This disclosure relates to bit assemblies for road milling, mining and trenching machines and, more particularly, to improved bit holder blocks, bit holders and bits for use in road milling machines.
Road mining, trenching, and milling equipment utilizes bits and/or picks traditionally set in a bit assembly. Bit assemblies can include a bit and/or pick retained within a bore in a base bock. Bit assemblies can also include a bit and/or pick retained by a bit holder and the bit holder retained within a bore in a bit holder block, hereinafter referred to as a base block. A plurality of the bit assemblies are mounted on an outside surface of a rotatable, cylindrical drum, typically in a herringbone, V-shape, or spiral configuration. A plurality of the bit assemblies can also be mounted on an endless chain and plate configuration or on an outer surface of a continuous chain. Bit bodies can include a generally conical, parabolic, and/or angular cutting tip that is mounted in a recess in a forward body portion of the bit body. The combinations of bit assemblies have been utilized to remove material from the terra firma, such as degrading the surface of the earth, minerals, cement, concrete, macadam or asphalt pavement. Individual bits and/or picks, bit holders, and base blocks may wear down or break over time due to the harsh road and trenching degrading environment. The shank of the bit holder is generally cylindrical in shape, hollow with a thick generally annular side wall and slotted on a distal portion of that side wall in an axially inward direction allowing for radial compression when inserted in the bore of the base block, having sufficient radial force between that shank and the bore to maintain the bit holder in the base block during use.
This disclosure relates generally to a bit holder for mining, trenching, and/or milling equipment. One implementation of the teachings herein is a bit holder including a body portion including a bottom; a generally cylindrical hollow shank axially extending from the bottom of the body portion, the shank comprising: a slot extending generally axially from a distal end of the shank; and a first segment adjacent the distal end of the shank, the first segment including one of an inwardly tapered outer surface, an outwardly tapered outer surface, and a cylindrical outer surface.
These and other aspects of the present disclosure are disclosed in the following detailed description of the embodiments, the appended claims and the accompanying figures.
The various features, advantages, and other uses of the apparatus will become more apparent by referring to the following detailed description and drawings, wherein like reference numerals refer to like parts throughout the several views. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity.
Road mining, trenching, and milling equipment utilizes bits and/or picks traditionally set in a bit assembly. Bit assemblies can include a bit and/or pick retained within a bore in a base bock. Bit assemblies can also include a bit and/or pick retained by a bit holder and the bit holder retained within a bore in a bit holder block, hereinafter referred to as a base block. A plurality of the bit assemblies are mounted on an outside surface of a rotatable, cylindrical drum, typically in a herringbone, V-shape, or spiral configuration. A plurality of the bit assemblies can also be mounted on an endless chain and plate configuration or on an outer surface of a continuous chain. Bit bodies can include a generally conical, parabolic, and/or angular cutting tip that is mounted in a recess in a forward body portion of the bit body. The combinations of bit assemblies have been utilized to remove material from the terra firma, such as degrading the surface of the earth, minerals, cement, concrete, macadam or asphalt pavement. Individual bits and/or picks, bit holders, and base blocks may wear down or break over time due to the harsh road and trenching degrading environment. The shank of the bit holder is generally cylindrical in shape, hollow with a thick generally annular side wall and slotted on a distal portion of that side wall in an axially inward direction allowing for radial compression when inserted in the bore of the base block, having sufficient radial force between that shank and the bore to maintain the bit holder in the base block during use. the bit holder shank of the present disclosure is capable of operating in many base block bore configurations of the base block.
The base block bore may comprise many different configurations. In one configuration, the base block bore would be tapered in a non-locking taper configuration approximating one degree of taper per side and the shank of the bit holder would likewise be tapered along a portion of its length such that the insertion of the bit holder shank in the base block bore need only be forced approximately ½ to 1¼ inch to mount the bit holder shank in the base block bore. In another configuration, the base block bore would be configured with either near a perfectly cylindrical base block bore and a cylindrical distal end of the slotted bit holder shank. Such a configuration requires forcing the bit holder shank into the base block bore a distance between of about two inches to retain the bit assembly together during use. In yet another configuration, the base block bore comprises, at approximately its outer ½ axial length, a frustoconical shape taper approximating 5.5 degrees per side with the inner portion of the base block bore's axial length being cylindrical in shape. The distal end half of the bit holder shank is slotted in a configuration useful with this type of base block bore. The bit holder shank of the present disclosure is capable of operating in the multiple base block bore configurations.
Referring to
A mediate body portion 24 subjacent the upper body portion 18 generally slopes axially and radially outwardly to a radially extending generally cylindrical tire portion 26 which is the widest radially extending portion of the bit holder 10. In this illustrated embodiment, the mediate body portion 24 has a concave side surface. In other embodiments, the side surface of the mediate body portion can have other shapes, such as an arcuate shape, a convex shape, or a conical shape and is generally shaped to deflect material outwardly from the bit holder 10 as it is separated by the bit and moves axially and outwardly along the bit, bit holder 10, and base block 12 bodies. A chamfer 28 (
The generally annular flange 30 includes a pair of horizontal slots or tapered undercuts 38 (
The shank 16 includes an elongate first slot 40 (
The shank 16 includes a lower or first portion 50 running axially from a stepped shoulder 52 adjacent the distal end 34 of the shank 16. The stepped shoulder 52 is disposed between the lower portion 50 and a decreased diameter distal portion 54. The decreased diameter distal portion 54 depends from the stepped shoulder 52 and, as shown in
A diameter of the stepped shoulder 52 increases, or steps up, as it axially extends from the distal portion 54 to the lower portion 50. The first portion 50 runs upwardly or axially from the stepped shoulder 52 of the shank 16 and terminates generally mid slot 40 longitudinally. The lower portion 50, in this illustrated embodiment, is between 0.005 and 0.050 inches larger than the corresponding base block bore 36 at the axial location corresponding to same when the bit holder 10 is slidably inserted in the bore 36 of the base block 12. The lower portion 50 collapses radially, when the bit holder shank 16 is inserted in the base block bore 36, elastically to an extent that provides sufficient radial force to maintain the shank 16 of the bit holder 10 in the bore 36 of the base block 12 during use. The interference may be termed a differential interference with the base block bore 36 as it increases as one moves from the top of the lower portion 50 to the bottom of the lower portion 50. This interference is increased until it creates a radial force between 5,000 and 30,000 pounds radial force which maintains the bit holder 10 in the bore 36 of the base block 12 during the rugged use to which the bit assembly is subjected.
The shank 16 also includes an annular shoulder 56 (
In this illustrated embodiment, the top tapered portion 60 is tapered towards the axis of the bit holder 10 as it extends axially from the back flange 30 to a tapered portion 62 (
The base block 12 includes a base 68 (
As long as the cylindrical, inwardly tapered, or outwardly tapered lower portion 50 of the bit holder shank 16 has an increased convergence with the base block bore 36 toward the distal end 34 of the shank 16, many combinations, such as outward tapered shank/cylindrical base block bore, cylindrical shank/inward tapered base block bore, inward tapered base block bore/less inward tapered shank, inward tapered base block bore/outward tapered shank, etc., can be engineered to provide the necessary holding force between the bit holder 10 and the bore 36 of the base block 12. Tapers, resulting in a slidably engageable shank, generally extend from 0.01 degree to 3.5 degrees per side or up to 7 degrees total on a diameter depending on the axial force applied to the bit holder 10 when inserting into the base block 12. In this illustrated embodiment, the lower portion 50 of the shank 16 is outwardly tapered, also termed a reverse taper, and the lower portion 74 of the base block bore 36 is cylindrical, which provides a substantial differential interference fit between the lower portion 50 of the shank 16 and the lower portion 74 of the base block bore 36. This limited difference (differential interference) in substantial annular contact surface between the distal end of the shank 16 and the bottom of the base block bore 36 provides for greater ease of entry and removal of the bit holder 10 from the base block 12 by only having to move the bit holder 10 a short distance in the base block bore 36 to obtain release.
To assemble, the shank 16 of the bit holder 10 is slidably inserted into the bore 36 of the base block 12. The slot 40 allows the shank 16 to radially compress when inserted into the base block bore 36 of the receiving portion 66 forming an interference fit between the shank 16 and the base block bore 36. When fully inserted, the back flange 30 (surface “A” in
As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X includes A or B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes A or B” is satisfied under any of the foregoing instances. In addition, “X includes at least one of A and B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes at least one of A and B” is satisfied under any of the foregoing instances. The articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form. Moreover, use of the term “an implementation” or “one implementation” throughout is not intended to mean the same embodiment, aspect or implementation unless described as such.
While the present disclosure has been described in connection with certain embodiments and measurements, it is to be understood that the invention is not to be limited to the disclosed embodiments and measurements but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
This application claims priority to and is a continuation-in-part of U.S. Non-provisional application Ser. No. 16/181,591, filed Nov. 6, 2018, claims priority to and is a continuation-in-part of U.S. Provisional Application No. 61/944,676, filed Feb. 26, 2014, claims priority to and is a continuation-in-part of U.S. Non-provisional application Ser. No. 14/628,482, filed Feb. 23, 2015, now U.S. Pat. No. 9,879,531, issued Jan. 30, 2018, claims priority to and is a continuation-in-part of U.S. Non-provisional application Ser. No. 15/708,292, filed Sep. 19, 2017, claims priority to and is a continuation-in-part of U.S. Provisional Application No. 61/891,683, filed Oct. 16, 2013, and claims priority to and is a continuation-in-part of U.S. Non-provisional application Ser. No. 14/512,581, filed Oct. 13, 2014, now U.S. Pat. No. 10,072,501, issued Sep. 11, 2018, to the extent allowed by law and the contents of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2382947 | Brozek | Jul 1944 | A |
2810567 | Kirkham | Oct 1957 | A |
3342531 | Krekeler | Sep 1967 | A |
3342532 | Krekeler | Sep 1967 | A |
3397012 | Krekeler | Aug 1968 | A |
3476438 | Bower, Jr. | Nov 1969 | A |
3519309 | Engle | Jul 1970 | A |
3833264 | Elders | Sep 1974 | A |
3833265 | Elders | Sep 1974 | A |
3865437 | Crosby | Feb 1975 | A |
4084856 | Emmerich | Apr 1978 | A |
4247150 | Wrulich et al. | Jan 1981 | A |
RE30807 | Elders | Dec 1981 | E |
4310939 | Iijima | Jan 1982 | A |
4453775 | Clemmow | Jun 1984 | A |
4478298 | Hake | Oct 1984 | A |
4489986 | Dziak | Dec 1984 | A |
4525178 | Hall | Jun 1985 | A |
4561698 | Beebe | Dec 1985 | A |
4570726 | Hall | Feb 1986 | A |
4604106 | Hall | Aug 1986 | A |
4632463 | Sterwerf, Jr. | Dec 1986 | A |
4694918 | Hall | Sep 1987 | A |
4702525 | Sollami | Oct 1987 | A |
4763956 | Emmerich | Aug 1988 | A |
4811801 | Salesky | Mar 1989 | A |
4818027 | Simon | Apr 1989 | A |
4821819 | Whysong | Apr 1989 | A |
4844550 | Beebe | Jul 1989 | A |
4915455 | O'Niell | Apr 1990 | A |
4944559 | Sionett | Jul 1990 | A |
5067775 | D'Angelo | Nov 1991 | A |
5088797 | O'Neill | Feb 1992 | A |
5098167 | Latham | Mar 1992 | A |
5159233 | Sponseller | Oct 1992 | A |
5161627 | Burkett | Nov 1992 | A |
5273343 | Ojanen | Dec 1993 | A |
5287937 | Sollami | Feb 1994 | A |
5302005 | O'Neill | Apr 1994 | A |
5303984 | Ojanen | Apr 1994 | A |
5352079 | Croskey | Oct 1994 | A |
5370448 | Sterwerf, Jr. | Dec 1994 | A |
5374111 | Den Besten | Dec 1994 | A |
5415462 | Massa | May 1995 | A |
5417475 | Graham et al. | May 1995 | A |
5458210 | Sollami | Oct 1995 | A |
5484191 | Sollami | Jan 1996 | A |
5492188 | Smith et al. | Feb 1996 | A |
5551760 | Sollami | Sep 1996 | A |
5607206 | Siddle | Mar 1997 | A |
5628549 | Ritchey | May 1997 | A |
5720528 | Ritchey | Feb 1998 | A |
5725283 | O'Neill | Mar 1998 | A |
5823632 | Burkett | Oct 1998 | A |
5924501 | Tibbitts | Jul 1999 | A |
5931542 | Britzke | Aug 1999 | A |
5934854 | Krautkremer et al. | Aug 1999 | A |
5992405 | Sollami | Nov 1999 | A |
D420013 | Warren | Feb 2000 | S |
6019434 | Emmerich | Feb 2000 | A |
6102486 | Briese | Aug 2000 | A |
6176552 | Topka, Jr. | Jan 2001 | B1 |
6196340 | Jensen et al. | Mar 2001 | B1 |
6199451 | Sollami | Mar 2001 | B1 |
6250535 | Sollami | Jun 2001 | B1 |
6331035 | Montgomery, Jr. | Dec 2001 | B1 |
6341823 | Sollami | Jan 2002 | B1 |
6357832 | Sollami | Mar 2002 | B1 |
6371567 | Sollami | Apr 2002 | B1 |
6382733 | Parrott | May 2002 | B1 |
6428110 | Ritchey et al. | Aug 2002 | B1 |
6508516 | Kammerer | Jan 2003 | B1 |
D471211 | Sollami | Mar 2003 | S |
6585326 | Sollami | Jul 2003 | B2 |
6685273 | Sollami | Feb 2004 | B1 |
6692083 | Latham | Feb 2004 | B2 |
D488170 | Sollami | Apr 2004 | S |
6733087 | Hall | May 2004 | B2 |
6739327 | Sollami | May 2004 | B2 |
6786557 | Montgomery | Sep 2004 | B2 |
6824225 | Stiffer | Nov 2004 | B2 |
6846045 | Sollami | Jan 2005 | B2 |
6854810 | Montgomery | Feb 2005 | B2 |
6866343 | Holl et al. | Mar 2005 | B2 |
6968912 | Sollami | Nov 2005 | B2 |
6994404 | Sollami | Feb 2006 | B1 |
7097258 | Sollami | Aug 2006 | B2 |
7118181 | Frear | Oct 2006 | B2 |
7150505 | Sollami | Dec 2006 | B2 |
7195321 | Sollami | Mar 2007 | B1 |
7210744 | Montgomery | May 2007 | B2 |
7229136 | Sollami | Jun 2007 | B2 |
7234782 | Stehney | Jun 2007 | B2 |
D554162 | Hall | Oct 2007 | S |
7320505 | Hall | Jan 2008 | B1 |
7338135 | Hall | Mar 2008 | B1 |
7347292 | Hall | Mar 2008 | B1 |
D566137 | Hall | Apr 2008 | S |
7353893 | Hall | Apr 2008 | B1 |
7384105 | Hall | Jun 2008 | B2 |
7396086 | Hall | Jun 2008 | B1 |
7401862 | Holl et al. | Jul 2008 | B2 |
7401863 | Hall | Jul 2008 | B1 |
7410221 | Hall | Aug 2008 | B2 |
7413256 | Hall | Aug 2008 | B2 |
7413258 | Hall | Aug 2008 | B2 |
7419224 | Hall | Sep 2008 | B2 |
7445294 | Hall | Nov 2008 | B2 |
D581952 | Hall | Dec 2008 | S |
7464993 | Hall | Dec 2008 | B2 |
7469756 | Hall | Dec 2008 | B2 |
7469971 | Hall | Dec 2008 | B2 |
7469972 | Hall | Dec 2008 | B2 |
7475948 | Hall | Jan 2009 | B2 |
7523794 | Hall | Apr 2009 | B2 |
7568770 | Hall | Aug 2009 | B2 |
7569249 | Hall | Aug 2009 | B2 |
7571782 | Hall | Aug 2009 | B2 |
7575425 | Hall | Aug 2009 | B2 |
7588102 | Hall | Sep 2009 | B2 |
7594703 | Hall | Sep 2009 | B2 |
7600544 | Sollami | Oct 2009 | B1 |
7600823 | Hall | Oct 2009 | B2 |
7628233 | Hall | Dec 2009 | B1 |
7635168 | Hall | Dec 2009 | B2 |
7637574 | Hall | Dec 2009 | B2 |
7648210 | Hall | Jan 2010 | B2 |
7665552 | Hall | Feb 2010 | B2 |
7669938 | Hall | Mar 2010 | B2 |
7681338 | Hall | Mar 2010 | B2 |
7712693 | Hall | May 2010 | B2 |
7717365 | Hall | May 2010 | B2 |
7722127 | Hall | May 2010 | B2 |
7789468 | Sollami | Sep 2010 | B2 |
7832808 | Hall | Nov 2010 | B2 |
7883155 | Sollami | Feb 2011 | B2 |
7950745 | Sollami | May 2011 | B2 |
7963617 | Hall | Jun 2011 | B2 |
7992944 | Hall | Aug 2011 | B2 |
7992945 | Hall | Aug 2011 | B2 |
7997660 | Monyak et al. | Aug 2011 | B2 |
7997661 | Hall | Aug 2011 | B2 |
8007049 | Fader | Aug 2011 | B2 |
8007051 | Hall | Aug 2011 | B2 |
8029068 | Hall | Oct 2011 | B2 |
8033615 | Hall | Oct 2011 | B2 |
8033616 | Hall | Oct 2011 | B2 |
8038223 | Hall | Oct 2011 | B2 |
8061784 | Hall | Nov 2011 | B2 |
8109349 | Hall | Feb 2012 | B2 |
8118371 | Hall | Feb 2012 | B2 |
8136887 | Hall | Mar 2012 | B2 |
8201892 | Hall | Jun 2012 | B2 |
8215420 | Hall | Jul 2012 | B2 |
8292372 | Hall | Oct 2012 | B2 |
8414085 | Hall | Apr 2013 | B2 |
8449039 | Hall | May 2013 | B2 |
8485609 | Hall | Jul 2013 | B2 |
8500209 | Hall | Aug 2013 | B2 |
8540320 | Sollami | Sep 2013 | B2 |
RE44690 | Sollami | Jan 2014 | E |
8622482 | Sollami | Jan 2014 | B2 |
8622483 | Sollami | Jan 2014 | B2 |
8646848 | Hall | Feb 2014 | B2 |
8728382 | Hall | May 2014 | B2 |
8740314 | O'Neill | Jun 2014 | B2 |
9004610 | Erdmann et al. | Apr 2015 | B2 |
9028008 | Bookhamer | May 2015 | B1 |
9039099 | Sollami | May 2015 | B2 |
9316061 | Hall | Apr 2016 | B2 |
9518464 | Sollami | Dec 2016 | B2 |
9879531 | Sollami | Jan 2018 | B2 |
9909416 | Sollami | Mar 2018 | B1 |
9976418 | Sollami | May 2018 | B2 |
9988903 | Sollami | Jun 2018 | B2 |
10072501 | Sollami | Sep 2018 | B2 |
10105870 | Sollami | Oct 2018 | B1 |
10107097 | Sollami | Oct 2018 | B1 |
10107098 | Sollami | Oct 2018 | B2 |
10180065 | Sollami | Jan 2019 | B1 |
10260342 | Sollami | Apr 2019 | B1 |
10323515 | Sollami | Jun 2019 | B1 |
10337324 | Sollami | Jul 2019 | B2 |
10370966 | Sollami | Aug 2019 | B1 |
10385689 | Sollami | Aug 2019 | B1 |
10415386 | Sollami | Sep 2019 | B1 |
10502056 | Sollami | Dec 2019 | B2 |
10577931 | Sollami | Mar 2020 | B2 |
10598013 | Sollami | Mar 2020 | B2 |
20020063467 | Taitt | May 2002 | A1 |
20020074850 | Montgomery, Jr. | Jun 2002 | A1 |
20020074851 | Montgomery, Jr. | Jun 2002 | A1 |
20020109395 | Sollami | Aug 2002 | A1 |
20020167216 | Sollami | Nov 2002 | A1 |
20020192025 | Johnson | Dec 2002 | A1 |
20030015907 | Sollami | Jan 2003 | A1 |
20030047985 | Stiffler | Mar 2003 | A1 |
20030052530 | Sollami | Mar 2003 | A1 |
20030122414 | Sollami | Jul 2003 | A1 |
20030209366 | McAlvain | Nov 2003 | A1 |
20040004389 | Latham | Jan 2004 | A1 |
20040174065 | Sollami | Sep 2004 | A1 |
20050212345 | Sleep et al. | Sep 2005 | A1 |
20060071538 | Sollami | Apr 2006 | A1 |
20060186724 | Stehney | Aug 2006 | A1 |
20060261663 | Sollami | Nov 2006 | A1 |
20070013224 | Stehney | Jan 2007 | A1 |
20070040442 | Weaver | Feb 2007 | A1 |
20070052279 | Sollami | Mar 2007 | A1 |
20080035386 | Hall et al. | Feb 2008 | A1 |
20080036276 | Hall et al. | Feb 2008 | A1 |
20080036283 | Hall et al. | Feb 2008 | A1 |
20080100124 | Hall et al. | May 2008 | A1 |
20080145686 | Mirchandani | Jun 2008 | A1 |
20080164747 | Weaver et al. | Jul 2008 | A1 |
20080284234 | Hall et al. | Nov 2008 | A1 |
20090146491 | Fader et al. | Jun 2009 | A1 |
20090160238 | Hall et al. | Jun 2009 | A1 |
20090256413 | Majagi | Oct 2009 | A1 |
20090261646 | Ritchie et al. | Oct 2009 | A1 |
20100045094 | Sollami | Feb 2010 | A1 |
20100244545 | Hall | Sep 2010 | A1 |
20100253130 | Sollami | Oct 2010 | A1 |
20100320003 | Sollami | Dec 2010 | A1 |
20100320829 | Sollami | Dec 2010 | A1 |
20110006588 | Monyak et al. | Jan 2011 | A1 |
20110089747 | Helsel | Apr 2011 | A1 |
20110175430 | Heiderich et al. | Jul 2011 | A1 |
20110204703 | Sollami | Aug 2011 | A1 |
20110254350 | Hall | Oct 2011 | A1 |
20120001475 | Dubay et al. | Jan 2012 | A1 |
20120027514 | Hall | Feb 2012 | A1 |
20120056465 | Gerer et al. | Mar 2012 | A1 |
20120068527 | Erdmann | Mar 2012 | A1 |
20120104830 | Monyak et al. | May 2012 | A1 |
20120181845 | Sollami | Jul 2012 | A1 |
20120242136 | Ojanen | Sep 2012 | A1 |
20120248663 | Hall | Oct 2012 | A1 |
20120261977 | Hall | Oct 2012 | A1 |
20120280559 | Watson | Nov 2012 | A1 |
20120286559 | Sollami | Nov 2012 | A1 |
20120319454 | Swope | Dec 2012 | A1 |
20130169023 | Monyak | Jul 2013 | A1 |
20130181501 | Hall et al. | Jul 2013 | A1 |
20130199693 | Tank et al. | Aug 2013 | A1 |
20130307316 | Roetsch et al. | Nov 2013 | A1 |
20140035346 | Fundakowski et al. | Feb 2014 | A1 |
20140110991 | Sollami | Apr 2014 | A1 |
20140232172 | Roth et al. | Aug 2014 | A1 |
20140262541 | Parsana et al. | Sep 2014 | A1 |
20140326516 | Haugvaldstad | Nov 2014 | A1 |
20150028656 | Sollami | Jan 2015 | A1 |
20150035343 | Ojanen | Feb 2015 | A1 |
20150137579 | Lachmann et al. | May 2015 | A1 |
20150198040 | Voitic et al. | Jul 2015 | A1 |
20150240634 | Sollami | Aug 2015 | A1 |
20150285074 | Sollami | Oct 2015 | A1 |
20150292325 | Sollami | Oct 2015 | A1 |
20150300166 | Ries et al. | Oct 2015 | A1 |
20150308488 | Kahl | Oct 2015 | A1 |
20150315910 | Sollami | Nov 2015 | A1 |
20150354285 | Hall | Dec 2015 | A1 |
20160102550 | Paros et al. | Apr 2016 | A1 |
20160194956 | Sollami | Jul 2016 | A1 |
20160229084 | Lehnert | Aug 2016 | A1 |
20160237818 | Weber | Aug 2016 | A1 |
20170089198 | Sollami | Mar 2017 | A1 |
20170101867 | Hall et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
102004049710 | Apr 2006 | DE |
102011079115 | Jan 2013 | DE |
202012100353 | Jun 2013 | DE |
102015121953 | Jul 2016 | DE |
102016118658 | Mar 2017 | DE |
3214261 | Sep 2017 | EP |
1114156 | May 1968 | GB |
1218308 | Jan 1971 | GB |
2483157 | Feb 2012 | GB |
2534370 | Jul 2016 | GB |
2008105915 | Sep 2008 | WO |
2008105915 | Sep 2008 | WO |
2009006612 | Jan 2009 | WO |
Number | Date | Country | |
---|---|---|---|
61891683 | Oct 2013 | US | |
61944676 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14628482 | Feb 2015 | US |
Child | 15708292 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16181591 | Nov 2018 | US |
Child | 16418236 | US | |
Parent | 14512581 | Oct 2014 | US |
Child | 16181591 | US | |
Parent | 15708292 | Sep 2017 | US |
Child | 16181591 | US |