly as the second planar outer surface axially extends from a first side of the second ring to a second side of the second ring;a third ring comprising a hexagonal third cross-section taken at an angle to a third longitudinal axis of the third ring;a fourth ring comprising a square fourth cross-section taken at an angle to a fourth longitudinal axis of the fourth ring;a fifth ring comprising a rectangular fifth cross-section taken at an angle to a fifth longitudinal axis of the fifth ring, a fifth planar inner surface, and a fifth planar outer surface;a sixth ring comprising a sixth planar inner surface and a sixth arcuate outer surface;a seventh ring comprising an oval seventh cross-section taken at an angle to a seventh longitudinal axis of the seventh ring; anda ring comprising an eighth planar inner surface and an eighth arcuate outer surface.
  • 19. The combination bit holder and base block of claim 15, the second c-shaped annular ring comprising at least one of: a first ring comprising a round first cross-section taken at an angle to a first longitudinal axis of the first ring;a second ring comprising a rectangular second cross-section taken at an angle to a second longitudinal axis of the second ring, a second planar inner surface, and a second planar outer surface that tapers inwardly as the second planar outer surface axially extends from a first side of the angular flat ring to a second side of the second ring;a third ring comprising a hexagonal third cross-section taken at an angle to a third longitudinal axis of the third ring;a fourth ring comprising a square fourth cross-section taken at an angle to a fourth longitudinal axis of the fourth ring;a fifth ring comprising a rectangular fifth cross-section taken at an angle to a fifth longitudinal axis of the fifth ring, a fifth planar inner surface, and a fifth planar outer surface;a sixth ring comprising a sixth planar inner surface and a sixth arcuate outer surface;a seventh ring comprising an oval seventh cross-section taken at an angle to a seventh longitudinal axis of the seventh ring; andan eighth ring comprising an eighth planar inner surface and an eighth arcuate outer surface.
  • 20. The combination bit holder and base block of claim 15, further comprising: an internal slot of the shank axially extending from a rearward termination adjacent the distal end of the shank to a forward termination adjacent the bottom of the body portion.
  • 21. The combination bit holder and base block of claim 15, further comprising: a first end and a second end of the first c-shaped annular ring, the first end of the first c-shaped annular ring being spatially positioned from the second end of the first c-shaped annular ring; anda first end and a second end of the second c-shaped annular ring, the first end of the second c-shaped annular ring being spatially positioned from the second end of the second c-shaped annular ring.
  • 22. The combination bit holder and base block of claim 15, further comprising: an extension of an arcuate segment of the base block bore, the extension extending past the rear face of the device receiving portion and onto a surface of the base mounting portion, the surface of the base mounting portion axially extending from the rear face of the device receiving portion.
  • 23. The combination bit holder and base block of claim 15, further comprising: an angular slot extending inwardly from the rear face of the device receiving portion, the angular slot enclosed within a sidewall of the device receiving portion and decreasing in size from the rear face of the device receiving portion to a position mediate the front face of the device receiving portion and the rear face of the device receiving portion, a distal end of the angular slot positioned mediate an inner diameter of the devise receiving portion and an outer diameter of the device receiving portion.
  • 24. The combination bit holder and base block of claim 15, the first c-shaped annular ring comprising one of a round wire ring, a steel ring, an elastomer ring, a polytetrafluoroethylene ring, an acrylonitrile butadiene rubber ring, a nitrile rubber ring, and a silicone ring and the second c-shaped annular ring comprising one of a round wire ring, a steel ring, an elastomer ring, a polytetrafluoroethylene ring, an acrylonitrile butadiene rubber ring, a nitrile rubber ring, and a silicone ring.
  • 25. The combination bit holder and base block of claim 15, further comprising: a tapered section of the base block bore adjacent a front face of the device receiving portion; anda generally cylindrical section of the base block bore adjacent the tapered section of the base block bore.
  • 26. The bit holder of claim 15, the distal portion of said shank comprising one of an outer generally cylindrical surface, an outer declining taper surface toward the distal end of the shank, and an outer increasing taper surface toward the distal end of the shank.
  • 27. The bit holder of claim 15, at least a part of the distal portion of said shank comprising a cylindrical surface adjacent the distal end of the shank.
  • 28. The bit holder of claim 15, further comprising: a distal reverse taper surface toward the distal end of said shank.
  • 29. The bit holder of claim 15, the outer diameter of said forward portion of said shank being larger than the diameter of said distal portion of said shank.
  • 30. The bit holder of claim 15, said first C-shaped annular ring being larger than said second C-shaped annular ring.
  • 31. The bit holder of claim 15, further comprising: an inside surface of both said first and second C-shaped annular rings contacting their first and second annular grooves, respectively.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority and is a continuation-in-part of U.S. Provisional Application No. 62/965,237, filed Jan. 24, 2020, claims priority to and is a continuation-in-part of U.S. Provisional Application No. 61/983,291, filed Apr. 23, 2014, claims priority to and is a continuation-in-part of U.S. Non-provisional application Ser. No. 14/690,679, filed Apr. 20, 2015, now U.S. Pat. No. 10,370,966, issued Aug. 6, 2019, and claims priority to and is a continuation-in-part of U.S. Non-provisional application Ser. No. 16/413,080, filed May 15, 2019, to the extent allowed by law and the contents of which are incorporated herein by reference in their entireties.

US Referenced Citations (289)
Number Name Date Kind
220933 McGill Oct 1879 A
2382947 Brozek Jul 1944 A
2783799 Hart Mar 1957 A
2810567 Kirkham Oct 1957 A
3342531 Krekeler Sep 1967 A
3342532 Krekeler Sep 1967 A
3397012 Krekeler Aug 1968 A
3476438 Bower, Jr. Nov 1969 A
3519309 Engle Jul 1970 A
3833264 Elders Sep 1974 A
3833265 Elders Sep 1974 A
3865437 Crosby Feb 1975 A
3997011 Staroba Dec 1976 A
4084856 Emmerich Apr 1978 A
4247150 Wrulich et al. Jan 1981 A
RE30807 Elders Dec 1981 E
4310939 Iijima Jan 1982 A
4453775 Clemmow Jun 1984 A
4478298 Hake Oct 1984 A
4489986 Dziak Dec 1984 A
4520997 Lorton Jun 1985 A
4525178 Hall Jun 1985 A
4561698 Beebe Dec 1985 A
4570726 Hall Feb 1986 A
4604106 Hall Aug 1986 A
4632463 Sterwerf, Jr. Dec 1986 A
4694918 Hall Sep 1987 A
4702525 Sollami Oct 1987 A
4763956 Emmerich Aug 1988 A
4811801 Salesky Mar 1989 A
4818027 Simon Apr 1989 A
4821819 Whysong Apr 1989 A
4844550 Beebe Jul 1989 A
4915455 O'Niell Apr 1990 A
4944559 Sionett Jul 1990 A
5067775 D'Angelo Nov 1991 A
5088797 O'Neill Feb 1992 A
5098167 Latham Mar 1992 A
5159233 Sponseller Oct 1992 A
5161627 Burkett Nov 1992 A
5273343 Ojanen Dec 1993 A
5281260 Kumar et al. Jan 1994 A
5287937 Sollami Feb 1994 A
5302005 O'Neill Apr 1994 A
5303984 Ojanen Apr 1994 A
5352079 Croskey Oct 1994 A
5370448 Sterwerf, Jr. Dec 1994 A
5374111 Den Besten Dec 1994 A
5415462 Massa May 1995 A
5417475 Graham et al. May 1995 A
5458210 Sollami Oct 1995 A
5484191 Sollami Jan 1996 A
5492188 Smith et al. Feb 1996 A
5541006 Conley Jul 1996 A
5551760 Sollami Sep 1996 A
5607206 Siddle Mar 1997 A
5628549 Ritchey May 1997 A
5647641 Sulosky et al. Jul 1997 A
5720528 Ritchey Feb 1998 A
5725283 O'Neill Mar 1998 A
5738415 Parrott Apr 1998 A
5823632 Burkett Oct 1998 A
5924501 Tibbitts Jul 1999 A
5931542 Britzke Aug 1999 A
5934854 Krautkremer et al. Aug 1999 A
5992405 Sollami Nov 1999 A
D420013 Warren Feb 2000 S
6019434 Emmerich Feb 2000 A
6099081 Warren Aug 2000 A
6102486 Briese Aug 2000 A
6176552 Topka, Jr. Jan 2001 B1
6196340 Jensen et al. Mar 2001 B1
6199451 Sollami Mar 2001 B1
6220376 Lundell Apr 2001 B1
6250535 Sollami Jun 2001 B1
6331035 Montgomery, Jr. Dec 2001 B1
6341823 Sollami Jan 2002 B1
6357832 Sollami Mar 2002 B1
6371567 Sollami Apr 2002 B1
6382733 Parrott May 2002 B1
6428110 Ritchey et al. Aug 2002 B1
6508516 Kammerer Jan 2003 B1
D471211 Sollami Mar 2003 S
6585326 Sollami Jul 2003 B2
6685273 Sollami Feb 2004 B1
6692083 Latham Feb 2004 B2
D488170 Sollami Apr 2004 S
6733087 Hall May 2004 B2
6739327 Sollami May 2004 B2
6786557 Montgomery Sep 2004 B2
6824225 Stiffler Nov 2004 B2
6846045 Sollami Jan 2005 B2
6854810 Montgomery Feb 2005 B2
6866343 Holl et al. Mar 2005 B2
6968912 Sollami Nov 2005 B2
6994404 Sollami Feb 2006 B1
7097258 Sollami Aug 2006 B2
7118181 Frear Oct 2006 B2
7150505 Sollami Dec 2006 B2
7195321 Sollami Mar 2007 B1
7210744 Montgomery May 2007 B2
7229136 Sollami Jun 2007 B2
7234782 Stehney Jun 2007 B2
D554162 Hall Oct 2007 S
7320505 Hall Jan 2008 B1
7338135 Hall Mar 2008 B1
7343947 Sollami Mar 2008 B1
7347292 Hall Mar 2008 B1
D566137 Hall Apr 2008 S
7353893 Hall Apr 2008 B1
7384105 Hall Jun 2008 B2
7396086 Hall Jun 2008 B1
7401862 Holl et al. Jul 2008 B2
7401863 Hall Jul 2008 B1
7410221 Hall Aug 2008 B2
7413256 Hall Aug 2008 B2
7413258 Hall Aug 2008 B2
7419224 Hall Sep 2008 B2
7445294 Hall Nov 2008 B2
D581952 Hall Dec 2008 S
7464993 Hall Dec 2008 B2
7469756 Hall Dec 2008 B2
7469971 Hall Dec 2008 B2
7469972 Hall Dec 2008 B2
7475948 Hall Jan 2009 B2
7523794 Hall Apr 2009 B2
7568770 Hall Aug 2009 B2
7569249 Hall Aug 2009 B2
7571782 Hall Aug 2009 B2
7575425 Hall Aug 2009 B2
7588102 Hall Sep 2009 B2
7594703 Hall Sep 2009 B2
7600544 Sollami Oct 2009 B1
7600823 Hall Oct 2009 B2
7628233 Hall Dec 2009 B1
7635168 Hall Dec 2009 B2
7637574 Hall Dec 2009 B2
7648210 Hall Jan 2010 B2
7665552 Hall Feb 2010 B2
7669938 Hall Mar 2010 B2
7681338 Hall Mar 2010 B2
7712693 Hall May 2010 B2
7717365 Hall May 2010 B2
7722127 Hall May 2010 B2
7789468 Sollami Sep 2010 B2
7832808 Hall Nov 2010 B2
7883155 Sollami Feb 2011 B2
7950745 Sollami May 2011 B2
7963617 Hall Jun 2011 B2
7992944 Hall Aug 2011 B2
7992945 Hall Aug 2011 B2
7997660 Monyak et al. Aug 2011 B2
7997661 Hall Aug 2011 B2
8007049 Fader Aug 2011 B2
8007051 Hall Aug 2011 B2
8029068 Hall Oct 2011 B2
8033615 Hall Oct 2011 B2
8033616 Hall Oct 2011 B2
8038223 Hall Oct 2011 B2
8061784 Hall Nov 2011 B2
8109349 Hall Feb 2012 B2
8118371 Hall Feb 2012 B2
8136887 Hall Mar 2012 B2
8201892 Hall Jun 2012 B2
8215420 Hall Jul 2012 B2
8292372 Hall Oct 2012 B2
8414085 Hall Apr 2013 B2
8449039 Hall May 2013 B2
8485609 Hall Jul 2013 B2
8500209 Hall Aug 2013 B2
8540320 Sollami Sep 2013 B2
RE44690 Sollami Jan 2014 E
8622482 Sollami Jan 2014 B2
8622483 Sollami Jan 2014 B2
8646848 Hall Feb 2014 B2
8728382 Hall May 2014 B2
8740314 O'Neill Jun 2014 B2
9004610 Erdmann et al. Apr 2015 B2
9028008 Bookhamer May 2015 B1
9039099 Sollami May 2015 B2
9316061 Hall Apr 2016 B2
9518464 Sollami Dec 2016 B2
9879531 Sollami Jan 2018 B2
9909416 Sollami Mar 2018 B1
9976418 Sollami May 2018 B2
9988903 Sollami Jun 2018 B2
10072501 Sollami Sep 2018 B2
10105870 Sollami Oct 2018 B1
10107097 Sollami Oct 2018 B1
10107098 Sollami Oct 2018 B2
10180065 Sollami Jan 2019 B1
10260342 Sollami Apr 2019 B1
10323515 Sollami Jun 2019 B1
10337324 Sollami Jul 2019 B2
10370966 Sollami Aug 2019 B1
10385689 Sollami Aug 2019 B1
10415386 Sollami Sep 2019 B1
10502056 Sollami Dec 2019 B2
10947844 Sollami Mar 2021 B1
10954785 Sollami Mar 2021 B2
20020063467 Taitt May 2002 A1
20020074850 Montgomery, Jr. Jun 2002 A1
20020074851 Montgomery, Jr. Jun 2002 A1
20020109395 Sollami Aug 2002 A1
20020167216 Sollami Nov 2002 A1
20020192025 Johnson Dec 2002 A1
20030015907 Sollami Jan 2003 A1
20030047985 Stiffler Mar 2003 A1
20030052530 Sollami Mar 2003 A1
20030122414 Sollami Jul 2003 A1
20030209366 McAlvain Nov 2003 A1
20040004389 Latham Jan 2004 A1
20040026132 Hall et al. Feb 2004 A1
20040174065 Sollami Sep 2004 A1
20050173966 Mouthaan Aug 2005 A1
20050212345 Sleep et al. Sep 2005 A1
20060071538 Sollami Apr 2006 A1
20060186724 Stehney Aug 2006 A1
20060261663 Sollami Nov 2006 A1
20070013224 Stehney Jan 2007 A1
20070040442 Weaver Feb 2007 A1
20070052279 Sollami Mar 2007 A1
20080035386 Hall et al. Feb 2008 A1
20080036276 Hall et al. Feb 2008 A1
20080036283 Hall et al. Feb 2008 A1
20080100124 Hall et al. May 2008 A1
20080145686 Mirchandani Jun 2008 A1
20080164747 Weaver et al. Jul 2008 A1
20080284234 Hall et al. Nov 2008 A1
20090146491 Fader et al. Jun 2009 A1
20090160238 Hall et al. Jun 2009 A1
20090184564 Brady Jul 2009 A1
20090256413 Majagi Oct 2009 A1
20090261646 Ritchie et al. Oct 2009 A1
20090284069 Watson Nov 2009 A1
20100045094 Sollami Feb 2010 A1
20100244545 Hall Sep 2010 A1
20100253130 Sollami Oct 2010 A1
20100320003 Sollami Dec 2010 A1
20100320829 Sollami Dec 2010 A1
20110006588 Monyak et al. Jan 2011 A1
20110089747 Helsel Apr 2011 A1
20110175430 Heiderich et al. Jul 2011 A1
20110204703 Sollami Aug 2011 A1
20110254350 Hall Oct 2011 A1
20110314614 Barnhart et al. Dec 2011 A1
20120001475 Dubay et al. Jan 2012 A1
20120027514 Hall Feb 2012 A1
20120056465 Gerer et al. Mar 2012 A1
20120068527 Erdmann Mar 2012 A1
20120104830 Monyak et al. May 2012 A1
20120181845 Sollami Jul 2012 A1
20120242136 Ojanen Sep 2012 A1
20120248663 Hall Oct 2012 A1
20120261977 Hall Oct 2012 A1
20120280559 Watson Nov 2012 A1
20120286559 Sollami Nov 2012 A1
20120319454 Swope Dec 2012 A1
20130169022 Monyak Jul 2013 A1
20130169023 Monyak Jul 2013 A1
20130181501 Hall et al. Jul 2013 A1
20130199693 Tank et al. Aug 2013 A1
20130307316 Roetsch et al. Nov 2013 A1
20140035346 Fundakowski et al. Feb 2014 A1
20140110991 Sollami Apr 2014 A1
20140232172 Roth et al. Aug 2014 A1
20140262541 Parsana et al. Sep 2014 A1
20140326516 Haugvaldstad Nov 2014 A1
20150028656 Sollami Jan 2015 A1
20150035343 Ojanen Feb 2015 A1
20150137579 Lachmann et al. May 2015 A1
20150198040 Voitic et al. Jul 2015 A1
20150240634 Sollami Aug 2015 A1
20150285074 Sollami Oct 2015 A1
20150292325 Sollami Oct 2015 A1
20150300166 Ries et al. Oct 2015 A1
20150308488 Kahl Oct 2015 A1
20150315910 Sollami Nov 2015 A1
20150354285 Hall Dec 2015 A1
20160102550 Paros Apr 2016 A1
20160194956 Sollami Jul 2016 A1
20160229084 Lehnert Aug 2016 A1
20160237818 Weber et al. Aug 2016 A1
20170001292 Harrison Jan 2017 A1
20170089198 Sollami Mar 2017 A1
20170101867 Hall et al. Apr 2017 A1
20170342831 Weber et al. Nov 2017 A1
20180003050 Sollami Jan 2018 A1
20200157890 Cuillier De Maindreville et al. May 2020 A1
Foreign Referenced Citations (15)
Number Date Country
102004049710 Apr 2006 DE
102011079115 Jan 2013 DE
202012100353 Jun 2013 DE
102015121953 Jul 2016 DE
102016118658 Mar 2017 DE
0997610 May 2000 EP
3214261 Sep 2017 EP
1114156 May 1968 GB
1218308 Jan 1971 GB
2010356 Jun 1979 GB
2483157 Feb 2012 GB
2534370 Jul 2016 GB
2008105915 Sep 2008 WO
2008105915 Sep 2008 WO
2009006612 Jan 2009 WO
Provisional Applications (2)
Number Date Country
62965237 Jan 2020 US
61983291 Apr 2014 US
Continuation in Parts (2)
Number Date Country
Parent 16413080 May 2019 US
Child 17146992 US
Parent 14690679 Apr 2015 US
Child 16413080 US