This disclosure relates to bit assemblies for road milling, mining and trenching machines and, more particularly, to bit holders with at least one annular ring.
Road milling, mining, and trenching equipment utilizes bits and/or picks traditionally set in a bit assembly. Bit assemblies can include a bit and/or pick retained within a bore in a base block. Bit assemblies can also include a bit and/or pick retained by a bit holder and the bit holder retained within a bore in a base block. A plurality of the bit assemblies are mounted on the outside of a rotatable drum, typically in a V-shaped or spiral configuration. A plurality of the bit assemblies can also be mounted on an endless chain and plate configurations. The combinations of bit assemblies have been utilized to remove material from the terra firma, such as degrading the surface of the earth, minerals, cement, concrete, macadam or asphalt pavement. Individual bits and/or picks, bit holders, and base blocks may wear down or break over time due to the harsh road degrading environment. Additionally, the forces and vibrations exerted on the bit assemblies may cause the bit holder to wear away the bore in the base block. As a result, the diameter of the bore of the base block increases over time, decreasing the interference contact between the bit holder and the bore of the base block, thereby damaging the bit holder or base block and requiring replacement of the bit holder or base block long before the standard minimum lifetime required by the industry.
To prolong the life of the bit assembly, and the bit holder and/or the base block, a bit holder comprising a slotted shank and two annular rings partially or nearly circumferentially disposed around the shank is provided to form and maintain the interference contact between the bore of the base block initially and even as the diameter of the bore of the base block increases from use. The service life of the bit holder and base block are substantially increased due to the bore wear compensation provided by the annular rings and the slotted shank of the bit holder.
This disclosure relates generally to bit assemblies for road milling, mining, and trenching equipment. One implementation of the teachings herein is a bit holder that includes a body portion; a generally cylindrical hollow shank axially depending from a bottom of the body portion, the shank including: a first annular groove adjacent the bottom of the body portion; and a second annular groove adjacent a distal end of the shank.
In another implementations of the teachings herein is a combination bit holder and base block that includes a base block including: a base mounting portion including a base surface; and a device receiving portion integrally extending from the base mounting portion opposite the base surface, the device receiving portion comprising a bore extending from a front face of the device receiving portion to a rear face of the device receiving portion; and a bit holder including: a body portion; a generally cylindrical hollow shank axially depending from a bottom of the body portion, the shank including: a first annular groove adjacent the bottom of the body portion; and a second annular groove adjacent a distal end of the shank.
These and other aspects of the present disclosure are disclosed in the following detailed description of the embodiments, the appended claims and the accompanying figures.
The various features, advantages, and other uses of the apparatus will become more apparent by referring to the following detailed description and drawings, wherein like reference numerals refer to like parts throughout the several views. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity.
Referring to
The back flange 26 includes a pair of horizontal tapered cutouts 28-28 (
The shank 14 includes an elongate first slot 30 extending from a distal end 32, such as a generally annular distal end, of the shank 14 axially upward or forward to an upper termination 34 near the upper or forward end of the shank 14. In this exemplary implementation, the shank 14 also includes an optional internally oriented second slot 36 located approximately 180 degrees around the annular shank 14 from the first slot 30. This second slot 36 is parallel to the first slot in this illustrated embodiment, and is an internal slot having a rearward termination 38 inwardly adjacent to the distal end 32 of the shank 14 and a forward termination 40 generally coinciding longitudinally and axially with the upper termination 34 of the first slot 30.
A central bore 42 axially extends from the top surface 16 of the bit holder 10 to the distal end 32 of the shank 14. The central bore 42 is adapted to receive the shank of a bit (not shown). The central bore 42 and the slots 30, 36 allow the generally C-shaped annular sidewall of the shank 14 to radially contract when the shank is mounted into a bore 102 (
Depending from the back flange 26 of the bit holder body 12 is the generally cylindrical hollow shank 14. In a second embodiment of the bit holder, the top portion of the shank 14 can include an optional rounded junction (not shown) between the bit holder body 12 and the shank 14 which provides a stress relieving portion between the bit holder body 12 and the shank 14 of the bit holder, avoiding sharp corners and/or edges and which may provide an area for stress cracks to begin. An increased diameter first segment 44, which in this illustrated embodiment is tapered, axially depends from the bottom of the bit holder body 12 and includes a groove 46 adapted to receive an annular ring. Groove 46 includes the same profile seat, or inner diameter, for the bottom portion of the groove 46 as the inner diameter of the annular ring. The axial length 66 of the first segment 44 is a design feature of the bit holder 10 and is positioned in the tapered zone of a bore of the base block 100 to support radial deflection. The distal end of the increased diameter first segment 44 includes a tapered portion 48 that axially extends from the distal end of the increased diameter tapered first segment 44 to a decreased diameter generally cylindrical second segment 50. The decreased diameter generally cylindrical second segment 50 axially extends to stepped shoulder 52 disposed between the decreased diameter generally cylindrical second segment 50 and an increased diameter third segment 54. The stepped shoulder 52 increases, or steps up, as it axially extends from the decreased diameter generally cylindrical second segment 50 to the increased diameter third segment 54. The increased diameter third segment 54 includes a groove 56 (
Referring to
The base block 100 includes added space behind the device receiving portion 106. This added space provides additional access up to about ⅞ inch from the device receiving portion 106 for tools to remove or punch out either bits from the bit holder 10 annular or circular bore 42 or the bit holder 10 from the base block bore 102. The base block 100 includes a surface 110 opposite the base surface 104 that extends past the rear 108 of the device receiving portion 106. Surface 110 includes an extension of an arcuate segment 112 of the generally cylindrical section 105 of the base block bore 102.
Referring to
To assemble the c-shaped annular rings 70, 72 with the bit holder 10 of the first embodiment, the first c-shaped annular ring 70 is disposed around/in groove 46 of the increased diameter tapered first segment 44 and the second c-shaped annular ring 72 of a smaller size or diameter is disposed around/in groove 56 of the increased diameter third segment 54, as shown in
Referring to
Referring to
To assemble the c-shaped annular ring 120 with the bit holder of the first embodiment, a first c-shaped annular ring 120 is disposed around/in groove 46 of the increased diameter tapered first segment 44 and a second c-shaped annular ring 120 of a smaller size or diameter is disposed around/in groove 56 of the increased diameter third segment 54. When disposed around groove 46 and groove 56, the first end 124 and the second end 126 of the annular ring 120 are spatially oriented from each other, in this illustrated embodiment, such that annular ring 120 does not extend completely around the circumference of the shank 14 in groove 46 and/or groove 56. The annular ring 120 includes an exaggerated raised profile that when seated on the groove 56 provides additional interference that will compensate for bore wear in the tapered section 103 and the generally cylindrical section 105, respectively, of bore 102 of the base block 100. The shank 14 of the bit holder 10, including annular rings 120, 120, is inserted into the bore 102 of the base block 100 and forms an added interference fit between the rings seated on the grooves and the bore 102 of the base block 100. Generally, base blocks must be replaced before a drum requires replacement. Typically, two sets of base blocks are consumed during the life of a drum. The design described by the present disclosure increases the life of the base block that is welded to the drum, or welded to a riser, which is first welded to the drum that is attached to the machine. The purpose of adding the bore wear compensating features, such as annular ring 120 to the bit holder 10 is to provide a base block that has the same lifespan as the lifespan of the drum on which they're mounted, thereby increasing the lifespan of the drum itself.
Referring to
To assemble the c-shaped annular ring 130 with the bit holder 10 of the first embodiment, the first c-shaped annular ring 130 is disposed around/in groove 46 of the increased diameter tapered first segment 44 and a second c-shaped annular ring 130 of a smaller size or diameter is disposed around/in groove 56 of the increased diameter third segment 54. When disposed around groove 46 and groove 56, the first end 134 and the second end 136 of the annular ring 130 are spatially oriented from each other, in this illustrated embodiment, such that annular ring 130 does not extend completely around the circumference of the shank 14 in groove 46 and/or groove 56. The annular ring 130 includes an exaggerated raised profile that provides additional interference that will compensate for bore wear in the tapered section 103 and the generally cylindrical section 105, respectively, of bore 102 of the base block 100. The shank 14 of the bit holder 10, including annular rings 130, 130, is inserted into the bore 102 of the based block 100 and forms an interference fit with the bore 102 of the base block 100. Generally, base blocks must be replaced before a drum requires replacement. Typically, two sets of base blocks are consumed during the life of a drum. The design described by the present disclosure increases the life of the base block that is welded to the drum, or welded to a riser, which is first welded to the drum that is attached to the machine. The purpose of adding the bore wear compensating features, such as annular ring 130 to the bit holder 10 is to provide a base block that has the same lifespan as the lifespan of the drum on which they're mounted, thereby increasing the lifespan of the drum itself.
Referring to
To assemble the c-shaped annular ring 140 with the bit holder 10 of the first embodiment, a first c-shaped annular ring 140 is disposed around/in groove 46 of the increased diameter tapered first segment 44 and a second c-shaped annular ring 140 of a smaller size is disposed around/in groove 56 of the increased diameter third segment 54. When disposed around groove 46 and groove 56, the first end 144 and the second end 146 of the annular ring 140 are spatially oriented from each other, in this illustrated embodiment, such that annular ring 140 does not extend completely around the circumference of the shank 14 in groove 46 and/or groove 56. The annular ring 140 includes an exaggerated raised profile that provides additional interference that will compensate for bore wear in the tapered section 103 and the generally cylindrical section 105, respectively, of bore 102 of the base block 100. The shank 14 of the bit holder 10, including annular rings 140, 140, is inserted into the bore 102 of the base block 100 and forms an interference fit with the bore 102 of the base block 100. Generally, base blocks must be replaced before a drum requires replacement. Typically, two sets of base blocks are consumed during the life of a drum. The design described by the present disclosure increases the life of the base block that is welded to the drum, or welded to a riser, which is first welded to the drum that is attached to the machine. The purpose of adding the bore wear compensating features, such as annular ring 140 to the bit holder 10 is to provide a base block that has the same lifespan as the lifespan of the drum on which they're mounted, thereby increasing the lifespan of the drum itself.
Referring to
To assemble the c-shaped annular ring 150 with the bit holder 10 of the first embodiment, a first c-shaped annular ring 150 is disposed around/in groove 46 of the increased diameter tapered first segment 44 and a second c-shaped annular ring 150 of a smaller size or diameter is disposed around/in groove 56 of the increased diameter third segment 54. When disposed around groove 46 and groove 56, the first end 154 and the second end 156 of the annular ring 150 are spatially oriented from each other, in this illustrated embodiment, such that annular ring 150 does not extend completely around the circumference of the shank 14 in groove 46 and/or groove 56. The annular ring 150 includes an exaggerated raised profile that provides additional interference that will compensate for bore wear in the tapered section 103 and the generally cylindrical section 105, respectively, of bore 102 of the base block 100. The shank 14 of the bit holder 10, including annular rings 150, 150, is inserted into the bore 102 of the base block 100 and forms an interference fit with the bore 102 of the base block 100. Generally, base blocks must be replaced before a drum requires replacement. Typically, two sets of base blocks are consumed during the life of a drum. The design described by the present disclosure increases the life of the base block that is welded to the drum, or welded to a riser, which is first welded to the drum that is attached to the machine. The purpose of adding the bore wear compensating features, such as annular ring 150 to the bit holder 10 is to provide a base block that has the same lifespan as the lifespan of the drum on which they're mounted, thereby increasing the lifespan of the drum itself.
Referring to
To assemble the c-shaped annular ring 160 with the bit holder 10 of the first embodiment, a first c-shaped annular ring 160 is disposed around/in groove 46 of the increased diameter tapered first segment 44 and a second c-shaped annular ring 160 of a smaller size or diameter is disposed around/in groove 56 of the increased diameter third segment 54. When disposed around groove 46 and groove 56, the first end 164 and the second end 166 of the annular ring 160 are spatially oriented from each other, in this illustrated embodiment, such that annular ring 160 does not extend completely around the circumference of the shank 14 in groove 46 and/or groove 56. The annular ring 160 includes an exaggerated raised profile that provides additional interference that will compensate for bore wear in the tapered section 103 and the generally cylindrical section 105, respectively, of bore 102 of the base block 100. The shank 14 of the bit holder 10, including annular rings 160, 160, is inserted into the bore 102 of the base block 100 and forms an interference fit with the bore 102 of the base block 100. Generally, base blocks must be replaced before a drum requires replacement. Typically, two sets of base blocks are consumed during the life of a drum. The design described by the present disclosure increases the life of the base block that is welded to the drum, or welded to a riser, which is first welded to the drum that is attached to the machine. The purpose of adding the bore wear compensating features, such as annular ring 160 to the bit holder 10 is to provide a base block that has the same lifespan as the lifespan of the drum on which they're mounted, thereby increasing the lifespan of the drum itself.
Referring to
To assemble the c-shaped annular ring 170 with the bit holder 10 of the first embodiment, a first c-shaped annular ring 170 is disposed around/in the increased diameter tapered first segment 44 and a second c-shaped annular ring 170 of a smaller size or diameter is disposed around/in the increased diameter third segment 54. When disposed around groove 46 and groove 56, the first end 174 and the second end 176 of the annular ring 170 are spatially oriented from each other, in this illustrated embodiment, such that annular ring 170 does not extend completely around the circumference of the shank 14 in groove 46 and/or groove 56. The annular ring 170 includes an exaggerated raised profile that provides additional interference that will compensate for bore wear in the tapered section 103 and the generally cylindrical section 105, respectively, of bore 102 of the base block 100. The shank 14 of the bit holder 10, including annular rings 170, 170, is inserted into the bore 102 of the base block 100 and forms an interference fit with the bore 102 of the base block 100. Generally, base blocks must be replaced before a drum requires replacement. Typically, two sets of base blocks are consumed during the life of a drum. The design described by the present disclosure increases the life of the base block that is welded to the drum, or welded to a riser, which is first welded to the drum that is attached to the machine. The purpose of adding the bore wear compensating features, such as annular ring 170 to the bit holder 10 is to provide a base block that has the same lifespan as the lifespan of the drum on which they're mounted, thereby increasing the lifespan of the drum itself.
Referring to
To assemble the c-shaped annular ring 180 with the bit holder 10 of the first embodiment, a first c-shaped annular ring 180 is disposed around/in groove 46 of the increased diameter tapered first segment 44 and a second c-shaped annular ring 180 of a smaller size or diameter is disposed around/in the increased diameter third segment 54. When disposed around groove 46 and groove 56, the first end 184 and the second end 186 of the annular ring 180 are spatially oriented from each other, in this illustrated embodiment, such that annular ring 180 does not extend completely around the circumference of the shank 14 in groove 46 and/or groove 56. The annular ring 180 includes an exaggerated raised profile that provides additional interference that will compensate for bore wear in the tapered section 103 and the generally cylindrical section 105, respectively, of bore 102 of the base block 100. The shank 14 of the bit holder 10, including annular rings 180, 180, is inserted into the bore 102 of the base block 100 and forms an added interference fit with the bore 102 of the base block 100. Generally, base blocks must be replaced before a drum requires replacement. Typically, two sets of base blocks are consumed during the life of a drum. The design described by the present disclosure increases the life of the base block that is welded to the drum, or welded to a riser, which is first welded to the drum that is attached to the machine. The purpose of adding the bore wear compensating features, such as annular ring 180 to the bit holder 10 is to provide a base block that has the same lifespan as the lifespan of the drum on which they're mounted, thereby increasing the lifespan of the drum itself.
In other embodiments, the annular rings can also include a fully or partially circular elastomer rings, such as polytetrafluoroethylene (Teflon), acrylonitrile butadiene rubber (NBR) or nitrile rubber, also know as Buna-N, silicone, etc., that have a sufficient radial strength to withstand the radial forces generated while in use. An example of use of elastomer rings is for smaller equipment with less horsepower that would not require the radial strength of a metal ring.
It is to be understood that while the first embodiment of annular round wire round rings 70, 72 were used in grooves 46, 56, respectively, of shank 14 of bit holder 10 in
For example, referring to
As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X includes A or B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes A or B” is satisfied under any of the foregoing instances. In addition, “X includes at least one of A and B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes at least one of A and B” is satisfied under any of the foregoing instances. The articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form. Moreover, use of the term “an implementation” or “one implementation” throughout is not intended to mean the same embodiment, aspect or implementation unless described as such.
While the present disclosure has been described in connection with certain embodiments and measurements, it is to be understood that the present disclosure is not to be limited to the disclosed embodiments and measurements but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
This application claims priority and is a continuation-in-part of U.S. Provisional Application No. 62/965,237, filed Jan. 24, 2020, claims priority to and is a continuation-in-part of U.S. Provisional Application No. 61/983,291, filed Apr. 23, 2014, claims priority to and is a continuation-in-part of U.S. Non-provisional application Ser. No. 14/690,679, filed Apr. 20, 2015, now U.S. Pat. No. 10,370,966, issued Aug. 6, 2019, and claims priority to and is a continuation-in-part of U.S. Non-provisional application Ser. No. 16/413,080, filed May 15, 2019, to the extent allowed by law and the contents of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
220933 | McGill | Oct 1879 | A |
2382947 | Brozek | Jul 1944 | A |
2783799 | Hart | Mar 1957 | A |
2810567 | Kirkham | Oct 1957 | A |
3342531 | Krekeler | Sep 1967 | A |
3342532 | Krekeler | Sep 1967 | A |
3397012 | Krekeler | Aug 1968 | A |
3476438 | Bower, Jr. | Nov 1969 | A |
3519309 | Engle | Jul 1970 | A |
3833264 | Elders | Sep 1974 | A |
3833265 | Elders | Sep 1974 | A |
3865437 | Crosby | Feb 1975 | A |
3997011 | Staroba | Dec 1976 | A |
4084856 | Emmerich | Apr 1978 | A |
4247150 | Wrulich et al. | Jan 1981 | A |
RE30807 | Elders | Dec 1981 | E |
4310939 | Iijima | Jan 1982 | A |
4453775 | Clemmow | Jun 1984 | A |
4478298 | Hake | Oct 1984 | A |
4489986 | Dziak | Dec 1984 | A |
4520997 | Lorton | Jun 1985 | A |
4525178 | Hall | Jun 1985 | A |
4561698 | Beebe | Dec 1985 | A |
4570726 | Hall | Feb 1986 | A |
4604106 | Hall | Aug 1986 | A |
4632463 | Sterwerf, Jr. | Dec 1986 | A |
4694918 | Hall | Sep 1987 | A |
4702525 | Sollami | Oct 1987 | A |
4763956 | Emmerich | Aug 1988 | A |
4811801 | Salesky | Mar 1989 | A |
4818027 | Simon | Apr 1989 | A |
4821819 | Whysong | Apr 1989 | A |
4844550 | Beebe | Jul 1989 | A |
4915455 | O'Niell | Apr 1990 | A |
4944559 | Sionett | Jul 1990 | A |
5067775 | D'Angelo | Nov 1991 | A |
5088797 | O'Neill | Feb 1992 | A |
5098167 | Latham | Mar 1992 | A |
5159233 | Sponseller | Oct 1992 | A |
5161627 | Burkett | Nov 1992 | A |
5273343 | Ojanen | Dec 1993 | A |
5281260 | Kumar et al. | Jan 1994 | A |
5287937 | Sollami | Feb 1994 | A |
5302005 | O'Neill | Apr 1994 | A |
5303984 | Ojanen | Apr 1994 | A |
5352079 | Croskey | Oct 1994 | A |
5370448 | Sterwerf, Jr. | Dec 1994 | A |
5374111 | Den Besten | Dec 1994 | A |
5415462 | Massa | May 1995 | A |
5417475 | Graham et al. | May 1995 | A |
5458210 | Sollami | Oct 1995 | A |
5484191 | Sollami | Jan 1996 | A |
5492188 | Smith et al. | Feb 1996 | A |
5541006 | Conley | Jul 1996 | A |
5551760 | Sollami | Sep 1996 | A |
5607206 | Siddle | Mar 1997 | A |
5628549 | Ritchey | May 1997 | A |
5647641 | Sulosky et al. | Jul 1997 | A |
5720528 | Ritchey | Feb 1998 | A |
5725283 | O'Neill | Mar 1998 | A |
5738415 | Parrott | Apr 1998 | A |
5823632 | Burkett | Oct 1998 | A |
5924501 | Tibbitts | Jul 1999 | A |
5931542 | Britzke | Aug 1999 | A |
5934854 | Krautkremer et al. | Aug 1999 | A |
5992405 | Sollami | Nov 1999 | A |
D420013 | Warren | Feb 2000 | S |
6019434 | Emmerich | Feb 2000 | A |
6099081 | Warren | Aug 2000 | A |
6102486 | Briese | Aug 2000 | A |
6176552 | Topka, Jr. | Jan 2001 | B1 |
6196340 | Jensen et al. | Mar 2001 | B1 |
6199451 | Sollami | Mar 2001 | B1 |
6220376 | Lundell | Apr 2001 | B1 |
6250535 | Sollami | Jun 2001 | B1 |
6331035 | Montgomery, Jr. | Dec 2001 | B1 |
6341823 | Sollami | Jan 2002 | B1 |
6357832 | Sollami | Mar 2002 | B1 |
6371567 | Sollami | Apr 2002 | B1 |
6382733 | Parrott | May 2002 | B1 |
6428110 | Ritchey et al. | Aug 2002 | B1 |
6508516 | Kammerer | Jan 2003 | B1 |
D471211 | Sollami | Mar 2003 | S |
6585326 | Sollami | Jul 2003 | B2 |
6685273 | Sollami | Feb 2004 | B1 |
6692083 | Latham | Feb 2004 | B2 |
D488170 | Sollami | Apr 2004 | S |
6733087 | Hall | May 2004 | B2 |
6739327 | Sollami | May 2004 | B2 |
6786557 | Montgomery | Sep 2004 | B2 |
6824225 | Stiffler | Nov 2004 | B2 |
6846045 | Sollami | Jan 2005 | B2 |
6854810 | Montgomery | Feb 2005 | B2 |
6866343 | Holl et al. | Mar 2005 | B2 |
6968912 | Sollami | Nov 2005 | B2 |
6994404 | Sollami | Feb 2006 | B1 |
7097258 | Sollami | Aug 2006 | B2 |
7118181 | Frear | Oct 2006 | B2 |
7150505 | Sollami | Dec 2006 | B2 |
7195321 | Sollami | Mar 2007 | B1 |
7210744 | Montgomery | May 2007 | B2 |
7229136 | Sollami | Jun 2007 | B2 |
7234782 | Stehney | Jun 2007 | B2 |
D554162 | Hall | Oct 2007 | S |
7320505 | Hall | Jan 2008 | B1 |
7338135 | Hall | Mar 2008 | B1 |
7343947 | Sollami | Mar 2008 | B1 |
7347292 | Hall | Mar 2008 | B1 |
D566137 | Hall | Apr 2008 | S |
7353893 | Hall | Apr 2008 | B1 |
7384105 | Hall | Jun 2008 | B2 |
7396086 | Hall | Jun 2008 | B1 |
7401862 | Holl et al. | Jul 2008 | B2 |
7401863 | Hall | Jul 2008 | B1 |
7410221 | Hall | Aug 2008 | B2 |
7413256 | Hall | Aug 2008 | B2 |
7413258 | Hall | Aug 2008 | B2 |
7419224 | Hall | Sep 2008 | B2 |
7445294 | Hall | Nov 2008 | B2 |
D581952 | Hall | Dec 2008 | S |
7464993 | Hall | Dec 2008 | B2 |
7469756 | Hall | Dec 2008 | B2 |
7469971 | Hall | Dec 2008 | B2 |
7469972 | Hall | Dec 2008 | B2 |
7475948 | Hall | Jan 2009 | B2 |
7523794 | Hall | Apr 2009 | B2 |
7568770 | Hall | Aug 2009 | B2 |
7569249 | Hall | Aug 2009 | B2 |
7571782 | Hall | Aug 2009 | B2 |
7575425 | Hall | Aug 2009 | B2 |
7588102 | Hall | Sep 2009 | B2 |
7594703 | Hall | Sep 2009 | B2 |
7600544 | Sollami | Oct 2009 | B1 |
7600823 | Hall | Oct 2009 | B2 |
7628233 | Hall | Dec 2009 | B1 |
7635168 | Hall | Dec 2009 | B2 |
7637574 | Hall | Dec 2009 | B2 |
7648210 | Hall | Jan 2010 | B2 |
7665552 | Hall | Feb 2010 | B2 |
7669938 | Hall | Mar 2010 | B2 |
7681338 | Hall | Mar 2010 | B2 |
7712693 | Hall | May 2010 | B2 |
7717365 | Hall | May 2010 | B2 |
7722127 | Hall | May 2010 | B2 |
7789468 | Sollami | Sep 2010 | B2 |
7832808 | Hall | Nov 2010 | B2 |
7883155 | Sollami | Feb 2011 | B2 |
7950745 | Sollami | May 2011 | B2 |
7963617 | Hall | Jun 2011 | B2 |
7992944 | Hall | Aug 2011 | B2 |
7992945 | Hall | Aug 2011 | B2 |
7997660 | Monyak et al. | Aug 2011 | B2 |
7997661 | Hall | Aug 2011 | B2 |
8007049 | Fader | Aug 2011 | B2 |
8007051 | Hall | Aug 2011 | B2 |
8029068 | Hall | Oct 2011 | B2 |
8033615 | Hall | Oct 2011 | B2 |
8033616 | Hall | Oct 2011 | B2 |
8038223 | Hall | Oct 2011 | B2 |
8061784 | Hall | Nov 2011 | B2 |
8109349 | Hall | Feb 2012 | B2 |
8118371 | Hall | Feb 2012 | B2 |
8136887 | Hall | Mar 2012 | B2 |
8201892 | Hall | Jun 2012 | B2 |
8215420 | Hall | Jul 2012 | B2 |
8292372 | Hall | Oct 2012 | B2 |
8414085 | Hall | Apr 2013 | B2 |
8449039 | Hall | May 2013 | B2 |
8485609 | Hall | Jul 2013 | B2 |
8500209 | Hall | Aug 2013 | B2 |
8540320 | Sollami | Sep 2013 | B2 |
RE44690 | Sollami | Jan 2014 | E |
8622482 | Sollami | Jan 2014 | B2 |
8622483 | Sollami | Jan 2014 | B2 |
8646848 | Hall | Feb 2014 | B2 |
8728382 | Hall | May 2014 | B2 |
8740314 | O'Neill | Jun 2014 | B2 |
9004610 | Erdmann et al. | Apr 2015 | B2 |
9028008 | Bookhamer | May 2015 | B1 |
9039099 | Sollami | May 2015 | B2 |
9316061 | Hall | Apr 2016 | B2 |
9518464 | Sollami | Dec 2016 | B2 |
9879531 | Sollami | Jan 2018 | B2 |
9909416 | Sollami | Mar 2018 | B1 |
9976418 | Sollami | May 2018 | B2 |
9988903 | Sollami | Jun 2018 | B2 |
10072501 | Sollami | Sep 2018 | B2 |
10105870 | Sollami | Oct 2018 | B1 |
10107097 | Sollami | Oct 2018 | B1 |
10107098 | Sollami | Oct 2018 | B2 |
10180065 | Sollami | Jan 2019 | B1 |
10260342 | Sollami | Apr 2019 | B1 |
10323515 | Sollami | Jun 2019 | B1 |
10337324 | Sollami | Jul 2019 | B2 |
10370966 | Sollami | Aug 2019 | B1 |
10385689 | Sollami | Aug 2019 | B1 |
10415386 | Sollami | Sep 2019 | B1 |
10502056 | Sollami | Dec 2019 | B2 |
10947844 | Sollami | Mar 2021 | B1 |
10954785 | Sollami | Mar 2021 | B2 |
20020063467 | Taitt | May 2002 | A1 |
20020074850 | Montgomery, Jr. | Jun 2002 | A1 |
20020074851 | Montgomery, Jr. | Jun 2002 | A1 |
20020109395 | Sollami | Aug 2002 | A1 |
20020167216 | Sollami | Nov 2002 | A1 |
20020192025 | Johnson | Dec 2002 | A1 |
20030015907 | Sollami | Jan 2003 | A1 |
20030047985 | Stiffler | Mar 2003 | A1 |
20030052530 | Sollami | Mar 2003 | A1 |
20030122414 | Sollami | Jul 2003 | A1 |
20030209366 | McAlvain | Nov 2003 | A1 |
20040004389 | Latham | Jan 2004 | A1 |
20040026132 | Hall et al. | Feb 2004 | A1 |
20040174065 | Sollami | Sep 2004 | A1 |
20050173966 | Mouthaan | Aug 2005 | A1 |
20050212345 | Sleep et al. | Sep 2005 | A1 |
20060071538 | Sollami | Apr 2006 | A1 |
20060186724 | Stehney | Aug 2006 | A1 |
20060261663 | Sollami | Nov 2006 | A1 |
20070013224 | Stehney | Jan 2007 | A1 |
20070040442 | Weaver | Feb 2007 | A1 |
20070052279 | Sollami | Mar 2007 | A1 |
20080035386 | Hall et al. | Feb 2008 | A1 |
20080036276 | Hall et al. | Feb 2008 | A1 |
20080036283 | Hall et al. | Feb 2008 | A1 |
20080100124 | Hall et al. | May 2008 | A1 |
20080145686 | Mirchandani | Jun 2008 | A1 |
20080164747 | Weaver et al. | Jul 2008 | A1 |
20080284234 | Hall et al. | Nov 2008 | A1 |
20090146491 | Fader et al. | Jun 2009 | A1 |
20090160238 | Hall et al. | Jun 2009 | A1 |
20090184564 | Brady | Jul 2009 | A1 |
20090256413 | Majagi | Oct 2009 | A1 |
20090261646 | Ritchie et al. | Oct 2009 | A1 |
20090284069 | Watson | Nov 2009 | A1 |
20100045094 | Sollami | Feb 2010 | A1 |
20100244545 | Hall | Sep 2010 | A1 |
20100253130 | Sollami | Oct 2010 | A1 |
20100320003 | Sollami | Dec 2010 | A1 |
20100320829 | Sollami | Dec 2010 | A1 |
20110006588 | Monyak et al. | Jan 2011 | A1 |
20110089747 | Helsel | Apr 2011 | A1 |
20110175430 | Heiderich et al. | Jul 2011 | A1 |
20110204703 | Sollami | Aug 2011 | A1 |
20110254350 | Hall | Oct 2011 | A1 |
20110314614 | Barnhart et al. | Dec 2011 | A1 |
20120001475 | Dubay et al. | Jan 2012 | A1 |
20120027514 | Hall | Feb 2012 | A1 |
20120056465 | Gerer et al. | Mar 2012 | A1 |
20120068527 | Erdmann | Mar 2012 | A1 |
20120104830 | Monyak et al. | May 2012 | A1 |
20120181845 | Sollami | Jul 2012 | A1 |
20120242136 | Ojanen | Sep 2012 | A1 |
20120248663 | Hall | Oct 2012 | A1 |
20120261977 | Hall | Oct 2012 | A1 |
20120280559 | Watson | Nov 2012 | A1 |
20120286559 | Sollami | Nov 2012 | A1 |
20120319454 | Swope | Dec 2012 | A1 |
20130169022 | Monyak | Jul 2013 | A1 |
20130169023 | Monyak | Jul 2013 | A1 |
20130181501 | Hall et al. | Jul 2013 | A1 |
20130199693 | Tank et al. | Aug 2013 | A1 |
20130307316 | Roetsch et al. | Nov 2013 | A1 |
20140035346 | Fundakowski et al. | Feb 2014 | A1 |
20140110991 | Sollami | Apr 2014 | A1 |
20140232172 | Roth et al. | Aug 2014 | A1 |
20140262541 | Parsana et al. | Sep 2014 | A1 |
20140326516 | Haugvaldstad | Nov 2014 | A1 |
20150028656 | Sollami | Jan 2015 | A1 |
20150035343 | Ojanen | Feb 2015 | A1 |
20150137579 | Lachmann et al. | May 2015 | A1 |
20150198040 | Voitic et al. | Jul 2015 | A1 |
20150240634 | Sollami | Aug 2015 | A1 |
20150285074 | Sollami | Oct 2015 | A1 |
20150292325 | Sollami | Oct 2015 | A1 |
20150300166 | Ries et al. | Oct 2015 | A1 |
20150308488 | Kahl | Oct 2015 | A1 |
20150315910 | Sollami | Nov 2015 | A1 |
20150354285 | Hall | Dec 2015 | A1 |
20160102550 | Paros | Apr 2016 | A1 |
20160194956 | Sollami | Jul 2016 | A1 |
20160229084 | Lehnert | Aug 2016 | A1 |
20160237818 | Weber et al. | Aug 2016 | A1 |
20170001292 | Harrison | Jan 2017 | A1 |
20170089198 | Sollami | Mar 2017 | A1 |
20170101867 | Hall et al. | Apr 2017 | A1 |
20170342831 | Weber et al. | Nov 2017 | A1 |
20180003050 | Sollami | Jan 2018 | A1 |
20200157890 | Cuillier De Maindreville et al. | May 2020 | A1 |
Number | Date | Country |
---|---|---|
102004049710 | Apr 2006 | DE |
102011079115 | Jan 2013 | DE |
202012100353 | Jun 2013 | DE |
102015121953 | Jul 2016 | DE |
102016118658 | Mar 2017 | DE |
0997610 | May 2000 | EP |
3214261 | Sep 2017 | EP |
1114156 | May 1968 | GB |
1218308 | Jan 1971 | GB |
2010356 | Jun 1979 | GB |
2483157 | Feb 2012 | GB |
2534370 | Jul 2016 | GB |
2008105915 | Sep 2008 | WO |
2008105915 | Sep 2008 | WO |
2009006612 | Jan 2009 | WO |
Number | Date | Country | |
---|---|---|---|
62965237 | Jan 2020 | US | |
61983291 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16413080 | May 2019 | US |
Child | 17146992 | US | |
Parent | 14690679 | Apr 2015 | US |
Child | 16413080 | US |